WO2010104297A2 - 능동형 정전력 공급장치 - Google Patents

능동형 정전력 공급장치 Download PDF

Info

Publication number
WO2010104297A2
WO2010104297A2 PCT/KR2010/001421 KR2010001421W WO2010104297A2 WO 2010104297 A2 WO2010104297 A2 WO 2010104297A2 KR 2010001421 W KR2010001421 W KR 2010001421W WO 2010104297 A2 WO2010104297 A2 WO 2010104297A2
Authority
WO
WIPO (PCT)
Prior art keywords
load
pulse width
power
power supply
driving
Prior art date
Application number
PCT/KR2010/001421
Other languages
English (en)
French (fr)
Other versions
WO2010104297A9 (ko
WO2010104297A3 (ko
Inventor
이동원
Original Assignee
Lee Dong-Won
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Dong-Won filed Critical Lee Dong-Won
Priority to US13/255,733 priority Critical patent/US8710756B2/en
Priority to CN2010800205158A priority patent/CN102440077A/zh
Priority to EP10750988A priority patent/EP2408271A2/en
Publication of WO2010104297A2 publication Critical patent/WO2010104297A2/ko
Publication of WO2010104297A3 publication Critical patent/WO2010104297A3/ko
Publication of WO2010104297A9 publication Critical patent/WO2010104297A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an active constant power supply, and in particular, an active constant power supply capable of supplying constant power to a load by rectifying power having various sizes and frequencies without having a high capacity capacitor for a smoothing circuit that lowers the power factor of the circuit. It relates to a power supply.
  • LEDs light emitting diodes
  • the AC power supplied from the AC power supply 10 is used to generate a DC voltage VDC using the rectifier circuit 11 and the smoothing circuit Cd, and a pulse width controller. (20) was used to supply a constant current to the load.
  • the conduction of the switch Q at the design input voltage was performed by the switch driver 23 driving the switch Q when the oscillator 21 sets the RS-flip-flop 22.
  • the voltage indicated by the current detection resistor R is supplied to the switch blocking determiner 24 through a leading edge blanker 25, and at this time, the overcurrent is supplied to the voltage indicated by the resistor R. If the reference voltage ZD is higher than the reference voltage ZD, the switch cutoff determiner 24 resets the RS-flip flop 22 to perform the reset.
  • the current flowing through the switch Q is continuously increased from the time of conduction of the switch Q by the coil L converting current energy into magnetic energy, and the switch Q starts conduction at the design input voltage.
  • the current detection resistance R is set to operate by the determiner 24. If the determiner 24 does not operate, at 80% to 90% of the oscillation period of the oscillator 21, The switch Q was made to shut off.
  • the capacitor for the high voltage / capacity smoothing circuit has a problem that its price is expensive, as well as an increase in the size of the circuit, which inevitably leads to an increase in the size of the module for constant power supply.
  • the capacitor for the smoothing circuit (Cd) generally uses an electrolytic capacitor to realize a high voltage / large capacity, and the lifespan of the power supply device is usually 2 years to 2 years due to changes in the composition of the electrolyte and evaporation of the electrolyte due to temperature rise. There was a problem limited to three years.
  • the present invention has been proposed to solve the problems described above, and is stable to the load by rectifying power having various sizes and frequencies without having a high capacity capacitor for a smoothing circuit that lowers the power factor of the circuit and limits the lifetime.
  • An active constant power supply capable of supplying effective constant power is provided.
  • the active constant power supply device for supplying a constant power to the load, an AC power supply for supplying AC power; A rectifier circuit for receiving rectified AC power from the AC power supply; A drive coil connected in series with a load supplied with power from the rectifier circuit; A power switch for switching on / off a current passing through the driving coil and the load; Both ends are connected in parallel to the load by being connected to the output side and the input side of the load, respectively, and are installed in a direction in which current flows from the output side of the load toward the input side, and when the power switch is switched off, the driving coil is charged.
  • a reflux diode for discharging the current to the load;
  • a pulse type driving signal generator connected to a gate end of the power switch to control the switching on / off;
  • a cutoff determiner for switching off the power switch by generating a cutoff signal when the current flowing through the drive coil is equal to or greater than a design value; And while supplying power to the load, by measuring the adjustment period from the switching on time of the drive signal generator to the switching off time of the cut-off determiner in units of one period of rectified voltage to obtain and store the minimum adjustment period, and then And a pulse width controller for controlling the driving pulse width of the driving signal generator to coincide with the stored adjustment period from the power supply of the period.
  • the pulse width controller sets the time from the start point to the end point with the start time as the start point of the time when the current flowing through the drive coil is 0 [A] and the time when the cutoff determination device is operated in the design value. It is preferable to set it as said adjustment period.
  • the pulse width controller may be a starting point of a time when the current flowing through the driving coil is 0 [A], and a starting point of a time when the cutoff determination device is operated below the design value, and using the starting point and the ending point.
  • the slope of the current flowing through the drive coil is measured, and the adjustment period is preferably set according to the slope of the current.
  • the auxiliary cut-off determiner preferably generates the cut-off signal when the current flowing in the drive coil exceeds the design value.
  • the pulse width controller controls the frequency of the drive signal generator so that the drive signal generator generates the next drive pulse after a predetermined time elapses from the time when the current charged in the drive coil is completely discharged (fixed frequency).
  • the pulse width controller preferably controls the frequency of the drive signal generator (fixed shut-off method) such that the current charged in the drive coil generates the next drive pulse immediately after complete discharge.
  • the pulse width controller may be configured such that when the input power having the largest value among the input power supplies to the load is supplied, the current charged in the drive coil generates the next drive pulse after the complete discharge. It is desirable to control the frequency (fixed conduction method).
  • the pulse width controller may further include a microprocessor for performing the calculation of the adjustment period; A timer for measuring a switching on time of the driving signal generator and a switching off time of the cutoff determiner to provide the microprocessor to the microprocessor; And a memory for storing the adjustment period calculated by the microprocessor.
  • the pulse width controller may further include a communication unit for communication with the outside.
  • the current flowing through the power switch is composed of two paths, one of the two paths is connected to the ground terminal, the other is connected to the cutoff determiner, the current flowing to the ground terminal It is preferable to reduce the power consumption consumed by the cutoff determiner by increasing the current flowing through the cutoff determiner.
  • the power switch is two or more connected to each of the load, so that each of the load can be separated into two or more, each of the power switch is preferably driven with a predetermined time difference.
  • the drive coil It is preferable to further include a reflux diode for discharging the current charged in the load to the load.
  • a low pass filter is provided at the output terminal of the rectifier circuit.
  • the low pass filter may include a filter coil and a filter capacitor, a first terminal of the filter coil is connected to a rectifier circuit, a second terminal of the filter coil is connected to a load, and a first of the filter capacitor. A terminal is connected to the second terminal of the filter coil, the second terminal of the filter capacitor is grounded, and the capacity of the filter capacitor is preferably 1 uF or less.
  • the pulse type driving signal generator, the cutoff determiner and the pulse width controller may be implemented in one package.
  • the load includes one or more strings of light emitting diodes, and the strings of the light emitting diodes each have a time difference and are supplied with constant power.
  • the active constant power supply device As described above, it is possible to supply power having various sizes and frequencies to the load with stable effective constant power, without having a high capacity capacitor for the smoothing circuit to limit the power factor of the circuit and limit the lifespan. To be able.
  • FIG. 1 is a circuit diagram showing a constant power supply according to the prior art.
  • Figure 2 is a circuit diagram (to investigate the characteristics of the coil) for explaining the basic concept of the active constant power supply according to the present invention.
  • FIG. 3 is a state diagram for explaining the basic concept of an active constant power supply according to the present invention (a graph of a result of examining the characteristics of the coil).
  • FIG. 5 is a view for explaining a fixed frequency driving method of the basic concept of an active constant power supply according to the present invention.
  • FIG. 6 is a view for explaining a fixed cut-off driving method of the basic concept of an active constant power supply according to the present invention.
  • FIG. 7 is a view for explaining a high conduction driving method of the basic concept of the active constant power supply according to the present invention.
  • FIG. 8 is a state diagram illustrating a smooth state of an input power source among the basic concepts of an active constant power supply device according to the present invention.
  • FIG. 9 is a circuit diagram showing a first embodiment of an active constant power supply according to the present invention.
  • FIG. 10 is a first waveform diagram illustrating a driving state of an active constant power supply device according to the present invention.
  • FIG. 11 is a second waveform diagram showing a driving state of an active constant power supply device according to the present invention.
  • FIG. 12 is a third waveform diagram illustrating a driving state of an active constant power supply device according to the present invention.
  • FIG. 13 and 14 are fourth waveform diagrams showing a driving state of an active constant power supply device according to the present invention.
  • 15 and 16 are fifth waveform diagrams illustrating a driving state of an active constant power supply device according to the present invention.
  • 17 is a sixth waveform diagram illustrating a driving state of an active constant power supply device according to the present invention.
  • 18 is a first table showing an experimental example of an active constant power driving device according to the present invention.
  • 19 is a second table showing an experimental example of the active constant power driving device according to the present invention.
  • 20 is a circuit diagram showing a second embodiment of the active constant power supply according to the present invention.
  • 21 is a circuit diagram showing a third embodiment of the active constant power supply according to the present invention.
  • 22 is a circuit diagram showing a fourth embodiment of the active constant power supply according to the present invention.
  • 23 is a third table showing an experimental example of the active constant power driving device according to the present invention.
  • 24 is a fourth table showing an experimental example of the active constant power driving device according to the present invention.
  • 25 is a table showing a calculation example of the active constant power driving device according to the present invention.
  • 26 illustrates a semiconductor integrated device according to an embodiment of the present invention.
  • FIG. 27 is a first example of an actual application circuit using the semiconductor integrated device illustrated in FIG. 26.
  • FIG. 28 is a second example of an actual application circuit using the semiconductor integrated device illustrated in FIG. 26.
  • FIG. 2 is a circuit diagram for explaining the basic characteristics of the active constant power supply according to the present invention
  • Figures 3 to 8 are experimental examples showing the basic characteristics of the constant power supply according to the present invention.
  • Basic characteristics of the present invention to be described with reference to FIGS. 2 to 8 correspond to a period of supplying power to the load 12a, that is, a section in which the driving pulse is high, as described in more detail below.
  • the width of the driving pulse is controlled so as to be constantly supplied at a predetermined length (ie, time) or less.
  • the discharge slope characteristic of the charging current is the same, and the power supply V
  • the discharge time is linearly changed according to the capacity of the driving coil La regardless of the magnitude of the voltage provided in VAR ), and thus the discharge characteristics can be predicted. It is possible to accurately control the period (or frequency) of the driving pulse including all.
  • a variable power supply power supply V VAR
  • a rectifier circuit 11 connected to an output side of the variable power supply V VAR .
  • a load 12a (for example, an LED string) connected to the output side of the rectifier circuit 11, a driving coil La connected to the output side of the load 12a, and a load 12a connected in parallel to the load 12a.
  • a reflux diode Da installed so that the current flows back toward the side 12a and a power switch Qa connected to the output side of the driving coil La, through which the current passing through the load 12a and the driving coil La flows.
  • a function generator 21a connected to the gate terminal of the power switch Qa to generate a driving pulse to control switching on / off of the power switch Qa.
  • the power switch Qa when the power switch Qa is turned on, the current provided from the variable power supply V VAR flows to the ground through the rectifier circuit 11, the load 12a, the driving coil La, and the power switch Qa. In the process, energy is charged in the drive coil La. On the other hand, when the power switch Qa is cut off, the energy charged in the driving coil La may be discharged to the load 12a through the reflux diode Da.
  • the load 12a is connected to 20 LED strings in parallel and used that the forward conduction voltage is 50.3V (20mA), the drive coil La is 300uH, variable power supply (V VAR ) was set to 370V and the function generator 21a to 1KHz.
  • V VAR variable power supply
  • the driving pulse width of the function generator 21a When the driving pulse width of the function generator 21a is gradually raised from 0 to 25us, and the instantaneous current maximum value of the power switch Qa reaches 1.2A, the driving pulse width and the driving coil of the power switch Qa at that time are increased. Measure and record the time when the energy charged in (La) completes the discharge. It also measures DC input voltages (V VAR ) for 250V, 170V and 110V. Furthermore, the driving coil La was changed to 400uH, 500uH and 600uH and measured in the same manner, and some of the results are shown in FIGS. 3 and 4.
  • FIG. 3 is a graph illustrating a case where the driving coil La is 300 uH, and a section in which a current value flowing in the drive coil La is increased is a period in which energy is charged in the corresponding drive coil La, and a section is decreasing. Is the period of discharge.
  • the main characteristic of the graph is that the discharge period of the driving coil La is the same regardless of the magnitude of the voltage (hereinafter referred to as an “input voltage”) provided to the load 12a through the rectifier circuit 11.
  • an input voltage hereinafter referred to as an “input voltage”
  • the power switch Qa is switched off and the driving coil La at the instantaneous current of the power switch Qa is 1.2A. This is because) starts discharge.
  • the power switch Qa is disconnected (mark 'AA') at 0.6A, the conduction period of the power switch Qa is 1/2 and compared to 1.2A (mark '170-T), and the driving coil La is charged.
  • the discharged current has a linear relationship of 1/4.
  • the discharge time is almost 7us at all input voltages in the driving coil La 300uH, and the discharge time is almost 14us in the driving coil La 600uH regardless of the input voltage. Is the same.
  • the numerical values are normalized based on the input voltage 370 V and displayed in a tilted font on a yellow background, and thus discharge by the capacity of the driving coil La regardless of the magnitude of the input voltage. It can be seen that the circuit of Figure 2 is a predictable system since the time appears to be nearly the same.
  • the charge time is (1.14 + 2.27) / 2 and the discharge time is calculated using the 300uH and 600uH values shown in FIG. You can see that (8.55 + 16.5) / 2.
  • the conduction time of the power switch Qa is doubled.
  • the difference is 6.05 (110V) vs. 2.99 (170V)
  • the driving coil La 600uH is 12.3 (110V) vs. 6.03 (170V).
  • this also applies linearly when the number of LED series strings that is the load 12a is changed so that the voltage across the load 12a is changed.
  • driving methods that can be applied to the present invention include a fixed frequency method, a fixed cutoff period method, and a fixed conduction period method.
  • FIG. 5 illustrates a case in which the input voltage is 250V and 370V when the driving coil La is 300uH in FIG. 2, and the currents flowing through the driving coil La at the two voltages are marked with '250-A' and '370-, respectively. A 'is indicated.
  • the current deviation between the two voltages may be 5.029% or less.
  • the coil La current is the same as the load 12a current in the circuit configuration of FIG. 2.
  • the range of the input voltage is very wide as shown in Fig. 3, it is preferable to divide the input voltage into a plurality of sections (two or more) and drive at a fixed frequency suitable for each section. In other words, the section where the input voltage is high is driven at a higher fixed frequency than the section that is low.
  • the driving cycle is divided into 1.1 times the driving cycle than the previous section, that is, 9.0us and 9.9.
  • the load current deviation is about 10% or less.
  • FIG. 6 illustrates a case in which the input voltages are 110V and 170V when the driving coil La is 300uH in FIG. 2, and the currents flowing through the driving coil La at the two voltages are marked '110-B' and '170-, respectively. It is marked B '.
  • the drive frequency La is charged to a predetermined value for a long time, the driving frequency is low, and conversely, if the input voltage is high, it is natural that the driving frequency is high.
  • FIG. 7 illustrates a case in which the input voltage is 250V and 370V when the driving coil La is 600uH in FIG. 2, and the currents flowing through the driving coil La at the two voltages are marks 250-B and 370-, respectively. It is marked B '.
  • the conduction time (ie, drive pulse width) of the power switch Qa is fixed at 3.61us regardless of the input voltage level.
  • the current (mark '250-B') charged in the drive coil La after the switch is discharged is discharged through the reflux diode Da, the discharge end time is 17.50us, and the next switching cycle immediately after the discharge end time It starts.
  • the current charged in the driving coil La discharges with the same slope as that of the case of 250V, and the discharge end time is 25.83us.
  • the current slope of the power switch Qa representing the input voltage can be known by measuring the time when the current passes a predetermined value below the design value (that is, 1A in FIG. 7), and the next switching cycle start time is easily calculated as the measured value.
  • the driving frequency is relatively low because the discharge voltage is long because the energy is charged in the driving coil La when the input voltage is high, it is obvious that the driving frequency is high.
  • the dark line envelope 501 located in the middle of the current envelopes flowing in the drive coil La shown in FIG. 8 represents the envelope when the drive pulse width is properly adjusted.
  • the envelope is always of a constant magnitude regardless of the magnitude of the input voltage, and is driven by any one of the above driving methods.
  • FIG. 9 is a circuit diagram showing an active constant power supply device according to a first embodiment of the present invention.
  • the active constant power supply according to the first embodiment of the present invention, the AC power supply 50, the rectifier circuit 51, the low pass filter (L LPF , C LPF) ), The load 52, the drive coil L1, the flyback diode D1, the power switch Q1, the resistor R1, the shutoff determiner 80, the drive signal generator 101. And a flip-flop (93), an end logic (91) and a switch driver (92), wherein the cutoff determiner (80) comprises a leading edge blanker (LEB) 81 and a reference voltage.
  • Zener diode ZD1, comparator 82, and pulse width controller are included.
  • the rectifier circuit 51 is connected to the output terminal of the AC power supply 50 to rectify the AC power, and the low pass of the filter coil L LPF and the filter capacitor C LPF is connected to the output terminal of the rectifier circuit 51.
  • a filter is installed to remove high frequency components of the power supply current.
  • a load 52 such as an LED string is connected to the output side of the low pass filter to receive power (hereinafter referred to as “input power”), and a drive coil L1 is connected in series to the output side of the load 52.
  • input power receive power
  • drive coil L1 is connected in series to the output side of the load 52.
  • a reflux diode D1 is connected in parallel to the load 52, but is connected in a direction in which reflux is input toward the input side of the load 52.
  • the power switch Q1 is connected to the output side of the drive coil L1, and a current passing through the load 52 and the drive coil L1 flows through the power switch Q1, and to the output side of the power switch Q1. Resistor R1 is connected.
  • a shutoff determiner 80 is connected to an output side of the power switch Q1, and a peak of a current flowing through the power switch Q1 is connected to a non-inverting terminal + of the comparators 82 of the shutoff determiner 80.
  • the peak voltage remover 81 for removing the voltage is connected, and the zener diode ZD1 is connected to the inverting terminal (-).
  • the driving signal generator 101 is connected to the gate terminal of the power switch Q1 through the AND logic 91 and the switch driver 92 so as to control the switching operation of the power switch Q1.
  • One input terminal of the logic 91 is connected to the flip-flop 93, and the reset terminal Rst of the flip-flop 93 is connected to the output terminal of the cutoff determiner 80.
  • the output terminal of the cutoff determiner 80 is also connected to the drive signal generator 101 to adjust the drive pulse width and period.
  • the interruption of the power switch Q1 may include driving pulses from high to low, or flip-flop 93 being reset by the cutoff determiner 80 so that its output is low. First by going low.
  • the power switch Q1 When the power switch Q1 is turned on, the AC current provided from the AC power supply 50 is connected to the rectifier circuit 51, the low pass filter, the load 52, the coil L1, the switch Q1, and the resistor R1. Magnetic energy is charged to the coil L1, which is a charging element, in the process of flowing to ground through the circuit. When the switch Q1 is blocked, the magnetic energy charged in the coil is discharged to the load 52 through the reflux diode D1.
  • the power switch Q1 Since the power switch Q1 is driven by a pulse and the switch current is continuously increased by the driving coil L1, a current corresponding to several times the design current necessarily in one switch drive (hereinafter, referred to as "current multiplier"). "In the present invention, the current multiplier is set to 2 times for convenience) should flow.
  • the maximum instantaneous current may be multiplied by the current multiplier after multiplying the design current by 1.414 when the load 52 is a general resistive load 52 and forward when the load 52 is a light-emitting diode (LED). It is slightly higher than the resistive load 52 because little current flows below the conduction voltage V F.
  • the value of the resistor R1 used for current detection is obtained by dividing the reference voltage value (or design voltage value) of the cutoff determiner 80 applied to the zener diode ZD1 by the design maximum instantaneous current value. .
