WO2010107043A1 - 信号伝送装置及びその製造方法 - Google Patents

信号伝送装置及びその製造方法 Download PDF

Info

Publication number
WO2010107043A1
WO2010107043A1 PCT/JP2010/054495 JP2010054495W WO2010107043A1 WO 2010107043 A1 WO2010107043 A1 WO 2010107043A1 JP 2010054495 W JP2010054495 W JP 2010054495W WO 2010107043 A1 WO2010107043 A1 WO 2010107043A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
base
signal transmission
transmission device
pin
Prior art date
Application number
PCT/JP2010/054495
Other languages
English (en)
French (fr)
Inventor
義昭 中野
学良 宋
フーチョン イット
書栄 王
勝正 堀口
Original Assignee
国立大学法人東京大学
先端フォトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 先端フォトニクス株式会社 filed Critical 国立大学法人東京大学
Priority to JP2011504854A priority Critical patent/JP5356500B2/ja
Publication of WO2010107043A1 publication Critical patent/WO2010107043A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • G02B6/4231Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment with intermediate elements, e.g. rods and balls, between the elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/4232Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the present invention relates to a signal transmission device and a method for manufacturing the same, and is suitable for application to a signal transmission device such as an optical communication device or an optical router device.
  • an optical signal is transmitted and received between a signal transmission device including an optical transmission element such as a laser diode and a signal reception device including an optical reception element such as a photodetector, and high-speed data communication is realized using the optical signal.
  • Signal transmission systems are known.
  • a signal transmission device and signal reception device hereinafter collectively referred to simply as a signal transmission device
  • an optical signal having very little interference between signals compared to an electrical signal is used in an electrical waveguide. Compared to this, the distance between the optical waveguides can be remarkably shortened, and the signal transmission path can be mounted at a higher density.
  • FIG. 6A and FIG. 6B showing a cross section taken along line EE ′ of FIG. 6A, an optical waveguide 101 through which an optical signal is transmitted.
  • a signal transmission device 100 embedded in the base 102 is also considered (see, for example, Patent Document 1).
  • this signal transmission device 100 includes a base 102 in which a plurality of optical waveguides 101 (“...” in FIG. 6A indicates omission of the optical waveguides) embedded therein, an optical transmission element or an optical A receiving element (hereinafter collectively referred to simply as an optical element) 103 and an optical module substrate 105 on which an IC (Integrated Circuit) 104 is mounted.
  • the base 102 is made of, for example, an epoxy resin member, and is formed so as to confine light in the optical waveguide 101 formed of a polymer resin member.
  • a plurality of optical waveguides 101 extending linearly in the side direction x perpendicular to the thickness direction y are arranged on the base 102 substantially in parallel at the same height position.
  • the base 102 has a quadrilateral concave portion 107 formed on the surface thereof, and an end surface 109 (hereinafter simply referred to as an optical waveguide end surface) 109 of the optical waveguide 101 can be exposed on the side surface portion 108 of the concave portion 107. It is configured as follows.
  • the base 102 has a pair of guide pin holes 110 penetrating the thickness on both sides of the optical waveguide 101 so that a rod-shaped guide pin 111 can be inserted into the guide pin hole 110. Has been made.
  • an IC 104 is mounted in a region facing the recess 107 of the base 102, and the optical element 103 is opposed to the optical waveguide end surface 109 with a gap ⁇ L1.
  • a support portion 113 is provided to support the.
  • a guide pin hole 114 for inserting the guide pin 111 is formed in the optical module substrate 105 at a position facing the guide pin hole 110 of the base 102 so as to penetrate the thickness.
  • the signal transmission device 100 is configured so that the guide pin hole 110 drilled in the base 102 matches the guide pin hole 114 drilled in the optical module board 105 from above the base module 102.
  • the guide pins 111 can be inserted into the guide pin holes 110 and 114 in this state, respectively.
  • the base 102 and the optical module substrate 105 are positioned by the guide pins 111 and can be bonded by a plurality of bonding members (for example, solder and adhesive) 117 provided in advance on the back surface 115 of the optical module substrate 105.
  • the IC 104 and the support portion 113 of the optical module substrate 105 are accommodated in the concave portion 107 of the base 102, and the optical element 103 is placed in the gap ⁇ L1 on the end face 109 of the optical waveguide exposed in the concave portion 107 of the base 102. And can be positioned to face each other.
  • the optical element 103 and the optical waveguide end surface 109 are optically coupled (hereinafter simply referred to as optical coupling), and the optical element 103 is transmitted from the optical waveguide 101 when the optical element 103 is an optical receiving element.
  • An optical signal can be reliably received by the optical element 103 which is an optical receiving element.
  • the optical waveguide 101 can be reliably irradiated with an optical signal emitted from the optical element 103 which is the optical transmitting element.
  • the gap ⁇ L1 between the optical element 103 and the optical waveguide end face 109 is designed in consideration of an error generated in the manufacturing process, and is set to include a certain tolerance, so the gap ⁇ L1 Therefore, it has been difficult to design the optical system so as to be as small as possible, and therefore, there has been a problem that the optical coupling efficiency is lowered.
  • each gap ⁇ L1 In particular, when the optical coupling efficiency between the optical element 103 and the optical waveguide 101 is low, in the optical transmission path from the optical transmission element (optical element) to the optical light receiving element (optical element) via the optical waveguide 101, each gap ⁇ L1 As a result of the increase, the optical loss occurs at each optical coupling point, and the light receiving level at the optical receiving element decreases. For this reason, in order to compensate for the loss, the optical transmission element needs to increase the optical output level accordingly, and there is a problem that the power consumption increases as the drive current increases.
  • the present invention has been made in view of the above points, and an object thereof is to propose a signal transmission device and a method for manufacturing the same that can increase optical coupling efficiency, reduce power consumption, and improve yield.
  • claim 1 of the present invention includes a base in which an optical waveguide for transmitting an optical signal is formed, and an optical module substrate including an optical element that transmits or receives the optical signal.
  • the optical waveguide and the optical element are optically coupled, and the base is configured to slide the optical module substrate and a side surface portion where an end surface of the optical waveguide is exposed to the outside.
  • the optical module including a slide portion that brings the optical element closer to the end surface of the optical waveguide from the opposing direction of the side surface portion, and is slid by a stopper provided on either the base or the optical module substrate The substrate is stopped, and the optical element is set at a predetermined distance from the end face of the optical waveguide.
  • the slide portion protrudes from the surface of the base, the longitudinal direction is arranged in parallel with the longitudinal direction of the optical waveguide, and the optical module substrate includes the slide portion. It has a guide groove formed in the longitudinal direction so as to face the longitudinal direction on the back surface, and the guide groove is arranged along the slide portion.
  • the slide portion is a guide pin made of a rod-like member, and the other end of the pin is disposed at a right angle to the one end of the pin, and the guide pin hole is formed in the base.
  • the one end of the pin is inserted into the guide pin hole, and the other end of the pin that is locked in the guide groove is arranged along the surface of the base. It is.
  • the slide portion is formed with a bent portion bulging from the surface of the base between the one end portion of the pin and the other end portion of the pin. To do.
  • the guide groove is formed in a guide groove component that is separate from the optical module substrate, and the guide groove component is attached to the optical module substrate. Is.
  • a base in which an optical waveguide for transmitting an optical signal is formed, and an optical module substrate including an optical element for transmitting or receiving the optical signal
  • a method of manufacturing a signal transmission device in which a waveguide and the optical element are optically coupled wherein the base has a side surface portion where an end face of the optical waveguide is exposed to the outside, and is provided on the base
  • the optical module substrate that slides is stopped by a stopper provided on one of the module substrates, and the optical element is set at a predetermined distance with respect to an end surface of the optical waveguide. That.
