WO2010105532A1 - 一种无线中继系统和无线中继系统的通信方法 - Google Patents
一种无线中继系统和无线中继系统的通信方法 Download PDFInfo
- Publication number
- WO2010105532A1 WO2010105532A1 PCT/CN2010/070977 CN2010070977W WO2010105532A1 WO 2010105532 A1 WO2010105532 A1 WO 2010105532A1 CN 2010070977 W CN2010070977 W CN 2010070977W WO 2010105532 A1 WO2010105532 A1 WO 2010105532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- relay
- link
- wireless relay
- access
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/047—Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
Definitions
- the invention relates to a communication method of a wireless relay system and a wireless relay system.
- the application is filed on March 17, 2009, the Chinese Patent Office, the application number is 200910129608.3, and the invention name is "a wireless relay system and a wireless relay system.
- the priority of the Chinese Patent Application the entire disclosure of which is incorporated herein by reference.
- TECHNICAL FIELD The present invention relates to the field of wireless communication technologies, and more particularly to a communication method of a wireless relay system and a wireless relay system. BACKGROUND With the rapid development of high-speed network technologies and multimedia technologies, the development of wireless networks is extremely rapid.
- transmission media for implementing inter-terminal communication mainly include radio waves, infrared rays, etc., because radio waves are attenuated, and the frequency is higher. High, the faster the radio wave decays with distance, so the high operating frequency will cause the coverage of the base station in the network to be very limited.
- the prior art has added a wireless relay station to the network to increase the coverage of the system.
- the wireless relay station communicates with the base station over the air interface and forwards the data of the terminal. Its biggest feature is that it does not require cables to connect to the network, so it is more flexible than traditional base stations, so under the same system performance requirements, such as system coverage and throughput, the cost of building a relay station is It is smaller than the construction base station and saves laying time. Therefore, the use of relay stations can achieve greater coverage at a lower cost, and these advantages will also expand the market demand for wireless broadband access networks.
- the embodiments of the present invention provide a communication method between a wireless relay system and a wireless relay system, so that the wireless relay station can schedule wireless network resources.
- the embodiment of the invention is implemented as follows:
- a wireless relay system includes a radio resource control RRC layer, and the RRC layer includes first control means for coordinating the wireless relay station to communicate with user equipment UEs and base stations.
- the embodiment of the present invention further provides a communication method of the wireless relay system, including: the wireless relay station communicates with the terminal and the base station under coordinated processing of the RRC layer.
- the embodiment of the present invention enables the wireless relay station to be in the RRC by configuring the related relay function in the radio resource control layer of the air interface protocol stack. Under the coordinated control of the layer, the radio resources are controlled and adjusted to communicate with the terminal and the base station.
- FIG. 1 is a schematic diagram of a protocol stack architecture of an air interface including a relay function in the prior art
- FIG. 2 is a schematic structural diagram of a first control apparatus of a wireless relay system according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of a second control apparatus of a wireless relay system according to an embodiment of the present invention
- 4 is another schematic structural diagram of a second control apparatus of a wireless relay system according to an embodiment of the present invention
- FIG. 5 is a schematic structural diagram of a third control apparatus of a wireless relay system according to an embodiment of the present invention
- FIG. 6 is a schematic structural diagram of a fourth control apparatus of a wireless relay system according to an embodiment of the present invention
- FIG. 8 is a flowchart of resource request and allocation in a communication method based on the foregoing wireless relay system according to an embodiment of the present disclosure
- FIG. 9 is a flowchart of performing routing in a communication method based on the foregoing wireless relay system according to an embodiment of the present disclosure.
- FIG. 10 is a flowchart of performing access congestion control in a communication method based on the foregoing wireless relay system according to an embodiment of the present disclosure
- FIG. 11 is a flowchart of establishing a radio bearer of a relay link and an access link in a communication method based on the foregoing wireless relay system according to an embodiment of the present disclosure
- FIG. 12 is a flowchart 1 of implementing a feedback relay function in a communication method based on the wireless relay system according to an embodiment of the present disclosure
- FIG. 13 is a flowchart 2 of implementing a feedback relay function in a communication method based on the wireless relay system according to an embodiment of the present disclosure
- FIG. 14 is a flowchart of a non-contention based random access procedure of a UE in a communication method based on the foregoing wireless relay system according to an embodiment of the present disclosure.
- CQI Channel Quality Indicator, ie: channel quality indicator
- CN Core Network, ie: core network
- C-RNTI Cell Radio Network Temporary Identifier, ie: cell-level wireless network temporary identifier; DRX: Discontinuous Reception, ie: discontinuous reception;
- DTX Discontinuous Transmission, ie: discontinuous transmission
- GSM Global System for Mobile communications, ie: Global System for Mobile Communications;
- ARQ Automatic Request for Repetition, ie: automatic request retransmission
- LTE-A Long Term Evolution-Advanced, namely: Advanced Long Term Evolution
- MAC Medium Access Control
- ie Media Access Control
- PDCP Packet Data Convergence Protocol, ie: packet data convergence protocol
- RACH Random Access Channel, ie: random access channel
- RAN Radio Access Network, ie: radio access network;
- RB Radio Bearer, ie: radio bearer
- RLC Radio Link Protocol, ie: radio link control
- RRC Radio Resource Control, ie: radio resource control
- SNR Signal Noise Ratio, ie: signal to noise ratio
- SINR Signal-to-Interference-and-Noise Ratio, ie: signal to interference plus p ⁇ sound ratio;
- SNDR Signal to Noise-plus-Distortion Ratio, ie: signal to hum distortion ratio
- TA Time Alignment, ie: time correction;
- UE User Equipment, ie: user equipment;
- FIG. 1 is a schematic diagram of a protocol stack of a current air interface, which can be obtained from FIG. 1.
- a physical (PHY) layer In the air interface protocol stack architecture, a physical (PHY) layer, a medium access control (MAC) layer, and a radio link control (RLC) are included. Layer, Packet Data Convergence Protocol (PDCP) layer and Radio Resource Control (RRC) layer.
- the PHY layer has functions such as modulation coding, spreading, and transmission channel multiplexing of the completed channel; the MAC layer mainly has functions of completing access control, logical channel channel mapping, resource scheduling, and hybrid retransmission; Complete retransmission mode selection, automatic retransmission request, encryption and other functions;
- PDCP layer mainly has the function of completing data packet aggregation conversion in different formats; and RRC layer mainly has the function of completing radio resource management.
- the wireless relay system disclosed in the embodiment of the present invention has a multi-layer structure including a PHY layer, a MAC layer, an RLC layer, a PDCP layer, and an RRC layer, as shown in FIG. 2 .
- the wireless relay system may include any two or more of the foregoing layers, including, for example, an RRC layer and a PDCP layer, or include an RRC layer and a MAC layer.
- the RRC layer includes a first control device, and the first control device may include any one or any combination of the following functional units: a network topology selection unit 21, configured to: perform network topology selection, and determine according to the selection result Whether the connection is established with the neighboring wireless relay station of the wireless relay station; after the network topology selection unit 21 is set, the RS may initiate a network topology selection message to the eNB, and receive the network returned by the eNB after selecting the topology of the network.
- the topology selection confirmation message if the eNB selects the topology of the network as P2P, the RS initiates a connection establishment request to the neighboring RS.
- the resource requesting and allocating unit 22 is configured to: request the base station to allocate resources, and allocate resources to the UE according to the UE request; specifically, taking the semi-persistent scheduling as an example, after the RS of the resource request and allocation unit 22 is connected with the eNB, And sending a resource request message to the eNB, where the eNB allocates a fixed resource block to the RS for accessing the link. And the RS is informed by the resource allocation message, and the RS dynamically allocates an uplink or downlink resource to the UE according to the resource request message of the UE, and replies to the UE by using a resource allocation message.
- the resource requesting and allocating unit 22 When the resource requesting and allocating unit 22 requests the base station to allocate resources, it may be a resource requesting a relay link and an access link, or may only request a relay link resource or an access link resource.
- the resource requesting and allocating unit 22 requests the resource allocated by the base station to include the access link resource, the resource is allocated to the UE according to the UE request: according to the UE request, part or all of the access link resources allocated by the base station are allocated to the UE. UE.
- the DRX/DTX configuration unit 23 is configured to: configure DRX/DTX for the relay link and the access link respectively; the DRX/DTX configuration unit 23 may be composed of DRX/DTX-u and DRX/DTX-e, where The DRX/DTX-e is responsible for the configuration of the access link. For example, only DTX is configured between the RS and the UE, and parameters such as the start offset and period are configured in the MAC main configuration information element, and the DRX/DTX-u is responsible for For the configuration of the relay link, for example, only DRX is configured between the RS and the eNB, and parameters such as the start offset and the period are configured in the MAC main configuration information element.