  • the pulse width controller (not shown) measures the operation frequency and the minimum operation period (i.e., the shortest switch conduction period) of the cutoff determiner 80 in the input voltage 1 period 1T, and the next input voltage 1 period ( That is, the driving signal generator 101 generates the driving pulse from the second cycle, 2T) to the measured shortest switch conduction period.
  • the power switch Q1 is shut off when it reaches the design value at which the shutoff determiner 80 operates.
  • a pulse width controller (not shown) includes a microprocessor for performing the calculation of the adjustment period, a timer for measuring the start point (zero point) and the end point (design value), and an operation in the microprocessor. It will be configured to include a memory for storing one adjustment period, preferably further includes a communication unit for communication with the outside to notify the result to the outside or to adjust the adjustment period, etc. in accordance with a command from the outside.
  • shutoff determiner 80 operates only once in an ideal next input period (i.e., after 3rd period, 3T).
  • the charging current slope is larger than when the input voltage is low, and the discharge period is the same regardless of the input voltage level.
  • the cutoff determiner 80 is operated a number of times, in which case the drive signal generator 101 is subjected to all switch conduction periods measured by the pulse width controller. The driving pulse width of the next period is adjusted by the shortest switch conduction period.
  • the next period is adjusted by reducing the driving pulse width in proportion to the operation frequency of the cutoff determiner 80.
  • the shutoff determiner 80 is operated zero times, and the drive signal generator 101 widens the drive pulse width by a minimum unit (i.e., increases the switching on time) in the next input period.
  • the current waveform is conceptually shown in FIG.
  • FIGS. 15 to 16 illustrate the circuit of FIG. 9 in the above-described fixed conduction period method. The results of the operation are shown, and similar results to those described above can be obtained by driving in the fixed interruption period method and the fixed conduction period method.
  • FIG. 9 The waveform of the result of the computer simulation of the circuit of FIG. 9 (serial number A029) is shown in FIG.
  • the load 52 is an LED string, and when 20 mA flows, the voltage across the LED string is 50.3V, and the 40 LED strings are connected in parallel, and a load resistance of 10 ohms is connected in series to each LED string. Connected.
  • AC input voltage is 176.8VAC, which is 80.4% of 220VAC, the maximum rectified voltage is 250V, power frequency is 50Hz, filter coil (L LPF ) is 2mH, filter capacitor (C LPF ) is 0.3uF, drive coil (L1) is A 40nF capacitor was added across the load 52 to remove 320uH, drive frequency 50KHz, drive pulse width 3.8uS, and switching noise.
  • simulation A029 The purpose of simulation A029 is to investigate the power factor, current harmonic content and load 52 current when driving the power switch Q1 with a fixed pulse width of 3.8us over a period of input voltage. Is not. Thus, the resistor R1 is selected to 0.01 ohms, and under this condition, the switch disconnection determiner 80 does not operate even once.
  • the power supply current 302 of the AC power supply 50 is 4.6 degrees faster than the input voltage 301, the maximum instantaneous value of the power supply current 302 is 245 mA, and the individual LED RMS current 303 is 20 ms. 20.6 mA.
  • the voltage 304 between both ends of the load 52 is at most 41.6V and at most 54.2V in a 10ms to 20ms period.
  • the voltage across the filter coil (L LPF ) 305 is mostly between + 7V ⁇ -7V and the high voltage appeared five times in the 9.2ms portion, the maximum value is 36V.
  • the maximum value thereof was 2.38 A and the current charged in the driving coil L1 was increased. Was completely discharged before the next switching cycle was started.
  • THD Total Harmonic Distortion
  • FFT Fast Fourier Transform
  • the power factor is very high as 0.989, the THD is 12.4% and the first phase angle is 175.4 degrees.
  • the phase angle becomes 4.6 degrees when the current measuring terminal is changed.
  • the load 52 power is 41.4 watts (20.6mA x 50.3V x 40 LED strings).
  • simulation A016 of FIG. 18 changes the input voltage to the level of 118.9% of 220 VAC under the simulation A029 condition, and sets the power switch to 2.4us so that the instantaneous maximum current value of the power switch Q1 is equal to A029. Q1), the individual LED current is 20.5mA, power factor is 0.975, which is also very high.
  • the instantaneous maximum current value of the AC power supply 50 was 167 mA, which was lower than the A029 test result of 245 mA, but this was because the increase in the power supply voltage was charged to the driving coil L1 and then supplied to the load 52. Lower, and the supply power and the load 52 power are the same.
  • the present invention is that the individual LED current fluctuations are very stable, even though the power supply voltage varies from approximately 80% to 120%.
  • the power factor is 0.97 or more, which is very high.
  • the THD is 15% or less, resulting in less power current waveform distortion.
  • the phase difference between the power supply voltage and the current is very small, 11 degrees or less.
  • simulation tests B024 and B025 of Figure 18 shows the results of the simulation at the power supply voltage of the AC power supply 50 is 77.8% and 120.2% of 100VAC, respectively.
  • the voltage at both ends of the load 52 was 24.2V
  • the drive coil L1 was 168 uH
  • the filter coil L LPF and the filter capacitor C LPF used 2 mH and 0.1 uF as before.
  • the individual LED currents are 20.14mA and 20.45mA, respectively, with variation of 1.54% and power factor greater than 0.99.
  • the power current harmonic content and IEC 61000-3-2 class C standard (hereinafter referred to as Class C standard) of the simulation results are shown in FIG. 19.
  • the results of simulations A016, A029, B024 and B025 all meet the Class C specification.
  • the first filter coil L LPF , the filter condenser C LPF , and the driving coil L1 charge and discharge current so that there is no power consumption.
  • the rectifier diode takes 1V effective, 10 ohms connected in series to the LED string takes 0.2V effective, and the power switch Q1 takes 0.05V effective (0.2V * maximum duty ratio 0.5 * sawtooth wave 0.5),
  • the detection resistor R1 takes an effective 0.25V (1V / 4) and consumes a total of 1.5V. When the voltage across the load 52 is 50.3V, the efficiency is 97.0%, and when 24.2V is 93.8%.
  • the capacity of the filter capacitor (C LPF ) is 1 uF or less, so that a relatively reliable film capacitor can be used instead of the electrolytic capacitor used for the smoothing capacitor, thereby improving the reliability and life of the power supply.
  • a capacitor of 40 nF was inserted at both ends of the load 52 to remove noise. If necessary, increasing the capacity of the noise removing capacitor allows smoother current to be supplied to the load 52.
  • the active constant power supply device according to the first embodiment of the present invention has been described in detail above. However, since there is no circuit for measuring the slope of the power switch Q1 current as described below, this embodiment is most suitable for the fixed frequency method. something to do.
  • the second embodiment of the present invention is used as an auxiliary shutoff determiner that operates only when a surge current such as lightning strikes, and operates zero times at a normal input voltage, i.e., always within the period of one input voltage.
  • the power switch Q2 has a conduction period, and a separate inclination measuring circuit for adjusting the driving pulse width is configured.
  • the second embodiment of the present invention can be suitably applied to all three driving methods described above.
  • the voltage input to the non-inverting terminal of the comparator of the cutoff determiner 80 is also inputted from the non-inverting terminal, and the inclination terminal is connected to the zener diode ZD12 for slope measurement. Further comprising a slope measuring circuit composed of a comparator 119, the cutoff determiner 80 operates only when an abnormal voltage is introduced.
  • the zener diode ZD11 connected to the non-inverting terminal of the comparator 82 is subjected to a voltage (for example, 1.1V) exceeding a design value (for example, 1V), and is connected to an inverting terminal of the comparator 119 for tilt measurement.
  • Zener diode ZD12 differs in that it takes a voltage (eg 0.5V) that is less than the design value (eg 1V).
  • the reference voltage of the zener diode ZD11 is set so that the cutoff determiner 80 operates at a current higher than the design current
  • the tilt comparator 119 is a power switch
  • the reference voltage of the zener diode ZD12 is set so that the instantaneous current flowing in Q2) operates below the design maximum value.
  • the reference voltages are measured as an example, and the comparator 119 for measuring the slope is 0.5V (that is, operates at a level of 50% of the maximum design current), and the cutoff determiner 80 is 1.1V (that is, operates at 110%). It has been described above.
  • the fixed frequency method is the tilt adjustment determiner 119 as shown in FIGS. 10 to 12.
  • the number of operations 503 increases or decreases.
  • the fixed interruption period method is found in FIGS. 13 to 14 and the high conduction period method is shown in FIGS. 15 to 16.
  • the driving signal generator 401 drives the power switch Q2 with the minimum pulse width during the first period of the input voltage, and according to the use of the determiner,
  • the minimum operation period of the operation period of the pulse width adjustment determiner (also referred to as "determination") is obtained (i.e., measurement of the maximum slope of the power switch Q2 current).
  • the new driving pulse width is calculated using the minimum operation period obtained in the first period to drive the power switch Q2.
  • the circuit of Fig. 20 using a reference voltage of 50% of the design, when using the reference voltage ZD12 of the determination device 119 for tilt measurement to twice the minimum value measured and to the 80% level. Is driven by a value of 1.25 times.
  • the driving pulse width adjusting determiner ie, the tilt measuring comparator 119
  • the driving pulse width is slightly reduced (eg, 1). %)
  • the driving pulse width is slightly increased (e.g., 1%) to drive the power switch Q2 (pulse width fine adjustment step).
  • the conduction period of the power switch Q2 is constant regardless of the level of the input voltage. Therefore, during the first period of the input voltage, the driving signal generator 401 operates the power switch Q2 with the maximum switch disconnection period as described above. While driving, the minimum operating period of the operation period of the comparator 119 for measuring the gradient is obtained at one cycle of AC input (that is, measuring the maximum slope of the power switch Q2 current).
  • a new interruption period is calculated using the minimum operating period obtained in the first period to drive the power switch Q2.
  • fine adjustment of the blocking period according to the operation frequency of the slope measuring comparator 119 is performed in the same manner as the fixed frequency / fixed interruption period method.
  • the tilt comparator 119 is preferably used only for the purpose of countering the number of operations.
  • the driving signal of the power switch Q2 needs to be changed once in 10 ms to 20 ms in short, so that the driving signal according to the operation number of the determiner 119 can be changed. Coordination is easily implemented as a micro process.
  • two terminals of the power switch Q2 are connected to the ground, and the first terminal of the power switch Q2 is connected to the ground through the current detecting resistor R1, and the second terminal is directly grounded. Is connected.
  • the power switch Q2 is implemented as a field effect transistor (FET)
  • FET field effect transistor
  • the FET has two source terminals, and the first terminal has a small current (for example, 5 of the second terminal). %) And most (95%) to the second terminal. Therefore, power consumed by the current detecting resistor R1 is reduced to increase power efficiency.
  • a pulse width controller (not shown, which may be integrally implemented inside the driving signal generator 401) includes a memory, and the memory includes a comparator 119 for tilt measurement.
  • the driving pulse width and the interruption period information corresponding to the minimum operation period or the number of operation times of the pre-programmable circuit are preprogrammed so that the drive signal generator 401 generates a drive signal according to the drive signal information.
  • the pulse width controller is provided with a communication function for exchanging data with the outside and the memory as a programmable memory, driving signal information suitable for the load of each LED lamp or the like can be programmed.
  • the third embodiment of the present invention is derived to further improve THD (Total Harmonic Distortion). That is, the simulation test A012 in FIGS. 18 and 19 satisfies the KSC 7651, 7652, 7653 and 7654 specifications, which require a power factor greater than 0.9 with an individual LED current of 20.4 mA and a power factor of 0.982. 9.9% (standard 5%) and 11th harmonic are 12.4% (standard 3%), which do not meet the Class C specification.
  • THD Total Harmonic Distortion
  • the driving frequency is increased from the standpoint of power supply current, and the low frequency that is difficult to filter is higher.
  • the THD is improved by moving it to a lowpass filter.
  • the load 52 is divided into two, and power switches Q1 and Q2 are connected to the respective loads 52, respectively, but the present invention is not limited thereto. Of course, each power switch can be connected accordingly.
  • the computer simulation A036 of FIG. 18 simulates by using the coils L1 and L2 of 640uH which are twice the existing values for each of the divided loads 52 under the test A012 conditions. It is a test. As a result of the test, the THD is more than doubled from 18.2% to 8.5%, and the individual LED current is 20.4mA and 20.6mA, the load current fluctuation is less than 1%, the power factor is all 0.98 or more, and the current harmonic content is in compliance with the Class C standard. Satisfied.
  • Fig. 22 is a current comprising a load 52, a drive coil L1, and a reflux diode D1 for the detection resistor Rs used for detecting the circuit current as compared with Fig. 20 showing the second embodiment of the present invention. Is inserted into the loop.
  • the above-described embodiments detect the current flowing in the power switch Q1 and predict the current flowing in the load 52.
  • the fourth embodiment of the present invention measures the current flowing in the load 52 by directly measuring the control circuit. To provide.
  • the load due to the time-dependent change (dust accumulation, temperature / humidity change, etc.) of the driving coil value during the circuit operation ( 52) can be prevented and the load can be prevented even when the next switching cycle is started (continuous current mode, CCM: Continious Current Mode, hereinafter CCM) before the energy accumulated in the drive coil L1 is completely discharged.
  • CCM Continuous Current Mode
  • the detection resistor R1 installed under the existing power switch Q1 is required to have a low resistance value and high power, so that the physical size is large, heat is generated, and it is difficult to obtain a standard product.
  • the detection resistance (Rs) uses a high resistance value and low power, so it can be easily obtained as an inexpensive standard.
  • the voltage across the load was 50.3V (at 20mA), and the load was divided into two and driven by two power switches (Q and Q2). Each power switch (Q and Q2) used 10 LED strings at 100KHz, and the time difference was 5us.
  • the filter coil (L LPF ) is 1mH and the filter capacitor (C LPF ) is 0.1uF.
  • the drive coil L1 is 360uH (however, simulation test D010 is 720uH).
  • the voltage across the load is 1/2 of the input voltage, the rest is applied to the driving coil L1, and the power factor is 0.946.
  • the power factor increases as the ratio of voltage across the load decreases, and the current phase becomes faster as the first phase angle is 0.4 degrees to 1.3 degrees, and the individual LED effective current fluctuation is 4% or less, which is 17.7 mA. At between 18.4mA.
  • Class D (hereinafter referred to as Class D specification) standard applied to 25 watts or less is sufficiently satisfied because the third harmonic is 86% or less and the fifth harmonic is 61% or less.
  • LED lamps with 25 watts or less are provided with a constant current supply with a power factor of 0.9 or more and a Class D specification when 50% or less of the input voltage is used. % to be.
  • a 25-watt or larger LED lamp has a power factor greater than 0.9 when using less than 45% of the input voltage, and is provided with a constant current supply that satisfies the Class C specification, and the driving pulse maximum duty ratio is 45%.
  • the drive pulse width for each rectified voltage is stored in advance in the memory as a table, and the drive voltage generator can be driven by reading the drive pulse width corresponding to the measured voltage by measuring the rectified voltage in actual conditions. Do. Since all devices operate as linear elements, if the drive pulse widths are known at about three rectified voltages (both ends and intermediate voltages), the drive pulse width can be calculated by calculating the remaining voltages. Of course, the relationship between the voltage and the pulse width may be expressed by an equation, and the equation may be implemented in hardware in a pulse width controller or programmed by a microprocessor.
  • the drive coil value is calculated by calculating the resistance value. For example, in Fig. 18, the A036 test was conducted by dividing the load of the simulation test A012 into two, but in terms of the driving coil L1, since the current was cut in half, the driving coil value was doubled.
  • Table 1 below is an example of the driving coil (L1) value according to the number of LED parallels when the LED individual current is 20mA.
  • the charging time of the driving coil L1 varies depending on the input voltage. For example, when the voltage across the drive coil L1 is doubled, the charging time is shortened by twice. That is, when there is the load both ends voltage VF1 and the charging time PW1, the unknown charging time PW2 for the new load both ends voltage VF2 is obtained by the following formula (1).
  • This calculation method is used to calculate the pulse width when the input voltage changes in the circuit and when the number of LED series is changed.
  • the unknown discharge time Tdis2 for the new load end voltage VF2 is obtained by the following formula (2).
  • Tdis2 VF1 / VF2 * Tdis1 ---- (Formula 2)
  • the new driving cycle is obtained by the sum of the charging time (PW2) and the discharging time (Tdis2).
  • 25 is a result table which computed the drive pulse width
  • the driving pulse width and the discharge end time with respect to the load voltage 50.3V are known values obtained in simulations A016 and A029, and the remaining values are the results calculated using the above formulas.
  • 24.2V and 12.3V show the calculation result and the simulation result together.
  • the semiconductor integrated device illustrated in FIG. 26 is composed of two parts.
  • a counter for counting the number of times of operation of the determiners, a signal generator (PWM) for controlling the on / off of the power switch, and a predetermined number of times of operation of the pulse width adjustment determiner.
  • a drive signal generator 401z which is a digital circuit including control logic (CPU) for controlling to a numerical value and a communication circuit (I 2 C) for communicating with the outside.
  • each circuit is provided with a regulator for supplying a constant voltage.
  • the regulator 96z for supplying a constant voltage to an analog circuit is illustrated as 9V.
  • MOSFET MOSFET
  • the regulator 97z for supplying a constant voltage to the digital circuit is 3.3V.
  • the regulator 97z is a constant voltage regulator of 5V or less.
  • reference voltages of the determiners 82z and 119z are shown as 1.1 and 0.7, respectively. For convenience of explanation, the reference voltages are indicated as 70% and 110% of the design reference values, and in actual integrated devices, the reference voltage is preferably 1V or less.
  • pin 1 (SCK) and pin 2 (SDA / DIM) are pins that communicate with the outside in an I 2 C manner, and in particular, pin 2 (SDA / DIM) serves as an external dimming signal input pin. . That is, if a signal is input to pin 2 (SDA / DIM) without a clock signal on pin 1 (SCK), it operates as a dimming signal input pin.
  • Pin 3 CS is a terminal for measuring a current flowing through the switch
  • pin 4 GND is a ground terminal
  • pin 5 DRV is a terminal for driving a power switch.
  • Pin 8 is a terminal connected to a rectified voltage or an external power supply voltage, the current controlled by the constant voltage regulator 96z is charged to a capacitor installed outside the pin 6 (VCC) power bank of the operating voltage of the semiconductor device Works. Detailed description of each part is well known to those skilled in the art and will be omitted.
  • FIG. 27 is an example of an actual application circuit using the semiconductor integrated device 8Pa of FIG. 26 described above.
  • the integrated device 8Pa is preferably operated in the following procedure.
  • the signal generator continues to drive the switch at the set frequency / pulse width.
  • step 5 surge input of 4 or less, pulse width of 5 or more too wide.
  • step 4.1 If the minimum pulse width allowed in the control logic, the overvoltage is input above the design value, so the signal generator (PWM) is set to reduce the number of driving times by half until the overvoltage is resolved (skip mode). Then go to step 2.
  • PWM signal generator
  • step 2 Since the pulse width is not surge but wide, set the signal generator (PWM) by reducing the pulse width by 2 units or more. Then go to step 2.
  • PWM signal generator
  • step 2 If the operation frequency is smaller than the predetermined value (target value), the pulse width is increased by one unit to set the signal generator PWM. Then go to step 2.
  • step 2 If the number of times of operation is greater than the predetermined value (target value), the pulse width is reduced by one unit to set the signal generator PWM. Then go to step 2.
  • the pulse width adjustment judging device is divided into a section that continues to operate and a section that does not continue to operate, and the instantaneous maximum rectified voltage and the AC input voltage pass through the zero potential, respectively, in the middle of the sections. Wait until it passes zero potential (synchronization step-optional). At this time, when the switch driving pulse width is subjected to appropriate mathematical conversion, the input voltage becomes the input voltage (that is, the pulse width is the ADC of the input voltage). Then go to step 2.
  • the energy charged in the driving coil is described in detail based on the complete discharge in each switching cycle. If the next switching cycle is started before the discharge is completely discharged, the undischarged energy in the previous cycle is added to the current cycle. Naturally, as more current flows, higher currents can be supplied to the load.
  • constant current supply device described in the preferred embodiment of the present invention can be implemented as a monolithic or hybrid semiconductor integrated device.
  • the controller of the present invention is a power factor improvement controller (PFC). controller).
  • PFC power factor improvement controller
  • the LED lighting industry the so-called LED fluorescent lamps and LED lamps with built-in converters, called LED incandescent lamps, have received a lot of space constraint to install power devices, and have to use a separate power factor improvement circuit to improve power factor.
  • the most easily accessible power factor correction circuit is a passive valley fill circuit, which requires two additional smoothing capacitors and three rectifier diodes, while the maximum power factor is about 0.92, and the active type is mostly expensive.
  • the circuit is complicated.
  • the use of the smoothing capacitor shortens the lifespan of the power supply to 2-3 years.
  • the core component of the LED lighting industry which is a new growth industry, is provided as a product that does not need a separate power factor improving circuit, the price is competitive, and the warranty life of the power supply is long, and thus the industrial applicability is very high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

