WO2010106883A1 - 発泡金属前駆体の製造方法及び発泡金属の製造方法 - Google Patents

発泡金属前駆体の製造方法及び発泡金属の製造方法 Download PDF

Info

Publication number
WO2010106883A1
WO2010106883A1 PCT/JP2010/052821 JP2010052821W WO2010106883A1 WO 2010106883 A1 WO2010106883 A1 WO 2010106883A1 JP 2010052821 W JP2010052821 W JP 2010052821W WO 2010106883 A1 WO2010106883 A1 WO 2010106883A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
cast
foam metal
foam
precursor
Prior art date
Application number
PCT/JP2010/052821
Other languages
English (en)
French (fr)
Inventor
禎彦 半谷
登雄 宇都宮
Original Assignee
国立大学法人群馬大学
学校法人芝浦工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人群馬大学, 学校法人芝浦工業大学 filed Critical 国立大学法人群馬大学
Priority to JP2011504794A priority Critical patent/JP5641248B2/ja
Publication of WO2010106883A1 publication Critical patent/WO2010106883A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process

Definitions

  • the present invention uses a method for producing a foam metal precursor, and the foam metal precursor produced by this method, has high impact energy absorption characteristics, and is excellent in vibration damping characteristics, heat insulation characteristics, and sound insulation properties.
  • the present invention relates to a method for producing a foam metal such as porous aluminum or porous magnesium that can also be used as a functional material.
  • Porous aluminum is a porous metal with high porosity, so it is very light compared to conventional dense materials, has high impact energy absorption characteristics, and has excellent vibration damping and heat insulation characteristics. It is a multifunctional material with so many excellent features.
  • cost reduction of porous aluminum has become a major issue and is currently an obstacle to practical use.
  • a precursor method In order to produce closed-cell porous aluminum, it is known to use a precursor method.
  • a precursor also called a preform, a foam metal precursor, or the like
  • a foaming agent in which a foaming agent is mixed in an aluminum alloy as a metal base material by any method is first prepared. Next, the precursor is heated to generate gas by decomposing the foaming agent, thereby expanding the softened aluminum alloy.
  • a laminate filled with a foaming agent between a plurality of metal or alloy plates is roll-rolled to roll-join the metal or alloy plates to each other, and the metal or alloy plates are cut and overlapped.
  • a method of producing a metal foam is disclosed in which a metal or alloy plate is subjected to a roll reduction cycle again to form a preform in which a foaming agent is finely dispersed in a metal matrix, and the preform is heated to foam the blowing agent.
  • a metal or alloy plate is subjected to a roll reduction cycle again to form a preform in which a foaming agent is finely dispersed in a metal matrix, and the preform is heated to foam the blowing agent.
  • aluminum, aluminum alloy, etc. are used as the metal or alloy plate when weight reduction is important, and titanium hydride powder, zirconium hydride powder, etc. are used as the foaming agent. .
  • a foaming reaction occurs by heating a preform in which a foaming agent is finely and uniformly dispersed in a matrix, and a metal foam having a large number of bubbles inside. Is obtained.
  • This metal foam can be used as a functional material as well as a lightweight structural member excellent in shock absorption, vibration damping and sound insulation.
  • a manufacturing process is simple compared with a powder metallurgy method, and a metal foam with high quality stability and reliability comes to be obtained. Yes.
  • the foaming agent powder such as titanium hydride powder is expensive, or a preform in which the metal base material and the blowing agent powder are uniformly mixed.
  • problems such as poor productivity due to a complicated process for producing the material.
  • the objective of this invention is providing the manufacturing method of a foam metal precursor, and the manufacturing method of a foam metal which can manufacture a foam metal precursor and a foam metal easily, without using expensive foaming agent powder. is there.
  • Another object of the present invention is to add alumina when performing friction stir processing (hereinafter referred to as FSP), thereby improving the sphericity of the foam metal, and the porosity of the foam metal. Is to provide a method for producing a foam metal precursor and a method for producing a foam metal.
  • a method of dispersing foaming agent powder using FSP in a metal or alloy plate material is also conceivable.
  • the foaming agent powder is expensive and may explode.
  • the die casting method in which a molten metal or alloy is injected into a mold at high speed and high pressure and solidified to produce a molded product, is high in productivity and can be manufactured at low cost. It has been.
  • This die casting method has a feature that gas is easily contained in a die cast product.
  • the present inventors have the effect of homogenizing the cast structure of the die-cast molded product by the strong stirring action of the FSP, so that the gas and pore forming nuclei in the die-cast molded product are uniformly dispersed by this FSP. As a result, the present inventors have made the present invention.
  • the first aspect of the present invention is the step of producing a die-cast molded product containing gas inside by a die-casting method, and the gas contained in the die-cast molded product and the pore-forming nuclei are dispersed in the die-cast molded product by FSP. And a step of producing a foam metal precursor.
  • a second aspect of the present invention is an invention based on the first aspect, characterized in that the gas contained in the die-cast molded product and the pore-forming nuclei are uniformly dispersed in the die-cast molded product. To do.
  • a third aspect of the present invention is an invention based on the second aspect, and is characterized in that alumina is further added when performing FSP.
  • a fourth aspect of the present invention is an invention based on the third aspect, and further comprises adding 10% by mass or less of alumina when the mass of the die-cast product that has been agitated by friction stirring is 100% by mass. It is characterized by.
  • a fifth aspect of the present invention is an invention based on the third or fourth aspect, in which two die-cast products are further produced, and alumina particles are formed on the surface of any one of these two die-cast products. After spraying, FSP is performed by stacking two die-cast products so as to sandwich the alumina particles.
  • foaming is performed by performing a heat treatment in which the foamed metal precursor produced by the method according to any one of the first to fifth aspects is heated to near the melting point of the foamed metal precursor. It is a manufacturing method of the foam metal which foams a metal precursor.
  • a seventh aspect of the present invention is a foam metal precursor produced by the method according to any one of the first to fifth aspects.
  • the eighth aspect of the present invention is a foam metal produced by the method described in the sixth aspect.
  • the gas and pore-forming nuclei are dispersed in the die-cast molded product by a relatively simple process of performing FSP on the die-cast molded product containing gas and pore-forming nuclei therein. Can be made. As a result, the foam metal precursor can be easily produced without using an expensive foaming agent powder.
  • the gas contained in the die-cast molded product and the pore-forming nuclei are uniformly dispersed in the die-cast molded product by the FSP, the gas and the pore-forming nuclei are uniformly dispersed. A metal precursor is obtained.
  • the gas and pore-forming nuclei already present in the die-cast molded product are uniformly present in the die-cast molded product. While being dispersed, the alumina newly added at the time of FSP is uniformly dispersed in the die cast product. As a result, a foam metal precursor in which gas, pore-forming nuclei and alumina are uniformly dispersed is obtained.
  • the two die-cast molded products are laminated so as to sandwich the dispersed alumina particles. Therefore, the foam metal precursor in which the gas, pore-forming nuclei, and alumina are dispersed can be manufactured very easily.
  • the gas that was already present inside the foam metal precursor expands and already exists inside the foam metal precursor.
  • the pores are generated and expanded around the pore-forming nuclei.
  • alumina also functions as pore forming nuclei, the density of the pore forming nuclei inside the foam metal precursor is increased, and the porosity of the foam metal can be increased.
  • FIG. 1 It is a perspective view which shows the process of manufacturing the foam metal precursor of 1st Embodiment of this invention by FSP. It is a section lineblock diagram showing the process of manufacturing the metal foam precursor by FSP. It is a section lineblock diagram showing the die-casting device for shape
  • FIG. (A) And (c) is a longitudinal cross-sectional view of the foam metal after performing the heat processing for 7 minutes and 9 minutes to the die-cast molded article of the comparative example 1, respectively,
  • (b) and (d) are Examples 1
  • FIG. 6 is a graph showing changes in the porosity of the foam metal with respect to changes in the heat treatment temperature when heat treatment is performed on the metal foam precursors of Examples 2 to 6. It is a figure which shows the change of the porosity of the metal foam after FSP and heat processing with respect to the change of the gas total amount in the die-cast test piece (part of die-cast molded article) before FSP of Examples 7-13.
  • FIG. 4 is a longitudinal sectional view of a foam metal after FSP is performed on the die cast test pieces (parts of a die cast product) of Examples 7 to 13 to produce a foam metal precursor and heat treatment is performed on the foam metal precursor.
  • the manufacturing method of a foam metal precursor includes the process of producing the die-cast molded product which contains gas inside by a die-casting method, and the process of performing FSP to this die-cast molded product.
  • the die casting method is a casting method capable of forming a high-precision casting in a large amount in a short time by pressing molten aluminum or an aluminum alloy into a mold.
  • the die casting method is a vacuum die casting method in which molten metal is injected in a state where the inside of the mold cavity is decompressed to prevent the formation of entrainment nests, molten metal is injected into the cavity at a low speed, and pressure is applied to the molten metal.
  • Solidified squeeze die-casting method non-porous (oxygen substitution) die-casting method that fills the cavity with oxygen and depressurizes the cavity by its oxidation action to prevent the formation of nests, aluminum alloy in solid and liquid sherbet state mold And semi-solid / semi-solid die casting method.
  • ADC12 Al—Si—Cu system
  • ADC1 Al—Si system
  • ADC3 Al—Si—Mg system
  • ADC5 Al—Mg system
  • ADC6 Aluminum alloys such as Al—Mg
  • ADC10 Al—Si—Cu
  • ADC10Z Al—Si—Cu
  • ADC12Z Al—Si—Cu
  • ADC14 Al—Si—Cu