- the eNB may also inform the DRX/DTX configuration unit 23, where the DRX/DTX-e unit performs related configuration of the RN and/or the UE, and may also be received by the DRX/DTX-u after receiving the relevant parameters sent by the eNB. , actively configure the relevant sleep parameters of the UE.
- the access control unit 24 is configured to: determine, according to a load condition of the access link and the relay link, whether to accept an access request of the UE according to an access request of the UE; and set an access control unit 24 Afterwards, if any link in the access link and the relay link is congested, the RS may reject the UE access request through the unit and reply to the connection establishment reject message; if all the links are not congested, the RS may pass the unit. Accept the access request of the UE.
- the RB establishing unit 25 is configured to: perform RB establishment with the base station on the relay link, and initiate an RB establishment request to the UE on the access link; and the routing unit 26 is configured to: access the link and the relay chain
- the signal quality of the path is measured, and the measurement result is sent to the base station, and the measurement result is a basis for routing the data transmission by the base station.
- the signal quality of the RS measurement relay link of the routing unit 26 is set and periodically reported to the eNB, and the UE simultaneously measures the signal quality of the access link and the direct link, and periodically reports to the eNB, and the eNB according to the UE
- the measurement result reported by the RS and the RS are routed according to a certain algorithm.
- the eNB relays data through the RS, if the direct link signal quality is better than the relay chain. For the road and the access link, the eNB transmits the data directly to the UE.
- a specific form of the first control device may include all the above units, where access control is first performed by the access control unit 24, and then the RB establishment process is performed by the RB establishing unit 25, where the RB establishment process is performed.
- the RB establishment request initiated by the UE may carry the resource allocation request, and then the resource request and allocation unit 22 may complete the resource request and allocation operation. After the resource request and the allocation operation are completed, the routing unit 26 performs routing. .
- the RB establishing unit 25 initiates a radio bearer setup request to the eNB, and receives a response message of the radio bearer setup request returned by the eNB, where the response message carries the DRX/DTX configuration parameter, and then, the DRX/DTX
- the configuration unit 23 can be configured according to the configuration parameters.
- the configuration of the UE may also be initiated by the DRX/DTX-u in the DRX/DTX configuration unit 23. In this case, it is not necessary to perform the RB establishment process, and the RB establishment process may be independent of each other.
- This embodiment is only an example of the RRC layer in LTE. In other similar networks, the present invention can also be used to implement similar functions.
- the second control device is disposed in the MAC layer.
- the second control device may include any one or any combination of the following functional units: a relay function unit 31, configured to: after receiving the downlink data sent by the base station, perform forwarding processing, send the processed downlink data to the UE, and perform forwarding processing after receiving the uplink data sent by the UE, Transmitting the processed uplink data to the base station; the first bidirectional RACH unit 32 is configured to: send a non-contention access preamble to the UE, process the RACH access of the UE, and feed back the contention resolution information, and Sending a random access preamble message to the base station, and sending a scheduled transmission parameter according to the base station reply.
- the second control device when the second control device includes the first relay function unit 31 and the first bidirectional RACH unit 32, the RACH access of the UE is first processed by the first bidirectional RACH unit 32 and feedback is reported. After the information is resolved, and the scheduled transmission parameter is sent according to the base station reply, the first relay function unit 31 operates.
- the second control device has another structural form as shown in FIG. 4, and includes a second relay function unit 41 and a second bidirectional RACH unit 42.
- the function of the second bidirectional RACH unit 42 is substantially the same as that of the first bidirectional RACH unit 32.
- the second relay function unit 41 is configured to enable the radio relay station to perform forwarding processing after receiving the downlink data sent by the base station.
- the downlink data is sent to the UE, and the information is returned to the base station, and after receiving the uplink data sent by the UE, performing forwarding processing, transmitting the processed uplink data to the base station, and replying the information to the UE. .
- a third control device is provided in the RLC layer, and the third control device includes any one or any combination of the following functional units, and only all functional units are described below.
- the third control device includes: The third relay function unit 51 is configured to: after receiving the downlink data sent by the base station, perform forwarding processing, send the processed downlink data to the UE, and reply information to the base station, and receive the UE After the uplink data is sent, the forwarding process is performed, and the processed uplink data is sent to the base station, and the information is returned to the UE.
- the ARQ switch unit 52 is configured to: when the wireless relay station is an intermediate node of the relay link, turn off the ARQ function, and when the wireless relay station is an end node of the relay link, enable the ARQ function.
- the PDCP layer includes a fourth control device, and the fourth control device includes any one or any combination of the following functional units, and only all functions are described below. The fourth control device of the unit, as shown in FIG.
- the sixth includes: a fourth relay function unit 61, configured to: after receiving the downlink data sent by the base station, perform forwarding processing, and send the processed downlink data to the UE, And after receiving the uplink data sent by the UE, performing forwarding processing, and transmitting the processed uplink data to the base station.
- the enhanced encryption unit 62 is configured to encrypt the interaction information between the wireless relay station and the base station by using an enhanced encryption algorithm. It should be noted that the first control device, the second control device, the third control device and/or the fourth control device may be integrated in the same entity, for example, may be located in the wireless relay station, and may of course be independent of each other.
- the wireless relay system may include one or a combination of any of the above-described first control device, second control device, third control device, and fourth control device.
- the embodiment of the present invention further provides a communication method based on the above wireless relay system, which mainly coordinates new communication between the wireless relay station and the terminal and the base station by setting a new function at the existing RRC layer.
- the coordination process includes any one or any combination of the following operations: network topology selection, resource request and allocation, routing, DRX/DTX configuration, congestion control, and radio bearer establishment of the relay link and the access link. .
- the following operations are described in detail below: 1.
- Network topology selection FIG. 7 shows a flow chart of a wireless relay station performing network topology selection.
- Step 701 RS1 sends a network topology selection to a base station (eNB) ⁇ ;
- the network topology to be selected is a tree type or a P2P structure, and RS1 sends the network topology structure to be selected to the eNB, and the eNB performs the eNB.
- Step 702 The eNB returns a network topology selection confirmation message to the RS 1; if the network topology selection confirmation information received by the RS1 indicates that the topology structure of the eNB selection network is P2P type, then
- RS 1 can initiate a connection setup request to its neighbor RS2.
- the above-mentioned embodiment is a case where the wireless relay station performs network topology selection. Accordingly, according to different network topology structures, the wireless relay station will establish connections with different network nodes.
- FIG. 8 is a flowchart of a wireless relay station requesting resources from a base station and allocating resources to the UE.
- the specific steps are as follows: Step 801: The RS sends a resource request message to the eNB. In this step, the RS can be based on its own wireless. The resource usage and the number of UEs under it and the case where each UE uses radio resources apply for radio resources to the eNB.
- Step 802 The eNB allocates a fixed resource block to the RS according to the resource request message sent by the RS, and is used for the communication of the access link, and sends a resource allocation message to the RS.
- Step 804 The RS dynamically allocates uplink or downlink resources to the UE from the allocated fixed resource blocks, and returns a resource allocation message to the UE.
- the RS performs the resource request and configuration in a semi-static manner.
- the RS can also request and configure the resource in a dynamic manner, that is, the RS does not need to apply for a fixed resource block to the eNB. It is possible to dynamically apply for resources from the eNB according to the usage of the UE resources under it and further allocate the resources to the required UEs.
- the UE When transmitting data between the UE and the eNB, the UE may perform the data through the direct link, or may forward the data through the wireless relay station, and which link is selected, usually according to the signal quality of each link. It is decided that the specific embodiment of the present invention configures a routing function in the relay module of the RRC layer, and the function RS can measure the signal quality of the relay link, and report the measurement result to the eNB, and at the same time, the UE measures Access chain The signal quality of the direct link of the path is reported to the base station, and the base station performs routing according to the two measurement results.
- Step 901 The RS measures the signal quality of the relay link.
- Step 902 The RS reports the measurement result after measuring the signal quality of the relay link.
- eNB Step 903: The UE measures the signal quality of the access link and the direct link;
- Step 904 The UE reports the measurement result of the signal quality of the access link and the direct link to the eNB;
- Step 905 The eNB performs routing according to a certain algorithm according to the report result of the RS and the report result of the UE.
- Step 906 The base station sends the result of the routing to the RS and the UE. 4.