본 발명은 능동형 정전력 공급장치에 관한 것으로, 더욱 상세하게는 회로의 역률을 저하시키는 평활 회로용 고용량 콘덴서를 구비하지 않고도, 다양한 크기 및 주파수를 갖는 전력을 정류하여 부하에 정전력을 공급할 수 있는 능동형 정전력 공급장치에 관한 것이다. 이를 위해, 본 발명에 따른 능동형 정전력 공급장치는, 교류전원을 공급하는 교류전원 공급기와, 상기 교류전원 공급기로부터 교류전원을 입력받아 정류하는 정류회로와, 상기 정류회로로부터 전력을 공급받는 부하에 직렬 연결된 구동 코일과, 상기 구동 코일 및 부하를 통과한 전류를 스위칭 온/오프 시키는 전력 스위치와, 상기 전력 스위치의 게이트 단에 연결되어 상기 스위칭 온/오프를 제어하는 펄스형 구동신호 발생기와, 상기 구동 코일에 흐르는 전류가 설계값 이상인 경우 차단 신호를 발생시킴으로써, 상기 전력 스위치를 스위칭 오프시키는 차단 판정기 및 상기 구동신호 발생기의 스위칭 온 시간부터 상기 차단 판정기의 스위칭 오프 시간까지인 조절기간을 측정하여, 상기 구동신호 발생기의 구동 펄스폭이 상기 조절기간과 일치되도록 제어하는 펄스폭 제어기를 포함하는 것을 특징으로 한다.

