CN115486049A - 用于在无线通信系统中发送数据的装置和方法 - Google Patents

用于在无线通信系统中发送数据的装置和方法 Download PDF

Info

Publication number
CN115486049A
CN115486049A CN202180032598.0A CN202180032598A CN115486049A CN 115486049 A CN115486049 A CN 115486049A CN 202180032598 A CN202180032598 A CN 202180032598A CN 115486049 A CN115486049 A CN 115486049A
Authority
CN
China
Prior art keywords
data
harq process
harq
base station
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180032598.0A
Other languages
English (en)
Inventor
安真秀
金埈斗
李东雨
韩暎求
薛志允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN115486049A publication Critical patent/CN115486049A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1628List acknowledgements, i.e. the acknowledgement message consisting of a list of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/321Interlayer communication protocols or service data unit [SDU] definitions; Interfaces between layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0005Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0011Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to payload information

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及用于支持比诸如长期演进(LTE)的第四代(4G)通信系统更高的数据传输速率的第五代(5G)或预5G通信系统。根据本公开的各种实施例,在无线通信系统中,基站包括至少一个收发器和耦合到至少一个收发器的至少一个处理器。至少一个处理器可以被配置为:控制至少一个收发器基于第一混合自动请求(HARQ)过程发送第一数据;控制至少一个收发器基于第一HARQ过程发送第二数据;在发送第二数据之后,基于第一数据被接收的结果生成第三数据;以及控制至少一个收发器基于第二HARQ过程发送第三数据。

