WO2011044839A1 - 基于中继移动通信系统的数据传输方法及其装置 - Google Patents

基于中继移动通信系统的数据传输方法及其装置 Download PDF

Info

Publication number
WO2011044839A1
WO2011044839A1 PCT/CN2010/077702 CN2010077702W WO2011044839A1 WO 2011044839 A1 WO2011044839 A1 WO 2011044839A1 CN 2010077702 W CN2010077702 W CN 2010077702W WO 2011044839 A1 WO2011044839 A1 WO 2011044839A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
data
plane
planes
enode
Prior art date
Application number
PCT/CN2010/077702
Other languages
English (en)
French (fr)
Inventor
高有军
胡臻平
杨宁
吴伟民
王德胜
江小威
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Priority to JP2012533471A priority Critical patent/JP5469750B2/ja
Priority to EP10823069.9A priority patent/EP2490399B1/en
Priority to US13/501,785 priority patent/US8804744B2/en
Priority to KR1020127012593A priority patent/KR101407280B1/ko
Publication of WO2011044839A1 publication Critical patent/WO2011044839A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0876Network architectures or network communication protocols for network security for authentication of entities based on the identity of the terminal or configuration, e.g. MAC address, hardware or software configuration or device fingerprint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/161Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a data transmission method and apparatus based on a relay mobile communication system. Background technique
  • 3rd generation (3G) and 3rd generation (B3G, Beyond 3 Generation) mobile communication systems cell coverage is an important metric for wireless access systems, where wireless access systems are generally used through base stations or Access points to achieve coverage of the wireless service area.
  • the mobile terminal due to the mobility of the mobile terminal, the mobile terminal is completely outside the service area, so that the wireless access service cannot be obtained. Even if the mobile terminal is located in the service area, the signal transmission may still be due to an obstacle on the transmission path. Shading, resulting in a decline in the quality of service.
  • the technology of "relay” is proposed in the future (3G LTE) mobile communication technology scheme, when the mobile terminal is located in the service
  • the signal can be relayed through a relay node (RN, Relay Node) or a relay station (RS, Relay Station) to achieve service area expansion or improve transmission reliability.
  • RN Relay Node
  • RS Relay Station
  • FIG. 1 it is an access network topology diagram of a mobile communication system with a relay station RS, wherein the mobile terminal UE can directly communicate with the core network side through the base station (eNode B), when the UE is in the coverage of the eNode B.
  • the UE can perform communication with the eNode B through the signal relay function of the RS, thereby In this case, communication with the eNode B can also be achieved, and thus the purpose of extending the coverage and cell capacity of the eNode B is achieved.
  • the air interface between the UE and the RS is a Uu interface
  • the air interface between the RS and the eNode B is an Un interface.
  • An embodiment of the present invention provides a data transmission method and a device thereof based on a relay mobile communication system, which are used to improve the throughput rate of the Un interface between the relay device and the eNode B in the relay mobile communication system and reduce the Un interface. Delay.
  • an embodiment of the present invention provides a data transmission method based on a relay mobile communication system, including configuring at least two transmission planes on a Un interface protocol stack of a relay device and a base station eNode B; and a relay device and The eNode B transmits data through at least two transport planes configured on the Un interface protocol stack.
  • the embodiment of the present invention further provides a data transmission device based on a relay mobile communication system, where the Un interface protocol stack of the device is configured with at least two transmission planes, and the device includes a data transmission unit for passing the Un interface. At least two transport planes configured on the protocol stack transmit data.
  • the solution of the embodiment of the present invention configures at least two transmission planes respectively on the relay device of the relay mobile communication system and the Un interface protocol stack in the eNode B, and then the relay device and the eNode B are respectively configured on the Un interface protocol stack.
  • the at least two transmission planes transmit data. Since a plurality of transmission planes for transmitting data are configured on the Un interface protocol stack, the relay device and the eNode B in the relay mobile communication system can be improved.
  • the throughput of the Un interface, as well as the problem of avoiding data with insufficient transmission planes, can cause transmission delays.
  • FIG. 1 is a topology diagram of a mobile communication system access network with a relay station RS;
  • FIG. 3 is a schematic structural diagram of a control transmission plane on a Un interface protocol stack of an RS and an eNode B;
  • FIG. 4 is a Un interface protocol between the RS and the eNode B. Schematic diagram of multiple user transmission planes configured on the stack;
  • 5 is a schematic diagram of multiple control transmission planes configured on the Un interface protocol stack of the RS and the eNode B;
  • 6a, 6b are schematic diagrams of the RS forwarding data transmitted in the MAC layer on one transport plane to the RLC layer on another transport plane;
  • 7a, 7b, 7c, and 7d are diagrams for the RS to forward data transmitted in the MAC layer on one transport plane to the RLC layer on another transport plane;
  • FIG. 8 is a schematic diagram of a process for transmitting and retransmitting data by using multiple control transmission planes configured in the Un-interface protocol stack of the Relay and the eNode B according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a process for transmitting retransmission data by multiple user transmission planes configured in the Un-interface protocol stack of the Relay and eNode B according to an embodiment of the present invention. detailed description
  • the relay mobile communication system it is proposed to configure at least two transmission planes on the Un interface protocol stack of the relay device and the eNode B, so that the relay device and the eNode B can be configured on the Un interface protocol stack.
  • Multiple transmission planes transmit data to achieve the purpose of transmitting data with multiple transmission planes, thereby improving the throughput of the Un interface between the relay device and the eNode B and reducing the transmission delay of the Un interface.
  • the relay device involved in the embodiment of the present invention may be a relay node RN or a relay station RS. In a specific application, the processing procedure when the relay device is the RN or the RS is the same. In the following embodiments, the detailed technical solution involved in the embodiment of the present invention is described by using the relay device as the RS.
  • the multiple transmission planes configured on the Un interface protocol stack of the RS and the eNode B include a user transmission plane and a control transmission plane, as shown in FIG. 2, which is a structure of a user transmission plane on the Un interface protocol stack of the RS and the eNode B.
  • the user plane includes a physical layer (L layer), a medium access control MAC layer, a radio link control RLC entity layer, and a packet data control protocol PDCP layer. As shown in FIG. 3, it is a Un interface of the RS and the eNode B.