  • the slide portion protrudes from the surface of the base, the longitudinal direction is arranged in parallel with the longitudinal direction of the optical waveguide, and the slide step is performed on the optical module substrate.
  • the guide groove formed on the back surface is arranged so that the longitudinal direction of the guide groove faces the longitudinal direction of the slide portion, and the optical module substrate is slid with respect to the base by the slide portion. It is.
  • the slide portion is a guide pin made of a rod-shaped member, and the other end of the pin is disposed at a right angle to the one end of the pin, and the guide is formed in the base.
  • An arrangement step of arranging the other end portion of the pin that is locked in the guide groove along the surface of the base by inserting the one end portion of the pin into the pin hole is provided before the sliding step. It is a feature.
  • the slide portion used in the arranging step is formed with a bent portion that bulges from the surface of the base between the one end of the pin and the other end of the pin. It is characterized by that.
  • a mounting step for attaching the guide groove component formed with the guide groove to the optical module substrate, which is formed separately from the optical module substrate, is provided before the slide step. It is characterized by this.
  • the gap between the optical element and the end face of the optical waveguide can always be kept accurately at a constant distance on the basis of the end face of the optical waveguide. Therefore, the optical coupling efficiency between the optical element and the end face of the optical waveguide can be improved, and the yield can be improved. Furthermore, by selecting the length of the stopper and narrowing the gap between the optical element and the optical waveguide, it is difficult for optical loss to occur in the optical coupling between the optical element and the optical waveguide. The power consumption set in consideration of the above can be reduced.
  • the optical module substrate can be slid along the longitudinal direction of the optical waveguide by the slide portion and the guide groove, and thus the end surface of the optical waveguide The optical element can be accurately positioned with respect to.
  • the other end of the pin for locking the guide groove with respect to the base on which the guide pin hole is formed is provided on the base. It can be formed on the surface.
  • FIGS. 1 (A) and 1 (B) in which the same reference numerals are assigned to the corresponding parts to those in FIGS. 6 (A) and 6 (B), 1 is a signal transmission device according to the present invention.
  • the optical module substrate 3 can be positioned with respect to the base 102 by the L-shaped guide pins 2, and the optical element 103 is provided by providing a predetermined gap ⁇ L2 with the optical waveguide 101 by the stopper 4 provided on the base 102.
  • the optical element 103 and the optical waveguide 101 can be optically coupled with accurate positioning.
  • FIG. 1 (A) shows the optical module substrate 3 with a one-dot chain line for convenience of explanation
  • FIG. 1 (B) shows a light for clarifying the arrangement configuration of the L-shaped guide pins 2.
  • the module substrate 3 is shown in a side cross section at BB ′ in FIG. 1 (A)
  • the other components such as the base 102 are shown in a side cross section at AA ′ in FIG. 1 (A). is there.
  • the L-shaped guide pin 2 as the slide portion has a shape in which a rod-like member is bent in an approximately L shape, and a guide pin hole 110 formed in the base 102.
  • the pin one end portion 5 is formed to be insertable.
  • the L-shaped guide pin 2 is such that one end 5 of the pin is inserted into the guide pin hole 110 of the base 102, so that the other end 6 of the pin arranged perpendicular to the one end 5 of the pin is the surface of the base 102. It can be mounted along 102a.
  • the L-shaped guide pin 2 guides the other end 6 of the pin protruding from the surface 102a of the base 102 by disposing the tip of the other end 6 of the pin on the recess 107 side of the base 102.
  • the pin hole 110 is provided toward the concave portion 107, and the longitudinal direction of the other end portion 6 of the pin can be arranged substantially parallel to the optical waveguide 101.
  • the L-shaped guide pin 2 is formed in a circular cross section and formed on the back surface 115 of the optical module substrate 3 as shown in FIG. The other end 6 of the pin is locked in the guide groove 10, and the optical module substrate 3 can be positioned with respect to the base 102.
  • a plurality of optical waveguides 101 formed in a prismatic shape are provided at the same height in the base 102 so as to be optically coupled to face the optical element 103. Yes.
  • the guide groove 10 is formed in a V shape that is cut out slightly wider than the width dimension of the other end portion 6 of the pin. Further, as shown in FIGS. 1A and 1B, the pair of guide grooves 10 are formed in a straight line shape and the back side portion of the optical module substrate 3 so that the longitudinal direction is arranged in parallel. It is formed along. In the optical module substrate 3, the IC 104 and the optical element 103 on the back surface 115 are disposed in the recess 107 of the base 102, and the pair of guide grooves 10 slide along the other end 6 of the pin on the base 102. Arranged to be possible.
  • the optical module substrate 3 is formed so as to be slidable with respect to the base 102 by the guide groove 10 disposed along the other end portion 6 of the pin, and can slide in the direction in which the optical element 103 approaches the optical waveguide end surface 109. It is configured as follows.
  • the stopper 4 is erected on the side surface 108 where the end face 109 of the optical waveguide is exposed in the recess 107 of the base 102.
  • the stopper 4 is made of, for example, a plate-like member having a predetermined thickness.
  • the base end is fixed below the optical waveguide end face 109 and the distal end is abutted against the support 113 of the optical module substrate 3. It is formed so that it can touch.
  • the stopper 4 is selected to have a predetermined length from the base end portion to the tip end portion, and the tip end portion comes into contact with the support portion 113 of the optical module substrate 3 so that the optical element 103 and the light guide
  • the distance from the waveguide end face 109 can be a predetermined gap ⁇ L2.
  • the optical module substrate 3 thus positioned with respect to the base 102 is joined to the surface 102a of the base 102 by a plurality of joining members 117 in a state where the tip of the stopper 4 is in contact with the support 113. It is configured to be able to.
  • the base 102 faces the concave portion 107 along the surface 102 a of the base 102.
  • the rod-like pin other end portion 6 is placed.
  • the IC 104 and the support portion 113 of the optical module substrate 3 are accommodated in the recess 107, and the guide groove 10 of the optical module substrate 3 is placed on the other end portion 6 of the pin.
  • the optical module substrate 3 is disposed with a distance greater than or equal to the desired gap ⁇ L2 from the optical waveguide end face 109 by the optical element 103.
  • the optical module substrate 3 is provided on the base 102 by the guide groove 10 sliding on the other end 6 of the pin on the base 102 when an external force is applied in the direction in which the optical element 103 approaches the optical waveguide 101.
  • the stopper 4 is slid until it comes into contact with the support portion 113.
  • the optical module substrate 3 is positioned with respect to the base 102 by the stopper 4, and a desired gap ⁇ L2 can be accurately formed between the optical waveguide end face 109 and the optical element 103.
  • the optical module substrate 3 slides along the L-shaped guide pin 2 in a direction approaching the optical waveguide end face 109, and a desired gap ⁇ L2 is formed between the optical element 103 and the optical waveguide end face 109 by the stopper 4. It can be formed accurately.
  • the gap ⁇ L2 between the optical element 103 and the optical waveguide end surface 109 can always be kept at a constant distance with reference to the optical waveguide end surface 109, the reproducibility in production is improved. Regarding the optical coupling between the optical element 103 and the optical waveguide end face 109, the optical coupling efficiency can be improved. Further, in this signal transmission device 1, since the desired gap ⁇ L2 can be reliably formed between the optical element 103 and the optical waveguide end face 109 by the stopper 4, the length of the stopper 4 is selected to be short. The gap ⁇ L2 between the element 103 and the optical waveguide end face 109 can be narrowed so that optical loss is less likely to occur in the optical coupling between the optical element 103 and the optical waveguide 101.
  • the optical element 103 is an optical receiving element, it is possible to prevent a decrease in the light reception level of the optical signal at the optical element 103.
  • the optical element 103 is an optical transmission element, an increase in driving current in the optical element 103 considering the optical loss due to the gap ⁇ L2 between the optical element 103 and the optical waveguide end face 109 can be avoided. Only the power consumption of the optical element 103 can be reduced.
  • this signal transmission device 1 since the L-shaped guide pin 2 having the pin one end portion 5 that can be inserted into the guide pin hole 110 of the base 102 is used, a guide pin that has been conventionally used is used.
