WO2010105970A2 - Zusammensetzung enthaltend suspendiertes pestizid, salz und polysaccharid - Google Patents

Zusammensetzung enthaltend suspendiertes pestizid, salz und polysaccharid Download PDF

Info

Publication number
WO2010105970A2
WO2010105970A2 PCT/EP2010/053147 EP2010053147W WO2010105970A2 WO 2010105970 A2 WO2010105970 A2 WO 2010105970A2 EP 2010053147 W EP2010053147 W EP 2010053147W WO 2010105970 A2 WO2010105970 A2 WO 2010105970A2
Authority
WO
WIPO (PCT)
Prior art keywords
pesticide
composition
salt
composition according
polysaccharide
Prior art date
Application number
PCT/EP2010/053147
Other languages
English (en)
French (fr)
Other versions
WO2010105970A3 (de
Inventor
Sebastian Koltzenburg
Marta Reinoso Garcia
Andreas Bauder
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP10707919A priority Critical patent/EP2408309A2/de
Priority to US13/257,192 priority patent/US20120010074A1/en
Priority to JP2012500191A priority patent/JP2012520843A/ja
Priority to BRPI1006471A priority patent/BRPI1006471A2/pt
Priority to CN2010800123707A priority patent/CN102355823A/zh
Publication of WO2010105970A2 publication Critical patent/WO2010105970A2/de
Publication of WO2010105970A3 publication Critical patent/WO2010105970A3/de
Priority to US13/944,202 priority patent/US20130310259A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/24Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing the groups, or; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/38Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the group >N—CO—N< where at least one nitrogen atom is part of a heterocyclic ring; Thio analogues thereof