  • a die-cast molded product of aluminum or an aluminum alloy is manufactured by a die-cast method, but a die-cast molded product of magnesium, magnesium alloy, zinc, zinc alloy, copper, copper alloy or the like is manufactured by a die-cast method. Also good.
  • the gas and pore-forming nuclei are contained inside the die-cast molded product produced by the die casting method.
  • the gas is contained in the die-cast molded product because air is mixed into the molten metal when the molten metal is injected into the die of the die casting apparatus at an extremely high speed.
  • the pore-forming nuclei are already contained in the raw material of aluminum or aluminum alloy, or are contained in aluminum or aluminum alloy in the casting process by the die casting method, and include primary crystal Si, eutectic Si, Al—Fe—. Examples thereof include Si compounds and Al—Cu compounds.
  • examples of pore-forming nuclei include Mg—Al compounds and Mg— (Al, Zn) compounds.
  • the friction stir tool 11 includes a cylindrical shoulder portion 11a and a probe portion 11b which is provided at the tip of the shoulder portion 11a and has a smaller diameter than the shoulder portion.
  • the length of the probe part 11b is the same as the thickness of the die-cast molded product 12 or slightly shorter than the thickness of the die-cast molded product 12.
  • a special heat treatment is performed so that the shoulder portion 11a and the probe portion 11b are not easily softened even when heated to the vicinity of the melting point of the die cast product 12. .
  • the probe portion 11b rotates at a rotational speed of 500 to 3000 rpm together with the shoulder portion 11a.
  • the rotation direction of the probe portion 11b and the shoulder portion 11a is opposite to that in FIGS. It may be.
  • the tip surface of the probe portion 11b is moved in the direction indicated by the broken line arrow in FIG. Press against the surface.
  • a screw male screw
  • a plurality of grooves extending in the longitudinal direction with a predetermined interval in the circumferential direction are formed, or a predetermined interval in the longitudinal direction is formed.
  • a groove extending in the circumferential direction may be formed.
  • the probe part 11b is not limited to a cylindrical shape, and may be another shape such as a rectangular parallelepiped. These screws and grooves can enhance the stirring action of the die cast product 12 melted by frictional heat.
  • the tool 11 may be rotated while keeping its axis perpendicular to the surface of the die-cast molded product 12 and may be scanned in the surface direction of the die-cast molded product 12.
  • the advancing angle is within the plane through which the tool axis passes when scanned in the surface direction of the die-cast product 12 while keeping the tool axis perpendicular to the surface of the die-cast product 12, and on the probe side Is the angle of the axis of the tool tilted from the shoulder side to the scanning direction side.
  • the advance angle is preferably about 2 to 4 degrees.
  • a heat treatment is performed to heat the foam metal precursor 16 made of aluminum or aluminum alloy to the vicinity of its melting point.
  • This heat treatment is a heat treatment which is held in the atmosphere at a temperature of 550 to 800 ° C., preferably 650 to 700 ° C. for 5 to 60 minutes, preferably 6 to 15 minutes.
  • the heat treatment temperature is limited to the range of 550 to 800 ° C.
  • the viscosity of the foam metal precursor 16 is too high to expand the gas, and if it exceeds 800 ° C., the foam metal precursor 16 This is because the viscosity of the gas becomes too low and the pores merge with each other, or the pores are lifted and the gas is released to the outside.
  • the heat treatment time is limited to the range of 5 to 60 minutes because the gas cannot expand due to insufficient softening of the foam metal precursor 16 if less than 5 minutes, and the foam metal precursor 16 softens if it exceeds 60 minutes. This is because the time is too long and the pores merge with each other, or the pores rise and the gas is released to the outside.
  • the temperature and time of the heat treatment are set to 550 to 800 ° C. and 5 to 60 minutes.
  • the temperature and time of the heat treatment are set to 300 to 550 ° C. and 5 to 60 minutes.
  • the temperature and time of the heat treatment are set to 900 to 1200 ° C. and 5 to 60 minutes.
  • the foam metal precursor 16 When the foam metal precursor 16 is subjected to the above heat treatment, the gas that was already present inside the die-cast molded product 12 expands, and pores are formed around the pore-forming nuclei that were already present inside the die-cast molded product 12. Occurs and expands.
  • the die-casting device 21 is connected horizontally to a cavity 21a that is a space having a predetermined shape in which a die-cast molded product 22 having a predetermined shape is formed by press-fitting molten metal, and to a lower end of the cavity 21a.
  • gas for example, air, decomposition gas of a release agent, decomposition gas of lubricating oil, etc.
  • a sleeve 21b that extends in the direction and guides the molten metal to the cavity 21a, and a plunger 21c that reciprocates in the sleeve 21b and press-fits the molten metal in the sleeve 21b into the cavity 21a.
  • the upper end of the cavity 21a is provided with a vent hole 21d for discharging the gas in the cavity 21a and the sleeve 21b to the atmosphere, and molten metal (for example, molten aluminum) is injected into the sleeve 21b in the middle of the sleeve 21b.
  • a pouring port 21e is provided.
  • the gas is mixed into the molten metal without being released from the gas vent hole 21d. It is contained inside the inner die-cast product 22. Further, by applying more release agent (applied to facilitate removal of the die-cast product 22 from the cavity 21a) applied to the inner peripheral surface of the cavity 21a than usual, the die-cast product 22 in the cavity 21a is applied. The ratio of the gas contained in the inside of can be increased. This is because the release agent applied to the inner peripheral surface of the cavity 21a is decomposed by the heat of the molten metal press-fitted into the cavity 21a, and more gas is generated than usual.
  • the ratio of the gas contained in the die cast molded product 32 in the cavity 31a can be further increased.
  • the gas vent hole 31d is closed by inserting a plug 31f into the gas vent hole 31d.
  • the ratio of the gas contained in the die-cast molded product 32 in the cavity 31a can be increased more.
  • the ratio of the gas contained in the inside of the die-cast molded product 32 in the cavity 31a can be further increased by applying more lubricant than usual on the inner peripheral surface of the sleeve 31b.
  • symbol 31c in FIG. 4 is a plunger
  • symbol 31e is a pouring gate.
  • ⁇ Second Embodiment> 5 and 6 show a second embodiment of the present invention.
  • the same reference numerals as those in FIGS. 1 and 2 denote the same components.
  • alumina Al 2 O 3
  • the alumina is added in an amount of 10% by mass or less, preferably 3 to 7% by mass, when the part (stirring portion 54) stirred by the FSP in the die cast molded products 51 and 52 is 100% by mass.
  • the reason why the amount of alumina added is limited to 10% by mass or less is that when it exceeds 10% by mass, only impurities as porous aluminum (foam metal) increase.
  • first and second die cast products 51 and 52 are respectively formed by a die casting method.
  • a recess 51a extending in the scanning direction of the friction stir tool 11 is formed by the die casting method.
  • the recess may be formed on the surface of the first die-cast product by milling, or the recess may not be formed on the first die-cast product.
  • the second die cast product 52 is laminated on the first die cast product 51. In this state, FSP is performed on the stacked body 55 as in the first embodiment.
  • the length of the probe portion 11 b is the same as the thickness of the stacked body 55 or slightly shorter than the thickness of the stacked body 55. Moreover, you may form a recessed part in a 2nd die-cast molded product instead of a 1st die-cast molded product.
  • a method of adding alumina at the time of FSP a plurality of die-cast molded articles (without recesses) in which an oxide film (alumina film) is formed on the surface by thermal oxidation in advance without using alumina particles are prepared.
  • a method of adding alumina to the die cast product by performing FSP on the laminate after laminating these die cast products to form a laminate may be used.
  • the first and second die cast products are dispersed with alumina particles, and the first and second die cast products are sandwiched between the first and second die cast products. You may perform FSP, after laminating
  • the average particle diameter of the alumina particles filled in the recess 51a and the alumina particles dispersed on the first or second die cast product is set in the range of 0.05 to 100 ⁇ m, preferably 0.05 to 1 ⁇ m.
  • the average particle diameter of the alumina particles is limited to the range of 0.05 to 100 ⁇ m, and it is difficult to obtain if it is less than 0.05 ⁇ m, and even if it can be obtained, it becomes expensive and exceeds 100 ⁇ m. It is because it becomes insufficient foaming.
  • the average particle size of the alumina particles used in the present invention was measured with a particle size distribution measuring device (LA-920, manufactured by Horiba, Ltd.).
  • the method for producing a foam metal using the foam metal precursor 56 thus produced will be described.
  • the method for producing a foam metal according to this embodiment is substantially the same as the method for producing a foam metal according to the first embodiment. That is, heat treatment is performed to heat the metal foam precursor 56 to the vicinity of its melting point.
  • This heat treatment is a heat treatment which is held in the atmosphere at a temperature of 550 to 800 ° C., preferably 650 to 700 ° C. for 5 to 60 minutes, preferably 6 to 15 minutes.
  • the above-mentioned heat treatment is performed on the foam metal precursor 56, the gas that has already existed in the die-cast molded products 51 and 52 expands, and the pore-forming nuclei that have already existed in the die-cast molded products 51 and 52 are formed.
  • a pore is generated at the center and expands.
  • the addition of alumina increases the viscosity of the aluminum or aluminum alloy, so that coalescence of pores generated inside the foam metal precursor 56 is suppressed, and the foam metal precursor 56 is exposed to the outside due to the rise of the pores. Gas release is suppressed.
  • the porosity and sphericity of the foam metal can be improved as compared with the foam metal of the first embodiment.
  • the alumina also functions as pore forming nuclei, the density of the pore forming nuclei inside the foam metal precursor is increased, and the porosity can be increased as compared with the foam metal of the first embodiment.
  • alumina (Al 2 O 3 ) powder is added when FSP is performed on the foam metal precursor, but ceramic powder such as silica (SiO 2 ) or silicon carbide (SiC) is used. May be added.
  • a die-cast molded product to be a foam metal precursor was manufactured by a die casting method, and a part of this die-cast molded product was used as a die cast test piece.