Description

능동형 정전력 공급장치
본 발명은 능동형 정전력 공급장치에 관한 것으로, 특히 회로의 역률을 저하시키는 평활 회로용 고용량 콘덴서를 구비하지 않고도, 다양한 크기 및 및 주파수를 갖는 전력을 정류하여 부하에 정전력을 공급할 수 있는 능동형 정전력 공급장치에 관한 것이다.
많은 영역에서 정밀한 공급전원의 제어가 중요하다. 특히 발광다이오드(LED:Light Emitting Diode, 이하 LED라 칭함) 같은 소자는 미량의 전압 변동에도 전류가 크게 변하기 때문에 더욱더 정밀한 전류제어가 요구된다.
이에, 종래에는 도 1의 회로도에 나타난 바와 같이, 교류전원 공급기(10)에서 공급된 교류전원을 정류회로(11) 및 평활회로(Cd)를 사용하여 직류전압(VDC)을 만들고, 펄스폭 제어기(20)를 사용하여 부하에 정전류를 공급하였다.
그리고, 설계입력 전압에서 스위치(Q)의 도통은 발진기(21)가 RS-플립플롭(22)을 세트(Set)하면 스위치 드라이버(23)가 스위치(Q)를 구동시킴으로서 수행되었으며, 스위치(Q) 차단은 전류검출저항(R)에 나타난 전압이 첨두전압제거기(LEB: Leading Edge Blanker, 25)를 거쳐 스위치 차단 판정기(24)에 공급되고 이때, 과전류가 공급되어 저항(R)에 나타난 전압이 기준전압(ZD)보다 높으면 스위치 차단 판정기(24)가 RS-플립플롭(22)를 리셋(Reset)하여 수행하였다.
또한, 스위치(Q)에 흐르는 전류는 전류에너지를 자기에너지로 변환하는 코일(L)에 의하여 스위치(Q) 도통 시점부터 지속적으로 증가하는 형태이고, 설계입력 전압에서 스위치(Q)가 도통을 개시하면 스위치(Q) 차단은 판정기(24)에 의하여 작동하도록 전류검출저항(R) 값을 설정하였으며, 판정기(24)가 작동하지 않으면 발진기(21) 발진주기의 80% 내지 90% 시점에서 스위치(Q)가 차단되도록 하였다.
그러나, 이상과 같은 종래 회로에서는 스위칭 모드 전력 공급(SMPS: Switching Mode Power Supply) 방식을 통해 부하(12)에 정전력을 공급함에 있어서, 교류의 전력을 평활화 시킴으로써 부하(12)에 안정적인 전압을 공급할 목적으로 상기 고전압/대용량의 평활회로(Cd)용 콘덴서를 구비하여야 했다.
따라서, 상기 콘덴서에 의해 역율이 통상 0.4 ~ 0.5 수준으로 매우 낮아진다는 문제점이 있었으며, 이를 극복하여 역율을 0.9 수준으로 개선하려면 별도의 역율개선용 회로를 더 구비하여야 한다는 문제점이 있었다.
또한, 고전압/대용량의 평활회로(Cd)용 콘덴서는 그 가격이 고가라는 문제점이 있음은 물론, 회로의 사이즈를 증가시켜 결국에는 정전력 공급용 모듈의 사이즈가 커질 수 밖에 없다는 문제점이 있었다.
게다가, 상기 평활회로(Cd)용 콘덴서는 고전압/대용량을 구현하기 위하여 일반적으로 전해콘덴서를 사용하는데, 전해액 조성의 경시변화 및 온도 상승에 의한 전해액 기화 등의 이유로 전원장치의 수명은 통상 2년 내지 3년으로 제한되는 문제점이 있었다.
본 발명은 전술한 바와 같은 문제점을 해결하기 위해 제안된 것으로, 회로의 역률을 저하 및 수명을 제한하는 평활 회로용 고용량 콘덴서를 구비하지 않고도, 다양한 크기 및 및 주파수를 갖는 전력을 정류하여 부하에 안정적인 실효 정전력을 공급할 수 있는 능동형 정전력 공급장치를 제공하고자 한다.
이를 위해, 본 발명에 따른 능동형 정전력 공급장치는, 부하에 정전력을 공급하는 능동형 정전력 공급장치에 있어서, 교류전원을 공급하는 교류전원 공급기와; 상기 교류전원 공급기로부터 교류전원을 입력받아 정류하는 정류회로와; 상기 정류회로로부터 전력을 공급받는 부하에 직렬 연결된 구동 코일과; 상기 구동 코일 및 부하를 통과한 전류를 스위칭 온/오프 시키는 전력 스위치와; 양단이 상기 부하의 출력측과 입력측에 각각 연결됨으로써 상기 부하에 병렬 연결되며, 상기 부하의 출력측으로부터 입력측을 향해 전류가 흐르는 방향으로 설치되어, 상기 전력 스위치가 스위칭 오프된 경우에는, 상기 구동 코일에 충전된 전류를 상기 부하로 방전시키는 환류 다이오드와; 상기 전력 스위치의 게이트 단에 연결되어 상기 스위칭 온/오프를 제어하는 펄스형 구동신호 발생기와; 상기 구동 코일에 흐르는 전류가 설계값 이상인 경우 차단 신호를 발생시킴으로써, 상기 전력 스위치를 스위칭 오프시키는 차단 판정기; 및 상기 부하에 전원을 공급하는 도중에, 정류전압 한 주기를 단위로 상기 구동신호 발생기의 스위칭 온 시간부터 상기 차단 판정기의 스위칭 오프 시간까지인 조절기간을 측정하여 최소 조절기간을 구하여 저장하고, 다음 주기의 전원공급부터는 상기 구동신호 발생기의 구동 펄스폭이 상기 저장된 조절기간과 일치되도록 제어하는 펄스폭 제어기;를 포함하는 것을 특징으로 한다.
이때, 상기 펄스폭 제어기는, 상기 구동 코일에 흐르는 전류가 0[A]인 시간을 시작점으로 하고, 상기 설계값에서 상기 차단 판정기가 작동한 시간을 종료점으로 하여, 상기 시작점부터 종료점까지의 시간을 상기 조절기간으로 설정하는 것이 바람직하다.
또한, 상기 펄스폭 제어기는, 상기 구동 코일에 흐르는 전류가 0[A]인 시간을 시작점으로 하고, 상기 설계값 미만에서 상기 차단 판정기가 작동한 시간을 종료점으로 하고, 상기 시작점과 종료점을 이용하여 상기 구동 코일에 흐르는 전류의 기울기를 측정하며, 상기 전류의 기울기에 따라 상기 조절기간을 설정하는 것이 바람직하다.
또한, 상기 차단 판정기에 병렬 연결된 보조 차단 판정기를 더 포함하며, 상기 보조 차단 판정기는 상기 구동 코일에 흐르는 전류가 상기 설계값을 초과하는 경우 상기 차단 신호를 발생시키는 것이 바람직하다.
또한, 상기 펄스폭 제어기는, 상기 구동 코일에 충전된 전류가 완전 방전된 시점부터 소정 시간이 경과한 후에 상기 구동신호 발생기에서 다음 구동 펄스를 발생시키도록 상기 구동신호 발생기의 주파수를 제어(고정 주파수 방식)하는 것이 바람직하다.
또한, 상기 펄스폭 제어기는, 상기 구동 코일에 충전된 전류가 완전 방전 후에 즉시 다음 구동 펄스를 발생시키도록 상기 구동신호 발생기의 주파수를 제어(고정 차단 방식)하는 것이 바람직하다.
또한, 상기 펄스폭 제어기는, 상기 부하에 공급 가능한 입력전원 중 가장 큰 값의 입력전원이 공급된 경우, 상기 구동 코일에 충전된 전류가 완전 방전 후에 다음 구동 펄스를 발생시키도록 상기 구동신호 발생기의 주파수를 제어(고정 도통 방식)하는 것이 바람직하다.
또한, 상기 펄스폭 제어기는, 상기 조절기간의 연산을 수행하는 마이크로 프로세서와; 상기 구동신호 발생기의 스위칭 온 시간과 상기 차단 판정기의 스위칭 오프 시간을 측정하여 상기 마이크로 프로세서에 제공하기 위한 타이머; 및 상기 마이크로 프로세서에서 연산한 상기 조절기간을 저장하는 메모리;를 포함하는 것이 바람직하다.
또한, 상기 펄스폭 제어기는, 외부와의 통신을 위한 통신부를 더 포함하는 것이 바람직하다.
또한, 상기 전력 스위치를 통과한 전류가 흐르는 경로가 2개로 구성되어 있으며, 상기 2개의 경로 중 하나는 접지 단자와 연결되어 있고, 다른 하나는 상기 차단 판정기와 연결되어, 상기 접지 단자로 흐르는 전류가 상기 차단 판정기로 흐르는 전류보다 많도록 함으로써, 상기 차단 판정기를 통해 소모되는 전력 소모를 줄일 수 있도록 하는 것이 바람직하다.
또한, 상기 부하를 2개 이상으로 분리하여 각각 구동시킬 수 있도록, 상기 전력 스위치는 상기 각 부하에 연결된 2개 이상이며, 상기 각 전력 스위치는 소정의 시간차를 두고 구동되는 것이 바람직하다.
또한, 양단이 상기 부하의 출력측과 입력측에 각각 연결됨으로써 상기 부하에 병렬 연결되며, 상기 부하의 출력측으로부터 입력측을 향해 전류가 흐르는 방향으로 설치되어, 상기 전력 스위치가 스위칭 오프된 경우에는, 상기 구동 코일에 충전된 전류를 상기 부하로 방전시키는 환류 다이오드를 더 포함하는 것이 바람직하다.
또한, 상기 정류회로의 출력단에는 저역통과 필터가 설치되어 있는 것이 바람직하다.
또한, 상기 저역통과 필터는, 필터 코일과 필터 콘덴서로 구성되고, 상기 필터 코일의 제1단자는 정류회로에 연결되고, 상기 필터 코일의 제2단자는 부하에 연결되며, 상기 필터 콘덴서의 제1단자는 상기 필터 코일의 제2단자에 연결되고, 상기 필터 콘덴서의 제2단자는 접지되며, 상기 필터 콘덴서의 용량은 1uF 이하인 것이 바람직하다.
또한, 상기 펄스형 구동신호 발생기와, 상기 차단 판정기 및 상기 펄스폭 제어기는하나의 패키지(Package)로 구현되어 있는 것이 바람직하다.
상기 부하는 1개 이상의 발광다이오드 스트링(string)를 포함하며, 상기 각 발광다이오드의 스트링은 각각 시간차를 갖고 정전력이 공급되는 것이 바람직하다.
이상과 같은 본 발명에 따른 능동형 정전력 공급장치에 의하면, 회로의 역률 저하 및 수명을 제한하는 평활 회로용 고용량 콘덴서를 구비하지 않고도, 다양한 크기 및 주파수를 갖는 전력을 부하에 안정적인 실효 정전력으로 공급할 수 있게 한다.
도 1은 종래 기술에 따른 정전력 공급장치를 나타낸 회로도이다.
도 2는 본 발명에 따른 능동형 정전력 공급장치의 기본 개념을 설명하기 위한 회로도(코일의 특성을 조사하기 위한 것)이다.
도 3은 본 발명에 따른 능동형 정전력 공급장치의 기본 개념을 설명하기 위한 상태도(코일의 특성을 조사한 결과 그래프)이다.
도 4는 본 발명에 따른 능동형 정전력 공급장치의 기본 개념을 설명하기 위한 표(코일의 특성을 조사한 결과 표)이다.
도 5는 본 발명에 따른 능동형 정전력 공급장치의 기본 개념 중 고정 주파수 구동방법을 설명하기 위한 도면이다.
도 6은 본 발명에 따른 능동형 정전력 공급장치의 기본 개념 중 고정 차단식 구동방법을 설명하기 위한 도면이다.
도 7은 본 발명에 따른 능동형 정전력 공급장치의 기본 개념 중 고정 도통식 구동방법을 설명하기 위한 도면이다.
도 8은 본 발명에 따른 능동형 정전력 공급장치의 기본 개념 중 입력 전원의 평활상태를 나타낸 상태도이다.
도 9는 본 발명에 따른 능동형 정전력 공급장치의 제1실시예를 나타낸 회로도이다.
도 10은 본 발명에 따른 능동형 정전력 공급장치의 구동 상태를 나타낸 제1파형도이다.
도 11은 본 발명에 따른 능동형 정전력 공급장치의 구동 상태를 나타낸 제2파형도이다.
도 12는 본 발명에 따른 능동형 정전력 공급장치의 구동 상태를 나타낸 제3파형도이다.
도 13 및 도 14는 본 발명에 따른 능동형 정전력 공급장치의 구동 상태를 나타낸 제4파형도이다.
도 15 및 도 16은 본 발명에 따른 능동형 정전력 공급장치의 구동 상태를 나타낸 제5파형도이다.
도 17은 본 발명에 따른 능동형 정전력 공급장치의 구동 상태를 나타낸 제6파형도이다.
도 18은 본 발명에 따른 능동형 정전력 구동장치의 실험예를 나타낸 제1표이다.
도 19는 본 발명에 따른 능동형 정전력 구동장치의 실험예를 나타낸 제2표이다.
도 20은 본 발명에 따른 능동형 정전력 공급장치의 제2실시예를 나타낸 회로도이다.
도 21은 본 발명에 따른 능동형 정전력 공급장치의 제3실시예를 나타낸 회로도이다.
도 22는 본 발명에 따른 능동형 정전력 공급장치의 제4실시예를 나타낸 회로도이다.
도 23은 본 발명에 따른 능동형 정전력 구동장치의 실험예를 나타낸 제3표이다.
도 24는 본 발명에 따른 능동형 정전력 구동장치의 실험예를 나타낸 제4표이다.
도 25는 본 발명에 따른 능동형 정전력 구동장치의 계산예를 나타낸 표이다.
도 26은 본 발명의 일실시예에 따른 반도체 집적소자를 나타낸 것이다.
도 27은 도 26에 도시된 반도체 집적소자를 이용하여 실제 응용회로를 구성한 제1예이다.
도 28은 도 26에 도시된 반도체 집적소자를 이용하여 실제 응용회로를 구성한 제2예이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 능동형 정전력 공급장치에 대해 상세히 설명하도록 한다.
다만, 이하에서는 본 발명에 따른 능동형 정전력 공급장치의 실시예들을 설명하기에 앞서, 상술한 바와 같이 평활용 콘덴서 없이도 정전력을 공급할 수 있는 본 발명의 기본 특성을 먼저 설명하도록 한다.
도 2는 본 발명에 따른 능동형 정전력 공급장치의 기본 특성을 설명하기 위한 회로도이고, 도 3 내지 도 8은 본 발명에 따른 정전력 공급장치의 기본 특성을 나타낸 실험예이다.
도 2 내지 도 8을 참조하여 설명하고자 하는 본 발명의 기본 특성은, 아래에서 좀더 상세히 설명하는 바와 같이, 부하(12a)에 전력을 공급하는 기간 즉, 구동 펄스가 하이(High)인 구간에 해당하는 구동 펄스의 폭이 소정 길이(즉, 시간) 이하로 일정하게 공급되도록 조절한다.
또한, 전원 공급기(VVAR)에서 제공되는 전압의 크기에 상관없이 구동 코일(La)에 충전되는 자기에너지의 크기가 동일해지도록 제어한다면 그 충전 전류의 방전 기울기 특성이 동일하고, 전원 공급기(VVAR)에서 제공되는 전압의 크기에 상관없이 구동 코일(La)의 용량에 따라 방전 시간이 선형적으로 변화하여 방전 특성의 예측이 가능함에 따라, 구동 펄스의 하이(High) 및 로우(Low) 구간을 모두 포함한 구동 펄스의 주기(혹은, 주파수)를 정확히 제어할 수 있다는 것이다.
이하 본 발명에 따른 정전력 공급장치의 기본특성을 측정하는 회로 및 방법에 대하여 상세히 설명한다.
도 2와 같이, 가변 전원(전원 공급기, VVAR)과, 상기 가변 전원(VVAR)의 출력측에 연결된 정류회로(11)와. 상기 정류회로(11)의 출력측에 연결된 부하(12a)(예: LED 스트링)와, 상기 부하(12a)의 출력측에 연결된 구동 코일(La)과, 상기 부하(12a)에 병렬 연결되되 상기 부하(12a)측을 향해 전류가 환류되도록 설치된 환류 다이오드(Da)와, 상기 구동 코일(La)의 출력측에 연결되어 상기 부하(12a) 및 구동 코일(La)을 통과한 전류가 흐르는 전력 스위치(Qa) 및 상기 전력 스위치(Qa)의 게이트 단에 연결되어 상기 전력 스위치(Qa)의 스위칭 온/오프를 제어하도록 구동 펄스를 발생시키는 함수 발생기(21a)를 포함한다.
따라서, 전력 스위치(Qa)가 도통 되면 가변 전원(VVAR)에서 제공된 전류는 정류회로(11), 부하(12a), 구동 코일(La) 및 전력 스위치(Qa)를 통과하여 접지로 흐르며, 그 과정에서 구동 코일(La)에 에너지가 충전된다. 반면, 전력 스위치(Qa)가 차단되면 구동 코일(La)에 충전된 에너지가 환류 다이오드(Da)을 통하여 부하(12a)로 방전될 수 있게 한다.
여기서, 기본 특성 측정실험에서, 부하(12a)는 LED 스트링(String)을 20개 병렬로 연결한 것으로 순방향 도통전압이 50.3V(20mA)인 것을 사용하였고, 구동 코일(La)은 300uH, 가변 전원(VVAR)은 370V, 함수 발생기(21a)는 1KHz로 설정하였다.
그리고, 함수 발생기(21a)의 구동 펄스폭을 0에서 25us까지 서서히 올리다가 전력 스위치(Qa)의 순시전류 최대값이 1.2A가 되면, 그 때의 전력 스위치(Qa)의 구동 펄스폭과 구동 코일(La)에 충전되었던 에너지가 방전을 완료하는 시간을 측정하여 기록한다. 또한, 직류 입력 전압(VVAR) 250V, 170V 그리고 110V 에 대하여도 측정한다. 나아가, 구동 코일(La)을 400uH, 500uH 및 600uH 로 변경하여 동일한 방법으로 측정하여 결과중 일부를 도 3 및 도 4에 나타내었다.
도 3은, 구동 코일(La)이 300uH인 경우를 그래프로 나타낸 것으로, 구동 코일(La)에 흐르는 전류값이 증가하는 구간은 해당 구동 코일(La)에 에너지가 충전되는 기간이고, 감소하는 구간은 방전하는 기간이다.
그래프의 주요 특징으로는, 첫째 정류회로(11)를 통해 부하(12a)에 제공되는 전압(이하, '입력 전압'이라 함)의 크기에 관계없이 구동 코일(La)의 방전 기간이 동일하다는 것인데, 이는 코일(La)의 인덕턴스가 동일하여 방전기울기가 같고, 입력 전압의 크기에 관계없이 전력 스위치(Qa)의 순시전류가 1.2A인 시점에서 전력 스위치(Qa)가 스위칭 오프되고 구동 코일(La)이 방전을 개시하기 때문이다. 둘째, 만약 0.6A 에서 전력 스위치(Qa)를 차단(마크 'AA')하면 1.2A(마크 '170-T) 대비 전력 스위치(Qa) 도통기간은 1/2가 되고 구동 코일(La)에서 충방전된 전류는 1/4이 되는 선형적인 관계가 있다는 것이다.
나아가, 도 4에서 방전 시간을 살펴보면, 입력 전압에 관계없이 구동 코일(La) 300uH 에서는 모든 입력 전압에서의 방전 시간이 거의 7us이고, 구동 코일(La) 600uH 에서는 방전 시간이 거의 14us 수준으로 방전 시간이 동일하다는 것이다.
따라서, 도 4에 각각의 수치를 입력 전압 370V를 기준으로 정규화하여 노란색 바탕에 기울어진 글씨체로 표시한 것을 통해 알 수 있는 바와 같이, 입력전압의 크기에 관계없이 구동 코일(La)의 용량별로 방전 시간이 거의 동일하게 나타나므로 도2 회로는 예측 가능한 시스템임을 알 수 있다.
예컨대, 입력 전압 370V 에서 구동 코일(La) 450uH에 대한 충전 및 방전 시간을 예측하기 위해서 도 4에 나타난 300uH와 600uH 값을 사용하여 계산하면 충전 시간은 (1.14+2.27)/2 이고, 방전 시간은 (8.55+16.5)/2 임을 알 수 있게 된다.
한편, 구동 코일(La)에 걸리는 전압이 2배로 증가하면서 부하에 동일한 전류를 공급하기 위해서는 전력 스위치(Qa) 도통 시간을 2배로 감소시킨다. 예를 들어 도 4에서, 입력 전압이 110V이면 구동 코일(La)에 약 60V가 걸리고, 입력 전압이 170V이면 구동 코일(La)에 약 120V 가 걸리는데, 이때의 전력 스위치(Qa) 도통 시간을 비교해 보면 구동 코일(La) 300uH에서는 6.05(110V) 대 2.99(170V), 그리고 구동 코일(La) 600uH에서는 12.3(110V)대 6.03(170V)으로 각각 2배 차이가 나는 것이 확인된다. 물론, 이것은 부하(12a)인 LED 직렬 스트링 갯수가 바뀌어 당해 부하(12a) 양단 전압이 바뀐 경우에도 선형적으로 적용된다.
이하 상기 실험 결과를 사용하여 본 발명에 적용될 수 있는 구동 방법에 대해 설명한다.
본 발명에 적용될 수 있는 구동 방법들에는 후술하는 바와 같이, 고정 주파수 방식과, 고정 차단기간 방식 및 고정 도통기간 방식이 있다.
(구동방법1)-고정 주파수 방식
도 5는 도 2에서 구동 코일(La)이 300uH 일때 입력 전압이 250V와 370V인 경우를 나타낸 것이며, 상기 두 전압에서 구동 코일(La)에 흐르는 전류를 각각 마크 '250-A' 및 '370-A'로 표시하였다.
여기서, 구동 코일(La)이 완전 방전된 후인 8.98us 보다 긴 주기로 전력 스위치(Qa)를 구동하는 경우(불연속전류모드, DCM: Dis-continious Current Mode), 두 전압 간의 전류변동을 계산해보면 8.98 / 8.55 x 100 = 5.029% 으로 비교적 작은 것을 알 수 있다.
따라서, 전력 스위치(Qa)의 구동 주기가 8.98us 보다 길도록 하고, 전력 스위치(Qa) 순시전류가 1.2A 일때 스위치를 차단하면 상기 두 전압 사이의 전류 편차가 5.029% 이하가 되도록 할 수 있다. 다만, 도 2 회로 구성상 코일(La)전류는 부하(12a)전류와 동일한 것임은 자명할 것이다.
입력 전압의 범위가 도 3에 도시된 바와 같이 매우 넓은 경우에는, 입력전압을 다수개(2개 이상)의 구간으로 나누고 각 구간에 적합한 고정주파수로 구동하는 것이 바람직하다. 즉 입력전압이 높은 구간은 낮은 구간보다 높은 고정주파수로 구동하도록 하는 것이다.
예를 들어 도 3의 전압(110V~370V)을 구동주파수(구동주기: 9us~13us) 기준으로 다수 개의 구간으로 나누어 보면, 구동주기를 이전 구간보다 1.1배의 구동주기로 나누는, 즉 9.0us, 9.9us, 10.9us, 12.0us 및 13.2us의 구간으로 나누는 방법이 있을 수 있으며, 본 예시에서 부하전류편차는 약 10% 이하임은 자명한 것이다.
(구동방법2)-고정 차단기간 방식(고정 방전기간 방식)
도 6은 도 2에서 구동 코일(La)이 300uH 일때 입력 전압이 110V와 170V인 경우를 나타낸 것이며, 상기 두 전압에서 구동 코일(La)에 흐르는 전류는 각각 마크 '110-B' 및 '170-B'로 표시하였다.
여기서, 두 전압 간의 전류변동을 계산해보면 12.97 / 10.05 x 100 = 29.055% 이어서 상술한 고정 주파수 방식을 사용하기에는 그 전류 변동이 비교적 크다는 것을 알 수 있다.
따라서, 이러한 경우에는 구동 코일(La)의 방전 시간 및 기울기가 동일하다는 점을 착안하여, 각 전압에서 구동 코일(La)이 방전을 완료하는 즉시(즉, 10.05us와 12.97us에 각각) 다음 스위칭 사이클을 개시하는 고정 차단기간 구동방식이 바람직하다. 이 경우, 두 전압 간의 전류편차는 이론적으로 0 이다.
한편, 입력 전압이 낮으면 구동 코일(La)이 소정 값까지 충전되는 시간이 길기 때문에 구동 주파수는 낮고, 그와 반대로 입력 전압이 높으면 구동 주파수가 높아지는 것은 당연할 것이다.