  • the base 102 in which the hole 110 is formed can be used as it is, and a new production cost can be avoided as much as it is not necessary to produce the base 102 corresponding to the optical module substrate 3 anew.
  • the L-shaped guide pin 2 whose longitudinal direction is arranged parallel to the longitudinal direction of the optical waveguide 101 and the longitudinal direction of the L-shaped guide pin 2 are opposed.
  • the optical module substrate 3 can be slid along the longitudinal direction of the optical waveguide 101 by the guide groove 10 formed in the longitudinal direction so that the optical element 103 is accurately positioned with respect to the end surface 109 of the optical waveguide. it can.
  • the gap ⁇ L2 between the optical element 103 and the optical waveguide end surface 109 can always be kept at a constant distance with reference to the optical waveguide end surface 109, so that the optical element 103 and the optical waveguide end surface 109
  • the optical coupling efficiency can be improved, and the yield can be improved.
  • this signal transmission device 1 by selecting the length of the stopper 4 and narrowing the gap ⁇ L2 between the optical element 103 and the optical waveguide end face 109, optical loss is caused in the optical coupling between the optical element 103 and the optical waveguide 101. Therefore, the power consumption set in consideration of the optical loss in the optical element 103 which is an optical transmission element can be reduced.
  • reference numeral 20 denotes a signal transmission apparatus according to the second embodiment.
  • the shape of the guide pin 21 is different from the form. 3 is a side cross-sectional view at a position corresponding to BB ′ in FIG. 1A only for the optical module substrate 3 in order to clarify the arrangement of the guide pins 21 as in FIG. 1B.
  • the other structure of the base 102 and the like is a side cross section at a position corresponding to AA ′ in FIG.
  • the guide pin 21 bulges outward so as to be away from the surface 102a of the base 102 between the pin one end portion 22 and the pin other end portion 23 disposed at a right angle to the pin one end portion 22.
  • the bent portion 24 is formed.
  • the bent portion 24 is formed in a U-shape, extends linearly from the guide pin hole 110 along the pin one end portion 22, and moves away from the surface 102 a of the base 102. It is configured to be folded back toward the surface 102a of the table 102 so that the other end 23 of the pin can be placed along the surface 102a of the table 102.
  • the one end portion of the pin is formed in the guide pin hole of the base 102.
  • the inner surface of the L-shaped bent portion between one end of the pin and the other end of the pin hits the peripheral corner of the guide pin hole 110, and the other end of the pin extends along the surface 102a of the base 102.
  • the inner surface of the L-shaped bent portion of the L-shaped guide pin hits the peripheral corner of the guide pin hole 110, a process of scraping off the inner portion of the guide pin hole 110. Is required.
  • the thickness of the base 102 is limited, if a process such as scraping is performed, the substantial depth of the guide pin hole 110 becomes shallow, and stability when the L-shaped guide pin is mounted is reduced. It interferes with sex.
  • the guide pin 21 when the pin one end portion 22 is inserted into the guide pin hole 110 of the base 102, the guide pin hole 110 is bent by the bent portion 24 bulging outward. It is possible to prevent the bent portion 24 from hitting the peripheral corner of the. Therefore, when the guide pin 21 is used in this way, it is not necessary to scrape off the inner part of the corner of the guide pin hole 110, so that the depth of the guide pin hole 110 does not change, and the guide pin 21 is mounted. Can be maintained.
  • reference numeral 30 denotes a signal transmission device according to the third embodiment, which differs from the first embodiment in that the guide groove 10 is provided in a separate guide groove component 32 from the optical module substrate 31.
  • the optical module substrate 31 is provided with mounting holes 34 penetrating the thickness in a region facing the other end portion 6 of the L-shaped guide pin 2 arranged in parallel with the optical waveguide 101.
  • the mounting shaft 35 of the guide groove part 32 can be fitted into the pair of mounting holes 34 (two in this case).
  • the guide groove component 32 is composed of a prismatic groove forming portion 36 and a bell-shaped mounting shaft 35.
  • a guide groove 10 cut out in a V-shape is formed on one surface from one end to the other end.
  • the mounting shaft 35 is erected on the other surface opposite to one surface of the groove forming portion 36, has a gentle inclined surface at the tip, and can be inserted into the mounting hole 34 of the optical module substrate 31 from the tip. Has been made.
  • the guide groove component 32 As a result, in the guide groove component 32, as shown in FIGS. 4A and 4B, the stepped portion between the mounting shaft 35 and the groove forming portion 36 comes into contact with the back surface 115 of the optical module substrate 31, and the light The module substrate 31 can be positioned.
  • the guide groove component 32 is placed on the other end portion 6 of the L-shaped guide pin 2 arranged on the base 102, so that the optical module substrate 31 is placed on the base 102.
  • the guide groove component 32 is configured such that the guide groove 10 can slide on the other end portion 6 of the pin, and the optical module substrate 31 with respect to the base 102 as in the first embodiment described above. Can be slid.
  • the guide groove 10 is formed in the guide groove component 32 that is separate from the optical module substrate 31, and the guide groove component 32 is attached to the optical module substrate 31.
  • a mounting hole 34 that can be easily formed may be formed in the optical module substrate 31.
  • a notched guide groove 10 having a complicated shape such as a V-shape is directly formed in the optical module substrate 31. Therefore, the labor for processing the optical module substrate 31 can be saved correspondingly.
  • the present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention.
  • the guide groove part 32 may be applied to the signal transmission device 20 according to the second embodiment using the guide pin 21.
  • the L-shaped guide pin 2 or the guide pin 21 has a D-shaped cross section so that the flat surface is brought into close contact with the surface 102a of the base 102, or other various cross-sectional shapes such as a polygonal shape.
  • a guide pin or the like may be applied.
  • the guide groove may have various other shapes such as a U shape or a U shape.
  • the optical module substrates 3 and 31 are slid so that the optical element 103 is brought closer to the optical waveguide end surface 109 from the facing direction of the side surface portion 108.
  • the present invention is not limited to this, and the point is that the optical module substrates 3 and 31 are slid. Any slide portion that can bring the optical element 103 closer to the optical waveguide end surface 109 from the facing direction of the side surface portion 108 may be used.
  • the pin other end portions 6, 23 may be integrally formed on the surface 102a of the base 102.
  • various other slide portions such as a protrusion having a longitudinal direction that can be engaged with the guide groove 10 may be applied.
  • the guide groove 10 is formed in the optical module substrate 3 and the pin other end portions 6 and 23 are arranged on the base 102 .
  • a guide pin hole is formed in the optical module substrate 3, 31, the L-shaped guide pin 2 or the guide pin 21 is provided in the guide pin hole, and the guide groove 10 is formed in the base 102. You may do it.
  • the optical module substrates 3 and 31 that perform the sliding operation are stopped, and the optical element 103 is set as a stopper for setting a predetermined distance with respect to the optical waveguide end surface 109.
  • the stopper 4 provided on the side surface portion 108 in the concave portion 107 of the base 102 is applied has been described, the present invention is not limited to this.
  • any stopper may be used as long as the optical element 103 is set at a predetermined distance with respect to the waveguide end surface 109.
  • the guide pin hole is formed by the bent portion bulging to the outside. It is only necessary to prevent the bent portion from hitting the peripheral corner portion of 110.
  • other bent portions such as a V-shaped bulged bent portion may be formed.
  • the optical module substrates 3 and 31 are slid in the direction parallel to the longitudinal direction of the optical waveguide 101 to bring the optical waveguide end face 109 and the optical element 103 closer to each other.
  • the present invention is not limited to this, the point is that the optical module substrates 3 and 31 are slid to bring the optical element 103 closer to the optical waveguide end surface 109 from the facing direction of the side surface portion 108, and the sliding operation is performed by the stopper 4. It is only necessary to stop the optical module substrates 3 and 31 to set the gap ⁇ L2 between the optical waveguide end face 109 and the optical element 103 to a predetermined distance.
  • the optical element 103 is viewed from an oblique direction opposite to the optical waveguide end face 109. You may make it approach the optical waveguide end surface 109.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