  • This die-cast test piece is a part of a runner portion formed in a passage through which molten metal of a mold flows when an automobile part is actually manufactured using an aluminum alloy for die casting called ADC12.
  • the die cast product was manufactured by a vacuum die casting method with a casting pressure of 70 MPa.
  • the runner part was used as a die-cast test piece because the runner part has a substantially flat plate shape that facilitates FSP, and it is experiential that gas defects frequently occur in the runner part even in the vacuum die casting method. It is because it is known. Further, the thickness of the die cast test piece was about 10 mm.
  • FSP Force Stir Welding, hereinafter referred to as FSW
  • FSW Frition Stir Welding, hereinafter referred to as FSW
  • FIGS. 1 and 2 the friction stir tool 11 is scanned in the direction of the two-dot chain line arrow in FIGS. 1 (a), 2 (b) and 2 (c) (1). Pass eyes).
  • the friction stir tool 11 was shifted in the direction perpendicular to the scanning direction of the FSP by the diameter of the probe portion 11b at the tip of the shoulder portion 11a and scanned in the same direction as the first pass (second pass).
  • the diameter of the shoulder part 11a of the friction stir tool 11 was 17 mm, and the diameter and length of the probe part 11b were 6 mm and 5 mm, respectively. Further, a screw (male screw) was formed on the outer peripheral surface of the probe portion 11b. Furthermore, the rotational speed of the friction stir tool 11 was 1000 rpm, the scanning speed was 100 mm / min, and the advance angle was 3 degrees.
  • a part where the FSP is not performed from the die cast test piece after the FSP is performed (hereinafter referred to as a die cast molded product of Comparative Example 1) and a part where the FSP is performed from the die cast test piece after the FSP is performed (hereinafter referred to as the implementation).
  • the foam metal precursor of Example 1) was cut out by machining.
  • the length, width, and thickness of these die cast products and the metal foam precursor were 12 mm, 12 mm, and 6 mm, respectively.
  • ⁇ i is the density of the die-cast product before foaming and the foam metal precursor
  • ⁇ f is the density of porous aluminum (foam metal) after foaming.
  • Each density was measured by the Archimedes method.
  • it put into the electric furnace so that the thickness direction (6 mm) of a die-cast molded product and a foam metal precursor may become up and down.
  • the upper and lower sides of the porous aluminum (foam metal) in FIG. 8 coincide with the upper and lower sides of the die-cast molded product and the foam metal precursor when placed in an electric furnace.
  • Example 1 As is clear from FIG. 7, in Comparative Example 1 where FSP was not performed, the porosity of the foam metal was 10% at maximum, whereas in Example 1 where FSP was performed, the porosity of the foam metal was It exceeded 30% at the maximum. Further, in Example 1, it was found that the porosity of the foam metal increased as the heat treatment time increased, and the maximum porosity was obtained when the heat treatment time was 6 to 7 minutes. That is, in Example 1, when the heat treatment time exceeded 7 minutes, the porosity decreased slightly and then increased again and then decreased. When the heat treatment time became less than 6 minutes, the porosity decreased in proportion to the heat treatment time. In Example 1, the porosity decreases when the heat treatment time is prolonged.
  • Example 1 Although the porosity once increased when the heat treatment time was 9 minutes, this was because the generated pores were lifted, and the resistance from the base material was less than the inside of the foam metal precursor Since it gathered in the vicinity of the surface of the upper part of the foam metal precursor, it is considered that it was caused by a large expansion even with the same gas amount.
  • Example 1 In Comparative Example 1 with a heat treatment time of 7 minutes in FIG. 8A, pores were observed, the porosity was about 10%, and the pores were unevenly distributed in the lower part of the foam metal, whereas FIG. In Example 1 in which the heat treatment time of b) was 7 minutes, porous aluminum (foamed metal) having a porosity exceeding 30% and extremely high sphericity of the pores was obtained. In Example 1 with a heat treatment time of 7 minutes in FIG. 8B, the size of the pores is not somewhat uniform, but by adopting a multi-pass method to increase the number of stirrings or optimizing the FSP conditions, The pore size can be made uniform.
  • Example 2 Two aluminum alloy plates having a length, width, and thickness of 150 mm, 70 mm, and 3 mm, respectively, were produced by a die casting method. One of these aluminum alloy plates was a first die-cast product, and the other was a second die-cast product. Without spraying anything on the first die-cast molded product, the second die-cast molded product was laminated on the first die-cast molded product to produce a laminate. This laminate was subjected to FSP in the atmosphere. For this FSP, as in Example 1, a multi-pass method was employed using an FSW apparatus manufactured by Hitachi Equipment Engineering. Specifically, as shown in FIGS.
  • the friction stir tool 11 was scanned in the direction of a two-dot chain line arrow in FIGS. 2 (b) and 2 (c).
  • the diameter of the shoulder part 11a of the friction stir tool 11 was 17 mm
  • the diameter and length of the probe part 11b were 6 mm and 5 mm, respectively.
  • a screw male screw
  • the rotational speed of the friction stir tool 11 was 1000 rpm
  • the scanning speed was 100 mm / min
  • the advance angle was 3 degrees.
  • a portion subjected to the FSP was cut out by machining to prepare a foam metal precursor.
  • the length, width, and thickness of the metal foam precursor were 12 mm, 12 mm, and 6 mm, respectively. This foam metal precursor was taken as Example 2.
  • Example 3 When the part (stirring part) stirred by FSP among the first and second die cast products is 100% by mass, alumina particles having an average particle diameter of 1 ⁇ m are added so that the added amount of alumina becomes 3% by mass.
  • a foam metal precursor was produced in the same manner as in Example 2 except that the product was sprayed on a one-die cast product. This foam metal precursor was taken as Example 3.
  • Example 4 When the part (stirring part) agitated by FSP in the first and second die-cast products is 100% by mass, alumina particles having an average particle diameter of 1 ⁇ m are added so that the added amount of alumina is 5% by mass.
  • a foam metal precursor was produced in the same manner as in Example 2 except that the product was sprayed on a one-die cast product. This foam metal precursor was taken as Example 4.
  • Example 5 When the part (stirring part) stirred by FSP among the first and second die-cast molded articles is 100% by mass, alumina particles having an average particle diameter of 1 ⁇ m are added so that the added amount of alumina is 7% by mass.
  • a foam metal precursor was produced in the same manner as in Example 2 except that the product was sprayed on a one-die cast product. This foam metal precursor was taken as Example 5.
  • Example 6 When the part (stirring part) stirred by FSP among the first and second die-cast molded articles is 100% by mass, alumina particles having an average particle diameter of 1 ⁇ m are added so that the amount of alumina added is 10% by mass.
  • a foam metal precursor was produced in the same manner as in Example 2 except that the product was sprayed on a one-die cast product. This foam metal precursor was taken as Example 6.
  • a die-cast molded product 22 (aluminum alloy: ADC12) was produced using the die-casting device 21 shown in FIG. 3, that is, the die-casting device 21 in which the vent holes 21e were opened. Before casting, the release agent is sprayed to the chill vent and the cavity 21a at a basic speed of 30 m / sec for 2.5 seconds, and the lubricant oil is sprayed to the sleeve 21b for 2.5 seconds at a basic speed of 20 m / sec. Air blow was performed.
  • a die-cast molded product 32 (aluminum alloy: ADC12) was produced using the die-casting device 31 shown in FIG. 4, that is, the die-casting device 31 in which the vent hole 31e was closed. Before casting, the release agent is sprayed to the chill vent and the cavity 31a at a basic speed of 30 m / sec for 2.5 seconds, and the lubricant is sprayed to the sleeve 31b for 2.5 seconds at a basic speed of 20 m / sec. Air blow was performed.
  • a die-cast molded product 22 (aluminum alloy: ADC12) was manufactured using the die-casting device 21 shown in FIG. 3, that is, the die-casting device 21 in which the vent hole 21d was opened. Before casting, the release agent is sprayed to the chill vent and the cavity 21a at a basic speed of 50 m / sec for 2 seconds, and the lubricant is sprayed to the sleeve 21b at a basic speed of 40 m / sec for 2 seconds to blow air. went.
  • a die-cast molded product 32 (aluminum alloy: ADC12) was produced using the die-casting device 31 shown in FIG. 4, that is, the die-casting device 31 in which the vent hole 31e was closed. Before casting, the release agent is sprayed to the chill vent and the cavity 31a at a basic speed of 50 m / sec for 2 seconds, and the lubricant is sprayed to the sleeve 31b at a basic speed of 40 m / sec for 2 seconds to blow air. went.
  • a die-cast molded product 32 (aluminum alloy: ADC12) was produced using the die-casting device 31 shown in FIG. 4, that is, the die-casting device 31 in which the vent hole 31e was closed. Prior to casting, 5.0 cc of lubricating oil was usually applied to the sleeve 31b at 0.4 cc, and air blowing was performed.
  • a die-cast molded product 32 (aluminum alloy: ADC12) was produced using the die-casting device 31 shown in FIG. 4, that is, the die-casting device 31 in which the vent hole 31e was closed. Prior to casting, 5.0 cc of lubricating oil was usually applied to the sleeve 31b at 0.4 cc, and air blowing was performed. However, the speed of the plunger 31c was made faster than that in Example 11.
  • a die-cast molded product 32 (aluminum alloy: ADC12) was produced using the die-casting device 31 shown in FIG. 4, that is, the die-casting device 31 in which the vent hole 31e was closed. Prior to casting, 2.0 to 3.0 cc of lubricating oil was usually applied to the sleeve 31b at a rate of 0.4 cc, air blown, and 2.0 to 3.0 cc of lubricating oil was further applied to the sleeve 31b. .
  • the die cast test piece (foam metal precursor) subjected to FSP was subjected to heat treatment for 11 minutes at a temperature of about 675 ° C. to produce a foam metal. And while measuring the porosity of these foam metals, the porosity in the cross section of a foam metal was observed. The results are shown in FIGS. In addition, the measuring method of the porosity of a foam metal was performed like the said comparative test 1.
  • the method for producing a foam metal precursor and the method for producing a foam metal of the present invention uses a foam metal precursor, has high impact energy absorption characteristics, is excellent in vibration damping characteristics, heat insulation characteristics, and sound insulation properties, and is also a functional material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