(구동방법3)-고정 도통기간 방식(고정 충전기간 방식)
도 7은 도 2에서 구동 코일(La)이 600uH 일때 입력 전압이 250V 와 370V인 경우를 나타낸 것이며, 상기 두 전압에서 구동 코일(La)에 흐르는 전류는 각각 마크 '250-B' 및 '370-B'로 표시하였다.
먼저, 전력 스위치(Qa)의 도통 시간(즉, 구동 펄스 폭)은 입력 전압 수준에 관계없이 3.61us 로 고정한다.
그러면, 입력 전압이 250V 인 경우(부하전압 50V, 코일전압 200V)에는 전력 스위치(Qa)의 도통 개시 이후 당해 전력 스위치(Qa)와 구동 코일(La)을 통해 흐르는 전류(250-B)가 0A 에서부터 지속적으로 증가하며, 스위치(Qa) 차단시점(3.61us)에서는 1.2A가 된다.
또한, 스위치 차단 후 구동 코일(La)에 충전된 전류(마크 '250-B')는 환류 다이오드(Da)를 통하여 방전되는데 방전 종료시각은 17.50us 이고, 상기 방전 종료시각 이후 바로 다음 스위칭 싸이클을 개시한다.
이때, 전류파형(250-B)에서 면적을 구하면 1.2A x 17.50us / 2 = 10.50 A-us 이다.
반면, 입력이 370V 인 경우(부하전압 50V, 코일전압 320V)에는, 구동 코일 (La)에 충전된 전류(마크 '370-B')는 상기 입력 전압이 250V인 경우보다 1.6배(320 / 200=1.60)높은 1.92A 에서 전력 스위치(Qa)가 차단된다.
그리고, 구동 코일(La)에 충전된 전류는 250V 인 경우와 동일한 기울기를 가지고 방전을 하며 방전 종료시각은 25.83us 이다.
이때, 전류파형(370-B)에서 면적을 구하면 1.92A x 25.83us / 2 = 24.80 A-us 이므로, 입력 전압이 250V인 경우에 비해 2.362 배의 전류가 부하(12a)에 공급되었음을 알 수 있다.
따라서, 다음 스위칭 싸이클이 입력 전압이 250V인 경우의 방전 종료시각인 17.50 us에 대해 2.362배인 41.33us 에서 개시되도록 하면 입력 전압이 250V인 경우와 동일한 값의 전류를 부하(12a)에 공급할 수 있음을 알 수 있다.
한편, 입력 전압을 대표하는 전력 스위치(Qa)의 전류 기울기는 전류가 설계치 이하의 소정의 값(즉, 도 7 에서는 1A)을 통과하는 시각을 측정하면 알 수 있고, 다음 스위칭 싸이클 시작 시간은 상기 측정값으로 쉽게 계산된다.
물론, 이러한 경우의 구동 주파수는 입력 전압이 높으면 구동 코일(La)에 충전되는 에너지가 많기 때문에 방전기간이 길어서 상대적으로 낮고, 입력 전압이 낮으면 높아지는 것은 자명하다.
한편, 이상과 같은 구동 방법을 통해 본 발명에 따른 능동형 정전력 공급장치를 구동시키면, 부하(12a)에 공급되는 순시 최대 전류값이 입력 전압의 각 주기마다 거의 일정하게 유지되어, 평활용 콘덴서가 없이도 정전력을 안정적으로 공급할 수 있게 하며, 이에 대한 상태도는 도 8에 도시되어 있다.
도 8에 나타낸 구동 코일(La)에 흐르는 전류 엔빌로프(envelope)들 중 가운데 위치한 진한 선의 엔빌로프(501)가 구동 펄스 폭이 적절히 조절된 경우의 엔빌로프를 나타낸 것으로, 본 발명의 회로는 교류입력전압의 크기에 관계없이 상기 엔빌로프(envelope)가 항상 일정한 크기가 되도록 하는 것이고, 이상과 같은 구동 방법 중 어느 하나에 의해 구동시킴으로써 이루어진 것이다.
(실시예1)
이하, 첨부된 도면을 참조하여 본 발명의 제1실시예에 따른 능동형 정전력 공급장치에 대해 상세히 설명하도록 한다.
도 9는 본 발명의 제1실시예에 따른 능동형 정전력 공급장치를 나타낸 회로도이다.
도 9를 통해 알 수 있는 바와 같이, 본 발명의 제1실시예에 따른 능동형 정전력 공급장치는, 교류전원 공급기(50)와, 정류회로(51)와, 저역통과 필터(LLPF, CLPF)와, 부하(52)와, 구동 코일(L1)과, 환류 다이오드(D1)와, 전력 스위치(Q1)와, 저항(R1)과, 차단 판정기(80)와, 구동신호 발생기(101)와, 플립플롭(93)과, 앤드 로직(91) 및 스위치 드라이버(92)를 포함하며, 상기 차단 판정기(80)는 첨두전압제거기(LEB: Leading Edge Blanker, 81)와, 기준전압을 만드는 제너다이오드(ZD1)와, 비교기(82) 및 펄스폭 제어기(미도시)를 포함한다.
여기서, 교류전원 공급기(50)의 출력단에는 정류회로(51)가 연결되어 교류전원을 정류하고, 정류회로(51)의 출력단에는 필터 코일(LLPF)과 필터 콘덴서(CLPF)로 이루어진 저역통과 필터가 설치되어 전원전류의 고주파 성분을 제거한다.
또한, 저역통과 필터의 출력측에는 LED 스트링 등과 같은 부하(52)가 연결되어 전원(이하, '입력 전원' 이라 함)을 공급받고, 부하(52)의 출력측에는 구동 코일(L1)이 직렬 연결되어 있다. 그리고, 부하(52)에는 환류 다이오드(D1)가 병렬 연결되되 부하(52)의 입력측을 향해 환류가 입력되는 방향으로 연결되어 있다.
또한, 구동 코일(L1)의 출력측에는 전력 스위치(Q1)가 연결되어 부하(52) 및 구동 코일(L1)을 통과한 전류가 전력 스위치(Q1)를 통해 흐르며, 전력 스위치(Q1)의 출력측에는 저항(R1)이 연결되어 있다.
또한, 전력 스위치(Q1)의 출력측에는 차단 판정기(80)가 연결되는데, 차단 판정기(80)의 비교기(82) 중 비반전 단자(+)에는 전력 스위치(Q1)를 통해 흐르는 전류의 첨두전압을 제거하는 첨두전압제거기(81)가 연결되고, 반전 단자(-)에는 제너다이오드(ZD1)가 연결된다.
또한, 구동신호 발생기(101)는 전력 스위치(Q1)의 스위칭 동작을 제어할 수 있도록 앤드로직(91) 및 스위치 드라이버(92)를 통해 상기 전력 스위치(Q1)의 게이트 단에 연결되며, 이때 앤드로직(91)의 일측 입력단은 플립플롭(93)과 연결되어 있고, 플립플롭(93)의 리셋 단(Rst)은 상기 차단 판정기(80)의 출력단에 연결된다.
나아가, 전술한 바와 같이 구동 펄스 폭 및 주기를 조절할 수 있도록 차단 판정기(80)의 출력단은 구동신호 발생기(101)와도 연결되어 있다.
한편, 이상과 같은 본 발명의 제1실시예에 따른 능동형 정전력 공급장치를 상술한 고정 주파수방식으로 설명하면, 구동신호 발생기(101)가 고정주파수/고정펄스폭의 디지털 구동펄스를 발생시키면 펄스의 상승에지(Rising edge)에서 D-플립플롭(93)의 출력이 하이(High)로 되고, 구동신호 발생기(101)에서 발생된 구동 펄스와 플립플롭(93)의 출력이 모두 하이가 되면 그 기간동안 앤드로직(91)의 출력도 하이가 되어 전력 스위치(Q1)가 스위치 드라이버(92)에 의하여 도통(즉, 스위칭 온) 된다.
반면, 전력 스위치(Q1)의 차단은, 구동펄스가 하이에서 로우(Low)로 되거나 또는 플립플롭(93)이 차단 판정기(80)에 의하여 리셋(Reset)되어 그 출력이 로우가 되는 것 중 먼저 로우로 되는 것에 의하여 수행된다.
그리고, 전력 스위치(Q1)가 도통되면, 교류전원 공급기(50)에서 제공된 교류 전류는 정류회로(51), 저역통과 필터, 부하(52), 코일(L1), 스위치(Q1) 및 저항(R1)을 통하여 접지로 흐르는 과정에서 충전소자인 상기 코일(L1)에 자기 에너지를 충전한다. 그리고 스위치(Q1)이 차단되면 코일에 충전된 자기 에너지는 환류 다이오드(D1)을 통하여 부하(52)로 방전된다.
여기서, 전력 스위치(Q1)는 펄스로 구동되고, 스위치 전류는 구동 코일(L1)에 의하여 지속적으로 증가하는 형태이기 때문에 한 번의 스위치 구동에서 반드시 설계전류의 몇 배에 해당하는 전류(이하 "전류배수"라 칭하고, 본 발명에서는 편의상 전류배수를 2배로 설정함)가 흘러야 한다.
또한, 최대 순시전류는 부하(52)가 일반 저항 부하(52)인 경우에는 설계전류에 1.414를 곱한 후 상기 전류배수를 곱하면 되고, 부하(52)가 LED(Light Emitted Diode)인 경우에는 순방향 도통전압(VF) 이하에서 전류가 거의 흐르지 않기 때문에 상기 저항 부하(52)보다 약간 더 높다.
따라서, 전류 검출용으로 사용되는 상기 저항(R1)의 값은, 제너다이오드(ZD1)에 걸리는 차단 판정기(80)의 기준 전압값(혹은, 설계 전압값)을 설계 최대 순시전류 값으로 나누어 구한다.
전력 스위치(Q1)가 도통을 개시하면 전력 스위치(Q1) 및 저항(R1)에 흐르는 전류는 구동 코일(L1)에 의하여 지속적으로 증가하는 중에, (1) 구동펄스 또는 (2) 설계 최대 순시전류에 도달하면 차단 판정기(80)가 작동하여, 전력 스위치(Q1)가 차단된다.
그러면, 펄스폭 제어기(미도시)는 입력 전압 1 주기(1T)에 있어서 차단 판정기(80)의 작동횟수 및 최소 작동기간(즉, 최단 스위치 도통기간)을 측정하고, 다음 입력 전압 1 주기(즉, 2번째 주기, 2T)부터 상기 측정된 최단 스위치 도통기간으로 구동 신호발생기(101)에서 구동 펄스를 발생시키도록 한다.
즉, 전류값이 0인 영점(혹은, 영점에 거의 근사)인 지점부터 서서히 증가하다가 차단 판정기(80)가 동작하는 설계값에 도달하면 전력 스위치(Q1)가 차단되고, 이를 다음 주기의 구동 펄스 폭을 제어하는 조절기간으로 결정하도록 함으로써, 종래와 같은 고용량의 평활 콘덴서 없이도 안정적인 정전력을 제공할 수 있게 한다.
이를 위해, 펄스폭 제어기(미도시)는, 상기 조절기간의 연산을 수행하는 마이크로 프로세서와, 상기 시작점(영점)과 종료점(설계값)을 측정하여 마이크로 프로세서에 제공하기 위한 타이머 및 마이크로 프로세서에서 연산한 조절기간을 저장하는 메모리를 포함하여 구성될 것이며, 바람직하게는 외부와의 통신을 위한 통신부를 더 포함하여 그 결과를 외부로 알리거나 외부로부터의 명령에 따라 조절기간 등을 조절할 수 있게 한다.
한편, 이상과 같이 구동 펄스 폭이 적절히 조절된 후에 입력 전압의 변동이 없다면 그 다음 입력 1 주기(즉, 3번째 주기 이후, 3T)에서 차단 판정기(80)는 이상적인 경우 단 1회 작동한다.
이는, 전력 스위치(Q1)가 입력 전압 한 주기에서 고정주파수/고정펄스폭으로 스위칭 동작함을 의미하며, 도 10에 입력 전압 한 주기에 대한 전력 스위치(Q1) 및 코일(L1) 전류 파형이 개념적으로 도시된 것으로부터 명확히 알 수 있다.
다만, 입력 전압이 높은 경우 충전전류 기울기가 입력 전압이 낮은 경우보다 크고, 방전 기간은 입력 전압 레벨에 관계없이 동일하다.
반면, 구동 펄스 폭이 적절히 조절된 후에 입력 전압이 높아졌다면, 차단 판정기(80)는 다수회 작동하게 되고, 이러한 경우 구동신호 발생기(101)는 펄스폭 제어기에 의해 측정된 모든 스위치 도통기간들 중 최단 스위치 도통기간으로 다음 주기의 구동 펄스 폭이 조절된다.
단, 만약 도통기간 측정값의 분해능이 낮아 사용이 불가능할 경우는 차단 판정기(80)의 작동횟수에 비례하여 구동 펄스 폭을 줄여서 다음 주기가 조절된다.
이 경우 전류파형은 개념적으로 도 11에 도시하였다.
나아가, 입력 전압이 낮아졌다면, 차단 판정기(80)는 0회 작동하고, 구동신호 발생기(101)은 구동 펄스 폭을 최소 단위만큼 넓혀서(즉, 스위칭 온 시간이 늘어나도록 하여) 다음 입력주기에 제공하며, 이 경우의 전류파형은 개념적으로 도 12에 도시하였다.
한편, 위에서 설명을 생략한 도 13 내지 도 14는 도 9의 회로를 상술한 고정 차단기간 방식으로 구동한 결과를 나타낸 것이고, 도 15 내지 도 16은 도 9의 회로를 상술한 고정 도통기간 방식으로 구동한 결과를 나타낸 것이며, 이들 고정 차단기간 방식 및 고정 도통기간 방식으로 구동하여도 상술한 바와 유사한 결과를 얻을 수 있음을 나타낸다.
(실험예 1)
이하, 도 9의 회로를 통해 설명한 본 발명의 제1실시예에 따른 능동형 정전력 공급장치의 실험예를 설명하도록 한다.
도 9의 회로를 컴퓨터로 모의시험(일련번호 A029)한 결과의 파형은 도 17에 도시하였다. 여기서, 부하(52)는 LED 스트링(String)으로 하였고 20mA 가 흐르는 경우 LED 스트링 양단전압은 50.3V 이며, 상기 LED 스트링 40개를 병렬로 연결하였고, 각 LED 스트링에 10 오옴의 부하저항을 직렬로 연결하였다.
교류입력 전압은 220VAC의 80.4%인 176.8VAC 로 정류 최대전압이 250V 이고, 전원주파수는 50Hz 이며, 필터 코일(LLPF)은 2mH, 필터 콘덴서(CLPF)는 0.3uF, 구동 코일(L1)은 320uH, 구동 주파수는 50KHz, 구동 펄스 폭은 3.8uS, 그리고 스위칭 노이즈 제거를 목적으로 부하(52) 양단에 노이즈 제거용으로 40nF 콘덴서를 추가하였다.
모의시험 A029 의 목적은 입력 전압 한 주기에 걸쳐서 3.8us의 고정 펄스폭으로 전력 스위치(Q1)를 구동할 때 역율, 전류 고조파 함유율 및 부하(52)전류를 조사하기 위한 것으로 과전류(써지전류) 시험은 아니다. 그래서 저항(R1)은 0.01 오옴으로 선정하였으며 이 조건에서 스위치 차단 판정기(80)은 단 1회도 작동하지 않는다.
도 17에서, 입력 전압(301) 보다 교류전원 공급기(50)의 전원전류(302)가 4.6도 빠르며, 전원전류(302)의 최대 순시값은 245mA, 개별 LED 실효전류(303)는 20ms 지점에서 20.6mA 이다. 그리고 부하(52)의 양단전압(304)은 10ms 부터 20ms 구간에서 최저 41.6V 에서 최대 54.2V이다.
또한, 필터 코일(LLPF) 양단전압(305)은 대부분 +7V ~ -7V 사이에 존재하며 9.2ms 부분에서 상대적으로 고전압이 5회 나타났는데 그 최대값은 36V 이다. 그리고 구동 코일(L1)의 전류파형(306)(306d)과 전력 스위치(Q1)의 전류파형 (307)(307d)을 자세히 조사한 결과 그 최대값은 2.38A 였으며 구동 코일(L1)에 충전된 전류는 다음 스위칭 싸이클이 개시되기 전에 완전히 방전되었다.
도 18에, 교류전원 공급기(50)의 전류 주파수 성분을 제40차 고조파까지 분석(FFT: Fast Fourier Transform, 이하 FFT라 칭함)한 결과 중에서 총 고조파 왜곡 (THD: Total Harmonic Distortion, 이하 THD라 칭함)과, 제1 고조파 위상각(이하 제1위상각 이라 칭함)과, THD와 제1 위상각으로 계산한 역율, 및 20ms에서 측정한 개별 LED 실효전류를 나타내었다.
여기서, 일련번호 A029의 결과를 살펴보면 역율은 0.989로 매우 높고, THD는 12.4% 그리고 제1 위상각은 175.4도 였다. 여기에서 위상각은 전류 측정 단자를 바꾸면, 4.6도가 된다. 부하(52)전력은 41.4 와트(20.6mA x 50.3V x 40 LED 스트링)이다.
또한, 도 18의 모의시험 A016은, 상기 모의시험 A029 조건에서 입력 전압을 220VAC의 118.9% 수준으로 변경하고, 전력 스위치(Q1)의 순시최대전류값이 A029와 동일하게 되도록 2.4us로 전력 스위치(Q1)을 구동한 것으로, 개별 LED전류는 20.5mA이고, 역율은 0.975으로 이 역시 매우 높다.
다만, 교류전원 공급기(50)의 순시 최대전류값이 167mA로 A029 시험결과인 245mA 보다 낮았으나, 이것은 전원전압 증가분이 구동 코일(L1)에 충전되었다가 부하(52)에 공급되기 때문에 전원전류가 낮아진 것이고, 공급전력 및 부하(52)전력은 동일하다.
상기 두 모의 시험의 결과를 요약하면, 본 발명은 전원전압이 대략 80% 에서 120% 수준으로 변동하였음에도 개별 LED 전류변동은 2% 이하로서 매우 안정적이라는 것이다. 또한, 역율은 0.97 이상으로서 매우 높다는 것이다. 또한, THD가 15% 이하로서 전원전류 파형 왜곡이 적다는 것이다. 나아가, 전원전압과 전류의 위상차는 11도 이하로서 매우 적다는 것이다.
한편, 도 18의 모의시험 B024 및 B025는 교류전원 공급기(50)의 전원전압이 각각 100VAC의 77.8% 와 120.2% 수준에서 모의 시험한 결과를 도시한 것이다. 부하(52)의 양단전압은 24.2V 이고, 구동 코일(L1)은 168uH 이며 필터 코일(LLPF) 및 필터 콘덴서(CLPF)는 기존과 동일하게 2mH와 0.1uF를 사용하였다. 개별 LED전류는 각각 20.14mA 및 20.45mA 로 변동이 1.54% 이고, 역율은 0.99 이상이다.
그리고, 상기 모의시험결과들의 전원전류 고조파 함유율과 IEC 61000-3-2 class C 규격(이하 Class C 규격이라 칭함)을 도 19에 도시하였다. 상기 모의시험 A016, A029, B024 및 B025의 결과가 모두 Class C 규격을 만족한다.
도 9에서, 간략하게 최대전원효율을 계산해 보면 첫째 필터코일(LLPF), 필터 콘덴서(CLPF) 및 구동 코일(L1)에서는 전류를 충전하였다가 방출하므로 이상적으로는 전력소모가 없다.
둘째, 정류다이오드에는 실효 1V가 걸리고, LED 스트링에 직렬로 연결 한 10 오옴에는 실효 0.2V가 걸리고, 전력 스위치(Q1)에는 실효 0.05V(0.2V * 최대듀티비 0.5 * 톱니파 0.5)가 걸리고, 검출용 저항(R1)에는 실효 0.25V (1V /4) 가 걸리며, 총 1.5V 가 소비된다. 부하(52) 양단전압이 50.3V인 경우는 효율 97.0% 그리고 24.2V인 경우는 93.8% 이다.
따라서, 검출용 저항(R1)에 걸리는 전압을 0.25V 로 낮추면 소모전압은 1.31V가 되면 이때 최대효율은 각각 97.4%, 94.6%가 된다.
한편, 모의시험 A016 및 A029에서 필터 콘덴서(CLPF)의 용량이 1uF 이하이므로 통상 평활 콘덴서에 사용하는 전해 콘덴서 대신 상대적으로 신뢰성이 좋은 필름 콘덴서를 사용할 수 있기 때문에 전원장치의 신뢰성 및 수명이 향상된다. 그리고 부하(52)양단에 노이즈 제거용으로 40nF의 콘덴서를 삽입하였는데, 필요에 따라서는 상기 노이즈 제거용 콘덴서의 용량을 높이면 전류가 더 많이 평활되어 부하(52)에 공급될 수 있게 한다.
이상 본 발명의 제1실시예에 따른 능동형 정전력 공급장치에 대하여 상세히 설명하였는데, 본 실시예에는 후술하는 바와 같이 전력 스위치(Q1) 전류의 기울기를 측정하는 회로가 없기 때문에 고정 주파수 방식에 가장 적합할 것이다.
또한, 본 실시예로서 고가이며 덩치가 큰 고전압/대용량 평활콘덴서가 필요 없으므로 제품의 수명이 길어지고, 가격경쟁력이 높아지며, 물리적으로 크기가 작은 전원장치 및 LED 램프 등을 제공할 수 있게 한다.
(실시예2)
이하, 첨부된 도 20을 참조하여 본 발명의 제2실시예에 따른 능동형 정전력 공급장치에 대해 상세히 설명하도록 한다.
본 발명의 제2실시예는 차단 판정기(80)가 낙뢰와 같은 서지전류가 흐르는 경우만 작동하는 보조 차단 판정기로서 사용되고 정상 입력 전압에서는 0 회 작동하도록, 즉 입력 전압 한 주기 내에서는 항상 동일한 전력 스위치(Q2) 도통기간을 가지도록 한 것으로서, 구동 펄스 폭을 조절하기 위한 별도의 기울기 측정회로가 구성된다. 그리고, 이러한 본 발명의 제2실시예는 상술한 3가지 구동방법에 모두 적절히 적용될 수 있다.
즉, 본 발명의 제2실시예는 상기 차단 판정기(80)의 비교기의 비반전 단자에 입력되는 전압을 역시 비반전 단자에서 입력받고, 반전 단자에는 제너다이오드(ZD12)가 연결되는 기울기 측정용 비교기(119)로 이루어진 기울기 측정회로를 더 포함하고, 차단 판정기(80)는 이상전압이 유입된 경우에만 동작한다. 또한, 비교기(82)의 비반전 단자에 연결된 제너다이오드(ZD11)에는 설계값(예: 1V)을 초과하는 전압(예: 1.1V)이 걸리고, 기울기 측정용 비교기(119)의 반전 단자에 연결된 제너다이오드(ZD12)에는 설계값(예: 1V)보다 작은 전압(예: 0.5V)이 걸린다는 점에서 차이가 있는 것이다.
그러므로, 본 발명의 제2실시예에서는, 먼저 차단 판정기(80)가 설계전류보다 높은 전류에서 작동하도록 제너다이오드(ZD11)의 기준전압을 설정하고, 기울기 측정용 비교기(119)는 전력 스위치(Q2)에 흐르는 순시 전류가 설계 최대값 이하에서 작동하도록 제너다이오드(ZD12)의 기준전압를 설정한다. 이때, 도 20에서는 일 예로 상기 기준전압들을 기울기 측정용 비교기(119)는 0.5V(즉 설계최대 전류의 50% 수준에서 작동) 차단 판정기(80)는 1.1V(즉 110%에서 작동)로 설정하였음은 전술한 바 있다.
이하, 고정 주파수 방식 및 고정 차단기간 방식에 대한 바람직한 구동신호 발생기(401)의 작동을 상세히 설명한다.
먼저, 고정된 입력전압에서 구동펄스폭에 따른, 각 구동방법에서의 구동 코일(L1)의 전류파형을 살펴보면, 고정 주파수 방식은 도 10 내지 도 12를 통해 확인되듯이 기울기 조정용 판정기(119)의 작동횟수(503)가 늘어나거나 줄어드는 구간이 생긴다. 그리고, 고정 차단기간 방식은 도 13 내지 도 14에서, 고정도통기간 방식은 도 15 내지 도 16에서 확인된다.
이때, 고정 주파수 방식은, 입력 전압의 첫번째 주기 동안 구동신호 발생기(401)는 최소 펄스폭으로 전력 스위치(Q2)를 구동하면서 기울기 측정용 비교기(119)(이하, 판정기의 사용용도에 따라 "펄스폭 조정용 판정기"라고도 칭함)의 작동기간 중 최소 작동기간을 구한다(즉, 전력 스위치(Q2) 전류 최대 기울기 측정).