  • a schematic diagram of a structure of a control transport plane on a protocol stack where the control transport plane includes a physical layer (L layer), a MAC layer, an RLC physical layer, a PDCP layer, and a radio resource control RRC layer.
  • L layer physical layer
  • MAC layer physical layer
  • RLC physical layer physical layer
  • PDCP layer physical layer
  • RRC layer radio resource control RRC layer
  • FIG. 4 a schematic diagram of a plurality of user transmission planes configured on the Un interface protocol stack of the RS and the eNode B, where three user transmission planes are configured as an example, each user transmission plane can be used for transmission.
  • Different service data including data for different UEs, as well as retransmission data and new data.
  • FIG. 5 it is a schematic diagram of multiple control transmission planes configured on the Un interface protocol stack of the RS and the eNode B.
  • three control transmission planes are configured as an example, and each control transmission plane can be used for transmission. Different control signaling data.
  • each of the at least two transmission planes configured on the Un interface protocol stack may generate one MAC PDU and transmit data through the generated MAC PDU. Accordingly, the Un interface needs to transmit multiple MAC PDUs.
  • At least two transport planes configured on the Un interface protocol stack may share data of at least one of a MAC layer entity, an RLC entity layer entity, and a PDCP layer entity; or at least two configured on the Un interface protocol stack
  • the transport plane may transmit data through the respective MAC layer entity, the RLC layer entity, and the PDCP layer entity, that is, the MAC layer entity, the RLC layer entity, and the PDCP layer entity used between the transport planes are independent of each other.
  • the MAC layer entity may generate multiple MAC PDUs by using multiple hybrid automatic repeat request HARQ processes, that is, multiple HARQ processes.
  • One MAC PDU is generated for different transport planes respectively.
  • one HARQ entity may generate one or more HARQ processes.
  • the implementation manner in which RS and eNode B use different control transmission planes configured on the Un interface protocol stack to transmit different data includes but is not limited to the following:
  • the group transport plane transmits the retransmitted data.
  • the RS and the eNode B may use the user transmission plane 1 or the control transmission plane 1 to transmit the newly transmitted data, and use the user transmission plane 2 or the control transmission plane 2 to transmit the retransmitted data, that is, when When the RS and the eNode B find that the data to be transmitted is new data, configure the data to be transmitted to the user transmission. Plane 1 or control transmission plane 1 is transmitted.
  • the data to be transmitted is configured to be transmitted to user transmission plane 2 or control transmission plane 2.
  • the number of retransmissions of the HARQ can be further configured when the transmission plane 2 for transmitting the retransmission data is configured. Therefore, in the process of transmitting data by the RS and the eNode B based on the hybrid automatic repeat request (HQQ), if retransmission data needs to be retransmitted, new data needs to be sent at the same time, and if only one transmission plane is set, the Priority retransmission of data that needs to be retransmitted results in delays in new data transmission, which in turn allows new service data to be transmitted as quickly as possible.
  • HQQ hybrid automatic repeat request
  • the second type the RS and the eNode B determine the service shield quantity (QoS) level required for the data to be transmitted, and then select a transmission plane capable of providing the determined QoS level among at least two transmission planes configured on the Un interface protocol stack. So that the RS and the eNode B can transmit the data to be transmitted based on the selected transmission plane. That is to say, RS and eNode B can place data with the same QoS requirements on the same transmission plane for transmission, and put data with different QoS requirements on different transmission planes for transmission to provide support for multiple QoS services. For example, as shown in FIG. 4 or FIG.
  • the RS and the eNode B can use the user transmission plane 1 or the control transmission plane 1 to transmit data having the QoS1 requirement, and use the user transmission plane 2 or the control transmission plane 2 to transmit the QoS2 requirement.
  • the data Therefore, the RS and the eNode B can transmit data with different QoS requirements, so that the communication quality of different services can be satisfied, and in particular, the communication quality of the VoIP service can be satisfied.
  • the third type at least two transmissions configured on the Un interface protocol stack by the RS and the eNode B according to the identifier of the UE corresponding to the transmission data, for example, the identifier of the UE to which the transmission data is to be transmitted or the identifier of the UE transmitting the data.
  • the transmission plane that determines the UE that is the identity flag of the UE in the plane is served, and then transmits the transmission data corresponding to the UE based on the determined transmission plane. That is to say, all the UEs served by the RS or the eNode B can be grouped, and each transmission plane configured on the Un interface protocol stack is responsible for transmitting data transmitted or received by the UE in one group, and the RS or eNode B can be targeted.
  • Each transmission plane configured on the Un interface protocol stack stores the correspondence between the transmission plane identifier and the identity of the UE responsible for the transmission plane, so that the RS or eNode B first checks the data to be transmitted before each data transmission.
  • the identifier of the UE and then finds the identifier of the transport plane corresponding to the identifier of the UE from the stored correspondence, and then places the corresponding data into the found transmission.
  • the planar identification mark is transmitted on the transmission plane. For example, as shown in FIG. 4 or FIG.
  • the RS and the eNode B may use the user transmission plane 1 or the control transmission plane 1 to transmit data transmitted and received by the UE and the UE2 under the jurisdiction of the RS and the eNode B, and use the user transmission plane 2 or The transmission plane 2 is controlled to transmit data transmitted and received by the UE 3 and the UE 4 under the jurisdiction of the RS and the eNode B.
  • the fourth type: the RS and the eNode B are in the at least two transmission planes configured on the Un interface protocol stack according to the bit information carried in the reserved bits in the MAC layer header of the transmission data on the MAC layer in the first transmission plane. Determining a second transmission plane where the RLC entity that is consistent with the RLC entity identifier indicated by the bit information is located, and then forwarding the transmission data on the MAC layer in the first transmission plane to the RLC entity in the determined second transmission plane to continue Transfer.
  • the receiving end may correctly forward data transmitted on the MAC layer in one transmission plane to the
