WO2010107192A2 - Znf281을 발현하는 제대혈 유래 만능 줄기세포의 분리방법 - Google Patents

Znf281을 발현하는 제대혈 유래 만능 줄기세포의 분리방법 Download PDF

Info

Publication number
WO2010107192A2
WO2010107192A2 PCT/KR2010/001338 KR2010001338W WO2010107192A2 WO 2010107192 A2 WO2010107192 A2 WO 2010107192A2 KR 2010001338 W KR2010001338 W KR 2010001338W WO 2010107192 A2 WO2010107192 A2 WO 2010107192A2
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
cells
cord blood
culture
umbilical cord
Prior art date
Application number
PCT/KR2010/001338
Other languages
English (en)
French (fr)
Other versions
WO2010107192A3 (ko
Inventor
강경선
노경환
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Priority to AU2010225612A priority Critical patent/AU2010225612B2/en
Priority to RU2011142170/10A priority patent/RU2511417C2/ru
Priority to JP2012500708A priority patent/JP5995720B2/ja
Priority to PL10753642T priority patent/PL2410046T3/pl
Priority to CN201080016872.7A priority patent/CN102395673B/zh
Priority to US13/257,961 priority patent/US10584312B2/en
Priority to EP10753642.7A priority patent/EP2410046B1/en
Priority to ES10753642T priority patent/ES2722930T3/es
Publication of WO2010107192A2 publication Critical patent/WO2010107192A2/ko
Publication of WO2010107192A3 publication Critical patent/WO2010107192A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0605Cells from extra-embryonic tissues, e.g. placenta, amnion, yolk sac, Wharton's jelly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors

Definitions

  • the present invention is a method for separating umbilical cord blood-derived pluripotent stem cells, characterized in that after culturing mononuclear cells isolated from umbilical cord blood in a culture vessel containing fibronectin, stem cells from the culture, umbilical cord blood isolated by the present invention
  • the present invention relates to a pluripotent stem cell, the umbilical cord blood-derived pluripotent stem cell or a cell therapeutic agent comprising a cell differentiated therefrom.
  • the present invention is a novel stem cell culture medium, a method for culturing stem cells, characterized in that by culturing and propagating stem cells in the medium, characterized in that the stem cells or sphere culture (sphere culture) or three-dimensional culture It relates to a method of increasing the stemness (stemness) of stem cells.
  • Stem cells have the characteristics of self-renewing, differentiation, and immortal, and using these unique properties, they are proposed as a solution for the treatment of various degenerative diseases in terms of regenerative medicine. Deep insight into their biology
  • Adult stem cells, available from a variety of tissues, are generally more attractive than embryonic stem cells because they can avoid the unlimited source and ethical challenges that researchers face.
  • stem cells isolated from umbilical cord blood have greater advantages than other adult stem cells because, unlike bone marrow or adipose tissue, donors are not at risk of further harm.
  • cord blood-derived mesenchymal stem cells have been successfully introduced to the successful nerve cells, liver cells, various types of cells such as bone cells (Sun, W. et al, Stem cells, 23:. 931, 2005; Hong SH. Et al., Biochem. Biophys. Res. Commun., 30: 1153, 2005; Hutson EL. Et al., Tissue Engineering, 11: 1407, 2005).
  • Bone cells Un, W. et al, Stem cells, 23:. 931, 2005; Hong SH. Et al., Biochem. Biophys. Res. Commun., 30: 1153, 2005; Hutson EL. Et al., Tissue Engineering, 11: 1407, 2005.
  • failed transplantation of wound, diabetes, heart infraction, etc. using cord blood mesenchymal stem cells has been reported in several papers (Nonome, K. et al., Am, J).
  • the present inventors cultured mononuclear cells isolated from human umbilical cord blood-derived blood in a culture vessel containing fibronectin, and found that a large number of spine-shape cells multiplied and colonized and continuously cultured. When it was confirmed that the characteristics of the cells are maintained to a certain degree.
  • the present invention has been completed as a culture method capable of efficient separation and mass proliferation of umbilical cord blood-derived non-hematopoietic stem cells and mesenchymal stem cells, which is a problem in the conventional method.
  • One object of the present invention is to provide a method for separating umbilical cord blood-derived pluripotent stem cells, characterized in that the stem cells are recovered from the culture after culturing the mononuclear cells isolated from the cord blood in a culture vessel containing fibronectin.
  • Another object of the present invention is to provide a umbilical cord blood-derived pluripotent stem cells isolated by the separation method.
  • Another object of the present invention to provide a cell therapy containing the cord blood-derived pluripotent stem cells or cells differentiated therefrom.
  • Another object of the present invention to provide a novel stem cell culture medium according to the present invention.
  • Still another object of the present invention is to provide a method for culturing stem cells, wherein the stem cells are grown by culturing in the medium.
  • Still another object of the present invention is to provide a stem cell stem cell growth method, characterized in that culturing the stem cells or three-dimensional culture.
  • One aspect of the present invention relates to a method for separating umbilical cord blood-derived pluripotent stem cells, characterized in that stem cells are recovered from the culture after culturing mononuclear cells isolated from umbilical cord blood in a culture vessel containing fibronectin.
  • the method may further include separating using the immunological characteristics of the stem cells.
  • the isolation of monocytes from umbilical cord blood can be carried out using conventional methods known in the art.
  • one embodiment of the present invention can be obtained by mixing umbilical cord blood and Hetasep to remove erythrocytes and isolating mononuclear cells using Ficoll-plaque.
  • the mixing ratio of cord blood and hetasep is preferably 0.5 to 2 ml per 5 ml of cord blood.
  • cord blood recovered immediately after delivery cord blood recovered immediately after delivery and stored for 12 to 48 hours at room temperature or cord blood stored for 6 to 72 hours at 3 ⁇ 5 °C It is desirable to.
  • the present invention is characterized in using fibronectin in a method for separating stem cells from mononuclear cells isolated from cord blood.
  • the term 'culture vessel containing fibronectin' means a state in which monocytes and fibronectin can be contacted.
  • fibronectin may be coated in the culture vessel or included in the medium in the form of particles or in the form of a three-dimensional structure. In one embodiment, when fibronectin is coated on the culture vessel, fibronectin may be included at a concentration of 0.1-1 mg / ml.
  • fibronectin may be one derived from an animal without particular limitation, but one derived from human is preferable.
  • the fibronectin may be prepared through artificial synthesis (e.g., chemical synthesis, synthesis using a protein synthesis device) or biosynthesis (e.g., recombinant DNA technology, fibroblast culture, etc.), or separated from plasma or extracellular matrix of animals including humans. It can also obtain by making it.
  • the fibronectin may be or include a fragment or peptide of fibronectin.
  • the medium to be used is not particularly limited, but it is preferable to use SNU-1 or EGM-2 as the basal medium.
  • composition of the 'SNU-1 medium' is as follows (Table 1).
  • FGF-B Fibroblast Growth Factor
  • Ascorbic acid Escorbic acid
  • EGF Epodermal Growth Factor
  • Hydrocortisone IGF-1 (Insulin-like Growth Factor-1) or VEGF in the basal medium. It is preferable to add (Vascular Endothelial Growth Factor), heparin, and further add GA-1000 (Gentamycin Sulfate, Amphotericin-B) as necessary.
  • fetal calf serum FBS
  • bFGF Fibroblast Growth Factor
  • ascorbic acid 0.1-5.0 ⁇ g / ml
  • EGF Epidermal Growth Factor
  • hydrocortisone 0.1-1 ⁇ g / ml
  • IGF-I Insulin-like Growth Factor-1
  • VEGF Vascular Endothelial Growth Factor
  • the medium is preferably replaced every 2-3 days.
  • Methods for obtaining pluripotent stem cells derived from umbilical cord blood from the culture include FACS method using flow cytometer with sorting function ( Int. Immunol. , 10 (3): 275, 1998), method using magnetic beads, mesenchyme Panning using an antibody that specifically recognizes stem cells ( J. Immunol. , 141 (8): 2797, 1998).
  • an antibody that is expressed on the surface of a cell and specifically recognizes a molecule hereinafter referred to as a surface antigen
  • a surface antigen an antibody that is expressed on the surface of a cell and specifically recognizes a molecule
  • Examples of the flow cytometer sorting method include a water charge method, a cell capture method, and the like. Any method can quantify the antigen expression level of the cell by labeling the antibody that specifically recognizes the surface antigen of the cell with fluorescence, and measuring the fluorescence of the conjugate of the labeled antibody and antigen to convert the fluorescence intensity into an electrical signal. have. In addition, by combining the kinds of fluorescent materials to be used, it is possible to separate cells expressing a plurality of surface antigens.
  • Fluorescent materials usable herein include FITC (fluorescein isothiocyanate), PE (phycoerythrin), APC (allo-phycocyanin), TR (TexasRed), Cy3, CyChrome, Red613, Red670, TRI-Color, QuantumRed and the like.
  • the stem cell solution obtained above is collected, the cells are separated by centrifugation, or the like, stained with an antibody directly, and cultured and propagated in a suitable medium once.
  • Methods for staining antibodies can be used.
  • the primary antibody recognizing the surface antigen and the target cell sample are mixed and incubated for 30 minutes to 1 hour on ice. If the primary antibody is labeled with fluorescence, it is separated by a flow cytometer after washing. In the case where the primary antibody is not fluorescently labeled, after washing, the fluorescently labeled secondary antibody having binding activity with respect to the primary antibody and the cells reacted with the primary antibody are mixed and incubated on ice for 30 minutes to 1 hour. After washing, the cells stained with the primary antibody and the secondary antibody are separated by flow cytometry.
  • Umbilical cord blood-derived pluripotent stem cells isolated by the present invention have at least one of the following properties:
  • (c) shows a cumulative population doubling level (CPDL) of 30 to 45.
  • (e) can differentiate into cells of mesoderm, endoderm and ectoderm.
  • TIMP-2 TGF- ⁇ , RANTES CINC-3, EOTAXIN, GM-CSF, IFN- ⁇ , IL-1b, IL-3, IL-6, IL-8, IL-10, IL12p40, IL13, Secrete at least one cytokine or chemokine selected from the group consisting of IL-16, IP-10, Leptin, MCP-2, MIG, MIP-3a, b-NGFm, sTNFRI, PFGF-bb.
  • Umbilical cord blood-derived pluripotent stem cells of the present invention express Oct-4, Sox-2, Rex-1, c-myc, ZNF281 means that the undifferentiated state is maintained.
  • the umbilical cord blood-derived pluripotent stem cells of the present invention show a cumulative population doubling level (CPDL) of 30 ⁇ 45, it can be seen that the proliferation is excellent.
  • CPDL cumulative population doubling level
  • Umbilical cord blood-derived pluripotent stem cells of the present invention exhibit negative immunological properties against CD14, CD31, CD34, CD45 and HLA-DR known as hematopoietic stem cell markers or immunorejection related markers. As described above, the umbilical cord blood-derived pluripotent stem cells of the present invention lack the markers related to hematopoietic and immunorejection reactions, thereby minimizing angiogenesis and rejection during transplantation, and thus can be used as cells useful for allogenic transplantation.
  • Umbilical cord blood-derived pluripotent stem cells of the present invention can differentiate into mesenchymal osteoblasts, chondrocytes and adipocytes, as well as into hepatocytes and ectoderm neurons and retinal related cells of endoderm. Therefore, the umbilical cord blood-derived pluripotent stem cells of the present invention can be used to treat various diseases.
  • Umbilical cord blood-derived pluripotent stem cells of the present invention are TIMP-2, TGF- ⁇ , RANTES CINC-3, EOTAXIN, GM-CSF, IFN- ⁇ , IL-1b, IL-3, IL-6, IL-8, IL- 10, IL12p40, IL13, IL-16, IP-10, Leptin, MCP-2, MIG, MIP-3a, b-NGFm, sTNFRI, PFGF-bb and secretes a variety of cytokines or chemokines. By secreting such cytokines or chemokines, the umbilical cord blood-derived pluripotent stem cells of the present invention can be used to treat various diseases.
  • Stem cells having such characteristics are novel, and the present invention provides umbilical cord blood-derived pluripotent stem cells having the above characteristics.
  • Umbilical cord blood-derived pluripotent stem cells of the present invention can differentiate into various types of cells, including osteoblasts, chondrocytes, adipocytes, hepatocytes, neurons, and can be used to treat various diseases correspondingly. Accordingly, the present invention provides a cell therapeutic agent containing umbilical cord blood-derived pluripotent stem cells of the present invention or cells differentiated therefrom.
  • Cell therapy agents of the invention include, for example, neurological diseases (e.g., degenerative neuropathy), osteoarthritis (e.g., degenerative arthritis, rheumatoid arthritis), bone loss (e.g., osteoporosis), liver disease (e.g., cirrhosis), cardiovascular diseases It can be used to treat a variety of diseases, including.
  • neurological diseases e.g., degenerative neuropathy
  • osteoarthritis e.g., degenerative arthritis, rheumatoid arthritis
  • bone loss e.g., osteoporosis
  • liver disease e.g., cirrhosis
  • cardiovascular diseases e.g., cardiovascular diseases, including.
  • the cell therapy agent of the invention preferably comprises one or more diluents which protect and maintain the cells.
  • the diluent may include physiological saline, PBS (Phosphate Buffered Saline), HBSS (Hank's balanced salt solution) and the like buffer, plasma or blood components.
  • the present invention relates to a novel stem cell culture medium.
  • the medium is fetal calf serum (FBS) 20%, bFGF (Fibroblast Growth Factor) 1 ⁇ 40ng / ml, ascorbic acid 0.1 ⁇ 5.0 ⁇ g / ml, EGF (Epidermal Growth Factor) 1 ⁇ 40ng / ml, hydrocortisone 0.1 ⁇ 1 ⁇ g / ml, Insulin-like Growth Factor-1 (IGF-I) 1-40 ng / ml or Vascular Endothelial Growth Factor (VEGF) 1-5 ng / ml and heparin 20-25 ⁇ g / ml are added as needed.
  • the stem cell culture medium is novel and was also used in the method for separating cord blood-derived pluripotent stem cells according to the present invention as described above. Since the medium of the present invention is useful for the proliferation of all adult stem cells including umbilical cord blood-derived stem cells, it can be used for culturing adult stem cells.
  • the present invention also relates to a method for culturing stem cells, wherein the stem cells are cultured in the medium of the present invention to proliferate.
  • the stem cells may be preferably adult stem cells.
  • the stem cell culture medium of the present invention can be used for culturing umbilical cord blood-derived pluripotent stem cells of the present invention. It is preferable that the umbilical cord blood-derived pluripotent stem cells of the present invention are passaged 3 to 5 days after the colony of spindle-shape cells is confirmed while culturing in the medium of the present invention.
  • the culturing is suitable to be carried out in 5% CO 2 conditions, the culturing may last for 5 to 30 days, but is not limited thereto.
  • the present invention sphere culture (sphere culture) or three-dimensional stem cells
  • stemness a method for increasing the stemness (stemness) of stem cells, characterized in that the culture.
  • MEF Mae embryonic fibroblast cell
  • the stem cells may further include those that are adult stem cells.
  • the pluripotent stem cells according to the present invention are derived from human umbilical cord blood, and when cultured in a culture vessel containing fibronectin, they grow vigorously for a long period of time in an undifferentiated stage as compared to conventional adult stem cells. It can be usefully used for the treatment of incurable diseases, and has the ability to differentiate into various kinds of cells such as chondrocytes, osteoblasts and adipocytes, and is effective in the treatment of diseases of the nervous system, cardiovascular system, skeletal system, and the like.
  • FIG. 1 shows the isolation of human cord blood-derived cells and transfer to new vessels (A, B, C, D and E) and photographs showing cell growth morphology on days 14, 15, 16, 17 and 18, respectively. Photograph showing cell growth in Passage 3 (F).
  • Figure 2 is a graph showing the cumulative cell proliferation over time of umbilical cord blood-derived pluripotent stem cells.
  • Figure 3 shows the results of karyotyping after long-term culture of umbilical cord blood-derived pluripotent stem cells according to the present invention.
  • Figure 4 is a result of flow cytometry by attaching various markers to umbilical cord blood-derived pluripotent stem cells according to the present invention.
  • FIG. 5 is a result of analyzing the expression of undifferentiated stem cell markers of umbilical cord blood-derived pluripotent stem cells according to the present invention through flow cytometry and cell immunostaining (A: Oct4 flow cytometry graph, B: Oct4 expression photo in immunostaining) C: nuclear staining picture of Oct4 expression picture, D: synthesis of Oct4 expression picture and nuclear staining picture).
  • Figure 6 confirms the expression of ZNF281 in terra-1, hUCB-MSC, AD-MSC and AM (top) and ZNF281 expression in hUCB-MSC passaged 3 to 9 times by FACS analysis (bottom) to be.