그리고, 두번째 입력 전압의 주기에는 첫번째 주기에서 구한 최소 작동기간으로 신규 구동 펄스폭을 계산하여 전력 스위치(Q2)를 구동한다. 특정한 예를 들면, 기준전압을 설계의 50% 수준을 사용한 도 20의 회로에서는 측정된 최소값의 2배, 그리고 80% 수준으로 기울기 측정용 판정기(119)의 기준전압(ZD12)을 사용하는 경우는 1.25배 한 값으로 구동한다.
나아가, 세번째 이후의 입력 전압에서는, 바로 직전 입력 전압 주기에서 펄스폭 조정용 판정기(즉, 기울기 측정용 비교기)(119)의 작동횟수가 기준보다 많은 경우는 구동 펄스폭을 약간 줄이고(예: 1%), 펄스폭 조정용 판정기(119)의 작동횟수가 작으면 구동 펄스폭을 약간 늘여서(예: 1%) 전력 스위치(Q2)를 구동한다.(펄스폭 미세조정 스텝)
한편, 고정 주파수 방식에서는 입력 전압의 변동에 따는 구동 코일(L1)의 전류를 살펴보면, 입력 전압이 올라간 경우는 도 11과 같이 펄스폭 조정용 판정기(119)의 작동횟수(503)가 증가하게 되고, 반대로 전압이 내려간 경우는 도 12의 제1주기에서와 같이 펄스폭 조정용 판정기(119)의 작동횟수(503)가 줄어든다. 물론 입력 전압 변동이 없는 경우에는 변화가 없다.
그리고, 입력전압을 다수개의 구간으로 나누어 고정주파수 방식으로 제어할 때, 펄스폭 조정판정기의 작동횟수를 소정의 수치가 되도록 제어하는 방법은, 각각의 전압구간에 있어서, "구동주파수/상수=펄스폭 조정판정기 작동횟수"가 되도록 하고, 상기 상수는 입력전압 구간에 관계없이 일정하여야 한다.
이하, 고정 도통기간 방식에 대한 바람직한 구동신호 발생기(401)의 구동방법을 설명한다. 먼저 고정 도통기간 방법에서 구동 코일(L1)의 전류파형을 살펴보면, 도 15 내지 도 16에 도시된 바와 같으며 입력 전압이 높은 경우 저주파 구동을 하고, 입력 전압이 낮은 경우는 고주파 구동을 하는 것이 특징이다.
고정 도통기간 방식은 입력 전압의 레벨에 관계없이 전력 스위치(Q2) 도통기간이 일정하므로, 입력 전압 첫번째 주기 동안 구동신호 발생기(401)는 상술한 바와 같이 최대 스위치 차단기간으로 전력 스위치(Q2)를 구동하면서 교류입력 한 주기에서 기울기 측정용 비교기(119)의 작동기간 중 최소 작동기간을 구한다(즉, 전력 스위치(Q2) 전류 최대 기울기 측정).
그리고, 두번째 입력 전압 주기에는 첫번째 주기에서 구한 최소 작동기간으로 신규 차단기간 계산하여 전력 스위치(Q2)를 구동한다.
나아가, 세번째 이후의 입력 전압 주기에서는 고정주파수/고정차단기간 방식과 동일하게 기울기 측정용 비교기(119)의 작동횟수에 따른 차단기간 미세조정을 행한다.
단, 최저 입력 전압과 최고 입력 전압의 차이가 큰 경우, 이 방식은 부하/전력 스위치(Q2)에 흐르는 전류가 크게 차이가 난다. 따라서 도통기간을 다수개의 수준으로 나누어 높은 입력 전압에는 짧은 도통기간, 낮은 입력전 압에는 긴 도통기간을 적용하여 부하/전력 스위치(Q2)에 흐르는 전류의 편차를 줄여주는 것이 바람직하다.
또한, 기울기 측정용 비교기(119)의 작동기간 측정을 디지털 카운터로 구현하는 경우, 카운터 클럭이 측정 해상도를 결정하며, 해상도가 낮아 입력 전압에 따른 전력 스위치(Q2) 전류의 기울기측정값 변별력이 없는 경우는 상기 기울기 측정용 비교기(119)는 작동 횟수를 카운터하는 용도로만 사용하는 것이 바람직하다. 이 경우, 대부분의 국가에서는 상용전원이 50Hz나 60Hz로 제공되므로 상기 전력 스위치(Q2)의 구동신호 변경은 짧게는 10ms에서 길게는 20ms에 한번 수행하면 되므로 판정기(119) 작동횟수에 의한 구동신호 조정은 마이크로 프로세스로 쉽게 구현된다.
또한, 도 20에서 전력 스위치(Q2)는 두 개의 단자가 접지로 연결되어 있으며, 이중 제1 단자는 기존과 동일하게 전류 검출용 저항(R1)을 통하여 접지로 연결되고, 제2 단자는 바로 접지로 연결되어 있다.
예컨대, 전력 스위치(Q2)가 만약 FET(Field Effect Transistor)로 구현된다면 두 개의 소스(Source)단자를 가지는 FET 임을 의미하며, 상기 제1 단자로는 전류가 조금(예를 들면 제2단자의5% 정도) 흐르고 제2 단자로 대부분(95%) 흐르게 된다. 따라서, 전류 검출용 저항(R1)에 의해 소모되는 전력이 감소 되어 전원효율이 높아지도록 한다.
나아가, 본 발명의 제1실시예와 유사하게, 펄스폭 제어기(미도시, 구동신호 발생기(401) 내부에 일체로 구현될 수도 있음)는 메모리를 구비하고, 상기 메모리에는 기울기 측정용 비교기(119)의 최소 작동기간 또는 작동횟수에 대응하는 구동 펄스폭 및 차단기간 정보가 미리 프로그램 되어 있어서, 구동신호 발생기(401)는 상기 구동신호 정보대로 구동신호를 발생시킨다. 물론, 이 경우에도 펄스폭 제어기가 외부와 데이터를 주고받는 통신기능 및 상기 메모리를 프로그램 가능한 것 (Programable memory)으로 구비하면 각각의 LED 램프 등의 부하에 적합한 구동신호 정보를 프로그램 할 수 있다.
(실시예3)
이하, 첨부된 도 21을 참조하여 본 발명의 제3실시예에 따른 능동형 정전력 공급장치에 대해 상세히 설명하도록 한다.
본 발명의 제3실시예에는 THD(Total Harmonic Distortion)를 더욱 개선하기 위하여 도출한 것이다. 즉, 도 18 및 도 19에서 모의시험 A012는 개별 LED전류는 20.4mA이고 역율은 0.982 로서 역율 0.9 이상을 요구하는 KSC 7651, 7652, 7653 및 7654 규격들은 만족하지만, 고조파 함유율을 살펴보면 제9 고조파가 9.9%(규격 5%) 그리고 제11 고조파가 12.4%(규격 3%)로서 Class C 규격을 만족하지 못한다.
따라서, 본 발명의 제3실시예에서는 부하(52)를 다수개로 나누고 각각의 부하(52)를 시간차를 두어 구동함으로써, 전원 전류 입장에서 보면 구동주파수가 높아지고, 필터링 하기 힘든 저주파를 보다 높은 주파수영역으로 이동시켜서 저역통과 필터로 제거함에 따라 THD가 개선되는 것이다.
단, 도 21에서는 부하(52)를 2개로 나누고, 그에 따른 각 부하(52)에 각각 전력 스위치(Q1, Q2)를 연결한 것을 일 예로 들었으나 본 발명은 이에 한정하지 아니하고 더 많은 수로 부하를 나누고, 그에 따라 각각 전력 스위치를 연결할 수 있음은 물론이다.
한편, 도 18의 컴퓨터 모의시험 A036은 모의시험 A012 조건에서 부하(52)를 2개로 나누고 나누어진 부하(52) 각각에 기존값의 2배인 640uH의 코일(L1) 과 (L2)를 사용하여 모의시험한 것이다. 시험결과 THD는 18.2% 에서 8.5%로 2배 이상 개선되었고, 개별 LED 전류는 20.4mA 및20.6mA로 부하전류변동이 1% 이하이고, 역율은 모두 0.98 이상이고, 전류고조파 함유율이 Class C 규격을 만족하였다.
(실시예4)
이하, 첨부된 도 22을 참조하여 본 발명의 제4실시예에 따른 능동형 정전력 공급장치에 대해 상세히 설명하도록 한다.
도 22는 본 발명의 제2실시예를 나타낸 도 20과 비교하여, 회로전류 검출에 사용되는 검출용 저항(Rs)을 부하(52), 구동 코일(L1) 및 환류 다이오드(D1)로 구성된 전류 루프내에 삽입한 것이다.
즉, 앞서 설명한 실시예들은 전력 스위치(Q1)에 흐르는 전류를 검출하여 부하(52)에 흐르는 전류를 예측하였는데, 본 발명의 제4실시예는 부하(52)에 흐르는 전류를 직접 측정하여 제어회로에 제공하는 것이다.
단, 도 22에서는, 전류검출저항(Rs) 양단 전압을 차동증폭기(120)를 통해 측정하여 구동 펄스폭을 제어하는데 사용하며, 그 외 회로 동작은 이미 위에서 상세하게 설명한 바 있다.
한편, 본 발명의 제4실시예는 부하(52)에 흐르는 전류를 직접 측정하여 제어회로에 제공하므로, 회로 동작중 구동 코일값의 경시변화(먼지 축적, 온/습도 변화 등)에 의한 부하(52)의 전류 변동을 방지할 수 있으며, 구동 코일(L1)에 축적된 에너지가 완전 방전하기 전에 다음 스위칭 싸이클을 개시(연속전류모드, CCM:Continious Current Mode,이하 CCM 이라 칭함.)하여도 부하(52)에 흐르는 전류를 정확히 측정 가능하다.
또한, 기존의 전력 스위치(Q1) 하단에 설치되는 검출용 저항(R1)은 낮은 저항값과 높은 전력이 요구되어 물리적인 크기도 크고, 열도 많이 발생하고, 표준품으로 구하기도 힘들지만, 본 실시예에 따른 검출 저항(Rs)은 높은 저항값과 낮은 전력을 사용하므로 저렴한 표준품으로 쉽게 구할 수 있다.
(실험예 2)
이하, 본 발명의 능동형 정전력 공급장치에 대한 제2실험예에 대해 상세히 설명하도록 한다.
본 실험예는 부하 양단전압을 입력 전압의 어느 수준까지 사용가능한지를 검토한 것으로 도 20의 회로를 사용하였으며 도 23 및 도 24에 그 결과를 도시하였다.
부하 양단전압은 50.3V(at 20mA) 이고, 부하를 2개로 나누어 2개의 전력 스위치(Q, Q2)로 구동하였으며, 각각의 전력 스위치(Q, Q2)는 10개의 LED 스트링을 100KHz로 5us의 시간차를 두고 구동하였고, 필터 코일(LLPF)은 1mH 이고, 필터 콘덴서(CLPF)는 0.1uF로 이다. 그리고, 구동 코일(L1)은 360uH(단, 모의시험 D010은 720uH) 이다.
먼저, 도 23을 살펴보면, 모의시험 D002는 부하 양단전압이 입력 전압의 1/2 수준이고 나머지가 구동 코일(L1)에 걸리며 역율은 0.946 이다. 그리고 입력 전압이 증가함으로써 부하 양단전압이 차지하는 비율이 떨어질수록 역율은 증가하였으며, 제1 위상각은 0.4도에서 1.3도로 그 전류위상이 점점 빨라 졌고, 개별 LED 실효전류 변동은 4% 이하로 17.7mA에서 18.4mA 사이에 있었다.
다음, 도 24에서 전원전류 고조파 함유율을 살펴본다. 먼저 50% 입력 전압을 사용하는 모의시험 D002를 살펴보면 제3 고조파는 32.7%(기준 28.4%)이고, 제9 고조파는 6.7%(기준 5%)로서 IEC 61000-3-2 Class C 규격을 벗어났다.
반면, 25와트 이하에 적용되는 IEC-61000-3-2 Class D(이하 Class D 규격 이라 칭함) 규격은 제3고조파가 86% 이하 그리고 제5고조파가 61% 이하이므로 충분히 만족한다.
그리고, 입력 전압의 45% 수준을 부하가 사용하는 모의시험 D003은 제5 고조파가 Class C 규격을 0.1% 초과하였다. 또한 입력 전압의 40% 수준을 사용하는 모의시험 D004는 Class C 규격을 만족하였고, 35% 수준을 사용하는 시험 D005는 제13 고조파가 0.6%이고, 1/3 수준을 사용하는 시험 D006은 제 11 고조파가 0.2% 초과하였는데 이것은 필터 시정수 변경 혹은 구동 코일 값 변경 또는 구동주파수 변경 등의 방법으로 해결될 수 있다.
즉, 이상의 결과를 종합하면 25와트 이하의 LED 램프는, 입력 전압의 50%이하를 사용할 경우 역율은 0.9 이상 그리고 Class D 규격을 만족하는 정전류 공급장치가 제공되며, 이때 구동 펄스 최대 듀티비는 50% 이다. 또한 25와트 이상의 LED 램프는 입력 전압의 45% 이하를 사용할 경우 역율 0.9이상이고, Class C 규격을 만족하는 정전류 공급장치가 제공되며 이때 구동펄스 최대 듀티비는 45%가 된다.
다시 도 23을 참조하여 구체적으로 설명한다. 정류전압이 100V에서 250V로 점차 증가함에 따라 구동 펄스폭은 4.48us에서 1.12us로 점차 감소한다. 따라서 각 정류전압에 대한 구동펄스폭을 메모리에 테이블로 미리 저장하여 두고, 실제 상황에서 정류전압을 측정하여 상기 측정된 전압에 대응하는 구동펄스폭을 메모리로부터 읽어 내어 구동신호 발생기를 구동하는 것이 가능하다. 모든 소자가 선형 소자(linear element)로 작동되기 때문에, 약 3곳의 정류전압(양 끝 및 중간 전압)에서 구동펄스폭을 알고 있다면 나머지 전압에서는 계산만으로 구동펄스폭을 구할 수 있다. 물론, 전압과 펄스폭의 관계를 수식으로 표현할 수도 있고, 상기 수식을 펄스폭 제어기에 하드웨어로 구현하거나 마이크로 프로세서로 프로그래밍할 수도 있다.
이하 본 발명을 활용하는데 있어서 유용한 계산 방법에 대하여 설명한다.
(계산방법 요약- 실험식)
- 구동 코일값 계산방법
구동 코일값은 저항값을 계산하는 방법으로 계산한다. 예를 들면 도 18에서 모의시험 A012의 부하를 2개로 나누어 A036 시험을 하였는데, 구동 코일(L1) 측면에서 보면 전류가 반으로 줄었으므로 구동 코일값은 2배로 높아진다.
아래 표1은 LED 개별전류를 20mA로 할 경우 LED 병열 갯수에 따른 구동 코일(L1)값의 한 예시이다.
표 1 구동 코일값 예시
LED 열수 전력 스위치 순시최대전류(A) 구동 코일값(mH)
1 0.06 12.80
10 0.6 1.280
20 1.2 0.640
40 2.4 0.320
80 4.8 0.160
- 부하양단 전압이 변경되는 경우 구동 펄스 폭 계산방법
구동 코일(L1) 충전시간은 입력 전압에 따라 변동된다. 예를 들면 구동 코일(L1) 양단 전압이 2배로 높아지면 충전 시간은 2배로 단축된다. 즉, 부하양단전압(VF1)과 충전시간(PW1)이 있는 경우 신규 부하양단전압(VF2)에 대한 미지의 충전시간(PW2)는 아래의 공식(1)로 구해진다.
PW2 = (VDC - VF1) / (VDC - VF2) * PW1 ------ (공식1)
(여기서 VDC = 정류최대전압 임.)
이 계산 방법은 회로에서 입력 전압이 변경되는 경우 그리고 LED 직력갯수를 변경하는경우 펄스폭을 계산하는데 사용된다.
- LED 직렬 갯수를 바꾸는 구동 주파수 계산방법(고정주파수, 고정차단기간용)
정류 최대전압은 바뀌지 않고 부하양단전압 및 구동 코일(L1) 양단전압이 바뀌므로 구동 코일(L1)의 충/방전시간이 변경된다. 기지의 부하양단전압(VF1)과 방전시간(Tdis1)으로 신규 부하양단전압(VF2)에 대한 미지의 방전시간(Tdis2)은 아래의 공식(2)로 구해진다.
Tdis2 = VF1 / VF2 * Tdis1 ----(공식2)
*신규 구동주기는 충전시간(PW2)와 방전시간(Tdis2)의 합으로 구한다.
한편, 도 25는 LED 직렬 갯수를 바뀌는 경우의 구동 펄스 폭 및 부하 양단전압을 계산한 결과표이다. 도 25에서 부하 전압 50.3V에 대한 구동 펄스폭 및 방전종료시각은 모의시험 A016 및 A029에서 구한 기지의 값이며, 나머지 수치는 상기 공식들을 사용하여 계산한 결과이다. 그리고 24.2V 및 12.3V에는 계산 결과와 모의시험 결과를 같이 표시하였다.
이상의 계산방법으로, 목표 설계 부하전압 및 전류가 설정되면 손쉽게 구동 코일값 및 구동주파수 설정이 가능하다.
이하에서는 본 발명의 바람직한 실시예에 따른 반도체 집적소자를 도 26을 참조하여 설명한다.
먼저 도 26을 참조하면, 도시된 반도체 집적소자는 크게 보아 2개의 부분으로 구성되어 있는데, 전력스위치 드라이버(92z), 첨두전압제거기(81z), 서지 전류가 흐를 때 작동하는 차단판정기(82z) 및 펄스폭 조정용 판정기(119z)를 포함하는 아날로그 회로와 상기판정기들의 작동회수를 세는 카운터, 전력스위치의 온/오프를 제어하는 신호 발생기(PWM), 펄스폭 조정판정기의 작동횟수가 소정의 수치가 되도록 제어하는 제어로직{Control logic(CPU)} 및 외부와 통신하는 통신회로(I2C)를 포함하는 디지털 회로인 구동신호 발생기(401z)로 구성되어 있다.
또한 각 회로에는 정전압을 공급하는 레귤레이터가 구비되어 있는데, 아날로그 회로에 정전압을 공급하는 레귤레이터(96z)는 9V인 것을 예시하였다. 상기 전력스위치가 모스펫(MOS-FET)인 경우 20V에서 5V 사이의 정전압 레귤레이터인 것이 바람직하다. 그리고 디지털 회로에 정전압을 공급하는 레귤레이터(97z)는 3.3V인 것을 예시하였는데, 구동신호발생기(401z)가 20MHz 이상으로 작동하기 위해서는 5V 이하의 정전압 레귤레이터인 것이 바람직하다. 그리고 판정기(82z, 119z)의 기준전압을 각각 1.1 및 0.7로 도시하였는데, 이것은 설명의 편의상 설계 기준값의 70% 및 110%라는 의미로 나타낸 것이며, 실제 집적소자에서는 1V 이하인 것이 바람직 하다.
이하에서는 간단히 각 핀의 기능을 설명하기로 한다.
먼저 핀1(SCK) 및 핀2(SDA/DIM)는 외부와 I2C 방식으로 통신을 수행하는 핀이고, 특히 핀2(SDA/DIM)는 외부의 디밍(dimming) 신호 입력핀을 겸하고 있다. 즉 핀1(SCK)에 클럭 신호가 없으면서 핀2(SDA/DIM)에 신호가 입력되면 디밍 신호 입력핀으로 작동한다. 그리고 핀3(CS)은 스위치에 흐르는 전류를 측정하는 단자이고, 핀4(GND)는 접지단자이며, 핀5(DRV)는 전력스위치를 드라이빙하는 단자이다. 핀8(HV)은 정류전압 또는 외부전원 전압에 연결되는 단자이고, 정전압 레귤레이터(96z)에 의하여 제어된 전류가 핀6(VCC) 외부에 설치된 커패시터에 충전되어서 상기 반도체소자의 작동전압의 전원뱅크로 작동한다. 각 부분의 상세한 설명은 당업자에게 충분히 공지되어 있는 것이므로 생략한다.
도 27은 상기에서 설명한 도 26의 반도체 집적소자(8Pa)를 이용하여 실제 응용회로를 구성한 일예이다. 도 27의 회로에서 상기 집적소자(8Pa)는 아래와 같은 절차로 동작하는 것이 바람직하다.
(고정주파수 방식의 경우)
1. 최소 펄스폭으로 신호 발생기(PWM)를 설정한다.
신호발생기(PWM)가 설정된 주파수/펄스폭으로 스위치를 계속 구동한다.
2. 카운터를 리셋한다.
- 펄스폭 조정판정기의 작동횟수를 세는 카운터.
- 차단판정기의 작동(서지전류가 흐를때 작동)횟수를 세는 카운터.
3. 정류전압 1주기 동안 대기한다.
4. 보호회로 작동유무확인
- 차단판정기의 작동횟수가 4 이하이면 스텝 5로 간다(4 이하 서지입력, 5 이상 펄스폭 너무 넓음)
4.1. 만약 제어로직에서 허용된 최소펄스폭이면, 설계값 이상의 과전압이 입력된 것이므로 과전압이 해소될 때까지 구동횟수를 1/2로 줄이도록 신호발생기(PWM)를 설정한다(skip mode). 그리고 스텝 2로 간다.
4.2. 서지가 아니고 펄스폭이 넓은 것이므로 펄스폭을 2 단위 이상 줄여서 신호발생기(PWM)를 설정한다. 그리고 스텝 2로 간다.
5. 펄스폭 조정판정기의 작동횟수를 확인한다.
5.1. 상기 작동횟수가 소정의 수치(목표값)보다 작으면, 펄스폭을 1 단위 증가시켜서 신호발생기(PWM)를 설정한다. 그리고 스텝 2로 간다.
5.2. 상기 작동횟수가 소정의 수치(목표값)보다 많으면, 펄스폭을 1 단위 감소시켜서 신호발생기(PWM)를 설정한다. 그리고 스텝 2로 간다.
5.3. 상기 작동횟수가 소정의 수치이면, 펄스폭 조정판정기는 계속 작동하는 구간과 계속 작동하지 않는 구간으로 구별되고, 상기구간들의 중간이 각각 순시최대 정류전압 및 교류입력전압이 영전위를 통과(Zero crossing)하는 시각이므로, 영전위를 통과하는 시각까기 대기한다(동기화 스텝-선택사항). 이 때, 스위치 구동 펄스폭을 적절한 수식변환을 거치면 입력전압이 된다(즉 상기 펄스폭은 입력전압을 ADC한 것이다). 그리고 스텝 2로 간다.
이상, 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다.
본 실시예에서는 구동 코일에 충전된 에너지가 각 스위칭 싸이클 에서 완전히 방전되는것을 기준으로 상세히 설명하였는데, 완전히 방전을 하기 이전에 다음 스위칭 싸이클을 개시하면 이전 싸이클에서 미 방전된 에너지가 현 싸이클에 더하여져 더 많은 전류가 흐르므로 더 높은 전류를 부하에 공급할 수 있음은 당연하다.
또한, 본 발명의 바람직한 실시예에서 설명된 정전류공급장치의 전부 또는 일부를 모노리딕 또는 하이브리드 반도체 집적소자로 구현할 수 있음은 물론이다.
또한, 코일의 개념을 인턱턴스 성분을 주성분으로하는 소자로 확장하면 트랜스포머를 채용한 플라이백 컨버터 형식 및 포워드 컨버터 형식 등으로 확장하여 적용할 수 있으며 이 경우 본 발명의 제어기는 역율 개선용 제어기(PFC controller)로 작동하게 된다. 도 28은 본 개념을 적용한 플라이백 컨버터의 일예이다.
따라서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
신규 성장산업인 LED 조명산업 중, 소위 LED 형광등 그리고 LED 백열등 이라고 불리우는 컨버터 내장형 LED 램프 등은 전원장치를 설치할 공간제약을 많이 받고, 또한 역율 개선을 위하여 별도의 역율개선회로를 사용하여야 하였다. 즉, 가장 쉽게 접근하는 역율개선회로로는 수동형 밸리필(Valley fill) 회로로서 평활콘덴서 2개 정류다이오드 3개를 추가로 필요한 반면에 최대 역율이 약 0.92 정도이고, 능동형의 경우는 대부분 고가이고, 회로가 복잡하다. 그리고 평활콘덴서 사용으로 전원장치의 보증수명이 2내지 3년으로 짧다.
따라서, 본 발명에 의하면 현재 신규 성장산업인 LED 조명산업의 핵심 구성품이 별도의 역율 개선회로가 필요없는 제품으로 제공되므로 가격경쟁력이 있고, 전원장치의 보증 수명이 길어 산업상 이용가능성이 아주 높다.