Description

用于在无线通信系统中发送数据的装置和方法
技术领域
本公开通常涉及无线通信系统,更具体地,涉及用于在无线通信系统中发送数据的装置和方法。
背景技术
自从第四代(4G)通信系统商业化以来,开发增强型第五代(5G)通信系统或前5G通信系统的努力一直在进行,以便满足对无线数据流量的日益增长的需求。为此,5G通信系统或前5G通信系统被称为超越4G网络通信系统或后长期演进(LTE)系统。
5G通信系统被认为在超高频(毫米波)频带(例如,60GHz频带)中实现,以实现高数据传输速率。对于5G通信系统,正在讨论用于波束成形、大规模多输入多输出(MIMO)、全维MIMO(FD-MIMO)、阵列天线、模拟波束成形和大型天线的技术,以减轻无线电波的路径损耗并增加无线电波在超高频带中的传输距离。
此外,用于5G通信系统中的演进小型小区、高级小型小区、云无线电接入网络(RAN)、超密集网络、设备到设备通信(D2D)、无线回程、移动网络、协作通信、协调式多点(CoMP)和干扰消除的技术正在被开发,以增强系统的网络。
此外,作为高级编码调制(ACM)方案的混合频移键控和正交幅度调制(FQAM)和滑动窗口叠加编码(SWSC),以及作为5G系统中的增强接入技术的滤波器组多载波(FBMC)、非正交多址(NOMA)和稀疏码多址(SCMA)正在被开发。
在无线通信环境中,要求发送端和接收端来保证无线信道中传输的可靠性。为了实现这一点,基站或终端可以在各个层上使用重传技术和纠错技术。具体地,基站或终端可以通过混合自动重复请求(HARQ)方法来识别由物理层接收的数据是否包括不可解码的错误,在该方法中组合了前向纠错(FEC)和自动请求(ARQ),并且可以在错误发生时请求重传,从而增强性能。
在无线通信环境中,要求发送端和接收端来保证无线信道中传输的可靠性。为了实现这一点,基站或终端可以在各个层上使用重传技术和纠错技术。具体地,基站或终端可以通过混合自动重复请求(HARQ)方法来识别由物理层接收的数据是否包括不可解码的错误,在该方法中组合了前向纠错(FEC)和自动请求(ARQ),并且可以在错误发生时请求重传,从而增强性能。
发明内容
技术问题
基于上述讨论,本公开提供了用于解决无线通信系统中由混合自动请求(HARQ)标识符(ID)的相对短缺而导致的吞吐量降级的装置和方法。
此外,本公开提供了用于在利用载波聚合(CA)的系统中发生小区间延迟的环境中防止吞吐量降级的进程,以及用于为此进行重传的进程。
此外,本公开提供了用于在利用小区之间的载波聚合(CA)的系统中发生小区间延迟的环境中防止吞吐量降级的进程,该小区利用不同时间-频率基本单元(参数集),以及用于其重传的进程。
技术方案
根据本公开的各种实施例,无线通信系统中的基站的方法可以包括:基于第一混合自动请求(HARQ)过程发送第一数据;基于第一HARQ过程发送第二数据;在发送第二数据之后,基于对第一数据的接收结果生成第三数据;以及基于第二HARQ过程发送第三数据。
根据本公开的各种实施例,无线通信系统中的基站可以包括:至少一个收发器;以及与至少一个收发器耦合的至少一个处理器,并且至少一个处理器可以被配置为:控制至少一个收发器基于第一混合自动请求(HARQ)过程发送第一数据;控制至少一个收发器基于第一HARQ过程发送第二数据;在发送第二数据之后,基于对第一数据的接收结果生成第三数据;以及控制至少一个收发器基于第二HARQ过程发送第三数据。
发明的有益效果
根据本公开的各种实施例的装置和方法可以解决由混合自动请求(HAQR)标识符(ID)的短缺而导致的性能降级,从而增强通信系统的下行链路性能。
此外,根据本公开的各种实施例的装置和方法可以根据信道条件自适应地操作HARQ处理进程,从而增强通信性能。
本公开中实现的效果不限于上面提到的那些,基于下面提供的描述,本领域技术人员可以清楚地理解上面没有提到的其他效果。
附图说明
图1a和图1b是示出了根据本公开的各种实施例的无线通信环境的示例的示图;
图2是示出根据本公开的各种实施例的无线通信系统的无线电资源域的示例的示图;
图3是示出根据本公开的各种实施例的无线通信系统中的无线协议的结构的示例的示图;
图4a、图4b和图4c是示出根据本公开的各种实施例的现有混合自动请求(HARQ)过程技术的示例的示图;
图5是示出根据本公开的各种实施例的基于传输机会(opportunity)的HARQ技术的示例的示图;
图6是示出根据本公开的各种实施例的基于传输机会的HARQ进程的重传的示例的示图;
图7是示出根据本公开的各种实施例的基于传输机会的HARQ进程的重传的另一示例的示图;
图8是示出根据本公开的各种实施例的HARQ过程和传输数据之间的映射信息的示例配置的框图;
图9是示出根据本公开的各种实施例的用于HARQ进程的基站的示例操作流程的流程图;
图10a和图10b是示出由物理下行链路控制信道(PDCCH)丢失引起的新数据指示符(NDI)失配的示图;
图11是示出根据本公开的各种实施例的用于为每个HARQ过程执行传输进程的基站的操作的示图;
图12a和图12b是示出根据各种实施例的用于配置自适应伺机HARQ过程组的基站的示例操作的流程图;
图13是示出根据本公开的各种实施例的无线通信系统中的基站的示例配置的框图;和
图14是示出根据本公开的各种实施例的无线通信系统中的终端的示例配置的框图。
具体实施方式
本公开中使用的术语用于描述各种示例实施例,并不旨在限制其他实施例的范围。除非另有说明,单数形式的术语可以包括复数形式。本文使用的所有术语,包括技术或科学术语,可以具有本领域技术人员通常理解的相同含义。还将理解,在字典中定义的术语可以被解释为具有与相关的相关技术的上下文含义相同或相似的含义,而不是理想化或过于正式的含义,除非本文在公开中明确如此定义。在一些情况下,即使术语是本公开中定义的术语,它们也不应被解释为排除本公开的实施例。
在下面描述的本公开的各种实施例中,将以示例的方式描述硬件方式的方法。然而,本公开的各种实施例包括使用硬件和软件二者的技术,因此不排除基于软件方式的方法。
下文描述的公开内容涉及用于无线通信重传进程的装置和方法。例如,本公开描述了无线通信系统中的数据传输和重传进程,并且还描述了用于结合现有操作自适应地利用该进程的解决方案。
如本文所使用的,与载波聚合(CA)相关的术语(例如,小区、特殊小区(SpCell)、主(primary)小区(pCell)、辅小区(SCell)、频率范围(FR)等)、与传输/重传技术相关的术语(例如,自动重传请求(ARQ)、混合ARQ(HARQ)、HARQ过程、确认(ACK)、非确认(NACK)等)、指示信号的术语(例如,参考信号、系统信息、控制信号、消息、数据)、指示网络实体的术语(例如,通信节点、无线电节点、无线电单元、网络节点、主(master)节点(MN)、辅节点(SN)、发送/接收点(TRP)、数字单元(DU)、无线电单元(RU)、大规模MIMO单元(MMU))仅仅是为了便于解释的示例。因此,本公开不限于下面描述的术语,并且可以使用具有相同技术含义的其他术语。
此外,本公开使用在一些通信标准(例如,第三代合作伙伴计划(3GPP))中定义的术语描述了各种实施例,但是这些实施例仅仅是示例。本公开的各种实施例可以被容易地修改并应用于其他通信系统。
此外,在本公开中,表达“超过”或“小于”可以用于确定是否满足、履行特定条件,但是这些仅用于表达一个示例,并不排除表达“大于或等于”或“小于或等于”。“大于或等于”所描述的条件可以用“超过”代替,“小于或等于”所描述的条件可以用“小于”代替,并且“大于或等于且小于”所描述的条件可以用“超过且小于或等于”代替。
本公开一般涉及无线通信系统,并且更具体地,涉及用于在无线通信系统中减少由HARQ过程ID的限制引起的传输的延迟的装置和方法。在下文中,将通过图1a、图1b、图2和图3来描述无线通信环境、无线电资源和无线协议,以解释本公开的无线通信系统。
图1a和图1b是示出了根据本公开的各种实施例的无线通信环境的示例的示图。参照图1a,基站110和终端120被示为无线通信系统中使用无线信道的节点的部分。终端120可以与多个基站连接。参考图1b,基站110-1、110-2、……、110-n可以通过多连接(例如,双连接(DC))与终端120连接。在下文中,将参考基站110描述根据各种实施例的操作,但是,为了便于解释,基站110的描述将以相同或相似的方式应用于基站110-1、110-2、……、110-n。
基站110是向终端120提供无线电接入的网络基础设施。基站110具有被定义为基于信号发送距离的预定(例如,指定的)地理区域的覆盖范围。下文中使用的术语“覆盖”可以指示基站110的服务覆盖区域。基站110可以覆盖一个小区或者可以覆盖多个小区。本文,可以通过支持频率、覆盖扇形的区域来区分多个小区。
除了基站之外,基站110可以被称为“接入点(AP)”、“eNodeB(eNB)”、“第五代节点(5G节点)”、“5G节点B(NB)”、“下一代节点B(gNB)”、“无线点”、“发送/接收点(TRP)”、“分布式单元(DU)”、“无线电单元(RU)”、“远程无线电头端(RRH)”或者具有与上述术语相同的技术含义的其他术语。根据各种实施例,基站110可以与一个或多个“发送/接收点(TRP)”连接。基站110可以通过一个或多个TRP向终端120发送下行链路信号,或者可以通过一个或多个TRP接收上行链路信号。
终端120是由用户使用的设备,并且通过无线信道执行与基站110的通信。根据情况,终端120可以在没有用户干预的情况下操作。也就是说,至少一个终端120可以是执行机器类型通信(MTC)的设备,并且可以不由用户携带。除了终端之外,终端120还可以被称为“用户设备(UE)”、“移动站”、“订户站”、“客户驻地设备(CPE)”、“远程终端”、“无线终端”、“电子设备”、“车辆终端”、“用户设备”或与上述术语具有相同技术含义的其他术语。
作为多连接的种类的双连接(DC)技术是从第三代合作伙伴计划(3GPP)标准发布12引入的。双连接是将终端连接到不同种类或相同种类的两个独立无线通信小区组的技术,两个独立无线通信小区组具有分开的无线电资源控制实体,并且在信号发送和接收中使用定位在不同频带中的相应小区组内的小区的分量载波上的频率资源,来增强终端和基站的频率使用效率。双连接可以由主小区组和辅小区组配置,主小区组管理具有直接连接到核心网络的控制平面的终端的无线电资源控制状态,辅小区组与主小区组互锁。
载波聚合(CA)技术是在3GPP标准发布10中引入的。CA是将终端连接到具有公共无线电资源控制实体的相同种类的无线通信小区组的技术,并且在信号发送和接收中同时使用定位在不同频带的相应小区的分量载波上的频率资源,来增强终端和基站的频率使用效率。
由于在使用终端的有限无线通信资源和基站的有限无线通信资源中的增强效率的技术优势,所以从学术方面积极地进行对双连接技术和载波聚合技术的研究。具体地,5G移动通信系统采用通过与4G核心网络互锁来操作的非独立方法作为基本操作方法,因此,双重连接和载波聚合可以用作支持5G移动通信系统的商业服务中的核心技术。
根据本公开的各种实施例的通信节点(例如,终端、基站、核心网络的实体)可以在LTE系统中操作。此外,根据本公开的各种实施例的通信节点(例如,终端、基站、核心网络的实体)可以在NR系统中操作。此外,根据本公开的各种实施例的通信节点(例如,终端、基站、核心网络的实体)可以在LTE系统和NR系统二者中操作。对图1a至图3所示的结构和层的解释仅仅是示例,任何一个通信系统都可以不排除其他通信系统。
图2是示出根据本公开的各种实施例的无线通信系统中的无线电资源域的示例的示图。在各种实施例中,无线电资源域可以包括时频域的结构。在各种实施例中,无线通信系统可以包括LTE通信系统或NR通信系统。
参照图2,无线电资源域上的横轴指示时域,纵轴指示频域。无线电帧可以是由10个子帧形成的时域部分。时域中的最小传输单元可以是正交频分复用(OFDM)和/或离散傅立叶变换扩频OFDM(DFT-s-OFDM)符号,并且可以聚集形成一个时隙202的Nsymb数量的OFDM和/或DFT-s-OFDM符号201。在各种实施例中,OFDM符号可以包括关于使用OFDM复用方法发送和接收信号的情况的符号,并且DFT-s-OFDM符号可以包括关于使用DFT-s-OFDM或单载波频分多址(SC-FDMA)复用方法发送和接收信号的情况的符号。在下文中,在本公开中,为了便于解释,将描述关于OFDM符号的实施例,但是该实施例可以应用于关于DFT-s-OFDM符号的实施例。频域中的最小传输单元是子载波,并且形成资源网格的载波带宽可以由总共NSC BW数量的子载波205形成。另外,在本公开中,为了便于解释,将描述关于下行链路信号发送和接收的实施例,但是该实施例可以应用于关于上行链路信号发送和接收的实施例。
在各种实施例中,形成一个子帧203的时隙202的数量以及时隙202的长度可以根据子载波间隔而变化。子载波间隔可以被称为参数集(numerology)(μ)。也就是说,子载波间隔、子帧中包括的时隙的数量、时隙长度和子帧的长度可以被不同地配置。例如,当NR通信系统中的子载波间隔(SCS)是15kHz时,一个时隙202可以形成一个子帧203,并且时隙202和子帧203的长度可以分别是1毫秒。另外,例如,当子载波间隔是30kHz时,两个时隙可以形成一个子帧203。在这种情况下,时隙的长度可以是0.5毫秒,子帧的长度可以是1毫秒。
在各种实施例中,可以根据通信系统不同地应用子载波间隔、子帧中包括的时隙数量、时隙长度和子帧长度。例如,在LTE系统的情况下,子载波间隔可以是15kHz,并且两个时隙可以形成一个子帧。在这种情况下,时隙的长度可以是0.5毫秒,子帧的长度可以是1毫秒。在另一个示例中,在NR系统的情况下,子载波间隔(μ)可以是15kHz、30kHz、60kHz、120kHz、240kHz之一,并且根据子载波间隔(μ),一个子帧中包括的时隙的数量可以是1、2、4、8、16。
时频域中资源的基本单元可以是资源元素(RE)206,并且资源元素206可以被表达为OFDM符号索引和子载波索引。资源块可以包括多个资源元素。在LTE系统中,资源块(RB)(或物理资源块(PRB))可以由时域中的Nsymb数量的连续OFDM符号和频域中的NSC RB数量的连续子载波来定义。例如,包括在一个RB中的符号的数量可以由Nsymb=14表达,子载波的数量可以由NSC RB=12表达。在另一个示例中,包括在一个RB中的符号的数量可以由Nsymb=7表达,子载波的数量可以由NSCRB=12表达。RB的数量(NRB)可以根据系统传输频带的带宽而改变。在NR系统中,资源块(RB)207可以由频域中的NSC RB数量的连续子载波来定义。子载波的数量可以由NSC RB=12表达。频域可以包括公共资源块(CRB)。可以在频域上的带宽部分(BWP)中定义物理资源块(PRB)。根据子载波间隔,可以不同地确定CRB数量和PRB数量。
在NR和/或LTE系统中,关于下行链路数据或上行链路数据的调度信息可以通过下行链路控制信息(DCI)从基站传递到终端。在各种实施例中,可以根据各种格式来定义DCI,并且每个格式可以指示DCI是包括关于上行链路数据的调度信息(例如,UL授权)还是包括关于下行链路数据的调度信息(例如,DL授权)、DCI是具有小的尺寸的控制信息的紧凑DCI还是回退(fall-back)DCI、是否应用了使用多个天线的空间复用、和/或DCI是否是用于控制功率的DCI。例如,包括关于下行链路数据的调度控制信息(DL授权)的DCI格式(例如,NR的DCI格式1_0)可以包括以下控制信息的至少一条信息。NR DCI格式1_0可以包括关于下行链路数据的调度。
-DCI格式标识符:用于识别DCI格式的标识符;
-频域资源分配:指示分配给数据传输的RB;
-时域资源分配:指示分配给数据传输的时隙和符号;
-VRB到PRB映射:指示是否应用虚拟资源块(VRB)映射;
-调制和编码方案(MCS):指示用于数据传输的调制方案和作为要发送的数据的传运(transport)块的大小;
-新数据指示符(NDI):指示传输是HARQ初始传输还是重传;
-冗余版本(RV):指示HARQ的冗余版本;
-HARQ过程号:指示HARQ的过程号;
-PDSCH分配信息(下行链路分配索引):指示终端应该向基站报告的PDSCH接收结果的数量(例如,HARQ-ACK的数量);
-物理上行链路控制信道(PUCCH)的发送功率控制(TPC)命令:指示作为上行链路控制信道的PUCCH的发送功率控制命令;
-PUCCH资源指示符:指示用于报告包括关于通过对应的DCI配置的PDSCH的接收结果的HARQ-ACK的PUCCH资源;和
-PUCCH传输定时指示符(PDSCH-to-HARQ_feedback定时指示符):指示用于报告包括关于通过对应DCI被配置的PDSCH的接收结果的HARQ-ACK的PUCCH应该被发送的时隙或符号信息。
DCI可以经历信道编码和调制过程,并且可以在物理下行链路控制信道(PDCCH)(或控制信息,在下文中,它们可互换地使用)或增强型PDCCH(EPDCCH)(或增强型控制信息,在下文中,它们可互换地使用),即下行链路物理控制信道上发送。在以下描述中,PDCCH或EPDCCH的发送和接收可以理解为PDCCH或EPDCCH上的DCI发送和接收,并且物理下行链路共享信道(PDSCH)的发送和接收可以理解为PDSCH上的下行链路数据发送和接收。
在各种实施例中,被加扰为独立于每个终端的特定无线电网络临时标识符(RNTI)(或终端标识符C-RNTI)的循环冗余校验(CRC)可以被添加到DCI,并且关于每个终端的DCI可以被信道编码,然后可以被配置为独立的PDCCH并可以被发送。在时域中,可以在控制信道传输时段期间发送PDCCH。PDCCH在频域中的映射定位可以由每个终端的至少一个标识符(ID)来确定,并且可以在总系统传输频带或系统传输频带中的一些中发送。
下行链路数据可以在物理下行链路共享信道(PDSCH)上发送,PDSCH是用于发送下行链路数据的物理信道。可以在控制信道传输时段之后发送PDSCH,并且可以基于通过PDCCH发送的DCI来确定PDSCH在频域中的映射定位、调度信息(如关于PDSCH的调制方案)。
通过DCI的控制信息中的调制编码方案(MCS),基站可以向终端通知应用于要发送的PDSCH的调制方案和要发送的数据的大小(传输块大小(TBS))。在各种实施例中,MCS可以由5比特或更多或更少形成。在用于纠错的信道编码被应用于基站意图发送的传输块之前,TBS可以对应于TB的大小。
在NR系统中,支持发送下行链路数据的调制方案可以包括正交相移键控、16正交幅度调制(16QAM)、64QAM、256QAM中的至少一种,并且每个调制阶数(Qm)可以是2、4、6、8。例如,在QPSK调制的情况下,每个符号可以发送2比特。在16QAM调制的情况下,每个符号可以发送4比特。在64QAM调制的情况下,每个符号可以发送6比特。在256QAM调制的情况下,每个符号可以发送8比特。此外,根据系统变形,可以使用256QAM或更高的调制方案。
将基于LTE通信系统或NR通信系统来描述本公开的各种实施例,但是本公开的内容不限于此,并且可以应用于使用重传技术的各种无线通信系统。此外,根据需要,除了许可频带之外,本公开的内容还可以应用于非许可频带。
下文描述的公开内容涉及信号传递方法,由此使用物理层的下行链路数据信道将更高层信令或更高信号从基站传递到终端,或者使用物理层的上行链路数据信道将更高层信令或更高信号从终端传递到基站,并且可以包括通过无线电资源控制(RRC)信令、分组数据汇聚协议(PDCP)信令或媒体访问控制(MAC)控制元素(MAC CE)传递的信号传递方法中的至少一种。此外,更高层信令或更高信号可以包括共同发送到多个终端的系统信息,例如,系统信息块(SIB)。
图3是示出根据本公开的各种实施例的无线通信系统的无线协议的结构的示例的示图。所示的无线协议的结构可以是LTE或NR通信系统的无线协议的结构。
参照图3,无线协议包括终端和基站中的PDCP层310、RLC层320、MAC层330、PHY层340。在NR系统的情况下,无线协议还可以包括用于QoS管理的SDAP层,尽管它没有在图3中示出。
PDCP层310的主要功能可以包括以下功能中的一些:
-报头压缩和解压缩:仅ROHC;
-用户数据的传送;
-上层PDU的有序传递;
-上层PDU的无序传递;
-用于接收的PDCP PDU重新排序;
-低层SDU的重复检测;
-重传PDCP SDU;
-加密和解密;和
-上行链路中基于定时器的SDU丢弃。
在上述功能中,PDCP设备的重新排序指的是基于PCDP序列号(SN)有序对在较低层上接收的PDCP PDU进行重新排序的功能。PDCP设备的重新排序可以包括以重新排序的序列将数据传递到更高层的功能,可以包括不考虑序列而直接传递的功能,可以包括重新排序并记录丢失的PDCP PDU的功能,可以包括向发送侧报告丢失的PDCP PDU的状态的功能,以及可以包括请求重传丢失的PDCP PDU的功能。
RLC层320的主要功能可以包括以下功能中的一些:
-上层PDU的传送;
-上层PDU的有序传递;
-上层PDU的无序传递;
-通过ARQ纠错;
-RLC SDU的级联、分段和重组;
-RLC数据PDU的重新分段;
-RLC数据PDU的重新排序;
-重复检测;
-协议错误检测;
-RLC SDU丢弃;和
-RLC重新建立。
在上述功能中,RLC设备的有序传递可以指将从较低层接收的RLC SDU有序传递给较高层的功能。当一个RLC SDU被划分成多个RLC SDU并被接收时,RLC设备的有序传递可以包括重组RLC SDU并传递它们的功能。
RCL设备的有序传递可以包括参照RLC序列号(SN)或PDCP序列号(SN)对接收的RLCPDU进行重新排序的功能,可以包括对丢失的RLC PDU进行重新排序和记录的功能,可以包括向发送侧报告关于丢失的RLC PDU的状态的功能,以及可以包括请求对丢失的RLC PDU进行重传的功能。