Definitions

  • the present invention relates to an aqueous composition
  • an aqueous composition comprising a) a suspended pesticide which is at most 10 g / l soluble in water at 20 0 C, b) a salt, and c) a protective colloid which is a C3-C32-alkylcarbonyl - and / or C3-C32-alkylcarbamoyl substituted polysaccharide.
  • Another object is a process for preparing the composition by contacting a) the pesticide, b) a salt, and c) the protective colloid.
  • an article is a use of salt for slowing particle growth in an aqueous composition containing the suspended pesticide, and the protective colloid. Combinations of preferred features with other preferred features are encompassed by the present invention.
  • WO 2003/031043 discloses dispersions comprising a continuous aqueous phase which contains an electrolyte in a concentration of 0.1 to 1 mol / l and as surfactant a hydrophobically modified polymeric saccharide based on fructan-type or starch-type saccharides and substituted with hydrophobic moieties such as alkylcarbamoyl radicals or alkylcarbonyl radicals.
  • the dispersions can be prepared for the field of pesticides.
  • a principal problem in the formulation and application of pesticides in an aqueous environment is usually their low water solubility, which is often less than 10 g / L and especially less than 1 g / L at 20 ° C.
  • Aqueous compositions of these pesticides are therefore heterogeneous systems wherein the active ingredient is present as a dispersed phase in a continuous aqueous phase.
  • pesticide formulations usually contain surface-active substances such as emulsifiers and / or dispersants. These cause on the one hand a reduction in the surface tension of the aqueous phase and also stabilize the pesticide particles by electrostatic and / or steric interactions.
  • aqueous pesticide formulations are often unstable and tend to deposit the active ingredient, for example by sedimentation. These problems are particularly pronounced if the formulation is stored for a long time at elevated temperature and / or at strongly changing temperatures or even near freezing. This problem is particularly pronounced when the active ingredient tends to crystallization, z.
  • drugs that have a finite solubility in the aqueous phase and / or the surfactant.
  • Another problem with the formulation of pesticides with finite or extremely low water solubility is that when diluting the active ingredients to the desired application concentration, deposition such as sedimentation or creaming of the pesticide may occur. This not only results in a loss of efficiency, but in the case of spray mixtures there is also the risk of blockage for filter and nozzle systems.
  • the object of the present invention was to formulate sparingly water-soluble pesticides which are solid at room temperature in aqueous systems.
  • the formulation should not crystallize on prolonged storage and not sediment.
  • Another object was to provide a suspension of poorly water-soluble pesticides whose particle size does not increase or only slightly increases during storage.
  • the formulation should be stabilized with the aid of an environmentally friendly surface-active compound, so that no damage to the plants is to be expected when applying the pesticides.
  • an aqueous composition comprising a) a suspended pesticide which is at most 10 g / l soluble in water at 20 ° C., b) a salt, and c) a protective colloid which is a C 3-32 -alkylcarbonyl and / or C3-C32 alkylcarbamoyl substituted polysaccharide.
  • pesticide denotes at least one active substance selected from the group of fungicides, insecticides, nematicides, herbicides, safeners and / or growth regulators.
  • Preferred pesticides are fungicides, insecticides and herbicides, especially fungicides.
  • mixtures of pesticides of two or more of the above classes may be used.
  • One skilled in the art will be familiar with such pesticides as described, for example, in Pesticide Manual, 14th Ed. (2006), The British Crop Protection Council, London.
  • Suitable insecticides are insecticides of the carbamate class, organophosphates, organochlorine insecticides, phenylpyrazoles, pyrethroids, neonicotinoids, spinosines, avermectins, milbemycins, juvenile hormone analogs, alkylhalides, organotin compounds, nereistoxin analogues, benzoylureas, diacylhydrazines, METI acaricides, and insecticides such as chloropicrin, pymetrozin, flonicamide, clofentezine, hexythiazox, etoxazole, diafenthiuron, propargite, tetradifon, chlorfenapyr, DNOC, buprofezin, cyromazine, amitraz, hydramethylnone, acequinocyl, fluacrypyrim, rotenone, or their derivatives.
  • Suitable fungicides are fungicides of the classes dinitroanilines, allylamines, anilinopyrimidines, antibiotics, aromatic hydrocarbons, benzenesulfonamides, benzimidazoles, benzisothiazoles, benzophenones, benzothiadiazoles, benzotriazines, benzylcarbamates, carbamates, carboxamides, carboxylic acid amides, chloronitriles, cyanoacetamide oximes, cyanoimidazoles, cyclopropanecarboxamides, dicarboximides, dihydrodioxazines , Dinitrophenyl crotonates, dithiocarbamates, dithiolanes, ethyl phosphonates, ethylaminothiazolecarboxamides, gua nidines, hydroxy- (2-amino) -pymimetimidines, hydroxyanilides, imidazoles,
  • Suitable herbicides are herbicides of the classes of the acetamides, amides, aryloxyphenoxypropionates, benzamides, benzofuran, benzoic acids, benzothiadiazinones, bipyridylium, carbamates, chloroacetamides, chlorocarboxylic acids, cyclohexanediones, dinitroanilines, dinitrophenol, diphenyl ethers, glycines, imidazolinones, isoxazoles, isoxazolidinones , Nitriles, N-phenylphthalimides, oxadiazoles, oxazolidinediones, oxyacetamides, phenoxycarboxylic acids, phenylcarbamates, phenylpyrazoles, phenylpyrazolines, phenylpyridazines, phosphinic acids, phosphoroamidates, phosphorodithioates, phthalamates
  • the pesticide contains an insecticide, preferably the pesticide is at least one insecticide.
  • the pesticide contains a fungicide, preferably the pesticide consists of at least one fungicide.
  • Preferred fungicides are pyraclostrobin and prochloraz, especially pyraclostrobin.
  • the pesticide contains a herbicide, preferably the pesticide consists of at least one herbicide.
  • the pesticide contains a growth regulator, preferably the pesticide consists of at least one growth regulator.
  • the pesticides contain at least two, preferably two or three, in particular two different pesticides.
  • the pesticide is soluble in water at 20 0 C at most about 10 g / l, preferably at most 2 g / l and particularly preferably at most 0.5 g / l.
  • pyraclostrobin is water soluble at 1.9 mg / l and prochloraz at 34 mg / l.
  • the pesticide usually has a melting point of about 30 0 C, preferably about 40 0 C and especially above 45 0 C.
  • pyraclostrobin has a melting point of 64 0 C and 47 0 C.
  • the composition according to the invention usually comprises 0.1 to 70% by weight of pesticide, preferably 1 to 50% by weight, in particular 3 to 30% by weight, based on the composition.
  • the pesticide is in suspended form in the composition, ie in the form of crystalline or amorphous particles which are solid at 20 ° C.
  • the pesticide is in the form of amorphous particles.
  • the viscosity of the pesticide particles is at least 1,000 mPas, preferably at least 5,000 mPas, and most preferably at least 10,000 mPas.
  • the suspended pesticide usually has a particle size distribution with an Xso value of 0.1 to 10 .mu.m, preferably from 0.2 .mu.m to 5 .mu.m and particularly preferably from 0.5 .mu.m to 2 .mu.m.
  • the particle size distribution can be determined by laser light diffraction of an aqueous suspension comprising the particles.
  • Sample preparation for example dilution to measurement concentration, depends among other things on the fineness and concentration of the active ingredients in the suspension sample and on the measuring instrument used (eg Malvern Mastersizer). The procedure must be worked out for the respective system and is known to the person skilled in the art.
  • Salts usually include an anion and a cation.
  • Suitable salts are, for example, metal salts, ammonium salts, amine salts, quaternary ammonium salts and mixtures thereof, in particular metal salts and ammonium salts, especially metal salts and especially alkali metal salts.
  • the cations include metal ions of monovalent, divalent, trivalent or tetravalent metals and ions comprising a nitrogen atom.
  • Typical metal cations include ions of lithium, sodium, potassium, magnesium, calcium, barium, chromium, manganese, iron, cobalt, nickel, copper, zinc and aluminum.
  • Typical cations containing a nitrogen atom include ammonium ions, ions of salts of primary, secondary and tertiary amines such as monoalkylamines, dialkylamines, trialkylamines and benzyldialkylamines, quaternary ammonium ions and organic nitrogen base ions such as morpholine, piperazine and heterocyclic compounds , such as pyridine.
  • Preferred cations include ions of sodium, potassium, magnesium, calcium, iron, copper, zinc, aluminum and ammonium ions, more preferably sodium and potassium, especially potassium.
  • the anions include hydroxyl anions and anions derived from both inorganic acids and organic acids such as hydrogen halides including hydrofluoric acid, hydrochloric acid, hydrobromic acid and hydroiodic acid, sulfuric acid, phosphoric acid, carbonic acid, formic acid, acetic acid and lactic acid.
  • Preferred anions are chloride, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate, dihydrogen phosphate, carbonate, bicarbonate, formate and acetate, particularly preferably chloride, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate, dihydrogen phosphate, in particular hydrogen phosphate.
  • Preferred salts are sodium chloride, lithium chloride, ammonium formate, ammonium chloride, lithium formate, dipotassium hydrogen phosphate, potassium dihydrochloride, genphosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, particularly preferably dipotassium hydrogen phosphate (DKHP).
  • DKHP dipotassium hydrogen phosphate
  • the composition according to the invention usually contains at least 10% by weight of salt, preferably at least 15% by weight, more preferably at least 20% by weight and in particular at least 25% by weight, based on the composition.
  • the upper limit of the salt content is determined by the solubility of the salt in the composition.
  • the composition according to the invention usually contains at most as much salt as is maximally soluble in the composition.
  • the composition contains at most 60% by weight of salt, more preferably at most 50% by weight, particularly preferably at most 40% by weight.
  • the salt is usually present in dissolved form in the composition.
  • a suitable protective colloid which is a polysaccharide substituted with C3-C32-alkylcarbonyl and / or C3-C32-alkylcarbamoyl groups, is usually based on homodisperse or polydisperse, linear or branched polysaccharides. Suitable polysaccharides are fructans, modified starches and starch hydrolysates. Preferred polysaccharides are inulin and starch hydrolysates.
  • the protective colloid is preferably a polysaccharide which is substituted by C ⁇ -Cis-alkylcarbonyl and / or C ⁇ -Cis-alkylcarbamoyl groups.
  • fructans examples include inulin, oligofructose, fructooligosaccharide, partially hydrolyzed inulin, levan and partially hydrolyzed levan, preferably inulin and partially hydrolyzed inulin.
  • Inulin is a fructan composed of molecules consisting mainly of fructosyl units bound together by ß (2-1) -fructosyl-fructosyl bonds and possibly having a terminal glucosyl unit. It is synthesized by various plants as reserve carbohydrate and certain bacteria and can also be obtained synthetically by an enzymatic process from sugars containing fructose units, such as sucrose.
  • Well-suited inulin is polydisperse, linear inulin or slightly branched inulin of plant origin having a degree of polymerization (DP) in the range of three to about 100. Inulin usually has a branching below 20%, preferably below 10%. Particularly well-suited inulin is chicory inulin with a DP in the range of three to about 70 and an average DP of 10. Even more suitable is chicory inulin, which has been treated to remove most of the monomeric and dimeric saccharide by-products, and the optionally also treated to remove inulin molecules having a lower DP, usually a DP of three to nine. These grades of chicory inulin can be obtained from chicory roots by conventional extraction, purification and fractionation techniques.
  • DP degree of polymerization
  • suitable fructans contain partially hydrolyzed inulin and inulin molecules with a DP in the range of three to about nine, namely oligofructose and fructo-oligosaccharides (ie oligofructose molecules with an additional terminal glucosyl unit).
  • oligofructose and fructo-oligosaccharides ie oligofructose molecules with an additional terminal glucosyl unit.
  • suitable products are obtained by partial, enzymatic hydrolysis of chicory inulin.
  • Suitable fructans are levan and partially hydrolyzed levan, molecules consisting mainly of fructosyl units linked together by ⁇ (2-6) fructosyl-fructosyl bonds and possibly having a terminal glucosyl moiety.
  • glucosyl units are usually linked by ⁇ -1,4-glucosyl-glucosyl bonds forming linear molecules called amylose, or by ⁇ -1,4 and ⁇ -1,6-glucosyl-glucosyl bonds, the branched molecules Called amylopectin.
  • the bonds between the glucosyl units in starch can be chemically cleaved. This phenomenon is used industrially to prepare modified starches and starch hydrolysates by heat treatment of starch frequently in the presence of a catalyst, by acid hydrolysis, by enzymatic hydrolysis or by shear or by combinations of such treatments.
  • Starch hydrolysates usually refer to polydisperse mixtures composed of D-glucose, oligomeric (DP two to ten) and / or polymeric (DP> ten) D-glucosyl chain molecules. Starch hydrolysates are usually defined by their D.E. value (dextrose equivalents). Starch hydrolysates may range from a product consisting essentially of glucose via products with a D.E., greater than 20 (often referred to as glucose syrups), to a D.E. of 20 or less (often referred to as maltodextrins). Well suited are starch hydrolysates having a D.E. in the range of two to 47. They can be obtained by conventional methods from various sources of starch, such as corn, potato, tapioca, rice, sorghum and wheat.
  • the polysaccharides are substituted by C3-C32-alkylcarbonyl and / or C3-C32-alkylcarbamoyl groups, preferably by at least two of these groups.
  • the polysaccharides are preferably substituted by C ⁇ -Cis-alkylcarbonyl or C ⁇ -Cis-alkylcarbamoyl groups.
  • the chemical structures of the alkylcarbonyl group (1) and the alkylcarbamoyl group (2) are as follows, where " * " represents the bond to a former OH group of the polysaccharide:
  • Alkyl " ⁇ * N (1) ( 2 )
  • Alkyl here means a linear or branched, saturated or unsaturated aliphatic radical having from 3 to 32, preferably from 4 to 20, particularly preferably 6 to 14 and especially 8 to 12 carbon atoms.
  • alkyl is a saturated, linear aliphatic radical.
  • the substituted polysaccharide usually has two, three or four hydroxyl groups per saccharide unit, whose hydrogen atom may be substituted by a C3-C32-alkylcarbonyl and / or C3-C32-alkylcarbamoyl group.
  • the number of substituted groups per unit is often referred to as the average degree of substitution (DS).
  • the DS of the substituted polysaccharide is usually in the range of 0.01 to 0.5, preferably 0.02 to 0.4, more preferably 0.05 to 0.35, and most preferably 0.1 to 0.3.
  • the protective colloid which is a polysaccharide substituted by C3-C32-alkylcarbonyl and / or C3-C32-alkylcarbamoyl groups, usually has a molecular weight of at least 1000 g / mol, preferably at least 4000 g / mol.
  • the water solubility of the protective colloid is usually below 10% by weight, preferably below 5% by weight and more preferably below 1% by weight, in each case at 20 ° C.
  • the polysaccharide substituted with C3-C32 alkylcarbonyl and / or C3-C32 alkylcarbamoyl groups can be prepared by conventional methods.
  • C 3 -C 32 alkylcarbonyl groups can be linked to the polysaccharide by reaction of the
  • composition according to the invention usually contains from 0.001 to 20% by weight, preferably from 0.01 to 8% by weight, particularly preferably from 0.01 to 5% by weight, of protective colloid c), based on the total amount of the composition.
  • the composition according to the invention usually contains formulation auxiliaries, wherein the choice of the auxiliaries usually depends on the specific application form or the pesticide.
  • suitable auxiliaries are solvents, solid carriers, surface-active substances (such as surfactants, solubilizers, further protective colloids, wetting agents and adhesives), organic and inorganic thickeners, Bactericides, antifreeze, defoamers, if necessary dyes and adhesives (eg for seed treatment).
  • surfactants are the alkali, alkaline earth, ammonium salts of aromatic sulfonic acids, eg. B. of lignin (Borresperse ® grades, Borregaard, Norway), phenol, naphthalene (Morwet ® types, Akzo Nobel, USA) and dibutyl (nekal ® types, BASF, Germany), and of fatty acids, alkyl and alkylarylsulfonates, alkyl, lauryl ether and fatty alcohol sulfates, as well as salts of sulfated hexa-, hepta- and octadecanols and of fatty alcohol glycol ethers, condensation products of sulfonated naphthalene and its derivatives with formaldehyde, condensation products of naphthalene or naphthalenesulf
  • Suitable surfactants are, in particular, anionic, cationic, nonionic and amphoteric surfactants, block polymers and polyelectrolytes.
  • Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates or carboxylates.
  • sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefinsulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of condensed naphthalene, sulfonates of dodecyl and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates.
  • Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters.
  • Examples of phosphates are phosphate esters.
  • Examples of carboxylates are alkyl carboxylates and carboxylated alcohol or alkylphenol ethoxylates.
  • Suitable nonionic surfactants are alkoxylates, N-alkylated fatty acid amides, amine oxides, esters or sugar-based surfactants.
  • alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated.
  • ethylene oxide and / or propylene oxide can be used, preferably ethylene oxide.
  • N-alkylated fatty acid amides are fatty acid glucamides or fatty acid alkanolamides.
  • esters are fatty acid esters, glycerol esters or monoglycerides.
  • sugar-based Surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkyl polyglucosides.
  • Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds having one or two hydrophobic groups, or salts of long-chain primary amines.
  • Suitable amphoteric surfactants are alkyl betaines and imidazolines.
  • Suitable block polymers are block polymers of the AB or ABA type comprising blocks of polyethylene oxide and polypropylene oxide or of the ABC type comprising alkanol, polyethylene oxide and polypropylene oxide.
  • Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali metal salts of polyacrylic acid. Examples of polybases are polyvinylamines or polyethylene amines.
  • composition according to the invention may comprise from 0.1 to 40% by weight, preferably from 1 to 30 and in particular from 2 to 20% by weight, of total amount of surface-active substances and surfactants, based on the total amount of the composition.
  • the protective colloid which is a polysaccharide substituted with C3-C32 alkylcarbonyl and / or C3-C32 alkylcarbamoyl groups, is not included in this total amount.
  • adjuvants examples include organically modified polysiloxanes such as BreakThruS 240 ®; Alcohol alkoxylates such as Atplus ® 245 ® Atplus MBA 1303 ®, Plurafac LF and Lutensol ® ON; EO-PO block polymers, eg. B. Pluronic RPE 2035 ® and Genapol B ®; Alcohol ethoxylates, eg. B. Lutensol ® XP 80; and sodium dioctylsulfosuccinate, e.g. B. Leophen ® RA.
  • organically modified polysiloxanes such as BreakThruS 240 ®
  • Alcohol alkoxylates such as Atplus ® 245 ® Atplus MBA 1303 ®, Plurafac LF and Lutensol ® ON
  • EO-PO block polymers eg. B. Pluronic RPE 2035 ® and Genapol B ®
  • Alcohol ethoxylates e
  • thickeners ie, compounds that give the composition a modified flow properties, ie high viscosity at rest and low viscosity in motion
  • thickeners are polysaccharides and organic and inorganic sheet minerals, such as xanthan gum (Kelzan ®, CP Kelco), Rhodopol ® 23 (Rhodia) or Veegum ® (RT Vanderbilt) or attaclay ® (Engelhard Corp.).
  • Bactericides may be added to stabilize the composition.
  • bactericides are those based on dichlorophen and benzyl alcohol formal (Proxel ®. Fa. ICI or Acetide ® RS from Thor Chemie and Kathon ® MK from. Rohm & Haas), and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones (Acetide ® MBS from Thor Chemie).
  • Suitable antifreeze agents are ethylene glycol, propylene glycol, urea and glycerin.
  • defoamers are silicone emulsions (such as, for example, silicone ® SRE, Wacker, Germany or Rhodorsil ®, Rhodia, France), long chain alcohols, fatty acids, salts of fatty acids, organofluorine compounds and mixtures thereof.
  • colorants are both water-insoluble pigments and water-soluble dyes. Examples which may be mentioned under the names Rhodamine B, CI Pigment Red 112 and CI Solvent Red 1, Pigment Blue 15: 4, Pig- blue 15: 3, Pigment blue 15: 2, Pigment blue 15: 1, Pigment blue 80, Pigment yellow low 1, Pigment yellow 13, Pigment red 48: 2, Pigment red 48: 1, Pigment red 57: 1, Pigment red 53, Pigment orange 43, Pigment orange 34, Pigment orange 5, Pigment green 36, Pigment green 7, Pigment white 6, Pigment brown 25, Basic violet 10, Basic violet 49, Acid red 51, Acid red 52, Acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108 known dyes and pigments.
  • adhesives examples include polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and CEI luloseether (Tylose ®, Shin-Etsu, Japan).
  • composition of the invention is usually diluted before use to produce the so-called tank mix. Dilution is made of medium to high boiling point mineral oil fractions such as kerosene or diesel oil, coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, ethanol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, strong polar solvents, e.g. Dimethylsulfoxide, N-methylpyrrolidone or water into consideration.
  • mineral oil fractions such as kerosene or diesel oil, coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Toluene, xylene, paraffin, tetrahydr
  • the diluted composition is usually applied by spraying or atomizing.
  • wetting agents, adjuvants, herbicides, bactericides, fungicides can be added immediately before use (tank mix). These agents can be added to the compositions according to the invention in a weight ratio of 1: 100 to 100: 1, preferably 1:10 to 10: 1.
  • the pesticide concentration in the tank mix can be varied in larger areas. In general, they are between 0.0001 and 10%, preferably between 0.01 and 1%.
  • the application rates in the application in crop protection, depending on the nature of the desired effect between 0.01 and 2.0 kg of active ingredient per ha.
  • the present invention also relates to the use of a composition according to the invention for controlling phytopathogenic fungi and / or undesired plant growth and / or undesired insect or mite infestation and / or for regulating the growth of plants, the composition being based on the respective pests whose Habitat or plants to be protected from the particular pest, soil and / or undesirable plants and / or crops and / or their habitat. Furthermore, the invention relates to the use of a composition according to the invention for controlling unwanted insect or mite infestation on plants and / or for controlling phytopathogenic fungi and / or for controlling undesired plant growth, treating crop seeds with the composition.
  • the invention relates to seed which has been pickled with a composition according to the invention.
  • the seed preferably contains the additive according to the invention.
  • composition. This composition can be applied to the seed undiluted or, preferably, diluted.
  • the corresponding composition can be diluted 2 to 10 times, so that 0.01 to 60% by weight, preferably 0.1 to 40% by weight of pesticide are present in the compositions to be used for the stain ,
  • the application can be done before sowing.
  • the treatment of plant propagation material in particular the treatment of seeds, is known to the person skilled in the art and is carried out by dusting, coating, pelleting, dipping or impregnating the plant propagation material, wherein the treatment is preferably carried out by pelleting, coating and dusting, so that z. B. premature germination of the seed is prevented.
  • pesticide amounts of 1 to 1000 g / 100 kg, preferably 5 to 100 g / 100 kg of propagation material or seed are generally used.
  • the invention also relates to a use of salt for slowing particle growth in an aqueous composition containing a suspended one
  • a pesticide which is at most 10 g / l soluble in water at 20 ° C and a protective colloid which is a polysaccharide substituted with C3-C32 alkylcarbonyl and / or C3-C32 alkylcarbamoyl groups.
  • the aqueous phase contains at least 10% by weight of salt, based on the composition.
  • Preferred salts and preferred amounts of salts are as described above.
  • Preferred protective colloids are as described above. Particle growth is usually slowed down compared to a salt-free composition.
  • the invention also relates to a process for the preparation of a composition according to the invention comprising: a) a pesticide which is at most 10 g / l soluble in water at 20 ° C. b) a salt, and c) a protective colloid containing a C 3 C32 alkylcarbonyl and / or C3-C32 alkylcarbamoyl substituted polysaccharide is brought into contact with each other.
  • the dispersed pesticide a) may be brought into contact with components b) and c) in an aqueous system, or it may be dispersed in an aqueous system after contacting components a), b) and c).
  • Suitable processes are, for example, precipitation processes, evaporation processes, melt emulsification or milling processes, preferably precipitation processes and melt emulsification.
  • the preparation process results in a composition according to the invention in which the pesticide is suspended. During melt emulsification, the pesticide may briefly be present as an emulsion of the molten pesticide, but the pesticide rapidly solidifies into suspended form upon cooling.
  • the process according to the invention preferably comprises precipitation of the pesticide (precipitation process) or solidification of an emulsified melt of the pesticide (melt liquorization).
  • the precipitation process usually includes the steps
  • the process step can be carried out batchwise, for example in a stirred tank, or continuously.
  • Continuous machines and apparatuses for emulsification are, for example, colloid mills, sprocket dispersing machines and other types of dynamic mixers, furthermore high-pressure homogenizers, pumps with downstream nozzles, valves, membranes or other narrow gap geometries, static mixers, in-line mixers according to the rotor-stator principle (Uitara-Turrax, Inline Dissolver), micromixing systems and ultrasonic emulsification systems.
  • Sprocket dispersing machines or high-pressure homogenizers are preferably used.
  • water-miscible organic solvent in this context means that the organic solvents at 20 0 C without phase separation at least 10 wt .-%, preferably 15 wt.%, Particularly preferably mixed to 20 wt .-% with water
  • the solution may optionally comprise further formulation auxiliaries, for example dispersants
  • Suitable solvents are C 1 -C 6 -alkyl alcohols such as methanol, ethanol, propanol, isopropanol, 1-butanol, 2-butanol, tert - Butanol, esters, ketones such as acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, acetals, ethers, cyclic ethers such as tetrahydrofuran, aliphatic carboxylic acids such as formic acid, acetic acid, propionic acid, N-substituted or
  • Preferred solvents are glycols, methanol, ethanol, isopropanol, dimethylformamide, N-methylpyrrolidone, methylene chloride, chloroform, 1, 2-dichloroethane, chlorobenzene, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, tetrahydrofuran and mixtures of said solvents.
  • Particularly preferred solvents are propylene glycol, methanol, ethanol, isopropanol, dimethylformamide and tetrahydrofuran, in particular propylene glycol.
  • the pesticide is in step 1) usually in a water-miscible organic solvent at temperatures greater than 30 0 C, preferably between 50 0 C and 240 ° C, in particular 100 0 C to 200 ° C, particularly preferably 140 ° C to 180 0 C, possibly under pressure, dissolved.
  • step 2) The thus obtained molecular disperse solution is then added in step 2) directly with the optionally cooled aqueous molecular disperse or colloidally disperse solution containing salt b) and protective colloid c), wherein the solvent component from step 1) is transferred to the aqueous phase and the hydrophobic phase of the pesticide is formed as a disperse phase.
  • a mixture temperature of about 35 ° C to 80 ° C is established.
  • step c) optionally, the organic solvents used are removed and the resulting suspension of pesticide is concentrated by removing excess water to the desired level of pesticide.
  • Melt emulsification usually involves solidification of an emulsified melt of the pesticide.
  • a melt comprising the molten pesticide is emulsified in an aqueous solution and cooled below the solidification point.
  • the melt may be emulsified in an aqueous solution by melting the pesticide and introducing this melt into the aqueous solution, preferably with the addition of energy.
  • the melt can be emulsified in an aqueous solution by melting the pesticide directly in an aqueous solution while supplying energy.
  • energy may be introduced by shaking, stirring, tubular mixing, injecting one liquid into another, oscillating and cavitating the mixture (eg, with ultrasound), emulsifying centrifuges, colloid mills, spreader dispersing machines, or high pressure homogenizers.
  • the temperature difference between the melt and the aqueous phase is generally from 0 to 200 ° C.
  • the melt is from 20 to 200 ° C. warmer than the aqueous phase.
  • both the continuous phase comprising the aqueous solution and the disperse phase comprising the molten pesticide can be mixed with the auxiliaries necessary for the formulation and the subsequent application, such as surfactants.
  • the continuous phase comprising the aqueous solution and the disperse phase comprising the molten pesticide are combined with each other and pre-emulsified coarsely dispersed, it is called a crude emulsion.
  • the crude emulsion can then be treated in an emulsifying apparatus, wherein the disperse-phase droplets are finely comminuted (so-called fine emulsification).
  • the process step of the fine emulsification can be carried out batchwise, for example in a stirred tank, or continuously. Continuous machinery and apparatus for emulsification are known in the art.
  • Examples are colloid mills, sprocket dispersing machines and other types of dynamic mixers, furthermore high-pressure homogenizers, pumps with downstream nozzles, valves, membranes or other narrow gap geometries, static mixers, in-line mixers according to the rotor-stator principle (Ultra-Turrax, Inline Dissolver ), Micromixing systems and ultrasonic emulsification systems.
  • Sprocket dispersing machines or high-pressure homogenizers are preferably used. After the fine emulsification, the fine emulsion may be cooled below the melting point or melting range of the pesticide.
  • This step can be carried out by cooling with stirring (batch mode) or by passing the fine emulsion through a heat exchanger (continuous mode).
  • the pesticide solidifies in the disperse phase in particulate, preferably in particulate amorphous form.
  • the introduced in an aqueous solution melt at a cooling rate of at least 0.5 K / min is cooled by means of a controllable cooling apparatus.
  • a controllable cooling apparatus comprises a tube which can be cooled and through which the substances to be cooled flow.
  • the cooling rate can be regulated by the flow rate and / or the temperature of the cooled tube.
  • the cooling is generally carried out to below the melting point of the crystalline form of the pesticide, preferably below 50 ° C., more preferably below 30 ° C.
  • the melt emulsification generally leads to an aqueous suspension comprising at least 5% by weight, preferably at least 15% by weight and particularly preferably at least 20% by weight of particles which comprise the agrochemical active ingredients preferably in amorphous form, in each case based on the aqueous suspension.
  • composition auxiliaries can be added to the melt, to the aqueous solution or to the aqueous suspension of the particles.
  • Formulation aids are, for example, solvents, surfactants, inorganic emulsifiers (so-called ckering emulsifiers), anti-foaming agents, thickeners, antifreeze, and bactericides.
  • intended formulations may additionally contain adhesives and optionally pigments.
  • compositions in the form of suspension concentrates are stable and do not tend to crystallize.
  • the particle size of the suspended pesticide does not rise during storage or only slightly.
  • the Ostwaldreifung is largely suppressed by the present invention.
  • the formulation aid used is based on polysaccharides, which are known to be well tolerated by the treated plants.
  • DKHP is an advantageous salt due to its high water solubility, low toxicity and high reduction of the water solubility of organic substances.
  • Inutec® SP1 A powdered lauryl carbamate-substituted chicory inulin prepared by reacting an isocyanate with inulin in the presence of a basic catalyst (commercially available from Beneo-Orafti, Ghent or NRC Nordmann, Rassmann) having a water solubility of ⁇ 1 wt. % at 20 ° C., an average molar mass> 4500 g / mol, a content of at least 95% by weight and a pH in water of 5.0-8.0 (as 5% by weight solution in water).
  • a basic catalyst commercially available from Beneo-Orafti, Ghent or NRC Nordmann, Rassmann
  • Example 1 Preparation of a pesticide suspension by melt emulsification 10% Pyraclostrobin 1% Inutec® SP 1
  • the dipotassium hydrogen phosphate was dissolved in water at room temperature. Then the Inutec® SP 1 was added to the saline solution and thoroughly dispersed with an Ultraturrax T25. The saline and pyraclostrobin were heated separately from each other to about 80 to 85 ° C. The molten drug was added to the aqueous solution and coarsely predispersed using an Ultraturrax T25. The fine dispersion of the active ingredient in the aqueous solution was carried out with a high pressure homogenizer performed at 2000 bar dispersion pressure and a product temperature of 80 to 85 ° C. Finally, the sample was cooled rapidly to room temperature in ice-water.
  • the characteristic parameters of the particle size distribution were determined directly after preparation ("start") and after 6 months of stable storage at room temperature (Table 1).
  • Example 2 Preparation of a pesticide suspension by melt emulsification 25% Pyraclostrobin 2.5% lnutec® SP 1
  • a dispersion was prepared as described in Example 1.
  • the characteristic parameters of the particle size distribution were determined directly after preparation ("start") and 46 days of stable storage at room temperature (Table 2).
  • a dispersion was prepared as described in Example 1.
  • the characteristic parameters of the particle size distribution were obtained directly after production (“Start") and determined after 17 hours of quiet storage at room temperature (Table 3). Under the light microscope, clearly coarse crystals were visible after 17 h.
  • a dispersion was prepared as described in Example 1.
  • Time course of the particle growth Table 4 shows the time course of the particle growth, which was determined in each case on a sample from Example 1 and Comparative Example 1 and 2 as described above.
  • Example 3 Preparation of a substituted Ci2-alkylcarbonyl starch hydrolyzate 480 ml N, N-dimethylacetamide was submitted, then 162.1 g (1, 0 mol) starch hydrolyzate while stirring and heated to 80 0 C so that a solution formed. at
  • a saline solution was prepared consisting of 0.5 to 2 g of polysaccharide (Inutec® SP1 or acetylated starch of Example 3), 500 g of salt (DKHP or CaCl 2 ) and 1000 g of water.
  • 16.0 g of pyraclostrobin and 144 g of propylene glycol were weighed into a 250 ml glass bottle and mixed with 100 ml glass beads (3 mm diameter). The mixture was suspended for 60 minutes with a shaker. The resulting, still coarse suspension was fed at a flow rate of 1 kg / h through a mixing nozzle of a release cell.
  • propylene glycol was added at a temperature of 200 0 C with a pumping rate of 2 kg / h. In the dissolution cell, both streams were mixed turbulently and a solution of pyraclostrobin was produced.
  • the resulting solution of pyraclostrobin was moved to a second mixing nozzle and mixed with the prepared salt solution at a pumping rate of 16 kg / h turbulent.
  • the saline solution was cooled to 5 ° C before being run in a cryostat. In the mixture, a particle formation of pyraclostrobin takes place.
  • the resulting amorphous precipitate of pyraclostrobin was discharged.
  • An aqueous dispersion of 0.36% by weight of amorphous pyrablostrobin containing 10.0% by weight of the respective polysaccharide with respect to the amount of pyraclostrobin and 0.036% by weight, respectively, with respect to the total composition was obtained (see Table 5 for the respective composition).
  • Particle sizes were determined by laser diffraction (Malvern Mastersizer S) and laser scattering (Brookhaven Instruments BI90) (Table 6).
  • the batch was repeated without addition of salt or polysaccharide and analyzed.
  • the experiment was repeated except that no polysaccharide was used, but 4 g of sodium dodecyl sulfate (SDS) was added to the mixture of pyracrocrobotine and propylene glycol.
  • SDS sodium dodecyl sulfate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