 高価な発泡剤粉末を用いずに、発泡金属前駆体や発泡金属を容易に製造する。また摩擦撹拌処理(FSP)を行うときにアルミナを添加することにより、発泡金属の気孔の真球度を向上するとともに、発泡金属の気孔率を増大する。 先ずダイカスト法により内部にガスを含有するダイカスト成形品(12)を作製する。次にダイカスト成形品(12)の内部に含有するガス及び気孔形成核をFSPによりダイカスト成形品(12)中に均一に分散させて発泡金属前駆体(16)を製造する。更にこの発泡金属前駆体(16)をその融点近傍まで加熱する熱処理を行うことにより、発泡金属前駆体(16)を発泡させて発泡金属を製造する。

Description

発泡金属前駆体の製造方法及び発泡金属の製造方法
 本発明は、発泡金属前駆体を製造する方法と、この方法で製造された発泡金属前駆体を用いて、衝撃エネルギーの吸収特性が高く、また制振特性、断熱特性、遮音性に優れ、更に機能材料としても使用できるポーラスアルミニウム、ポーラスマグネシウム等の発泡金属を製造する方法に関するものである。
 ポーラスアルミニウムは、気孔率が高い多孔質金属であるため、従来の緻密材と比較して非常に軽量であり、また衝撃エネルギーの吸収特性が高く、また制振特性や断熱特性に優れている等、非常に多くの優れた特徴を有する多機能な素材である。しかし、ポーラスアルミニウムの低コスト化は大きな課題となっており、実用化の障害となっているのが現状である。独立気泡型のポーラスアルミニウムを作製するために、プリカーサ法を用いることが知られている。このプリカーサ法では、先ず金属母材となるアルミニウム合金中に何らかの方法で発泡剤を混入させたプリカーサ(プリフォーム、発泡金属前駆体などとも呼ばれる。)を作製する。次にこのプリカーサを加熱し発泡剤の分解によりガスを発生させることで、軟化したアルミニウム合金を膨張させる。
 具体的には、複数の金属又は合金板の間に発泡剤を充填した積層体をロール圧下して金属又は合金板を相互に圧延接合し、金属又は合金板を裁断して重ね合せ、この重ね合せた金属又は合金板を再度ロール圧下するサイクルを繰返すことにより、金属マトリックスに発泡剤が微細分散したプリフォームとし、このプリフォームを加熱して発泡剤を発泡させる金属発泡体の製造方法が開示されている(例えば、特許文献1参照。)。この金属発泡体の製造方法では、金属又は合金板としては、軽量化を重視するときアルミニウム、アルミニウム合金等が使用され、発泡剤としては、水素化チタン粉末、水素化ジルコニウム粉末等が使用される。このように構成された金属発泡体の製造方法では、マトリックスに発泡剤が微細かつ均一に分散したプリフォームを加熱することにより、発泡反応が生起し、内部に多数の気泡が存在する金属発泡体が得られる。この金属発泡体は、衝撃吸収、制振性、遮音性に優れた軽量構造部材を始めとして、機能材料としても使用できる。また上記金属発泡体の製造方法では、通常の圧延設備を利用できることから粉末冶金法と比較して製造工程が簡単であり、品質安定性及び信頼性の高い金属発泡体が得られるようになっている。
特開2004-285446号公報(請求項1、段落[0001]、[0021])
 しかし、上記従来の特許文献1に示された金属発泡体の製造方法では、水素化チタン粉末等の発泡剤粉末が高価であることや、金属母材と発泡剤粉末を均一に混合したプリフォームを作製する工程が煩雑であるため生産性が悪いなどの問題点があった。
 本発明の目的は、高価な発泡剤粉末を用いずに、発泡金属前駆体や発泡金属を容易に製造することができる、発泡金属前駆体の製造方法及び発泡金属の製造方法を提供することにある。本発明の別の目的は、摩擦撹拌処理(Friction Stir Processing、以下、FSPという)を行うときにアルミナを添加することにより、発泡金属の気孔の真球度を向上できるとともに、発泡金属の気孔率を増大できる、発泡金属前駆体の製造方法及び発泡金属の製造方法を提供することにある。
 発泡金属用前駆体を製造するために、金属又は合金の板材中にFSPを用いて発泡剤粉末を分散させる方法も考えられる。しかし、この製造方法では、発泡剤粉末が高価であるとともに、爆発のおそれがある。一方、溶融した金属又は合金を高速かつ高圧で金型に注入し凝固させて成形品を作製するダイカスト法は、生産性が高く、低コストで成形品を製造できることから、自動車部品などに広く用いられている。このダイカスト法では、ダイカスト成形品中に気体を含有し易いという特徴を有する。例えば、溶融金属を金型内に射出する際に、金型内に存在する空気や金型表面に塗布した離型剤・潤滑剤が溶融金属と触れることで気化したガスが溶融金属内に巻き込まれ、そのまま凝固することにより、ダイカスト成形品中に気体が含まれてしまう。このダイカスト成形品中にはガスや気孔生成核のような不純物が偏析しているのが一般的である。そこで、本発明者らは、FSPでは、その強力な撹拌作用によりダイカスト成形品の鋳造組織を均一化する効果があることから、このFSPによりダイカスト成形品中の気体や気孔形成核を均一に分散できることを知見し、本発明をなすに至った。
 本発明の第1の観点は、ダイカスト法により内部にガスを含有するダイカスト成形品を作製する工程と、ダイカスト成形品の内部に含有するガス及び気孔形成核をFSPによりダイカスト成形品中に分散させて発泡金属前駆体を作製する工程とを含むことを特徴とする発泡金属前駆体の製造方法である。
 本発明の第2の観点は、第1の観点に基づく発明であって、ダイカスト成形品の内部に含有するガス及び気孔形成核の上記ダイカスト成形品中への分散を均一に行うことを特徴とする。
 本発明の第3の観点は、第2の観点に基づく発明であって、更にFSPを行うときにアルミナを添加することを特徴とする。
 本発明の第4の観点は、第3の観点に基づく発明であって、更にダイカスト成形品のうち摩擦撹拌処理により撹拌された部分を100質量%とするときアルミナを10質量%以下添加することを特徴とする。
 本発明の第5の観点は、第3又は第4の観点に基づく発明であって、更にダイカスト成形品を2枚作製し、これら2枚のダイカスト成形品のいずれか一方の表面にアルミナ粒子を散布した後に、上記アルミナ粒子を挟むように2枚のダイカスト成形品を積層してFSPを行うことを特徴とする。
 本発明の第6の観点は、第1ないし第5の観点のいずれかに記載の方法で製造された発泡金属前駆体をこの発泡金属前駆体の融点近傍まで加熱する熱処理を行うことにより、発泡金属前駆体を発泡させる発泡金属の製造方法である。
 本発明の第7の観点は、第1ないし第5の観点のいずれかに記載の方法で製造された発泡金属前駆体である。
 本発明の第8の観点は、第6の観点に記載の方法で製造された発泡金属である。
 本発明の第1の観点の方法では、内部にガス及び気孔形成核を含有するダイカスト成形品に対してFSPを行うという比較的簡単な工程で、ダイカスト成形品中にガス及び気孔形成核を分散させることができる。この結果、高価な発泡剤粉末を用いずに、発泡金属前駆体を容易に製造することができる。
 本発明の第2の観点の方法では、ダイカスト成形品の内部に含有するガス及び気孔形成核のダイカスト成形品への分散をFSPにより均一に行うので、ガス及び気孔形成核が均一に分散した発泡金属前駆体が得られる。
 本発明の第3の観点の方法では、ダイカスト成形品にアルミナを添加してFSPを行ったので、ダイカスト成形品の内部に既に存在していたガスや気孔形成核がダイカスト成形品中に均一に分散するとともに、FSP時に新たに添加したアルミナがダイカスト成形品中に均一に分散する。この結果、ガス、気孔形成核及びアルミナが均一に分散した発泡金属前駆体が得られる。
 本発明の第5の観点の方法では、2枚のダイカスト成形品のいずれか一方の表面にアルミナ粒子を散布した後に、この散布したアルミナ粒子を挟むように上記2枚のダイカスト成形品を積層してFSPを行うので、ガス、気孔形成核及びアルミナが分散した発泡金属前駆体を極めて容易に製造することができる。
 本発明の第6の観点の方法では、上記発泡金属前駆体に熱処理を行ったので、発泡金属前駆体の内部に既に存在していたガスが膨張し、かつ発泡金属前駆体の内部に既に存在していた気孔形成核を中心に気孔が発生して膨張する。なお、発泡金属前駆体にアルミナを添加することにより、金属又は合金の粘性が増すので、発泡金属前駆体の内部に生成された気孔同士の合体が抑制されるとともに、気孔の浮上による発泡金属前駆体の外部へのガスの放出が抑制されるため、発泡金属の気孔の気孔率及び真球度を向上できる。またアルミナが気孔形成核としても機能するので、発泡金属前駆体の内部の気孔形成核の密度が高くなって、発泡金属の気孔率を増大できる。
本発明第1実施形態の発泡金属前駆体をFSPにより製造する工程を示す斜視図である。 その発泡金属前駆体をFSPにより製造する工程を示す断面構成図である。 ダイカスト成形品を成形するためのダイカスト装置を示す断面構成図である。 ダイカスト成形品を成形するための別のダイカスト装置を示す断面構成図である。 本発明第2実施形態の発泡金属前駆体をFSPにより製造する工程を示す斜視図である。 その発泡金属前駆体をFSPにより製造する工程を示す断面構成図である。 比較例1のダイカスト成形品及び実施例1の発泡金属前駆体に熱処理を行ったときの熱処理時間の変化に対する発泡金属の気孔率の変化を示す図である。 (a)及び(c)は比較例1のダイカスト成形品に7分間及び9分間の熱処理をそれぞれ行った後の発泡金属の縦断面図であり、(b)及び(d)は実施例1の発泡金属前駆体に7分間及び9分間の熱処理をそれぞれ行った後の発泡金属の縦断面図である。 実施例2~6の発泡金属前駆体に熱処理を行ったときの熱処理温度の変化に対する発泡金属の気孔率の変化を示す図である。 実施例7~13のFSP前のダイカスト試験片(ダイカスト成形品の一部分)内のガス総量の変化に対するFSP及び熱処理後の発泡金属の気孔率の変化を示す図である。 実施例7~13のダイカスト試験片(ダイカスト成形品の一部分)にFSPを行って発泡金属前駆体を作製し、この発泡金属前駆体に熱処理を行った後の発泡金属の縦断面図である。