  • the RLC layer in another transmission plane continues to transmit, and the relevant bit information is carried according to the reserved bit in the MAC layer header of the transmission data, and the data is forwarded based on the related bit information of the bearer.
  • the identity of the entity to the RLC For example, if two transmission planes are configured on the Un interface protocol stack, the numbers are 0 and 1, respectively, the related bit information can be carried based on the reserved 1 bit in the MAC layer header of the transmission data, and based on the related bits of the bearer.
  • FIG. 6a and FIG. 6b a schematic diagram of forwarding data transmitted in the MAC layer on one transport plane to the RLC layer on another transport plane for the RS to continue transmission is performed by taking the RS as an execution subject as an example.
  • the execution process of the eNode B is the same.
  • the RS first detects the bit information carried in the reserved bit in the MAC layer header of the data from the user M, and if the bit information on the reserved bit is 0 (as shown in FIG.
  • the RS will forward the data to the RLC0 entity in the transmission plane 0 to continue the transmission, so that the data of the user M is forwarded from the MAC1 in the transmission plane 1 to the RLC0 in the transmission plane 0 to continue transmission;
  • the bit information carried on the reserved bit is 1 (as shown in FIG. 6b), and the data is forwarded to the RLC1 entity in the transmission plane 1 to continue the transmission, so that the data of the user M is performed by the transmission plane 1 as a whole. transmission.
  • the relevant bit information may be carried based on the reserved 2 bits in the MAC layer header of the transmission data, and the identifier of the entity of the RLC to which the data is to be forwarded is identified based on the related bit information of the bearer.
  • FIG. 7a, 7b, 7c, and 7d a schematic diagram is performed for the RS to forward data transmitted in the MAC layer on one transport plane to the RLC layer on another transport plane, where the RS is also used as the execution subject.
  • the execution of the eNode B is the same.
  • the RS first detects the bit information carried in the reserved bit in the MAC layer header of the data from the user M. If the bit information on the reserved bit is 01. (As shown in Figure 7a), the RS forwards the data to the RLC1 entity in the transmission plane 1 to continue the transmission, thereby realizing the purpose of transmitting the data of the user M as a whole by the transmission plane 1;
  • the bit information of the host is 10 (as shown in FIG. 7b), and the RS forwards the data to the RLC2 entity in the transmission plane 2 to continue the transmission, thereby realizing the data of the user M from the MAC1 in the transmission plane 1.
  • the RLC2 forwarded to the transport plane 2 continues to transmit; if the bit information carried on the reserved bit is 11 (as shown in Fig. 7c), the RS forwards the data to the RLC3 entity in the transport plane 3 to continue the transmission.
  • the RS From Realizing that the data of the user M is forwarded by the MAC1 in the transmission plane 1 to the RLC3 in the transmission plane 3 to continue transmission; if the bit information carried on the reserved bit is 00 (as shown in FIG. 7d), the RS will use the data.
  • the transmission is continued to the RLC0 entity in the transmission plane 0, so that the data of the user M is forwarded from the MAC1 in the transmission plane 1 to the RLC0 in the transmission plane 0 to continue the transmission.
  • the RS and the eNode B may further determine, according to the bit information carried in the reserved bit in the MAC layer header of the transmission data on the MAC layer in the first transmission plane, and the correspondence between the preset bit information and the RLC entity identifier. And a second transmission plane where the RLC entity corresponding to the RLC entity identifier corresponding to the bit information carried in the reserved bit in the MAC layer header of the transmission data is located, and then forwards the transmission data on the MAC layer in the first transmission plane to the determined The transmission continues on the RLC entity in the second transport plane.
  • the relay and eNode B use a plurality of control transmission planes configured in the Un-interface protocol stack to transmit retransmission data according to an embodiment of the present invention.
  • the relay and eNode B use a plurality of user transmission planes configured in the Un interface protocol stack to transmit retransmission data according to an embodiment of the present invention.
  • the relay and the eNode B can allocate multiple user transmission planes and control transmission planes configured on the Un interface protocol stack to the data occupation of different QoS requirements through the coding scheme of the reserved bits in the MAC SubHeader, or assign them to different
  • the data sent and received by the UE is occupied, or allocated to new data or retransmitted data.
  • the data transmission apparatus based on the relay mobile communication system proposed by the present invention may be a Relay (for example, a relay node RN or an intermediate station RS) in the relay mobile communication system, or may be an eNode B, and the apparatus
  • the Un interface protocol stack is configured with at least two transmission planes
  • the device further includes a data transmission unit for transmitting data through at least two transmission planes configured on the Un interface protocol stack.
  • the data transmission unit specifically includes:
  • the method is used to divide at least two transmission planes configured on the Un interface protocol stack into at least two groups of subunits;
  • a sub-unit for transmitting retransmission data is transmitted for one of the transmission planes based on the division, and based on another group of transmission planes obtained by the division.
  • the data transmission unit specifically includes:
  • the data transmission unit specifically includes:
  • the data transmission unit specifically includes:
  • At least two transmissions configured on the Un interface protocol stack according to the bit information carried in the reserved bit in the MAC layer header of the transmission data on the medium access control MAC layer in the first transmission plane Determining, in the transmission plane, a sub-unit of the second transmission plane where the RLC entity that is consistent with the radio link control RLC entity identifier indicated by the bit information is located;
  • Sub-units for forwarding transmission data on the MAC layer in the first transmission plane to the RLC entity in the determined second transmission plane for continued transmission are Sub-units for forwarding transmission data on the MAC layer in the first transmission plane to the RLC entity in the determined second transmission plane for continued transmission.
  • the data transmission unit specifically includes:
  • Sub-units for forwarding transmission data on the MAC layer in the first transmission plane to the RLC entity in the determined second transmission plane for continued transmission are Sub-units for forwarding transmission data on the MAC layer in the first transmission plane to the RLC entity in the determined second transmission plane for continued transmission.
  • the data transmission unit specifically includes:
  • the data transmission unit specifically includes:
  • the data transmission unit is to transmit data through at least two transmission planes configured on the Un-interface protocol stack, refer to the detailed description in the above method, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