RLC设备的有序传递可以包括当有丢失的RLC SDU时,仅将丢失的RLC SDU之前的RLC SDU有序传递给更高层的功能。此外,RLC设备的有序传递可以包括当预定定时器到期时,即使有丢失的RLC SDU,也将在定时器开始之前接收的所有RLC SDU有序传递给更高层的功能。此外,RLC设备的有序传递可以包括当预定定时器到期时,即使有丢失的RLC SDU,也将直到当前时间接收的所有RLC SDU有序传递给更高层的功能。
RLC设备可以按照接收RLC PDU的次序来处理它们,而不管序列号的顺序(无序传递),并且可以将RLC PDU传递给PDCP设备。当RLC设备接收分段时,RLC设备可以接收存储在缓冲器中的分段或者此后要接收的分段,并且可以重新配置一个完整的RLC PDU,然后可以将其传递给PDCP设备。
RLC层320可以不包括级联功能,并且可以执行MAC层330上的功能,或者可以用MAC层的复用功能来代替。
在上述功能中,RLC设备的无序传递可以指的是将从较低层接收的RLC SDU直接传递给较高层而不管顺序的功能。RLC设备的无序传递可以包括当一个RLC SDU被分段成多个RLC SDU并被接收时,重组RLC SDU并传递它们的功能。RLC设备的无序传递可以包括存储接收的RLC PDU的RLC SN或PDCP SN、排序以及记录丢失的RLC PDU的功能。
MAC层330可以与配置在一个终端中的各种RLC层设备连接,并且MAC的主要功能可以包括以下功能中的一些:
-逻辑信道和传输信道之间的映射;
-MAC SDU的复用/解复用;
-调度信息报告;
-通过HARQ纠错;
-一个UE的逻辑信道之间的优先级处理;
-借助于动态调度的UE之间的优先级处理;
-MBMS服务身份;
-传输格式选择;和
-填充。
PHY层340可以执行以下操作:针对更高层数据(对应于MAC PDU的数据)执行信道编码和调制,以及制作OFDM符号并通过无线信道发送OFDM符号,或者解调通过无线信道接收的OFDM符号并执行信道解码并将该OFDM符号传送给更高层。在这种情况下,从作为更高层的MAC层330接收的数据可以被称为传输块(TB)。
包括上述4G至5G通信系统的现有无线通信网络系统利用诸如重传技术和各层上的纠错编码的基本技术,以便实现诸如基站和终端的通信设备之间的传递可靠性。上述技术可以通过系统内各个层上的单个技术或多个技术的组合在各个层上冗余使用。这可以指例如根据一个通信系统中的每个层而冗余地和不同地实现多个重传进程。
由3GPP表示的标准机构应用这种通信原理本身,并且定义了针对多个层具有不同特性的重传进程。标准机构不仅采用基于自动重传请求(ARQ)的基于反馈的重传进程,还采用组合了ARQ和纠错编码技术的混合ARQ(HARQ)技术,并且在重传时传递不同或相同的信息或与其对应的比特,并且通过组合响应于多个传输而接收的信息或比特来恢复最初意图发送的信息。
HARQ技术要求终端识别接收的多条信息或比特的组是基于相同的数据信息,并且这带来了用于通知每个重传过程用于恢复相同数据的指示符的必要性。这样的指示符可以被称为HARQ指示(HARQ ID),HARQ ID可以用作允许终端和基站识别相同数据单元或信息的指示符,并且可以通知终端新接收的重传信息应该与先前通过相同HARQ ID接收的信息比特相组合。HARQ ID可以被称为HARQ过程ID。如上所述,可以在MAC层330上执行这样的HARQ技术。
管理HARQ过程的MAC实体可以包括用于每个服务小区的HARQ实体。HARQ实体是用于并行管理HARQ过程的实体,并且可以向对应的HARQ过程提供在DL-SCH处接收的数据,即与TB相关的HARQ信息。HARQ信息可以包括新数据指示符(NDI)、传输块大小(TBS)、冗余版本(RV)和HARQ过程ID。如上所述,HARQ信息可以通过物理层340的DCI来传递。在下文中,HARQ过程将被用作表示在通信协议中用于发送物理层传输信号的MAC层的缓冲器(例如,软缓冲器)的表达,并且将被用作表示相同或相似概念的组件的表达。
通信系统利用通过组合多个载波来增加传输期间的带宽的技术(载波聚合,下文称为CA)。这样的CA技术组合了多个频率元素,并利用这些频率元素与终端进行通信,从而使得单个终端能够具有更高的数据吞吐量。负责用作操作的基础的频率元素的终端的区域可以被称为PCell、SpCell、PSCell等,并且除了基本频率元素之外独立使用的附加频率元素的区域可以被称为SCell。PSCell指的是辅节点(SN)的PCell,SpCell指的是pCell和PSCell。SCell指的是除了SpCell以外的小区。
在上述CA技术的情况下,接收每个SpCell和SCell的下行链路发送数据的成功或失败应该以HARQ ACK/NACK的形式从终端向基站传递。在这种情况下,除了下行链路传输数据被发送给的每个小区之外,ACK/NACK信息可以被组合并通过某个小区被传递。例如,关于SpCell和一个或多个SCell的HARQ ACK/NACK信息可以通过SpCell的物理上行链路控制信道(PUCCH)来传递。HARQ ACK/NACK信息可以与SpCell或某个SCell的PUSCH传输复用,并且可以被传递。此外,例如,HARQ ACK/NACK信息可以通过被配置了PUCCH的SCell来传递。
当CA技术被上述CA技术中的HARQ ACK/NACK传递方法利用时,在HARQ ACK/NACK信息到达的小区和对应信息指示的下行链路传输发生的小区之间交换信息可能有延迟。例如,关于小区,回程网络上可能有延迟。由于HARQ ACK/NACK信息被传递给的小区和下行链路传输被提供给的小区之间的物理分离,在两个小区之间的回程网络中可能发生信息延迟。当CA操作被配置在具有在传递信息中的有意义的传递延迟的设备之间而不是在一个处理器或设备中时,这可能发生。例如,在NR通信系统的情况下,小区之间的参数集可能不同。如上面通过图2所提到的,由于参数集在小区之间被不同地配置,所以即使符号的数量或时隙的数量相同,两个小区之间的绝对长度也可能不同。例如,由于用于发送真实数据的信道的传输单元和反馈信道的传输单元之间的绝对长度有差异,所以关于HARQ过程的数据的HARQ-ACK信息可能比基站预期的更晚到达基站。
由于这样的延迟,直到识别是否接收了对应下行链路传输上的ACK/NACK,未能接收到HARQ ACK/NACK信息的小区不会导致映射到对应HARQ ID的HARQ过程的操作改变,并且可以根据HARQ方法使用重传比特组合。此后,当基站接收了对应的小区中的NACK信息时,基站可以重传与先前比特相同或不同的比特,并且终端可以操作以通过将先前传递的信息和新接收的信息与对应的HARQ ID组合来解密原始信号。例如,终端可以通过将在同一HARQ过程上接收的重传数据与软缓冲器的数据(在对应的HARQ过程处接收的数据)组合并解码来获得组合增益。
然而,为了在上述操作中通过HARQ操作获得增益,新数据(或传输块(TB))不应该被传递给对应于HARQ ID的HARQ过程,在该过程中直到重传成功或重传的数量达到预定最大值都在进行传输和重传进程,并且由于对HARQ ID的数量的限制和在上述CA环境中ACK/NACK传输的延迟,即使当有下行链路传输的无线电资源和要发送的信息时,这也可能由于HARQ ID的短缺而对传输进程造成限制。由于作为CA目标的两个设备之间的信息传输延迟较长,对传输的限制可能增加失去的(lost)传输机会的数量,并最终导致非常线性的数据吞吐量降级。换句话说,对HARQ ID数量的限制可能导致对使用HARQ技术的通信系统可以发送的传输数量的限制
使用HARQ技术,并且这些限制可以影响传输窗口大小,基站可以在没有HARQ响应的情况下通过传输窗口连续发送。也就是说,对HARQ ID的数量的限制可能影响基站-终端通信中的传输窗口大小,并且当从传输的时间延迟到接收和处理HARQ响应的时间长于通过传输窗口大小处理数据所花费的时间时,可能由于传输窗口大小的不足而无法发送数据。
基于传输机会的HARQ过程技术
为了解决上述问题,本公开的各种实施例提供了用于减少由延迟引起的损失的新的HARQ过程技术,而不是用于获取组合增益(通过比特组合获得的增益)的HARQ过程技术。在本公开中,作为用于解决通过HARQ的操作在接收端通过比特组合来恢复数据而发生的HARQ ID的短缺的方法,可以适自适应地保持现有的HARQ过程进程,或者可以利用本公开中描述的分开的进程。在本公开中,在用于现有HARQ操作的对应HARQ过程中管理的MAC PDU(或TB)被移除,使得不遵循现有的重传进程,并且当传输机会到来时,基站和终端之间的HARQ过程技术可以通过发送在对应HARQ过程中代替的PDU(或TB)的进程来操作。通过遵循分开的重传进程,例如分开的HARQ过程,可以操作基站和终端之间的HARQ过程技术。换句话说,新提供的HARQ过程技术可能不用作支持混合ARQ的系统中的ARQ进程,或者可能不应用现有HARQ过程的进程(相同的基于HARQ ID的重传管理进程)。
将基于图4a、图4b和图4c(可以称为图4a至图4c)中所示的进程来描述根据本公开的各种实施例的在HARQ技术(下文中,基于传输机会的HARQ技术)中要被替换的现有重传进程。图4a至图4c是示出了根据本公开的各种实施例的现有HARQ过程技术的示例的示图。基站由图1的基站110示出,终端由图1的终端120示出。根据图4a至图4c所示的现有HARQ过程技术,可以使用每个HARQ过程,以便不将新数据插入到对应的HARQ过程中,并且不进行新的发送,直到传输被执行有限次数或者接收了关于在每个HARQ过程中发送的数据的ACK信息。
参照图4a,示出了遵循现有的HARQ过程技术而不会导致延迟问题的基站和终端的情形400。作为示例,示出了总共操作8个HARQ过程的情形。示出了当基站和终端处于理想地操作现有系统操作的环境中时它们的操作。在每个HARQ过程中的第一传输开始之后,基站可以接收关于每个HARQ过程的ACK/NACK信息,并且可以识别ACK/NACK信息,并且可以相应地执行传输和重传进程。该实施例是当以由标准确定的HARQ过程的数量执行操作而没有问题时的实施例,并且示出了在正常单频带通信或低延迟载波聚合通信环境中基站和终端之间的操作。在发送HARQ过程#0的第一数据(a)之后,关于HARQ过程#0的第一数据(a)的反馈(ACK)在所有可用的HARQ过程用尽之前到达,因此,基站可以基于反馈生成HARQ过程#0的第二数据(a’),并且可以将第二数据发送到终端。当反馈是NACK时,基站可以基于第一数据(a)生成HARQ过程#0的第二数据,并且可以向终端发送第二数据,尽管这在图4a中未示出。
在如图4所示的环境中操作,没有应该通过本公开的实施例来解决的问题,并且在上述环境中,可以将优先级给与抑制操作将在下面描述的本公开的实施例(基于传输机会的HARQ过程技术)。检测没有出现延迟问题的情形并执行现有的HARQ过程技术也可以被理解为本公开的实施例。
图4a和图4c示出了执行具有延迟问题450的现有HARQ过程技术的基站和终端的情形430、460。作为示例,示出了总共操作8个HARQ过程的情形。与图4a的环境相比,示出了有在现有系统操作中出现的HARQ ID短缺的问题以及由此发生的性能降级的环境。图4b示出了当没有来自接收终端的重传请求时的进程,图4c示出了当有来自接收终端的重传请求时的进程。例如,示出了当载波聚合中的相应频带中的时间-频率基本单元不同时或者处理组合的两个频带的两个区域之间的信息传递的延迟相对长时,在现有系统中执行的基站和终端的操作。
每个HARQ过程被设置为直到接收关于首先发送的目标数据的ACK信息或者重传的数量达到预定数量,才将新数据插入对应的HARQ过程,并且操作以获取HARQ组合增益。因此,由于用于获取HARQ组合增益的操作和直到接收了ACK信息的延迟,即使有用于传输的时间-频率资源,由于HARQ过程的数量的短缺,也不通过对应资源启动传输进程,结果,出现了系统吞吐量降低的问题。例如,如图4b和4c所示,在发送HARQ过程#0的第一数据(a)之后,基站可以等待,直到关于HARQ过程#0的第一数据(a)的反馈到达。由于HARQ ID的短缺,在HARQ过程#7之后可能没有另外的数据传输。由于关于第一数据(a)的反馈在HARQ过程#7的数据传输之后没有到达,所以在基站的传输中可能出现延迟450。在延迟450之后,基站可以接收反馈。根据反馈是ACK(图4b)还是NACK(图4c),可以确定要包括在HARQ过程#0中的数据。当反馈是ACK时,基站可以生成新数据(a’)作为HARQ过程#0的第二数据,并且可以将第二数据发送到终端。当反馈是NACK时,基站可以基于第一数据(a)生成HARQ过程#9的第二数据,并且可以将第二数据发送到终端。
为了解决图4b和图4c中出现的问题,本公开的各种实施例提供了不遵循现有HARQ操作的重传进程的方法。执行作为现有HARQ过程技术的图4b、图4c的进程,以便即使在出现延迟问题时也获得组合增益,也可以被理解为本公开的实施例。在这种情况下,可以获取组合增益而不是延迟。
为了不遵循根据现有HARQ的重传进程,基站可以将第二传输数据插入到执行第一传输或重传的HARQ过程,其中第一传输数据被插入在之前,但是仍然不接收ACK/NACK信息。也就是说,当传输机会到来时,基站可以将第二传输数据添加到对应的HARQ过程。现有的第一传输数据可能不在对应的HARQ过程中使用。由于对HARQ过程的最大数量的限制,当等待对应的HARQ过程的响应(HARQ ACK信息)时,尽管有数据要发送,但仍出现延迟。为了防止这种情况,根据各种实施例的基站可以配置要通过HARQ过程发送的数据(即,TB),而不管关于HARQ过程的HARQ ACK信息。换句话说,当HARQ过程的传输机会到来时,即使没有接收对应的HARQ过程的响应,基站也可以基于HARQ过程向终端传递新的TB。在下文中,将通过图5、图6和图7的示例性操作来描述根据本公开的各种实施例的基于传输机会的HARQ过程技术。
图5是示出根据本公开的各种实施例的基于传输机会的HARQ技术的示例的示图。基站由图1的基站110示出,终端由图1的终端120示出。在对应的实施例中,假设总共支持8个HARQ过程。作为避免由现有系统中出现的HARQ ID短缺的问题导致的性能降级的方法,示出了独立于延迟的ACK/NACK信息进行发送的进程。
参照图5,示出了其中在使用HARQ过程#0至HARQ过程#7连续执行8次传输之后没有接收关于仍在使用的HARQ过程的HARQ信息(ACK/NACK/DTX)的情形500。在每个HARQ过程的下一次传输时间之前,没有接收作为关于通过HARQ过程#0到HARQ过程#7的传输的反馈的HARQ信息。在没有接收HARQ过程#i的反馈的状态下,HARQ过程#i的传输机会到来。因此,基站可以根据基于传输机会的HARQ过程技术来配置要插入到HARQ过程中的数据(例如,TB)。当配置要被包括在HARQ过程中的传输数据时,基站可以配置要被包括在HARQ过程中的传输数据,而不管HARQ过程的先前传输数据的反馈(即,不考虑反馈)。换句话说,即使当没有接收反馈信息时,基站也可以配置传输数据,而不管先前传输数据的传输是成功还是失败。
HARQ过程#0的数据可以用新的第一TB 521(a’)来配置。HARQ过程#1的数据可以用新的第二TB 522(b’)来配置。HARQ过程#2的数据可以用新的第三TB 523(c’)来配置。HARQ过程#3的数据可以用新的第四TB524(d’)来配置。HARQ过程#4的数据可以用新的第五TB525(e’)来配置。HARQ过程#5的数据可以用新的第六TB 526(f’)来配置。HARQ过程#6的数据可以用新的第七TB 527(g’)来配置。HARQ过程#7的数据可以用新的第八TB 528(h’)来配置。
如图4b或图4c中所提到的,根据现有的HARQ过程技术,直到接收了关于HARQ过程#0的第一数据(a)的反馈,才可以发送新数据。然而,依照根据本公开的各种实施例的基于传输机会的HARQ技术,即使在接收关于HARQ过程#0的第一数据(a)的反馈之前,基站也可以向终端发送新数据作为HARQ过程#0的第二数据。也就是说,基站可以将作为第二传输数据的TB(a’)插入到通过其发送第一传输数据的TB(a)的HARQ过程#0,并且可以发送对应的TB(a’)。
基站可以切换(toggle)新数据指示符(NDI)比特,以便指示要通过对应的HARQ过程发送的数据是新数据,以便发送第二传输数据,并且可以通知接收终端第二传输数据不是第一传输数据的重传。也就是说,终端可以不组合第二传输数据和第一传输数据,并且可以不解码。基站可以预期终端删除与在其上插入了第一传输数据的HARQ过程#0的第一传输数据相关的内容,并新插入关于第二传输数据的内容。例如,终端可以从软缓冲器中删除与第一传输数据相关的内容,并且可以在对应的软缓冲器中包括关于第二传输数据的内容。终端可以接收关于HARQ过程#0的新TB(a’),并且可以存储新TB(a’)。上述操作涉及用于在基于HARQ操作的系统中配置没有HARQ操作的传输进程的方法,并且已经基于3GPP系统进行了描述,并且根据系统,上述相应元素可以由具有相同或相似概念的其他元素代替,并且可以被配置。
上述操作(根据基于传输机会的HARQ进程的操作)可以与HARQ过程管理技术一起被管理为仅应用于一些HARQ过程,这将在下面描述,或者可以应用于所有HARQ过程。这样的HARQ技术可以减少由对HARQ过程ID的数量的限制引起的延迟,并且可以定义当在接收关于第一传输数据的ACK/NACK信息之前出现对应HARQ过程的第二传输数据时应用的HARQ进程。造成限制以便在接收ACK信息之后插入第二传输数据以便通过相同的HARQ过程获取比特组合增益的规则被扩展到在接收ACK/NACK信息之前应用,并且基站可以发送数据而没有对HARQ操作的限制,使得可以解决由HARQ过程ID的数量的限制所引起的问题。
基于传输机会的HARQ的重传技术
由于接收了关于每个HARQ过程的第一传输数据的ACK,所以不要求重传,并且执行操作没有问题。然而,当关于HARQ过程的TB的反馈是NACK时,它可能指的是例如终端没有成功获取对应的TB,因此,基站被要求重传与所发送的TB对应的比特,而不管物理处理(例如,尽管HARQ信息的NDI或RV指示新数据)。在下文中,将描述不利用HARQ组合增益并且与HARQ组合使用的重传技术。
使用上述HARQ过程的系统中的HARQ非应用传输进程可以通过在执行利用现有HARQ过程的第一传输数据的传输进程之后将新的第二传输数据插入到对应的过程中来发生。然而,在这种情况下,当仅通过插入现有数据来执行操作时,在对应层(通常是MAC层)上被替换的第一传输数据的重传可能是不被预期的,这可以指例如取决于在更高层(通常是RLC层(例如,图3的RLC层320)或PDCP层(例如,图3的PDCP层310))上的重传进程的恢复的对应数据的成功传输。也就是说,即使当已经在HARQ过程中发送的第一传输数据的传输失败并且关于对应的传输的NACK信息到达HARQ过程时,在对应层上的重传也可以是不可能的,并且可能没有选择,只能预期从更高层执行的恢复进程。
为了减轻或解决上述问题,本公开提供了在将第二传输数据传递给HARQ过程并根据HARQ进程删除等待ACK/NACK信息的第一传输数据的上述过程中,通过分开的重传进程来替换根据现有操作的关于第一传输数据的重传进程的方法。这是因为,当通过更高层上的现有进程执行重传时,开销可能由于延迟和重传而增加。也就是说,本公开的实施例提供了用于当在MAC实体处接收NACK信息时在对应层上执行重传进程的进程,作为当接收NACK信息的时间在较高层上执行重传进程的困难的解决方案。在下文中,将通过图6和图7描述具体示例。
图6是示出根据本公开的各种实施例的基于传输机会的HARQ进程的重传的示例的示图。基站由图1的基站110示出,终端由图1的终端120示出。在对应的实施例中,假设总共支持8个HARQ过程,并且示出了在使用HARQ过程#0至HARQ过程#7连续执行8次传输之后没有接收关于仍在使用的HARQ过程的HARQ信息(ACK/NACK/DTX)的情形。作为用于避免由现有系统中出现的HARQ ID短缺的问题所导致的性能降级的方法,示出了根据实施例的根据延迟的NACK信息来执行重传的进程。
参照图6,示出了关于HARQ过程#0的第一传输数据(a)的反馈是NACK的情形600。当关于HARQ过程#0的第一传输数据(a)的反馈631是NACK时,基站可以在接收对应的反馈之后识别要到来的HARQ过程。例如,基站可以识别HARQ过程#3。由于基站应该重传作为第一传输数据的TB(a),所以基站可以插入TB(a)作为HARQ过程#3的第二传输数据。基站可以基于HARQ过程#3来发送TB(a)。
HARQ过程#0的数据可以用新的第一TB 621(a’)来配置。HARQ过程#1的数据可以用新的第二TB 622(b’)来配置。HARQ过程#2的数据可以用新的第三TB 623(c’)来配置。HARQ过程#3的数据可以用对应于现有TB(a)的第四TB 624来配置。HARQ过程#4的数据可以用新的第五TB 625(e’)来配置。HARQ过程#5的数据可以用新的第六TB 626(f’)来配置。HARQ过程#6的数据可以用新的第七TB 627(g’)来配置。HARQ过程#7的数据可以用新的第八TB 628(h’)来配置。终端可能预期接收新数据,但是实际发送的数据(TB 624)可能对应于HARQ过程#0的第一传输数据。也就是说,从终端的角度来看,传输数据可以是新数据,但是从基站的角度来看,传输数据可以对应于先传输的数据。