Claims (14)

  1. 부하에 정전력을 공급하는 능동형 정전력 공급장치에 있어서,
    교류전원을 공급하는 교류전원 공급기와;
    상기 교류전원 공급기로부터 교류전원을 입력받아 정류하는 정류회로와;
    상기 정류회로로부터 전력을 공급받는 부하에 직렬 연결된 구동 코일과;
    상기 구동 코일 및 부하를 통과한 전류를 스위칭 온/오프 시키는 전력 스위치와;
    양단이 상기 부하의 출력측과 입력측에 각각 연결됨으로써 상기 부하에 병렬 연결되며, 상기 부하의 출력측으로부터 입력측을 향해 전류가 흐르는 방향으로 설치되어, 상기 전력 스위치가 스위칭 오프된 경우에는, 상기 구동 코일에 충전된 전류를 상기 부하로 방전시키는 환류 다이오드와;
    상기 전력 스위치의 게이트 단에 연결되어 상기 스위칭 온/오프를 제어하는 펄스형 구동신호 발생기와;
    상기 구동 코일에 흐르는 전류가 설계값 이상인 경우 차단 신호를 발생시킴으로써, 상기 전력 스위치를 스위칭 오프시키는 차단 판정기; 및
    상기 부하에 전원을 공급하는 도중에, 정류전압 한 주기를 단위로 상기 구동신호 발생기의 스위칭 온 시간부터 상기 차단 판정기의 스위칭 오프 시간까지인 조절기간을 측정하여 최소 조절기간을 구하여 저장하고, 다음 주기의 전원공급부터는 상기 구동신호 발생기의 구동 펄스폭이 상기 저장된 조절기간과 일치되도록 제어하는 펄스폭 제어기;를 포함하는 것을 특징으로 하는 능동형 정전력 공급장치.
  2. 제1항에 있어서,
    상기 펄스폭 제어기는,
    상기 구동 코일에 흐르는 전류가 0[A]인 시간을 시작점으로 하고, 상기 설계값에서 상기 차단 판정기가 작동한 시간을 종료점으로 하여, 상기 시작점부터 종료점까지의 시간을 상기 조절기간으로 설정하는 것을 특징으로 하는 능동형 정전력 공급장치.
  3. 제1항에 있어서,
    상기 펄스폭 제어기는, 펄스폭 측정용 비교기 (또는 펄스폭 조정용 판정기)를 더 포함하고, 상기 구동 코일에 흐르는 전류가 0[A]인 시간을 시작점으로 하고, 상기 설계값 미만에서 상기 펄스폭 측정용 판정기가 작동한 시간을 종료점으로 하고, 상기 시작점과 종료점을 이용하여 상기 구동 코일에 흐르는 전류의 기울기를 측정하며, 상기 전류의 기울기에 따라 상기 조절기간을 설정하는 것
    또는
    상기 펄스폭 측정용 비교기의 작동횟수가 소정의 수치가 되도록 상기 조절기간을 설정하는 것을 특징으로 하는 능동형 정전력 공급장치.
  4. 제1항 내지 제3항 중 어느 하나의 항에 있어서,
    상기 펄스폭 제어기는,
    상기 구동신호 발생기의 주파수가 고정이고, 상기 주파수의 1주기 이내에서 상기 구동 코일에 충전된 전류가 완전 방전되도록 상기 구동신호 발생기를 제어(고정 주파수 방식)하는 것을 특징으로 하는 능동형 정전력 공급장치.
  5. 제1항 내지 제3항 중 어느 하나의 항에 있어서,
    상기 펄스폭 제어기는,
    상기 구동 코일에 충전된 전류가 완전 방전된 후에 즉시 다음 구동 펄스를 발생시키도록 고정 차단 방식 또는 고정 차단기간 방식(고정 방전기간 방식)을 이용하여 상기 구동신호 발생기를 제어하는 것을 특징으로 하는 능동형 정전력 공급장치.
  6. 제1항 내지 제3항 중 어느 하나의 항에 있어서,
    상기 펄스폭 제어기는,
    상기 구동펄스폭을 고정하여 상기 구동코일이 충전되는 시간을 일정하게 하고,
    상기 부하에 공급 가능한 입력전원 중 가장 작은값의 입력전원이 공급된 경우, 상기 구동 코일에 충전된 전류가 완전 방전 후에 바로 다음 구동 펄스를 발생시키도록 상기 구동신호 발생기를 제어하고, 가장 큰 값의 입력전원이 공급된 경우 상기 구동코일에 충전된 전류가 완전 방전 후에 추가의 차단기간을 가지고 다음 구동펄스를 발생시키도록 고정 차단 방식 또는 고정 차단기간 방식(고정 방전기간 방식)을 이용하여 상기 구동신호 발생기를 제어하는 것을 특징으로 하는 능동형 정전력 공급장치.
  7. 제1항 내지 제3항 중 어느 하나의 항에 있어서,
    상기 펄스폭 제어기는,
    상기 조절기간의 연산을 수행하는 마이크로 프로세서와;
    상기 구동신호 발생기의 스위칭 온 시간과 상기 차단 판정기의 스위칭 오프 시간을 측정하여 상기 마이크로 프로세서에 제공하기 위한 타이머; 및
    상기 마이크로 프로세서에서 연산한 상기 조절기간을 저장하는 메모리;를 포함하는 것을 특징으로 하는 능동형 정전력 공급장치.
  8. 제7항에 있어서,
    상기 펄스폭 제어기는,
    외부와의 통신을 위한 통신부를 더 포함하는 것을 특징으로 하는 능동형 정전력 공급장치.
  9. 제1항 내지 제3항 중 어느 하나의 항에 있어서,
    상기 전력 스위치를 통과한 전류가 흐르는 경로가 2개로 구성되어 있으며,
    상기 2개의 경로 중 하나는 접지 단자와 연결되어 있고, 다른 하나는 상기 차단 판정기와 연결되어, 상기 접지 단자로 흐르는 전류가 상기 차단 판정기로 흐르는 전류보다 많도록 함으로써, 상기 차단 판정기를 통해 소모되는 전력 소모를 줄일 수 있도록 하는 것을 특징으로 하는 능동형 정전력 공급장치.
  10. 제1항 내지 제3항 중 어느 하나의 항에 있어서,
    상기 부하는 2개 이상으로 분리되고, 각 분리된 부하에 각각의 구동코일 및 전력 스위치를 설치하고, 상기 각 전력 스위치들은 소정의 시간차를 두고 구동되는 것을 특징으로 하는 능동형 정전력 공급장치.
  11. 제1항 내지 제3항 중 어느 하나의 항에 있어서,
    상기 정류회로의 입력단 또는 출력단에는 저역통과 필터가 설치되어 있는 것을 특징으로 하는 능동형 정전력 공급장치.
  12. 제11항에 있어서,
    상기 저역통과 필터는, 필터 코일과 필터 콘덴서로 구성되고,
    상기 필터 코일의 제1단자는 정류회로에 연결되고, 상기 필터 코일의 제2단자는 부하에 연결되며, 상기 필터 콘덴서의 제1단자는 상기 필터 코일의 제2단자에 연결되고, 상기 필터 콘덴서의 제2단자는 접지되며, 상기 필터 콘덴서의 용량은 1uF 이하인 것을 특징으로 하는 능동형 정전력 공급장치.
  13. 제1항 내지 제3항 중 어느 하나의 항에 있어서,
    상기 펄스형 구동신호 발생기와, 상기 차단 판정기 및 상기 펄스폭 제어기는하나
  14. 제1항 내지 제3항 중 어느 하나의 항에 있어서,
    상기 부하는 1개 이상의 발광다이오드 스트링(string)를 포함하며, 상기 각 발광다이오드의 스트링은 각각 시간차를 갖고 정전력이 공급되는 것을 특징으로 하는 능동형 정전력 공급 장치.
PCT/KR2010/001421 2009-03-09 2010-03-08 능동형 정전력 공급장치 WO2010104297A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/255,733 US8710756B2 (en) 2009-03-09 2010-03-08 Active constant power supply apparatus
CN2010800205158A CN102440077A (zh) 2009-03-09 2010-03-08 有源恒定功率供给装置
EP10750988A EP2408271A2 (en) 2009-03-09 2010-03-08 Active constant power supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090019545 2009-03-09
KR10-2009-0019545 2009-03-09