基于中继移动通信系统的数据传输方法及其装置 技术领域
本发明涉及移动通信技术领域, 尤其是涉及一种基于中继移动通信系统 的数据传输方法及其装置。 背景技术
在第 3代( 3G )和超 3代( B3G, Beyond 3 Generation )移动通信系统中, 小区覆盖范围都是无线接入系统的一项重要衡量指标, 其中无线接入系统一 般都是通过基站或接入点来实现对无线服务区的覆盖。 但是由于移动终端的 移动性, 移动终端完全有可能处于服务区之外, 从而无法得到无线接入服务, 即使移动终端处在服务区之内, 信号的传输仍然可能由于受到传输路径上障 碍物的遮蔽, 而造成服务质量的下降。 基于这些原因, 为了解决服务区的无 缝覆盖与系统容量的增加并尽可能的节约成本, 在未来(3G LTE )移动通信 的技术方案中提出了 "中继" 的技术, 当移动终端位于服务区外或者信号质 量不能满足需求时, 可以通过中继节点 (RN, Relay Node )或中继站(RS, Relay Station )对信号进行中转,以实现服务区的扩展或者提高传输的可靠性, 从而达到扩; «盖范围和扩展小区容量的目的。
如图 1所示, 为带有中继站 RS的移动通信系统接入网拓朴图, 其中移动 终端 UE可以直接通过基站( eNode B )与核心网侧进行通信,当 UE处于 eNode B的覆盖范围之外时,或者 UE与 eNode B之间的无线传输链路由于障碍物的 遮挡而导致不能与 eNode B进行通信时, UE可以通过 RS的信号中继作用, 实现与 eNode B进行通信, 从而在上述情况下也能实现与 eNode B通信, 因 此也就达到了扩展 eNode B的覆盖范围和小区容量的目的。 其中 UE与 RS之 间的空中接口为 Uu接口, RS与 eNode B之间的空中接口为 Un接口。
目前, 如何提高 Un接口的吞吐率、 以及改善 Un接口的时延特性已经成为 Un接口设计的主要性能指标, 也成为业界共同探讨和有待解决的问题。 发明内容
本发明实施例提供一种基于中继移动通信系统的数据传输方法及其装 置,用以提高中继移动通信系统中中继设备与 eNode B之间的 Un接口的吞吐 率以及降低 Un接口的时延。
为解决上述问题, 本发明实施例提出一种基于中继移动通信系统的数据 传输方法,包括在中继设备与基站 eNode B的 Un接口协议栈上配置至少两个 传输平面;以及中继设备与 eNode B通过 Un接口协议栈上配置的至少两个传 输平面传输数据。
本发明实施例还提出了一种基于中继移动通信系统的数据传输装置, 所 述装置的 Un接口协议栈上配置有至少两个传输平面,所述装置包括数据传输 单元 , 用于通过 Un接口协议栈上配置的至少两个传输平面传输数据。
本发明实施例方案通过在中继移动通信系统的中继设备和 eNode B 中的 Un接口协议栈上分别配置至少两个传输平面, 然后中继设备和 eNode B通过 在 Un接口协议栈上分别配置的该至少两个传输平面来传输数据, 由于在 Un 接口协议栈上配置有多个用于传输数据的传输平面, 因此可以 ί艮好的提高中 继移动通信系统中中继设备与 eNode B之间的 Un接口的吞吐率 , 以及避免数 据没有足够的传输平面可以占用从而导致出现传输时延的问题。 附图说明
下面将结合各个附图, 对本发明实施例的具体实施方式进行更为详尽的 阐述, 其中在各个附图中:
图 1为带有中继站 RS的移动通信系统接入网拓朴图; 图 3为 RS和 eNode B的 Un接口协议栈上控制传输平面的结构示意图; 图 4为在 RS和 eNode B的 Un接口协议栈上配置的多个用户传输平面示 意图; 图 5为在 RS和 eNode B的 Un接口协议栈上配置的多个控制传输平面示 意图;
图 6a、 6b为 RS将一个传输平面上 MAC层中传输的数据转发到另一传 输平面上的 RLC层中继续传输的示意图;
图 7a、 7b、 7c和 7d为 RS将一个传输平面上 MAC层中传输的数据转发 到另一传输平面上的 RLC层中继续传输的示意图;
图 8为基于本发明实施例, Relay和 eNode B采用自身 Un接口协议栈中 配置的多个控制传输平面传输重传数据的过程示意图;
图 9为基于本发明实施例, Relay和 eNode B采用自身 Un接口协议栈中配置 的多个用户传输平面传输重传数据的过程示意图。 具体实施方式
本发明实施例在中继移动通信系统中, 提出在中继设备和 eNode B的 Un 接口协议栈上配置至少两个传输平面, 这样中继设备和 eNode B就可以通过 在 Un接口协议栈上配置的多个传输平面来传输数据,以达到有多个传输平面 来传输数据的目的,从而提高中继设备与 eNode B之间的 Un接口的吞吐率以 及降低 Un接口的传输时延。本发明实施例中涉及的中继设备可以为中继节点 RN, 也可以为中继站 RS。 具体应用中, 中继设备为 RN或 RS时的处理过程 一致,以下实施例中以中继设备为 RS对本发明实施例所涉及的详细技术方案 进行描述。
其中在 RS和 eNode B的 Un接口协议栈上配置的多个传输平面包括有用 户传输平面和控制传输平面, 如图 2所示, 为 RS和 eNode B的 Un接口协议 栈上用户传输平面的结构示意图, 其中用户传输平面包括物理层(L层)、 媒 体接入控制 MAC层、 无线链路控制 RLC实体层和分组数据控制协议 PDCP 层; 如图 3所示, 为 RS和 eNode B的 Un接口协议栈上控制传输平面的结构 示意图,其中控制传输平面包括物理层(L层)、 MAC层、 RLC实体层、 PDCP 层和无线资源控制 RRC层。 如图 4所示, 为在 RS和 eNode B的 Un接口协议栈上配置的多个用户传 输平面示意图, 这里以配置 3 个用户传输平面为例来进行说明, 各个用户传 输平面均可以用于传输不同的业务数据, 包括针对不同 UE的数据, 以及重传 数据和新发数据等等。
如图 5所示, 为在 RS和 eNode B的 Un接口协议栈上配置的多个控制传 输平面示意图, 这里以配置 3 个控制传输平面为例来进行说明, 各个控制传 输平面均可以用于传输不同的控制信令数据。
更为具体地,根据本发明实施例, 在 Un接口协议栈上配置的至少两个传 输平面中, 每个传输平面可以分别生成一个 MAC PDU, 并通过生成的所述 MAC PDU传输数据。 相应地, 该 Un接口需要传输多个 MAC PDU。
并且, 在 Un接口协议栈上配置的至少两个传输平面可以共用 MAC层实 体、 RLC实体层实体以及 PDCP层实体中的至少一个实体传输数据; 或者, 在 Un接口协议栈上配置的至少两个传输平面可以分别通过各自的 MAC层实 体、 RLC层实体以及 PDCP层实体传输数据, 即各传输平面之间使用的 MAC 层实体、 RLC层实体以及 PDCP层实体相互独立。