由于真实TB的内容是独立于HARQ过程ID配置的,所以基站可能需要管理关于哪个HARQ过程与在MAC层上接收的数据(MAC SDU或RLC PDU)相关的信息。基站可以基于接收的反馈(ACK/NACK/NACK)信息来确定是重传TB还是发送新的TB,而与终端无关(透明)。基站可能预期终端总是将对应的TB识别为新数据。也就是说,基站可以独立于MAC层上的HARQ过程来管理重传。基站可以通过基于终端的反馈信息重传传输数据,而不需要更高层上的重传进程(例如,RLC的ARQ)来向终端发送基站意图真实发送的信息。反馈信息的HARQ过程和重传的传输数据的HARQ过程可以彼此独立,并且可以被不同地配置。即使终端不知道重传并且不获取组合增益,基站也可以无延迟地发送它真实意图发送的数据。
例如,根据本公开的各种实施例,在从较高层发送到MAC层的MAC服务数据单元(SDU)或者在较高层上生成的PDU(例如,RLC PDU)被发送到HARQ过程的时间,基站可以存储对应的PDU或SDU。在下文中,根据实施例,PDU或SDU可以是RLC PDU/MAC SDU,或MAC PDU,即TB。基站可以将对应的PDU或SDU映射到HARQ过程ID信息上,其中,基于HARQ过程ID信息来传递对应的PDU或SDU,并且可以将映射信息与数据一起存储。只要映射信息没有由于应用于管理系统或分开的事件的各种定时器而到期,映射信息可以被保留(保存),直到接收了关于发送对应PDU或SDU的信息的ACK信息。下面将参照图8更详细地描述这样的映射关系和映射信息的实施例。
映射信息是PDU或SDU与HARQ过程ID之间的信息,可以共享系统中PDU或SDU的存储空间,也可以直接映射PDU或SDU与HARQ过程ID。然而,映射信息可以是PDU或SDU的逻辑身份信息(诸如用于存储对应PDU或SDU信息的逻辑地址、由标准定义的序列号(SN)、根据实施例定义的分开的索引号以及HARQ过程ID)中的至少一个之间的映射。例如,基站可以存储和管理关于上述SDU或PDU的逻辑号(例如,索引号)和HARQ过程ID之间的映射关系,通过映射关系发送对应于该号的SDU或PDU。也就是说,上述映射操作是应用本公开实施例的预备步骤,并且基站可以针对发送到HARQ过程的所有目标PDU或SDU执行映射操作。
此外,在本公开的实施例中,为了更流畅地利用相同HARQ ID的多个TB的传输,基站可以在生成对应的映射信息的时间,即,在将PDU或SDU插入HARQ过程的时间,附加地映射与对应时间相关的信息。基站可以将时间信息映射到HARQ ID上,然后可以存储为映射信息。这可以是内部计数器或系统帧号(SFN)、子帧号、时隙号、本公开的符号索引或其组合。此外,在这种情况下,内部计数器可以包括指示符的形式,指示对应的PDU或SDU是否在HARQ过程中被代替。
针对所有目标PDU或SDU执行利用映射信息的操作,但是本公开不限于此。在各种实施例中,当在HARQ过程中第二传输数据代替第一传输数据的时间,基站可以另外执行读出第一传输数据的信息的过程,从而执行关于一些目标PDU或SDU的映射操作。基站可以另外执行从第一传输数据中提取索引号的操作。基站可以通过仅提取一些数据来执行映射,而不是针对所有PDU或SDU执行映射操作。
根据实施例,上述索引号可以是RLC层的序列号(SN)。基站可以从对应于第一传输数据的RLC PDU中提取并获取对应的序列号(SN),并且可以将对应的SN与第一传输数据的HARQ过程ID(例如,HARQ过程#0)关联。也就是说,当插入HARQ过程的新数据(TB)时,基站可以存储与现有数据对应的SN和对应的HARQ过程之间的映射关系。在这种情况下,在本公开的一个实施例中,时间信息也可以被映射。基站可以另外将关于提取时间或发送时间的信息映射到数据号和HARQ过程之间的映射关系信息上,并且可以存储映射信息。在这种情况下,关于时间的信息可以是内部计数器或系统帧号(SFN)、子帧号、时隙号、符号索引或其组合。
由于基站存储在HARQ过程和HARQ过程中发送的数据信息(例如,RLC PDU/MAC SDU或MAC PDU)之间的映射关系,所以即使当通过HARQ过程发送新数据(TB)时,也可以知道HARQ过程中的先发送的数据的信息。此后,可以接收HARQ过程的先发送的数据的反馈。当对应的PDU或SDU随后作为第一传输数据被发送并且关于传输数据的ACK/NACK被接收时,存储的映射关系可以被利用。当接收对应的PDU或SDU上的ACK/NACK信息时,HARQ过程可以将ACK/NACK信息传递给管理映射信息的实体(例如,基站或DU)。在这种情况下,接收ACK/NACK信息的映射信息管理实体可以通过发送ACK/NACK信息的HARQ过程ID,发现作为用于接收对应时间的ACK/NACK信息的实体的PDU或SDU。也就是说,实体发现包括目标的信息的PDU或SDU,该目标通过ACK/NACK信息和传递ACK/NACK信息的HARQ过程ID生成ACK/NACK信息。根据实施例,当接收的ACK/NACK信息是ACK时,映射实体(例如,基站)可以确定对应的PDU或SDU被正常传递,并且可以移除关于对应的PDU或SDU的映射信息。例如,映射实体可以由基站的RLC实体来实现。此外,例如,映射实体可以由基站中的MAC实体来实现。此外,例如,映射实体可以以MAC实体的形式或者以RLC/MAC层之间的SW块的形式来实现。当映射信息被移除时,存储在缓冲器中的关于对应的PDU或SDU的信息也可以被移除。另一方面,当接收的ACK/NACK信息是NACK时,在发现的PDU或SDU上的传输进程可以新开始。例如,接收关于根据本公开的重传进程替换的第一传输数据的NACK信息的HARQ过程可以向映射实体(例如,基站)传递重传指示符。接收NACK信息的映射实体(例如,基站)可以通过再次从缓冲器启动传输进程,将标识了NACK信息的PDU或SDU上的传输数据(即,TB)插入到HARQ过程中。
如图6所示,关于HARQ过程#0的第一传输数据(a)的反馈631可以是NACK。接收NACK的基站可以识别HARQ过程#0。HARQ过程#0可以是与对应反馈相关的HARQ过程#0。基站可以基于发送反馈信息的资源、在分配对应资源的时间提供的DCI的字段(例如,HARQ过程号)来识别HARQ过程#0。接收关于已经通过HARQ过程#0发送的TB(a)的NACK信息的基站可以基于映射信息再次从缓冲器读出对应的数据。基站可以基于从MAC层获取的信息,将读出的数据生成作为新的PDU或SDU。也就是说,基站可以识别映射到HARQ过程#0上的PDU或SDU。基站可以基于识别的PDU或SDU来重新生成与HARQ过程#0的第一传输数据(a)对应的TB。图6示出了重传的TB与先发送的TB相同,但是这仅仅是用于解释重传操作原理的示例,并且不被解释为限制实施例。根据实施例,插入的PDU或SDU可以不完全与对应于NACK信息的先前PDU或SDU相同。具体地,在这种情况下,PDU或SDU可以是由于用于重传的PDU或SDU重新生成进程而具有不同长度的比特的PDU或SDU。
当数据被重传时,对应的数据可以通过更稳健的处理来发送,以便增加数据的传输概率。在实施例中,对应的PDU或SDU可以根据无线电资源的状态和链路适配进程来应用用于更少比特或更稳健的重传的无线传输配置。此外,在实施例中,对应的PDU或SDU可以是根据通过应用较低MCS计算的传输块大小(TBS)生成的PDU或SDU。对应的PDU或SDU可以应用低物理层处理。在这种情况下,对应的PDU或SDU可以是通过用于重传的PDU或SDU分割技术配置的多个PDU或SDU。将通过图7描述通过应用这样的分割方法和重传来生成新的PDU或SDU的本公开的实施例。
图7是示出根据各种实施例的基于传输机会的HARQ进程的重传的另一示例的示图。基站由图1的基站110示出,终端由图1的终端120示出。在对应的实施例中,假设总共支持8个HARQ过程,并且示出了在使用HARQ过程#0至HARQ过程#7连续执行8次传输之后没有接收关于仍在使用的HARQ过程的HARQ信息(ACK/NACK/DTX)的情形。作为示出了避免由现有系统中出现的HARQ ID短缺的问题引起的性能降级的方法的示图,图7示出了根据实施例在根据延迟的NACK信息执行重传的过程(例如,图6)中分割对应的PDU或SDU并进行发送的进程。
参照图7,示出了根据分割技术重传相应的PDU或SDU的情形700。基站可以接收HARQ过程#0的NACK信息731。基站可以基于NACK信息从缓冲器中识别对应于对应的HARQ过程的PDU或SDU。基站可以基于识别的PDU或SDU以及关于MAC层的信息,通过将对应的PDU或SDU分割成两个或更多个PDU或SDU(TB 724、TB 725)来执行重传。HARQ过程#0的数据可以用新的第一TB 721(a’)来配置。HARQ过程#1的数据可以用新的第二TB 722(b’)来配置。HARQ过程#2的数据可以用新的第三TB723(c’)来配置。HARQ过程#3的数据可以基于现有的TB(a)来配置。HARQ过程#4的数据可以基于现有的TB(a)来配置。HARQ过程#5的数据可以用新的第六TB 726(f’)来配置。HARQ过程#6的数据可以用新的第七TB 727(g’)来配置。HARQ过程#7的数据可以用新的第八TB 728(h’)来配置。
例如,由NACK信息731和对应的HARQ过程(HARQ过程#0)发现的映射目标PDU或SDU,以及传输时间信息可以被再次从缓冲器中读出以执行重传进程。从缓冲器获取的一个或多个PDU或SDU可以作为重传SDU或PDU由缓冲器新进行管理。可以根据分割的PDU或SDU的定义序列,针对分割的PDU或SDU执行传输进程,并且可以使用分割的PDU或SDU中每一个作为一个PDU或SDU来开始新的传输进程。在这种情况下,分段的PDU或SDU可以结合缓冲器中的其他数据以新生成的PDU或SDU的形式配置。换句话说,分割的PDU或SDU中每一个可以包括先前PDU或SDU的信息的部分。此外,分段的PDU或SDU可以被新配置为包括除了作为用于分段的现有目标的PDU或SDU中包括的信息之外的附加信息。在插入重传PDU或SDU时选择的HARQ过程或HARQ ID可以是由某个进程或HARQ过程管理和选择进程选择的HARQ过程(或HARQID),而不管先前的映射关系。在这种情况下,用于传输的配置可以遵循与用于如上所述的支持HARQ的系统中的ARQ进程或HARQ非应用传输进程中的第一传输(例如,HARQ过程#0的第一传输数据(a)的传输)的方法相同的方法。
根据实施例,在重传期间,低MCS可以被应用于更稳健的传输。在这种情况下,表达“较低MCS”指的是用于通过相对较低的速率来减少对应传输的传输误差的手段,并且除了MCS可以用相同或相似概念的元素来代替,诸如速率、调制阶数乘积码速率(MPR)等。该表达可以用一个或多个元素来代替,这些元素可能由于系统实现特性或者这些元素的组合而导致与上述MCS相同或相似的元素的改变。在本公开的各种实施例中,示出了在重传进程中单次提供用于重传的低MCS的应用和由此伴随的分段进程,但是通过将低MCS附加地应用于由重传失败引起的第三或第四重传来执行附加分段的操作可以被理解为本公开的实施例。
本公开中的分段方法可以由通过3GPP系统的具体示例描述该方法时的分段方法和RLC层上的PDU配置来示出。因此,该方法可以被表达为用于分段到RLC层并传递重传指示符的方法、根据MAC层上的RLC分段指示符处理分段进程的方法。本公开的实施例可以包括通过指示符通知重传的进程,而不管特定层,并相应地配置PDU或SDU。
根据上述公开的各种实施例的基于传输机会的HARQ技术的重传进程可以对重传数量进行限制,这可以与通过使用现有HARQ对重传进行的限制相同或不同。具体地,当应用分段传输时,可以根据重传PDU或SDU的分段来分段和管理重传计数器。例如,一个PDU或SDU可以被分段成两个PDU或SDU,并且这两个PDU或SDU可以一次增加两个重传计数器,并且计数器可以被分段和管理,使得计数器不具有3个重传计数器值,并且个体计数器分别被设置为2。这种计数器不同于HARQ过程中的计数器,并且管理上述缓冲器及其映射关系的实体可以管理对应计数器的信息。
图8是示出根据本公开的各种实施例的HARQ过程和传输数据之间的映射信息800的配置的示例的框图。映射信息的实体是管理MAC层的实体,并且可以包括基站的MAC实体。根据本公开的实施例,在通过对应的信息接收NACK信息之后,基站可以发现重传目标数据。
参照图8,映射信息800可以包括HARQ过程ID 801。HARQ过程ID801是指示对应的HARQ过程的号的标识符。HARQ过程ID可以用于识别与特定HARQ过程相关的数据ID、数据、定时信息。映射信息可以包括与每个HARQ过程ID相关的参数。
映射信息800可以包括数据ID 803。数据ID 803可以是指示传输数据的标识符。根据实施例,数据ID可以是指示RLC PDU(或MAC SDU)的标识符。在这种情况下,数据ID可以是RLC PDU的SN。此外,根据实施例,数据ID 803可以是指示TB作为MAC PDU的标识符。
映射信息800可以包括缓冲器数据805。缓冲器数据805可以包括对应于对应数据ID的PDU或SDU。当接收到NACK信息时,缓冲器数据805可以用于重传。基站可以识别与接收的反馈信息相对应的HARQ过程ID,并且可以识别与所识别的HARQ过程ID对应的缓冲器数据。基站可以基于识别的缓冲器数据来执行重传。
在各种实施例中,映射信息还可以包括定时信息807。这里,定时信息是关于PDU或SDU通过对应的HARQ过程ID被传递的时间的信息,并且可以包括PDU或SDU被映射到对应的HARQ过程ID上的时间(例如,初始传输、重传或分段传输的时间)。此外,定时信息可以包括从HARQ过程的现有数据中提取PDU或SDU的时间。定时信息可以是系统帧号(SFN)、子帧号、时隙号或符号索引或其组合。基站可以通过时间信息知道新数据何时通过对应于反馈的HARQ过程被发送。基站可以基于时间信息来识别HARQ过程之间的关系,并且基于此,可以配置每个HARQ过程的传输数据。当通过多个HARQ过程并行发送TB时,基站可以基于时间信息配置每个HARQ过程的TB。这是因为,根据延迟有多长,基站可以识别并行可操作的TB的数量,即,稀缺(scarce)HARQ过程的数量。
图8示出了RLC PDU/MAC SDU或MAC PDU单元中的数据,但是本公开的各种实施例不限于此。在各种实施例中,码块(CB)或码块组(CBG)可以被认为是传输单元,并且映射信息可以包括以CB或CBG为单位定义的映射关系。基站可以基于终端的每个CBG的比特单位的反馈,从映射关系来配置TB。例如,基站可以以CBG单元接收关于HARQ过程#2的反馈。此后,当其中传输机会到来的HARQ过程#5到达时,基站可以基于与作为NACK的CBG对应的数据和新数据来配置TB。基站可以发送在终端处被识别为新TB的数据。在这种情况下,基站可以通过DCI的CBGFI字段指示终端清空由DCI指示的HARQ过程的软缓冲器。
图9是示出根据本公开的各种实施例的用于HARQ进程的基站的示例操作的流程图。基站由图1的基站110示出。与基于反馈的现有HARQ过程技术相比,基于传输机会的HARQ过程技术操作相应的HARQ过程而不考虑反馈。
参照图9,在901,基站可以基于第一HARQ过程来发送第一数据。第一HARQ过程可以应用基于传输机会的HARQ过程技术。这里,第一数据可以包括基站意图服务于终端的数据(例如,被称为应用数据、服务数据、数据有效载荷、服务分组、信息比特、数据比特等)。在下文中,数据指的是基站意图发送到终端的所有数据,并且由通过HARQ过程管理的TB示出,但是不被解释为限于特定层的PDU/SDU。根据实施例,数据可以用作包括物理层的控制信息的信号。第一数据也可以与关于对应数据的物理层控制信息一起发送。例如,可以一起发送包括TB和相关HARQ信息的第一数据。HARQ信息可以包括第一HARQ过程的号、关于第一数据的TB的NDI、关于第一数据的TB的RV以及关于第一数据的TB的TBS。
在903,基站可以基于第一HARQ过程发送第二数据。当关于第一HARQ过程的传输机会到来时,基站可以发送第二数据。基站可以发送第二数据,而不管关于第一HARQ过程的反馈。基站可以生成第二数据,而不管关于第一HARQ过程的反馈是ACK还是NACK。基站可以将产生的第二数据发送到终端。即使当没有接收关于对应的HARQ过程的反馈时,基站也可以插入新数据并执行下行链路传输进程,而无需等待反馈,这不同于现有的HARQ过程技术。
假设在基站和终端中操作的HARQ过程的总数是N。基站可以通过N数量的HARQ过程并行地向终端发送数据。基站可以发送关于N数量的HARQ过程中的每个的数据,并可以确定通过第一HARQ过程再次发送的数据。根据各种实施例,当通过第一HARQ过程发送数据的时间到来时,换句话说,在通过最后的HARQ过程(例如,HARQ过程#N-1)发送数据之后,基站可以检测当前是否接收了关于第一HARQ过程的反馈。当没有接收关于第一HARQ过程的反馈时,基站可以确定第一HARQ过程的传输数据,而不管反馈。这是因为,当等待第一HARQ过程的反馈时,从最后HARQ过程到反馈时间有传输延迟。传输数据可以是第二数据。
第二数据可以以各种方式配置。根据实施例,第二数据可以是新发送的真实的新的数据,即,从基站和终端二者的角度来看都是新的数据。此外,根据实施例,从终端的角度来看,第二数据可以是新数据(因为NDI被切换或者RV被初始化),但是从基站的角度来看,第二数据可以是先传输的数据。也就是说,第二数据的传输可以是在第一HARQ过程的第一数据之前已经被先前传输的数据的重传。
当将第二数据插入第一HARQ过程时,基站可以使用映射信息。基站可以将第一HARQ过程的ID与对应于先传输的第一数据的MAC SDU(或RLC SDU)或MAC PDU进行关联。基站可以存储定义上述关联的关系的映射信息。当关于第一HARQ过程的反馈是NACK时,基站可以将用于第一数据的重传的缓冲器数据与第一HARQ过程的ID进行关联,并且可以将其存储。此外,基站可以将关于新的第二数据被包括在第一HARQ过程中的时间的信息与第一HARQ过程的ID相关联,并且可以附加地存储该信息。
在905,基站可以基于对第一数据的接收结果来生成第三数据。基站可以获取对第一数据的接收结果。可以在步骤903之后获取对第一数据的接收结果。基站可以从对第一数据的接收结果来识别第一HARQ过程。基站可以基于映射信息识别与对应于第一HARQ过程的第一数据相关的缓冲器数据,或者第一数据的ID(例如,RLD报头的SN)。当对第一数据的接收结果是ACK时,基站可以清除(clear)(或清空(flush))与第一数据相关的缓冲器数据。基站可以生成从基站和终端二者的角度来看都是新的的第三数据。当对第一数据的接收结果是NACK时,基站可以基于与第一数据相关的缓冲数据来生成第三数据。从基站的角度来看,第三数据可以是重传数据,但是从终端的角度来看,第三数据可以是通过分开的HARQ过程发送的新数据。
在907,基站可以基于第二HARQ过程发送第三数据。在这种情况下,第二HARQ过程可以独立于第一HARQ过程。其中基于第一HARQ过程的反馈来确定传输数据的HARQ过程可以被配置为不同于第一HARQ过程。第二HARQ过程可以应用普通的HARQ过程技术或基于传输机会的HARQ过程技术。根据实施例,第三数据可以与HARQ信息一起发送。HARQ信息可以包括第二HARQ过程的号、关于第三数据的TB的NDI、关于第三数据的TB的RV、第三数据的TB大小,即TBS。在这种情况下,NDI对应于从终端的角度来看的、HARQ过程上的新数据,因此,与第二HARQ过程的先前数据的NDI相比,可以被切换。
在图9中,示出了基站在确定第一HARQ过程的传输数据时考虑是否接收第一HARQ过程的反馈,但是本公开的实施例不限于此。根据实施例,基站可以不执行现有的HARQ过程技术,而不管是否接收真实反馈,也就是说,不管是否出现真实延迟。换句话说,当通过第一HARQ过程发送的时间到来时,在所有情况下都可以将新数据插入到第一HARQ过程中。仅利用ARQ解决重传问题而不在MAC层的HARQ实体处进行重传也可以被理解为本公开的实施例。
图9示出了在发送第二数据之后接收关于第一HARQ过程的第一数据的反馈的示例,但是本公开的实施例不限于此。如果当通过第一HARQ过程发送数据的时间到来时,已经接收了对第一HARQ过程的反馈,则基站可以根据现有的HARQ过程技术,基于该反馈来确定第一HARQ过程的传输数据。确定反馈延迟是否发生的进程,即,在最终的HARQ过程的传输数据终止之后是否接收了关于第一HARQ过程的第一数据的反馈,也可以被理解为本公开的实施例。基于在对应的HARQ过程中是否真正出现延迟,可以确定要通过对应的HARQ过程发送的数据。如果没有发生延迟,则仅当反馈是ACK时,要通过对应的HARQ过程发送的数据可以被配置为新数据,并且当反馈是NACK时,可以用现有数据来配置要通过对应的HARQ过程发送的数据以用于重传。
已经参考图5至图9描述了基于传输机会的HARQ过程技术。当HARQ过程的传输机会到来时,基站可以不基于反馈信息确定要插入的数据,而是可以将新数据插入到对应的HARQ过程中。在这种情况下,根据传输机会插入新数据的HARQ过程可以被称为伺机(opportunistic)HARQ过程(O-HARQ过程)。基站可以操作多个HARQ过程,并且可以在多个HARQ过程当中配置至少一个O-HARQ过程。下面将通过图10a至图12描述用于配置O-HARQ过程的实施例。
伺机HARQ过程操作方法
当没有可用的HARQ ID(或HARQ过程)时,伺机利用上述HARQ组合增益的进程可以通过重用某个HARQ ID或HARQ过程进行发送,以执行没有HARQ组合增益的传输,并且在这种情况下,替换的PDU或SDU可以根据重传进程保证传输的可靠性。在本公开的传输进程中,HARQ过程基本通过切换NDI来发送。因此,不管执行的传输是否成功,NDI都被连续切换。从终端的角度来看,这可以是用作通知新数据被发送的手段的比特,但是,当包括NDI切换信息的控制和调度信息没有被发送到终端时,在终端和基站之间的NDI信息中可能存在失配。将参考3GPP系统来描述本公开,在3GPP系统中,通过PDCCH来发送控制和调度信息。然而,控制和调度信息可以是相同或相似含义的另一个元素。此外,在本公开的实施例中,参考3GPP系统,术语“PDCCH丢失”可以用于指示上述控制和调度信息没有被发送到终端的情况,但是该术语可以包括相同或相似的元素。将通过图10a和10b描述由PDCCH丢失操作引起的NDI失配。