  • FIG. 8 is a photograph showing that human umbilical cord-derived pluripotent stem cells were differentiated into osteoblasts, adipocytes, chondrocytes and neurons, respectively
  • A A photograph stained with Alizarin Red S for a control group that did not induce differentiation into osteoblasts
  • B Alizarin Red S staining of the cells that induced differentiation into osteoblasts
  • C Oil Red O staining of the control group that did not induce differentiation into adipocytes
  • D Oil Red O of the cells that induced differentiation into adipocytes Staining photo
  • E Toluidine Blue staining of cells induced differentiation into chondrocytes
  • F Photograph of cell pellet taken after induction of differentiation into chondrocytes
  • G Tuj-1, a marker of neurons after induction of differentiation into neurons Immunofluorescence staining with MAP2).
  • PPAR- ⁇ and FABP-4 are markers of adipocyte differentiation.
  • Collagen Type 1 is a marker of osteoblast differentiation
  • PPAR- ⁇ Peroxisome Proliferator-Activated Receptor gamma
  • FABP-4 Fatty Acid Binding Protein-4
  • GAPDH Glyceraldehyde-3-phosphate dehydrogenase.
  • Figure 10 shows the expression pattern of the retinal-related protein of umbilical cord blood-derived pluripotent stem cells according to the present invention.
  • FIG. 11 is a photograph showing a culture of human umbilical cord stem-derived pluripotent stem cells and analyzing various cytokines secreted by cells using an antibody array (A: hUCB-MSC1, B: hUCB-MSC2, C: hUCB- MSC3, D: Sequence of sequenced antibodies POS: Positive control, NEG: Negative control, GCSF: Granulocyte-Colony Stimulating Factor, GM-CSF: Granulocyte Monocyte-Colony Stimulating Factor, ICAM-1: Intra-Cellular Adhesion Molecule, IFN- ⁇ : Interferon- ⁇ , IL: Interleukin, MCP: Monocyte Chemoattractant Protein, M-CSF: Monocyte-Golony Stimulating Factor, MIG: Monokine induced by Interferon Gamma, MIP: Macrophage Inflammatory Protein, RANTES: Regulated upon Activation, Normal T-cell Expressed and Secrete
  • FIG. 12 and 13 are three-dimensional culture of cord blood-derived pluripotent stem cells isolated by the present invention using sphere culture and STO cells, which are mouse fibroblast cells, and expression of Oct4 and Sox2 genes, which are transcriptional regulators. The result was confirmed by RT-PCR (FIG. 12: three-dimensional culture of umbilical cord blood-derived pluripotent stem cells through culturing, FIG. 13: three-dimensional culture of umbilical cord blood-derived pluripotent stem cells using STO cells).
  • erythrocytes were preferentially separated using full term UCB using HetaSep (Stem cells Technologies INC, Vancouver, BC). Then, as in the conventional method, it was separated in a ficoll gradient. Isolated mononuclear cells were coated with fibronectin at a concentration of 0.1 mg / ml-1 mg / ml using SNU-1 medium or EGM-2 (Lonza) containing EGM-2 SingleQuots containing 20% FBS. The plate was incubated with 1 x 10 5-8 cells.
  • EGM-2 SingQouts consists of heparin, Ascorbic acid, rhEGF, hydrocortisone, VEGF, rhFGF-B, R 3 -IGF-1, and GA-1000. After 3 days of incubation, the unattached monocytes were removed and the medium was replaced every 2-3 days.
  • FIG. 1A shows a photograph showing such a process, it can be seen that the size of the cell colony increases with time, and the shape of the cells remains constant even after passage.
  • the cumulative population doubling level was measured to investigate the proliferative capacity of isolated cord blood-derived pluripotent stem cells (Cristofalo et al., Proc. Natl. Acad. Sci., USA 95 , 1998). Cells proliferate using dichotomy. Thus, the growth rate of cells is determined by how long one cell becomes two cells. This is called Doubling time and can be used as a measure to evaluate the proliferation of cells. If the CDPL value is 10, it means that one cell divides 10 times, and when it is calculated numerically, it means that one cell multiplies to about 1000 cells.
  • the biggest problem of the existing cord blood-derived stem cells was a significantly lower proliferative power than adipose tissue or bone marrow-derived mesenchymal stem cells, and the proliferative power is also important in terms of clinical application.
  • the measurement method was carried out as follows. First, three kinds of cord blood-derived pluripotent stem cells isolated from other cord blood samples were incubated at 2 ⁇ 10 5 cells in 100 dishes, passaged at 3 or 4 day intervals, and cell numbers were measured using a cell calculator. The cell number was measured by culturing the cells continuously until the proliferation of the cells stopped. The CPDL value is obtained by using Equation 1 below.
  • N I Number of cells at the beginning of initial culture
  • N H the number of cells in saturation at the time of passage.
  • cord blood-derived endothelial progenitor cells As control group, human Umbilical cord blood derived endothelial progenitor cells (hUCB-EPC) were also used. As a result, as shown in the graph of FIG. 2, cord blood-derived endothelial progenitor cells showed about 20 CPDL for two months incubation time, whereas cord blood-derived pluripotent stem cells showed 40-45 CPDL in all three different samples. This number theoretically means that it can grow up to 10 12 in a single colony.
  • hUCB-EPC human Umbilical cord blood derived endothelial progenitor cells
  • cord blood-derived pluripotent stem cells isolated by the present invention are cells with normal chromosomes.
  • chromosomal abnormalities of the cells have been confirmed through karyotyping. As shown in FIG. 3, it was confirmed that the cells in passage 10 also had the structure of normal chromosomes.
  • Example 2 Surface antigen analysis of umbilical cord blood-derived pluripotent stem cells according to the present invention
  • FITC fluorescein isothiocyanate
  • PE phycoerythrin
  • the labeled antigens include CD10 (T cell marker), CD14 (monocyte marker), CD24 (epithelial cell marker), CD29 ( Mononuclear cell marker), CD31 (endothelial cell marker), CD34 (hematopoietic stem cell marker), CD44 (mesenchymal stem cell marker), CD45 (non-hematopoietic stem cell marker), CD51 / 61 (osteoblast marker), CD73 ( Mesenchymal stem cell markers), CD90 (mesenchymal stem cell markers), CD105 (mesenchymal stem cell markers), CD133 (hematopoietic stem cell markers), HLA-DR (immunosuppressor related markers) Analysis was performed using a cytometer. The results are shown in Table 2. 4 is a graph showing the following results.
  • ZNF281 (Zinc finger protein 281) is one of the key transcription factors in ESCs (Wang J et al. (2006) Nature 444, 364-368).
  • ZNF2 81 initially named ZBP-99, has four Krppel-type zinc fingers that share 91% amino acid sequence similarity and 79% sequence identity with ZBP-89.
  • the carboxy terminal fragments of both genes have a well-conserved amino acid sequence.
  • the expected open reading frame of ZNF281 c DNA encodes a 99kDa protein.
  • Electrophoretic mobility shift as say (EMSA) results show specific binding to the GC-rich promoter region of the GASTRIN and ORNITHINE DECARBOXYLASE genes (Law DJ et al.
  • ZNF281 was identified as one of the c-MYC associated proteins by tandem affinity purification in combination with mass spectral multidimensional protein identification t echnology (Koch HB et al. (2007) Cell Cycle 6, 205-217.) .
  • Oct3 / 4 genes such as the POU family transcription factors, do not exist in differentiated tissues, but are specifically expressed in undifferentiated stem cells containing high proliferative capacity (Tai MH. Et al., Carcinogenesis 26: 4 95 , 2005; Tondreau T. et al., Stem cells, 23: 1105, 2005). In general, it is used as a marker of embryonic stem cells, but it is also used as a marker indicating an undifferentiated state due to the above characteristics. Thus, as a result of staining cell colonies using Oct4 as a marker of stemness, it was confirmed that Oct4 was stained in the nucleus region and expressed in many cells even by flow cytometry analysis.
  • FIGS. 5 and 6 Oct4 staining revealed that Oct4 is expressed in many umbilical cord blood-derived pluripotent stem cells (FIG. 5A: Oct4 flow cytometry graph, B: Oct4 expression photo C: Oct4 expression photo Nuclear staining picture, D: composite picture of Oct4 expression picture and nuclear staining picture).
  • Genes such as Oct4 are very closely related to stem cell stemness, and in recent years, overexpressing genes such as Oct4, Sox2, etc., induce adult cells to have a cell-like almighty structure similar to embryonic stem cells. (Takahashi et al, Cell, 131 (5), 861-872, 2007). Therefore, the expression of these genes in stem cells may be very important in maintaining undifferentiated state without losing the stemness of stem cells. Therefore, the expression of genes such as ZNF2 81, Oct-4, and Sox2, which are known by conventional papers, in umbilical cord blood-derived pluripotent stem cells isolated by the present invention will be confirmed by reverse transcriptase polymerase chain reaction (RT-PCR). It was.
  • RT-PCR reverse transcriptase polymerase chain reaction
  • Bone differentiation induction medium was prepared by adding 10% FBS to DMEM low glucose, 10 mM beta-glycerophosphate (Sigma-Aldrich), 0.1 ⁇ M D examethasone (Sigma-Aldrich), and 50 ⁇ M ascorbate (Sigma-Aldrich). . The medium was changed every 3 days, and differentiation induction was carried out for about 2 weeks.
  • Alizarin red s staining was performed to confirm calcium mineralization due to bone differentiation.
  • the staining method is as follows. After removing the medium and then washed twice with distilled water, and fixed with cold 70% EtOH at 4 °C for 1 hour. After washing twice with distilled water, it was dyed for 10 minutes at room temperature using 40mM Alizarin red s. Then washed five times with distilled water.
  • Adipogenesis induction medium was added 10% FBS to DMEM low glucose.
  • Differentiation medium was prepared by adding 1 ⁇ M Dexamethasone, 10 ⁇ g / ml insulin (Sigma-Aldrich), 0.5 mM 3-i sobutyl-1-methylxanthine (Sigma-Aldrich), and 0.2 mM indomethacin (Sigma-Aldrich). Differentiation induction medium was changed every 3 days, and differentiation induction was carried out for about 2-3 weeks.
  • FIGS. 8C and 8D Cells undergoing differentiation into adipose stem cells are red when stained with oil red O because oil red O stains lipid droplets of fat cells in red. As shown in FIGS. 8C and 8D, FIG. 8C, which does not induce differentiation, shows little lipid droplet and little staining, but FIG. 8D inducing differentiation shows that lipid lipid is seen and stained in red. can do.
  • chondrocyte forming medium PT-3003 containing rTGF-beta 3 from Lonza for 3 weeks.
  • the medium was changed twice a week, and chondrocyte formation (osteogenesis) was measured at weekly intervals.
  • toluidine blue staining was performed. Cells were fixed with 4% formaldehyde for 10 hours and then fixed with picric acid for 10 hours. After cryosection, toluidine blue staining was performed for 3 minutes, and counterstaining was performed for 3 seconds with hematoxilin.
  • Cells undergoing differentiation into chondrocytes do not collapse and maintain a constant morphology and show a blue color when stained with toluidine blue. As shown in FIGS. 8E and 8F, it can be confirmed that the cells are stained blue. It can be seen that the shape is also well maintained.
  • Example 7 Change of gene expression level after induction of differentiation into umbilical cells and adipocytes of umbilical cord blood-derived pluripotent stem cells according to the present invention
  • Stem cells can be observed to significantly change the pattern of gene expression during the differentiation process.
  • expression of genes such as PPAR- ⁇ (Peroxisome Proloferator-activated Receptor- ⁇ ) or FABP4 (Fatty Acid Binding Protein 4) increases, and when they differentiate into osteoblasts, Collagen Increased gene expression such as Type 1 (Mat hews et al., J Am Acad Dermatol, 56 (3), 472-492, 2007; Cho et al., J. Cell.Biochem., 96, 533-542, 2 005). Therefore, differentiation can be confirmed indirectly by inducing differentiation and looking at the expression level of genes expressed in specific cells.
  • the experimental method is as follows.
  • the expression of the adipocyte differentiation markers PPAR- ⁇ and FABP4 was significantly increased in the cells inducing differentiation.
  • the differentiation marker of osteoblasts Similarly, it was observed to increase significantly in the differentiation induced cells.
  • GAPDH as a loading control, both differentiation-induced and non-differentiated cells came out the same, thus undermining the validity of the experimental results.
  • DMEM basic Fibroblast Growth Factor
  • FBS 10 ng / ml bFGF
  • DMEM basic Fibroblast Growth Factor
  • the cells were treated for 24 hours in a neural cell formation medium composed of DMEM containing 1% DMSO, 100 uM BHA, 0.5 mM VPA, 10 mM KCl, 10 ng / ml NGF, and B27.
  • the cells were fixed in 4% paraformaldehyde and immunostained with the neuron markers of Tuj-1, MAP-2, GFAP, and Neurofilament-160. ( Figure 8G).
  • Example 9 Retina-related protein expression analysis of cord blood-derived mesenchymal stem cells according to the present invention
  • the expression and pattern of the retina-related pluripotent stem cells were identified using immunofluorescence staining.
  • PAX6 is known as a retina progenitor marker
  • Hu protein is a protein that is specifically expressed in ganglion cells and amacrine cells, one of the retinal cells. It was confirmed that it does not express in a normal cell culture state.
  • Opsin is a protein specifically expressed in Cone cell
  • Rhodopsin is a protein specifically expressed in rod cell. Opsin was not expressed in normal cell culture, but Rhodopsin was expressed.
  • C C RX and Recoverin
  • CRX is known as a pan-photoreceptor marker
  • the first is the therapeutic effect through direct differentiation into damaged cells, and the second is the ability to secrete several cytokines or growth factors that will produce positive changes in the body that can produce therapeutic effects.
  • Stem cells are generally known to secrete several cytokines or growth factors (Kim et al. Cytokine. 2005). This effect is called the paracrine effect.
  • the human cytokine antibody array (RaybioTech. Norc ross, USA) was investigated.
  • the cells were stabilized for 24 hours using the culture medium from which FBS and Supplement were removed, and then 1 ml of the medium was collected every 2 hours. 100 ⁇ l of the collected medium was combined and quantified by protein quantification, followed by array.
  • FIG. 11A Array analysis picture of hUCB-MSC1, FIG. 11B: hUCB-MSC2, FIG. 11C: hUCB-MSC3, FIG. 11D: antibody sequence).
  • Incubation of embryonic stem cells is carried out on mouse embryonic fibroblast cells. This is because various chemokines such as LIF, which mouse embryonic fibroblast cells offer, maintain the shape of ES cells and prevent them from differentiating.
  • Umbilical cord blood-derived pluripotent stem cells were cultured on a mouse embryonic fibroblast cell line, and the colony was formed in a three-dimensional form rather than as a normal adult stem cell.
  • STO cells were treated with 0.1 mg / ml of mitomycin C to inhibit proliferation, seeded with 0.1% gelatin-coated dishes at 2 x 10 5 cells / ml, and cultured for 24 hours before seeding umbilical cord-derived pluripotent stem cells. .
  • As a result as shown in Figure 13 it can be observed that as time passes the cells proliferate similarly to Embryonic stem cells on the STO cells.
  • Pluripotent stem cells are derived from human umbilical cord blood, and when cultured in a culture vessel containing fibronectin, have strong cell growth for a long period of time in an undifferentiated stage compared to existing adult stem cells, and may be useful for treating incurable diseases. It has the ability to differentiate into various types of cells such as chondrocytes, osteoblasts and adipocytes, and can be used for the treatment of diseases of the nervous system, the cardiovascular system, and the skeletal system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Neurology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurosurgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 제대혈로부터 분리된 단핵세포를 피브로넥틴이 포함된 배양 용기 내에서 배양한 후 배양물로부터 줄기세포를 회수하는 것을 특징으로 하는 제대혈 유래 만능 줄기세포의 분리방법, 본 발명에 의해 분리된 제대혈 유래 만능 줄기세포, 상기 제대혈 유래 만능 줄기세포 또는 이로부터 분화된 세포를 포함하는 세포치료제에 관한 것이다. 또한, 본 발명은 신규한 줄기세포 배양용 배지, 이 배지에서 줄기세포를 배양하여 증식시키는 것을 특징으로 하는 줄기세포의 배양방법 및 줄기세포를 구 배양 (sphere culture) 또는 삼차원 배양하는 것을 특징으로 하는 줄기세포의 줄기성 (stemness) 증가방법에 관한 것이다.