 次に本発明を実施するための形態を図面に基づいて説明する。
 <第1の実施の形態>
 発泡金属前駆体の製造方法は、ダイカスト法により内部にガスを含有するダイカスト成形品を作製する工程と、このダイカスト成形品にFSPを行う工程とを含む。ダイカスト法は、溶融したアルミニウム又はアルミニウム合金を金型に圧入することにより、高精度の鋳物を短時間に大量に成形できる鋳造法である。ダイカスト法としては、金型のキャビティ内を減圧した状態で溶融金属を注入して巻き込み巣の発生を防止する真空ダイカスト法、キャビティ内に溶融金属を低速で注入しかつ溶融金属に圧力をかけて凝固させるスクイズダイカスト法、キャビティ内に酸素を充填しその酸化作用によりキャビティ内を減圧し巣の発生を防止する無孔性(酸素置換)ダイカスト法、固体と液体がシャーベット状態のアルミニウム合金を金型に圧入する半溶解・半凝固ダイカスト法などが挙げられる。また上記金型に圧入される材料としては、ADC12(Al-Si-Cu系)、ADC1(Al-Si系)、ADC3(Al-Si-Mg系)、ADC5(Al-Mg系)、ADC6(Al-Mg系)、ADC10(Al-Si-Cu系)、ADC10Z(Al-Si-Cu系)、ADC12Z(Al-Si-Cu系)、ADC14(Al-Si-Cu系)などのアルミニウム合金が挙げられる。なお、この実施の形態では、ダイカスト法によりアルミニウム又はアルミニウム合金のダイカスト成形品を作製したが、ダイカスト法によりマグネシウム、マグネシウム合金、亜鉛、亜鉛合金、銅、銅合金等のダイカスト成形品を作製してもよい。
 上記ダイカスト法により作製されたダイカスト成形品の内部には、ガス及び気孔形成核が含まれている。ガスは、ダイカスト装置の金型に溶融金属を極めて速い速度で注入するときにエアが溶融金属に混入するため、ダイカスト成形品の内部に含まれるものである。また気孔形成核は、アルミニウム又はアルミニウム合金の原料に既に含まれているか、或いはダイカスト法による鋳造工程でアルミニウム又はアルミニウム合金中に含まれるものであり、初晶Si、共晶Si、Al-Fe-Si化合物、Al-Cu化合物などである。なお、マグネシウム又はマグネシウム合金のダイカスト成形品である場合には、気孔形成核としてMg-Al化合物、Mg-(Al,Zn)化合物等が挙げられる。
 一方、FSPは、図1及び図2に示すように、摩擦撹拌工具11を用いて行われる。摩擦撹拌工具11は、円柱状のショルダ部11aと、このショルダ部11aの先端に設けられショルダ部より小径のプローブ部11bとを備える。プローブ部11bの長さはダイカスト成形品12の厚さと同一か或いはダイカスト成形品12の厚さより僅かに短く形成される。またショルダ部11a及びプローブ部11bはSKH51等の高速度工具鋼により一体的に形成された後に、ダイカスト成形品12の融点近傍まで加熱されても容易に軟化しないように特殊な熱処理が施される。更にプローブ部11bはショルダ部11aとともに500~3000rpmの回転速度で回転することが好ましいが、この範囲には限定されず、プローブ部11b及びショルダ部11aの回転方向は図1及び図2とは逆であってもよい。このように工具11を図1及び図2の実線矢印で示す方向に高速で回転させた状態で、プローブ部11bの先端面を図2(a)の破線矢印で示す方向にダイカスト成形品12の表面に押付ける。このときダイカスト成形品12が摩擦熱で加熱されて軟化するので、プローブ部11bが軟化したダイカスト成形品12の内部に没入し、ショルダ部11aの先端面がダイカスト成形品12に接し、更に軟化が促進され、ダイカスト成形品12の内部にプローブ部11bを中心とする略逆円錐台状の撹拌部14(図2(b)及び(c))が形成される。ここで、ダイカスト成形品12をプローブ部11bの方に動かすことにより、撹拌部14を形成してもよい。プローブ部11bがダイカスト成形品12の内部に完全に没入しショルダ部11aの先端面がダイカスト成形品12に接した状態で工具11のダイカスト成形品12への押付けを停止し、工具11を図1(a)、図2(b)及び(c)の二点鎖線矢印で示す方向に走査する。このとき工具11を走査(移動)するのではなくダイカスト成形品12を走査(移動)させてもよい。これによりダイカスト成形品12が工具11の走査線上に沿って撹拌されるので、ダイカスト成形品12の内部に含まれているガス及び気孔形成核がダイカスト成形品12中に均一に分散する。このようにダイカスト法により作製されたダイカスト成形品12にFSPを行うという比較的簡単な工程でガス及び気孔形成核が均一に分散した発泡金属前駆体16(図1(b)及び図2(c))を製造することができる。この結果、高価な発泡剤粉末を用いずに、発泡金属前駆体16を容易に製造することができる。
 なお、プローブ部11bの外周面には、螺子(雄ねじ)を切ったり、円周方向に所定の間隔をあけて長手方向に延びる複数の溝を形成したり、長手方向に所定の間隔をあけて円周方向に延びる溝を形成してもよい。また、プローブ部11bは円柱形状に限定されず、直方体など他の形状でもよい。これらの螺子や溝により、摩擦熱で溶融したダイカスト成形品12の撹拌作用を高めることができる。また工具11は、その軸線をダイカスト成形品12の表面に対して垂直に保ったまま回転させるとともに、ダイカスト成形品12の面方向に走査してもよいが、その軸線をダイカスト成形品12の表面に対して所定の角度だけ傾斜させた状態(前進角を付与した状態)で回転させるとともに、ダイカスト成形品12の面方向に走査してもよい。上記前進角は、工具の軸線をダイカスト成形品12の表面に対して垂直に保ったままダイカスト成形品12の面方向に走査したときに工具の軸線が通過する平面内であって、プローブ部側をショルダ部側より走査方向側に傾けた工具の軸線の角度である。この前進角は2~4度程度であることが好ましい。
 次に上記方法で製造された発泡金属前駆体16を用いて発泡金属を製造する方法を説明する。アルミニウム又はアルミニウム合金製の発泡金属前駆体16をその融点近傍まで加熱する熱処理を行う。この熱処理は大気中で550~800℃、好ましくは650~700℃の温度に、5~60分間、好ましくは6~15分間保持する熱処理である。ここで、熱処理温度を550~800℃の範囲内に限定したのは、550℃未満では発泡金属前駆体16の粘度が高すぎてガスが膨張できず、800℃を越えると発泡金属前駆体16の粘度が低くなりすぎて気孔同士が合体したり或いは気孔が浮き上がってガスが外部に放出されてしまうからである。また熱処理時間を5~60分間の範囲内に限定したのは、5分間未満では発泡金属前駆体16の不十分な軟化によりガスが膨張できず、60分間を越えると発泡金属前駆体16の軟化時間が長すぎて気孔同士が合体したり或いは気孔が浮き上がってガスが外部に放出されてしまうからである。なお、マグネシウム又はマグネシウム合金製の発泡金属前駆体である場合には、上記熱処理の温度及び時間は550~800℃及び5~60分間に設定される。また亜鉛又は亜鉛合金製の発泡金属前駆体である場合には、上記熱処理の温度及び時間は300~550℃及び5~60分間に設定される。更に銅又は銅合金製の発泡金属前駆体である場合には、上記熱処理の温度及び時間は900~1200℃及び5~60分間に設定される。
 発泡金属前駆体16に上記熱処理を行うと、ダイカスト成形品12の内部に既に存在していたガスが膨張し、かつダイカスト成形品12の内部に既に存在していた気孔形成核を中心に気孔が発生して膨張する。
 なお、FSPを行う前のダイカスト成形品12の内部に含まれるガス(例えば、空気、離型剤の分解ガス、潤滑油の分解ガス等)の割合を調整する方法を説明する。図3に示すように、ダイカスト装置21は、溶融金属を圧入することにより所定形状のダイカスト成形品22が形成される所定形状の空間であるキャビティ21aと、このキャビティ21aの下端に連通接続され水平方向に延びて設けられ溶融金属をキャビティ21aに導くスリーブ21bと、このスリーブ21b内を往復動しスリーブ21b内の溶融金属をキャビティ21aに圧入するプランジャー21cとを備える。キャビティ21aの上端にはキャビティ21a内及びスリーブ21b内のガスを大気に排出するガス抜き孔21dが設けられ、スリーブ21bの途中には溶融金属(例えば、アルミの溶湯)をスリーブ21b内に注入するための注湯口21eが設けられる。このダイカスト装置21のプランジャー21cを極めて速い速度で図3(b)の破線矢印の方向に移動させることにより、ガスがガス抜き孔21dから抜けきらずに溶融金属に混入するため、ガスがキャビティ21a内のダイカスト成形品22の内部に含まれる。またキャビティ21aの内周面に塗布される離型剤(ダイカスト成形品22をキャビティ21aから取出し易くするために塗布される。)を通常より多く塗布することにより、キャビティ21a内のダイカスト成形品22の内部に含まれるガスの割合を増大させることができる。これは、キャビティ21a内周面に塗布した離型剤がキャビティ21aに圧入された溶融金属の熱により分解して通常より多くのガスが発生するためである。
 一方、図4に示すダイカスト装置31を用いることにより、キャビティ31a内のダイカスト成形品32の内部に含まれるガスの割合をより増大させることができる。このダイカスト装置31では、ガス抜き孔31dに栓31fを挿着することにより、ガス抜き孔31dが閉塞されている。これにより、キャビティ31a内及びスリーブ31b内のガスの殆ど全てをキャビティ31a内のダイカスト成形品32の内部に混在させることができるので、キャビティ31a内のダイカスト成形品32の内部に含まれるガスの割合をより増大できるようになっている。またスリーブ31b内周面に塗布される潤滑油を通常より多く塗布することにより、キャビティ31a内のダイカスト成形品32の内部に含まれるガスの割合を更に増大させることができる。これは、スリーブ31b内周面に塗布した潤滑油がスリーブ31bを通ってキャビティ31aに圧入された溶融金属の熱により分解して通常より多くのガスが発生するためである。なお、図4中の符号31cはプランジャーであり、符号31eは注湯口である。