图10a和10b是示出根据各种实施例的由PDCCH丢失引起的NDI失配的示例的示图。图10a和图10b示出了当应用本公开的实施例时可能发生的极端PDCCH丢失情形的示例,并且示出了当先前传输成功或失败时根据基于传输机会的HARQ进程(例如,图5至图7)可能发生的关于NDI失配问题的进程。
参照图10a,基站向终端发送数据1001。在这种情况下,关于数据1001的NDI可以是“0”,RV可以是“X”(例如,X=0、1、2或3)。此后,终端可以向基站反馈回ACK。基站可以将第一传输数据1003配置为新的TB,而不管反馈。关于第一传输数据1003的NDI可以是“1”,RV可以是“0”。因为传输数据是新数据,所以NDI可以被切换,RV可以被初始化为“0”。
依照根据本公开的各种实施例的基于传输机会的HARQ传输技术,通过该技术,发送第二传输数据1005来替换正在经历HARQ过程中的传输进程的第一传输数据1003,基站可以发送第二传输数据1005。在这种情况下,关于第二传输数据1005的NDI可以是“0”,RV可以是“0”。因为第二传输数据是新数据,所以NDI可以被切换,RV可以被初始化为“0”。
图10a示出了在发送第一传输数据1003之前发送的最后传输数据1001被终端成功接收的情况,并且示出了基站发送的第一传输数据1003的PDCCH丢失的情形。终端可能不会尝试解码第一传输数据1003,并且最终可能不发送ACK或NACK信息。由于在用于解决传输延迟的基于传输机会的HARQ技术中,可以不管对第一传输数据1003的反馈来配置第二传输数据1005,所以可以新配置第二传输数据1005。基站预期终端将第二传输数据识别为新数据。然而,当丢失PDCCH时,终端可能不知道NDI被切换。
例如,可以应用根据本公开的基于传输机会的HARQ技术的传输进程,并且当在ACK/NACK信息被传递到基站之前在相同的HARQ过程上发生新的传输(例如,第二传输数据1005的传输)时,基站可以再次切换NDI,并且可以发送该NDI。在这种情况下,可能发生与PDCCH丢失之前发送的PDU或SUD具有相同NDI值的传输。从发生PDCCH丢失的终端的角度来看,可以确定相同的信息是通过先前的NDI接收的,并且在这种情况下,终端可能误判新的传输是在PDCCH丢失之前接收的信息的重传,即,数据1001的重传。由于这种误判,终端可以确定来自基站的新信息是先前已经接收的PDU或SDU的重传,并且如图10a所示,基于现有信息(例如,数据1001)已经被成功接收并且ACK信息已经被发送的情形,终端可以确定新的接收信息是无意义的信息,并且可以忽略该信息。由于对应的信息被忽略,但是确定该信息是已经成功接收的信息,所以终端可以在对应的传输(例如,第二传输数据1005)上传递ACK信息。
基站可以响应于新信息(例如,第二传输数据1005)接收ACK。由于虽然终端没有正常接收新信息(例如,第二传输数据1005),但是ACK信息被发送,所以基站可能误判对应的传输被成功执行。结果,尽管对应的PDU或SDU没有被很好地被传递,但是基站可以将对应的传输视为成功传输,并且可以不执行诸如重传的进程。
参照图10b,基站可以向终端发送数据1051。在这种情况下,关于数据1051的NDI可以是“0”,RV可以是“X”(例如,X=0、1、2或3)。此后,终端可以将NACK反馈回给基站。基站可以将第一传输数据1053配置为新的TB,而不管反馈。关于第一传输数据1053的NDI可以是“1”,RV可以是“0”。因为第一传输数据是新数据,所以NDI可以被切换,并且RV可以被初始化为“0”。
依照根据本公开的各种实施例的基于传输机会的HARQ传输技术,通过该技术,发送第二传输数据1055来替换正在经历HARQ过程中的传输进程的第一传输数据1053,基站可以发送第二传输数据1055。在这种情况下,关于第二传输数据1055的NDI可以是“0”,RV可以是“0”。因为第二传输数据是新数据,所以NDI可以被切换,RV可以被初始化为“0”。
图10b示出了终端没有成功接收在发送第一传输数据1053之前发送的最后传输数据1051的情况,并且示出了基站发送的第一传输数据1053的PDCCH丢失的情形。终端可能不尝试解码第一传输数据1053,并且最终可能不发送ACK或NACK信息。由于在用于解决传输延迟的基于传输机会的HARQ技术中,可以配置第二传输数据1055而不管对第一传输数据1053的反馈,所以可以新配置第二传输数据1055。基站预期终端将第二传输数据识别为新数据。然而,当丢失PDCCH时,终端可能不知道NDI被切换。
以与图10a中相同的方式,终端可能误判新的传输是在PDCCH丢失之前接收的信息的重传,即,数据1051的重传。由于这种误判,终端可以确定来自基站的新信息是先前已经接收的PDU或SDU的重传,并且由于终端尚未成功解码对应的TB,终端可以通过将先前接收的信息(例如,数据1051)与新接收的信息(例如,第二数据1055)组合来解码。然而,由于数据1051和第二数据1055是由真正不同的TB生成的数据,所以解码可能失败。基站可以接收关于新信息(例如,第二传输数据1055)的NACK。此后,当NDI被切换时,尽管现有的传输数据1051没有被很好地被重复传递,但是新的数据可以被发送,因此,终端可能损失耦合增益。
上述问题可以通过更高层的重传过程来解决,但是本公开描述了用于抢先防止PDCCH丢失的情形的方案,以便最小化由更高层上的重传开销和其他传输延迟引起的问题。
伺机HARQ过程的配置
由于PDCCH丢失而丢失的PDU或SDU可以是在PDCCH丢失发生之后通过对应的HARQ过程执行本公开的传输进程(配置新的TB,而不管对应的HARQ过程的反馈)的PDU或SDU,并且在可能确定关于PDCCH丢失之前出现上述问题。由于该特性,在问题出现之后,没有办法解决由PDCCH丢失引起的问题,并且可能要求基站和终端进行操作,以通过降低PDCCH丢失发生的概率来抢先防止问题。这可以通过应用称为“PDCCH传输上的保守化(conservatization)”的方案来实现,但是保守化需要在应用本公开的传输方法之前应用,而不是在应用该传输方法的时间应用,因此,本公开考虑了抢先PDCCH保守化方案的应用。
通过应用本公开,在ACK/NACK信息之前的HARQ过程中替换的第一传输帧的PDCCH丢失的情况下,可以操作抢先PDCCH保守方案以用于稳定传输。因此,本公开描述了将多个HARQ过程中的一些分类到应用了本公开的HARQ过程(下文中,基于传输机会的HARQ过程或伺机HARQ过程(O-HARQ过程)),以及将其他HARQ过程分类到遵循没有应用本公开的传输方法的现有操作的HARQ过程(下文中,基于反馈的HARQ过程)的进程。示出了基站对HARQ过程的类型进行分类,但是除了基站之外的其他实体也可以对对应的HARQ过程的类型进行分类。
根据本公开的实施例,可以有预先配置个体HARQ过程是否是本公开针对HARQ过程应用的目标的进程。当正在使用所有HARQ过程或HARQ过程ID时,可以从被配置为应用本公开的目标组的HARQ过程中选择要被选择来发送新数据的HARQ过程。在本公开中,作为用于应用的目标的HARQ过程可以被称为伺机HARQ过程(O-HARQ过程)。此外,包括一个或多个伺机HARQ过程的组可以被称为O-HARQ过程组。根据本公开的实施例,当本公开的基于传输机会的HARQ过程技术(例如,图5至图7)被应用于所有HARQ过程时,基站可以将所有可用的HARQ过程分配给O-HARQ过程组。根据实施例,当不应用本公开的基于传输机会的HARQ过程技术时,可以传递用于此的分开的指示符,或者可以不将有效的HARQ过程分配给O-HARQ过程组,使得可以不应用基于传输机会的HARQ过程技术。根据各种实施例,基站可以将上述基于传输机会的HARQ过程技术应用于O-HARQ过程组(O-HARQ过程组是应用本公开的目标),以便能够在接收关于第一传输数据的ACK/NACK信息之前将新的第二传输数据插入到对应的HARQ过程,并且可以通过将较低的MCS应用于PDCCH传输,或者通过分配相对于通过对应的HARQ过程发送所有数据来说更多的资源来执行保守化对应传输的进程。
在与3GPP系统相关的本公开的实施例中,基站可以通过向用于传输O-HARQ过程组的PDCCH应用比用于传输作为非目标的过程的PDCCH更高的聚合水平,或者通过应用更大的传输功率,来实现上述保守化操作。此外,关于O-HARQ过程组,保守化不仅可以应用于PDCCH传输,还可以应用于第一传输的资源分配和传输速率。
在本公开中,术语“保守化的”或“保守化”可以指例如信号被稳定传递或针对信号的稳定传输进行处理的状态。这样的保守化进程可以独立于应用在上述重传进程中的较低MCS(或相同或相似概念)的传输进程来应用。也就是说,与在向不属于O-HARQ过程的HARQ过程发送分配的数据时相比,基站可以以更高的可靠性执行针对O-HARQ过程组的O-HARQ过程的传输。
在各种实施例中,针对属于O-HARQ过程的过程,基站可以执行分开的速率控制方法和具有较低目标错误概率(目标BLER)的进程。
此外,在各种实施例中,保守化处理可以采用低调制方案,或者可以包括通过低编码率的信号处理。例如,保守处理可以包括根据低MCS水平的数据处理。
此外,在各种实施例中,保守化处理可以包括信号处理,该信号处理通过减小数据有效载荷的大小(例如,TBS),用相同的资源引起尽可能多的重复。根据实施例,保守化处理可以包括配置仅包括要求重传的CBG的TB的操作,以便减少发送的比特的数量。此外,根据实施例,保守化处理可以包括简单地配置具有较低TBS的TB而不管CBG的操作。
此外,在各种实施例中,保守化处理可以包括将关于信道质量的偏移配置为具有低错误率的操作。基站可以将偏移值应用于要应用于除了O-HARQ过程组之外的过程的现有MCS或者用MCS代替的速率、MPR,并且可以应用MCS速率、MPR等(针对给定的、速率、MPR定义的偏移被应用于该MCS速率、MPR等),以传输O-HARQ过程组内的过程。在这种情况下,上述关于MPR和MCS、速率的偏移可以是向用于应用的目标的值添加的值或从用于应用的目标的值中减去的值,并且可以是以与目标的值相乘的系数的形式应用的值,或者是根据实施方式形式的乘数。
在上述关于O-HARQ过程的操作中,当可能影响MCS、速率、MPR的导出的上述MCS、速率、MPR或字段值小于或等于预定值时,或者当检测了指示类似环境的操作时,根据本公开的实施例的用于配置以便不执行O-HARQ过程操作的方案也可以被包括在本公开中。具体地,当目标终端上的MCS、速率、MPR小于或等于预定阈值时,根据本公开的各种实施例的基站可以不应用在HARQ过程中的数据传输完成之前将新数据插入HARQ过程的本公开的实施例。根据实施例,将新数据插入HARQ过程的操作可以被限制为当执行了与对应HARQ过程的最大传输数量一样多的传输时或者在接收了关于传输TB的ACK信息之后执行。将MCS、速率、MPR与阈值进行比较的进程可以替换为将基站测量的终端的字段值与阈值进行比较的进程。也就是说,当对应于字段值的值小于或等于阈值时,基站可以在不使用上述O-HARQ的情况下执行操作。此外,当连续接收NACK,并且因此累积了发送失败时,如果累积了超过其阈值的数量,则基站可以在不使用上述O-HARQ的情况下执行操作。限制上述本公开的各种实施例的进程可以利用一种或多种方法的组合,并且可以不根据系统操作方法来使用。
已经描述了关于O-HARQ过程或O-HARQ过程组的处理方案。除了对O-HARQ过程组和传输-重传进程的保守化,本公开提供了对O-HARQ过程组的管理方案。O-HARQ过程组可以以各种方式来定义。在各种实施例中,O-HARQ过程组中的HARQ过程的数量可以被配置为预定义的值。在各种实施例中,O-HARQ过程组中的HARQ过程的数量可以被配置为分开的配置值。在各种实施例中,可以根据基站或终端的操作来自适应地配置O-HARQ过程中的HARQ过程的数量。
可以通过配置来配置O-HARQ过程组的大小,即O-HARQ过程的数量。通过预定义值或分开的配置值来配置O-HARQ过程组的数量可以在本公开的配置方法中定义,并且一旦以这种方式定义,O-HARQ过程组的数量可以在执行新的配置进程之前保持原样。实现这样的配置方法的方法可以包括总是应用预定义的固定值的方法、利用在基站系统中定义的某个配置值并在必要时改变该配置值的方法、以及通过与终端交换信息来反映终端的请求或偏好的方法。
在各种实施例中,当利用固定值时,O-HARQ过程组可以包括在设计或实现系统的步骤中定义的多个HARQ过程。
在各种实施例中,当使用基站系统中的配置值或参数时,基站可以读取配置值,并且可以将获得的配置值应用为O-HARQ过程组的大小或分配给O-HARQ过程组的HARQ过程的数量。
在各种实施例中,通过与终端交换信息来反映终端的请求或偏好的方法可以基于根据标准配置的消息来确定分配给O-HARQ过程组的HARQ过程的数量。根据实施例,终端可以向基站发送指示O-HARQ过程的优选数量的消息(例如,UE能力信息消息、UE信息响应消息)。此后,基站可以基于终端通过配置消息来指示分配给O-HARQ过程组的HARQ过程的数量。配置消息可以包括关于是否将实施根据本公开实施例的操作(即,基于传输机会的HARQ技术)的信息,或者关于该实施例所应用的HARQ过程的数量的信息。与O-HARQ过程相关的配置在基站和终端之间共享,使得基站可以根据具有对应配置(O-HARQ过程组的配置、O-HARQ过程的数量)的基于传输机会的HARQ技术来执行操作。在这种情况下,配置消息可以是在基站和终端之间交换的无线电资源控制(RRC)消息。
指示应用本公开的上述实施例的HARQ过程的数量的指示符可以是间接元素,其不仅指示如表达所指示的应用的HARQ过程的数量,还指示应用本公开的实施例的范围。间接元素可以控制O-HARQ过程组的大小或分配给O-HARQ过程组的HARQ过程的数量。此外,由如上所述的标准配置的消息可以包括用于确定是否将本公开的实施例直接或间接地应用于到对应终端的下行链路传输的指示符。
可以提供自适应地管理O-HARQ过程组的方法,目的是减少根据对O-HARQ过程组的应用的PDCCH保守化所导致的负担,并且优化对O-HARQ过程组的HARQ组合增益机会的提供。自适应地管理O-HARQ过程组的方法可以包括自适应地将O-HARQ过程组的大小或分配给O-HARQ过程组的HARQ过程的数量从预定义或配置的最小值改变为最大值的操作。在这种情况下,最小值和最大值可以是预先在设计或实现系统的步骤中固定和使用的值,或者是根据系统操作配置的值,或者是通过与终端交换信息而配置的值,这类似于配置O-HARQ处理组的大小或分配给O-HARQ过程组的HARQ过程的数量的上述方法。此外,通过与终端交换信息而获得的值可以是指示显式数量的直接数量,或者可以是包括以与其对应的间接形式的信息的消息(例如,作为确定O-HARQ过程的数量的基础的参数)。
在下文中,将描述在基站和终端之间配置包括总共N数量的HARQ过程当中的P数量的O-HARQ过程的O-HARQ过程组的示例。除了P数量的O-HARQ过程(这里,Q等于N-P)之外,基站还可以操作Q数量的HARQ过程(即,基于反馈的HARQ过程)。根据实施例,O-HARQ过程是应用了HARQ技术(基于传输机会的HARQ技术)的HARQ过程,以便防止由于HARQ过程的数量的短缺而导致的传输延迟,并且即使当没有接收关于在对应的HARQ过程中发送的数据的反馈时,基站也可以基于对应的HARQ过程来发送新数据。
图11是示出根据各种实施例的用于为每个HARQ过程执行传输进程的基站的示例操作的流程图。基站由图1的基站110示出。
参照图11,在1101,基站可以检测是否需要另外的传输机会。这里,另外的传输机会指的是在对应的HARQ过程中执行获取新TB的进程(图5和图6的基于传输机会的HARQ进程)并且即使在没有接收反馈信息时也发送该新TB的机会,而不是由于HARQ过程的数量的限制而等待直到接收了反馈信息。根据实施例,基站可以确定是否没有接收关于所有HARQ过程的反馈信息。当仍未接收关于当前配置的所有HARQ过程的反馈信息时,基站可以确定需要另外的传输机会。此外,根据实施例,基站可以基于配置了CA的两个或更多个小区之间的参数集(numerology)差异,或者配置了CA/DC的小区之间的回程延迟值,来确定是否由于反馈信息的传输延迟而有HARQ过程的短缺。当参数集或回程延迟值的差异大于或等于阈值时,基站可以确定需要另外的传输机会。此外,根据实施例,当使用FR1的载波和FR2的载波配置CA时,基站可以预测传输延迟,并且可以确定需要另外的传输机会。
当需要另外的传输机会时,基站可以执行操作1103。基站可以根据基于传输机会的HARQ技术来执行操作。当不需要另外的传输机会时,基站可以执行1109。基站可以根据现有的HARQ技术执行操作。
在1103,基站可以识别伺机HARQ过程(O-HARQ过程)。即使当没有接收关于当前正在进行的HARQ过程中的每一个的反馈信息时,基站也可以不再等待。
在1105,基站可以执行基于伺机HARQ过程的数据传输。基站可以基于映射信息发送数据。映射信息可以包括HARQ过程ID和已经在对应的HARQ进程中发送的数据(PDU或SDU)之间的关系。基站可以存储所识别的O-HARQ过程和已经发送的数据之间的关系,并且可以插入关于O-HARQ过程的新数据。数据和O-HARQ过程之间的关系可能在对应的数据从较高层被插入到对应的O-HARQ过程中的时候已经被插入。基站可以基于O-HARQ过程发送新数据。这里,从终端的角度来看,新数据是新数据,并且基站可以切换NDI并可以发送该数据。另一方面,从基站的角度来看,新数据可以是新数据,也可以不是。当接收了对另一HARQ过程的数据的ACK时,可以基于基站真实意图发送的数据有效载荷来新配置新数据。当接收了关于另一个HARQ过程的数据的NACK时,可以配置新数据以重传对应的数据。
在1107,基站可以执行已经发送的数据的重传管理进程。由于在S1105根据基于伺机HARQ过程的数据传输发送的数据不是根据HARQ过程的完成来管理的,所以基站可以另外执行分开的重传管理进程。基站可以更新映射信息。
在1109,基站可以执行基于HARQ过程完成的数据传输。基于HARQ过程完成的数据传输指的是根据关于在对应的HARQ过程ID中已经发送的数据的反馈信息(指示ACK、NACK或DTX中的至少一个)执行的数据传输。基站可以发送通过在步骤1101确定另外的传输机会时获得的信息(例如,ACK反馈、NACK反馈或指示重传的数量超过最大值的信息)配置的数据。例如,当反馈信息指示ACK时,基站可以发送新配置的数据。可以切换NDI,并且可以初始化RV。例如,当反馈信息指示NACK/DTX时,基站可以发送被配置用于重传的数据。可以切换NDI,并且可以改变RV(例如RV2)。
图11示出了在步骤1001确定是否需要另外的传输机会的进程在步骤1003之前,但是本公开的实施例不限于此。根据预先配置的HARQ过程序列,基站可以不执行步骤1001,而可以执行步骤1103至1107,或者可以执行步骤1109。
根据各种实施例,管理O-HARQ过程组的实体(以下称为基站)可以参考PDCCH分配失败率、关于O-HARQ过程组内的HARQ过程的及时ACK/NACK信息,以便自适应地改变O-HARQ过程组的大小或分配给O-HARQ过程组的HARQ过程的数量。在这种情况下,PDCCH分配失败率是当基站由于PDCCH资源的短缺而不能为终端进行调度时增加的值。在这种情况下,关于O-HARQ过程组中的HARQ过程的及时ACK/NACK信息是指示O-HARQ过程组中的HARQ过程不遵循根据本公开实施例的传输进程的次数或比率的信息,并且在接收关于发送的第一传输数据的ACK/NACK信息之后,将第二传输数据插入HARQ过程。PDCCH分配失败率可以是用于识别关于PDCCH保守化的本公开的实施例是否导致无线电控制资源的短缺的目的的信息,并且关于O-HARQ过程组中的HARQ过程的及时ACK/NACK信息是关于需要多少本公开的传输和重传进程的记录信息。在下文中,将通过图12a和12b描述用于基于上述信息自适应地配置O-HARQ过程的基站的操作流程。
图12a是示出根据各种实施例的用于自适应地配置O-HARQ过程组的基站的示例操作的流程图。基站由图1的基站110示出。基站是用于管理O-HARQ过程组的实体的示例,并且当用于管理O-HARQ过程组的实体被配置为与基站分开的节点时,对应的实体可以执行将在下面描述的操作。在图12a中,将描述添加O-HARQ过程的进程。
参照图12a,在1201,基站可以确定O-HARQ过程的数量是否小于最大值。当O-HARQ过程的数量小于最大值时,基站可以执行添加O-HARQ过程的进程。基站可以执行1203。当O-HARQ过程的数量不小于最大值时,基站可以结束图12a的进程。
在1203,基站可以确定是否满足添加O-HARQ过程的条件。当确定PDCCH分配失败率被保持为小于或等于预设的特定值,或者与O-HARQ过程组中的HARQ过程的及时ACK/NACK的次数或比率对应的值被保持为小于或等于预定值时,自适应地管理O-HARQ过程组的基站可以增加O-HARQ过程组的大小或分配给O-HARQ过程组的HARQ过程的数量。当同时满足上述两个条件二者,或者仅满足两个条件中的一个时,可以执行对应的操作。可替代地,可以从第一时间只检查一个条件,并且可以增加分配给O-HARQ过程组的HARQ过程的数量。低PDCCH失败率可以指例如图10a和图10b所示的情形发生的概率低,并且由于HARQ过程的数量短缺导致的传输延迟的概率高,所以在定义的时间内ACK/NACK的到达率可能低。当满足上述条件时,基站可以执行步骤1205。当不满足上述条件时,基站可以结束图12a的过程。