Gegenstand der vorliegenden Erfindung ist eine wässrige Zusammensetzung enthaltend a) ein suspendiertes Pestizid, das in Wasser bei 20 °C höchstens zu 10 g/l löslich ist, b) ein Salz, und c) ein Schutzkolloid, das ein mit C3-C32-Alkylcarbonyl- und/oder C3- C32-Alkylcarbamoylgruppen substituiertes Polysaccharid ist. Weiterer Gegenstand ist ein Verfahren zur Herstellung der Zusammensetzung indem man a) das Pestizid, b) ein Salz, und c) das Schutzkolloid, miteinander in Kontakt bringt. Des Weiteren ist ein Gegenstand eine Verwendung von Salz zur Verlangsamung des Partikelwachstums in einer wässrigen Zusammensetzung enthaltend das suspendierte Pestizid, und das Schutzkolloid.

Description

Zusammensetzung enthaltend suspendiertes Pestizid, Salz und Polysaccharid
Gegenstand der vorliegenden Erfindung ist eine wässrige Zusammensetzung enthaltend a) ein suspendiertes Pestizid, das in Wasser bei 20 0C höchstens zu 10 g/l löslich ist, b) ein Salz, und c) ein Schutzkolloid, das ein mit C3-C32-Alkylcarbonyl- und/oder C3- C32-Alkylcarbamoylgruppen substituiertes Polysaccharid ist. Weiterer Gegenstand ist ein Verfahren zur Herstellung der Zusammensetzung indem man a) das Pestizid, b) ein Salz, und c) das Schutzkolloid, miteinander in Kontakt bringt. Des Weiteren ist ein Gegenstand eine Verwendung von Salz zur Verlangsamung des Partikelwachstums in einer wässrigen Zusammensetzung enthaltend das suspendierte Pestizid, und das Schutzkolloid. Kombinationen bevorzugter Merkmale mit anderen bevorzugten Merkmalen werden von der vorliegenden Erfindung umfasst.
WO 2003/031043 offenbart Dispersionen umfassend eine kontinuierliche wässrige Phase, welche einen Elektrolyten in einer Konzentration von 0,1 bis 1 mol/l enthält und als Tensid ein hydrophob modifiziertes polymeres Saccharid, das auf Sacchariden vom Fructan-Typ oder vom Stärke-Typ basiert, und das mit hydrophoben Einheiten wie Al- kylcarbamoylresten oder Alkylcarbonylresten substituiert ist. Die Dispersionen können für den Bereich Pestizide hergestellt werden.
Mooter et al. (Int. J. Pharmaceutics, 2006, 316, 1-6) offenbaren die Herstellung von festen Dispersionen aus dem Antimykotikum Itraconazol und Inutec SP1 , einem hydrophob modifizierten Inulin.
Ein prinzipielles Problem bei der Formulierung und Anwendung von Pestiziden in einem wässrigen Milieu ist in der Regel ihre geringe Wasserlöslichkeit, die häufig weniger als 10 g/l und insbesondere weniger als 1 g/l bei 20° C beträgt. Wässrige Zusammensetzungen dieser Pestizide sind daher heterogene Systeme, wobei der Wirkstoff als dispergierte Phase in einer kontinuierlichen wässrigen Phase vorliegt. Zur Stabili- sierung dieser an sich metastabilen Systeme enthalten Pestizid-Formulierungen üblicherweise oberflächenaktive Substanzen wie Emulgatoren und/oder Dispergiermittel. Diese bewirken zum einen eine Herabsetzung der Oberflächenspannung der wässrigen Phase und stabilisieren zudem die Pestizidpartikel durch elektrostatische und/oder sterische Wechselwirkungen. Trotz des Einsatzes oberflächenaktiver Substanzen sind wässrige Pestizid-Formulierungen häufig instabil und neigen zur Abscheidung des Wirkstoffs, beispielsweise durch Sedimentation. Diese Probleme sind besonders ausgeprägt, wenn die Formulierung längere Zeit bei erhöhter Temperatur und/oder bei stark wechselnden Temperaturen oder auch in der Nähe des Gefrierpunkts gelagert wird. Dieses Problem ist insbesondere dann ausgeprägt, wenn der Wirkstoff zur Kris- tallisation neigt, z. B. bei Wirkstoffen, die in der wässrigen Phase und/oder der oberflächenaktiven Substanz eine endliche Löslichkeit aufweisen. Ein weiteres Problem bei der Formulierung von Pestiziden mit endlicher oder äußerst geringer Wasserlöslichkeit besteht darin, dass beim Verdünnen der Wirkstoffe auf die gewünschte Anwendungskonzentration eine Abscheidung, wie Sedimentation oder Aufrahmen des Pestizids auftreten kann. Dies hat nicht nur einen Effizienzverlust zur Folge, sondern bei Spritzbrühen besteht auch die Gefahr einer Verstopfung für Filter- und Düsensysteme.
Aufgabe der vorliegenden Erfindung war es, schwer wasserlösliche, bei Raumtemperatur feste Pestizide in wässrigen Systemen zu formulieren. Die Formulierung sollte bei längerer Lagerung nicht kristallisieren und nicht sedimentieren. Eine weitere Aufgabe war, eine Suspension von schwer wasserlöslichen Pestiziden bereit zu stellen, deren Partikelgröße bei Lagerung nicht oder nur wenig ansteigt. Des Weiteren sollte die Formulierung mit Hilfe einer umweltverträglichen oberflächenaktiven Verbindung stabilisiert werden, so dass bei der Applikation der Pestizide kein Schaden für die Pflanzen zu erwarten ist.
Die Aufgabe wurde gelöst durch eine wässrige Zusammensetzung enthaltend a) ein suspendiertes Pestizid, das in Wasser bei 20 0C höchstens zu 10 g/l löslich ist, b) ein Salz, und c) ein Schutzkolloid, das ein mit C3-C32-Alkylcarbonyl- und/oder C3-C32- Alkylcarbamoylgruppen substituiertes Polysaccharid ist.
Der Begriff Pestizid bezeichnet mindestens einen Wirkstoff ausgewählt aus der Gruppe der Fungizide, Insektizide, Nematizide, Herbizide, Safener und/oder Wachstumsregula- toren. Bevorzugte Pestizide sind Fungizide, Insektizide und Herbizide, insbesondere Fungizide. Auch Mischungen von Pestiziden aus zwei oder mehr der vorgenannten Klassen können verwendet werden. Der Fachmann ist vertraut mit solchen Pestiziden, die beispielsweise in Pesticide Manual, 14th Ed. (2006), The British Crop Protection Council, London, gefunden werden können. Geeignete Insektizide sind Insektizide der Klasse der Carbamate, Organophosphate, Organochlor-Insektizide, Phenylpyrazole, Pyrethroide, Neonicotinoide, Spinosine, Avermectine, Milbemycine, Juvenil Hormon Analoga, Alkylhalide, Organozinn-Verbindungen, Nereistoxin-Analoga, Benzoyl- harnstoffe, Diacylhydrazine, METI Akarizide, sowie Insektizide wie Chloropicrin, Py- metrozin, Flonicamid, Clofentezin, Hexythiazox, Etoxazol, Diafenthiuron, Propargit, Tetradifon, Chlorfenapyr, DNOC, Buprofezin, Cyromazin, Amitraz, Hydramethylnon, Acequinocyl, Fluacrypyrim, Rotenon, oder deren Derivate. Geeignete Fungizide sind Fungizide der Klassen Dinitroaniline, Allylamine, Anilinopyrimidine, Antibiotica, aromatische Kohlenwasserstoffe, Benzenesulfonamide, Benzimidazole, Benzisothiazole, Benzophenone, Benzothiadiazole, Benzotriazine, Benzylcarbamate, Carbamates, Car- boxamide, Carbonsäureamdide, Chloronitrile, Cyanoacetamideoxime, Cyanoimidazole, Cyclopropanecarboxamide, Dicarboximide, Dihydrodioxazine, Dinitrophenylcrotonate, Dithiocarbamate, Dithiolane, Ethylphosphonate, Ethylaminothiazolcarboxamide, Gua- nidines, Hydroxy-(2-amino-)pyτimidine, Hydroxyanilides, Imidazole, Imidazolinone, A- norganika, Isobenzofuranone, Methoxyacrylate, Methoxycarbamates, Morpholines, N- Phenylcarbamate, Oxazolidinedione, Oximinoacetate, Oximinoacetamide, Peptidylpy- rimidinnucleoside, Phenylacetamide, Phenylamide, Phenylpyrrole, Phenylharnstoffe, Phosphonate, Phosphorothiolate, Phthalamsäuren, Phthalimide, Piperazine, Piperidi- ne, Propionamide, Pyridazinone, Pyridine, Pyridinylmethylbenzamide, Pyrimidinamine, Pyrimidine, Pyrimidinonehydrazone, Pyrroloquinolinone, Quinazolinone, Chinoline, Chinone, Sulfamide, Sulfamoyltriazole, Thiazolecarboxamide, Thiocarbamate, Thiocar- bamate, Thiophanate, Thiophenecarboxamide, Toluamide, Triphenylzinn Verbindun- gen, Triazine, Triazole. Geeignete Herbizide sind Herbizide der Klassen der Acetami- de, Amide, Aryloxyphenoxypropionate, Benzamide, Benzofuran, Benzoesäuren, Ben- zothiadiazinone, Bipyridylium, Carbamate, Chloroacetamide, Chlorcarbonsäuren, Cyc- lohexanedione, Dinitroaniline, Dinitrophenol, Diphenylether, Glycine, Imidazolinone, Isoxazole, Isoxazolidinone, Nitrile, N-phenylphthalimide, Oxadiazole, Oxazolidinedione, Oxyacetamide, Phenoxycarbonsäuren, Phenylcarbamate, Phenylpyrazole, Phenylpy- razoline, Phenylpyridazine, Phosphinsäuren, Phosphoroamidate, Phosphorodithioate, Phthalamate, Pyrazole, Pyridazinone, Pyridine, Pyridincarbonsäuren, Pyridinecarbo- xamide, Pyrimidindione, Pyrimidinyl(thio)benzoate, Chinolincarbonsäuren, Semicarba- zone, Sulfonylaminocarbonyltriazolinone, Sulfonylharnstoffe, Tetrazolinone, Thiadiazo- Ie, Thiocarbamate, Triazine, Triazinone, Triazole, Triazolinone, Triazolinone, Triazolo- carboxamide, Triazolopyrimidine, Triketone, Uracile, Harnstoffe.
In einer Ausführungsform enthält das Pestizid ein Insektizid, bevorzugt besteht das Pestizid aus mindestens einem Insektizid. In einer weiteren Ausführungsform enthält das Pestizid ein Fungizid, bevorzugt besteht das Pestizid aus mindestens einem Fungizid. Bevorzugte Fungizide sind Pyraclostrobin und Prochloraz, speziell Pyraclostro- bin. In einer weiteren Ausführungsform enthält das Pestizid ein Herbizid, bevorzugt besteht das Pestizid aus mindestens einem Herbizid. In einer weiteren Ausführungsform enthält das Pestizid ein Wachstumsregulator, bevorzugt besteht das Pestizid aus mindestens einem Wachstumsregulator. In einer weiteren bevorzugten Ausführungsform enthält das Pestizide mindestens zwei, bevorzugt zwei oder drei, insbesondere zwei verschiedene Pestizide.
Das Pestizid ist in Wasser bei 20 0C höchstens zu 10 g/l löslich, bevorzugt zu höchs- tens 2 g/l und besonders bevorzugt zu höchstens 0,5 g/l. Pyraclostrobin ist beispielsweise zu 1 ,9 mg/l und Prochloraz zu 34 mg/L wasserlöslich.
Das Pestizid hat üblicherweise einen Schmelzpunkt von über 30 0C, bevorzugt über 40 0C und speziell über 45 0C. Pyraclostrobin hat beispielsweise eine Schmelzpunkt von 64 0C und Prochloraz von 47 0C. Die erfindungsgemäße Zusammensetzung umfasst üblicherweise 0.1 bis 70 Gew.% Pestizid, bevorzugt 1 bis 50 Gew. %, insbesondere 3 bis 30 Gew.%, bezogen auf die Zusammensetzung.
Das Pestizid liegt in suspendierter Form in der Zusammensetzung vor, d.h. in Form kristalliner oder amorpher Partikel, die bei 20 0C fest sind. Bevorzugt liegend das Pestizid in Form amorpher Partikel vor. Die Viskosität der Pestizidpartikel beträgt mindestens 1.000 mPas, bevorzugt mindestens 5.000 mPas, und ganz besonders bevorzugt mindestens 10.000 mPas. Das suspendierte Pestizid weist meist eine Partikelgrößen- Verteilung mit einem Xso-Wert von 0,1 bis 10 μm auf, bevorzugt von 0,2 μm bis 5 μm und besonders bevorzugt von 0,5 μm bis 2 μm. Die Partikelgrößenverteilung kann durch Laserlichtbeugung einer wässerigen Suspension umfassend die Partikel bestimmt werden. Die Probenvorbereitung, beispielsweise die Verdünnung auf Messkonzentration, hängt bei diesem Messverfahren unter anderem von der Feinheit und Kon- zentration der Wirkstoffe in der Suspensionsprobe sowie vom verwendeten Messgerät (z.B. Malvern Mastersizer) ab. Die Vorgehensweise muss für das jeweilige System ausgearbeitet werden und ist dem Fachmann bekannt.
Salze umfassen üblicherweise ein Anion und ein Kation. Geeignete Salze sind bei- spielsweise Metallsalze, Ammoniumsalze, Aminsalze, quaternäre Ammoniumsalze und Mischungen davon, insbesondere Metallsalze und Ammoniumsalze, speziell Metallsalze und ganz speziell Alkalimetallsalze. Die Kationen umfassen Metallionen von einwertigen, zweiwertigen, dreiwertigen oder vierwertigen Metallen und Ionen, die ein Stickstoffatom umfassen. Typische Metallkationen umfassen Ionen von Lithium, Natrium, Kalium, Magnesium, Kalzium, Barium, Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink und Aluminium. Typische Kationen, die ein Stickstoffatom enthalten, umfassen Ammoniumionen, Ionen von Salzen primärer, sekundärer und tertiärer Amine, wie beispielsweise Monoalkylamine, Dialkylamine, Trialkylamine und Benzyldialkylamine, quaternäre Ammoniumionen und Ionen aus organischen Stickstoff basen, wie beispielswei- se Morpholin, Piperazin und heterozyklische Verbindungen, wie zum Beispiel Pyridin. Bevorzugte Kationen umfassen Ionen von Natrium, Kalium, Magnesium, Kalzium, Eisen, Kupfer, Zink, Aluminium sowie Ammoniumionen, besonders bevorzugt Natrium und Kalium, insbesondere Kalium. Die Anionen umfassen Hydroxylanionen und Anio- nen, die sowohl von anorganischen Säuren als auch von organischen Säuren abgelei- tet sind, wie z.B. Wasserstoffhalide, einschließlich Flußsäure, Salzsäure, Bromwasserstoffsäure und lodwasserstoffsäure, Schwefelsäure, Phosphorsäure, Kohlensäure, Ameisensäure, Essigsäure und Milchsäure. Bevorzugte Anionen sind Chlorid, Sulfat, Hydrogensulfat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat, Carbonat, Hydrogencarbonat, Formiat und Acetat, besonders bevorzugt Chlorid, Sulfat, Hydro- gensulfat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat, insbesondere Hydrogenphosphat. Bevorzugte Salze sind Natriumchlorid, Lithiumchlorid, Ammoniumformi- at, Ammoniumchlorid, Lithiumformiat, Dikaliumhydrogenphosphat, Kaliumdihydro- genphosphat, Natriumdihydrogenphosphat, Dinatriumhydrogenphosphat, besonders bevorzugt Dikaliumhydrogenphosphat (DKHP).