Description

ZNF281을 발현하는 제대혈 유래 만능 줄기세포의 분리방법
본 발명은 제대혈로부터 분리된 단핵세포를 피브로넥틴이 포함된 배양 용기 내에서 배양한 후 배양물로부터 줄기세포를 회수하는 것을 특징으로 하는 제대혈 유래 만능 줄기세포의 분리방법, 본 발명에 의해 분리된 제대혈 유래 만능 줄기세포, 상기 제대혈 유래 만능 줄기세포 또는 이로부터 분화된 세포를 포함하는 세포치료제에 관한 것이다. 또한, 본 발명은 신규한 줄기세포 배양용 배지, 이 배지에서 줄기세포를 배양하여 증식시키는 것을 특징으로 하는 줄기세포의 배양방법 및 줄기세포를 구 배양 (sphere culture) 또는 삼차원 배양하는 것을 특징으로 하는 줄기세포의 줄기성 (stemness) 증가방법에 관한 것이다.
줄기 세포들은 자기 재생 (self-renewing), 분화, 영구성 (immortal) 등의 특징을 가지고 있으며, 이러한 독특한 성질을 이용하여 재생의학의 관점에서 다양한 퇴행성 질병의 치료를 위한 해결방법으로 제시될 뿐만 아니라 세포들의 biology 에 대한 깊은 통찰을 할 수 있다. 다양한 조직으로부터 얻을 수 있는 성체줄기세포는 일반적으로 배아 줄기세포에 비해 무제한적인 소스와 연구자들이 직면할 수 있는 윤리적 문제를 피할 수 있기 때문에 훨씬 더 매력적이다. 더욱이, 제대혈로부터 분리한 줄기세포는 골수나 지방조직과 달리 기증자가 추가적인 해를 입을 염려가 없기 때문에 다른 성체줄기세포들보다 더 큰 장점을 가지고 있다.
시험관 내 (in vitro)에서 제대혈 유래 중간엽 줄기세포는 성공적으로 신경세포, 간세포, 골세포와 같은 다양한 종류의 세포에 성공적으로 도입되었다 (Sun, W. et al., Stem cells, 23:931, 2005; Hong SH. et al., Biochem. Biophys. Res. Commun., 30:1153, 2005; Hutson EL. et al., Tissue Engineering, 11:1407, 2005). 또한, 생체 내 (in vivo)에서, 제대혈 중간엽 줄기세포를 이용한 상처, 당뇨병, 심장 경색 (heart infraction) 등에 성공적인 이식이 여러 논문들을 통해 보고되어 왔다 (Nonome, K. et al., Am, J. Physiol. Gastrointest. Liver Physiol., 289:1091, 2005; Yoshida, S. et al., Stem cells, 23:1409, 2005; Kim Bo. et al., Circulation, 112:96, 2005). 전염병의 전달 위험이 적고, 이식 대 숙주 병 (graft-versus-host disease)에 걸릴 위험이 낮아, 제대혈 중간엽 줄기세포 이식은 소아, 성인 환자 모두에게 급속히 시술되고 있다 (Claudio G. B. et al., Annual Review of Medicine, 57:403, 2006). 제대혈 이식이 몇몇 질병, 특히 조혈모 결함 (hematopoietic defection)과 관련된 질병들에 시술할 수 있는 방법으로 받아들여졌다 할지라도 (Grewal, SS. et al., Blood, 103:1147, 2004; Knutsen, AP. et al., Journal pediatrics, 142:519, 2003; Ooi, J. et al., Blood, 103:489, 2004; Sanz GF. et al., Blood, 103:489, 2004), 제대혈 유래 중간엽 줄기세포의 임상적 적용에 관한 연구는 여전히 제한되어 있다. 예를 들어, 척수 손상된 여성 및 버거병 (buerger's disease) 환자에서 완전한 회복은 아니지만, 부분적으로 성공한 보고들이 있다 (Kim, SW. et al., Stem Cells, 2006; Kang, KS. et al., Cytotherapy, 7:368, 2005). 그러나, 이러한 세포들의 발달 메커니즘 뿐만 아니라, 이 세포들을 어떻게 잘 배양하고 증식하는지에 대해서는 여전히 잘 알려져 있지 않다.
제대혈에서 중간엽 줄기세포를 분리하는 방법은 골수 유래 중간엽 줄기세포의 분리방법을 적용하였을 때 세포의 분리율이 20% 내외이며, 5시간 이내의 신선한 혈액을 사용하였을 때는 50% 이지만, 그 이후가 되면 20% 이하로 떨어지고 분리 후에도 세포의 증식이 잘되지 않는 한계를 보였다.
이에 본 발명자들은, 인간 제대혈 유래 혈액에서 분리한 단핵 세포를 피브로넥틴이 포함된 배양 용기에서 배양하여, 선형태 (spindle-shape)의 세포가 대량으로 증식되며, 집락을 이루는 것을 발견하고 이를 지속적으로 배양하였을 때, 세포의 특성이 일정정도 유지되는 것을 확인하였다. 그래서 기존의 방법에서 문제시 되는 제대혈 유래 비조혈계 만능 줄기세포 및 중간엽 줄기세포의 효율적 분리 및 대량증식이 가능한 배양방법으로서 본 발명을 완성하였다.
본 발명의 한 목적은 제대혈로부터 분리된 단핵세포를 피브로넥틴이 포함된 배양 용기 내에서 배양한 후 배양물로부터 줄기세포를 회수하는 것을 특징으로 하는 제대혈 유래 만능 줄기세포의 분리방법을 제공하는데 있다.
본 발명의 다른 목적은 상기 분리방법에 의해 분리된 제대혈 유래 만능 줄기세포를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 제대혈 유래 만능 줄기세포 또는 이로부터 분화된 세포를 함유하는 세포치료제를 제공하는데 있다.
본 발명의 또 다른 목적은 본 발명에 따른 신규한 줄기세포 배양용 배지를 제공하는데 있다.
본 발명의 또 다른 목적은 줄기세포를 상기 배지에서 배양하여 증식시키는 것을 특징으로 하는 줄기세포의 배양방법을 제공하는데 있다.
본 발명의 또 다른 목적은 줄기세포를 구 배양 또는 삼차원 배양하는 것을 특징으로 하는 줄기세포의 줄기성 증가방법을 제공하는데 있다.
본 발명의 한 관점은 제대혈로부터 분리된 단핵세포를 피브로넥틴이 포함된 배양 용기 내에서 배양한 후 배양물로부터 줄기세포를 회수하는 것을 특징으로 하는 제대혈 유래 만능 줄기세포의 분리방법에 관한 것이다.
상기 배양물로부터 줄기세포를 회수함에 있어서, 줄기세포의 면역학적 특성을 이용하여 분리하는 것을 더 포함할 수 있다.
먼저, 제대혈로부터 단핵세포의 분리는 당업계에 알려진 통상의 방법을 이용하여 실시할 수 있다. 본 발명의 한 양태에서는 제대혈과 Hetasep을 혼합하여 적혈구를 제거한 후 피콜상 (Ficoll-plaque)을 이용하여 단핵세포를 분리함으로써 얻을 수 있다. 여기서, 제대혈과 Hetasep의 혼합비는 제대혈 5ml 당 0.5~2ml로 하는 것이 바람직하다.
본 발명에서는 제대혈로부터 단핵세포의 분리 수율을 높이기 위해, 분만 직후 회수한 제대혈, 분만 직후 회수하여 실온에서 12~48시간 동안 보관한 제대혈 또는 3~5℃에서 6~72시간 동안 보관한 제대혈을 사용하는 것이 바람직하다.
본 발명은 제대혈에서 분리된 단핵세포로부터 줄기세포를 분리하는 방법에 있어서, 피브로넥틴을 이용하는 것을 특징으로 한다. 본 발명에서 용어 '피브로넥틴을 포함하는 배양 용기'란, 단핵세포와 피브로넥틴이 접촉할 수 있는 상태를 의미한다. 예를 들면, 피브로넥틴은 배양 용기에 코팅되거나, 입자 형태 또는 3차원 구조물 형태로 배지에 포함될 수 있다. 한 양태로서, 피브로넥틴이 배양 용기에 코팅된 경우, 피브로넥틴은 0.1∼1mg/ml의 농도로 포함될 수 있다.
본 발명에서 피브로넥틴은 특별한 제한 없이 동물로부터 유래된 것을 사용할 수 있으나, 사람으로부터 유래된 것이 바람직하다. 상기 피브로넥틴은 인공 합성 (예, 화학적 합성법, 단백질 합성 장치를 이용한 합성 등) 또는 생합성 (예, 재조합 DNA 기술, 섬유아세포 배양 등)을 통해 제조하거나, 사람을 포함한 동물의 혈장 또는 세포외기질로부터 분리함으로써 입수할 수도 있다. 상기 피브로넥틴은 피브로넥틴의 단편 (fragment) 또는 펩타이드이거나, 이를 포함할 수 있다.
단핵세포를 피브로넥틴이 포함된 배양 용기 내에서 배양할 때, 이용 가능한 배지는 특별히 제한되지 않으나, 기본 배지로는 SNU-1 또는 EGM-2를 이용하는 것이 바람직하다.
'SNU-1 배지'의 조성은 아래와 같다 (표 1).
표 1
SNU-1(mg/l) SNU-1(mg/l) SNU-1(mg/l)
CaCl2(anhyd.) 200 L-Isoleucine 78 i-Inositol 3
KCL 400 L-Leucine 78 Riboflavin 0.15
MgSO4(anhyd.) 97.67 L-Lysine HCL 108.75 Thiamine HCL 1.5
NaCl 7635 L-Methionine 22.5 L-Alianine 17.8
NaH2PO4 H2O 140 L-Pheylalanine 48 L-Asparagine H2O 30
D-Glucose 1000 L-Serin 21 L-Aspartic Acid 26.6
Phenol Red 10 L-Threonine 72 L-Glutamic acid 29.4
Sodium Pyruvate 110 L-Tryptophan 15 L-Proline 23
L-Arginine HCL 189 L-Tyrosine 2Na 2H2O 54 Nicotinamide 1.5
L-Cystine 2HCL 36 L-Valine 69 Pyridoxine Hcl 1.5
L-Glutamine 292 D-Ca pantothenate 1.5 NaHCO3 1000
Glycine 15 Choline Cholride 1.5
L-Histidine HCL H2O 63 Folic Acid 1.5
본 발명에서는 상기 기본 배지에 FGF-B (Fibroblast Growth Factor), 아스코르브산 (Ascorbic acid), EGF (Epodermal Growth Factor), 하이드로코르티손 (hydrocortisone), IGF-1 (Insulin-like Growth Factor-1) 또는 VEGF (Vascular Endothelial Growth Factor), 헤파린 (heparin)을 첨가하고, 필요에 따라 GA-1000 (Gentamycin Sulfate, Amphotericin-B)을 추가로 첨가하는 것이 바람직하다.
보다 바람직하게는, 상기 기본 배지에, 우태아혈청 (FBS) 20%, bFGF (Fibroblast Growth Factor) 1~40ng/ml, 아스코르브산 0.1~5.0㎍/ml, EGF (Epidermal Growth Factor) 1~40ng/ml, 하이드로코르티손 0.1~1㎍/ml, IGF-I (Insulin-like Growth Factor-1) 1~40ng/ml 또는 VEGF (Vascular Endothelial Growth Factor) 1~5ng/ml 및 헤파린 20~25㎍/ml를 첨가하고, 필요에 따라 GA-1000 (Gentamycin Sulfate, Amphotericin-B)을 추가로 첨가하는 것이다.
한편, 단핵세포를 배양하고 3일 후, 부착되지 못한 단핵세포는 제거하고 부착된 단핵세포만을 계속 배양한다. 이로써, 부착된 단핵세포 중 줄기세포만 선택적으로 증식하게 되며, 분리 후 12~20일 사이에 빠르게 증식하는 줄기세포를 관찰할 수 있다. 여기서, 배지는 2~3일 간격으로 교체하는 것이 바람직하다.
배양물로부터 제대혈 유래 만능 줄기세포를 수득하는 방법으로는 소팅 기능을 가진 플로우 사이토미터를 사용한 FACS 법 (Int. Immunol., 10(3):275, 1998), 자기 비즈를 사용하는 방법, 중간엽 줄기세포를 특이적으로 인식하는 항체를 사용한 패닝법 (J. Immunol., 141(8):2797, 1998) 등이 있다. 또한, 대량의 배양물 등으로부터 다분화능 줄기세포를 수득하는 방법으로는, 세포의 표면에 발현되어 분자 (이하, 표면 항원이라 칭함)를 특이적으로 인식하는 항체를 단독 또는 조합하여 이를 칼럼으로서 사용하는 방법이 있다.
플로우 사이토미터 소팅 방식으로는, 수적하전 방식, 셀캡쳐 방식 등을 예시할 수 있다. 어떠한 방법도 세포의 표면 항원을 특이적으로 인식하는 항체를 형광으로 표지하고, 표지된 항체와 항원의 결합체에 대한 형광을 측정하여 형광 강도를 전기 신호로 변환함으로서 세포의 항원 발현량을 정량할 수 있다. 또한, 사용하는 형광물질의 종류를 조합함으로써, 복수의 표면 항원을 발현하고 있는 세포를 분리하는 것도 가능하다. 여기에 사용가능한 형광물질로는, FITC (fluorescein isothiocyanate), PE (phycoerythrin), APC (allo-phycocyanin), TR (TexasRed), Cy3, CyChrome, Red613, Red670, TRI-Color, QuantumRed 등이 있다.
플로우 사이토미터를 사용한 FACS 법으로는, 상기에서 수득한 줄기세포용액을 수집하고, 원심분리 등의 방법으로 세포를 분리한 후, 직접 항체로 염색하는 방법과 한번 적당한 배지 중에서 배양, 증식을 실시한 후에 항체를 염색하는 방법을 이용할 수 있다. 세포의 염색은 우선, 표면 항원을 인식하는 일차 항체와 목적 세포 샘플을 혼합하고, 얼음 위에서 30분 내지 1시간 인큐베이션한다. 일차 항체가 형광으로 표지되어 있는 경우에는 세정 후 플로우 사이토미터로 분리를 실시한다. 일차 항체가 형광 표지되어 있지 않는 경우에는 세정 후 일차 항체에 대해서 결합 활성을 갖는 형광 표지된 이차 항체와 일차 항체가 반응한 세포를 혼합하고, 다시 얼음에서 30분 내지 1시간 인큐베이션한다. 세정 후, 일차 항체와 이차 항체에서 염색된 세포를 플로우 사이토미터로 분리를 실시한다.
본 발명에 의해 분리된, 제대혈 유래 만능 줄기세포는 하기 특성 중 적어도 한 특성을 가지고 있다:
(a) 전사조절인자인 c-myc, ZNF281에 대하여 양성의 면역학적 특성을 나타낸다.
(b) 세포외기질이 코팅된 바닥에 부착되어 부착 후 5 내지 30일 사이에 선 형태 또는 구 형태의 세포 집락을 이루면서 증식한다.
(c) 30 내지 45의 CPDL (cumulative population doubling level)을 보인다.
(d) CD14, CD31, CD34, CD45 및 HLA-DR에 대하여 음성의 면역학적 특성을 나타낸다.
(e) 중배엽, 내배엽 및 외배엽의 세포로 분화 가능하다.
(f) TIMP-2, TGF-β, RANTES CINC-3, EOTAXIN, GM-CSF, IFN-γ, IL-1b, IL-3, IL-6, IL-8, IL-10, IL12p40, IL13, IL-16, IP-10, Leptin, MCP-2, MIG, MIP-3a, b-NGFm, sTNFRI, PFGF-bb로 이루어진 그룹으로부터 선택된 적어도 하나의 사이토카인 또는 케모카인을 분비한다.
본 발명의 제대혈 유래 만능 줄기세포가 Oct-4, Sox-2, Rex-1, c-myc, ZNF281을 발현한다는 것은 미분화 상태가 유지되고 있음을 의미한다.
또한, 본 발명의 제대혈 유래 만능 줄기세포는 30~45의 CPDL (cumulative population doubling level)을 보여, 증식력이 우수함을 알 수 있다. 핵형 분석에 의해, 본 발명의 세포는 빠르게 증식하지만, 정상 염색체의 구조를 가지고 있음이 확증되었다.
본 발명의 제대혈 유래 만능 줄기세포는 조혈모 줄기세포 마커 또는 면역거부반응 관련 마커로 알려진 CD14, CD31, CD34, CD45 및 HLA-DR에 대하여 음성의 면역학적 특성을 나타낸다. 이와 같이 본 발명의 제대혈 유래 만능 줄기세포는 조혈 및 면역거부반응 관련 마커가 결여되어 이식시 혈관형성과 거부반응을 최소화할 수 있어 동종간 이식 (allogenic transplantation)에 유용한 세포로 사용할 수 있다.
본 발명의 제대혈 유래 만능 줄기세포는 중배엽의 골형성세포, 연골세포, 지방세포로의 분화뿐만 아니라 내배엽의 간세포 및 외배엽의 신경세포와 망막관련세포로도 분화할 수 있다. 따라서, 본 발명의 제대혈 유래 만능 줄기세포는 다양한 질병을 치료하는데 이용될 수 있다.
본 발명의 제대혈 유래 만능 줄기세포는 TIMP-2, TGF-β, RANTES CINC-3, EOTAXIN, GM-CSF, IFN-γ, IL-1b, IL-3, IL-6, IL-8, IL-10, IL12p40, IL13, IL-16, IP-10, Leptin, MCP-2, MIG, MIP-3a, b-NGFm, sTNFRI, PFGF-bb 등 다양한 사이토카인 또는 케모카인을 분비한다. 이러한 사이토카인 또는 케모카인을 분비함으로써 본 발명의 제대혈 유래 만능 줄기세포는 다양한 질병을 치료하는데 이용될 수 있다.
이러한 특징을 갖는 줄기세포는 신규한 것으로서, 본 발명은 상기와 같은 특징을 갖는 제대혈 유래 만능 줄기세포를 제공한다.
본 발명의 제대혈 유래 만능 줄기세포는 골형성세포, 연골세포, 지방세포, 간세포, 신경세포를 비롯한 다양한 유형의 세포로 분화할 수 있어 그에 대응되게 다양한 질병 치료에 이용할 수 있다. 따라서, 본 발명은 본 발명의 제대혈 유래 만능 줄기세포 또는 이로부터 분화된 세포를 함유하는 세포치료제를 제공한다. 본 발명의 세포치료제는 예를 들면, 신경질환 (예, 퇴행성 신경질환), 골관절염 (예, 퇴행성 관절염, 류마티스 관절염), 골결실 (예, 골다공증), 간질환 (예, 간경화), 심혈관계 질환을 포함한 다양한 질병을 치료하는데 이용될 수 있다.
본 발명의 세포치료제는 세포를 보호 및 유지하는 하나 이상의 희석제를 포함하는 것이 바람직하다. 상기 희석제는 생리식염수, PBS (Phosphate Buffered Saline), HBSS (Hank's balanced salt solution) 등의 완충용액, 혈장 또는 혈액성분 등이 있을 수 있다.