具体地, 在 Un接口协议栈上配置的至少两个传输平面共用 MAC层实体 时, 该 MAC层实体可以通过多个混合自动重传请求 HARQ进程分别生成多 个 MAC PDU, 即通过多个 HARQ进程分别为不同传输平面生成一个 MAC PDU, 具体地, 一个 HARQ实体可以产生一个或多个 HARQ进程。
其中 RS和 eNode B使用自身 Un接口协议栈上配置的多个控制传输平面 来传输不同数据的实现方式包括但不限于有如下几种:
第一种: RS与 eNode B将 Un接口协议栈上配置的至少两个传输平面划 分为至少两组, 然后基于划分得到的其中一组传输平面来传输新传数据, 并 基于划分得到的另一组传输平面来传输重传数据。 如上述图 4或图 5所示, RS与 eNode B可以使用用户传输平面 1或控制传输平面 1来传输新传数据, 并使用用户传输平面 2或控制传输平面 2来传输重传数据, 即当 RS与 eNode B发现需要传输的数据为新传数据时, 将该需要传输的数据配置到用户传输 平面 1或控制传输平面 1来传输, 当发现要传输的数据为重传数据时, 将该 需要传输的数据配置到用户传输平面 2或控制传输平面 2来传输。 其中, 在 配置用于传输重传数据的传输平面 2时,进一步可以配置 HARQ的重传次数。 从而解决 RS与 eNode B在基于混合自动重传请求( HARQ )传输数据的过程 中, 若有重传数据需要重传时, 又同时有新数据需要发送, 而如果仅设置一 个传输平面将导致由于优先重传需要重传的数据而导致新数据传输延时的问 题, 进而可以使得新的业务数据尽快得到传输。
第二种: RS与 eNode B确定待传输的数据所需的服务盾量( QoS )等级, 然后在 Un接口协议栈上配置的至少两个传输平面中选择能够提供该确定的 QoS等级的传输平面,这样 RS与 eNode B就可以基于选择的传输平面来传输 待传输的数据了。 也就是说 RS与 eNode B可以将具有相同 QoS需求的数据 放置到同一传输平面上进行传输, 将具有不同 QoS需求的数据放置到不同传 输平面上进行传输, 以提供对多 QoS业务的支持。 例如如上述图 4或图 5所 示, RS与 eNode B可以使用用户传输平面 1或控制传输平面 1来传输具有 QoSl需求的数据,并使用用户传输平面 2或控制传输平面 2来传输具有 QoS2 需求的数据。 从而使得 RS与 eNode B可以对不同 QoS需求的数据进行传输, 因此可以满足不同业务的通信质量, 尤其是可以满足 VoIP业务的通信质量。
第三种: RS与 eNode B根据传输数据所对应的 UE的标识, 例如传输数 据要发送到的 UE的标识或者发来传输数据的 UE的标识, 在 Un接口协议栈 上配置的至少两个传输平面中确定为该 UE的标识标志的 UE提供服务的传输 平面,然后基于确定的该传输平面传输对应该 UE的传输数据。也就是说可以 将 RS或 eNode B所服务的所有 UE进行分组, 由 Un接口协议栈上配置的每 个传输平面负责对其中一组中 UE发送或接收的数据进行传输, RS或 eNode B 可以针对 Un接口协议栈上配置的每个传输平面,保存该传输平面标识与该传 输平面负责的 UE的标识的对应关系,这样 RS或 eNode B在每次传输数据之 前,首先查看该要传输的数据对应的 UE的标识,再从存储的对应关系中查找 到对应该 UE的标识的传输平面的标识,然后将对应数据放置到查找到的传输 平面的标识标志的传输平面上进行传输。 例如如上述图 4或图 5所示, RS与 eNode B可以使用用户传输平面 1或控制传输平面 1来传输 RS与 eNode B管 辖的 UE1和 UE2发送和接收的数据,并使用用户传输平面 2或控制传输平面 2来传输 RS与 eNode B管辖的 UE3和 UE4发送和接收的数据。
第四种: RS与 eNode B根据第一传输平面中 MAC层上的传输数据的 MAC层包头中预留比特位上承栽的比特信息, 在 Un接口协议栈上配置的至 少两个传输平面中确定与该比特信息表示的 RLC实体标识一致的 RLC实体所 在的第二传输平面,然后将第一传输平面中 MAC层上的传输数据转发至该确 定出的第二传输平面中的 RLC实体上继续进行传输。
由于 Un接口协议栈上配置有至少两个传输平面,因此可能出现不同传输 平面中的不同 MAC层进行复用的情况,接收端为了能够正确的将一个传输平 面中 MAC层上传输的数据转发到另外一个传输平面中的 RLC层上去继续传 输,可以根据发送端在传输数据的 MAC层包头中预留比特位上承载相关的比 特信息, 并基于承栽的该相关比特信息来标识该数据所要转发到的 RLC的实 体的标识。例如在 Un接口协议栈上配置有两个传输平面,编号分别为 0和 1, 则可以基于传输数据 MAC层包头中预留的 1比特位来承载相关的比特信息, 并基于承载的该相关比特信息来标识该数据所要转发到的 RLC 的实体的标 识。 具体如图 6a、 6b所示, 为 RS将一个传输平面上 MAC层中传输的数据 转发到另一传输平面上的 RLC层中继续传输的示意图, 这里以 RS为执行主 体为例来进行说明 (eNode B的执行过程同理), RS首先检测来自用户 M的 数据的 MAC层包头中预留比特位上承载的比特信息,若预留比特位上承栽的 比特信息为 0 (如图 6a所示), RS就会将该数据转发到传输平面 0中的 RLC0 实体上继续进行传输,从而实现将用户 M的数据由传输平面 1中的 MAC1转 发到传输平面 0中的 RLC0继续传输; 若预留比特位上承载的比特信息为 1 (如图 6b所示), 就会将该数据转发到传输平面 1中的 RLC1实体上继续进 行传输, 从而实现将用户 M的数据由传输平面 1整体进行传输。
又如在 Un接口协议栈上配置有 4个传输平面时, 编号分别为 0、 1、 2和 3, 则可以基于传输数据 MAC层包头中预留的 2比特位来承载相关的比特信 息, 并基于承载的该相关比特信息来标识该数据所要转发到的 RLC的实体的 标识。 具体如图 7a、 7b、 7c和 7d所示, 为 RS将一个传输平面上 MAC层中 传输的数据转发到另一传输平面上的 RLC层中继续传输的示意图, 这里同样 以 RS为执行主体为例来进行说明 ( eNode B的执行过程同理), RS首先检测 来自用户 M的数据的 MAC层包头中预留比特位上承载的比特信息, 若预留 比特位上承栽的比特信息为 01 (如图 7a所示), RS就会将该数据转发到传输 平面 1中的 RLC1实体上继续进行传输, 从而实现将用户 M的数据由传输平 面 1整体进行传输的目的; 若预留比特位上承栽的比特信息为 10 (如图 7b所 示), RS就会将该数据转发到传输平面 2中的 RLC2实体上继续进行传输, 从而实现将用户 M的数据由传输平面 1 中的 MAC1转发到传输平面 2中的 RLC2继续传输; 若预留比特位上承载的比特信息为 11 (如图 7c所示), RS 就会将该数据转发到传输平面 3 中的 RLC3实体上继续进行传输, 从而实现 将用户 M的数据由传输平面 1中的 MAC1转发到传输平面 3中的 RLC3继续 传输; 若预留比特位上承载的比特信息为 00 (如图 7d所示), RS就会将该数 据转发到传输平面 0中的 RLC0实体上继续进行传输, 从而实现将用户 M的 数据由传输平面 1中的 MAC1转发到传输平面 0中的 RLC0继续传输。
此外, RS与 eNode B还可以根据第一传输平面中 MAC层上的传输数据 的 MAC层包头中预留比特位上承载的比特信息,以及预置的比特信息与 RLC 实体标识的对应关系,确定与传输数据的 MAC层包头中预留比特位上承载的 比特信息对应的 RLC实体标识一致的 RLC实体所在的第二传输平面,然后将 第一传输平面中 MAC层上的传输数据转发至确定的第二传输平面中的 RLC 实体上继续传输。
如图 8所示, 为基于本发明实施例, Relay和 eNode B采用自身 Un接口 协议栈中配置的多个控制传输平面传输重传数据的过程示意图。
如图 9所示, 为基于本发明实施例, Relay和 eNode B采用自身 Un接口 协议栈中配置的多个用户传输平面传输重传数据的过程示意图。 这样, Relay和 eNode B就可以通过 MAC SubHeader中预留比特位的编 码方案 ,将 Un接口协议栈上配置的多个用户传输平面和控制传输平面分配给 不同 QoS要求的数据占用, 或分配给不同 UE发送和接收的数据占用, 或分 配给新传数据或重传数据占用等。
对应的, 本发明提出的基于中继移动通信系统的数据传输装置, 可以为 中继移动通信系统中的 Relay (例如, 中继节点 RN或中间站 RS ), 也可以为 eNode B, 该装置的 Un接口协议栈上配置有至少两个传输平面, 另外该装置 中还包括数据传输单元,用于通过 Un接口协议栈上配置的至少两个传输平面 来传输数据。
本发明一个优选实施例中, 数据传输单元具体包括:
用于将 Un接口协议栈上配置的至少两个传输平面划分为至少两组的子 单元;
用于基于划分得到的其中一组传输平面传输新传数据, 并基于划分得到 的另一组传输平面传输重传数据的子单元。
本发明一个优选实施例中, 数据传输单元具体包括:
用于确定待传输的数据所需的服务质量 QoS等级的子单元;
用于在 Un接口协议栈上配置的至少两个传输平面中选择能够提供确定 的 QoS等级的传输平面的子单元;
用于基于选择的传输平面传输待传输的数据的子单元。
本发明一个优选实施例中, 数据传输单元具体包括:
用于根据传输数据所对应的 UE的标识, 在 Un接口协议栈上配置的至少 两个传输平面中确定为所述 UE的标识标志的 UE提供服务的传输平面的子单 元 和
用于基于确定的传输平面传输所述传输数据的子单元。
本发明一个优选实施例中, 数据传输单元具体包括:
用于根据第一传输平面中媒体接入控制 MAC层上的传输数据的 MAC层 包头中预留比特位上承载的比特信息,在 Un接口协议栈上配置的至少两个传 输平面中确定与所述比特信息表示的无线链路控制 RLC实体标识一致的 RLC 实体所在的第二传输平面的子单元;
用于将第一传输平面中 MAC层上的传输数据转发至确定的第二传输平 面中的 RLC实体上继续传输的子单元。
本发明一个优选实施例中, 数据传输单元具体包括:
用于根据第一传输平面中 MAC层上的传输数据的 MAC层包头中预留比 特位上承载的比特信息, 以及预置的比特信息与 RLC实体标识的对应关系, 确定与传输数据的 MAC层包头中预留比特位上承载的比特信息对应的 RLC 实体标识一致的 RLC实体所在的第二传输平面的子单元;
用于将第一传输平面中 MAC层上的传输数据转发至确定的第二传输平 面中的 RLC实体上继续传输的子单元。
本发明一个优选实施例中, 数据传输单元具体包括:
用于通过 Un接口协议栈上配置的至少两个传输平面分别生成的一个 MAC数据分组单元 PDU传输数据的子单元。
本发明一个优选实施例中, 数据传输单元具体包括:
用于通过 Un接口协议栈上配置的至少两个传输平面共用 MAC层实体、 RLC层实体以及分组数据控制协议 PDCP层实体中的至少一个协议层实体传 输数据的子单元; 或
用于通过 Un接口协议栈上配置的至少两个传输平面分别通过各自的 MAC层实体、 RLC层实体以及 PDCP层实体传输数据的子单元。
该数据传输单元涉及的如何通过 Un接口协议栈上配置的至少两个传输 平面来传输数据的更为详细的实现方式请参照上述方法中的详细说明, 这里 不再赘述。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种基于中继移动通信系统的数据传输方法, 其特征在于, 包括: 在中继设备与基站 eNode B的 Un接口协议栈上配置至少两个传输平面; 以及
中继设备与 eNode B通过 Un接口协议栈上配置的至少两个传输平面传输 数据。
2、 如权利要求 1所述的方法, 其特征在于, 所述每个传输平面分别生成 一个媒体接入控制 MAC数据分组单元 PDU, 并通过生成的所述 MAC PDU 传输数据。
3、 如权利要求 2所述的方法, 其特征在于, 所述至少两个传输平面共用 MAC层实体、 无线链路控制 RLC层实体以及分组数据控制协议 PDCP层实 体中的至少一个协议层实体传输数据; 或
所述至少两个传输平面分别通过各自的 MAC层实体、 RLC层实体以及 PDCP层实体传输数据。
4、 如权利要求 3所述的方法, 其特征在于, 在所述至少两个传输平面共 用 MAC层实体时,所述 MAC层实体通过多个混合自动重传请求 HARQ进程 分别生成多个 MAC PDU。
5、 如权利要求 1所述的方法, 其特征在于, 中继设备与 eNode B通过至 少两个传输平面传输数据, 具体包括:
中继设备与 eNode B将 Un接口协议栈上配置的至少两个传输平面划分为 至少两组; 以及
基于划分得到的其中一组传输平面传输新传数据, 并基于划分得到的另 一组传输平面传输重传数据。
6、 如权利要求 1所述的方法, 其特征在于, 中继设备与 eNode B通过至 少两个传输平面传输数据, 具体包括:
中继设备与 eNode B确定待传输的数据所需的服务盾量 QoS等级; 以及 在 Un接口协议栈上配置的至少两个传输平面中选择能够提供确定的 QoS 等级的传输平面;
中继设备与 eNode B基于选择的传输平面传输待传输的数据。
7、 如权利要求 1所述的方法, 其特征在于, 中继设备与 eNode B通过至 少两个传输平面传输数据, 具体包括:
中继设备与 eNode B 据传输数据所对应的 UE的标识,在 Un接口协议 传输平面; 以及
基于确定的传输平面传输所述传输数据。
8、 如 1~7任一权利要求所述的方法, 其特征在于, 所述传输平面包括用 户传输平面和控制传输平面;
其中用户传输平面包括物理层、 媒体接入控制 MAC 层、 无线链路控制 RLC实体层和分组数据控制协议 PDCP层;
其中控制传输平面包括物理层、 MAC层、 RLC实体层、 PDCP层和无线 资源控制 RRC层。
9、 如权利要求 8所述的方法, 其特征在于, 中继设备与 eNode B通过至 少两个传输平面传输数据, 具体包括:
中继设备与 eNode B根据第一传输平面中 MAC层上的传输数据的 MAC 层包头中预留比特位上承载的比特信息,在 Un接口协议栈上配置的至少两个 传输平面中确定与所述比特信息表示的 RLC实体标识一致的 RLC实体所在的 第二传输平面; 以及
将第一传输平面中 MAC 层上的传输数据转发至确定的第二传输平面中 的 RLC实体上继续传输。
10、 如权利要求 8所述的方法, 其特征在于, 中继设备与 eNode B通过 至少两个传输平面传输数据, 具体包括:
中继设备与 eNode B根据第一传输平面中 MAC层上的传输数据的 MAC 层包头中预留比特位上承栽的比特信息, 以及预置的比特信息与 RLC实体标 识的对应关系,确定与传输数据的 MAC层包头中预留比特位上承栽的比特信 息对应的 RLC实体标识一致的 RLC实体所在的第二传输平面; 以及
将第一传输平面中 MAC 层上的传输数据转发至确定的第二传输平面中 的 RLC实体上继续传输。
11、 一种基于中继移动通信系统的数据传输装置, 其特征在于, 所述装 置的 Un接口协议栈上配置有至少两个传输平面, 所述装置包括:
数据传输单元,用于通过 Un接口协议栈上配置的至少两个传输平面传输 数据。
12、 如权利要求 11所述的装置, 其特征在于, 所述数据传输单元具体包 括:
用于将 Un接口协议栈上配置的至少两个传输平面划分为至少两组的子 单元;
用于基于划分得到的其中一组传输平面传输新传数据, 并基于划分得到 的另一组传输平面传输重传数据的子单元。
13、 如权利要求 11所述的装置, 其特征在于, 所述数据传输单元具体包 括:
用于确定待传输的数据所需的服务质量 QoS等级的子单元;
用于在 Un接口协议栈上配置的至少两个传输平面中选择能够提供确定 的 QoS等级的传输平面的子单元;
用于基于选择的传输平面传输待传输的数据的子单元。
14、 如权利要求 11所述的装置, 其特征在于, 所述数据传输单元具体包 括:
用于根据传输数据所对应的 UE的标识, 在 Un接口协议栈上配置的至少 和
用于基于确定的传输平面传输所述传输数据的子单元。
15、 如权利要求 11所述的装置, 其特征在于, 所述数据传输单元具体包 括:
用于根据第一传输平面中媒体接入控制 MAC层上的传输数据的 MAC层 包头中预留比特位上承载的比特信息,在 Un接口协议栈上配置的至少两个传 输平面中确定与所述比特信息表示的无线链路控制 RLC实体标识一致的 RLC 实体所在的第二传输平面的子单元;
用于将第一传输平面中 MAC层上的传输数据转发至确定的第二传输平 面中的 RLC实体上继续传输的子单元。
16、 如权利要求 11所述的装置, 其特征在于, 所述数据传输单元具体包 括:
用于根据第一传输平面中 MAC层上的传输数据的 MAC层包头中预留比 特位上承载的比特信息, 以及预置的比特信息与 RLC实体标识的对应关系, 确定与传输数据的 MAC层包头中预留比特位上承栽的比特信息对应的 RLC 实体标识一致的 RLC实体所在的第二传输平面的子单元;
用于将第一传输平面中 MAC层上的传输数据转发至确定的第二传输平 面中的 RLC实体上继续传输的子单元。
17、 如权利要求 11所述的装置, 其特征在于, 所述数据传输单元具体包 括:
用于通过 Un接口协议栈上配置的至少两个传输平面分别生成的一个 MAC数据分组单元 PDU传输数据的子单元。
18、 如权利要求 11所述的装置, 其特征在于, 所述数据传输单元具体包 括:
用于通过 Un接口协议栈上配置的至少两个传输平面共用 MAC层实体、 RLC层实体以及分组数据控制协议 PDCP层实体中的至少一个协议层实体传 输数据的子单元; 或
用于通过 Un接口协议栈上配置的至少两个传输平面分别通过各自的 MAC层实体、 RLC层实体以及 PDCP层实体传输数据的子单元。
PCT/CN2010/077702 2009-10-16 2010-10-13 基于中继移动通信系统的数据传输方法及其装置 WO2011044839A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012533471A JP5469750B2 (ja) 2009-10-16 2010-10-13 中継移動通信システムに基づくデータ伝送方法および装置
EP10823069.9A EP2490399B1 (en) 2009-10-16 2010-10-13 Method for data transmission based on relay mobile communication system and equipment thereof
US13/501,785 US8804744B2 (en) 2009-10-16 2010-10-13 Method and device for transmitting data based on a relay mobile communication system
KR1020127012593A KR101407280B1 (ko) 2009-10-16 2010-10-13 이동 통신 중계 시스템을 기반으로 하는 데이터 전송 방법 및 그 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910236027.X 2009-10-16
CN200910236027XA CN102045148B (zh) 2009-10-16 2009-10-16 基于中继移动通信系统的数据传输方法及其装置