光結合効率を高めて、消費電力を低減し、かつ歩留まりを向上し得る信号伝送装置及びその製造方法を提案する。 信号伝送装置1では、常に光導波路端面109を基準にして光素子103と光導波路端面109とのギャップ△L2を正確に一定距離に保つことができるので、光素子103と光導波路端面109との光結合効率の向上を図ることができ、また歩留まりの向上を図ることができる。さらに、この信号伝送装置1では、ストッパ4の長さを選定して光素子103及び光導波路端面109間のギャップ△L2を狭めることで、光素子103と光導波路101との光結合において光損失が生じ難くなり、光送信素子である光素子103において光損失を考慮して設定された消費電力を低減することができる。

Description

信号伝送装置及びその製造方法
 本発明は、信号伝送装置及びその製造方法に関し、例えば、光通信装置や光ルータ装置等の信号伝送装置に適用して好適なものである。
 従来、例えばレーザダイオード等の光送信素子を備えた信号送信装置と、フォトディテクタ等の光受信素子を備えた信号受信装置との間で光信号を送受信し、当該光信号により高速データ通信を実現した信号伝送システムが知られている。このような信号送信装置及び信号受信装置(以下、これらをまとめて単に信号伝送装置と呼ぶ)では、電気信号に比べて信号同士の干渉が非常に少ない光信号を用いることにより、電気導波路に比べて光導波路の間隔を飛躍的短くでき、信号伝送路を一段と高密度に実装できる。そして、この種の信号伝送装置としては、図6(A)と、図6(A)のE-E´断面を示す図6(B)とに示すように、光信号が伝送する光導波路101が基台102の内部に埋め込まれた信号伝送装置100も考えられている(例えば、特許文献1参照)。
 実際上、この信号伝送装置100は、複数の光導波路101(図6(A)中の「…」は光導波路の省略を示す)が内部に埋め込まれた基台102と、光送信素子又は光受信素子(以下、これらをまとめて単に光素子と呼ぶ)103やIC(Integrated Circuit)104が実装された光モジュール基板105とから構成されている。基台102は、例えばエポキシ系樹脂部材からなり、ポリマー系樹脂部材により形成された光導波路101内に光を閉じ込めるように形成されている。実際上、基台102には、厚さ方向yと直交する側方向xへ向けて直線状に延びる複数の光導波路101が同一の高さ位置にほぼ平行に配置されている。また、この基台102には、表面に四辺状の凹部107が形成されており、当該凹部107の側面部108に光導波路101の端面(以下、単に光導波路端面と呼ぶ)109が露出し得るように構成されている。また、この基台102には、厚みを貫通する一対のガイドピン孔110が光導波路101の両側部に穿設されており、当該ガイドピン孔110に棒状のガイドピン111が挿通され得るようになされている。
 一方、光モジュール基板105の裏面115には、基台102の凹部107と対向する領域に、IC104が実装されていると共に、光導波路端面109とギャップ△L1を設けて対向するように光素子103を支持する支持部113が設けられている。また、光モジュール基板105には、基台102のガイドピン孔110と対向する位置に、ガイドピン111を挿通するためのガイドピン孔114が厚みを貫通するように穿設されている。かくして、信号伝送装置100は、基台102に穿設されたガイドピン孔110と、光モジュール基板105に穿設されたガイドピン孔114とが一致するように、基台102上方から光モジュール基板105が基台102上に載置され、この状態のままこれらガイドピン孔110,114にそれぞれガイドピン111が挿通され得る。これにより基台102と光モジュール基板105は、ガイドピン111によって位置決めされ、光モジュール基板105の裏面115に予め設けられていた複数の接合部材(例えば半田や接着剤)117によって接合され得る。
 このとき基台102の凹部107内には、光モジュール基板105のIC104及び支持部113が収納されると共に、基台102の凹部107内に露出した光導波路端面109に光素子103がギャップ△L1を設けて対向するように位置決めされ得る。かくして、信号伝送装置100では、光素子103と光導波路端面109とが光学的に結合(以下、単に光結合と呼ぶ)し、光素子103が光受信素子の場合、光導波路101から伝送された光信号を確実に光受信素子たる光素子103で受光でき、一方、光素子103が光送信素子の場合、当該光送信素子たる光素子103から発する光信号を確実に光導波路101へ照射できる。
WO2007/114384A1
 ところで、このような信号伝送装置100では、基台102における光導波路端面109は研磨工程を経て形成する必要があるため、ガイドピン孔110の位置に対する光導波路端面109の位置にはある一定の誤差が含まれている。このため、光素子103と光導波路端面109との間のギャップ△L1は、生産毎にばらつき易く、その結果、光結合効率に生産上のばらつきが生じ、歩留まりが低下してしまうという問題があった。
 また、光素子103と光導波路端面109との間のギャップ△L1は、製造過程にて発生する誤差を考慮して設計され、ある一定の公差を含めて設定していることから、ギャップ△L1を限りなく小さくなるように設計することは困難であり、このため光結合効率が低くなることが問題になっていた。
 特に、光素子103と光導波路101の光結合効率が低いと、光送信素子(光素子)から光導波路101を介在して光受光素子(光素子)までの光伝送経路において、それぞれギャップ△L1が大きくなることにより各光結合箇所で光損失が生じ、光受信素子での受光レベルが低下してしまう。このため、その損失を補うために光送信素子では、その分だけ光出力レベルを増加する必要があり、駆動電流が高くなる分だけ消費電力も高くなってしまうという問題があった。
 本発明は以上の点を考慮してなされたもので、光結合効率を高めて、消費電力を低減し、かつ歩留まりを向上し得る信号伝送装置及びその製造方法を提案することを目的とする。
 かかる課題を解決するため本発明の請求項1は、光信号が伝送する光導波路が内部に形成された基台と、前記光信号を送信又は受信する光素子を備えた光モジュール基板とを有し、前記光導波路と前記光素子とが光結合している信号伝送装置であって、前記基台は、前記光導波路の端面が外部に露出した側面部と、前記光モジュール基板をスライドさせて、前記光導波路の端面に対し前記光素子を前記側面部の対向方向から近づけるスライド部とを備え、前記基台又は前記光モジュール基板のいずれかに設けられたストッパによって、スライド動作する前記光モジュール基板が停止され、前記光導波路の端面に対し前記光素子が所定の距離に設定されていることを特徴とするものである。
 また、本発明の請求項2は、前記スライド部は、前記基台の表面から突出し、長手方向が前記光導波路の長手方向と平行に配置されており、前記光モジュール基板は、前記スライド部の長手方向と対向するように長手方向が形成された案内溝を裏面に有し、前記案内溝が前記スライド部に沿って配置されていることを特徴とするものである。