한편, 본 발명은 신규한 줄기세포 배양용 배지에 관한 것이다. 상기 배지는, 우태아혈청 (FBS) 20%, bFGF (Fibroblast Growth Factor) 1~40ng/ml, 아스코르브산 0.1~5.0㎍/ml, EGF (Epidermal Growth Factor) 1~40ng/ml, 하이드로코르티손 0.1~1㎍/ml, IGF-I (Insulin-like Growth Factor-1) 1~40ng/ml 또는 VEGF (Vascular Endothelial Growth Factor) 1~5ng/ml 및 헤파린 20~25㎍/ml가 첨가되고, 필요에 따라 GA-1000 (Gentamycin Sulfate, Amphotericin-B)이 추가로 첨가된 EGM-2 또는 SNU-1 배지를 포함한다.
상기 줄기세포 배양용 배지는 신규한 것으로서, 상술된 바와 같이 본 발명에 따른 제대혈 유래 만능 줄기세포의 분리방법에서도 이용되었다. 본 발명의 배지는 제대혈 유래 줄기세포를 비롯한 모든 성체줄기세포의 증식에 유용하므로 성체줄기세포를 배양하는데 이용할 수 있다.
또한, 본 발명은 줄기세포를 본 발명의 배지에서 배양하여 증식시키는 것을 특징으로 하는 줄기세포의 배양방법에 관한 것이다. 상기 줄기세포는 바람직하게는 성체줄기세포일 수 있다.
한 양태로서, 본 발명의 줄기세포 배양용 배지는 본 발명의 제대혈 유래 만능 줄기세포 배양에 이용될 수 있다. 본 발명의 제대혈 유래 만능 줄기세포를 본 발명의 배지에서 배양하면서 선 형태 (spindle-shape) 세포의 집락이 확인된 지 3~5일 후에 계대 배양하는 것이 바람직하다. 배양은 5% CO2 조건에서 실시하는 것이 적합하고, 배양은 5~30일 동안 지속할 수 있으나, 이에 제한되는 것은 아니다.
한편, 본 발명은 줄기세포를 구 배양 (sphere culture) 또는 삼차원
배양하는 것을 특징으로 하는 줄기세포의 줄기성 (stemness)을 증가시키는 방법에 관한 것이다. 상기 삼차원 배양시에 MEF (Mouse embryonic fibroblast cell)를 이용하는 것을 특징으로 하는 것이 바람직하다. 또한 상기 줄기세포는 성체줄기세포인 것을 더 포함할 수 있다.
상기에서, 줄기성 증가란, 배아 줄기세포양 집락 (Embryonic Stem Cell-like colony)을 형성하거나, Oct4, Sox2 등과 같은 전사조절인자를 더 강하게 발현하는 것을 의미한다.
이상 상세히 기술한 바와 같이, 본 발명에 따른 만능 줄기세포는 인간 제대혈 유래로, 피브로넥틴을 포함하는 배양 용기 내에서 배양하면, 기존의 성체줄기세포에 비해 미분화 단계에서 오랜 기간 동안 왕성한 세포 성장을 하며, 불치병 치료에 유용하게 사용될 수 있고, 연골세포, 골형성세포 및 지방세포 등 여러 종류의 세포로 분화하는 능력을 가지고 있어, 신경계 질환, 심혈관계, 골격계 질환 등의 치료에 효과적이다.
도 1은 인간 제대혈 유래 세포를 분리한 후, 각각 14일째, 15일째, 16일째, 17일째, 18일째 세포 성장 형태를 나타낸 사진 (A, B, C, D 및 E) 및 새로운 용기에 옮긴 후 Passage 3에서 세포 성장을 나타낸 사진이다(F).
도 2는 제대혈 유래 만능 줄기세포의 시간에 따른 세포 증식을 누적으로 나타낸 그래프이다.
도 3은 본 발명에 따른 제대혈 유래 만능 줄기세포를 장기간 배양한 후 핵형분석을 실시한 결과이다.
도 4는 본 발명에 따른 제대혈 유래 만능 줄기세포에 여러 가지 마커를 부착시켜 유세포분석을 한 결과이다.
도 5는 본 발명에 따른 제대혈 유래 만능 줄기세포가 미분화상태 줄기 세포 마커의 발현을 유세포분석기와 세포면역염색을 통하여 분석한 결과이다 (A: Oct4 유세포 분석 결과 그래프, B: 면역염색에서 Oct4 발현 사진 C: Oct4 발현 사진의 핵염색 사진, D: Oct4 발현사진과 핵 염색 사진의 합성).
도 6은 terra-1, hUCB-MSC, AD-MSC 및 AM에서 ZNF281의 발현을 확인한 결과(상)와 3 내지 9회 계대 배양된 hUCB-MSC에서 ZNF281의 발현을 FACS 분석으로 확인한 결과(하)이다.
도 7은 본 발명에 따른 인간 제대혈 유래 만능 줄기세포가 ZNF281, Oct4, Sox2, c-myc 및 Rex-1과 같은 미분화상태를 유지하는데 있어 중요한 유전자를 발현하고 있음을 RT-PCR을 통하여 확인한 결과이다.
도 8은 인간 제대혈 유래 만능 줄기세포가 각각 골형성세포, 지방세포, 연골세포 및 신경세포로 분화되었음을 나타내는 사진이다 (A: 골형성 세포로 분화 유도하지 않은 대조군을 Alizarin Red S로 염색한 사진, B: 골형성세포로 분화를 유도한 세포의 Alizarin Red S 염색 사진, C: 지방 세포로 분화를 유도하지 않은 대조군의 Oil Red O 염색 사진, D: 지방세포로 분화를 유도한 세포의 Oil Red O 염색 사진, E: 연골세포로 분화 유도한 세포의 Toluidine Blue 염색 사진, F: 연골세포로 분화 유도 후 촬영한 세포 pellet의 사진, G: 신경세포로 분화 유도 후 신경세포의 마커인 Tuj-1 및 MAP2로 면역형광염색한 사진).
도 9는 인간 제대혈 유래 만능 줄기세포를 골형성세포 및 지방세포로 분화를 유도한 후, RNA를 추출한 후 RT-PCR을 통하여 확인한 결과이다 ( PPAR-γ와 FABP-4는 지방 세포 분화의 마커이고, Collagen Type 1은 골형성세포 분화의 마커이다. PPAR-γ: Peroxisome Proliferator-Activated Receptor gamma, FABP-4: Fatty Acid Binding Protein-4, GAPDH: Glyceraldehyde-3-phosphate dehydrogenase ).
도 10은 본 발명에 따른 제대혈 유래 만능 줄기세포의 망막 관련 단백질의 발현 양상을 나타낸 것이다.
도 11은 인간 제대혈 유래 만능 줄기세포를 배양한 배양액을 수집하여 세포가 분비한 여러 사이토카인을 antibody array를 이용하여 분석한 사진이다 (A: hUCB-MSC1, B: hUCB-MSC2, C: hUCB-MSC3, D: 배열된 항체의 순서 POS: Positive control, NEG: Negative control, GCSF: Granulocyte-Colony Stimulating Factor, GM-CSF: Granulocyte Monocyte-Colony Stimulating Factor, ICAM-1: Intra-Cellular Adhesion Molecule, IFN-γ: Interferon-γ, IL: Interleukin, MCP: Monocyte Chemoattractant Protein, M-CSF: Monocyte-Golony Stimulating Factor, MIG: Monokine induced by Interferon Gamma, MIP: Macrophage Inflammatory Protein, RANTES: Regulated upon Activation, Normal T-cell Expressed and Secreted, TGF-β: Transforming Growth Factor-β, TNF: Tumour Necrosis Factor, sTNFR: soluble Tumour Necrosis Factor Receptor, PDGF-BB: Platelet-Derived Growth Factor-BB, TIMP2: Tissue Inhibitor of Metalloproteinases-2).
도 12, 13은 본 발명에 의해 분리한 제대혈 유래 만능 줄기세포를 구 배양 (sphere culture) 및 mouse fibroblast cell인 STO cell을 이용하여 삼차원적으로 배양한 사진 및 전사조절인자인 Oct4, Sox2 유전자의 발현 양상을 RT-PCR을 통해 확인한 결과이다 (도 12 : 구배양을 통한 제대혈 유래 만능 줄기세포의 삼차원배양, 도 13: STO 세포를 이용한 제대혈 유래 만능 줄기세포의 삼차원배양).
이하, 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 본 발명에 따른 제대혈 유래 만능 줄기세포의 배양, 증식능 조사 및 핵형 분석
Full term UCB 샘플(n=20)은 산모 동의하에 수집하였다. 우선 Full term UCB를 HetaSep (Stem cells Technologies INC, Vancouver, BC)을 이용하여 적혈구를 우선적으로 분리를 하였다. 그 다음은 기존의 방법과 마찬가지로 피콜상 (ficoll gradient)에서 분리하였다. 분리한 단핵세포를 20% FBS를 함유한 EGM-2 SingleQuots을 첨가한 SNU-1 배지 또는 EGM-2 (Lonza)를 이용하여 피브로넥틴을 0.1mg/ml - 1 mg/ml의 농도로 코팅한 6 well plate에 1 x 105~8 세포로 배양하였다. EGM-2 SingQouts의 구성은 heparin, Ascorbic acid, rhEGF, hydrocortisone, VEGF, rhFGF-B, R3-IGF-1, GA-1000으로 구성되어 있다. 세포를 배양한지 3일 후 부착되지 못한 단핵세포를 제거하고 배지는 2 내지 3일 간격으로 교체해주었다.
상기 분리 후, CO2 5% 조건에서 배양한 지 5~30일째에, 일정한 선형태의 세포들이 집락을 이루는 것을 확인하였다 (도 1A). 생성된 집락은 빠른 속도로 증식을 하였고, 집락이 관찰된 지 3일에서 7일 후, 0.125% Trypsin-EDTA로 부유시킨 후, 새로운 용기로 이동시켜, 세포를 계속 유지하였다 (도 1B, 도 1C, 도 1D, 도 1E 및 도 1F). 도 1은 이와 같은 과정을 보여주는 사진으로 시간이 경과함에 따라 세포 집락의 크기가 증가하는 것을 볼 수 있으며, 또한 계대배양 후에도 세포의 형상이 일정하게 유지되는 것을 관찰할 수 있다. (도 1. 본 실시예에 의해서 분리한 제대혈 유래 만능 줄기세포의 형성과 증식 과정을 보여주는 사진. A: 단핵 세포 배양 14일 후 초기 집락의 형태, B: 15일, C: 16일, D: 17일, E: 18일, F: 계대배양 후 passage 3에서 관찰한 세포의 사진).
지속적으로 세포를 배양하면서, 분리한 제대혈 유래 만능 줄기세포의 증식력이 어느 정도 되는지 조사하기 위하여 CPDL (cumulative population doubling level)을 측정하였다 (Cristofalo et al., Proc. Natl. Acad. Sci., USA 95, 1998). 세포는 이분법을 이용하여 증식을 한다. 따라서 세포의 성장속도는 한 개의 세포가 두 개의 세포로 되는 시간이 어느 정도인지에 따라 결정된다. 이것을 Doubling time이라 하며 세포의 증식력을 평가할 수 있는 척도로 사용될 수 있다. 만약 CDPL값이 10이라면 하나의 세포가 10번의 분열을 함을 의미하며 이를 수치상으로 계산하면 하나의 세포가 약 1000개의 세포까지 증식함을 의미한다. 기존의 제대혈 유래 줄기세포의 가장 큰 문제점은 지방 조직이나 골수 유래의 중간엽 줄기세포에 비하여 현저히 떨어지는 증식력이었고 세포의 대량 증식인 임상적용 측면에서도 증식력이 중요하다고 볼 수 있다. 측정방법은 다음과 같이 진행하였다. 우선 다른 제대혈 샘플에서 분리한 세 종류의 제대혈 유래 만능 줄기세포를 100 디쉬에 2x105개씩 배양을 하고, 3일 또는 4일 간격으로 계대를 하며 세포계산기를 이용하여 세포 수를 측정하였다. 세포의 증식이 멈출 때까지 계속적으로 세포를 배양하며 세포 수를 측정하였다. 이렇게 구한 세포 수를 다음과 같은 수학식 1을 이용하여 CPDL값을 구한다.
[수학식 1]
NH/NI = 2X or [log(NH) - log(NI)]/log(2) = X
여기서 NI 최초 배양을 시작할 때의 세포 수, NH는 계대를 할 당시 포화상태에서의 세포 수를 의미한다.
이와 같은 방법으로 지속적으로 세포를 유지하며 값을 구하였다. 대조군으로는 역시 제대혈에서 유래한 내피전구세포 (hUCB-EPC; human Umbilical cord blood derived endothelial progenitor cells)를 이용하였다. 그 결과는 도 2의 그래프와 같이 제대혈 유래 내피전구세포가 두 달 정도의 배양 시간 동안 약 20 CPDL을 보인 반면, 제대혈 유래 만능 줄기세포의 경우 세 가지 다른 샘플 모두 40~45 CPDL을 보였다. 이러한 수치는 이론상으로 하나의 세포집락에서 1012까지 증식할 수 있음을 의미한다.
일반적으로, 이러한 왕성한 증식력을 보이는 세포는 암세포화되어 빠르게 폭발적으로 증가하는 경우가 있을 수 있다. 암세포화된 세포는 인체 내에서 여러 조절 신호들을 무시하고 크게 증식하는 경향이 있기 때문에, 세포치료제로 이용할 수 없으며 연구의 목적도 없다고 볼 수 있다. 따라서 본 발명에 의해 분리한 제대혈 유래 만능 줄기세포가 정상적인 염색체를 가진 세포인지 확인을 반드시 해야 하며, 그 방법으로서 핵형분석을 통하여 세포의 염색체 이상을 확인해 보았다. 도 3에서 보는 바와 같이, passage 10의 세포에서도 정상 염색체의 구조를 가지고 있는 것이 확인되었다.
실시예 2: 본 발명에 따른 제대혈 유래 만능 줄기세포의 표면 항원 분석
배지 내에 현탁한 세포들을 특성을 분석하는 flow cytometry 실험을 하였다. 세포 표면 항원 phenotyping을 위해, 3-4 계대 세포들을 수득하여 fluorescein isothiocyanate (FITC) 또는 phycoerythrin (PE)가 결합된 항체로 염색하고, FACS Aria (Becton Dickinson, NY)으로 분석하였다.
본 발명에 의해 분리한 제대혈 유래 만능 줄기세포 (partially pluripotent stem cell)의 특성을 분석하기 위해 표지 항원으로는 CD10 (T세포 마커), CD14 (단핵세포 마커), CD24 (상피세포 마커), CD29 (단핵세포 마커), CD31 (내피세포 마커), CD34 (조혈모 줄기세포 마커), CD44 (중간엽 줄기세포 마커), CD45 (비조혈모 줄기세포 마커), CD51/61 (파골세포 마커), CD73 (중간엽 줄기세포 마커), CD90 (중간엽 줄기세포 마커), CD105 (중간엽 줄기세포 마커), CD133 (조혈모 줄기세포 마커), HLA-DR(면역거부반응 관련 마커)를 사용하였고, 이를 Flow cytometer를 이용하여 분석하였다. 실시 결과는 표 2과 같다. 도 4는 아래의 결과를 그래프로 표시한 것이다.
표 2 제대혈유래 만능줄기세포의 CD 항원에 대한 양성 세포 비율
CD 시리즈 항체들 양성으로 염색된 세포 / 총 세포 (%)
CD10 0.2 ± 0.1
CD14 2.0 ± 1.0
CD24 68.7 ± 2.9
CD29 100 ± 0.0
CD31 0.4 ± 0.7
CD34 3.5 ± 3.4
CD44 100 ± 0.1
CD45 0.0 ± 0.1
CD51/61 6.4 ± 10.8
CD73 99.6 ± 0.5
CD90 99.7 ± 0.3
CD105 99.5 ± 0.8
CD133 0.1 ± 0.1
HLA-DR 2.0 ± 3.2
실시예 3: 본 발명에 따른 제대혈 유래 만능 줄기세포의 ZNF281 발현 및 Core transc ription factor 발현 양상 분석
ZNF281 (Zinc finger protein 281)은 ESC에서 핵심 전사 인자 중 하나이다 (Wang J et al. (2006) Nature 444, 364-368). 초기에 ZBP-99로 명명된, ZNF2 81은 ZBP-89와 91% 아미노산 서열 유사성 및 79% 서열 동일성을 공유하는 4개의 Krppel형 징크 핑거를 보유하고 있다. 또한, 두 유전자의 카르복시 말단 절편에는 잘 보존된 아미노산 서열이 존재한다. ZNF281 c DNA의 예상되는 오픈리딩 프레임은 99kDa 단백질을 암호화한다. EMSA (Electrophoretic mobility shift as say) 결과로는 GASTRIN 및 ORNITHINE DECARBOXYLASE 유전자의 GC-리치(rich) 프로모터 부위에 특이적으로 결합한다는 것을 보여준다 (Law DJ et al. (1999) Biochem Biophys Res Commun 262, 113-120; Lisowsky T et a l. (1999) FEBS Lett 453, 369-374). ZNF281은 mass spectral multidimensional protein identification t echnology와 조합된 탠덤 친화도 정제(tandem affinity purification)에 의해 c-MYC 연관 단백질 중 하나로 동정되었다 (Koch HB et al. (2007) Cell Cycle 6, 205-217.).
POU family transcri ption factors와 같은 Oct3/4 유전자들은 분화된 조직에서는 존재하지 않고, 높은 증식능을 함유하는 미분화된 줄기 세포들에서 특별히 발현되는 것으로 알려져 있다 (Tai M-H. et al., Carcinogenesis 26:4 95, 2005; Tondreau T. et al., Stem cells, 23:1105, 2005). 일반적으로 배아 줄기세포의 마커로서 쓰이지만, 위와 같은 특성으로 미분화상태를 의미하는 마커로서 쓰이기도 한다. 그리하여 stemness의 마커로서 Oct4를 사용하여 세포 콜로니를 염색한 결과, 많은 세포들이 핵 부위에 Oct4가 염색되는 것을 확인할 수 있었으며, Flow cytometry를 통한 분석에 있어서도 많은 세포에서 발현하는 것을 확인할 수 있었다.