 <第2の実施の形態>
 図5及び図6は本発明の第2の実施の形態を示す。図5及び図6において図1及び図2と同一符号は同一部品を示す。この実施の形態では、ダイカスト成形品51,52に対してFSPを行うときにアルミナ(Al23)を添加する。このアルミナは、ダイカスト成形品51,52のうちFSPにより撹拌された部分(撹拌部54)を100質量%とするとき、10質量%以下、好ましくは3~7質量%添加される。ここで、アルミナの添加量を10質量%以下に限定したのは、10質量%を越えるとポーラスアルミニウム(発泡金属)としての不純物が増えるだけだからである。
 ダイカスト成形品51,52にアルミナを添加する方法を説明する。先ず、図5及び図6に示すように、ダイカスト法により板状の第1及び第2ダイカスト成形品51,52をそれぞれ成形する。第1ダイカスト成形品51の上面には、上記ダイカスト法により摩擦撹拌工具11の走査方向に延びる凹部51aが形成される。なお、凹部は第1ダイカスト成形品の表面にフライス加工により形成してもよく、また第1ダイカスト成形品に凹部を形成しなくてもよい。この凹部51aに上記アルミナ粒子を充填した後に、第1ダイカスト成形品51に第2ダイカスト成形品52を積層する。この状態で積層体55に対して第1の実施の形態と同様にFSPを行う。なお、プローブ部11bの長さは積層体55の厚さと同一か或いは積層体55の厚さより僅かに短く形成される。また、凹部は、第1ダイカスト成形品ではなく、第2ダイカスト成形品に形成してもよい。
 FSPを行うときにアルミナを添加する方法としては、アルミナ粒子を用いずに、予め熱酸化処理により表面に酸化膜(アルミナの膜)を形成した複数枚のダイカスト成形品(凹部なし)を作製し、これらのダイカスト成形品を積層して積層体を形成した後に、この積層体にFSPを行うことによりダイカスト成形品にアルミナを添加する方法でもよい。また、第1及び第2ダイカスト成形品に凹部を形成せずに、第1又は第2ダイカスト成形品のいずれかの上にアルミナ粒子を散布し、この散布したアルミナ粒子を挟むように第1及び第2ダイカスト成形品を積層した後に、FSPを行ってもよい。
 上記凹部51aに充填されるアルミナ粒子や、第1又は第2ダイカスト成形品上に散布されるアルミナ粒子の平均粒径は0.05~100μm、好ましくは0.05~1μmの範囲に設定される。ここで、アルミナ粒子の平均粒径を0.05~100μmの範囲内に限定したのは、0.05μm未満では入手困難でありたとえ入手できたとしても高価なものとなってしまい、100μmを越えると発泡不足になってしまうからである。また、本発明で使用されるアルミナ粒子の平均粒径とは、粒度分布測定装置(堀場製作所製 LA-920)にて測定した。
 上記のように、アルミナ粒子を介装した第1及び第2ダイカスト成形品51,52からなる積層体55にアルミナを添加してFSPを行ったので、ダイカスト成形品51,52の内部に既に存在していたガスや気孔形成核がダイカスト成形品51,52中に均一に分散するとともに、FSP時に新たに添加したアルミナがダイカスト成形品51,52中に均一に分散する。上記以外の発泡金属前駆体56の製造方法は、第1の実施の形態の発泡金属前駆体の製造方法と略同様であるので、繰返しの説明を省略する。
 このように製造された発泡金属前駆体56を用いて発泡金属を製造する方法を説明する。この実施の形態の発泡金属の製造方法は、第1の実施の形態の発泡金属の製造方法と略同様である。即ち、発泡金属前駆体56をその融点近傍まで加熱する熱処理を行う。この熱処理は大気中で550~800℃、好ましくは650~700℃の温度に、5~60分間、好ましくは6~15分間保持する熱処理である。発泡金属前駆体56に上記熱処理を行うと、ダイカスト成形品51,52の内部に既に存在していたガスが膨張し、かつダイカスト成形品51,52の内部に既に存在していた気孔形成核を中心に気孔が発生して膨張する。このときアルミナの添加によりアルミニウム又はアルミニウム合金の粘性が増すので、発泡金属前駆体56の内部に生成された気孔同士の合体が抑制されるとともに、気孔の浮上による発泡金属前駆体56の外部へのガスの放出が抑制される。この結果、第1の実施の形態の発泡金属より発泡金属の気孔の気孔率及び真球度を向上できる。また上記アルミナが気孔形成核としても機能するので、発泡金属前駆体の内部の気孔形成核の密度が高くなって、第1の実施の形態の発泡金属より気孔率を増大させることができる。なお、第2の実施の形態では、発泡金属前駆体に対してFSPを行うときにアルミナ(Al23)粉末を添加したが、シリカ(SiO2)や炭化ケイ素(SiC)などのセラミック粉末を添加してもよい。
 次に本発明の実施例を比較例とともに詳しく説明する。
 <比較例1及び実施例1>
 先ず発泡金属前駆体となるダイカスト成形品をダイカスト法により製造し、このダイカスト成形品の一部分をダイカスト試験片とした。このダイカスト試験片は、ADC12というダイカスト用のアルミニウム合金を用いて実際に自動車部品を製造するときに、金型の溶融金属を流込む通路に形成されたランナ部の一部分である。なお、上記ダイカスト成形品は鋳造圧力が70MPaである真空ダイカスト法により製造した。また、ダイカスト試験片としてランナ部を用いたのは、ランナ部がFSPを実施し易い略平板状であるためと、真空ダイカスト法であってもこのランナ部にガス欠陥が多発することが経験的に知られているためである。更にダイカスト試験片の厚さは約10mmであった。
 次に上記ダイカスト試験片に対して大気中でFSPを行った。このFSPには、日立設備エンジニアリング社の摩擦撹拌接合(Friction Stir Welding、以下、FSWという)装置を用い、マルチパス法を採用した。具体的には、図1及び図2に示すように、摩擦撹拌工具11を図1(a)、図2(b)及び図2(c)の二点鎖線矢印の方向に走査させた(1パス目)。その後、摩擦撹拌工具11のショルダ部11a先端のプローブ部11bの直径分だけFSPの走査方向に対して直角方向にずらし、上記1パス目と同一方向に走査させた(第2パス目)。これにより1パスだけFSPを行う場合より大きな発泡金属前駆体16を得ることができた。なお、摩擦撹拌工具11のショルダ部11aの直径は17mmであり、プローブ部11bの直径及び長さはそれぞれ6mm及び5mmであった。またプローブ部11bの外周面には螺子(雄ねじ)が形成されていた。更に上記摩擦撹拌工具11の回転速度は1000rpmであり、走査速度は100mm/分であり、前進角は3度であった。
 更にFSPを行った後のダイカスト試験片からFSPを行っていない部分(以下、比較例1のダイカスト成形品という)と、FSPを行った後のダイカスト試験片からFSPを行った部分(以下、実施例1の発泡金属前駆体という)とを機械加工によりそれぞれ切り出した。これらのダイカスト成形品及び発泡金属前駆体の縦、横及び厚さはそれぞれ12mm、12mm及び6mmであった。
 <比較試験1及び評価>
 比較例1のダイカスト成形品及び実施例1の発泡金属前駆体を複数枚ずつ作製し、これらのダイカスト成形品及び発泡金属前駆体を、予め675℃の雰囲気温度に保った電気炉に入れ、その温度に所定時間ずつ保持した後、炉から取り出して空冷した。上記675℃に保持する時間(熱処理時間)は、それぞれ2分間、4分間、5分間、6分間、7分間、8分間、9分間及び10分間とした。そして、比較例1のダイカスト成形品及び実施例1の発泡金属前駆体の熱処理時間と発泡金属の気孔率との関係を求めるとともに、発泡金属の断面における気孔形態の観察を行った。その結果を図7及び図8に示す。なお、ダイカスト成形品毎及び発泡金属前駆体毎のバラツキの影響を低減するために、それぞれの条件で異なるダイカスト試験片から切り出したダイカスト成形品及び発泡金属前駆体を2個ずつ発泡させ、気孔率(発泡率)はこれらの平均値を採った。気孔率(発泡率)p(%)は、p=[(ρi-ρf)/ρi]×100という式から算出した。ここで、ρiは発泡前のダイカスト成形品及び発泡金属前駆体の密度であり、ρfは発泡後のポーラスアルミニウム(発泡金属)の密度である。それぞれの密度はアルキメデス法により測定した。またダイカスト成形品及び発泡金属前駆体を発泡させるとき、ダイカスト成形品及び発泡金属前駆体の厚さ方向(6mm)が上下となるように電気炉に入れた。更に、図8のポーラスアルミニウム(発泡金属)の上下は電気炉に入れたときのダイカスト成形品及び発泡金属前駆体の上下と一致させている。
 図7から明らかなように、FSPを行っていない比較例1では、発泡金属の気孔率が最大で10%であったのに対し、FSPを行った実施例1では、発泡金属の気孔率が最大で30%を越えた。また実施例1では、熱処理時間の増加とともに発泡金属の気孔率が増加し、熱処理時間が6~7分間で最大の気孔率となることが分かった。即ち、実施例1では、熱処理時間が7分間を越えると気孔率が若干低下し再び上昇した後に低下し、熱処理時間が6分間未満になると熱処理時間に比例して気孔率が低下した。実施例1において、熱処理時間が長くなると気孔率が低下するのは、熱処理時間が長いと、ガスが膨張するけれども、生成した気孔同士が合体したり或いは気孔が浮き上がってガスが外部に放出されてしまうためであると考えられる。また熱処理時間が短いと気孔率が低下するのは、発泡金属前駆体のアルミニウム合金が十分に軟化しないため、ガスが膨張できなかったためであると考えられる。なお、実施例1において、熱処理時間が9分間であるとき、気孔率が一旦増加しているけれども、これは、生成した気孔が浮き上がって、発泡金属前駆体の内部より母材からの抵抗が少ない発泡金属前駆体の上部の表面近傍に集まったため、同じガス量であっても多く膨張したことが原因であると考えられる。