 また、本発明の請求項3は、前記スライド部は、棒状部材からなり、ピン一端部に対して直角にピン他端部が配置されたガイドピンであり、前記基台にはガイドピン孔が穿設され、該ガイドピン孔に前記ピン一端部が挿入されることにより、前記案内溝に係止する前記ピン他端部が前記基台の表面に沿って配置されることを特徴とするものである。
 また、本発明の請求項4は、前記スライド部には、前記ピン一端部と前記ピン他端部との間に前記基台の表面から膨出した屈曲部が形成されていることを特徴とするものである。
 また、本発明の請求項5は、前記光モジュール基板とは別体からなる案内溝部品に前記案内溝が形成され、前記案内溝部品が前記光モジュール基板に取り付けられていることを特徴とするものである。
 また、本発明の請求項6は、光信号が伝送する光導波路が内部に形成された基台と、前記光信号を送信又は受信する光素子を備えた光モジュール基板とを有し、前記光導波路と前記光素子とが光結合している信号伝送装置の製造方法であって、前記基台は、前記光導波路の端面が外部に露出した側面部を有しており、前記基台に設けたスライド部によって、前記光モジュール基板を前記基台に対してスライドさせて、前記光導波路の端面に対し前記光素子を前記側面部の対向方向から近づけるスライドステップを備え、前記基台又は前記光モジュール基板のいずれかに設けられたストッパによって、スライド動作する前記光モジュール基板を停止させ、前記光導波路の端面に対し前記光素子を所定の距離に設定することを特徴とするものである。
 また、本発明の請求項7は、前記スライド部は、前記基台の表面から突出し、長手方向が前記光導波路の長手方向と平行に配置されており、前記スライドステップは、前記光モジュール基板の裏面に形成された案内溝の長手方向を、前記スライド部の長手方向と対向するように配置し、前記スライド部によって、前記光モジュール基板を前記基台に対してスライドさせることを特徴とするものである。
 また、本発明の請求項8は、前記スライド部は、棒状部材からなり、ピン一端部に対して直角にピン他端部が配置されたガイドピンであり、前記基台に穿設されたガイドピン孔に、前記ピン一端部を挿入することにより、前記案内溝に係止する前記ピン他端部を前記基台の表面に沿って配置する配置ステップを、前記スライドステップの前に備えることを特徴とするものである。
 また、本発明の請求項9は、前記配置ステップで用いられる前記スライド部には、前記ピン一端部と前記ピン他端部との間に前記基台の表面から膨出した屈曲部が形成されていることを特徴とするものである。
 また、本発明の請求項10は、前記光モジュール基板とは別体からなり、前記案内溝が形成された案内溝部品を、前記光モジュール基板に取り付ける取付ステップを、前記スライドステップの前に備えることを特徴とするものである。
 本発明の請求項1の信号伝送装置、請求項6の製造方法によれば、常に光導波路の端面を基準にして光素子と光導波路の端面とのギャップを正確に一定距離に保つことができるので、光素子と光導波路の端面との光結合効率の向上を図ることができ、また歩留まりの向上を図ることができる。さらに、ストッパの長さを選定して光素子及び光導波路間のギャップを狭めることで、光素子と光導波路との光結合において光損失が生じ難くなり、光送信素子である光素子において光損失を考慮して設定された消費電力を低減することができる。
 また、請求項2の信号伝送装置、請求項7の製造方法によれば、スライド部及び案内溝により前記光導波路の長手方向に沿って前記光モジュール基板をスライドさせることができ、かくして光導波路端面に対して光素子を正確に位置決めできる。
 また、請求項3の信号伝送装置、請求項8の製造方法によれば、ガイドピン孔が穿設された基台に対して、案内溝を係止させるためのピン他端部を基台の表面に形成することができる。
 また、請求項4の信号伝送装置、請求項9の製造方法によれば、屈曲部によってガイドピン孔の周辺角部に屈曲部が当たることを防止できる。
 また、請求項5の信号伝送装置、請求項10の製造方法によれば、案内溝を光モジュール基板に直接形成することが不要となるため、その分だけ光モジュール基板を加工する手間を省くことができる。
本発明における第1の実施の形態による信号伝送装置の上面構成と側断面構成を示す概略図である。 第1の実施の形態による信号伝送装置の縦断面構成を示す概略図である。 第2の実施の形態による信号伝送装置の側断面構成を示す概略図である。 第3の実施の形態による信号伝送装置の側断面構成と縦断面構成を示す概略図である。 案内溝部品の構成を示す概略図である。 従来における信号伝送装置の上面構成と側断面構成を示す概略図である。
 以下図面に基づいて本発明の実施の形態を詳述する。
 (1)第1の実施の形態
 図6(A)及び(B)との対応部分に同一符号を付して示す図1(A)及び(B)において、1は本発明による信号伝送装置を示し、L字状ガイドピン2によって光モジュール基板3を基台102に対して位置決めし得ると共に、基台102に設けたストッパ4によって光導波路101と所定のギャップ△L2を設けて光素子103を正確に位置決めし、当該光素子103と光導波路101とを光結合させ得るようになされている。
 ここで、図1(A)は、説明の便宜上、光モジュール基板3を一点鎖線で示しており、また、図1(B)は、L字状ガイドピン2の配置構成を明確にするため光モジュール基板3についてのみ図1(A)のB-B´での側断面を示し、基台102等の他の構成については図1(A)のA-A´での側断面を示すものである。図1(B)に示すように、スライド部としてのL字状ガイドピン2は、棒状部材がほぼL字状に折り曲げられた形状を有し、基台102に穿設されたガイドピン孔110に対してピン一端部5が挿通可能に形成されている。L字状ガイドピン2は、ピン一端部5が基台102のガイドピン孔110に挿通されることにより、当該ピン一端部5と直角に配置されたピン他端部6が基台102の表面102aに沿って載置され得る。
 また、このL字状ガイドピン2は、ピン他端部6の先端が基台102の凹部107側に配置されていることにより、基台102の表面102aから突出したピン他端部6をガイドピン孔110から凹部107側に向けて設け、当該ピン他端部6の長手方向が光導波路101とほぼ平行に配置され得る。図1(B)のC-C´での縦断面を示す図2のように、L字状ガイドピン2は、断面円形状に形成されており、光モジュール基板3の裏面115に形成された案内溝10にピン他端部6が係止し、当該光モジュール基板3を基台102に対して位置決めし得る。因みに、図2に示すように、基台102の内部には、角柱状に形成された複数の光導波路101が、光素子103と対向して光結合し得るように同一高さに設けられている。