- the DRX/DTX function can also be configured on this basis: Among them, DRX/ The DTX configuration function is represented by the DRX/DTX-u and DRX/DTX-e functional entities.
- the RS uses different DRX/DTX configurations on the relay link and the access link, specifically DRX/DTX-u. It is mainly used to configure the access link. For example, only DTX can be configured between the RS and the UE, and the parameters such as the start offset and period are configured in the MAC main configuration information element.
- the DRX/DTX-e is mainly used for the DRX/DTX-e.
- only DRX can be configured between the RS and the base station, and parameters such as offset amount and period are configured in the MAC main configuration information element.
- FIG. 10 is a flowchart of the RS performing access control, and the specific steps are as follows: Step 1001: The UE initiates a request message for establishing a connection to the RS; Step 1002: The RS monitors the load status of the access link and the relay link, and determines whether to allow the UE to access according to the monitoring result. In this step, if the RS detects any link of the access link or the relay link.
- the load condition of the access link and the relay link monitored by the RS may be, for example, monitoring the uplink of the UE to the RS, that is, the uplink access link, and the uplink of the RS to the base station, that is, the uplink relay.
- the load condition of the link, where the load condition of the uplink access link monitored by the RS may be specifically detected by the RS; the load condition of the uplink relay link monitored by the RS may be sent by the base station to the RS .
- the RS can also monitor the downlink of the base station to the RS, that is, the downlink relay link, and the downlink of the RS to the UE, that is, the downlink access link, where the load of the downlink relay link is It can be detected by the RS; if the load of the downlink access link is, the UE can inform the RS.
- Step 1003 The RS sends a decision result to the UE whether to allow access.
- the radio bearer of the relay link and the access link is configured to perform the radio bearer (RB) establishment function at the RRC layer, so that the RS can have the function of processing the radio bearer of the relay link and the access link.
- FIG. 11 is a flowchart of the radio bearer establishment by the RS. The specific steps are as follows: Step 1101: The RS initiates a radio bearer setup request to the eNB, and receives a response message of the radio bearer setup request returned by the eNB. The response message carries the DRX/DTX.
- the configuration parameters, and then the functional unit responsible for DRX/DTX configuration can be configured according to the configuration parameter, or initiated by DRX/DTX-u in the DRX/DTX configuration unit.
- the above functional configurations are all performed in the RRC layer. The purpose is to improve the functions of the RS in radio resource management and scheduling, so that the entire system can more rationally utilize the wireless network resources in the data transmission process, and improve the efficiency of data transmission.
- the other layers of the air interface protocol stack play different roles in the whole data transmission process. Therefore, the configuration of related relay functions in other corresponding layers can further improve the wireless relay station in the wireless network data transmission process.
- the main function of this layer is to complete the datagram convergence conversion of different formats, and add the relay module at this layer.
- the present invention also configures an enhanced encryption function in the PDCP layer, because the RS is responsible for the transfer of data between all UEs and eNBs under it, and therefore requires high data security, so it is configured in the PDCP layer.
- the enhanced encryption function can effectively protect the security of data transmission between the RS and the eNB.
- the main function for the next layer of PDCP ie, the RLC layer
- the RLC layer is to complete retransmission mode selection, automatic repeat request, and encryption.
- An optional feedback relay function is configured in the layer, and the RS can send an acknowledgement feedback message to the base station and the UE simultaneously in the process of transferring the data, so that the base station and the UE can know the status of the transmitted data.
- FIG. 12 is a flowchart of implementing a feedback relay function in the process of retransmitting data by the RS. The specific steps are as follows: Step 1201: The eNB sends data to the RS through the downlink.
- Step 1202 The RS receives the downlink data sent by the eNB. And performing the forwarding process.
- Step 1203 The RS sends an acknowledgement feedback message to the eNB, and notifies the eNB of the status of the received downlink data.
- Step 1204 The RS sends the data that has undergone the forwarding process to the UE. At this point, the RS completes the transfer of the downlink data, and sends an acknowledgment feedback message to the eNB during the transit process, so that the eNB can know the status of the sent data in time for subsequent related operations; when the RS needs to transit the uplink
- the method includes: Step 1305: The UE sends data to the RS through the uplink.
- Step 1306 The RS receives the uplink data sent by the UE and performs forwarding processing.
- Step 1307 RS Sending an acknowledgment feedback message to the UE, notifying the UE of the status of the received uplink data;
- Step 1308 The RS sends the data processed by the forwarding to the base station.
- the RS completes the relay of the uplink data, and sends an acknowledgement feedback message to the UE during the transit process, so that the UE can know the status of the sent data in time to facilitate subsequent related operations.
- data packets may be generated or lost. This requires the receiver to acknowledge the packet error or loss to the sender.
- an automatic request retransmission (ARQ) switch function is configured in the RLC layer, and the function enables the RS to automatically request a retransmission function when the uplink and downlink data is transferred, that is, the RS can request after receiving the error message.
- the sender resends the error message.
- a hybrid automatic request may be adopted between the hops of the relay link.
- HARQ Retransmission
- the RS of the last hop needs to enable the ARQ function to implement the entire relay chain.
- the road has an ARQ function, which not only improves the efficiency of data transmission, but also affects the accuracy of data transmission.
- next layer of the RLC layer
- the main functions of the next layer (MAC layer) of the RLC layer are to complete access control, implement logical channel to transport channel mapping, radio resource scheduling, and the like.
- an optional feedback relay function is configured in the layer, so that the RS can send a feedback message to the sending end during the process of transferring the uplink and downlink data, and the sending end can be a UE, a base station, or an adjacent RS. Wait.
- the basic flow is the same as that shown in Figure 12, and will not be mentioned here.
- the embodiment of the present invention further configures a bidirectional random access channel (RACH) function in the MAC layer, where the functional module includes two parts, RACH-u and RACH-e, where RACH-u is mainly used to be responsible for UE connection.
- RACH bidirectional random access channel
- the figure is a non-contention-based random access procedure of the UE: Step 1401: The RS sends a non-contention random access preamble to the UE; Step 1402: The UE sends the message using the RS The non-contention random access preamble performs random access; Step 1403: The RS sends a random access reply message to the UE, where the message carries a random access preamble identifier, time correction information, and initial uplink resource allocation.
- RACH bidirectional random access channel
- RACH-e is mainly used to access the eNB.
- a 5-bit random number can be selected in the access process, and a random access preamble message is sent to the eNB, and an RRC connection request message or an RRC handover confirmation message is sent.
- the corresponding functional modules are added in each layer of the air interface protocol stack, so that the wireless relay station not only has the function of transferring uplink and downlink data, but also can schedule wireless network resources according to the network conditions, and rationally utilize network resources. Improve the efficiency of data transmission, in addition, the added encryption function can further improve the security of data transmission.
- any of a number of different processes and techniques can be used to represent information, messages, and signals.
- the messages and information mentioned in the above description may be expressed as voltage, current, electromagnetic wave, magnetic field or magnetic particle, light field or any combination of the above.
- the elements and algorithm steps of the various examples described in connection with the embodiments disclosed herein can be implemented in electronic hardware, computer software or a combination of both, in order to clearly illustrate the hardware and software. Interchangeability, the composition and steps of the various examples have been generally described in terms of function in the above description. Whether these functions are implemented in hardware or software depends on the specific application and design constraints of the solution. Pieces. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
- the steps of a method or algorithm described in connection with the embodiments disclosed herein may be implemented directly in hardware, a software module executed by a processor, or a combination of both.
- the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.