Die erfindungsgemäße Zusammensetzung enthält meist mindestens 10 Gew.% Salz, bevorzugt mindestens 15 Gew.%, besonders bevorzugt mindestens 20 Gew.% und insbesondere mindestens 25 Gew.%, bezogen auf die Zusammensetzung. Die Obergrenze des Salzgehaltes wird durch die Löslichkeit des Salzes in der Zusammensetzung bestimmt. Die erfindungsgemäße Zusammensetzung enthält meist höchstens soviel Salz, wie in der Zusammensetzung maximal löslich ist. Bevorzugt enthält die Zusammensetzung höchstens 60 Gew% Salz, besonders bevorzugt höchstens 50 Gew.%, besonders bevorzugt höchstens 40 Gew.%. Das Salz liegt üblicherweise in gelöster Form in der Zusammensetzung vor.
Ein geeignetes Schutzkolloid, das ein mit C3-C32-Alkylcarbonyl- und/oder C3-C32- Alkylcarbamoylgruppen substituiertes Polysaccharid ist, basiert meist auf homodispersen oder polydispersen, linearen oder verzweigten Polysaccariden. Geeignete Polysaccharide sind Fruktane, modifizierte Stärken und Stärkehydrolysate. Bevorzugte Polysaccharide sind Inulin und Stärkehydrolysate. Bevorzugt ist das Schutzkolloid ein mit Cβ-Cis-Alkylcarbonyl- und/oder Cβ-Cis-Alkylcarbamoylgruppen substituiertes Polysac- charid.
Beispiele für Fruktane sind Inulin, Oligofructose, Fructooligosaccharid, teilweise hydro- lysiertes Inulin, Levan und teilweise hydrolisiertes Levan, bevorzugt Inulin und teilweise hydrolysiertes Inulin. Inulin ist ein Fructan, das sich aus Molekülen zusammensetzt, die hauptsachlich aus Fructosyleinheiten bestehen, die durch ß(2-1 )-Fructosyl-Fructosyl- Bindungen miteinander verbunden sind und eventuell eine endständige Glucosyleinheit aufweisen. Es wird von verschiedenen Pflanzen als Reservekohlenhydrat und von bestimmten Bakterien synthetisiert und kann auch synthetisch mit einem enzymatischen Verfahren aus Zuckerarten, die Fructoseeinheiten enthalten, gewonnen werden, wie beispielsweise Sucrose. Gut geeignetes Inulin ist polydisperses, lineares Inulin oder leicht verzweigtes Inulin pflanzlichen Ursprungs mit einem Polymerisationsgrad (DP) im Bereich von drei bis ca. 100. Inulin weist üblicherweise eine Verzweigung auf, die unter 20%, vorzugsweise unter 10% liegt. Besonders gut geeignetes Inulin ist Chicoree- Inulin mit einem DP im Bereich von drei bis ca. 70 und einem durchschnittlichen DP von 10. Noch geeigneter ist Chicoree-Inulin, das behandelt wurde, um die meisten monomeren und dimeren Saccharid-Nebenprodukte zu entfernen und das gegebenenfalls auch behandelt wurde, um Inulinmoleküle mit einem niedrigeren DP, üblicherweise einem DP von drei bis neun, zu entfernen. Diese Güteklassen von Chicoree-Inulin können aus Chicoreewurzeln mittels konventioneller Extraktions-, Reinigungs- und Fraktionierungsverfahren erhalten werden. Weitere geeignete Fruktane enthalten teilweise hydrolysiertes Inulin und Inulinmoleküle mit einem DP im Bereich von drei bis ca. neun, und zwar Oligofructose und Fructo- Oligosaccharide (d.h. Oligofructose-Moleküle mit einer zusätzlichen endständigen GIu- cosyleinheit). Üblicherweise geeignete Produkte werden durch teilweise, enzymatische Hydrolyse von Chicoreeinulin erhalten.
Weitere geeignete Fruktane sind Levan und teilweise hydrolysiertes Levan, Moleküle, die hauptsachlich aus Fructosyleinheiten bestehen, die durch ß(2-6)-Fructosyl- Fructosyl-Bindungen miteinander verbunden sind und eventuell eine endständige GIu- cosyleinheit aufweisen.
Weitere geeignete Polysaccharide sind modifizierte Stärke und Stärkehydrolysat, insbesondere Stärkyhydrolysat. In der Stärke sind die Glucosyleinheiten üblicherweise durch α-1 ,4-Glucosyl-Glucosylbindungen verbunden, die lineare Moleküle, Amylose genannt, bilden, oder durch α-1 ,4- und α-1 ,6-Glucosyl-Glucosylbindungen, die verzweigte Moleküle, Amylopektin genannt, bilden. Die Bindungen zwischen den Glucosyleinheiten in Stärke können chemisch gespalten werden. Dieses Phänomen wird industriell genutzt, um modifizierte Stärken und Stärkehydrolysate mittels Wärmebehandlung von Stärke häufig in Gegenwart eines Katalysators, durch Säure-Hydrolyse, enzymati- sehe Hydrolyse oder durch Scherung oder durch Kombinationen solcher Behandlungen, herzustellen.
Stärkehydrolysate beziehen sich üblicherweise auf polydisperse Mischungen, die sich aus D-Glucose, oligomeren (DP zwei bis zehn) und/oder polymeren (DP > zehn), aus D-Glucosyl-Ketten bestehenden Molekülen zusammensetzen. Stärkehydrolysate werden üblicherweise über ihren D. E. -Wert (Dextrose Äquivalente) definiert. Stärkehydrolysate können von einem Produkt, das im Wesentlichen aus Glucose besteht, über Produkte mit einem D. E., der größer als 20 (häufig als Glucosesirups bezeichnet), bis zu einem D. E. von 20 oder weniger (häufig als Maltodextrine bezeichnet) reichen. Gut geeignet sind Stärkehydrolysate mit einem D. E. im Bereich von zwei bis 47. Sie können mittels konventioneller Verfahren aus verschiedenen Stärkequellen erhalten werden, wie beispielsweise aus Mais, Kartoffel, Tapioka, Reis, Sorghumhirse und Weizen.
Die Polysaccharide sind durch C3-C32-Alkylcarbonyl- und/oder C3-C32-Alkylcarbamoyl- gruppen substituiert, bevorzugt durch mindestens zwei dieser Gruppen. Die Polysaccharide sind bevorzugt mit Cε-Cis-Alkylcarbonyl- oder Cε-Cis-Alkylcarbamoylgruppen substituiert. Die chemischen Strukturen der Alkylcarbonylgruppe (1) und der Alkylcar- bamoylgruppe (2) sind wie folgt, wobei "*" für die Bindung zu einer ehemaligen OH- Gruppe des Polysaccharids steht:
O O
JL AlkyK A
Alkyl"^* N (1 ) (2) Alkyl bedeutet hier ein lineares oder verzweigtes, gesättigtes oder ungesättigtes alipha- tisches Radikal mit drei bis 32, bevorzugt vier bis 20, besonders bevorzugt 6 bis 14 und speziell 8 bis 12 Kohlenstoffatomen. Bevorzugt ist Alkyl ein gesättigtes, lineares alipha- tisches Radikal.
Das substituierte Polysaccharid weist meist zwei, drei oder vier Hydroxylgruppen pro Saccharideinheit auf, deren Wasserstoffatom durch eine C3-C32-Alkylcarbonyl- und/ oder C3-C32-Alkylcarbamoylgruppe substituiert sein kann. Die Anzahl der substituierten Gruppen pro Einheit wird häufig als durchschnittlicher Substitutionsgrad (DS). Der DS des substituierten Polysaccharids liegt meist im Bereich von 0,01 bis 0,5, vorzugsweise von 0,02 bis 0,4, noch besser von 0,05 bis 0,35 und am besten von 0,1 bis 0,3.
Das Schutzkolloid, das ein mit C3-C32-Alkylcarbonyl- und/oder C3-C32-Alkylcarbamoyl- gruppen substituiertes Polysaccharid ist, weist üblicherweise eine Molmasse von mindestens 1000 g/mol, bevorzugt mindestens 4000 g/mol auf. Die Wasserlöslichkeit des Schutzkolloid liegt meist unter 10 Gew.%, bevorzugt unter 5 Gew. und besonders bevorzugt unter 1 Gew.%, jeweils bei 20 0C.
Das mit C3-C32-Alkylcarbonyl- und/oder C3-C32-Alkylcarbamoylgruppen substituierte Polysaccharid kann mittels konventioneller Verfahren hergestellt werden. C3-C32-Alkyl- carbamoylgruppen können beispielsweise an das Polysaccharid gebunden werden durch Reaktion mit einem Alkylisocyanat mit der Formel Alkyl-N=C=O (wobei Alkyl die oben angegebene Bedeutung hat) in einem inerten Lösungsmittel, wie es beispielsweise in WO 99/64549 und WO 01/44303 beschrieben ist. C3-C32-Alkylcarbonylgruppen können zum Beispiel mit dem Polysaccharid verbunden werden durch Reaktion des
Polysaccharides mit einem Anhydrid der Formel R-CO-O-CO-R oder einem Säurechlorid der Formel R-CO-CI (wobei Alkyl die oben angegebene Bedeutung hat) in einem entsprechenden Lösungsmittel, wie z.B. in EP 0 792 888 und EP 0 703 243 offenbart. Die Herstellung von substituiertem Inulin ist beispielsweise von Stevens et al., Biomac- romolecules 2001 , 2, 1256-1259 beschrieben. Die Herstellung von substituierter Stärke ist beispielsweise von Fang et al., Carbohydrate Polymers, 2002, 47, 245-252 beschrieben.
Die erfindungsgemäße Zusammensetzung enthält meist 0,001 bis 20 Gew.%, bevor- zugt 0,01 bis 8 Gew.%, besonders bevorzugt 0,01 bis 5 Gew.% Schutzkolloid c), bezogen auf die Gesamtmenge der Zusammensetzung.
Die erfindungsgemäße Zusammensetzung enthält üblicherweise Formulierungshilfsmittel, wobei sich die Wahl der Hilfsmittel üblicherweise nach der konkreten Anwendungs- form bzw. dem Pestizid richtet. Beispiele für geeignete Hilfsmittel sind Lösungsmittel, feste Trägerstoffe, oberflächenaktive Stoffe (wie Tenside, Solubilisatoren, weitere Schutzkolloide, Netzmittel und Haftmittel), organische und anorganische Verdicker, Bakterizide, Frostschutzmittel, Entschäumer, ggf. Farbstoffe und Kleber (z. B. für Saatgutbehandlung).
Als oberflächenaktive Stoffe (Adjuvantien, Netz-, Haft-, Dispergier- oder Emulgiermittel) kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z. B. von Lignin-(Borresperse®-Typen, Borregaard, Norwegen), Phenol-, Naphthalin- (Morwet®-Typen, Akzo Nobel, USA) und Dibutylnaphthalinsulfonsäure (Nekal®-Typen, BASF, Deutschland), sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Lau- rylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octade- canole sowie von Fettalkoholglykolethern, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethyle- noctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tribu- tylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethy- lenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylen- oder Polyoxypropylenal- kylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen sowie Proteine, denaturierte Proteine, Polysaccharide (z.B. Methylcellulose), hydrophob modifizierte Stärken, Polyvinylalkohol (Mowiol®-Typen, Clariant, Schweiz), Polycarboxyla- te (Sokalan®-Typen, BASF, Deutschland), Polyalkoxylate, Polyvinylamin (Lupamin®- Typen, BASF, Deutschland), Polyethylenimin (Lupasol®-Typen, BASF, Deutschland), Polyvinylpyrrolidon und deren Copolymere in Betracht.
Als Tenside kommen insbesondere anionische, kationische, nicht-ionische und ampho- tere Tenside, Blockpolymere und Polyelektrolyte in Betracht. Geeignete anionische Tenside sind Alkali-, Erdalkali- oder Ammoniumsalze von Sulfonaten, Sulfaten, Phosphaten oder Carboxylaten. Beispiele für Sulfonate sind Alkylarylsulfonate, Diphenylsul- fonate, alpha-Olefinsulfonate, Sulfonate von Fettsäuren und Ölen, Sulfonate von etho- xylierten Alkylphenolen, Sulfonate von kondensierten Naphtalinen, Sulfonate von Do- decyl und Tridecylbenzolen, Sulfonate von Naphthalinen und Alkylnaphthalinen, Sulfo- succinate oder Sulfosuccinamate. Beispiele für Sulfate sind Sulfate von Fettsäuren und Ölen, von ethoxylierten Alkylphenolen, von Alkoholen, von ethoxylierten Alkoholen, oder von Fettsäureestern. Beispiele für Phosphate sind Phosphatester. Beispiele für Carboxylate sind Alkylcarboxylate und carboxylierte Alkohol- oder Alkylphenolethoxyla- te.
Geeignete nicht-ionische Tenside sind Alkoxylate, N-alkylierte Fettsäureamide, Aminoxide, Ester oder Zucker-basierte Tenside. Beispiele für Alkoxylate sind Verbindungen, wie Alkohole, Alkylphenole, Amine, Amide, Arylphenole, Fettsäuren oder Fettsäureester, die alkoxyliert wurden. Zur Alkoxylierung kann Ethylenoxid und/oder Propy- lenoxid eingesetzt werden, bevorzugt Ethylenoxid. Beispiele für N-alkylierte Fettsäureamide sind Fettsäureglucamide oder Fettsäurealkanolamide. Beispiele für Ester sind Fettsäureester, Glycerinester oder Monoglyceride. Beispiele für Zucker-basierte Tenside sind Sorbitane, ethoxilierte Sorbitane, Saccharose- und Glucoseester oder Alkylpolyglucoside. Geeignete kationische Tenside sind quarternäre Tenside, beispielsweise quartäre Ammonium-Verbindungen mit einer oder zwei hydrophoben Gruppen, oder Salze langkettiger primärer Amine. Geeignete amphothere Tenside sind Alkylbetaine und Imidazoline. Geeignete Blockpolymere sind Blockpolymere vom A-B oder A-B-A Typ umfassend Blöcke aus Polyethylenoxid und Polypropylenoxid oder vom A-B-C Typ umfassend Alkanol, Polyethylenoxid und Polypropylenoxid. Geeignete Polyelektrolyte sind Polysäuren oder Polybasen. Beispiele für Polysäuren sind Alkalisalze von Polyacrylsäure. Beispiele für Polybasen sind Polyvinylamine oder Polyethy- lenamine.
Die erfindungsgemäße Zusammensetzung kann 0,1 bis 40 Gew.%, bevorzugt 1 bis 30 und insbesondere 2 bis 20 Gew.% Gesamtmenge von oberflächenaktiven Stoffen und Tensiden umfassen bezogen auf die Gesamtmenge der Zusammensetzung. Das Schutzkolloid, das ein mit C3-C32-Alkylcarbonyl- und/oder C3-C32-Alkylcarbamoylgrup- pen substituiertes Polysaccharid ist, ist bei dieser Gesamtmenge nicht eingerechntet.
Beispiele für Adjuvanten sind organisch modifizierte Polysiloxane, wie BreakThruS 240®; Alkoholalkoxylate, wie Atplus®245, Atplus®MBA 1303, Plurafac®LF und Lutensol® ON ; EO-PO-Blockpolymerisate, z. B. Pluronic® RPE 2035 und Genapol® B; Alkoho- lethoxylate, z. B. Lutensol® XP 80; und Natriumdioctylsulfosuccinat, z. B. Leophen® RA.
Beispiele für Verdicker (d. h. Verbindungen, die der Zusammensetzung ein modifiziertes Fließverhalten verleihen, d. h. hohe Viskosität im Ruhezustand und niedrige Visko- sität im bewegten Zustand) sind Polysaccharide sowie organische und anorganische Schichtmineralien wie Xanthan Gum (Kelzan®, CP Kelco), Rhodopol® 23 (Rhodia) oder Veegum® (R. T. Vanderbilt) oder Attaclay® (Engelhard Corp.).
Bakterizide können zur Stabilisierung der Zusammensetzung zugesetzt werden. Bei- spiele für Bakterizide sind solche basierend auf Diclorophen und Benzylalkoholhemi- formal (Proxel® der Fa. ICI oder Acticide® RS der Fa. Thor Chemie und Kathon® MK der Fa. Rohm & Haas) sowie Isothiazolinonderivaten wie Alkylisothiazolinonen und Benzisothiazolinonen (Acticide® MBS der Fa. Thor Chemie).
Beispiele für geeignete Frostschutzmittel sind Ethylenglycol, Propylenglycol, Harnstoff und Glycerin. Beispiele für Entschäumer sind Silikonemulsionen (wie z. B. Silikon® SRE, Wacker, Deutschland oder Rhodorsil®, Rhodia, Frankreich), langkettige Alkohole, Fettsäuren, Salze von Fettsäuren, fluororganische Verbindungen und deren Gemische.
Beispiele für Farbmittel sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, C. I. Pigment Red 112 und C. I. Solvent Red 1 , Pigment blue 15:4, Pig- ment blue 15:3, Pigment blue 15:2, Pigment blue 15:1 , Pigment blue 80, Pigment yel- low 1 , Pigment yellow 13, Pigment red 48:2, Pigment red 48:1 , Pigment red 57:1 , Pigment red 53:1 , Pigment orange 43, Pigment orange 34, Pigment orange 5, Pigment green 36, Pigment green 7, Pigment white 6, Pigment brown 25, Basic violet 10, Basic violet 49, Acid red 51 , Acid red 52, Acid red 14, Acid blue 9, Acid yellow 23, Basic red 10, Basic red 108 bekannten Farbstoffe und Pigmente.
Beispiele für Kleber sind Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und CeI- luloseether (Tylose®, Shin-Etsu, Japan).
Die erfindungsgemäße Zusammensetzung wird meist vor der Anwendung verdünnt um den sog. Tankmix herzustellen. Zur Verdünnung kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, XyIoI, Paraffin, Tetrahydronaphthalin, alkylierte Naph- thaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyc- lohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methyl- pyrrolidon oder Wasser in Betracht. Bevorzugt wird Wasser verwendet. Die verdünnte Zusammensetzung wird üblicherweise durch Versprühen oder Vernebeln angewendet. Zu dem Tankmix können Öle verschiedenen Typs, Netzmittel, Adjuvante, Herbizide, Bakterizide, Fungizide unmittelbar vor der Anwendung (Tankmix) zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Zusammensetzungen im Gewichtsverhältnis 1 :100 bis 100:1 , bevorzugt 1 :10 bis 10:1 zugemischt werden. Die Pestizid- konzentration im Tankmix kann in größeren Bereichen variiert werden. Im Allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1 %. Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.
Die vorliegende Erfindung betrifft auch die Verwendung einer erfindungsgemäßen Zu- sammensetzung zur Bekämpfung von phytopathogenen Pilzen und/oder unerwünschtem Pflanzenwuchs und/oder unerwünschtem Insekten- oder Milbenbefall und/oder zur Regulation des Wachstums von Pflanzen, wobei man die Zusammensetzung auf die jeweiligen Schädlinge, deren Lebensraum oder die vor dem jeweiligen Schädling zu schützenden Pflanzen, den Boden und/oder auf unerwünschte Pflanzen und/oder die Nutzpflanzen und/oder deren Lebensraum einwirken lässt. Weiterhin betrifft die Erfindung die Verwendung einer erfindungsgemäßen Zusammensetzung zur Bekämpfung von unerwünschtem Insekten- oder Milbenbefall auf Pflanzen und/oder zur Bekämpfung von phytopathogenen Pilzen und/oder zur Bekämpfung unerwünschten Pflanzenwuchs, wobei man Saatgüter von Nutzpflanzen mit der Zusammensetzung behandelt.
Des Weiteren betrifft die Erfindung Saatgut, das mit einer erfindungsgemäßen Zusammensetzung gebeizt wurde. Bevorzugt enthält das Saatgut die erfindungsgemäße Zu- sammensetzung. Diese Zusammensetzung kann auf das Saatgut unverdünnt oder, bevorzugt, verdünnt angewendet werden. Hierbei kann die entsprechende Zusammensetzung 2 bis 10-fach verdünnt werden, so dass in den für die Beize zu verwendeten Zusammensetzungen 0,01 bis 60% Gew.-%, vorzugsweise 0,1 bis 40% Gew.-% Pesti- zid vorhanden sind. Die Anwendung kann vor der Aussaat erfolgen. Die Behandlung von pflanzlichem Vermehrungsmaterial, insbesondere die Behandlung von Saatgut, ist dem Fachmann bekannt, und erfolgt durch Bestäuben, Beschichten, Pelletieren, Eintauchen oder Tränken des pflanzlichen Vermehrungsmaterials, wobei die Behandlung bevorzugt durch Pelletieren, Beschichten und Bestäuben erfolgt, so dass z. B. eine vorzeitige Keimung des Saatguts verhindert wird. Bei der Behandlung von Staatgut werden im allgemeinen Pestizidmengen von 1 bis 1000 g/100 kg, vorzugsweise 5 bis 100 g/100 kg Vermehrungsmaterial bzw. Saatgut verwendet.
Die Erfindung betrifft auch eine Verwendung von Salz zur Verlangsamung des Parti- kelwachstums in einer wässrigen Zusammensetzung enthaltend ein suspendiertes
Pestizid, das in Wasser bei 20 0C höchstens zu 10 g/l löslich ist, und ein Schutzkolloid, das ein mit C3-C32-Alkylcarbonyl- und/oder C3-C32-Alkylcarbamoylgruppen substituiertes Polysaccharid ist. Meist enthält die wässrige Phase mindestens 10 Gew.% Salz bezogen auf die Zusammensetzung. Bevorzugte Salze und bevorzugte Mengen SaIz- zugäbe sind wie vorstehend beschrieben. Bevorzugte Schutzkolloide sind wie vorstehend beschrieben. Das Teilchenwachstum wird üblicherweise verlangsamt im Vergleich zu einer Salzfreien Zusammensetzung.
Die Erfindung betrifft auch ein Verfahren zur Herstellung einer erfindungsgemäßen Zusammensetzung indem man a) ein Pestizid, das in Wasser bei 20 0C höchstens zu 10 g/l löslich ist, b) ein Salz, und c) ein Schutzkolloid, das ein mit C3-C32-Alkylcarbonyl- und/oder C3-C32- Alkylcarbamoylgruppen substituiertes Polysaccharid ist, miteinander in Kontakt bringt.
Man kann das dispergierte Pestizid a) in einem wässrigen System in Kontakt mit den Komponenten b) und c) bringen, oder man kann nach dem in Kontakt bringen von den Komponenten a), b) und c) in einem wässrigen System dispergieren. Dem Fachmann sind verschiedenste Verfahren zur Dispergierung von Pestiziden allgemein bekannt. Geeignete Verfahren sind beispielsweise Fällungsverfahren, Evaporationsverfahren, Schmelzemulgierung oder Mahlverfahren, bevorzugt Fällungsverfahren und Schmelz- emulgierung. Das Herstellverfahren führt zu einer erfindungsgemäßen Zusammensetzung, in der das Pestizid suspendiert vorliegt. Während der Schmelzemulgierung kann das Pestizid kurzfristig als Emulsion des geschmolzenen Pestizides vorliegen, wobei das Pestizid aber durch Abkühlen rasch in suspendierte Form erstarrt. Das erfindungsgemäße Verfahren umfasst bevorzugt eine Fällung des Pestizids (Fällungsverfahren) oder eine Erstarrung einer emulgierten Schmelze des Pestizids (Schmelzemuligerung).
Das Fällungsverfahren umfasst üblicherweise die Schritte
1 ) Lösen des Pestizides in einem mit Wasser mischbaren organischen Lösungsmittel oder in einer Mischung aus Wasser und einem mit Wasser mischbaren organischen Lösungsmittel;
2) Mischen, bevorzugt turbulentes Mischen der nach 1 ) erhaltenen Lösung mit einer wässrigen Zusammensetzung umfassend das Salz b) und das Schutzkolloid c), wobei eine disperse Phase enthaltend Pestizid durch Fällung entsteht; und optional
3) Entfernen der in 1 ) und 2) verwendeten Lösungsmittel und/oder Aufkonzentration der gebildeten Suspension des Pestizides.
Zum turbulenten Mischen sind dem Fachmann allgemein bekannte Verfahren bekannt. Der Prozessschritt kann diskontinuierlich, beispielsweise in einem Rührbehälter, oder kontinuierlich durchgeführt werden. Kontinuierlich arbeitende Maschinen und Apparaturen zur Emulgierung sind beispielsweise Kolloidmühlen, Zahnkranzdispergiermaschi- nen und andere Bauformen dynamischer Mischer, weiterhin Hochdruckhomogenisatoren, Pumpen mit nachgeschalteten Düsen, Ventilen, Membranen oder sonstigen engen Spaltgeometrien, statische Mischer, In-Iine Mischer nach dem Rotor-Stator-Prinzip (UIt- ra-Turrax, Inline Dissolver), Mikromischsysteme sowie Ultraschall-Emulgiersysteme. Bevorzugt werden Zahnkranzdispergiermaschinen oder Hochdruckhomogenisatoren eingesetzt.
Der Begriff „mit Wasser mischbares organisches Lösungsmittel" bedeutet in diesem Zusammenhang, dass die organischen Lösungsmittel bei 20 0C ohne Phasenseparation zu mindestens 10 Gew.-%, bevorzugt zu 15 Gew.%, besonders bevorzugt zu 20 Gew.-% mit Wasser mischbar sind. Die Lösung kann optional weitere Formulierungshilfsmittel umfassen, beispielsweise Dispergiermittel. Die Lösung kann bei Bedarf bei erhöhter Temperatur hergestellt werden. Geeignete Lösungsmittel sind Ci-Cβ- Alkylalkohole wie Methanol, Ethanol, Propanol, Isopropanol, 1-Butanol, 2-Butanol, tert- Butanol, Ester, Ketone wie Aceton, Methylethylketon, Methylisopropylketon, Methyliso- butylketon, Acetale, Ether, cyclische Ether wie Tetra hydrofu ran, aliphatische Carbonsäuren wie Ameisensäure, Essigsäure, Propionsäure, N-substituierte oder N, N- disubstituierte-Carbonsäureamide wie Acetamid, Carbonsäureester wie beispielsweise Essigester und Lactone wie beispielsweise Butyrolacton, Dimethylformamid (DMF) und Dimethylpropionamid, aliphatische und aromatische Chlorkohlenwasserstoffe wie Me- thylenchlorid, Chloroform, 1 ,2-Dichlorethan oder Chlorbenzol, N-Lactame, Glykole wie Ethylenglykol oder Propylenglykol sowie Mischungen genannter Lösungsmittel. Bevorzugte Lösungsmittel sind Glykole, Methanol, Ethanol, Isopropanol, Dimethylformamid, N-Methylpyrrolidon, Methylenchlorid, Chloroform, 1 ,2-Dichlorethan, Chlorbenzol, Aceton, Methylethylketon, Methylisopropylketon, Methylisobutylketon, Tetra hydrofu ran sowie Mischungen genannter Lösungsmittel. Besonders bevorzugte Lösungsmittel sind Propylenglykol, Methanol, Ethanol, Isopropanol, Dimethylformamid und Tetrahydrofu- ran, insbesondere Propylenglykol.
Das Pestizid wird in Schritt 1 ) meist in einem mit Wasser mischbaren, organischen Lösungsmittel bei Temperaturen größer als 300C, vorzugsweise zwischen 500C und 240°C, insbesondere 1000C bis 200°C, besonders bevorzugt 140°C bis 1800C, gege- benenfalls unter Druck, gelöst.
Die so erhaltene molekulardisperse Lösung versetzt man anschließend in Schritt 2) direkt mit der gegebenenfalls gekühlten wässrigen molekular-dispersen oder kolloiddispersen Lösung enthaltend Salz b) und Schutzkolloid c), wobei die Lösungsmittel- komponente aus Schritt 1) in die wässrige Phase überführt wird und die hydrophobe Phase des Pestizids als disperse Phase entsteht. Bevorzugt stellt sich in Schritt 2) eine Mischungstemperatur von etwa 35°C bis 80°C ein.
In Verfahrensschritt c) werden optional die verwendeten organischen Lösungsmittel entfernt und die gebildete Suspension des Pestizids durch Entfernen von überschüssigem Wasser auf den gewünschten Gehalt an Pestizid aufkonzentriert.
Optional können weitere Formulierungshilfmittel vor, während oder nach den Verfahrensschritten 1), 2) und 3) zugesetzt werden.
Die Schmelzemulgierung umfasst üblicherweise eine Erstarrung einer emulgierten Schmelze des Pestizids. Bevorzugt wird dabei eine Schmelze umfassend das geschmolzene Pestizid in einer wässerigen Lösung emulgiert und unter den Erstarrungspunkt abgekühlt. In einer bevorzugten Ausführungsform kann die Schmelze in einer wässerigen Lösung emulgiert werden, indem das Pestizid aufgeschmolzen wird und diese Schmelze in die wässerige Lösung eingebracht wird, bevorzugt unter Zufuhr von Energie. In einer weiteren bevorzugten Ausführungsform kann die Schmelze in einer wässerigen Lösung emulgiert werden, indem das Pestizid unter Zufuhr von Energie direkt in einer wässerigen Lösung aufgeschmolzen wird.