세포 내 단백질 (intracellular proteins)의 염색을 위해, 세포들은 4℃에서 4% 포름알데히드로 하룻밤 동안 고정하고, 0.1% Triton X-100 (Sigma-Aldrich)으로 10분 동안 permeabilize하였다. 슬라이드와 접시는 인간 Oct4 (1:200)에 대한 마우스 1차 항체로 1시간동안 인큐베이션한 다음, PBS (phosphate buffered saline; Gibco)로 세척하고, 적색형광염료인 Alexa594가 결합된 goat 항마우스 IgG 2차 항체 (Invitrogen)로 1시간 동안 인큐베이션하여 면역염색을 실시하고, 대조염색으로 DAPI를 이용하여 핵을 염색하였다 .
도 5, 6에 나타난 바와 같이, Oct4 염색 결과, 많은 제대혈 유래 만능 줄기세포에서 Oct4를 발현하는 것으로 나타났다 (도 5A: Oct4 유세포 분석 결과 그래프, B: 면역염색에서 Oct4 발현 사진 C: Oct4 발현 사진의 핵염색 사진, D: Oct4 발현사진과 핵염색 사진의 합성 사진).
이러한 Oct4와 같은 유전자는 줄기세포의 stemness와 매우 밀접하게 관련되어 있으며, 실제로 Oct4, Sox2등과 같은 유전자를 과발현시켜 성체줄기세포에서 배아줄기세포와 유사한 구조의 전능성을 지닌 세포를 유도하는 기술 또한 최근에 연구되었다 (Takahashi et al, Cell, 131(5), 861-872, 2007). 따라서 줄기세포에서 이러한 유전자의 발현은 줄기세포의 stemness를 잃지 않으면서 미분화상태를 유지하는데 있어 매우 중요하다 할 수 있다. 따라서 본 발명에 의해 분리한 제대혈 유래 만능 줄기세포에서 기존의 논문에 의해 알려진 ZNF2 81, Oct-4, Sox2와 같은 유전자의 발현이 어떻게 나타나는지 역전사 중합효소 연쇄반응(RT-PCR)을 통하여 확인해 보기로 하였다.
본 실시예를 위해 작제된 프라이머는 다음 표 3와 같다.
표 3
Target Gene 방향 서열 서열번호
OCT-4 센스 프라이머 5'-CGAAAGAGAAAGCGAACCAG-3' 1
안티 센스 프라이머 5'-GCCGGTTACAGAACCACACT-3' 2
SOX2 센스 프라이머 5'-CCTCCGGGACATGATCAG-3‘ 3
안티 센스 프라이머 5'-TTCTCCCCCCTCCAGTTC-3' 4
C-MYC 센스 프라이머 5'-TACCCTCTCAACGACAGCAG-3' 5
안티 센스 프라이머 5'-GGGCTGTGAGGAGGTTTG-3' 6
ZNF281 센스 프라이머 5'-ACGTAACAGCGCAGACAGAA-3' 7
안티 센스 프라이머 5'-GTGTTGAAGCCCAAGTGGTT-3' 8
REX-1 센스 프라이머 5'-TGAAAGCCCACATCCTAACG-3' 9
안티 센스 프라이머 5'-CAAGCTATCCTCCTGCTTTGG-3' 10
도 7에서 실험 결과를 보면, Oct-4, Sox2, c-myc, ZNF281, REX-1 등의 유전자가 발현하는 것을 확인할 수 있다. 이것은 본 발명에 따른 제대혈 유래 줄기세포의 만능 줄기세포로서의 능력을 보여 주는 것이라 할 수 있을 것이다.
실시예 4: 본 발명에 따른 제대혈 유래 만능 줄기세포의 골형성세포로의 분화
골형성세포로 분화를 유도하기 위하여 세포를 부착시키고, 세포가 부착되고 나서 약 70-80% confluency가 될 때까지 배양하였다. 70-80% confluency에 도달했을 경우 골분화 유도 배지로 교환하였다. 골분화 유도 배지는 DMEM low glucose에 10% FBS를 첨가하고, 10 mM beta-glycerophosphate (Sigma-Aldrich), 0.1 μM D examethasone (Sigma-Aldrich), 50 μM ascorbate (Sigma-Aldrich)를 첨가하여 제조하였다. 배지는 3일마다 교환해주고, 분화유도는 약 2주간 실시하였다.
2주후 골분화로 인한 calcium mineralization을 확인하기 위해 Alizarin red s staining을 실시하였다. 염색방법은 다음과 같다. 배지를 제거한 다음 증류수를 이용해 2번 세척 후, 차가운 70% EtOH를 사용하여 4℃에서 1시간 고정하였다. 다시 증류수로 2회 세척 후 40mM Alizarin red s 를 사용하여 상온에서 10분간 염색하였다. 그리고 나서 증류수를 이용하여 5회 세척하였다.
염색을 실시한 결과, 도 8A, 도 8B에 나타난 바와 같이 분화를 유도하지 않은 도 8A는 Alizarin reds에 염색된 칼슘이 거의 보이지 않지만, 분화를 유도한 도 8B 에서는 적색으로 염색이 되는 것을 관찰할 수 있다. 이것은 제대혈 유래 만능 줄기세포가 골형성세포로 분화하며 칼슘을 분비함을 의미한다고 볼 수 있다.
실시예 5: 본 발명에 따른 제대혈 유래 만능 줄기세포의 지방세포로의 분화
지방세포 분화를 유도하기 위해서 세포가 부착되고 나서 약 70-80% confluency가 될 때까지 배양하였다. 70-80% confluency에 도달했을 경우 지방분화 유도 배지로 교환하였다. 지방분화 유도 배지는 DMEM low glucose에 10% FBS를 첨가하였다. 1μM Dexamethasone, 10㎍/ml insulin (Sigma-Aldrich), 0.5 mM 3-i sobutyl-1-methylxanthine (Sigma-Aldrich), 0.2 mM indomethacin (Sigma-Aldrich)을 첨가하여 분화배지를 제조하였다. 분화유도 배지는 3일마다 교환해주고, 분화유도는 약 2-3주간 실시하였다.
2-3 주후 Oil red O 염색을 실시하여 지방분화가 유도된 것을 확인한다. 배지를 제거하고 PBS를 이용하여 세척한 후 10% formalin을 넣고 상온에서 5분간 두었다. 포르말린을 제거하고, 다시 새로운 포르말린을 동량 넣고 상온에서 최소 1시간 이상 고정하였다. 포르말린을 제거한 후에, 60% isopropanol을 이용하여 세척하였다. 완전히 마를 때까지 기다린 후, Oil Red O 염색약을 넣고 상온에서 10분간 염색하였다. 염색약을 제거한 후, 곧바로 증류수를 넣고 세척하였다.
지방 줄기세포로의 분화를 거치는 세포들은 oil red O에 의해 염색되었을 때 붉은 색을 나타내는데, oil red O는 지방세포의 lipid droplet을 붉은 색으로 염색하기 때문이다. 도 8C 및 8D에서 보는 바와 같이, 분화를 유도하지 않은 도 8C는 lipid droplet이 많이 보이지 않을 뿐만 아니라 염색도 거의 되지 않지만, 분화를 유도한 도 8D는 lipid droplet이 많이 보이고 붉은 색으로 염색된 것을 관찰할 수 있다.
실시예 6: 본 발명에 따른 제대혈 유래 만능 줄기세포의 연골세포로의 분화
연골세포로 분화를 유도하기 위해, Lonza에서 나온 rTGF-beta 3을 함유한 연골세포 형성 배지 (PT-3003)에 3주 동안 처리하였다. 배지는 일주일에 두 번씩 갈아주고, 연골세포 형성 (osteogenesis)은 1주 간격으로 측정하였다.
연골세포로 분화되었는지 알아보기 위해, toluidine blue staining을 실시하였다. 세포들을 10시간 동안 4% 포름알데하이드로 고정하고, 그 후 다시 10시간 동안 picric acid로 고정하였다. 그 후 cryosection 하여 3분동안 toluidine blue staining을 하였고, hematoxilin으로 3초 동안 counterstaining을 하였다.
연골세포로의 분화를 거치는 세 포들은 pellet이 무너지지 않고 일정한 형태를 유지하며 toluidine blue에 의해 염색되었을 때 푸른색을 나타내는데, 도 8E 및 도 8F에서 나타난 바와 같이, 푸른색으로 염색되어 있는 것을 확인할 수 있으며, 형태도 잘 유지하고 있는 것을 확인할 수 있다.
실시예 7: 본 발명에 따른 제대혈 유래 만능 줄기세포의 골형성세포 및 지방세포로 분화 유도 후 유전자 발현 레벨의 변화
줄기세포는 분화 과정을 거치면서 유전자 발현의 양상이 현저하게 변화하는 것을 관찰할 수 있다. 일반적으로 줄기세포가 지방세포로 분화를 하게 되면 PPAR-γ (Peroxisome Proloferator-activated Receptor-γ)나 FABP4 (Fatty Acid Binding Protein 4)와 같은 유전자의 발현이 증가하고, 골형성세포로 분화하게 되면 Collagen Type 1등의 유전자 발현이 증가한다 (Mat hews et al., J Am Acad Dermatol, 56(3), 472-492, 2007; Cho et al., J. Cell. Biochem., 96, 533-542, 2 005). 따라서 분화를 유도한 후 특정 세포에서 발현하는 유전자의 발현 레벨을 봄으로써 간접적으로 분화를 확인할 수 있다. 실험 방법은 다음과 같다.
골형성세포와 지방세포를 각각 유도 2 -3주 후에 Trizol (Invitrogen)을 이용하여 RNA를 추출하였다. AccuPower RT Premix (Bioneer)를 사용하여 cDNA를 합성하고, Maxime PCRPreMix Kit (Intronbio)를 이용하여 PCR을 수행하였다.
본 실시예에 사용하기 위해 작제한 프라이머는 다음 표 4와 같다.
표 4
Target Gene 방향 서열 서열번호
PPAR-γ 센스 프라이머 5'-TGCTTTTGTAGGTACCTGGA-3' 11
안티 센스 프라이머 5'-CATAAACTCTCGTGGAAGTG-3' 12
FABP4 센스 프라이머 5'-GAGTCAACGGATTTGGTCGT-3' 13
안티 센스 프라이머 5'-GACAAGCTTCCCGTTCTCAG-3' 14
Collagen Type 1 센스 프라이머 5'-GAGAGAGAGGCTTCCCTGGT-3' 15
안티 센스 프라이머 5'-CACCACGATCACCACTCTTG-3' 16
실험을 실시한 결과, 도 9에서 볼 수 있듯이 지방세포 분화 마커인 PPAR-γ와 FABP4는 분화를 유도한 세포에서 발현이 크게 증가하는 것을 볼 수 있으며, 골형성세포의 분화 마커인 Collagen Type 1의 경우도 마찬가지로 분화 유도한 세포에서 크게 증가하는 것을 볼 수 있었다. 한편, loading control인 GAPDH의 경우 분화 유도한 세포와 하지 않은 세포 모두 동일하게 나왔으며, 따라서 실험결과의 정당성을 뒷밤침 하였다.
실시예 8: 본 발명에 따른 제대혈 유래 만능 줄기세포의 신경세포로의 분화
신경세포로 분화를 유도하기 위해, 일단 5% FBS, 10ng/ml bFGF (basic Fibroblast Growth Factor) 를 함유한 DMEM으로 구성된 배지에서 24시간 동안 전처리 (preincubation)하였다. 본격적인 신경 분화를 유도하기 위해서 1% DMSO, 100uM BHA, 0.5mM VPA, 10mM KCl, 10ng/ml NGF, B27를 함유한 DMEM으로 구성된 신경세포 형성 배지에 24시간 동안 처리하였다. 신경세포로 분화되었는지 알아보기 위해, 세포를 4% paraformaldehyde에 고정한 후 Tuj-1, MAP-2, GFAP, Neurofilament-160의 신경세포 마커로 면역염색을 하였을 경우 네 가지 마커를 발현하는 것을 확인할 수 있었다 (도 8G).
실시예 9: 본 발명에 따른 제대혈 유래 중간엽 줄기세포의 망막(retina) 관련 특성 단백질 발현 분석
본 실시예는 제대혈 유래 만능 줄기세포에서 망막 (retina) 관련 특성을 알아보기 위해서 면역형광염색법을 이용하여 발현정도 및 패턴에 관해 확인하였다.
망막 (retina)에서만 특이적으로 발현하는 단백질의 발현 양상을 확인하였다.
도 10는 망막에서 특이적으로 발현하는 단백질을 면역형광염색을 통하여 발현 양상을 확인한 사진이다. A)에서는 PAX6 및 Hu protein의 발현양상을 관찰하였다. PAX6는 retina progenitor marker로 알려져 있으며, Hu protein은 망막을 구성하는 세포 중 하나인 ganglion cell 및 amacrine cell에서 특이적으로 발현하는 단백질이다. 일반적인 세포 배양 상태에서는 발현하지 않는 것을 확인하였다.
B)에서는 Opsin과 Rhodopsin의 발현양상을 확인하였다. Opsin의 경우는 Cone cell에 특이적으로 발현하는 단백질이며, Rhodopsin의 경우는 rod cell에 특이적으로 발현하는 단백질이다. 일반적인 세포 배양 상태에 서 Opsin은 발현하지 않았지만 Rhodopsin은 발현하는 것을 확인하였다.
C)에서는 C RX 및 Recoverin의 발현양상을 확인하였다. CRX는 pan-photoreceptor marker로 알려져 있으며, Recoverin 은 photoreceptor marker로 알려져 있다. 일반적인 세포 배양 상태에서는 발현하지 않는 것을 확인하였다. (배율 400배, scale bar = 50um)
실시예 10: 본 발명에 따른 제대혈 유래 만능 줄기세포에서 분비된 사이토카인 분석
줄기세포를 이용한 치료의 가능성은 크게 두 가지로 나뉠 수 있다. 첫 번째는 손상된 세포로의 직접적인 분화를 통한 치료효과이며, 두 번째는 생체 내에서 기존의 세포들에게 치료효과를 나타낼 수 있는 긍정적인 변화를 일으킬 여러 사이토카인이나 성장인자를 분비하는 능력이다. 일반적으로 줄기세포는 여러 사이토카인 또는 성장인자를 분비하는 것으로 알려져 있다 (Kim et al. Cytokine. 2005). 이러한 효과를 paracrine effect라 부른다. 본 발명에 의하여 분리, 증식한 제대혈 유래 만능 줄기세포의 사이토카인 분비 양상이 어떠한지 알아보기 위해, human Cytokine antibody array (RaybioTech. Norc ross, USA)를 이용하여 조사해 보았다.
우선 FBS와 Supplement를 제거한 배양액을 이용하여 세포를 24시간 안정화시킨 후, 2시간 간격으로 배지를 1ml씩 수집하였다. 수집한 배지를 100㎕씩 합쳐 단백질 정량법을 이용하여 정량한 후, array를 실시하였다.
도 11에서 볼 수 있듯이, 세 개의 다른 샘플로부터 분리한 제대혈 유래 만능 줄기세포에서 공통적으로 IL-8, TIMP-2 등이 분비되는 것을 확인할 수 있었으며, 그 외 TGF-β, RANTES, CINC-3, EOTAXIN, GM-CSF, IFN-γ, IL-1b, IL-3, IL-6, IL-10, IL12p40, IL13, IL-16, IP-10, Leptin, MCP-2, MIG, MIP-3a, b-NGFm, sTNFRI, PFGF-bb 와 같은 사이토카인들도 분비되는 것을 확인할 수 있었다 (도 11A: hUCB-MSC1의 array 분석 사진, 도 11B: hUCB-MSC2 , 도 11C: hUCB-MSC3, 도 11D: antibody 배열 순서).
실시예 11: 본 발명에 따른 제대혈 유래 만능 줄기세포의 삼차원 배양
성체줄기세포는 일반적으로 culture dish에서 monolayer로 증식한다. 하지만 2D가 아닌 3D상태의 sphere로 증식시키면 더욱 stemness가 높은 세포를 선별하고 증식시킬 수 있음을 실험을 통해 확인하였다. sphere의 형성을 위하여 culture dish를 0.7% agarose로 coating을 시키는데 세포가 dish 바닥으로 침투하지 못하게 coating은 5mm 이상 되도록 한다. 세포를 seeding할 때에, single cell간의 부착을 최소화하기 위해 ㎠당 2000개 미만의 세포를 뿌렸다. 이렇게 얻어진 sphere는 40㎛ strainer를 이용하여 sphere를 형성하지 못한 single cell과 구분하였다. 그 결과 도 12에서 보는 바와 같이 sphere culture 시에 세포사하지 않고 sphere를 형성하여 줄기세포의 특징을 유지하는 것을 관찰할 수 있다. 또한 도 12A-D와 같이sphere culture를 통해 배양한 세포는 monolayer에서 배양한 줄기세포에 비해 상대적으로 OCT4, SOX2 등의 embryonic marker의 발현이 높게 나타나는 것을 관찰할 수 있었다.
Embryonic stem cell의 배양은 Mouse embryonic fibroblast cell 상에서 이루어진다. Mouse embryonic fibroblast cell이 내놓는 LIF 등 여러 가지 chemokine이 ES cell의 형태를 유지하고 분화하지 않도록 막는 역할을 해주기 때문이다. 제대혈 유래 만능 줄기세포를 mouse embryonic fibroblast cell line 상에서 배양한 결과 일반적인 성체줄기세포의 형태처럼 편평한 것이 아니라 삼차원적인 형태로 colony를 이루는 것을 관찰하였다. STO cell은 mitomycin C를 0.1 mg/ml로 처리하여 증식을 억제한 후에 0.1% gelatin이 coating된 dish에 2 x 105 cell/ml로 seeding한 후 24시간 배양한 후 제대혈 유래 만능 줄기세포를 seeding하였다. 그 결과, 도 13에서 보는 바와 같이 시간이 지남에 따라 세포가 STO cell위에서 Embryonic stem cell과 유사하게 증식하는 것을 관찰할 수 있다.
본 발명에 따른 만능 줄기세포는 인간 제대혈 유래로, 피브로넥틴을 포함하는 배양 용기 내에서 배양하면, 기존의 성체줄기세포에 비해 미분화 단계에서 오랜 기간 동안 왕성한 세포 성장을 하며, 불치병 치료에 유용하게 사용될 수 있고, 연골세포, 골형성세포 및 지방세포 등 여러 종류의 세포로 분화하는 능력을 가지고 있어, 신경계 질환, 심혈관계, 골격계 질환 등의 치료에 사용될 수 있다.