Publications (3)

Publication Number Publication Date
WO2010104297A2 true WO2010104297A2 (ko) 2010-09-16
WO2010104297A3 WO2010104297A3 (ko) 2010-12-09
WO2010104297A9 WO2010104297A9 (ko) 2011-01-27

Family

ID=41684044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001421 WO2010104297A2 (ko) 2009-03-09 2010-03-08 능동형 정전력 공급장치

Country Status (5)

Country Link
US (1) US8710756B2 (ko)
EP (1) EP2408271A2 (ko)
KR (1) KR100930813B1 (ko)
CN (1) CN102440077A (ko)
WO (1) WO2010104297A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120054631A (ko) * 2009-08-10 2012-05-30 오스람 아게 과전압 방지를 위해 전압 트랜스포머를 제어하기 위한 방법, 전압 트랜스포머 및 전압 트랜스포머를 갖는 동작 디바이스
CN102523663A (zh) * 2012-01-06 2012-06-27 广州市隆都电子有限公司 恒功率led驱动电路

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198408B1 (ko) * 2010-10-26 2012-11-07 (주)로그인디지탈 플리커 저감 및 광효율 개선 기능을 갖춘 ac 직결형 led 조명기기
US9553501B2 (en) 2010-12-08 2017-01-24 On-Bright Electronics (Shanghai) Co., Ltd. System and method providing over current protection based on duty cycle information for power converter
KR101058711B1 (ko) 2011-07-25 2011-08-22 최창렬 엘이디 조명 제어 시스템
KR101837164B1 (ko) 2011-11-23 2018-03-12 페어차일드코리아반도체 주식회사 스위치 제어기, 스위치 제어 방법, 및 스위치 제어기를 포함하는 전력 공급 장치
US9356534B1 (en) * 2012-01-27 2016-05-31 Marvell International Ltd. Method and apparatus for turning on a lighting device
US20130207567A1 (en) * 2012-02-14 2013-08-15 Alexander Mednik Boost converter assisted valley-fill power factor correction circuit
JP5999326B2 (ja) 2012-07-05 2016-09-28 パナソニックIpマネジメント株式会社 Led点灯装置、および照明器具
JP6008278B2 (ja) * 2012-07-24 2016-10-19 パナソニックIpマネジメント株式会社 点灯装置及びそれを用いた照明器具、並びに照明システム
US9763297B2 (en) * 2012-11-02 2017-09-12 Cree, Inc. Lighting apparatus and methods using oscillator-based dimming control
US20140132167A1 (en) * 2012-11-15 2014-05-15 Microtex Electronics Florescent ballast to dc power system
TWI498041B (zh) * 2013-02-20 2015-08-21 Cmos Corp E 固定功率線性發光二極體驅動電路
DE202013101793U1 (de) * 2013-04-25 2014-07-29 Zumtobel Lighting Gmbh LED-Schaltungsanordnung
CN103401424B (zh) 2013-07-19 2014-12-17 昂宝电子(上海)有限公司 用于调整电源变换系统的输出电流的系统和方法
CN104582124B (zh) * 2013-10-29 2018-04-06 登丰微电子股份有限公司 发光二极管驱动电路
US9584005B2 (en) 2014-04-18 2017-02-28 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating output currents of power conversion systems
CN108809100B (zh) 2014-04-18 2020-08-04 昂宝电子(上海)有限公司 用于调节电源变换系统的输出电流的系统和方法
KR101601432B1 (ko) * 2014-06-17 2016-03-10 현대자동차주식회사 인젝터 구동 제어 장치
JP6400407B2 (ja) * 2014-09-18 2018-10-03 Ntn株式会社 充電装置
CN104660022B (zh) 2015-02-02 2017-06-13 昂宝电子(上海)有限公司 为电源变换器提供过流保护的系统和方法
CN106981985B (zh) 2015-05-15 2019-08-06 昂宝电子(上海)有限公司 用于电源转换系统中的输出电流调节的系统和方法
US10270334B2 (en) 2015-05-15 2019-04-23 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for output current regulation in power conversion systems
CN105790219A (zh) * 2016-03-21 2016-07-20 福州福大海矽微电子有限公司 一种反激式开关电源输出续流二极管开路保护电路及方法
JP6660253B2 (ja) * 2016-06-02 2020-03-11 Ntn株式会社 バッテリ充電装置
KR102109144B1 (ko) * 2017-09-29 2020-05-28 주식회사 아모센스 전원 제어 장치 및 방법
TWI672975B (zh) * 2018-05-04 2019-09-21 台達電子工業股份有限公司 發光元件驅動裝置及其驅動方法
CN112803923A (zh) * 2020-12-26 2021-05-14 沈小东 一种自适应的电渗透脉冲发生装置及电渗透脉冲控制方法
US11864280B2 (en) * 2021-10-18 2024-01-02 Aes Global Holdings Pte Ltd. Light driver calibration

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0321321D0 (en) * 2003-09-11 2003-10-15 Boc Group Plc Power factor correction circuit
US7081741B2 (en) * 2004-06-15 2006-07-25 Matsushita Electric Industrial Co., Ltd. Multi-output power supply and electronic device using them
JP2006187115A (ja) * 2004-12-27 2006-07-13 Toshiba Corp スイッチング電源装置及びその制御方法
JP4839023B2 (ja) * 2005-06-22 2011-12-14 Fdk株式会社 発光ダイオード調光回路および照明装置
KR100753665B1 (ko) * 2006-10-17 2007-08-31 삼성전기주식회사 Led 정전류 구동회로
KR20080074429A (ko) * 2007-02-09 2008-08-13 원 호 이 벅컨버터형 고효율 소형 딤머
JP2008235530A (ja) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd 発光ダイオード駆動装置、及びそれを用いた照明装置
CN201075825Y (zh) * 2007-04-24 2008-06-18 周原 一种逐脉冲磁控开关电源
KR100867551B1 (ko) * 2007-05-18 2008-11-10 삼성전기주식회사 Led 어레이 구동 장치
US7880400B2 (en) * 2007-09-21 2011-02-01 Exclara, Inc. Digital driver apparatus, method and system for solid state lighting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120054631A (ko) * 2009-08-10 2012-05-30 오스람 아게 과전압 방지를 위해 전압 트랜스포머를 제어하기 위한 방법, 전압 트랜스포머 및 전압 트랜스포머를 갖는 동작 디바이스
KR101655902B1 (ko) 2009-08-10 2016-09-08 오스람 게엠베하 과전압 방지를 위해 전압 트랜스포머를 제어하기 위한 방법, 전압 트랜스포머 및 전압 트랜스포머를 갖는 동작 디바이스
CN102523663A (zh) * 2012-01-06 2012-06-27 广州市隆都电子有限公司 恒功率led驱动电路
CN102523663B (zh) * 2012-01-06 2014-05-07 广州市隆都电子有限公司 恒功率led驱动电路

Also Published As

Publication number Publication date
CN102440077A (zh) 2012-05-02
US20120119650A1 (en) 2012-05-17
KR100930813B1 (ko) 2009-12-09
EP2408271A2 (en) 2012-01-18
US8710756B2 (en) 2014-04-29
WO2010104297A9 (ko) 2011-01-27
WO2010104297A3 (ko) 2010-12-09

Similar Documents

Publication Publication Date Title
WO2010104297A2 (ko) 능동형 정전력 공급장치
WO2012144800A2 (ko) Led 구동 장치 및 이를 이용한 led 구동 방법
WO2014104776A1 (ko) Led 연속구동을 위한 led 구동회로, 이를 포함하는 led 조명장치 및 구동방법
KR101026248B1 (ko) 역률 보상 회로
WO2011013906A2 (ko) 발광 장치를 위한 조광 장치
WO2013100736A1 (en) Led luminescence apparatus
WO2018151561A1 (en) Cooking apparatus and control method thereof
WO2012081878A2 (ko) 교류 구동 엘이디 조명장치
US8300381B2 (en) Low cost high speed spark voltage and flame drive signal generator
WO2013162308A1 (ko) Led 디머, 이를 포함하는 led 조명장치 및 led 조명장치의 디밍 제어 방법
WO2019088678A1 (en) Air conditioner and rectifier
WO2017131436A1 (ko) 청소기 및 그 제어 방법
WO2019172643A1 (ko) 전원 장치
WO2016093534A1 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
JP7316164B2 (ja) スイッチング電源装置
WO2021045402A1 (ko) 유도 가열 장치
WO2014104843A1 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2016060465A2 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2018236088A1 (ko) 전원 공급 장치 및 부하에 전원을 공급하는 방법
EP3676945A1 (en) Air conditioner and rectifier
WO2021225411A1 (ko) 정밀하게 주파수를 제어하기 위한 주파수 제어 방법 및 이를 이용하는 주파수 제어 장치
WO2015060644A1 (ko) 단권변압기를 이용한 zvzcs 스위칭 컨버터
WO2015020463A1 (ko) 전원 장치
WO2016035982A1 (ko) 인버터 회로 및 이를 이용한 공기조화기 및 냉장고
WO2011159048A2 (ko) Led 형광 램프

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020515.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750988

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010750988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13255733

Country of ref document: US