Beispielsweise kann Energie eingebracht werden durch Schütteln, Rühren, tubulentes Mischen, Einspritzen einer Flüssigkeit in eine andere, Schwingungen und Kavitation der Mischung (z.B. mit Ultraschall), Emulgierzentrifugen, Kolloidmühlen, Zahnkranz- dispergiermaschinen oder Hochdruckhomogenisatoren. Wird das Pestizid erst aufge- schmolzen und dann in der wässrigen Phase emulgiert, beträgt die Temperaturdifferenz zwischen Schmelze und wässeriger Phase im allgemeinen 0 bis 200 0C. Bevorzugt ist die Schmelze von 20 bis 200 0C wärmer als die wässerige Phase. Unter Um- ständen müssen diese Prozesse in Druckapparaturen durchgeführt werden, da der Dampfdruck der kontinuierlichen Phase durch die Temperaturerhöhung ansteigt und auch oberhalb des Umgebungsdruckes liegen kann. Sowohl die kontinuierliche Phase umfassend die wässerige Lösung wie auch die disperse Phase umfassend das ge- schmolzene Pestizid können mit den entsprechend für die Formulierung und die spätere Anwendung erforderlichen Hilfsstoffen, wie Tensiden, versetzt werden.
Sobald die kontinuierliche Phase umfassend die wässerige Lösung und die disperse Phase umfassend das geschmolzene Pestizid miteinander vereinigt und grobdispers voremulgiert sind, spricht man von einer Rohemulsion. Die Rohemulsion kann dann in einer Emulgierapparatur behandelt werden, wobei die Dispersphasentropfen fein zerkleinert werden (sog. Feinemulgierung). Der Prozessschritt des Feinemulgierens kann diskontinuierlich, beispielsweise in einem Rührbehälter, oder kontinuierlich durchgeführt werden. Kontinuierlich arbeitende Maschinen und Apparaturen zur Emulgierung sind dem Fachmann bekannt. Beispiele sind Kolloidmühlen, Zahnkranzdispergierma- schinen und andere Bauformen dynamischer Mischer, weiterhin Hochdruckhomogenisatoren, Pumpen mit nachgeschalteten Düsen, Ventilen, Membranen oder sonstigen engen Spaltgeometrien, statische Mischer, In-Iine Mischer nach dem Rotor-Stator- Prinzip (Ultra-Turrax, Inline Dissolver), Mikromischsysteme sowie Ultraschall- Emulgiersysteme. Bevorzugt werden Zahnkranzdispergiermaschinen oder Hochdruckhomogenisatoren eingesetzt. Nach dem Feinemulgieren kann die Feinemulsion unter den Schmelzpunkt oder Schmelzbereich des Pestizides abgekühlt werden. Dieser Schritt kann durch Abkühlen unter Rühren (Batchfahrweise) erfolgen oder indem die Feinemulsion durch einen Wärmetauscher geleitet wird (kontinuierliche Fahrweise). Dabei erstarren das Pestizid in der Dispersphase in partikulärer, bevorzugt in partikulär amorpher Form. Bevorzugt wird die in einer wässerigen Lösung eingebrachte Schmelze mit einer Kühlrate von mindestens 0,5 K/min abgekühlt mit Hilfe einer regelbaren Kühlapparatur. Beispielsweise umfasst eine regelbare Kühlapparatur ein Rohr, das gekühlt werden kann und durch das die zu kühlende Stoffe fließen. So kann durch die Fliessgeschwindigkeit und / oder die Temperatur des gekühlten Rohres die Kühlrate geregelt werden. Die Abkühlung erfolgt im Allgemeinen bis unter den Schmelzpunkt der kristallinen Form des Pestizides, bevorzugt auf unter 50 0C, besonders bevorzugt auf unter 30 0C.
Daie Schmelzemulgierung führt im Allgemeinen zu einer wässerigen Suspension umfassend mindestens 5 Gew.%, bevorzugt mindestens 15 Gew.% und besonders bevorzugt mindestens 20 Gew.% Partikel, welche die agrochemische Wirkstoffe bevorzugt in amorpher Form umfassen, jeweils bezogen auf die wässerige Suspension.
Optional können weitere Formulierungshilfmittel zur Schmelze, zur wässerigen Lösung oder zur wässerigen Suspension der Partikel zugesetzt werden. Formulierungshilfsmittel sind beispielsweise Lösungsmittel, Tenside, anorganischen Emulgatoren (sog. Pi- ckering-Emulgatoren), Antischäumungsmittel, Verdicker, Frostschutzmittel, sowie Bakterizide. Für die Saatgutbeize gedachte Formulierungen können zusätzlich noch Kleber sowie gegebenenfalls Pigmente enthalten.
Vorteile der vorliegenden Erfindung sind unter anderem, dass sie eine hohe Beladung einer Zusammensetzung mit schwerlöslichen Pestizid ermöglicht und dabei stabil ist. Die Zusammensetzung und die mit Wasser verdünnte Zusammensetzung neigen nicht oder wenig zur Kristallisation und/oder zur Sedimentation, selbst bei längerer Lagerung. Insbesondere Zusammensetzungen in Form von Suspensionskonzentraten sind stabil und neigen nicht zur Kristallisation. Die Partikelgröße des suspendierten Pestizids steigt bei Lagerung nicht oder nur wenig an. Insbesondere wird durch die vorliegende Erfindung die Ostwaldreifung weitgehend unterdrückt. Das eingesetzte Formulierungshilfsmittel basiert auf Polysacchariden, die erfahrungsgemäß gut verträglich mit den behandelten Pflanzen sind. Besonders DKHP ist wegen seiner hohen Wasserlös- lichkeit, geringen Toxizität und hoher Reduzierung der Wasserlöslichkeit organischer Stoffe ein vorteilhaftes Salz.
Nachfolgende Beispiele erläutern die Erfindung ohne sie einzuschränken.
Beispiele
Inutec® SP1 : Ein pulverförmiges Laurylcarbamat substituiertes Inulin aus Chicoree, das durch Reaktion eines Isocyanates mit Inulin in Gegenwart eines basischen Katalysators hergestellt wurde (kommerziell erhältlich von Beneo-Orafti, Ghent oder NRC Nordmann, Rassmann), mit einer Wasserlöslichkeit von <1 Gew.% bei 20 0C, einer mittleren molare Masse >4500 g/mol, einem Gehalt von mindestens 95 Gew% und einem pH Wert in Wasser von 5,0 - 8,0 (als 5 Gew% Lösung in Wasser).
Beispiel 1 - Herstellung einer Pestizidsuspension durch Schmelzemulgierung 10% Pyraclostrobin 1 % Inutec® SP 1
30% Dikaliumhydrogenphosphat (DKHP) 59% Vollentsalztes Wasser
Das Dikaliumhydrogenphosphat wurde in Wasser bei Raumtemperatur gelöst. Dann wurde das Inutec® SP 1 zur Salzlösung zugegeben und mit einem Ultraturrax T25 gründlich eindispergiert. Die Salzlösung und Pyraclostrobin wurden getrennt voneinan- der auf etwa 80 bis 85°C erhitzt. Der geschmolzene Wirkstoff wurde zur wässrigen Lösung zugegeben und mit Hilfe eines Ultraturrax T25 grob vordispergiert. Die Fein- dispergierung des Wirkstoffes in der wässrigen Lösung wurde mit einem Hochdruck- homogenisator bei 2000 bar Dispergierdruck und einer Produkttemperatur von 80 bis 85°C durchgeführt. Abschließend wurde die Probe in Eiswasser schnell auf Raumtemperatur abgekühlt.
Die charakteristischen Kennwerte der Partikelgrößenverteilung (Volumensummenverteilung xio, X50 und xgo, gemessen nach Verdünnung mit einem Malvern Mastersizer 2000) wurden direkt nach der Herstellung ("Start") und nach 6 Monaten ruhiger Lagerung bei Raumtemperatur bestimmt (Tabelle 1 ).
Tabelle 1 : Partikelgrößenverteilung
Figure imgf000017_0001
Beispiel 2 - Herstellung einer Pestizidsuspension durch Schmelzemulgierung 25% Pyraclostrobin 2,5% lnutec® SP 1
30% Dikaliumhydrogenphosphat (DKHP) 42,5% Vollentsalztes Wasser
Eine Dispersion wurde wie in Beispiel 1 beschrieben hergestellt. Die charakteristischen Kennwerte der Partikelgrößenverteilung (Volumensummenverteilung, gemessen nach Verdünnung mit einem Malvern Mastersizer 2000) wurden direkt nach der Herstellung ("Start") und 46 Tagen ruhiger Lagerung bei Raumtemperatur bestimmt (Tabelle 2).
Tabelle 2: Partikelgrößenverteilung
Figure imgf000017_0002
Vergleichsbeispiel 1 - Schmelzemuligerung mit nicht erfindungsgemäßen Tensiden
10% Pyraclostrobin
1 ,5% SDS (Natriumlaurylsulfat)
1 ,5% Pluronic PE 10500
87% Wasser
Eine Dispersion wurde wie in Beispiel 1 beschrieben hergestellt. Die charakteristischen Kennwerte der Partikelgrößenverteilung (Volumensummenverteilung, gemessen nach Verdünnung mit einem Malvern Mastersizer 2000) wurden direkt nach der Herstellung ("Start") und nach 17 Stunden ruhiger Lagerung bei Raumtemperatur bestimmt (Tabelle 3). Unter dem Lichtmikroskop waren nach 17 h deutlich grobe Kristalle zu erkennen.
Tabelle 3: Partikelgrößenverteilung
Figure imgf000018_0001
Vergleichsbeispiel 2 - Schmelzemulgierung ohne Salzzugabe 10% Pyraclostrobin 1 % Inutec SP 1 89% Vollentsalztes Wasser
Eine Dispersion wurde wie in Beispiel 1 beschrieben hergestellt. Die charakteristischen Kennwerte der Partikelgrößenverteilung (Volumensummenverteilung, gemessen nach Verdünnung mit einem Malvern Mastersizer 2000) wurden direkt nach der Herstellung ("Start") mit x50 = 1 ,42 μm und nach 72 Stunden ruhiger Lagerung bei Raumtemperatur mit x50 = 2,14 μm bestimmt.
Zeitlicher Verlauf des Partikelwachstums Tabelle 4 zeigt den zeitlichen Verlauf des Partikelwachstums, der jeweils an einer Probe aus Beispiel 1 sowie Vergleichsbeispiel 1 und 2 bestimmt wurde wie oben beschrieben.
Figure imgf000018_0002
Figure imgf000019_0001
Beispiel 3 - Herstellung eines mit Ci2-Alkylcarbonyl substituierten Stärkehydrolysats 480 ml N,N-Dimethylacetamid wurde vorlegt, dann 162,1 g (1 ,0 mol) Stärkehydrolysat unter Rühren zugeben und auf 800C erhitzt, so dass eine Lösung entstand. Bei
40°Cwurde 8,1 g (0,19 mol) Lithiumchlorid zugegeben, 10 min auf 800C erwärmt und wieder auf 40 0C akühlen lassen. Nun wurde 24,2 g (0,30 mol) Pyridin innerhalb von 5 Minuten und danach 68,1 g (0,30 mol) Laurinsäurechlorid in 15 Minuten zugetropft. Den Ansatz wurde 2 h auf 800C unter Rühren erwärmt und dann auf Raumtemperatur abekühlt.
Zur Aufarbeitung wurden in einem Becherglas 1450 g Methanol und 620 g Wasser eingewogen und unter Rühren der Ansatz langsam zugegeben. Nach 2 Stunden hatte sich ein Klumpen gebildet, der bei 40°C im Vakuum getrocknet und gemahlen wurde. Das Mehl wurde in 300 ml Toluol auf etwa 105 °C unter Rühren erhitzt. Beim Abkühlen gab man etwa 600 ml Aceton zum Ausfällen zu. Der Niederschlag wurde abfiltriert und bei 400C im Vakuum getrocknet und dann gemahlen. Man erhielt 91 ,7 g Produkt (44,3 % Umsatz).
Beispiel 4 - Herstellung einer Pestiziddispersion durch Mikronisierung
Eine Salzlösung wurde vorbereitet bestehend 0,5 bis 2 g Polysaccharid (Inutec® SP1 oder acetylierte Stärke aus Beispiel 3), 500 g Salz (DKHP oder CaCI2) und 1000 g Wasser. Außerdem wurden 16,0 g Pyraclostrobin und 144 g Propylenglykol in eine 250 ml Glasflasche eingewogen und mit 100 ml Glaskugeln (3 mm Durchmesser) versetzt. Die Mischung wurde 60 min mit einer Schüttelmaschine suspendiert. Die resultierende, noch grobteilige Suspension wurde mit einer Fließgeschwindigkeit von 1 kg/h durch eine Mischdüse einer Lösezelle zugefahren. Dort wurde Propylenglycol mit einer Temperatur von 200 0C mit einer Pumprate von 2 kg/h zugefahren. In der Lösezelle wurden beiden Ströme turbulent gemischt und eine Lösung von Pyraclostrobin erzeugt.
Die so erhaltene Lösung von Pyraclostrobin wurde in eine zweite Mischdüse gefahren und mit der vorbereiteten Salzlösung mit einer Pumprate von 16 kg/h turbulent gemischt. Die Salzlösung wurde vor dem Zufahren in einem Kryostaten auf 5 °C abgekühlt. Bei der Mischung findet eine Partikelbildung von Pyraclostrobin statt. Das so entstandene amorphe Präzipitat von Pyraclostrobin wurde ausgetragen. Man erhielt eine wässrige Dispersion von 0,36 Gew.% amorphem Pyrablostrobin, die 10,0 Gew.% des jeweiligen Polysaccharids bezüglich der Menge Pyraclostrobin bzw. 0,036 Gew.% bezüglich der Gesamtzusammensetzung enthielt (jeweilige Zusammensetzung siehe Tabelle 5). Die Partikelgrößen wurden währen 24 h mittels Laserbeugung (Malvern Mastersizer S) und Laserstreuung (Brookhaven Instruments BI90) bestimmt (Tabelle 6).
Zum Vergleich wurde einerseits der Ansatz ohne Zusatz von Salz oder von Polysaccharid wiederholt und analysiert. Andererseits wurde zum Vergleich der Versuch wiederholt, wobei kein Polysaccharid eingesetzt wurde, sondern zur Mischung von Pyrac- lostrobin und Propylenglykol 4 g Natriumdodecylsulfat (SDS) zugesetzt wurde. Die so erhaltene wässrige Suspension enthielt 0,36 Gew.% Pyraclostrobin und 0,1 Gew.% SDS.
Die Versuche zeigten, dass die erfindungsgemäßen Formulierungen ein verlangsamtes Partikelwachstum im Vergleich zur Formulierung ohne Salz oder mit einem anderen Schutzkolloid aufweisten.
Figure imgf000020_0001
1 : Acetylierte Stärke (Herstellung siehe Beispiel 3) 2: nicht erfindungsgemäß
Tabelle 6: Zeitlicher Verlauf der Partikelgrößenverteilung (Anteil <1 μm, [%])
Figure imgf000020_0002