Claims (21)

  1. 제대혈로부터 분리된 단핵세포를 피브로넥틴이 포함된 배양 용기 내에서 배양한 후 배양물로부터 줄기세포를 회수하는 것을 특징으로 하는 만능 줄기세포의 분리방법.
  2. 제 1항에 있어서,
    상기 단핵세포는 제대혈을 Hetasep과 혼합하여 적혈구를 제거한 후 피콜상 (Ficoll-plaque)을 이용하여 단핵세포를 분리하는 단계를 거쳐서 수득하는 것을 특징으로 하는 분리방법.
  3. 제 2항에 있어서,
    제대혈과 Hetasep의 혼합 비율은 제대혈 5ml당 0.5~2ml로 하는 것을 특징으로 하는 분리방법.
  4. 제 1항에 있어서,
    상기 제대혈은 분만 직후 회수한 제대혈, 분만 직후 회수하여 실온에서 12~48시간 동안 보관한 제대혈 또는 3~5℃에서 6~72시간 동안 보관한 제대혈인 것을 특징으로 하는 분리방법.
  5. 제 1항에 있어서,
    상기 피브로넥틴이 포함된 배양 용기는 피브로넥틴은 배양 용기에 코팅되거나, 입자 형태 또는 3차원 구조물 형태로 배지에 포함된 것을 특징으로 하는 분리방법.
  6. 제 5항에 있어서,
    피브로넥틴이 배양 용기에 코팅된 경우, 피브로넥틴은 0.1∼1mg/ml로 포함되는 것을 특징으로 하는 분리방법.
  7. 제 1항에 있어서,
    상기 피브로넥틴은 동물로부터 유래된 것을 특징으로 하는 분리방법.
  8. 제 7항에 있어서,
    상기 동물은 사람인 것을 특징으로 하는 분리방법.
  9. 제 1항에 있어서,
    상기 피브로넥틴은 인공적으로 합성되거나, 생합성된 것을 특징으로 하는 분리방법.
  10. 제 1항에 있어서,
    상기 피브로넥틴은 피브로넥틴의 단편 또는 펩타이드를 포함하는 것을 특징으로 하는 분리방법.
  11. 제 1항에 있어서,
    배양시에는 우태아혈청(FBS) 20%, bFGF 1~40ng/ml, 아스코르브산 0.1~5.0㎍/ml, EGF 1~40ng/ml, 하이드로코르티손 0.1~1㎍/ml, IGF-I 1~40ng/ml 또는 VEGF 1~5ng/ml 및 헤파린 20~25㎍/ml를 포함하는 EGM-2 또는 SNU-1 배지를 이용하는 것을 특징으로 하는 분리방법.
  12. 제 1항에 있어서,
    배양물로부터 줄기세포를 회수함에 있어서, 줄기세포의 면역학적 특성을 이용하여 분리하는 것을 특징으로 하는 분리방법.
  13. 제 1항에 의해 분리된, 하기 특징 중 적어도 한 특성을 갖는 만능 줄기세포:
    (a) 전사조절인자인 c-myc, ZNF281에 대하여 양성의 면역학적 특성을 나타냄;
    (b) 세포외기질이 코팅된 바닥에 부착되어 부착 후 5 내지 30일 사이에 선 형태 또는 구 형태의 세포 집락을 이루면서 증식함;
    (c) 30 ~ 45의 CPDL(cumulative population doubling level)을 보임;
    (d) CD14, CD31, CD34, CD45 및 HLA-DR에 대하여 음성의 면역학적 특성을 나타냄;
    (e) 중배엽, 내배엽 및 외배엽의 세포로 분화 가능함;
    (f) TIMP-2, TGF-β, RANTES, CINC-3, EOTAXIN, GM-CSF, IFN-γ, IL-1b, IL-3, IL-6, IL-8, IL-10, IL12p40, IL13, IL-16, IP-10, Leptin, MCP-2, MIG, MIP-3a, b-NGFm, sTNFRI, PFGF-bb로 이루어진 그룹으로부터 선택된 적어도 하나의 사이토카인 또는 케모카인을 분비함.
  14. 제 13항에 따른 제대혈 유래 만능 줄기세포 또는 이로부터 분화된 세포를 함유하는 세포치료제.
  15. 우태아혈청 (FBS) 20%, bFGF 1~40ng/ml, 아스코르브산 0.1~5.0㎍/ml, EGF 1~40ng/ml, 하이드로코르티손 0.1~1㎍/ml, IGF-I 1~40ng/ml 또는 VEGF 1~5ng/ml 및 헤파린 20~25㎍/ml가 추가된 EGM-2 또는 SNU-1 배지를 포함하는 줄기세포 배양용 배지.
  16. 제 15항에 있어서,
    상기 줄기세포는 성체줄기세포인 것을 특징으로 하는 배지.
  17. 줄기세포를 제15항 또는 제16항에 따른 배지에서 배양하여 증식시키는 것을 특징으로 하는 줄기세포의 배양방법.
  18. 제 17항에 있어서,
    상기 줄기세포는 성체줄기세포인 것을 특징으로 하는 배양방법.
  19. 줄기세포를 구 배양 (sphere culture) 또는 삼차원 배양하는 것을 특징으로 하는 줄기세포의 줄기성(stemness)을 증가시키는 방법.
  20. 제 19항에 있어서,
    삼차원 배양시에 MEF (Mouse embryonic fibroblast cell)를 이용하는 것을 특징으로 하는 방법.
  21. 제 20항에 있어서,
    상기 줄기세포는 성체줄기세포인 것을 특징으로 하는 방법.
PCT/KR2010/001338 2009-03-20 2010-03-03 Znf281을 발현하는 제대혈 유래 만능 줄기세포의 분리방법 WO2010107192A2 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2010225612A AU2010225612B2 (en) 2009-03-20 2010-03-03 Isolating method for umbilical cord blood-derived pluripotent stem cells expressing ZNF281
RU2011142170/10A RU2511417C2 (ru) 2009-03-20 2010-03-03 Способ выделения происходящих из пуповинной крови плюрипотентных стволовых клеток, экспрессирующих znf281
JP2012500708A JP5995720B2 (ja) 2009-03-20 2010-03-03 Znf281を発現する臍帯血由来の万能幹細胞の分離方法
PL10753642T PL2410046T3 (pl) 2009-03-20 2010-03-03 Sposób izolowania pluripotencjalnych komórek macierzystych pochodzących z krwi pępowinowej wykazujących ekspresję ZNF281
CN201080016872.7A CN102395673B (zh) 2009-03-20 2010-03-03 来自脐带血的表达znf281的万能干细胞的分离方法
US13/257,961 US10584312B2 (en) 2009-03-20 2010-03-03 Isolating method for umbilical cord blood-derived pluripotent stem cells expressing ZNF281
EP10753642.7A EP2410046B1 (en) 2009-03-20 2010-03-03 Isolating method for umbilical cord blood-derived pluripotent stem cells expressing znf281
ES10753642T ES2722930T3 (es) 2009-03-20 2010-03-03 Procedimiento de aislamiento para células madre pluripotentes derivadas de sangre umbilical que expresan ZNF281

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0023821 2009-03-20
KR1020090023821A KR100950195B1 (ko) 2009-03-20 2009-03-20 Znf281을 발현하는 제대혈 유래 만능 줄기세포의 분리방법