Publications (1)

Publication Number Publication Date
WO2011044839A1 true WO2011044839A1 (zh) 2011-04-21

Family

ID=43875845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077702 WO2011044839A1 (zh) 2009-10-16 2010-10-13 基于中继移动通信系统的数据传输方法及其装置

Country Status (6)

Country Link
US (1) US8804744B2 (zh)
EP (1) EP2490399B1 (zh)
JP (1) JP5469750B2 (zh)
KR (1) KR101407280B1 (zh)
CN (1) CN102045148B (zh)
WO (1) WO2011044839A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6348517B2 (ja) 2013-02-12 2018-06-27 アルティオスター ネットワークス, インコーポレイテッド ロングタームエボリューション無線アクセスネットワーク
US10326569B2 (en) 2013-02-12 2019-06-18 Altiostar Networks, Inc. Inter-site carrier aggregation with physical uplink control channel monitoring
WO2017177224A1 (en) 2016-04-08 2017-10-12 Altiostar Networks, Inc. Wireless data priority services
WO2017177223A1 (en) 2016-04-08 2017-10-12 Altiostar Networks, Inc. Dual connectivity
WO2018000363A1 (zh) 2016-06-30 2018-01-04 华为技术有限公司 一种传输数据的方法、设备和网络系统
US10624034B2 (en) 2016-12-13 2020-04-14 Altiostar Networks, Inc. Power control in wireless communications
WO2019036861A1 (zh) * 2017-08-21 2019-02-28 北京小米移动软件有限公司 无线承载的指示方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716830A (zh) * 2004-06-30 2006-01-04 华为技术有限公司 一种通过空中接口实现多媒体广播多播业务的方法
US20080276003A1 (en) * 2007-05-03 2008-11-06 Sybase 365, Inc. System and Method for Enhanced Messaging Intermediary
CN101384020A (zh) * 2007-09-05 2009-03-11 中兴通讯股份有限公司 一种无线中继系统及其数据传输方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003304219A1 (en) * 2003-06-18 2005-01-04 Utstarcom (China) Co. Ltd. Method for implementing diffserv in the wireless access network of the universal mobile telecommunication system
WO2007131347A1 (en) * 2006-05-11 2007-11-22 Nortel Networks Limited Media access control protocol for multi-hop network systems and method therefore
US8285197B2 (en) * 2006-06-12 2012-10-09 Research In Motion Limited System and method for pushing information from a server to a mobile device
CN1996920A (zh) * 2006-11-29 2007-07-11 北京邮电大学 基于协同机理的新型无线通信组网方法
KR100987228B1 (ko) * 2007-01-24 2010-10-12 삼성전자주식회사 이동통신 시스템에서 매체 액세스 제어 프로토콜을 통한데이터 송수신 방법 및 장치
US20090196301A1 (en) * 2007-05-14 2009-08-06 Brian Parsons Methods, systems and apparatus for monitoring and/or generating communications in a communications network
US8855138B2 (en) * 2008-08-25 2014-10-07 Qualcomm Incorporated Relay architecture framework
US20100260126A1 (en) * 2009-04-13 2010-10-14 Qualcomm Incorporated Split-cell relay packet routing
US8320827B2 (en) * 2009-06-17 2012-11-27 Interdigital Patent Holdings, Inc. Method and apparatus for performing handover with a relay node

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716830A (zh) * 2004-06-30 2006-01-04 华为技术有限公司 一种通过空中接口实现多媒体广播多播业务的方法
US20080276003A1 (en) * 2007-05-03 2008-11-06 Sybase 365, Inc. System and Method for Enhanced Messaging Intermediary
CN101384020A (zh) * 2007-09-05 2009-03-11 中兴通讯股份有限公司 一种无线中继系统及其数据传输方法

Also Published As

Publication number Publication date
CN102045148A (zh) 2011-05-04
EP2490399B1 (en) 2020-08-26
KR101407280B1 (ko) 2014-06-27
JP2013507861A (ja) 2013-03-04
KR20120083466A (ko) 2012-07-25
JP5469750B2 (ja) 2014-04-16
US8804744B2 (en) 2014-08-12
EP2490399A1 (en) 2012-08-22
US20120230248A1 (en) 2012-09-13
EP2490399A4 (en) 2017-05-31
CN102045148B (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
US11800429B2 (en) Methods and systems for routing data through IAB nodes in 5G communication networks
US10244548B2 (en) Radio station and method of processing user data with radio station
US11349608B2 (en) Method and apparatus for transmitting and receiving duplicate packets in next-generation mobile communication system
US10548024B2 (en) Cloud communication center system and method for processing data in a cloud communication system
CN1822573B (zh) 用于在无线通信系统中控制数据通信的系统和方法
JP4711844B2 (ja) 無線通信システムにおける上りリンクのチャネル構成
WO2011044839A1 (zh) 基于中继移动通信系统的数据传输方法及其装置
TW200818751A (en) Wireless communication systems
WO2010105532A1 (zh) 一种无线中继系统和无线中继系统的通信方法
EP2785138B1 (en) Radio station and method of processing user data with radio station
WO2010121416A1 (zh) 中继链路中处理数据的方法、中继节点和系统
CN110999162B (zh) 用于在移动通信系统中传送和接收重复分组的方法和装置
WO2020088472A1 (zh) 通信方法及装置
US11979774B2 (en) Methods and infrastructure equipment
JP2022532307A (ja) マルチapジョイント再送のための通信装置及び通信方法
EP4039061A1 (en) A method of and equipment for performing transfer of data packets in end-to-end multi-hop sidelink radio communication
CN115486049A (zh) 用于在无线通信系统中发送数据的装置和方法
WO2011020318A1 (zh) 一种上行增强控制信道上快乐位设置方法及终端
JP5192201B2 (ja) 無線通信システム及びその方法
WO2009079842A1 (fr) Procédé et dispositif de commande de transmission de paquet de données dans un réseau à relais sans fil
WO2011082579A1 (zh) 增强型专用信道传输承载模式的配置方法及系统
JP5122629B2 (ja) 無線通信システムの下りリンクの信号を送信する基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533471

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13501785

Country of ref document: US

Ref document number: 2010823069

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127012593

Country of ref document: KR

Kind code of ref document: A