- RAM random access memory
- ROM read only memory
- electrically programmable ROM electrically erasable programmable ROM
- registers hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
一种无线中继系统和无线中继系统的通信方法 本申请要求于 2009年 3月 17日提交中国专利局、 申请号为 200910129608.3、 发明 名称为 "一种无线中继系统和无线中继系统的通信方法" 的中国专利申请的优先权, 其 全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通信技术领域, 更具体地说, 涉及一种无线中继系统和无线中继系 统的通信方法。 背景技术 随着高速网络技术和多媒体技术的飞速发展, 无线网络的发展异常迅猛, 在无线网 络中, 实现终端间通信的传输媒体主要有无线电波、红外线等, 由于无线电波存在衰减, 并且频率越高, 无线电波随距离衰减越快, 因此高工作频率将导致网络中基站的覆盖范 围十分有限, 针对这一点, 现有技术在网络中加入了无线中继站, 以增加系统覆盖的范 围。
无线中继站通过空中接口与基站进行通信, 并转发终端的数据。 其最大的特点在于 它不需要线缆与网络进行连接, 因此其铺设的灵活性要大于传统基站, 所以在相同的系 统性能要求下, 如系统的覆盖范围和吞吐量等, 建设中继站的成本要比建设基站小, 并 且更能节省铺设时间。 因此, 使用中继站可以以较低的成本获得较大的覆盖, 这些优点 也将扩大无线宽带接入网的市场需求。
因为诸如 LTE之类的无线网络无法支持中继功能,现有的无线中继站应用到这类网 络中 , 无法协调终端和基站之间的通信。
很多情况下只是简单地控制中继站中转移动终端与基站之间的数据, 而随着无线网 络的飞速发展, 无线网络的复杂度也越来越高, 网络间交互的数据量也日益增加, 如何 利用无线中继站合理地调度无线网络资源成为目前亟需解决的问题。 发明内容
有鉴于此, 本发明实施例提供一种无线中继系统和无线中继系统的通信方法, 使无 线中继站能够调度无线网络资源。
本发明实施例是这样实现的:
一种无线中继系统, 包括无线资源控制 RRC层, 所述 RRC层包括用于协调所述无线 中继站与用户设备 UE、 基站进行通信的第一控制装置。
本发明实施例同时还提供了一种无线中继系统的通信方法, 包括: 所述无线中继站 在 RRC层的协调处理下与终端、 基站进行通信。
对现有技术相比, 本发明实施例提供的技术方案具有以下优点和特点: 本发明实施 例通过在空中接口协议栈的无线资源控制层进行相关中继功能的配置,使无线中继站能 够在 RRC层的协调控制下, 对无线资源进行控制和调整, 与终端和基站实现通信。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术包含中继功能的空中接口的协议栈架构图;
图 2为本发明实施例公开的一种无线中继系统的第一控制装置的结构示意图; 图 3为本发明实施例公开的一种无线中继系统的第二控制装置的一种结构示意图; 图 4为本发明实施例公开的一种无线中继系统的第二控制装置的另一种结构示意 图;
图 5为本发明实施例公开的一种无线中继系统的第三控制装置的结构示意图; 图 6为本发明实施例公开的一种无线中继系统的第四控制装置的结构示意图; 图 7为本发明实施例公开的本发明实施例公开的基于上述无线中继系统的通信方法 中进行网络拓朴功能选择流程图;
图 8为本发明实施例公开的本发明实施例公开的基于上述无线中继系统的通信方法 中进行资源请求与分配的流程图;
图 9为本发明实施例公开的本发明实施例公开的基于上述无线中继系统的通信方法 中进行路由选择的流程图;
图 10为本发明实施例公开的本发明实施例公开的基于上述无线中继系统的通信方 法中进行接入拥塞控制的流程图;
图 11为本发明实施例公开的本发明实施例公开的基于上述无线中继系统的通信方 法中进行中继链路与接入链路的无线承载建立的流程图;
图 12为本发明实施例公开的本发明实施例公开的基于上述无线中继系统的通信方 法中进行中实现反馈中继功能的流程图 1;
图 13为本发明实施例公开的本发明实施例公开的基于上述无线中继系统的通信方 法中进行中实现反馈中继功能的流程图 2;
图 14为本发明实施例公开的本发明实施例公开的基于上述无线中继系统的通信方 法中 UE基于非竟争的随机接入流程图。 具体实施方式 为了引用和清楚起见, 下文中使用的技术名词、 简写或缩写总结如下:
CQI: Channel Quality Indicator, 即: 信道质量指示符; CN: Core Network, 即: 核心网;
C-RNTI: Cell Radio Network Temporary Identifier , 即: 小区级无线网络临时标识; DRX: Discontinuous Reception, 即: 非连续接收;
DTX: Discontinuous Transmission, 即: 非连续传送;
GSM: Global System for Mobile communications , 即: 全球移动通信系统;
ARQ: Automatic Request for Repetition, 即: 自动请求重传;
LTE-A: Long Term Evolution- Advanced, 即: 先进长期演进; MAC: Medium Access Control, 即: 媒体接入控制;
PDCP: Packet Data Convergence Protocol , 即: 分组数据汇聚协议;
RACH: Random Access Channel, 即: 随机接入信道;
RAN: Radio Access Network, 即: 无线接入网络;
RB: Radio Bearer, 即: 无线 载; RLC: Radio Link Protocol, 即: 无线链路控制;
RRC: Radio Resource Control, 即: 无线资源控制;
SNR: Signal Noise Ratio , 即: 信噪比;
SINR: Signal-to-Interference-and-Noise Ratio , 即: 信号与干扰加 p喿声比;
SNDR: Signal to Noise-plus-Distortion Ratio , 即: 信号与喿声失真比;
TA: Time Alignment, 即: 时间校正; UE: User Equipment, 即: 用户设备;
WCDMA: Wideband Code Division Multiple Access, 即: 宽带码分复用接入。 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例, 都属于本发明保护的范围。 图 1为目前的空中接口的协议栈架构图,由图 1可以得到,在空中接口协议栈架构中, 包含物理(PHY )层、 媒体接入控制 ( MAC )层、 无线链路控制 (RLC )层、 分组数据 汇聚协议 ( PDCP )层和无线资源控制 (RRC )层。 其中, PHY层有完成信道的调制编 码、 扩频、传输信道复用等功能; MAC层主要有完成接入控制、 逻辑信道道传输信道映 射、 资源调度、 混合重传等功能; RLC层主要有完成重传模式选择, 自动重传请求、 加 密等功能; PDCP层主要有完成不同格式的数据包汇聚转换的功能; 而 RRC层则主要有 完成无线资源管理的功能。 本发明实施例公开的无线中继系统为多层结构,包括 PHY层、 MAC层、 RLC层、 PDCP 层和 RRC层, 如图 2。 该无线中继系统可以包括上述各层中的任意两个或者多个, 例如 包括 RRC层以及 PDCP层, 或者包括 RRC层以及 MAC层。 其中, RRC层包括第一控制装 置, 该第一控制装置可以包括以下功能单元中的任意一种或任意组合: 网络拓朴选择单元 21 , 用于: 进行网络拓朴选择, 并根据选择结果确定是否与所述 无线中继站的相邻无线中继站建立连接;设置了网络拓朴选择单元 21后,所在 RS即可向 eNB发起网络拓朴选择消息 , 接收 eNB在选择网络的拓朴结构后返回的网络拓朴选择确 认消息, 如果 eNB选择网络的拓朴结构为 P2P, 则所述 RS向相邻 RS发起连接建立请求。 资源请求与分配单元 22, 用于: 请求基站分配资源, 并依据 UE请求为该 UE分配资 源;具体来说,以半静态调度为例,资源请求与分配单元 22所在的 RS与 eNB建立连接后, 向所述 eNB发起资源请求消息, 所述 eNB为该 RS分配一固定资源块用于接入链路的通
信 , 并通过资源分配消息告知所述 RS , 所述 RS根据 UE的资源请求消息动态为所述 UE 动态分配上行或下行资源, 并通过资源分配消息回复 UE。 资源请求与分配单元 22请求 基站分配资源时, 可以是请求中继链路以及接入链路的资源, 还可以是仅请求中继链路 资源或者接入链路资源。在资源请求与分配单元 22请求基站分配的资源中包括接入链路 资源时, 依据 UE请求为 UE分配资源为: 依据 UE请求, 将基站分配的接入链路资源的部 分或者全部分配给该 UE。
DRX/ DTX配置单元 23, 用于: 为中继链路和接入链路分别配置 DRX/DTX; DRX/ DTX配置单元 23可以由 DRX/ DTX-u和 DRX/ DTX-e两部分组成, 其中 DRX/ DTX-e负责 接入链路的配置, 例如, 在 RS和 UE之间只配置 DTX, 并在 MAC主配置信息元素中配置 其开始偏移量、 周期等参数, DRX/ DTX-u负责中继链路的配置, 例如 RS和 eNB间只配 置 DRX, 并在 MAC主配置信息元素中配置其开始偏移量、 周期等参数。 此外,还可以由 eNB告诉该 DRX/ DTX配置单元 23 ,其中的 DRX/ DTX-e单元进行 RN 和 /或 UE的相关配置, 还可以由 DRX/ DTX-u在收到 eNB发送的相关参数后, 主动进行 UE的相关睡眠参数的配置。 接入控制单元 24, 用于: 在接收到 UE的接入请求时, 根据接入链路和中继链路的 负载情况确定是否接受所述 UE的接入请求; 设置了接入控制单元 24后, 如果接入链路 以及中继链路中任一链路拥塞, 则 RS可以通过该单元拒绝 UE接入请求, 并回复连接建 立拒绝消息; 如果所有链路都不拥塞, 则 RS可以通过该单元接受所述 UE的接入请求。
RB建立单元 25, 用于: 在中继链路完成与基站间的 RB建立, 在接入链路向 UE发起 RB建立请求; 路由选择单元 26, 用于: 对接入链路和中继链路的信号质量进行测量, 并将测量结 果发送给基站, 所述测量结果为所述基站进行数据传输的路由选择的依据。 具体的, 设 置了路由选择单元 26的 RS测量中继链路的信号质量, 并向 eNB定期上报, UE同时测量 接入链路和直接链路的信号质量,并向 eNB定期上报, eNB根据 UE和 RS上报的测量结果 按照一定的算法进行路由选择, 如果中继链路和接入链路信号质量好于直接链路, eNB 通过 RS中继数据, 如果直接链路信号质量好于中继链路和接入链路, eNB将数据直接传 输给 UE。 需要说明的是, 第一控制装置的一种具体形式可以是包括以上所有单元, 其中, 先 由接入控制单元 24进行接入控制, 然后由 RB建立单元 25进行 RB建立过程, 在该建立过
程中, UE发起的 RB建立请求中可以携带资源分配请求, 于是, 可以由资源请求与分配 单元 22完成资源请求与分配操作, 在资源请求与分配操作完成后, 由路由选择单元 26进 行路由选择。 此外, 在进行 RB建立过程中, RB建立单元 25向 eNB发起无线承载建立请求, 并接 收 eNB返回的无线承载建立请求的响应消息,该响应消息中携带 DRX/DTX配置参数,之 后, DRX/DTX配置单元 23即可根据该配置参数进行配置。 当然, 也可由 DRX/DTX配置 单元 23中的 DRX/DTX-u发起对 UE的配置, 此时, 则无需在 RB建立完成后进行, 可与 RB 建立过程相互独立。 该实施例仅 LTE中的 RRC层为例, 在其他类似网络中, 也可以使用本发明实现类似 功能。 在其他实施例公开的无线中继系统中, 在 MAC层中设置有第二控制装置, 如图 3 所示, 所述第二控制装置可以包括以下功能单元中的任意一种或任意组合: 第一中继功能单元 31 , 用于: 在接收到基站发送的下行数据后, 进行转发处理, 将 处理后的下行数据发送给 UE, 以及, 在接收到 UE发送的上行数据后, 进行转发处理, 将处理后的上行数据发送给所述基站; 第一双向 RACH单元 32, 用于: 下发非竟争接入前导给 UE, 并处理所述 UE的 RACH 接入并反馈竟争解决信息, 以及, 向基站发送随机接入前导消息, 并根据基站回复发送 调度传输参数。 需要说明的是, 当所述第二控制装置同时包括第一中继功能单元 31和第一双向 RACH单元 32时, 先由第一双向 RACH单元 32处理所述 UE的 RACH接入并反馈竟争解决 信息, 并根据基站回复发送调度传输参数后, 由第一中继功能单元 31进行工作。 需要说明的是, 第二控制装置另外一种结构形式如图 4所示, 包括第二中继功能单 元 41和第二双向 RACH单元 42。 第二双向 RACH单元 42的功能与第一双向 RACH单元 32 的功能基本相同, 第二中继功能单元 41用于使无线中继站: 在接收到基站发送的下行数 据后, 进行转发处理, 将处理后的下行数据发送给 UE, 并回复信息给所述基站, 以及, 在接收到 UE发送的上行数据后, 进行转发处理, 将处理后的上行数据发送给所述基站, 并回复信息给所述 UE。
此外, 在其他实施例公开的无线中继系统中, 在 RLC层设置有第三控制装置, 所述 第三控制装置包括以下功能单元中的任意一种或任意组合, 下面仅介绍包含所有功能单 元的第三控制装置, 如图 5所示, 包括:
第三中继功能单元 51 , 用于: 在接收到基站发送的下行数据后, 进行转发处理, 并 将处理后的下行数据发送给 UE, 并回复信息给所述基站, 以及, 在接收到 UE发送的上 行数据后, 进行转发处理, 并将处理后的上行数据发送给所述基站, 并回复信息给所述 UE。 ARQ开关单元 52,用于当所述无线中继站为中继链路的中间节点时,关闭 ARQ功能 , 当所述无线中继站为中继链路的末端节点时, 开启 ARQ功能。 此外, 在其他实施例公开的无线中继系统中, 在所述 PDCP层包括第四控制装置, 所述第四控制装置包括以下功能单元中的任意一种或任意组合, 下面仅介绍包含所有功 能单元的第四控制装置, 如图 6所示, 包括: 第四中继功能单元 61 , 用于在接收到基站发送的下行数据后, 进行转发处理, 并将 处理后的下行数据发送给 UE, 以及, 在接收到 UE发送的上行数据后, 进行转发处理, 并将处理后的上行数据发送给所述基站。 增强型加密单元 62,用于采用增强型加密算法对所述无线中继站和基站之间的交互 信息进行加密。 需要说明的是, 上述第一控制装置、 第二控制装置、 第三控制装置和 /或第四控制装 置可以集成在同一个实体中, 比如, 可以位于无线中继站中, 当然也可以相互独立。 并 且, 无线中继系统可以包括上述第一控制装置、 第二控制装置、 第三控制装置和第四控 制装置中的一个或者其任意组合。 与此同时, 本发明实施例还提供了一种基于上述无线中继系统的通信方法, 该方法 主要通过在现有 RRC层设置新功能, 以协调无线中继站与终端、 基站间的通信。 所述协调处理包括以下操作中的任意一种或任意组合: 网络拓朴选择、 资源请求与分配、 路由选择、 DRX/DTX配置、 拥塞控制及中继链 路与接入链路的无线承载建立。 下边对上述各操作分别进行详细介绍: 1、 网络拓朴选择 图 7示出了无线中继站进行网络拓朴选择的流程图, 具体步骤如下: 步骤 701 : RS1向基站(eNB )发送网络拓朴选 ^求;
在该步骤中, 由于该中继站配置有对等实体通信 ( P2P )功能, 因此所要选择的网 络拓朴结构为树型或 P2P结构, RS1将所要选择的网络拓朴结构发送给 eNB, 由 eNB做出 选择。 步骤 702: eNB将网络拓朴选择确认消息返回至 RS 1; 如果 RS1接收到的网络拓朴选择确认信息表示 eNB选择网络的拓朴结构为 P2P型 ,则
RS 1就可以向其邻节点 RS2发起连接建立请求。 上述所举实施例是无线中继站进行网络拓朴选择的一种情况, 相应地, 根据不同的 网络拓朴结构 , 无线中继站将与不同的网络节点建立连接。
2、 资源请求与分配 图 8为无线中继站向基站请求资源并向 UE分配资源的流程图, 具体步骤如下: 步骤 801 : RS向 eNB发送资源请求消息; 在该步骤中, RS可根据自身的无线资源使用情况和其下 UE的数量以及各个 UE使用 无线资源的情况来向 eNB申请无线资源。 步骤 802: eNB根据 RS发送的资源请求消息为 RS分配一个固定资源块, 用于接入链 路的通信, 并向 RS下发资源分配消息; 步骤 803: RS下的 UE向 RS发送资源请求消息; 步骤 804: RS从分配得到的固定资源块中动态地为 UE分配上行或下行资源, 并将资 源分配消息返回给 UE。 以上所举实施例是 RS采用半静态的方式进行资源请求和配置, 与此同时, RS也可 以完全采用动态的方式进行资源的请求和配置, 即 RS不必向 eNB申请一个固定的资源 块,而是可以根据其下 UE资源的使用情况动态地向 eNB申请资源并进一步分配给所需要 的 UE。
3、 路由选择
UE在与 eNB之间进行数据的传送时, 可以通过直接链路来完成,也可以通过无线中 继站进行数据的转发, 而究竟选择哪条链路, 通常情况下是根据各条链路的信号质量来 决定, 本发明具体实施例通过在 RRC层的中继模块中配置路由选择功能, 该功能 ^ RS 可以对中继链路的信号质量进行测量, 并将测量结果上报给 eNB, 同时, UE测量接入链
路的直接链路的信号质量, 并将测量结果上报基站, 基站根据该两个测量结果进行路由 选择。 图 9为实现路由选择功能的流程图, 具体步骤如下: 步骤 901: RS对中继链路的信号质量进行测量; 步骤 902: RS 将对中继链路的信号质量进行测量后的测量结果上报给 eNB; 步骤 903: UE对接入链路和直接链路的信号质量进行测量; 步骤 904: UE将对接入链路和直接链路的信号质量进行测量后的测量结果上报给 eNB; 在上述几个步骤中, 也可以是 UE先于 RS对相关链路进行测量和上报, 或者两者同 时测量并上 ¾ 在这里并没有明确的限制。 步骤 905: eNB根据 RS的上报结果和 UE的上报结果按照一定的算法进行路由选择; 该步骤中, 当中继链路和接入链路的信号质量好于直接链路时, 则 eNB与 UE之间 的数据传输要通过 RS来进行中继 , 如果直接链路信号质量好于中继链路和接入链路时 , 则 eNB与 UE之间可以直接进行数据的传送而无需经过 RS。 步骤 906: 基站将路由选择的结果下发给 RS和 UE。 4、 DRX/DTX配置 除以上在空中接口协议栈中的 RRC层进行关于对无线资源的管理和调度的功能配 置外, 同时, 还可在此基础之上配置 DRX/DTX功能: 其中, DRX/DTX配置功能由 DRX/DTX-u和 DRX/DTX-e两部分功能实体体现, RS 在中继链路和接入链路使用不同的 DRX/DTX配置, 具体来说就是, DRX/DTX-u主要用 于负责接入链路的配置, 例如在 RS和 UE间可只配置 DTX, 并在 MAC主配置信息元素中 配置其开始偏置量、 周期等参数; 而 DRX/DTX-e主要用于负责中继链路的配置, 例如在 RS和基站间可只配置 DRX, 并在 MAC主配置信息元素中配置其偏置量、 周期等参数。
5、 接入控制 本发明具体实施例在 RRC层进一步进行接入控制功能的配置 , 该功能使 RS在接到 UE的接入请求后 , 根据当时接入链路和中继链路的负载情况决定是否允许该 UE接入, 图 10为 RS进行接入控制的流程图 , 具体步骤如下: 步骤 1001: UE向 RS发起建立连接的请求消息;
步骤 1002: RS对接入链路和中继链路的负载情况进行监测,根据监测结果决定是否 允该 UE接入; 在该步骤中,如果 RS监测到接入链路或者中继链路任一链路负载过重,则要拒绝该 UE的接入请求。 其中, RS监测的接入链路和中继链路的负载情况, 具体可以是监测 UE 到 RS的上行链路, 即上行接入链路、 以及 RS到基站的上行链路, 即上行中继链路, 的 负载情况, 其中, RS监测的上行接入链路的负载情况 , 具体可以由该 RS进行检测得到; RS监测的上行中继链路的负载情况, 则可以是由基站发送给 RS。
RS还可以监测基站到 RS的下行链路, 即下行中继链路, 及 RS到 UE的下行链路, 即 下行接入链路, 的负载情况, 其中, 下行中继链路的负载情况, 可以由 RS检测得到; 下 行接入链路的负载情况, 则可以由 UE告知 RS。 步骤 1003: RS向 UE下发是否允许其接入的决定结果。
6、 中继链路与接入链路的无线承载建立 在 RRC层进行无线承载 ( RB )建立功能的配置, 则可以使 RS具有处理中继链路与 接入链路的无线承载建立的功能,图 11为 RS进行无线承载建立的流程图 ,具体步骤如下: 步骤 1101 : RS向 eNB发起无线承载建立请求, 并接收 eNB返回的无线承载建立请求 的响应消息; 该响应消息中携带 DRX/DTX配置参数, 之后负责进行 DRX/DTX配置的功 能单元(如上述系统部分的 DRX/DTX配置单元) 即可根据该配置参数进行配置, 或者 由 DRX/DTX配置单元中的 DRX/DTX-u发起对 UE的配置。 步骤 1102: RS向 UE发起无线承载建立请求, 并接收 UE返回的无线承载建立请求消 息的响应消息。 以上功能配置均是在 RRC层中进行的,目的是为了完善 RS在无线资源管理和调度方 面的功能, 使整个系统在数据传输过程中能够更加合理地利用无线网络资源, 提高数据 传输的效率。 同时, 空中接口协议栈的其他各层分别在整个数据传输过程中起到各自不 同的用处, 因此在其他相应几层进行相关中继功能的配置, 可以进一步完善无线中继站 在无线网络数据传输过程中的各项功能,从而达到提高无线网络数据传输的效率和安全 性。 其中, 对于 PDCP层, 前面已作过简单介绍, 该层的主要功能是完成不同格式的数 据报汇聚转换, 在该层添加入中继模块, 除实现无线中继站基本的中继功能外, 本发明
所提供的实施例还在 PDCP层中配置了增强型加密功能, 因为 RS负责其下的所有 UE与 eNB之间数据的中转工作, 因此需要较高的数据安全性, 所以在 PDCP层中配置了增强 型加密功能后, 可以有效保护 RS和 eNB之间数据传输的安全。 另外, 对于 PDCP的下一层 (即 RLC层) 的主要功能是完成重传模式选择、 自动重 复请求和加密等。在该层中配置可选反馈中继功能,可以 ^ RS在中转数据的过程中同时 向基站和 UE发送确认反馈消息 , 使基站和 UE能够获知已传送数据的状态。 图 12为 RS在 中转数据的过程中实现反馈中继功能的流程图, 具体步骤如下: 步骤 1201 : eNB通过下行链路向 RS下发数据; 步骤 1202: RS接收 eNB下发的下行链路数据并做转发处理; 步骤 1203: RS向 eNB发送确认反馈消息, 将所接收到的下行数据的状态通知 eNB; 步骤 1204: RS将经过转发处理的数据下发给 UE。 至此, RS完成了一次对下行链路数据的中转, 并在中转过程中向 eNB发送确认反馈 消息, 使 eNB能及时了解所发出数据的状态, 以便于后续的相关操作; 当 RS需要中转上 行链路的数据时, 流程类似, 如图 13所示, 包括: 步骤 1305: UE通过上行链路向 RS发送数据; 步骤 1306: RS接收 UE发送的上行链路数据并做转发处理; 步骤 1307: RS向 UE发送确认反馈消息, 将所接收到的上行数据的状态通知 UE; 步骤 1308: RS将经过转发处理的数据发送给基站。 至此, RS完成了一次对上行链路数据的中转, 并在中转过程中向 UE发送确认反馈 消息, 使 UE能及时了解所发出数据的状态, 以便于后续的相关操作。 在数据传输过程中, 由于网络设备出现故障或网络产生拥塞等情况的发生, 会产生 数据报文的出错或丢失, 这样就需要接收方在确认有报文出错或丢失的情况下, 向发送 方请求重新传送出错或丢失的报文。 本发明具体实施例便在 RLC层中配置了自动请求重 传 (ARQ)开关功能, 该功能使 RS在中转上下行数据时, 具有自动请求重传功能, 即 RS 在接收出错报文之后可以请求发送方重新发送出错的报文。 同时, 为了减少报文重传的 次数,提高数据传送过程中的效率,如果一段数据链路之间存在多个中继链路,则 中 继链路的各跳之间还可以采用混合自动请求重传(HARQ )方式, 即中继链路的各跳之
间数据传输的差错超过所设定范围时, 才进行出错报文的重传, 但在整个中继链路的最 后一跳, 该最后一跳的 RS需要开启 ARQ功能, 以实现整个中继链路具有 ARQ功能, 这 样, 既提高了数据传输的效率, 也不影响数据传输的正确率。
RLC层的下一层(MAC层)的主要功能是完成接入控制、 实现逻辑信道到传输信道 的映射、 无线资源调度等。 本发明具体实施例在该层中配置可选反馈中继功能, 使 RS 在中转上下行数据的过程中同时可以发送反馈消息给发送端, 该发送端可以为 UE、 基 站或者是相邻的 RS等。 基本流程同图 12所示相同 , 在这里就不再做赞述。 同时, 本发明具体实施例还在 MAC层中配置了双向随机接入信道(RACH )功能, 该功能模块包括 RACH-u和 RACH-e两部分, 其中, RACH-u主要用于负责 UE的接入, 如 图 14所示, 该图为 UE基于非竟争的随机接入流程图: 步骤 1401 : RS向 UE下发一个非竟争的随机接入前导; 步骤 1402: UE使用 RS下发的非竟争的随机接入前导进行随机接入; 步骤 1403: RS向 UE下发随机接入回复消息, 该消息中携带有随机接入前导标识、 时间校正信息、 初始上行资源分配等内容。 相应地, RACH-e主要用于负责接入 eNB, 例如, 在接入过程中可以选取 5比特随机 数并向 eNB发送随机接入前导消息 , 发送 RRC连接请求消息或 RRC切换确认消息等。 以上所举实施例均是在空中接口协议栈各层中添加相应的功能模块,使无线中继站 除了具有中转上下行数据的功能外, 同时可以根据网络的情况调度无线网络资源, 合理 利用网络资源, 提高数据传输的效率, 另外, 其所添加的加密功能还可进一步提高数据 传输的安全性。 本领域技术人员可以理解,可以使用许多不同的工艺和技术中的任意一种来表示信 息、 消息和信号。 例如, 上述说明中提到过的消息、 信息都可以表示为电压、 电流、 电 磁波、 磁场或磁性粒子、 光场或以上任意组合。 专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为了清楚地说明硬件 和软件的可互换性, 在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约束条
件。 专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能, 但是这 种实现不应认为超出本发明的范围。 结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行 的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器(RAM ) 、 内存、 只读存储器(ROM ) 、 电可编程 ROM、 电可擦除可编程 ROM、 寄存器、 硬盘、 可移动 磁盘、 CD-ROM, 或技术领域内所公知的任意其它形式的存储介质中。 对所公开的实施例的上述说明, 使本领域专业技术人员能够实现或使用本发明。 对 这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的 一般原理可以在不脱离本发明的精神或范围的情况下, 在其它实施例中实现。 因此, 本 发明将不会被限制于本文所示的这些实施例, 而是要符合与本文所公开的原理和新颖特 点相一致的最宽的范围。
Claims
1、 一种无线中继系统, 其特征在于, 所述无线中继系统的无线资源控制 RRC层包 括第一控制装置, 其中所述第一控制装置包括以下之一或其任意组合:
网络拓朴功能选择单元: 用于进行网络拓朴选择, 并根据选择结果确定是否与本网 络拓朴功能选择单元所在无线中继站的相邻无线中继站建立连接;
资源请求与分配单元: 用于请求基站分配资源, 并依据用户设备 UE请求为该 UE分 配资源;
非连续接收 DRX/非连续发送 DTX配置单元: 用于为中继链路和接入链路分别配置 DRX/DTX;
接入控制单元: 用于在接收到 UE的接入请求时, 根据接入链路和中继链路的负载 情况确定是否接受所述 UE的接入请求;