Publications (2)

Publication Number Publication Date
WO2010107192A2 true WO2010107192A2 (ko) 2010-09-23
WO2010107192A3 WO2010107192A3 (ko) 2011-02-24

Family

ID=42183944

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2009/002333 WO2010107159A1 (ko) 2009-03-20 2009-05-01 Znf281을 발현하는 제대혈 유래 줄기세포의 분리방법 및 대량배양 방법
PCT/KR2010/001338 WO2010107192A2 (ko) 2009-03-20 2010-03-03 Znf281을 발현하는 제대혈 유래 만능 줄기세포의 분리방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002333 WO2010107159A1 (ko) 2009-03-20 2009-05-01 Znf281을 발현하는 제대혈 유래 줄기세포의 분리방법 및 대량배양 방법

Country Status (11)

Country Link
US (1) US10584312B2 (ko)
EP (1) EP2410046B1 (ko)
JP (2) JP5995720B2 (ko)
KR (1) KR100950195B1 (ko)
CN (1) CN102395673B (ko)
AU (1) AU2010225612B2 (ko)
ES (1) ES2722930T3 (ko)
MY (1) MY160164A (ko)
PL (1) PL2410046T3 (ko)
RU (1) RU2511417C2 (ko)
WO (2) WO2010107159A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798217B1 (ko) 2016-10-21 2017-11-15 차의과학대학교 산학협력단 만능줄기세포로부터 유래된 중간엽줄기세포를 선별하는 방법

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950195B1 (ko) 2009-03-20 2010-03-29 서울대학교산학협력단 Znf281을 발현하는 제대혈 유래 만능 줄기세포의 분리방법
JP5833126B2 (ja) 2010-09-08 2015-12-16 カンステム バイオテック カンパニー リミテッド ウマ科動物の羊水由来の多分化能幹細胞及びそれを製造する方法
US8940294B2 (en) 2012-03-02 2015-01-27 Tissuetech, Inc. Methods of isolating and culturing stem cells
CN103396995B (zh) * 2013-07-16 2015-09-23 广州赛哲生物科技有限公司 一种筛选乳腺癌干细胞的三维培养方法
WO2015064795A1 (ko) * 2013-11-01 2015-05-07 주식회사 비비에이치씨 중간엽 줄기세포로부터 유도만능 줄기세포를 제조하는 방법 및 그 방법에 의해 제조된 유도만능 줄기세포
SG10201912086QA (en) * 2015-07-14 2020-02-27 Medimmune Llc Compositions and methods for treating cancer
US10384207B2 (en) 2015-07-21 2019-08-20 Neuro Probe Incorporated Assay apparatus and methods
WO2017123312A2 (en) 2015-09-02 2017-07-20 Regeneration Worldwide Company, Inc. Composition and methods of using umbilical cord lining stem cells
CN105087494A (zh) * 2015-09-11 2015-11-25 中国人民解放军第四军医大学 一种乳腺癌干细胞的培养方法
EP3385368B1 (en) * 2015-12-03 2023-03-01 Takara Bio Inc. Method for producing mesenchymal stem cells
JP6912789B2 (ja) * 2016-03-16 2021-08-04 株式会社日本触媒 神経幹細胞の培養方法、およびニューロスフェロイドの形成方法
EP3490572A4 (en) * 2016-08-01 2020-05-13 Embryogenesis Pty Ltd SKIN CARE FORMULA
RU2645255C1 (ru) * 2016-12-16 2018-02-19 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И.Кулакова" Министерства здравоохранения Российской Федерации Способ получения биобезопасной культуры мезенхимальных стволовых клеток из ворсин хориона человека
CN109666630A (zh) * 2017-10-17 2019-04-23 澳门大学 多能干细胞分化为间充质干细胞的方法及其培养基和应用
CN109112099A (zh) * 2018-08-30 2019-01-01 丰泽康生物医药(深圳)有限公司 一种提高单核细胞向多潜能细胞转化的无血清培养基
CN111424014B (zh) * 2019-11-22 2022-03-29 上海交通大学医学院附属第九人民医院 人颈静脉球副神经节瘤永生化细胞株培养基
TW202208613A (zh) * 2020-05-05 2022-03-01 美商加速生物科學有限公司 非永生的多潛能幹細胞
CN112430626A (zh) * 2020-11-27 2021-03-02 成都康景生物科技有限公司 一种基因修饰的脐间充质干细胞、制备方法及应用
US11674090B1 (en) 2021-11-30 2023-06-13 Honeywell International Inc. Energy optimization in fluid catalytic cracking and dehydrogenation units

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL143085A0 (en) * 1998-12-04 2002-04-21 Naval Medical Res Ct Human brain endothelial cells and growth medium and method for expansion of primitive cd34+cd38 - bone marrow stem cells
US6610535B1 (en) 2000-02-10 2003-08-26 Es Cell International Pte Ltd. Progenitor cells and methods and uses related thereto
US20040005559A1 (en) * 2000-07-24 2004-01-08 Loring Jeanne F. Markers of neuronal differentiation and morphogenesis
EP1491093B1 (en) * 2001-02-14 2013-07-31 ABT Holding Company Multipotent adult stem cells, sources thereof, methods of obtaining and maintaining same, methods of differentiation thereof, methods of use thereof and cells derived thereof
US7736892B2 (en) * 2002-02-25 2010-06-15 Kansas State University Research Foundation Cultures, products and methods using umbilical cord matrix cells
TWI288779B (en) * 2002-03-28 2007-10-21 Blasticon Biotech Forschung Dedifferentiated, programmable stem cells of monocytic origin, and their production and use
WO2004033396A2 (en) * 2002-10-08 2004-04-22 American National Red Cross Method for enriching adherent monocyte populations
US20030224411A1 (en) * 2003-03-13 2003-12-04 Stanton Lawrence W. Genes that are up- or down-regulated during differentiation of human embryonic stem cells
US20060223177A1 (en) * 2003-06-27 2006-10-05 Ethicon Inc. Postpartum cells derived from umbilical cord tissue, and methods of making and using the same
JPWO2005056778A1 (ja) 2003-12-11 2007-07-12 独立行政法人理化学研究所 造血幹細胞の分化抑制又は増殖方法
WO2006012404A2 (en) * 2004-07-20 2006-02-02 Case Western Reserve University Novel cell populations and uses thereof
KR100697326B1 (ko) * 2005-12-02 2007-03-20 재단법인서울대학교산학협력재단 Oct4 발현능을 가지는 제대혈 유래 다분화능 성체줄기세포 및 그의 제조방법
WO2008110570A1 (en) 2007-03-13 2008-09-18 Medizinische Universität Graz Method to study proliferation of endothelial progenitor cells and the potential influence of compounds on their proliferation behaviour
RU2343928C1 (ru) * 2007-04-03 2009-01-20 Открытое акционерное общество "Институт стволовых клеток человека" Способ получения ядросодержащих клеток из пуповинной крови
WO2008149129A1 (en) * 2007-06-08 2008-12-11 Nova Thera Limited Cell expansion
KR100950195B1 (ko) 2009-03-20 2010-03-29 서울대학교산학협력단 Znf281을 발현하는 제대혈 유래 만능 줄기세포의 분리방법

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
CHO ET AL., J. CELL. BIOCHEM., vol. 96, 2005, pages 533 - 542
CLAUDIO G. B. ET AL., ANNUAL REVIEW OF MEDICINE, vol. 57, 2006, pages 403
CRISTOFALO ET AL., PROC. NATL. ACAD. SCI., USA, vol. 95, 1998
GREWAL, SS. ET AL., BLOOD, vol. 103, 2004, pages 1147
HONG SH. ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 30, 2005, pages 1153
HUTSON EL. ET AL., TISSUE ENGINEERING, vol. 11, 2005, pages 1407
INT. IMMUNOL., vol. 10, no. 3, 1998, pages 275
J. IMMUNOL., vol. 141, no. 8, 1998, pages 2797
KANG, KS. ET AL., CYTOTHERAPY, vol. 7, 2005, pages 368
KIM BO. ET AL., CIRCULATION, vol. 112, 2005, pages 96
KIM ET AL., CYTOKINE., 2005
KIM, SW. ET AL., STEM CELLS, 2006
KNUTSEN, AP ET AL., JOURNAL PEDIATRICS, vol. 142, 2003, pages 519
KOCH HB ET AL., CELL CYCLE, vol. 6, 2007, pages 205 - 217
LAW DJ ET AL., BIOCHEM BIOPHYS RES COMMUN, vol. 262, 1999, pages 113 - 120
LISOWSKY T, FEBS LETT, vol. 453, 1999, pages 369 - 374
MAT HEWS ET AL., J AM ACAD DERMATOL, vol. 56, no. 3, 2007, pages 472 - 492
NONOME, K. ET AL., AM, J. PHYSIOL. GASTROINTEST. LIVER PHYSIOL., vol. 289, 2005, pages 1091
OOI, J. ET AL., BLOOD, vol. 103, 2004, pages 489
SANZ GF. ET AL., BLOOD, vol. 103, 2004, pages 489
See also references of EP2410046A4
SUN, W. ET AL., STEM CELLS, vol. 23, 2005, pages 931
TAI M-H. ET AL., CARCINOGENESIS, vol. 26, no. 4, 2005, pages 95
TAKAHASHI ET AL., CELL, vol. 131, no. 5, 2007, pages 861 - 872
TONDREAU T. ET AL., STEM CELLS, vol. 23, 2005, pages 1105
WANG J ET AL., NATURE, vol. 444, 2006, pages 364 - 368
YOSHIDA, S. ET AL., STEM CELLS, vol. 23, 2005, pages 1409

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798217B1 (ko) 2016-10-21 2017-11-15 차의과학대학교 산학협력단 만능줄기세포로부터 유래된 중간엽줄기세포를 선별하는 방법
WO2018074826A1 (ko) * 2016-10-21 2018-04-26 차의과학대학교 산학협력단 만능줄기세포로부터 유래된 중간엽줄기세포를 선별하는 방법

Also Published As

Publication number Publication date
KR100950195B1 (ko) 2010-03-29
CN102395673A (zh) 2012-03-28
ES2722930T3 (es) 2019-08-20
WO2010107192A3 (ko) 2011-02-24
JP2012520671A (ja) 2012-09-10
RU2511417C2 (ru) 2014-04-10
EP2410046B1 (en) 2019-01-23
AU2010225612B2 (en) 2014-06-26
JP6038962B2 (ja) 2016-12-07
EP2410046A4 (en) 2013-02-27
PL2410046T3 (pl) 2019-10-31
RU2011142170A (ru) 2013-04-27
EP2410046A2 (en) 2012-01-25
WO2010107159A1 (ko) 2010-09-23
AU2010225612A1 (en) 2011-11-10
JP2015091254A (ja) 2015-05-14
US10584312B2 (en) 2020-03-10
US20120021509A1 (en) 2012-01-26
JP5995720B2 (ja) 2016-09-21
MY160164A (en) 2017-02-28
CN102395673B (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
WO2010107192A2 (ko) Znf281을 발현하는 제대혈 유래 만능 줄기세포의 분리방법
Lian et al. Derivation of clinically compliant MSCs from CD105+, CD24− differentiated human ESCs
GUO et al. Biological features of mesenchymal stem cells from human bone marrow
US20030152558A1 (en) Methods and compositions for the use of stromal cells to support embryonic and adult stem cells
Hua et al. Multipotent mesenchymal stem cells (MSCs) from human umbilical cord: potential differentiation of germ cells
WO2013180395A1 (ko) 다능성 줄기세포의 제작, 유지, 증식을 증진하는 대사산물 및 이를 포함하는 조성물과 배양방법
KR20210044749A (ko) 무혈청 배지 조성물
CA2956787A1 (en) Method for generating neuronal and muscular cells
CN115433707A (zh) 用于重新衍生不同的多能干细胞衍生的褐色脂肪细胞的方法
WO2022004938A1 (ko) 유사 중간엽 줄기세포의 제조방법
WO2011102680A9 (ko) Pi3k/akt/gsk3 경로를 통해 성체줄기세포의 증식, 다분화능 및 재프로그래밍을 촉진하는 cd49f
WO2019190246A1 (ko) 인간 제대로부터 줄기세포를 분리하는 방법
KR101627907B1 (ko) Znf281을 발현하는 제대혈 유래 줄기세포의 대량 배양방법
Solari et al. Induced pluripotent stem cells’ self-renewal and pluripotency is maintained by a bovine granulosa cell line-conditioned medium
Hu et al. Progress in studies on the characteristics of human amnion mesenchymal cells
WO2017039251A1 (ko) 향상된 산후 부착형 세포 및 그의 용도
Funatsu et al. Characterization of mesenchymal stem cells derived from periodontal ligament
KR101158664B1 (ko) Znf281을 발현하는 제대혈 유래 줄기세포의 대량 배양방법
WO2018048290A1 (ko) 피더세포 없이 줄기세포 배양이 가능한 배양 조성물 및 방법
WO2018074826A1 (ko) 만능줄기세포로부터 유래된 중간엽줄기세포를 선별하는 방법
WO2015002474A1 (ko) 인간 세포의 줄기세포능을 증대시키는 방법
WO2013147425A1 (ko) 적혈구계 세포의 인 비트로 확장방법
KR20120030515A (ko) Znf281을 발현하는 제대혈 유래 줄기세포의 대량 배양방법
WO2017026838A1 (ko) 향상된 탯줄 유래 부착형 줄기세포, 그의 제조방법 및 용도
Wang et al. Isolation and Characterization of Mesenchymal Stem Cells Derived from Duck Embryo Liver

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016872.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753642

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13257961

Country of ref document: US

Ref document number: 2012500708

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 7538/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010753642

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011142170

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010225612

Country of ref document: AU

Date of ref document: 20100303

Kind code of ref document: A