Claims

Patentansprüche
1. Wässrige Zusammensetzung enthaltend a) ein suspendiertes Pestizid, das in Wasser bei 20 0C höchstens zu 10 g/l löslich ist, b) ein Salz, und c) ein Schutzkolloid, das ein mit C3-C32-Alkylcarbonyl- und/oder C3-C32- Alkylcarbamoylgruppen substituiertes Polysaccharid ist.
2. Zusammensetzung nach Anspruch 1 , wobei das suspendierte Pestizid eine Partikelgrößenverteilung mit einem Xso-Wert von 0,1 bis 10 μm hat.
3. Zusammensetzung nach Anspruch 1 oder 2, wobei das Polysaccharid ein Fruktan, eine modifizierte Stärke oder ein Stärkehydrolysat ist.
4. Zusammensetzung nach einem der Ansprüche 1 bis 3, wobei das Schutzkolloid ein mit Cβ-Cis-Alkylcarbonyl- und/oder Cβ-Cis-Alkylcarbamoylgruppen substituiertes Polysaccharid ist.
5. Zusammensetzung nach einem der Ansprüche 1 bis 4, enthaltend 0,001 bis 20 Gew.% des Schutzkolloids.
6. Zusammensetzung nach einem der Ansprüche 1 bis 5, enthaltend mindestens 10 Gew.% Salz.
7. Zusammensetzung nach einem der Ansprüche 1 bis 6, wobei das Salz als Anion ein Hydrogenphosphat enthält.
8. Zusammensetzung nach einem der Ansprüche 1 bis 7, wobei das Pestizid Pyra- clostrobin ist.
9. Verfahren zur Herstellung einer Zusammensetzung gemäß einem der Ansprüche 1 bis 8 indem man a) ein Pestizid, das in Wasser bei 20 0C höchstens zu 10 g/l löslich ist, b) ein Salz, und c) ein Schutzkolloid, das ein mit C3-C32-Alkylcarbonyl- und/oder C3-C32-
Alkylcarbamoylgruppen substituiertes Polysaccharid ist, miteinander in Kontakt bringt.
10. Verfahren nach Anspruch 9 umfassend eine Fällung des Pestizids oder eine Erstarrung einer emulgierten Schmelze des Pestizids.
1 1. Verwendung von Salz zur Verlangsamung des Partikelwachstums in einer wässri- gen Zusammensetzung enthaltend ein suspendiertes Pestizid, das in Wasser bei 20 0C höchstens zu 10 g/l löslich ist, und ein Schutzkolloid, das ein mit C3-C32- Alkylcarbonyl- und/oder C3-C32-Alkylcarbamoylgruppen substituiertes Polysaccha- rid ist.
12. Verwendung nach Anspruch 11 , wobei die wässrige Phase mindestens 10 Gew.% Salz bezogen auf die Zusammensetzung enthält.
13. Verwendung der Zusammensetzung gemäß einem der Ansprüche 1 bis 8 zur Bekämpfung von phytopathogenen Pilzen und/oder unerwünschtem Pflanzenwuchs und/oder unerwünschtem Insekten- oder M üben befall und/oder zur Regulation des Wachstums von Pflanzen, wobei man die Zusammensetzung auf die jeweiligen Schädlinge, deren Lebensraum oder die vor dem jeweiligen Schädling zu schüt- zenden Pflanzen, den Boden und/oder auf unerwünschte Pflanzen und/oder die
Nutzpflanzen und/oder deren Lebensraum einwirken lässt.
14. Verwendung der Zusammensetzung gemäß einem der Ansprüche 1 bis 8 zur Bekämpfung von unerwünschtem Insekten- oder Milbenbefall auf Pflanzen und/oder zur Bekämpfung von phytopathogenen Pilzen und/oder zur Bekämpfung unerwünschten Pflanzenwuchs, wobei man Saatgüter von Nutzpflanzen mit der Zusammensetzung behandelt.
15. Saatgut, enthaltend die Zusammensetzung gemäß einem der Ansprüche 1 bis 8.
PCT/EP2010/053147 2009-03-19 2010-03-12 Zusammensetzung enthaltend suspendiertes pestizid, salz und polysaccharid WO2010105970A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10707919A EP2408309A2 (de) 2009-03-19 2010-03-12 Zusammensetzung enthaltend suspendiertes pestizid, salz und polysaccharid
US13/257,192 US20120010074A1 (en) 2009-03-19 2010-03-12 Composition comprising suspended pesticide, salt and polysaccharide
JP2012500191A JP2012520843A (ja) 2009-03-19 2010-03-12 懸濁した農薬、塩および多糖を含む組成物
BRPI1006471A BRPI1006471A2 (pt) 2009-03-19 2010-03-12 composição aquosa, para processo para a preparação de uma composição, uso de sal para desacelarar o crescimento da particula em uma composição aquosa, uso da composição e semente
CN2010800123707A CN102355823A (zh) 2009-03-19 2010-03-12 包含悬浮农药、盐和多糖的组合物
US13/944,202 US20130310259A1 (en) 2009-03-19 2013-07-17 Composition comprising suspended pesticide, salt and polysaccharide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09155559 2009-03-19
EP09155559.9 2009-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/944,202 Continuation US20130310259A1 (en) 2009-03-19 2013-07-17 Composition comprising suspended pesticide, salt and polysaccharide

Publications (2)

Publication Number Publication Date
WO2010105970A2 true WO2010105970A2 (de) 2010-09-23
WO2010105970A3 WO2010105970A3 (de) 2011-08-25

Family

ID=42740048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/053147 WO2010105970A2 (de) 2009-03-19 2010-03-12 Zusammensetzung enthaltend suspendiertes pestizid, salz und polysaccharid

Country Status (7)

Country Link
US (2) US20120010074A1 (de)
EP (1) EP2408309A2 (de)
JP (1) JP2012520843A (de)
KR (1) KR20120004410A (de)
CN (1) CN102355823A (de)
BR (1) BRPI1006471A2 (de)
WO (1) WO2010105970A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10286391B2 (en) 2012-02-17 2019-05-14 Inaeris Technologies, Llc Catalyst system having meso and macro hierarchical pore structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA118254C2 (uk) * 2012-12-04 2018-12-26 Монсанто Текнолоджи Ллс Нематоцидні водні композиції концентрату суспензії
BR112020012811A2 (pt) * 2018-02-23 2020-11-24 Firmenich S.A. composição em pó estável em prateleira
BR112020026556A2 (pt) * 2018-06-25 2021-03-23 Bayer Cropscience Lp Método de tratamento de semente

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703243A1 (de) 1994-09-26 1996-03-27 Unilever N.V. Verfahren zur Herstellung von Polysacchariden mit hydrophoben Seitenketten
EP0792888A1 (de) 1996-03-01 1997-09-03 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Aliphatische Carbonsäureester von Inulin
WO1999064549A1 (en) 1998-06-11 1999-12-16 Tiense Suikerraffinaderij N.V. Surface-active alkylurethanes of fructans
WO2001044303A1 (en) 1999-12-14 2001-06-21 Tiense Suikerraffinaderij N.V. Tensio-active glucoside urethanes
WO2003031043A1 (en) 2001-10-09 2003-04-17 Tiense Suikerraffinaderij N.V. Hydrophobically modified saccharide surfactants

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10247695A1 (de) * 2002-10-01 2004-04-15 Beiersdorf Ag Emulsion mit substituierten Sacchariden
DE10351004A1 (de) * 2003-10-30 2005-05-25 Basf Ag Nanopartikuläre Wirkstoffformulierungen
US20060171979A1 (en) * 2005-02-01 2006-08-03 Jose-Luis Calvo Fungicide mixture formulations
JP4982497B2 (ja) * 2005-11-10 2012-07-25 ビーエーエスエフ ソシエタス・ヨーロピア 有害菌類を防除するためのトリチコナゾールに対する薬害軽減剤としてのピラクロストロビンの使用
UA98802C2 (ru) * 2007-08-16 2012-06-25 Басф Се Применение композиции для обработки семян, композиция, способ для обработки семян и семена
BRPI0912349B1 (pt) * 2008-05-09 2018-01-16 Basf Se Processo para a preparação de partículas, uso de um ingrediente agroquímico ativo, partículas, formulação agroquímica, método para controlar fungos fitopatogênicos e/ou vegetação indesejável e/ou ataque indesejável por insetos ou ácaros e/ou para regular o crescimento vegetal e método para controlar o ataque indesejável por insetos ou ácaros em plantas e/ou para controlar fungos fitopatogênicos e/ou para controlar vegetação indesejável

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703243A1 (de) 1994-09-26 1996-03-27 Unilever N.V. Verfahren zur Herstellung von Polysacchariden mit hydrophoben Seitenketten
EP0792888A1 (de) 1996-03-01 1997-09-03 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Aliphatische Carbonsäureester von Inulin
WO1999064549A1 (en) 1998-06-11 1999-12-16 Tiense Suikerraffinaderij N.V. Surface-active alkylurethanes of fructans
WO2001044303A1 (en) 1999-12-14 2001-06-21 Tiense Suikerraffinaderij N.V. Tensio-active glucoside urethanes
WO2003031043A1 (en) 2001-10-09 2003-04-17 Tiense Suikerraffinaderij N.V. Hydrophobically modified saccharide surfactants

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Pesticide Manual", 2006, THE BRITISH CROP PROTECTION COUNCIL
FANG ET AL., CARBOHYDRATE POLYMERS, vol. 47, 2002, pages 245 - 252
MOOTER ET AL., INT. J. PHARMACEUTICS, vol. 316, 2006, pages 1 - 6
STEVENS ET AL., BIOMACROMOLECULES, vol. 2, 2001, pages 1256 - 1259

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10286391B2 (en) 2012-02-17 2019-05-14 Inaeris Technologies, Llc Catalyst system having meso and macro hierarchical pore structure

Also Published As

Publication number Publication date
EP2408309A2 (de) 2012-01-25
US20130310259A1 (en) 2013-11-21
KR20120004410A (ko) 2012-01-12
US20120010074A1 (en) 2012-01-12
WO2010105970A3 (de) 2011-08-25
JP2012520843A (ja) 2012-09-10
BRPI1006471A2 (pt) 2019-09-24
CN102355823A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
DE69810900T2 (de) Agrochemische zusammensetzungen von oberflächenaktiven verbindungen
EP3324738B1 (de) Agroformulierung mit copolymeren enthaltend hydroxybutylvinylether als assoziativverdicker
EP2506708B1 (de) Pestizid-haltige mikrokapseln mit polyvinylmonomeren als vernetzer
EP2405743A1 (de) Zusammensetzung umfassend pestizid und benzotriazol uv-absorber
EP2628530A1 (de) Mikrokapseln mit Wänden aus Acylharnstoff
DE60211432T2 (de) Wasserdispergierbare, modifizierte Stärke enthaltende landwirtschaftliche Mittel mit veränderter physikalischer Form
EP2424353A2 (de) Zusammensetzung enthaltend pestizid, konservierungmittel und unverzweigtes 1,2-alkandiol
WO2010079036A2 (de) Wässrige dispersion umfassend pestizidpartikel und gelöstes saccharid
WO2010105970A2 (de) Zusammensetzung enthaltend suspendiertes pestizid, salz und polysaccharid
JP2020519728A (ja) 1つ以上の塩を含む固体系組成物を安定化するポリリシン誘導体
EP2701502B1 (de) Zusammensetzung enthaltend ein pestizid und ein acetalisches lösungsmittel
EP2833718B1 (de) Verfahren zur herstellung von granulat durch mahlen von pestizid und kieselerde sowie hinzufügen eines hilfsstoffes und wirbelschichtgranulation
EP2503878A1 (de) Dendritischer polyharnstoff zur solubilisierung schwerlöslicher wirkstoffe
EP3258781B1 (de) Agrochemisches granulat aus polyalkoxylat, dispergiermittel, zucker und polyvinylpyrrolidon
WO2010069848A2 (de) Agrochemische formulierungen enthaltend pyrrolidonalkylenoxide
JP5568093B2 (ja) 農薬粒子と両親媒性物質とを含む水性分散液
US20120277101A1 (en) Composition Comprising a Pesticide and an Acetal Solvent
EP2381768B1 (de) Agrochemische zusammensetzungen umfassend verzweigte alkoxyalkanoate
EP4085766A1 (de) Verwendung von 1,2-alkandiolen als adjuvans in der landwirtschaft
AU2021343277A1 (en) Pyrethroid in-can adjuvanted suspension concentrates
WO2013017388A1 (de) Poröses stärkegranulat enthaltend ein anionisches oder kationisches pestizid und ein kationische oder anionische matrix
WO2017092951A1 (en) Domain particles of pesticide particles embedded in an ionic acrylate copolymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012370.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117021573

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13257192

Country of ref document: US

Ref document number: 2012500191

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6721/CHENP/2011

Country of ref document: IN

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010707919

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10707919

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1006471

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1006471

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110913