在1205,基站可以识别O-HARQ过程。基站可以在现有的HARQ过程(Q数量的HARQ过程)当中识别O-HARQ过程以应用基于传输机会的HARQ过程技术。当O-HARQ过程组的大小或分配给O-HARQ过程组的HARQ过程的数量小于定义或配置的最大值时,基站可以首先选择HARQ过程来进行添加。
在1207,基站可以针对选择的HARQ过程执行保守化处理。保守化处理指的是被执行以允许PDCCH在信道上被稳定发送的信号处理。选择的HARQ过程首先将PDCCH保守化进程应用于HARQ过程。例如,基站可以向选择的HARQ过程分配高功率,并且可以发送PDCCH的控制信息和PSDCH的数据。此外,例如,基站可以针对选择的HARQ过程执行保守化处理,以具有低传输速率。
在1209,基站可以确定是否接收了对选择的HARQ过程的数据的反馈信息。反馈信息可以指示关于HARQ过程的数据的ACK或NACK。当接收了反馈信息时,基站可以执行步骤1211。
在1211,基站可以将在步骤1205识别的HARQ过程包括到O-HARQ过程组中。当接收了对应的HARQ过程的ACK/NACK信息的时候,基站可以正式地将对应的HARQ过程配置为属于O-HARQ过程组。此后,当需要O-HARQ过程时(例如,图11的步骤1101),基站可以依照根据本公开的上述实施例的O-HARQ过程来执行传输进程。
图12a的步骤1207至1209是用于配置稳定的HARQ过程的操作,以便抢先解决由图10a和图10b的PDCCH丢失引起的问题,但是在各种实施例中,可以不执行对应的操作。例如,基于步骤1203的条件是否满足来添加O-HARQ过程而不进行保守化处理的进程可以包括在本公开的实施例中。
图12b是示出根据各种实施例的用于自适应地配置O-HARQ过程组的基站的示例操作的流程图。基站由图1的基站110示出。基站是用于管理O-HARQ过程组的实体的示例,并且当管理O-HARQ过程组的实体被配置为是与基站分离的节点时,对应的实体可以执行将在下面描述的操作。图12b示出了用于移除O-HARQ过程的进程。
参照图12b,在1251,基站可以确定O-HARQ过程的数量是否大于最小值。当O-HARQ过程的数量大于最小值时,基站可以执行用于移除O-HARQ过程的进程。基站可以执行操作1253。当O-HARQ过程的数量不大于最小值时,基站可以结束图12b的进程。
在1253,基站可以确定是否满足移除O-HARQ过程的条件。当确定PDCCH分配失败率被保持为大于或等于预设的特定值,或者与O-HARQ过程组中HARQ过程的及时ACK/NACK的次数或比率对应的值保持为大于或等于预定值时,自适应地管理O-HARQ过程组的基站可以减小O-HARQ过程组的大小或分配给O-HARQ过程组的HARQ过程的数量。当同时满足上述两个条件二者,或者仅满足两个条件中的一个时,可以执行对应的操作。可替代地,可以从第一时间只检查一个条件,并且可以减少分配给O-HARQ过程组的HARQ过程的数量。当满足上述条件时,基站可以执行步骤1255。当不满足上述条件时,基站可以结束图12b的进程。
在1255,基站可以识别O-HARQ过程。基站可以在O-HARQ过程(P数量的HARQ过程)当中识别正常的HARQ过程以应用正常的HARQ过程技术。
当O-HARQ过程组的大小或分配给O-HARQ过程组的HARQ过程的数量大于定义或配置的最小值时,基站可以选择HARQ过程以从O-HARQ过程组中移除,并且可以配置对应的HARQ过程以根据现有的HARQ操作进程来操作。现有的HARQ操作可以指在对应的HARQ过程中等待而不插入新数据直到接收了反馈信息的操作,以及当接收了反馈信息时基于反馈信息生成新数据(当反馈信息是ACK时)或重传数据(当反馈信息是NACK时)并传递它们的操作。
在图12a和图12b中的识别一个或多个条件的过程(例如,步骤1203、步骤1253)中,表达“被维持为”可以暗示特定状态被持续地维持或在定义的范围内被维持,并且可以暗示维持该状态期间的时间或由此产生的值大于或等于阈值或超过阈值。
关于上述图12a和图12b的一系列过程的本公开的实施例可以一起应用。也就是说,图12a的序列图的一些操作可以结合图12b的序列图的一些操作来执行。根据实施例,当不满足图12a的步骤1201或步骤1203的条件时,基站可以被配置为执行图12b的步骤1251。此外,根据实施例,当不满足图12b的步骤1251或步骤1253的条件时,基站可以被配置为执行图12a的步骤1201。
基于PDCCH分配失败率和及时ACK/NACK率来确定添加或移除O-HARQ过程的条件。当O-HARQ过程组的目标过程的数量(O-HARQ过程数量)小于O-HARQ过程的给定最大值(MAX_O-HARQ)时,基站可以确定PDCCH分配失败率是否小于阈值,和及时ACK/NACK率是否小于阈值。这可能指的是,例如,有足够的PDCCH资源,但是用于现有HARQ操作的O-HARQ过程组中的过程的比率由于延迟而是低的。在这种情况下,可以执行上述操作进程来增加O-HARQ过程的数量。另外,当当前环境不满足增加O-HARQ过程的数量的条件时,基站可以识别是否满足移除O-HARQ过程的条件(即,减少的条件)。仅当O-HARQ过程组的目标过程的数量(O-HARQ过程数量)大于O-HARQ过程的给定最小值(MIN_O-HARQ)时,可以执行该操作,并且仅当PDCCH分配失败率或及时ACK/NACK率信息大于阈值时,可以执行减少O-HARQ过程的数量的操作进程。
通过图12a和图12b,可以自适应地配置O-HARQ过程组。基站可以根据配置来自适应地操作O-HARQ过程。在各种实施例中,基站和终端可以通过分开的配置消息(例如,RRC消息)来重新配置O-HARQ过程。基站可以根据事件的发生不定期地或定期地配置和管理O-HARQ过程。在各种实施例中,除了配置消息之外,基站可以通过另外的控制信令来管理O-HARQ过程。O-HARQ过程可以通过诸如MAC CE或DCI的控制信令以激活/去激活形式被单独配置。例如,当MAC CE中的HARQ过程ID被指示和发送时,对应的HARQ过程可以被激活为O-HARQ进程。激活的O-HARQ过程可以应用基于传输机会的HARQ进程(图5至图7)。此外,例如,当MACCE中的HARQ过程ID被指示和发送时,对应的HARQ过程可以被去激活为O-HARQ过程。去激活的HARQ过程可以应用正常的HARQ进程(图4a至图4c)。
根据本公开的各种实施例,根据给定情形,在无线通信系统中用作重传进程的HARQ方法可以被自适应地操作以根据HARQ方法获得比特组合,或者通过放弃对应的增益来遵循分开的重传进程。分开的重传进程是指通过独立地利用包括在基站中的HARQ过程ID和映射信息来执行新的传输或重传的进程。已经通过图6和图7描述了重传进程。
根据本公开的各种实施例,基站可以不通过在CA环境中流动地利用HARQ来获取终端的HARQ增益(通过比特组合获得的增益),并且在这种情况下,可以利用用于根据基站和终端之间的无线环境自适应地执行重传进程的不同重传方法,并且可以自适应地执行重传。已经通过图6和图7描述了重传进程。
例如,根据本公开的各种实施例,基站可以对信息比特进行分段以供重传,并且可以分发到不同的PDU并传递信息比特。
根据本公开的各种实施例,通过HARQ过程的管理技术,基站可以固定地或自适应地划分和管理通过混合通过仅执行HARQ操作的传输进程(基于反馈的HARQ进程)和分开的重传进程(基于传输机会的HARQ进程)来执行传输的HARQ过程。
通过图4a至图12b,已经描述了在HARQ过程上发送新数据或重发现有数据的操作。在这种情况下,作为示例,TB已经被描述为传输的数据的单位。然而,本公开的各种实施例可以包括以码块(CB)或码块组(CBG)为单位的传输和重传。根据实施例,当基于传输机会的HARQ进程被应用于配置了CBG重传的终端时,基站可以通过CBG清空指示符来指示软缓冲器空置(empty)。
图13是示出根据各种实施例的无线通信系统中的基站的示例配置的框图。在以下描述中使用的术语“单元”或以后缀“器”、“和”者”结尾的术语是指处理至少一个功能或操作的单元,并且可以通过硬件、软件或硬件和软件的组合来实现。
参照图13,基站可以包括无线通信单元1301、回程通信单元1303、存储装置1305和控制器1307。
无线通信单元1301执行经由无线信道发送和接收信号的功能。例如,无线通信单元1301可以根据系统的物理层标准执行在基带信号和比特流之间转换的功能。例如,当发送数据时,无线通信单元1301可以通过编码和调制传输比特流来生成复符号。另外,当接收数据时,无线通信单元1301可以通过解调和解码基带信号来恢复接收比特流。此外,无线通信单元1301可以将基带信号上变频为射频(RF)频带信号,然后可以经由天线发送该信号,并且可以将经由天线接收的RF频带信号下变频为基带信号。
为了实现这一点,无线通信单元1301可以包括发送滤波器、接收滤波器、放大器、混频器、振荡器、数模转换器(DAC)、模数转换器(ADC)等。此外,无线通信单元1301可以包括多个发送和接收路径。此外,无线通信单元1301可以包括至少一个天线阵列,至少一个天线阵列包括多个天线元件。在硬件方面,无线通信单元1301可以由数字单元和模拟单元配置,并且模拟单元可以根据操作功率、操作频率等由多个子单元配置。根据实施例,无线通信单元1301可以包括用于形成波束的单元,即,波束成形单元。例如,无线通信单元1301可以包括用于波束成形的大规模MIMO单元(MMU)。
无线通信单元1301可以发送和接收信号。为了实现这一点,无线通信单元1301可以包括至少一个收发器。例如,无线通信单元1301可以发送同步信号、参考信号、系统信息、消息、控制信息或数据等。此外,无线通信单元1301可以执行波束成形。无线通信单元1301可以将波束成形权重应用于信号,以便根据控制器1307的配置向要发送或接收的信号给出方向性。根据实施例,无线通信单元1301可以根据调度的结果和计算传输功率的结果生成基带信号。此外,无线通信单元1301中的RF单元可以通过天线发送生成的信号。
无线通信单元1301可以如上所述发送和接收信号。因此,无线通信单元1301的整个或一部分可以被称为“发送器”、“接收器”或“收发器”。另外,在下面的描述中,经由无线信道的发送和接收可以用作包括如上所述的无线通信单元1301的处理的意思。
回程通信单元1303提供用于与网络中的其他节点通信的接口。也就是说,回程通信单元1303可以将要从基站发送到另一节点(例如,另一接入节点、另一基站、更高节点、核心网络等)的比特流转换成物理信号,并且可以将从另一节点发送的物理信号转换成比特流。
存储装置1305可以存储数据,诸如用于基站操作的基本程序、应用程序、配置信息等。存储装置1305可以包括存储器。存储装置1305可以由易失性存储器、非易失性存储器或者易失性存储器和非易失性存储器的组合来配置。此外,存储装置1305根据控制器1307的请求提供存储的数据。根据实施例,存储装置1305可以存储定义HARQ过程ID和RLC PDU/MACSDU或MAC PDU/TB的关系的映射信息。此外,根据实施例,除了数据的ID之外,映射信息还可以包括真实数据。真实数据可以存储在存储装置1305的缓冲器中。此外,根据实施例,映射信息可以包括与映射时间或将新TB插入HARQ过程的时间相关的时间信息。
控制器1307控制基站的整体操作。例如,控制器1307可以经由无线通信单元1301或回程通信单元1303发送和接收信号。此外,控制器1307可以将数据写入存储装置1305和从存储装置1305读出数据。此外,控制器1307可以执行通信标准所要求的协议栈的功能。为了实现这一点,控制器1307可以包括至少一个处理器。根据各种实施例,控制器1307可以控制基站执行根据上述各种实施例的操作。根据各种实施例,基站可以在接收关于HARQ过程的反馈信息之前,基于HARQ过程发送新TB的数据。也就是说,基站可以独立于关于HARQ过程的反馈信息将新的TB插入到HARQ过程中。此外,根据实施例,基站可以基于存储装置1305的映射信息来利用先发送的数据。也就是说,即使HARQ过程不同,基站也可以配置与接收的NACK信息的TB对应的数据。从终端的角度来看,数据可以被指示为新数据(例如,NDI被切换,RV被初始化),但是基站可以执行重传。
图13所示的基站110的配置仅仅是基站的示例,并且执行本公开的各种实施例的基站的示例不限于图13所示的配置。例如,根据各种实施例,一些配置可以被添加、删除、改变等。
在图13中,基站被示为一个实体,但是本公开不限于此。根据本公开的各种实施例的基站可以被实现为形成不仅具有整体部署而且具有分布式部署的接入网络。根据实施例,基站可以被分类为中央单元(CU)和数字单元(DU),并且CU可以被实现为执行上层功能(例如,分组数据汇聚协议(PDCP)RRC),DU可以被实现为执行下层功能(例如,媒体接入控制(MAC),物理(PHY))。
图14是示出根据各种实施例的无线通信系统中的终端的示例配置的框图。在以下描述中使用的术语“单元”或以后缀“器”、“和”者”结尾的术语是指处理至少一个功能或操作的单元,并且可以通过硬件、软件或硬件和软件的组合来实现。
参考图14,终端可以包括通信单元1401、存储装置1403和控制器1405。
通信单元1401执行经由无线信道发送和接收信号的功能。例如,通信单元1401可以根据系统的物理层标准执行在基带信号和比特流之间转换的功能。例如,当发送数据时,通信单元1401可以通过编码和调制传输比特流来生成复符号。另外,当接收数据时,通信单元1401可以通过解调和解码基带信号来恢复接收比特流。此外,通信单元1401可以将基带信号上变频为RF频带信号,然后可以经由天线发送该信号,并且可以将经由天线接收的RF频带信号下变频为基带信号。例如,通信单元1401可以包括发送滤波器、接收滤波器、放大器、混频器、振荡器、DAC、ADC等。
此外,通信单元1401可以包括多个发送和接收路径。此外,通信单元1401可以包括天线单元。通信单元1401可以包括至少一个天线阵列,至少一个天线阵列包括多个天线元件。在硬件方面,通信单元1401可以由数字电路和模拟电路(例如,射频集成电路(RFIC))配置。这里,数字电路和模拟电路可以实现为单个封装。此外,通信单元1401可以包括多个RF链。通信单元1401可以执行波束成形。通信单元1401可将波束成形权重应用于信号,以便根据控制器1405的配置向要发送或接收的信号给出方向性。
此外,通信单元1401可以发送和接收信号。为了实现这一点,通信单元1401可以包括至少一个收发器。通信单元1401可以接收下行链路信号。下行链路信号可以包括同步信号(SS)、参考信号(RS)(例如,小区特定参考信号(CRS)、解调(DM)-RS)、系统信息(例如,MIB、SIB、剩余系统信息(RMSI)、其他系统信息(OSI))、配置消息、控制信息或下行链路数据。另外,通信单元1401可以发送上行链路信号。上行链路信号可以包括随机接入相关信号(例如,随机接入前导(RAP)(或者消息1(Msg1)、消息3(Msg3))、参考信号(例如,探测参考信号(SRS)、DM-RS)、或者缓冲器状态报告(BSR)等。
例如,通信单元1401可以包括RF处理单元和基带处理单元。RF处理单元可以执行经由无线信道发送和接收信号的功能,诸如信号频带转换、放大等。例如,RF处理单元可以将从基带处理单元提供的基带信号上变频为RF频带信号,然后可以经由天线发送该信号,并且可以将经由天线接收的RF频带信号下变频为基带信号。例如,RF处理单元可以包括发送滤波器、接收滤波器、放大器、混频器、振荡器、数模转换器(DAC)、模数转换器(ADC)等。在图2H中,仅示出了一个天线,但是终端可以包括多个天线。此外,RF处理单元可以包括多个RF链。此外,RF处理单元可以执行波束成形。对于波束成形,RF处理单元可以调整通过多个天线或天线元件发送和接收的信号中的每一个的相位和大小。
基带处理单元可以根据系统的物理层标准执行基带信号和比特流之间的转换功能。例如,当发送数据时,基带处理单元可以通过编码和调制传输比特流来生成复符号。此外,当接收数据时,基带处理单元可以通过解调和解码从RF处理单元提供的基带信号来恢复接收比特流。例如,当根据正交频分复用(OFDM)方法发送数据时,基带处理单元可以通过编码和调制发送比特流来生成复符号,可以将复符号映射到子载波上,然后可以通过快速傅立叶逆变换(IFFT)操作和循环前缀(CP)插入来配置OFDM符号。此外,当接收数据时,基带处理单元可以以OFDM符号为单位划分从RF处理单元提供的基带信号,可以通过快速傅立叶变换(FFT)操作恢复映射到子载波上的信号,然后,可以通过解调和解码恢复接收比特流。
通信单元1401可以如上所述发送和接收信号。因此,通信单元1401的整个或部分可以被称为“发送器”、“接收器”或“收发器”。此外,通信单元1401可以包括多个通信模块,以支持多种不同的无线电接入技术。此外,通信单元1401可以包括不同的通信模块,以处理不同频带的信号。例如,不同的无线电接入技术可以包括无线局域网(LAN)(例如,IEEE802.1x)、蜂窝网络(例如,长期演进(LTE)、新无线电(NR))等。此外,不同的频带可以包括超高频(SHF)(例如,2.5GHz、5GHz)频带、毫米波(例如,60GHz)频带。此外,通信单元1401可以在不同的频带上使用相同的无线电接入技术(例如,用于许可辅助接入的未许可频带(LAA)、公民宽带无线电服务(CBRS)(例如,3.5GHz))。
存储装置1403可以存储数据,诸如用于终端操作的基本程序、应用程序、配置信息等。存储装置1403可以由易失性存储器、非易失性存储器或者易失性存储器和非易失性存储器的组合来配置。此外,存储装置1403可以存储数据,诸如用于终端操作的基本程序、应用程序、配置信息等。
控制器1405控制终端的整体操作。例如,控制器1405可以经由通信单元1401发送和接收信号。此外,控制器1405可以将数据写入存储装置1403和从存储装置1403读出数据。此外,控制器1405可以执行通信标准所要求的协议栈的功能。为了实现这一点,控制器1405可以包括至少一个处理器。控制器1405可以包括至少一个处理器或微处理器,或者可以是处理器的一部分。另外,通信单元1401和控制器1405的一部分可以被称为通信处理器(CP)。控制器1405可以包括各种模块来执行通信。根据各种实施例,控制器1405可以控制终端执行根据各种实施例的操作,这将在下面描述。
控制器1405控制终端的整体操作。例如,控制器1405可以经由通信单元1401发送和接收信号。此外,控制器1405可以将数据写入存储装置1403和从存储装置1403读出数据。为了实现这一点,控制器1405可以包括至少一个处理器。例如,控制器1405可以包括执行通信的控制的通信处理器(CP),以及控制诸如应用程序的较高层的应用处理器(AP)。根据本公开的实施例,控制器1405可以包括多连接处理单元,以执行用于在多连接模式下操作的处理。例如,控制器1405可以控制终端执行根据上述各种实施例的操作。根据各种实施例,控制器1405可以基于O-HARQ反馈的数量单独执行HARQ过程进程。控制器1405可以识别包括在HARQ信息中的HARQ过程号、NDI、RV、TBS。控制器1405可以解码数据(PDSCH),并且可以将其结果反馈回给终端。
根据本公开的各种实施例,根据给定的情形,在无线通信系统中用作重传进程的HARQ方法可以被自适应地操作以根据HARQ方法获得比特组合,或者通过放弃对应的增益来遵循分开的重传过程。具体地,可以执行另外处理(例如,低数据速率、低MCS水平等、分段)以在重传期间更稳定地发送。此外,O-HARQ过程可以自适应地从所有HARQ过程中选择,并且可以被操作,使得可以抢先减少当没有遵循现有的HARQ进程时出现的问题。
基于本公开中公开的权利要求或实施例的方法可以用硬件、软件或两者的组合来实现。
当以软件实现时,可以提供用于存储一个或多个程序(软件模块)的计算机可读存储介质。存储在计算机可读存储介质中的一个或多个程序被配置为由电子设备中的一个或多个处理器执行。一个或多个程序包括用于允许电子设备执行基于本公开中公开的权利要求或实施例的方法的指令。
程序(软件模块或软件)可以存储在随机存取存储器、包括闪存的非易失性存储器、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、磁盘存储设备、光盘ROM(CD-ROM)、数字多功能盘(DVD)或其他形式的光存储设备以及盒式磁带中。可替代地,程序可以存储在存储器中,存储器以这些存储介质中的所有或一些的组合被配置。此外,配置的存储器在数量上可以是多个。
此外,程序可以存储在能够通过诸如互联网、内联网、局域网(LAN)、广域网(WLAN)或存储区域网(SAN)的通信网络或通过组合网络而配置的通信网络来访问电子设备的可附接存储设备中。存储设备可以经由外部端口访问执行本公开的实施例的设备。此外,通信网络上的附加存储设备可以访问执行本公开的实施例的设备。
在本公开的上述示例实施例中,根据具体实施例,本公开中包括的元素以单数或复数形式表达。然而,为了便于解释,根据建议的情形适当地选择单数或复数形式,并且本公开不限于单个元素或多个元素。以复数形式表达的元素可以以单数形式配置,或者以单数形式表达的元素可以以复数形式配置。
虽然在本公开的详细描述中已经描述了具体实施例,但是本领域技术人员将会理解,在不脱离本公开的精神和范围的情况下,可以对其进行各种改变。因此,本公开的范围不应由所描述的实施例来限定,而是由所附权利要求或权利要求的等同物来限定。