资源块 RB建立单元: 用于在中继链路完成与基站间的 RB建立, 在接入链路向 UE发 起 RB建立请求;
路由选择单元: 用于对接入链路和中继链路的信号质量进行测量, 并将测量结果发 送给基站, 所述测量结果为所述基站进行数据传输的路由选择的依据。
2、如权利要求 1所述的系统, 其特征在于, 所述无线中继系统的媒体接入控制 MAC 层包括第二控制装置,所述第二控制装置包括第一中继功能单元和第二中继功能单元中 任意一个, 和 /或第一双向随机接入信道 RACH单元, 其中,
所述第一中继功能单元, 用于: 在接收到基站发送的下行数据后, 进行转发处理, 将处理后的下行数据发送给 UE, 以及, 在接收到 UE发送的上行数据后, 进行转发处理, 将处理后的上行数据发送给所述基站;
所述第二中继功能单元, 用于: 在接收到基站发送的下行数据后, 进行转发处理, 将处理后的下行数据发送给 UE, 并回复信息给所述基站, 以及, 在接收到 UE发送的上 行数据后, 进行转发处理,将处理后的上行数据发送给所述基站, 并回复信息给所述 UE 所述第一双向随机接入信道 RACH单元, 用于: 下发非竟争接入前导给 UE, 并处理 所述 UE的 RACH接入并反馈竟争解决信息, 以及, 向基站发送随机接入前导消息, 并根 据基站回复发送调度传输参数。
3、 如权利要求 1或 2所述的系统, 其特征在于, 所述无线中继系统的无线链路控制 RLC层包括第三控制装置, 所述第三控制装置包括以下之一或其任意组合:
第三中继功能单元, 用于: 在接收到基站发送的下行数据后, 进行转发处理, 并将 处理后的下行数据发送给 UE, 并回复信息给所述基站, 以及, 在接收到 UE发送的上行 数据后,进行转发处理,并将处理后的上行数据发送给所述基站,并回复信息给所述 UE; 自动请求重传 ARQ开关单元,用于当本 ARQ开关单元所在的无线中继站为中继链路 的中间节点时, 关闭 ARQ功能, 当本 ARQ开关单元所在的无线中继站为中继链路的末端 节点时, 开启 ARQ功能。
4、 如权利要求 1至 3中任一项所述的系统, 其特征在于, 所述无线中继系统的分组 数据汇聚协议 PDCP层包括第四控制装置, 所述第四控制装置包括以下之一或其任意组 合:
第四中继功能单元, 用于在接收到基站发送的下行数据后, 进行转发处理, 并将处 理后的下行数据发送给 UE, 以及, 在接收到 UE发送的上行数据后, 进行转发处理, 并 将处理后的上行数据发送给所述基站;
增强型加密单元,用于采用增强型加密算法对本增强型加密单元所在的无线中继站 和基站之间的交互信息进行加密。
5、 如权利要求 1-4任意一项所述的系统, 其特征在于, 所述无线中继系统集合于同 一实体中。
6、 一种无线中继系统的通信方法, 其特征在于, 包括:
无线中继站在无线中继系统的无线资源控制 RRC层的协调处理下与终端、基站进行 通信, 其中, 所述协调处理包括以下操作中的任意一种或任意组合:
进行网络拓朴选择,并根据选择结果确定是否与所述无线中继站的相邻无线中继站 建立连接;
请求基站分配资源, 并依据用户设备 UE请求为该 UE分配资源;
为中继链路和接入链路配置非连续接收 DRX/非连续发送 DTX;
在接收到 UE的接入请求时, 根据接入链路和中继链路的拥塞情况确定是否接受所 述 UE的接入请求;
在中继链路完成与基站间的无线承载 RB建立 , 在接入链路向 UE发起 RB建立请求; 对接入链路和中继链路的信号质量进行测量, 并将测量结果发送给基站, 所述测量 结果为所述基站进行数据传输的路由选择的依据。
7、 如权利要求 6所述的方法, 其特征在于, 还包括所述无线中继站通过所述无线中 继系统的媒体接入控制 MAC层或无线链路控制 RLC层的中继功能进行可选中继反馈,具 体包括:
在接收到基站发送的下行数据后, 进行转发处理, 将处理后的下行数据发送给 UE; 以及,
在接收到 UE发送的上行数据后, 进行转发处理, 将处理后的上行数据发送给所述 基站。
8、 如权利要求 7所述的方法, 其特征在于, 在将处理后的下行数据发送给 UE之后, 还包括: 回复信息给所述基站; 在将处理后的上行数据发送给所述基站后, 回复信息给 所述 UE。
9、 如权利要求 6所述的方法, 其特征在于, 还包括所述无线中继站通过所述无线中 继系统的 MAC层的随机接入信道 RACH功能进行 RACH接入过程, 具体包括:
下发非竟争接入前导给 UE, 并处理所述 UE的 RACH接入并反馈响应及竟争解决信 息; 以及,
向基站发送随机接入前导消息, 发送 RRC连接请求或 RRC切换确认消息。
10、 如权利要求 6所述的方法, 其特征在于, 还包括所述无线中继站通过所述无线 中继系统的 RLC层的 ARQ开关功能进行 ARQ开关控制 , 具体包括:
当所述无线中继站为中继链路的中间节点时, 关闭 ARQ功能, 当所述无线中继站为 中继链路的末端节点时, 开启 ARQ功能。
11、 如权利要求 6所述的方法, 其特征在于, 还包括所述无线中继站通过所述无线 中继系统的分组数据汇聚协议 PDCP层的中继功能进行中继反馈 , 具体包括:
在接收到基站发送的下行数据后, 进行转发处理, 并将处理后的下行数据发送给 UE; 以及,
在接收到 UE发送的上行数据后, 进行转发处理, 并将处理后的上行数据发送给所 述基站。
12、 如权利要求 6所述的方法, 其特征在于, 还包括所述无线中继站通过增强型加 密功能进行增强型加密过程, 具体为: 采用增强型加密算法对所述无线中继站和基站之 间的交互信息进行加密。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910129608.3 | 2009-03-17 | ||
CN200910129608.3A CN101841920B (zh) | 2009-03-17 | 2009-03-17 | 一种无线中继系统和无线中继系统的通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010105532A1 true WO2010105532A1 (zh) | 2010-09-23 |
Family
ID=42739188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/070977 WO2010105532A1 (zh) | 2009-03-17 | 2010-03-11 | 一种无线中继系统和无线中继系统的通信方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101841920B (zh) |
WO (1) | WO2010105532A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103155621A (zh) * | 2010-10-06 | 2013-06-12 | 株式会社Ntt都科摩 | 中继用户装置与基站之间的通信的中继台以及中继方法 |
WO2021118742A1 (en) * | 2019-12-13 | 2021-06-17 | Qualcomm Incorporated | Sidelink communication using a cellular discontinuous reception configuration |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102811497A (zh) * | 2011-06-03 | 2012-12-05 | 中国移动通信集团公司 | 一种接入网络的方法、终端及系统 |
JP6055627B2 (ja) * | 2012-08-14 | 2016-12-27 | 株式会社Nttドコモ | 移動通信方法及び移動局 |
CN104303526B (zh) | 2013-01-16 | 2019-01-25 | 华为技术有限公司 | 移动终端接入网络的方法及移动终端 |
CN106454995B (zh) * | 2015-08-10 | 2021-06-04 | 上海诺基亚贝尔股份有限公司 | 用于配置中继发现消息传输资源的方法、相应的中继终端设备和远程终端设备 |
EP3393200A1 (en) | 2016-02-04 | 2018-10-24 | Huawei Technologies Co., Ltd. | Data transmission system, method, and device |
WO2017215766A1 (en) * | 2016-06-17 | 2017-12-21 | Sony Mobile Communications Inc. | Allocating radio resources in backhaul and access link |
CN108307486A (zh) * | 2016-08-11 | 2018-07-20 | 索尼公司 | 用于网络控制端和网络节点的电子设备和方法 |
WO2018027821A1 (zh) * | 2016-08-11 | 2018-02-15 | 华为技术有限公司 | 一种通信方法、相关设备及系统 |
CN106688255A (zh) * | 2016-11-14 | 2017-05-17 | 北京小米移动软件有限公司 | 通信方法及装置 |
CN107148058B (zh) * | 2017-05-12 | 2020-10-30 | 合肥东芯通信股份有限公司 | 一种无线资源控制协议栈系统 |
CN112702102B (zh) | 2018-01-09 | 2022-12-09 | Oppo广东移动通信有限公司 | 中继网络双工协调的方法和中继节点设备 |
CN113225842B (zh) * | 2020-01-21 | 2024-05-07 | 华硕电脑股份有限公司 | 无线通信系统中配置侧链路不连续接收的方法和设备 |
CN116419289A (zh) * | 2020-02-21 | 2023-07-11 | 维沃移动通信有限公司 | 非连续传输配置方法及用户设备 |
CN118250828A (zh) * | 2020-03-26 | 2024-06-25 | 京瓷株式会社 | 通信控制方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1717903A (zh) * | 2002-12-27 | 2006-01-04 | 艾利森电话股份有限公司 | 以隧道方式通过mpls传送tdm业务 |
CN101137204A (zh) * | 2006-08-30 | 2008-03-05 | 华为技术有限公司 | 移动通信系统及移动通信方法 |
CN101159751A (zh) * | 2007-11-14 | 2008-04-09 | 中兴通讯股份有限公司 | 一种通过ip交换网传送时分复用业务的方法和装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100411375C (zh) * | 2005-03-30 | 2008-08-13 | 华为技术有限公司 | 一种控制终端接入网络方法 |
KR100810201B1 (ko) * | 2005-06-18 | 2008-03-06 | 삼성전자주식회사 | 다중 홉 릴레이 셀룰라 네트워크에서 라우팅 장치 및 방법 |
CN1905728A (zh) * | 2005-07-29 | 2007-01-31 | 西门子(中国)有限公司 | 一种多跳无线移动通信网络中的网络重配置方法 |
CN101166055B (zh) * | 2006-10-18 | 2011-06-01 | 华为技术有限公司 | 多跳中继方法和多跳中继系统 |
KR101466897B1 (ko) * | 2007-07-09 | 2014-12-02 | 삼성전자주식회사 | 이동통신 시스템에서 피어투피어 통신의 연속성을 제공하기위한 방법 및 장치 |
CN101384020B (zh) * | 2007-09-05 | 2012-07-04 | 中兴通讯股份有限公司 | 一种无线中继系统及其数据传输方法 |
-
2009
- 2009-03-17 CN CN200910129608.3A patent/CN101841920B/zh not_active Expired - Fee Related
-
2010
- 2010-03-11 WO PCT/CN2010/070977 patent/WO2010105532A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1717903A (zh) * | 2002-12-27 | 2006-01-04 | 艾利森电话股份有限公司 | 以隧道方式通过mpls传送tdm业务 |
CN101137204A (zh) * | 2006-08-30 | 2008-03-05 | 华为技术有限公司 | 移动通信系统及移动通信方法 |
CN101159751A (zh) * | 2007-11-14 | 2008-04-09 | 中兴通讯股份有限公司 | 一种通过ip交换网传送时分复用业务的方法和装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103155621A (zh) * | 2010-10-06 | 2013-06-12 | 株式会社Ntt都科摩 | 中继用户装置与基站之间的通信的中继台以及中继方法 |
CN103155621B (zh) * | 2010-10-06 | 2014-08-06 | 株式会社Ntt都科摩 | 中继用户装置与基站之间的通信的中继台以及中继方法 |
WO2021118742A1 (en) * | 2019-12-13 | 2021-06-17 | Qualcomm Incorporated | Sidelink communication using a cellular discontinuous reception configuration |
US11622411B2 (en) | 2019-12-13 | 2023-04-04 | Qualcomm Incorporated | Sidelink communication using a cellular discontinuous reception configuration |
US11956851B2 (en) | 2019-12-13 | 2024-04-09 | Qualcomm Incorporated | Sidelink communication using a cellular discontinuous reception configuration |
Also Published As
Publication number | Publication date |
---|---|
CN101841920B (zh) | 2013-06-05 |
CN101841920A (zh) | 2010-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010105532A1 (zh) | 一种无线中继系统和无线中继系统的通信方法 | |
US20200229007A1 (en) | Method and apparatus for performing radio link monitoring to support v2x communication in next-generation mobile communication system | |
CA2717368C (en) | Method of processing harq by considering measurement gap | |
EP2712253B1 (en) | Wireless broadband communication method, device, and system | |
US10880790B2 (en) | Method and device for transmitting data in wireless communication system supporting dual connectivity | |
US20190229853A1 (en) | Method for determining retransmission numbers of sidelink data in wireless communication system and a device therefor | |
JP6902651B2 (ja) | 無線通信システムにおけるユニキャスト伝送のサイドリンク無線ベアラ(slrb)設定を要求するための方法および装置 | |
CN105357773B (zh) | 一种无线宽带通信方法,装置和系统 | |
JP6687452B2 (ja) | 移動通信システム、ユーザ端末、プロセッサ、記憶媒体及びプログラム | |
JP5592407B2 (ja) | 移動局のスリープ・モードを調整するための方法およびデバイス | |
JP6910363B2 (ja) | 通信制御方法 | |
KR20170123236A (ko) | 데이터 볼륨 정보를 전송하는 방법 및 사용자기기 | |
JP2012524496A (ja) | 無線通信システムにおけるリレーノード使用方法 | |
TWI742962B (zh) | 無線通訊系統中請求側鏈路傳送資源的方法和設備 | |
JP2012521130A (ja) | オーバーヘッドを軽減したネットワーク−リレー間インタフェースのためのシグナリング機構 | |
JP2013524648A (ja) | 協調伝送のための適応スケジューリングおよびharq管理 | |
JP2012114940A (ja) | 無線装置とネットワーク間のデータユニットのシーケンスの送信のための無線通信方法 | |
KR101927017B1 (ko) | Rlc 데이터 패킷 오프로딩 방법 및 기지국 | |
WO2011150783A1 (zh) | 无线网络中的数据传输方法和装置 | |
KR20230031289A (ko) | 사이드링크 릴레이에서의 피드백 및 트래픽 차별화 | |
WO2012136101A1 (zh) | 一种混合自动重传的处理方法、系统及装置 | |
WO2022210184A1 (ja) | 通信システムおよび基地局 | |
JP7119125B2 (ja) | 通信制御方法 | |
WO2022181525A1 (ja) | 通信システムおよび通信端末 | |
WO2011044839A1 (zh) | 基于中继移动通信系统的数据传输方法及其装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10753099 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10753099 Country of ref document: EP Kind code of ref document: A1 |