 図8(a)の熱処理時間7分間の比較例1では、気孔が観察されるとともに、気孔率は10%程度であり、気孔は発泡金属の下部に偏在していたのに対し、図8(b)の熱処理時間7分間の実施例1では、気孔率が30%を越えしかも気孔の真球度が極めて高いポーラスアルミニウム(発泡金属)が得られた。なお、図8(b)の熱処理時間7分間の実施例1では、気孔のサイズがやや均一でないけれども、マルチパス法を採用して撹拌回数を増やしたり、FSPの条件を最適化することにより、気孔のサイズを均一化できる。
 一方、図8(c)の熱処理時間9分間の比較例1も、図8(d)の熱処理時間9分間の実施例1も、ともに気孔は全て上部に集中し下部に気孔は殆ど見られなかった。これは発泡過程において、生成した気孔の合体と浮上が起こったためであると考えられる。このような発泡金属はダイカスト成形品の表面をポーラス化するような場合に有効であると考えられる。
 <実施例2>
 先ずダイカスト法により縦、横及び厚さがそれぞれ150mm、70mm及び3mmであるアルミニウム合金板を2枚作製した。これらのアルミニウム合金板のうち一方を第1ダイカスト成形品とし、他方を第2ダイカスト成形品とした。第1ダイカスト成形品上に何も散布せずに、この第1ダイカスト成形品に第2ダイカスト成形品を積層して積層体を作製した。この積層体に対して大気中でFSPを行った。このFSPには、実施例1と同様に、日立設備エンジニアリング社のFSW装置を用い、マルチパス法を採用した。具体的には、図1及び図2に示すように、摩擦撹拌工具11を図2(b)及び図2(c)の二点鎖線矢印の方向に走査させた。なお、摩擦撹拌工具11のショルダ部11aの直径は17mmであり、プローブ部11bの直径及び長さはそれぞれ6mm及び5mmであった。またプローブ部11bの外周面には螺子(雄ねじ)が形成されていた。更に上記摩擦撹拌工具11の回転速度は1000rpmであり、走査速度は100mm/分であり、前進角は3度であった。次に上記FSPを行った後の積層体から、FSPを行った部分を機械加工により切り出して発泡金属前駆体を作製した。この発泡金属前駆体の縦、横及び厚さはそれぞれ12mm、12mm及び6mmであった。この発泡金属前駆体を実施例2とした。
 <実施例3>
 第1及び第2ダイカスト成形品のうちFSPにより撹拌された部分(撹拌部)を100質量%とするとき、アルミナの添加量が3質量%となるように、平均粒径1μmのアルミナ粒子を第1ダイカスト成形品上に散布したこと以外は、実施例2と同様にして発泡金属前駆体を作製した。この発泡金属前駆体を実施例3とした。
 <実施例4>
 第1及び第2ダイカスト成形品のうちFSPにより撹拌された部分(撹拌部)を100質量%とするとき、アルミナの添加量が5質量%となるように、平均粒径1μmのアルミナ粒子を第1ダイカスト成形品上に散布したこと以外は、実施例2と同様にして発泡金属前駆体を作製した。この発泡金属前駆体を実施例4とした。
 <実施例5>
 第1及び第2ダイカスト成形品のうちFSPにより撹拌された部分(撹拌部)を100質量%とするとき、アルミナの添加量が7質量%となるように、平均粒径1μmのアルミナ粒子を第1ダイカスト成形品上に散布したこと以外は、実施例2と同様にして発泡金属前駆体を作製した。この発泡金属前駆体を実施例5とした。
 <実施例6>
 第1及び第2ダイカスト成形品のうちFSPにより撹拌された部分(撹拌部)を100質量%とするとき、アルミナの添加量が10質量%となるように、平均粒径1μmのアルミナ粒子を第1ダイカスト成形品上に散布したこと以外は、実施例2と同様にして発泡金属前駆体を作製した。この発泡金属前駆体を実施例6とした。
 <比較試験2及び評価>
 実施例2~6の発泡金属前駆体を、予め所定の雰囲気温度に保った電気炉に入れ、その温度に10分間保持した後、炉から取り出して空冷した。上記所定の雰囲気温度(熱処理温度)は、それぞれ600℃、625℃、650℃、675℃及び700℃とした。そして、実施例2~6の発泡金属前駆体の熱処理温度と発泡金属の気孔率との関係を求めた。その結果を図9に示す。なお、発泡金属前駆体毎のバラツキの影響を低減するために、比較試験1と同様に、それぞれの条件で異なる積層体から切り出した発泡金属前駆体を2個ずつ発泡させ、気孔率(発泡率)はこれらの平均値を採った。また気孔率(発泡率)p(%)も比較試験1と同様の方法で算出した。更に発泡金属前駆体を発泡させるとき、発泡金属前駆体の厚さ方向(6mm)が上下となるように電気炉に入れた。
 図9から明らかなように、実施例3のアルミナを3質量%添加したときに、発泡金属の気孔率が最も増大することが分かった。また実施例3~5のアルミナを3~7質量%添加したときに、発泡金属の気孔率の増大が比較的良好であることが分かった。
 <実施例7>
 図3に示すダイカスト装置21、即ちガス抜き孔21eが開放されたダイカスト装置21を用いてダイカスト成形品22(アルミニウム合金:ADC12)を作製した。なお、鋳造を行う前に、チルベント及びキャビティ21aに離型剤を30m/秒の基本速度で2.5秒間噴射し、スリーブ21bに潤滑油を20m/秒の基本速度で2.5秒間噴射して、エアブローを行った。
 <実施例8>
 図4に示すダイカスト装置31、即ちガス抜き孔31eが閉塞されたダイカスト装置31を用いてダイカスト成形品32(アルミニウム合金:ADC12)を作製した。なお、鋳造を行う前に、チルベント及びキャビティ31aに離型剤を30m/秒の基本速度で2.5秒間噴射し、スリーブ31bに潤滑油を20m/秒の基本速度で2.5秒間噴射して、エアブローを行った。
 <実施例9>
 図3に示すダイカスト装置21、即ちガス抜き孔21dが開放されたダイカスト装置21を用いてダイカスト成形品22(アルミニウム合金:ADC12)を作製した。なお、鋳造を行う前に、チルベント及びキャビティ21aに離型剤を50m/秒の基本速度で2秒間噴射し、スリーブ21bに潤滑油を40m/秒の基本速度で2秒間噴射して、エアブローを行った。
 <実施例10>
 図4に示すダイカスト装置31、即ちガス抜き孔31eが閉塞されたダイカスト装置31を用いてダイカスト成形品32(アルミニウム合金:ADC12)を作製した。なお、鋳造を行う前に、チルベント及びキャビティ31aに離型剤を50m/秒の基本速度で2秒間噴射し、スリーブ31bに潤滑油を40m/秒の基本速度で2秒間噴射して、エアブローを行った。
 <実施例11>
 図4に示すダイカスト装置31、即ちガス抜き孔31eが閉塞されたダイカスト装置31を用いてダイカスト成形品32(アルミニウム合金:ADC12)を作製した。なお、鋳造を行う前に、スリーブ31bに潤滑油を通常0.4ccのところ5.0cc塗布し、エアブローを行った。
 <実施例12>
 図4に示すダイカスト装置31、即ちガス抜き孔31eが閉塞されたダイカスト装置31を用いてダイカスト成形品32(アルミニウム合金:ADC12)を作製した。なお、鋳造を行う前に、スリーブ31bに潤滑油を通常0.4ccのところ5.0cc塗布し、エアブローを行った。但し、プランジャー31cの速度を実施例11より速くした。
 <実施例13>
 図4に示すダイカスト装置31、即ちガス抜き孔31eが閉塞されたダイカスト装置31を用いてダイカスト成形品32(アルミニウム合金:ADC12)を作製した。なお、鋳造を行う前に、スリーブ31bに潤滑油を通常0.4ccのところ2.0~3.0cc塗布し、エアブローを行い、更にスリーブ31bに潤滑油を2.0~3.0cc塗布した。
 <比較試験3及び評価>
 実施例7~13のダイカスト成形品の一部分をダイカスト試験片(2枚ずつ)とした。先ずこれらのダイカスト試験片に含まれるガス総量(cm3/100g)をガスクロマトグラフGC-8APT(島津製作所製)によりそれぞれ測定した。次にこれらの試験片に実施例4と同様にしてFSPを行った。即ち、アルミナの添加量が5質量%となるように、平均粒径1μmのアルミナ粒子を2枚のダイカスト試験片(発泡金属前駆体)の間に挟んだ状態でFSPを行った。更にFSPを行ったダイカスト試験片(発泡金属前駆体)を約675℃の温度に11分間保持する熱処理を行って発泡金属を作製した。そしてこれらの発泡金属の気孔率を測定するとともに、発泡金属の断面における気孔の観察を行った。その結果を図10及び図11に示す。なお、発泡金属の気孔率の測定方法は上記比較試験1と同様にして行った。
 図10から明らかなように、ガス総量が増大するに従って発泡金属の気孔率が増大し、ガス総量の変化に対して発泡金属の気孔率が略一直線となるように変化することが分かった。一方、図11から明らかなように、実施例7では発泡金属の気孔率が極めて小さく気孔の大きさも小さかったのに対し、実施例8では発泡金属の気孔率は極めて小さいけれども比較的大きな気孔が形成された。また実施例9~13では、実施例9から実施例10、実施例11、実施例12及び実施例13に向うに従って、発泡金属の気孔率が次第に大きくなるとともに、気孔が試験片全体に分布するようになった。
 本発明の発泡金属前駆体の製造方法及び発泡金属の製造方法は、発泡金属前駆体を用いて、衝撃エネルギーの吸収特性が高く、また制振特性、断熱特性、遮音性に優れ、更に機能材料としても使用できるポーラスアルミニウム、ポーラスマグネシウム等の発泡金属を製造する方法として利用できる。
 12,51,52 ダイカスト成形品
 16,56 発泡金属前駆体
 53 アルミナ粒子