Claims (15)

1.一种无线通信系统中基站的方法,所述方法包括:
基于第一混合自动请求HARQ过程发送第一数据;
基于第一HARQ过程发送第二数据;
在发送第二数据之后,基于对第一数据的接收结果生成第三数据;以及
基于第二HARQ过程发送第三数据。
2.根据权利要求1所述的方法,其中,发送第二数据包括存储关于第一HARQ过程和第一数据的关系的映射信息,以及
其中,所述映射信息包括第一HARQ过程的标识符、关于第一数据的标识符以及第一数据的分组。
3.根据权利要求2所述的方法,其中,生成第三数据包括:
识别对第一数据的接收结果是否指示NACK;
基于对第一数据的接收结果指示NACK,从映射信息识别第一数据;以及
基于识别的第一数据生成第三数据。
4.根据权利要求3所述的方法,其中,所述分组包括无线电链路控制RLC协议数据单元PDU,并且
其中,关于第一数据的标识符是序列号SN。
5.根据权利要求3所述的方法,其中,所述分组包括无线电链路控制RLC服务数据单元SDU,并且
其中,关于第一数据的标识符包括用于指示RLC SDU的标识符ID。
6.根据权利要求1所述的方法,其中,第三数据以小于第一数据的传输块大小TBS或者较低的调制和编码方案MCS水平来发送。
7.根据权利要求1所述的方法,其中,发送第二数据包括:
确定在所有HARQ过程当中是否存在其中伴随HARQ过程操作的传输进程不在进行中的HARQ过程;
基于在所有HARQ过程当中其中伴随HARQ过程操作的传输进程不在进行中的HARQ过程,识别第一HARQ进程;以及
基于识别的第一HARQ过程发送第二数据。
8.一种无线通信系统中的基站,所述基站包括:
至少一个收发器;以及
至少一个处理器,与至少一个收发器耦合,
其中,所述至少一个处理器被配置为:
基于第一混合自动请求HARQ过程发送第一数据;
基于第一HARQ过程发送第二数据;
在发送第二数据之后,基于对第一数据的接收结果生成第三数据;并且
基于第二HARQ过程发送第三数据。
9.根据权利要求8所述的基站,其中,为了发送第二数据,所述至少一个处理器被配置为存储关于第一HARQ过程和第一数据的关系的映射信息,以及
其中,所述映射信息包括第一HARQ过程的标识符、关于第一数据的标识符以及第一数据的分组。
10.根据权利要求9所述的基站,其中,为了生成第三数据,所述至少一个处理器被配置为:
识别对第一数据的接收结果是否指示NACK;
基于对第一数据的接收结果指示NACK,从映射信息识别第一数据;以及
基于识别的第一数据生成第三数据。
11.根据权利要求10所述的基站,其中,所述分组包括无线电链路控制RLC协议数据单元PDU,并且
其中,关于第一数据的标识符是序列号SN。
12.根据权利要求8所述的基站,其中,所述分组包括无线电链路控制RLC服务数据单元SDU,并且
其中,关于第一数据的标识符包括用于指示RLC SDU的标识符ID。
13.根据权利要求8所述的基站,其中,第三数据以小于第一数据的传输块大小TBS或者较低的调制和编码方案MCS水平来发送。
14.根据权利要求8所述的基站,其中,为了发送第二数据,所述至少一个处理器被配置为:
确定在所有HARQ过程当中是否存在伴随HARQ过程操作的传输进程不在进行中的HARQ过程;
基于在所有HARQ过程当中伴随HARQ过程操作的传输进程不在进行中的HARQ过程,识别第一HARQ进程;以及
基于识别的第一HARQ过程控制至少一个收发器发送第二数据。
15.根据权利要求8所述的基站,其中,为了发送第二数据,所述至少一个处理器被配置为基于未获取对第一数据的接收结果,控制所述至少一个收发器发送第二数据。
CN202180032598.0A 2020-03-09 2021-03-09 用于在无线通信系统中发送数据的装置和方法 Pending CN115486049A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020200029288A KR20210113921A (ko) 2020-03-09 2020-03-09 무선 통신 시스템에서 데이터 전송을 위한 장치 및 방법
KR10-2020-0029288 2020-03-09
PCT/KR2021/002912 WO2021182848A1 (ko) 2020-03-09 2021-03-09 무선 통신 시스템에서 데이터 전송을 위한 장치 및 방법