 この実施の形態の場合、案内溝10は、ピン他端部6の幅寸法よりも僅かに幅広に切り欠かれたV字状に形成されている。また、図1(A)及び(B)に示すように、一対の案内溝10は、直線状に形成されていると共に、長手方向が平行に配置されるように光モジュール基板3の裏面側部に沿って形成されている。光モジュール基板3は、裏面115のIC104及び光素子103が基台102の凹部107内に配置されていると共に、一対の案内溝10が基台102上のピン他端部6に沿って摺動可能に配置されている。かくして光モジュール基板3は、ピン他端部6に沿って配置された案内溝10により、基台102に対してスライド可能に形成され、光素子103を光導波路端面109に近づける方向にスライドし得るように構成されている。
 かかる構成に加えて基台102の凹部107内には、光導波路端面109が露出した側面部108にストッパ4が立設されている。このストッパ4は、例えば所定の厚みを有した板状部材からなり、光導波路端面109の下方に基端部が固定されていると共に、先端部が光モジュール基板3の支持部113に対して当接し得るように形成されている。ここでこのストッパ4は、基端部から先端部までの長さが所定の長さに選定されており、先端部が光モジュール基板3の支持部113に当接することで、光素子103と光導波路端面109との距離が所定のギャップ△L2となり得る。
 そして、このようにして基台102に対し位置決めされた光モジュール基板3は、支持部113にストッパ4の先端部が当接した状態で、複数の接合部材117によって基台102の表面102aに接合され得るように構成されている。
 以上の構成において、基台102には、ガイドピン孔110に対してL字状ガイドピン2のピン一端部5が挿入されることにより、基台102の表面102aに沿って凹部107側に向け棒状のピン他端部6が載置される。基台102には、光モジュール基板3のIC104及び支持部113が凹部107内に収納され、かつピン他端部6に対して光モジュール基板3の案内溝10が載置される。この際、光モジュール基板3は、光素子103が光導波路端面109と所望するギャップ△L2以上の距離を開けて配置される。
 光モジュール基板3は、光素子103が光導波路101に近づく方向に向けて外力が与えられることにより、基台102上のピン他端部6を案内溝10が摺動し、基台102に設けたストッパ4が支持部113に当接するまでスライドしてゆく。これにより光モジュール基板3は、ストッパ4によって基台102に対して位置決めされ、光導波路端面109と光素子103との間に所望するギャップ△L2を正確に形成することができる。
 すなわち、信号伝送装置1では、研磨工程によって基台102の凹部107の側面部108に光導波路端面109が形成される際、仮にガイドピン孔110の位置と光導波路端面109の位置とに誤差が生じても、光モジュール基板3がL字状ガイドピン2に沿って光導波路端面109に近づく方向へスライドし、ストッパ4によって光素子103と光導波路端面109との間に所望するギャップ△L2を正確に形成できる。
 かくして信号伝送装置1では、常に光導波路端面109を基準にして光素子103と光導波路端面109とのギャップ△L2を正確に一定距離に保つことができるので、生産上の再現性が向上し、光素子103と光導波路端面109との間の光結合に関して、光結合効率の向上を図ることができる。また、この信号伝送装置1では、ストッパ4によって光素子103と光導波路端面109との間に所望のギャップ△L2を確実に形成できることから、当該ストッパ4の長さを短く選定することで、光素子103と光導波路端面109とのギャップ△L2を狭め、光素子103と光導波路101との光結合において光損失が生じ難くすることができる。
 よって、光素子103が光受信素子である信号伝送装置1では、光素子103での光信号の受光レベルの低下を防止できる。これにより光素子103が光送信素子である信号伝送装置1では、光素子103と光導波路端面109とのギャップ△L2による光損失を考慮した光素子103における駆動電流の増加を回避でき、その分だけ光素子103における消費電力の低減を図ることができる。
 また、この信号伝送装置1では、基台102のガイドピン孔110に挿通可能なピン一端部5を有したL字状ガイドピン2を用いるようにしたことにより、従来から用いられているガイドピン孔110が穿設された基台102をそのまま利用することができ、光モジュール基板3に対応した基台102を改めて生産する必要がない分だけ新たに生産コストが発生することを回避できる。
 さらに、この実施の形態の場合、信号伝送装置1では、長手方向が光導波路101の長手方向と平行に配置されたL字状ガイドピン2と、このL字状ガイドピン2の長手方向と対向するように長手方向が形成された案内溝10とによって、光導波路101の長手方向に沿って光モジュール基板3をスライドさせることができ、かくして光導波路端面109に対して光素子103を正確に位置決めできる。
 以上の構成によれば、常に光導波路端面109を基準にして光素子103と光導波路端面109とのギャップ△L2を正確に一定距離に保つことができるので、光素子103と光導波路端面109との光結合効率の向上を図ることができ、また歩留まりの向上を図ることができる。さらに、この信号伝送装置1では、ストッパ4の長さを選定して光素子103及び光導波路端面109間のギャップ△L2を狭めることで、光素子103と光導波路101との光結合において光損失が生じ難くなり、光送信素子である光素子103において光損失を考慮して設定された消費電力を低減することができる。
 (2)第2の実施の形態
 図1(B)との対応部分に同一符号を付して示す図3において、20は第2の実施の形態による信号伝送装置を示し、第1の実施の形態とはガイドピン21の形状が相違する。なお、図3は、図1(B)と同様に、ガイドピン21の配置構成を明確にするため光モジュール基板3についてのみ図1(A)のB-B´と相当する位置での側断面を示し、基台102等の他の構成については図1(A)のA-A´と相当する位置での側断面を示すものである。
 この場合、ガイドピン21は、ピン一端部22と、当該ピン一端部22と直角に配置されるピン他端部23との間に、基台102の表面102aから離れるように外方へ膨出した屈曲部24が形成されている。
 この実施の形態の場合、屈曲部24は、U字状に形成されており、ピン一端部22に沿ってガイドピン孔110から直線状に延びて基台102の表面102aから遠ざかった後、基台102の表面102aに向けて折り返され、ピン他端部23を基台102の表面102aに沿って載置させ得るように構成されている。
 ところで、屈曲部24を設けずにピン一端部22とピン他端部23とを直接連設させたL字状ガイドピン(図示せず)では、当該ピン一端部を基台102のガイドピン孔110に挿通させた際に、ピン一端部及びピン他端部間のL字屈曲部の内側面がガイドピン孔110の周辺角部に当たり、ピン他端部が基台102の表面102aに沿って載置し難い虞もある。また、このようにL字状ガイドピンのL字屈曲部の内側面がガイドピン孔110の周辺角部に当たってしまうような場合では、ガイドピン孔110の角部内側の部分を削り落とすような工程が必要になる。しかしながら、基台102の厚さには制限があるため、削り落としのような工程を施すとガイドピン孔110の実質的な深さが浅くなってしまい、L字状ガイドピンの装着時の安定性の妨げになる。
 これに対して第2の実施の形態によるガイドピン21では、ピン一端部22を基台102のガイドピン孔110に挿通させた際に、外方に膨出した屈曲部24によってガイドピン孔110の周辺角部に屈曲部24が当たることを防止できる。従って、このようにガイドピン21を用いた場合には、ガイドピン孔110の角部内側の部分を削り落とす必要がなくなるため、ガイドピン孔110の深さが変わらず、ガイドピン21の装着時の安定性を維持できる。
 (3)第3の実施の形態
 図1(B)との対応部分に同一符号を付して示す図4(A)と、図4(A)のD-D´断面を示す図4(B)において、30は第3の実施の形態による信号伝送装置を示し、第1の実施の形態とは光モジュール基板31と別体の案内溝部品32に案内溝10を設けた点で相違する。この場合、光モジュール基板31には、光導波路101と平行に配置されたL字状ガイドピン2のピン他端部6と対向する領域に、厚みを貫通する取付孔34が間隔を空けて穿設されており、この一対の取付孔34(この場合2つ)に案内溝部品32の取付軸35が嵌合され得る。
 実際上、この案内溝部品32は、図5(A)及び(B)に示すように、角柱状の溝形成部36と、釣り鐘形の取付軸35とから構成されており、溝形成部36の一面にV字状に切り欠かれた案内溝10が一端から他端に渡って形成されている。取付軸35は、溝形成部36の一面に対向した他面に立設されており、先端になだらかな傾斜面を有し、この先端から光モジュール基板31の取付孔34に挿通し得るようになされている。
 これにより案内溝部品32は、図4(A)及び(B)に示すように、取付軸35と溝形成部36との間の段差部が光モジュール基板31の裏面115に当接し、当該光モジュール基板31に対して位置決めされ得る。かくして、案内溝部品32は、基台102上に配置されたL字状ガイドピン2のピン他端部6に案内溝10が載置されることにより、基台102に対して光モジュール基板31を位置決めさせる。かくして、案内溝部品32は、ピン他端部6上を案内溝10が摺動し得るように構成され、上述した第1の実施の形態と同様に、基台102に対して光モジュール基板31をスライドさせ得る。
 以上の構成において、この信号伝送装置30では、光モジュール基板31と別体とした案内溝部品32に案内溝10を形成し、当該案内溝部品32を光モジュール基板31に取り付けるようにしたことにより、形成作業が容易な取付孔34を光モジュール基板31に穿設すればよく、その結果、V字状等の複雑な形状からなる切り込み状の案内溝10を光モジュール基板31に直接形成することが不要となるため、その分だけ光モジュール基板31を加工する手間を省くことができる。
 (4)他の実施の形態
 なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能であり、例えば第3の実施の形態による案内溝部品32を、ガイドピン21を用いた第2の実施の形態による信号伝送装置20に適用してもよい。また、L字状ガイドピン2やガイドピン21の断面を断面D字状として平面部を基台102の表面102aに密着させるようにしたり、或いは多角形等この他種々の断面形状としたL字状ガイドピン等を適用してもよい。また、案内溝にピン他端部が係止できれば、案内溝をコ字状やU字状等この他種々の形状としてもよい。
 また、上述した第1~第3の実施の形態においては、前記光モジュール基板3,31をスライドさせて、前記光導波路端面109に対し光素子103を側面部108の対向方向から近づけるスライド部として、ピン一端部5,22を有したL字状ガイドピン2やガイドピン21を適用した場合について述べたが、本発明はこれに限らず、要は、光モジュール基板3,31をスライドさせて、光導波路端面109に対し光素子103を側面部108の対向方向から近づけることができるスライド部であればよく、例えばピン他端部6,23のみを基台102の表面102aに一体成形したり、或いは案内溝10に係合可能な長手方向を有した突起部等この他種々のスライド部を適用してもよい。
 さらに、上述した第1及び第2の実施の形態においては、光モジュール基板3に案内溝10を形成し、基台102にピン他端部6,23を配置した場合について述べたが、本発明はこれに限らず、例えば光モジュール基板3,31にガイドピン孔を穿設し、当該ガイドピン孔にL字状ガイドピン2やガイドピン21を設け、基台102に案内溝10を形成するようにしてもよい。
 さらに、上述した第1~第3の実施の形態においては、スライド動作する光モジュール基板3,31を停止させて、光導波路端面109に対し光素子103を所定の距離に設定するストッパとして、基台102の凹部107内の側面部108に設けたストッパ4を適用した場合について述べたが、本発明はこれに限らず、要は、スライド動作する光モジュール基板3,31を停止させて、光導波路端面109に対し光素子103を所定の距離に設定するストッパであればよく、例えば基端部を支持部113に固定し、先端部を凹部107の側面部108に当接させるストッパや、或いは、案内溝10の長さを選定することで、当該案内溝10の端部面にL字状ガイドピン2,21の先端が当接することで、基台102に対し光モジュール基板3,31のスライドを停止させて位置決めするようにしてもよい。
 さらに、上述した第2の実施の形態において、屈曲部24をU字状に形成した場合について述べたが、本発明はこれに限らず、要は、外部に膨出した屈曲部によってガイドピン孔110の周辺角部に屈曲部が当たることを防止できればよく、例えばV字状の膨出した屈曲部等この他種々の形状の屈曲部を形成してもよい。
 さらに、上述した実施の形態においては、光導波路101の長手方向と平行な方向に光モジュール基板3,31をスライド移動させて、光導波路端面109と光素子103とを近づけるようにした場合について述べたが、本発明はこれに限らず、要は、光モジュール基板3,31をスライドさせて、光導波路端面109に対し光素子103を側面部108の対向方向から近づけ、ストッパ4によって、スライド動作する光モジュール基板3,31を停止させて光導波路端面109と光素子103とのギャップ△L2を所定の距離に設定できればよく、例えば光導波路端面109の対向方向である斜め方向から光素子103が光導波路端面109に近づくようにしてもよい。
 1,20,30 信号伝送装置
 2 L字状ガイドピン(スライド部)
 3,31 光モジュール基板
 4 ストッパ
 10 案内溝
 21 ガイドピン(スライド部)
 24 屈曲部
 32 案内溝部品
 101 光導波路
 102 基台
 103 光素子
 108 側面部

Claims (10)

  1.  光信号が伝送する光導波路が内部に形成された基台と、前記光信号を送信又は受信する光素子を備えた光モジュール基板とを有し、前記光導波路と前記光素子とが光結合している信号伝送装置であって、
     前記基台は、
     前記光導波路の端面が外部に露出した側面部と、
     前記光モジュール基板をスライドさせて、前記光導波路の端面に対し前記光素子を前記側面部の対向方向から近づけるスライド部とを備え、
     前記基台又は前記光モジュール基板のいずれかに設けられたストッパによって、スライド動作する前記光モジュール基板が停止され、前記光導波路の端面に対し前記光素子が所定の距離に設定されている
     ことを特徴とする信号伝送装置。
  2.  前記スライド部は、前記基台の表面から突出し、長手方向が前記光導波路の長手方向と平行に配置されており、
     前記光モジュール基板は、前記スライド部の長手方向と対向するように長手方向が形成された案内溝を裏面に有し、前記案内溝が前記スライド部に沿って配置されている
     ことを特徴とする請求項1記載の信号伝送装置。
  3.  前記スライド部は、棒状部材からなり、ピン一端部に対して直角にピン他端部が配置されたガイドピンであり、
     前記基台にはガイドピン孔が穿設され、該ガイドピン孔に前記ピン一端部が挿入されることにより、前記案内溝に係止する前記ピン他端部が前記基台の表面に沿って配置される
     ことを特徴とする請求項2記載の信号伝送装置。
  4.  前記スライド部には、前記ピン一端部と前記ピン他端部との間に前記基台の表面から膨出した屈曲部が形成されている
     ことを特徴とする請求項3記載の信号伝送装置。
  5.  前記光モジュール基板とは別体からなる案内溝部品に前記案内溝が形成され、前記案内溝部品が前記光モジュール基板に取り付けられている
     ことを特徴とする請求項2~4のうちいずれか1項記載の信号伝送装置。
  6.  光信号が伝送する光導波路が内部に形成された基台と、前記光信号を送信又は受信する光素子を備えた光モジュール基板とを有し、前記光導波路と前記光素子とが光結合している信号伝送装置の製造方法であって、
     前記基台は、前記光導波路の端面が外部に露出した側面部を有しており、
     前記基台に設けたスライド部によって、前記光モジュール基板を前記基台に対してスライドさせて、前記光導波路の端面に対し前記光素子を前記側面部の対向方向から近づけるスライドステップを備え、
     前記基台又は前記光モジュール基板のいずれかに設けられたストッパによって、スライド動作する前記光モジュール基板を停止させ、前記光導波路の端面に対し前記光素子を所定の距離に設定する
     ことを特徴とする信号伝送装置の製造方法。
  7.  前記スライド部は、前記基台の表面から突出し、長手方向が前記光導波路の長手方向と平行に配置されており、
     前記スライドステップは、前記光モジュール基板の裏面に形成された案内溝の長手方向を、前記スライド部の長手方向と対向するように配置し、前記スライド部によって、前記光モジュール基板を前記基台に対してスライドさせる
     ことを特徴とする請求項6記載の信号伝送装置の製造方法。
  8.  前記スライド部は、棒状部材からなり、ピン一端部に対して直角にピン他端部が配置されたガイドピンであり、
     前記基台に穿設されたガイドピン孔に、前記ピン一端部を挿入することにより、前記案内溝に係止する前記ピン他端部を前記基台の表面に沿って配置する配置ステップを、前記スライドステップの前に備える
     ことを特徴とする請求項7記載の信号伝送装置の製造方法。
  9.  前記配置ステップで用いられる前記スライド部には、
     前記ピン一端部と前記ピン他端部との間に前記基台の表面から膨出した屈曲部が形成されている
     ことを特徴とする請求項8記載の信号伝送装置の製造方法。
  10.  前記光モジュール基板とは別体からなり、前記案内溝が形成された案内溝部品を、前記光モジュール基板に取り付ける取付ステップを、前記スライドステップの前に備える
     ことを特徴とする請求項7~9記載のうちいずれか1項記載の信号伝送装置の製造方法。
PCT/JP2010/054495 2009-03-17 2010-03-17 信号伝送装置及びその製造方法 WO2010107043A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011504854A JP5356500B2 (ja) 2009-03-17 2010-03-17 信号伝送装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009065272 2009-03-17
JP2009-065272 2009-03-17

Publications (1)

Publication Number Publication Date
WO2010107043A1 true WO2010107043A1 (ja) 2010-09-23

Family

ID=42739703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054495 WO2010107043A1 (ja) 2009-03-17 2010-03-17 信号伝送装置及びその製造方法

Country Status (2)

Country Link
JP (1) JP5356500B2 (ja)
WO (1) WO2010107043A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054928B2 (ja) 2019-01-25 2022-04-15 ハラダ製茶株式会社 茶エキスの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111766A (ja) * 1998-09-29 2000-04-21 Siemens Ag 光電構成素子の調整方法並びに構成素子
JP2005010374A (ja) * 2003-06-18 2005-01-13 Fujikura Ltd 半導体レーザモジュール
JP2006065358A (ja) * 2005-11-07 2006-03-09 Nec Corp 光モジュール、パッケージおよび光ファイバコネクタ
JP2007271998A (ja) * 2006-03-31 2007-10-18 Nec Corp 光コネクタ及び光モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197704A (ja) * 1988-02-02 1989-08-09 Furukawa Electric Co Ltd:The 光部品
JP2982362B2 (ja) * 1991-05-10 1999-11-22 住友電気工業株式会社 光導波路・光ファイバ結合構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111766A (ja) * 1998-09-29 2000-04-21 Siemens Ag 光電構成素子の調整方法並びに構成素子
JP2005010374A (ja) * 2003-06-18 2005-01-13 Fujikura Ltd 半導体レーザモジュール
JP2006065358A (ja) * 2005-11-07 2006-03-09 Nec Corp 光モジュール、パッケージおよび光ファイバコネクタ
JP2007271998A (ja) * 2006-03-31 2007-10-18 Nec Corp 光コネクタ及び光モジュール

Also Published As

Publication number Publication date
JPWO2010107043A1 (ja) 2012-09-20
JP5356500B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
CN103282814B (zh) 光模块
JP4903120B2 (ja) 光路変更部材
US8641299B2 (en) Optical connector
EP1447695A2 (en) Optical module having optical socket for optical communication and manufacturing method of the same
JP2007212564A (ja) 光コネクタ
KR100684021B1 (ko) 광송수신장치 및 광송수신장치의 제조방법
JPH11344646A (ja) 光モジュ―ル、光ファイバ接続用プラグ、および、これらを備えた光結合器
US8885990B2 (en) Optical communication module
JP6568698B2 (ja) 光モジュールの製造方法、光モジュール用レセプタクル及び光モジュール
US20100232751A1 (en) Optical link module and method for manufacturing same
JP5356500B2 (ja) 信号伝送装置及びその製造方法
US8888381B2 (en) Optical module base and optical module
EP3667378A1 (en) Optical module
JP2016156868A (ja) 光ファイバの接続構造、及び、製造方法
KR101725040B1 (ko) 광소자 설치용 서브마운트를 구비한 광 송수신장치
KR20100112731A (ko) 광 모듈, 광 인쇄회로기판 및 그 제조방법
US20120002923A1 (en) Signal transmission device and manufacturing method therefor
JP2008292962A (ja) 光コネクタ固定構造および光コネクタ
JP2008109048A (ja) 光半導体装置及び光伝送装置
JP6159649B2 (ja) 光通信モジュールおよびそれに用いられる光学ブロック
JP6506138B2 (ja) 光モジュール及び光モジュール用レセプタクル
JP4884110B2 (ja) 中継光コネクタ
JP2006184339A (ja) 光モジュール
JP5295057B2 (ja) 光伝送基板、光伝送モジュールおよび光伝送装置
JP4917495B2 (ja) 光コネクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504854

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753535

Country of ref document: EP

Kind code of ref document: A1