Claims (8)

  1.  ダイカスト法により内部にガスを含有するダイカスト成形品を作製する工程と、
     前記ダイカスト成形品の内部に含有するガス及び気孔形成核を摩擦撹拌処理により前記前記ダイカスト成形品中に分散させて発泡体金属前駆体を作製する工程と
     を含むことを特徴とする発泡金属前駆体の製造方法。
  2.  前記ダイカスト成形品の内部に含有するガス及び気孔形成核の前記ダイカスト成形品中への分散を均一に行う請求項1記載の発泡金属前駆体の製造方法。
  3.  前記摩擦撹拌処理を行うときに前記ダイカスト成形品にアルミナを添加する請求項1記載の発泡金属前駆体の製造方法。
  4.  前記ダイカスト成形品のうち前記摩擦撹拌処理により撹拌された部分を100質量%とするとき前記アルミナを10質量%以下添加する請求項3記載の発泡金属前駆体の製造方法。
  5.  前記ダイカスト成形品を2枚作製し、前記2枚のダイカスト成形品のいずれか一方の表面にアルミナ粒子を散布した後に、前記アルミナ粒子を挟むように前記2枚のダイカスト成形品を積層して摩擦撹拌処理を行う請求項3又は4記載の発泡金属前駆体の製造方法。
  6.  請求項1ないし5いずれか1項に記載の方法で製造された発泡金属前駆体をこの発泡金属前駆体の融点近傍まで加熱する熱処理を行うことにより、前記発泡金属前駆体を発泡させる発泡金属の製造方法。
  7.  請求項1ないし5いずれか1項に記載の方法で製造された発泡金属前駆体。
  8.  請求項6に記載の方法で製造された発泡金属。
PCT/JP2010/052821 2009-03-19 2010-02-24 発泡金属前駆体の製造方法及び発泡金属の製造方法 WO2010106883A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011504794A JP5641248B2 (ja) 2009-03-19 2010-02-24 発泡金属前駆体の製造方法及び発泡金属の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009067212 2009-03-19
JP2009-067212 2009-03-19

Publications (1)

Publication Number Publication Date
WO2010106883A1 true WO2010106883A1 (ja) 2010-09-23

Family

ID=42739548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052821 WO2010106883A1 (ja) 2009-03-19 2010-02-24 発泡金属前駆体の製造方法及び発泡金属の製造方法

Country Status (2)

Country Link
JP (1) JP5641248B2 (ja)
WO (1) WO2010106883A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007097A (ja) * 2011-06-24 2013-01-10 Gunma Univ 発泡金属の製造方法及び発泡金属の製造装置
TWI411690B (zh) * 2011-12-27 2013-10-11 Metal Ind Res & Dev Ct 發泡金屬之製造方法
TWI411689B (zh) * 2011-11-16 2013-10-11 Metal Ind Res & Dev Ct 發泡金屬之製程
WO2019013026A1 (ja) 2017-07-14 2019-01-17 国立研究開発法人科学技術振興機構 発泡金属の製造方法、発泡金属の製造装置
WO2019053571A1 (en) * 2017-09-12 2019-03-21 Indian Institute Of Science SPECIFIC AREA METAL FOAMS OBTAINED BY FRICTION-MIXING TREATMENT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290606A (zh) * 2015-11-10 2016-02-03 江苏科技大学 一种泡沫铝材料的搅拌摩擦焊焊接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001549A (ja) * 2000-06-19 2002-01-08 Asahi Tec Corp ダイカスト鋳造品の接合方法
JP2007229791A (ja) * 2006-03-03 2007-09-13 Hitachi Plant Technologies Ltd 鋳物欠陥の補修方法
JP2007275980A (ja) * 2006-04-11 2007-10-25 Kawasaki Heavy Ind Ltd 鋳造物の組織改質方法
JP2007302997A (ja) * 2006-04-11 2007-11-22 Osaka Univ 金属材の製造方法および金属材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001549A (ja) * 2000-06-19 2002-01-08 Asahi Tec Corp ダイカスト鋳造品の接合方法
JP2007229791A (ja) * 2006-03-03 2007-09-13 Hitachi Plant Technologies Ltd 鋳物欠陥の補修方法
JP2007275980A (ja) * 2006-04-11 2007-10-25 Kawasaki Heavy Ind Ltd 鋳造物の組織改質方法
JP2007302997A (ja) * 2006-04-11 2007-11-22 Osaka Univ 金属材の製造方法および金属材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007097A (ja) * 2011-06-24 2013-01-10 Gunma Univ 発泡金属の製造方法及び発泡金属の製造装置
TWI411689B (zh) * 2011-11-16 2013-10-11 Metal Ind Res & Dev Ct 發泡金屬之製程
TWI411690B (zh) * 2011-12-27 2013-10-11 Metal Ind Res & Dev Ct 發泡金屬之製造方法
WO2019013026A1 (ja) 2017-07-14 2019-01-17 国立研究開発法人科学技術振興機構 発泡金属の製造方法、発泡金属の製造装置
US11623274B2 (en) 2017-07-14 2023-04-11 Japan Science And Technology Agency Metal foam production method and metal foam production apparatus
WO2019053571A1 (en) * 2017-09-12 2019-03-21 Indian Institute Of Science SPECIFIC AREA METAL FOAMS OBTAINED BY FRICTION-MIXING TREATMENT

Also Published As

Publication number Publication date
JPWO2010106883A1 (ja) 2012-09-20
JP5641248B2 (ja) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5641248B2 (ja) 発泡金属前駆体の製造方法及び発泡金属の製造方法
JP5754569B2 (ja) 傾斜機能材料前駆体及び傾斜機能材料の製造方法、並びに傾斜機能材料前駆体及び傾斜機能材料
Jayalakshmi et al. Metallic amorphous alloy reinforcements in light metal matrices
US6874562B2 (en) Process for producing metal/metal foam composite components
Bauer et al. Production and application of metal foams in casting technology
CN104818401B (zh) 制备闭孔泡沫金属的搅拌摩擦焊方法
CN103121095B (zh) Az91d稀土镁合金的挤压铸造制备工艺
WO2017022012A1 (ja) アルミニウム‐炭化珪素質複合体及びその製造方法
Papadopoulos et al. The use of dolomite as foaming agent and its effect on the microstructure of aluminium metal foams—Comparison to titanium hydride
Lu et al. The influence of particle surface oxidation treatment on microstructure and mechanical behavior of 3D-SiCp/A356 interpenetrating composites fabricated by pressure infiltration technique
JP2010116623A (ja) 金属発泡体および金属発泡体の製造方法
JP2009208094A (ja) 車両操舵装置ハウジング用ダイカスト鋳物及びその製造方法
CN113061791B (zh) 一种镁合金、镁合金铸件及其制造方法
Stalin et al. Weight Loss Corrosion Studies of Aluminium-LM4 Reinforced With Alumina Silicate (Al2O3SiO2) Particulates Composites in Sodium Chloride (NaCl) Solution
CN104609871A (zh) 用于熔融铝液精炼和除气的复合材料转子及其制备方法
JP5773424B2 (ja) 発泡金属の製造方法及び発泡金属の製造装置
JP2015071825A (ja) アルミニウム合金−セラミックス複合材の製造方法
JP2008501855A (ja) 軽金属部材のリサイクル方法
Singamneni et al. Rapid casting of light metals: an experimental investigation using taguchi methods
JP2009045655A (ja) アルミニウム合金発泡体の鋳造方法
JP2007162052A (ja) 発泡金属用素材およびその製造方法
KR101227428B1 (ko) 산소 원자 분산된 금속 기지 복합재 및 그 제조 방법
JP6452969B2 (ja) アルミニウム−炭化珪素質複合体及びその製造方法
JP2016199459A (ja) 金属−セラミックス複合材の製造方法
JP2007260766A (ja) 鋳ぐるみ品の製造方法及び鋳ぐるみ品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504794

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753378

Country of ref document: EP

Kind code of ref document: A1