Publications (1)

Publication Number Publication Date
CN115486049A true CN115486049A (zh) 2022-12-16

Family

ID=77671828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180032598.0A Pending CN115486049A (zh) 2020-03-09 2021-03-09 用于在无线通信系统中发送数据的装置和方法

Country Status (5)

Country Link
US (1) US20230006779A1 (zh)
EP (1) EP4113879A4 (zh)
KR (1) KR20210113921A (zh)
CN (1) CN115486049A (zh)
WO (1) WO2021182848A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11870588B2 (en) * 2021-05-18 2024-01-09 Qualcomm Incorporated Feedback process reuse in wireless communications
WO2023123481A1 (zh) * 2021-12-31 2023-07-06 北京小米移动软件有限公司 一种传输方式的切换方法及设备/存储介质/装置
EP4231560A1 (en) * 2022-02-18 2023-08-23 Nokia Solutions and Networks Oy Adapting hybrid automatic repeat requests

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014153125A1 (en) * 2013-03-14 2014-09-25 Zte Wistron Telecom Ab Method and apparatus to use more transmission opportunities in a distributed network topology with limited harq processes
US9608774B2 (en) * 2013-10-03 2017-03-28 Qualcomm Incorporated Opportunistic HARQ repetition for coverage enhancement
US10785791B1 (en) * 2015-12-07 2020-09-22 Commscope Technologies Llc Controlling data transmission in radio access networks
DE112018000470T5 (de) * 2017-03-23 2019-10-02 Intel IP Corporation Vorrichtung und verfahren zum ermöglichen einer kreuz-transmission time interval (tti)-umschaltung und eines hybrid automatic repeat request (harq)-betriebes in einem new-radio-netz
KR20240042563A (ko) * 2018-08-09 2024-04-02 코닌클리케 필립스 엔.브이. Urllc 서비스를 위한 낮은 레이턴시 harq 프로토콜

Also Published As

Publication number Publication date
EP4113879A1 (en) 2023-01-04
KR20210113921A (ko) 2021-09-17
US20230006779A1 (en) 2023-01-05
WO2021182848A1 (ko) 2021-09-16
EP4113879A4 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
US11659544B2 (en) Method and apparatus for transmitting and receiving sidelink signal in wireless cellular communication system
CN111788858B (zh) 用于在无线通信系统中重传在不连续接收中配置的上行链路数据的方法和装置
US11109401B2 (en) Method and apparatus for efficient packet duplication transmission in mobile communication system
CN109906658B (zh) 用于无线通信系统中的终端的数据传输的方法和装置
CN114175731B (zh) 在无线通信系统中进行切换的装置和方法
US11469862B2 (en) Apparatus and buffer control method thereof in wireless communication system
JP2020515186A (ja) 移動通信ネットワークの無線アクセスネットワークのエンティティ間での信頼できるデータパケット送信
EP4113879A1 (en) Apparatus and method for transmitting data in wireless communication system
CN110999162B (zh) 用于在移动通信系统中传送和接收重复分组的方法和装置
CN112054880B (zh) 一种通信方法及装置
US11711185B2 (en) Method and device in communication node for wireless communication
US11330536B2 (en) Apparatus and method for controlling gain of received signal in wireless communication system
US20200229222A1 (en) Method and device in ue and base station for wireless communication
US11399346B2 (en) Method and apparatus for controlling uplink transmission power by terminal for dual connectivity in wireless communication system
CN110495211B (zh) 无线通信系统中的装置及其缓冲器控制方法
KR102656608B1 (ko) 무선 통신 시스템에서 무선 노드 통신 방법 및 장치
KR20210049612A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
CN115245030A (zh) 用于在无线通信系统中发送上行链路数据的方法及装置
US20200145148A1 (en) Method and apparatus for transmitting and receiving data and feedback in wireless communication system
KR20210017947A (ko) 무선 통신 시스템에서 상향링크 데이터를 송신하기 위한 장치 및 방법
KR102597038B1 (ko) 무선 통신 시스템에서의 무선 노드 통신 방법 및 장치
CN117395731A (zh) 一种用于无线通信的节点中的方法和装置
KR20210017949A (ko) 무선 통신 시스템에서 상향링크 제어 채널 및 신호 자원 결정 방법 및 장치
CN116762420A (zh) 下一代无线通信系统中通过多个发送和接收点应用pucch重复发送时执行功率控制的方法
KR20200114419A (ko) 무선 통신 시스템에서 비순차적 제어 및 데이터 정보 전송 방법 및 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination