WO2010103768A1 - 車両運動制御システム - Google Patents

車両運動制御システム Download PDF

Info

Publication number
WO2010103768A1
WO2010103768A1 PCT/JP2010/001555 JP2010001555W WO2010103768A1 WO 2010103768 A1 WO2010103768 A1 WO 2010103768A1 JP 2010001555 W JP2010001555 W JP 2010001555W WO 2010103768 A1 WO2010103768 A1 WO 2010103768A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle behavior
ecu
control
behavior control
control signal
Prior art date
Application number
PCT/JP2010/001555
Other languages
English (en)
French (fr)
Inventor
柳貴志
若松清志
関孝幸
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP10750526.5A priority Critical patent/EP2407365B1/en
Priority to JP2011503679A priority patent/JP5369170B2/ja
Priority to US13/203,424 priority patent/US8761995B2/en
Publication of WO2010103768A1 publication Critical patent/WO2010103768A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/885Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using electrical circuitry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/08Coordination of integrated systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up

Definitions

  • the present invention relates to a vehicle motion control system that cooperatively operates each vehicle behavior control device by controlling exchange of coordination control signals among a plurality of vehicle behavior control devices.
  • a rear wheel toe angle control device which stabilizes the behavior of the vehicle by individually adjusting the toe angles of the left and right rear wheels, and variably controlling the braking force for each of the front, rear, left and right wheels.
  • a vehicle behavior stabilization device (see Patent Document 2) that optimizes the behavior of the vehicle, a left and right drive force distribution device (see Patent Document 3) that distributes a driving force between the left and right drive wheels, and an assist force by an electric motor
  • An electric power steering apparatus (see Patent Document 4) is known which adjusts the behavior of a vehicle by increasing or decreasing according to the behavior (yaw rate).
  • a coordinated control is performed in which required signals are exchanged to operate the vehicle behavior control devices in a coordinated manner.
  • the vehicle behavior stabilization device and the left and right driving force distribution device are steered angle sensor values based on toe angle information of the rear wheels transmitted by the rear wheel toe angle controller. Is used for each control.
  • the RTC-ECU Rear Toe Control-Electronic Control Unit
  • the toe angle of the rear wheel becomes uncontrollable
  • the sub-CPU provided in the RTC-ECU has a fail-safe design in which the rear wheel toe angle control device is powered off
  • the toe angle of the rear wheel is fixed in a state when the RTC-ECU breaks down.
  • the vehicle behavior stabilization device and the left and right driving force distribution device can not receive toe angle information of the rear wheel from the RTC-ECU after that, it is conceivable that an unexpected operation occurs.
  • the present invention has been devised based on the knowledge of the inventor as described above, and the main object thereof is that even when one of a plurality of vehicle behavior control devices in which coordinated control is performed breaks down, It is an object of the present invention to provide a vehicle behavior control system configured to prevent the vehicle from having an unexpected behavior.
  • the present invention is a vehicle behavior control system for operating a plurality of vehicle behavior control devices in a mutually coordinated manner, which generates a first coordinated control signal.
  • a second vehicle behavior control device (31) that operates in a coordinated manner with respect to the first vehicle behavior control device based on the first vehicle behavior control device (61) and the first coordinated control signal;
  • a failure detection device (62) for detecting a failure of the first vehicle behavior control device, wherein the first vehicle is controlled by the failure detection device.
  • the second vehicle behavior control device continues the coordinated control based on the coordinated control signal stored in the coordinated control signal storage device immediately before the failure detection.
  • cooperative control refers to operation in a mutually coordinated manner, and in the mutually coordinated manner, at least one vehicle behavior control device is self-operated based on a coordinated control signal transmitted and received among a plurality of devices. It means performing control according to the control state of the device other than the device. Specifically, for example, the control value uniquely determined in the own device based on the required state quantity detected by the sensors is corrected based on the coordinated control signal received from the other vehicle behavior control device, or While replacing with another control value based on the coordination control signal, the vehicle behavior control device that is the transmission source of the coordination control signal determines the control value of its own device based on the required state quantity, while the coordination control signal Are generated and transmitted to other related vehicle behavior control devices.
  • the second vehicle behavior control device uses the coordination control signal stored in the coordination control signal storage device immediately before the failure detection. Based on the above, it is considered that the control target of the first vehicle behavior control device is stopped in the state at the time of failure, and the cooperation on the vehicle behavior by the control target of the first vehicle behavior control device is taken into consideration. In order to continue the control, it is possible to prevent the behavior of the vehicle from being unexpected due to the operation of the second vehicle behavior control device.
  • the stop of the control operation means a state where the control of the own device is not performed, for example, a state where the power supply is cut off by the sub CPU due to a voltage abnormality or the like, a disconnection or a relay There is a state in which power is not supplied to the vehicle behavior control device due to a failure or the like.
  • a third vehicle behavior control device (41, 51) that operates in a mode coordinated with the first vehicle behavior control device based on the first coordination control signal.
  • the second vehicle behavior control device further includes a coordinated control signal storage device, and the coordinated control signal is provided immediately before the malfunction detection when a malfunction of the first vehicle behavior control device is detected by the malfunction detection device.
  • a coordination control signal that is configured to transmit a coordination control signal stored in the storage device, and is transmitted by the second vehicle behavior control device when the failure detection device detects a failure of the first vehicle behavior control device
  • the third vehicle behavior control device can be configured to continue the coordinated control.
  • the third vehicle behavior control device may also perform unexpected control if the third vehicle behavior control device does not have the coordinated control signal storage device. According to this configuration, even if the third vehicle behavior control device does not have the coordination control signal storage device, the final coordination transmitted from the second vehicle behavior control device incorporating the coordination control signal storage device Since the third vehicle behavior control device continues the coordinated control based on the control signal, that is, the third vehicle behavior control device continues the coordinated control in which the influence of the control object of the first vehicle behavior control device on the vehicle behavior is continued. It is possible to prevent the vehicle from having unexpected behavior due to the operation.
  • the first vehicle behavior control device is a rear wheel toe angle control device (61) that variably controls the toe angle of the left and right rear wheels (3r).
  • the behavior control device can be configured as a vehicle behavior stabilization device (31) that variably controls the braking force for each of the front, rear, left and right wheels (3).
  • the vehicle behavior stabilization device generally monitors the vehicle behavior on the basis of the detection value of the sensor and also monitors the control states of other vehicle behavior control devices in order to prevent the vehicle from causing a slip or the like.
  • the coordination control signal is always received from another vehicle behavior control device, when the other vehicle behavior device breaks down and the control operation is stopped, the latest coordination control signal just before the breakdown is used. Cooperative control can be performed.
  • the rear wheel toe angle control device generally controls the vehicle behavior by drivingly controlling the electric actuator provided with the lock function, if the rear wheel toe angle control device breaks down and the control operation is stopped, the rear wheel breaks down.
  • the coordinated control is performed using the rear wheel toe angle immediately before the fault received by the vehicle behavior stabilization device, the operation of the vehicle behavior stabilization device or the third vehicle behavior control device is fixed. Can prevent the vehicle from having an unexpected behavior.
  • a driving force distribution device that variably controls the transmission distribution of the driving force between the left and right driving wheels, and a steering ratio characteristic of the steering operation amount and the front wheel steering angle are variably controlled.
  • an active front steering device that operates a front wheel and a steering wheel with an assist motor.
  • the second vehicle behavior control is performed based on the last coordinated control signal finally received from the first vehicle behavior control device.
  • the device continues the coordinated control, and the third vehicle behavior control device continues the coordinated control based on the coordinated control transmitted from the second vehicle behavior control device, so that the vehicle according to the broken first vehicle behavior control device Proper vehicle behavior control taking into consideration the influence on behavior is performed, and it is possible to prevent the vehicle from becoming an unexpected behavior.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle behavior control system according to an embodiment.
  • 1 is a block diagram of a vehicle behavior control system according to an embodiment. It is a flowchart which shows the vehicle behavior control procedure by VSA-ECU.
  • a schematic configuration of a vehicle 1 will be described.
  • suffixes indicating the front, rear, left, and right are added to the respective numerals, and for example, the left front wheel 3fl, the right front wheel In addition to 3fr, the left rear wheel 3rl, and the right rear wheel 3rr, when collectively referred to, for example, the wheel 3 is described.
  • each wheel 3 has a tire 4 mounted on the outer periphery thereof and a brake (disk brake caliper) 5 installed on the inner peripheral side.
  • the automobile 1 is provided with a VSA (Vehicle Stability Assist: vehicle behavior stabilization control system) -ECU (Electronic Control Unit) 31 that controls the vehicle behavior by variably controlling the braking force of the brake 5 for each wheel 3. There is.
  • VSA Vehicle Stability Assist: vehicle behavior stabilization control system
  • ECU Electronic Control Unit
  • an ATTS Active Torque Transfer System: left and right driving force distribution device 8 that variably distributes driving forces for the left and right front wheels 3fl and fr while the engine 7 is mounted at the front portion thereof; EPS (Electric Power Steering) 9 for steering assist of left and right front wheels 3fl, 3fr, Variable Gear ratio Steering system (VGS) 10 for changing the steering gear ratio continuously, and rotation of left and right rear wheels 3rl, 3rr Right and left RTCs (Rear Toe Control systems: rear wheel steering mechanisms) 11l and 11r respectively provided for the rudder are installed.
  • the ATTS 8 includes the ATTS-ECU 41.
  • the EPS 9 and the VGS 10 each include the STG-ECU 51
  • the RTC 11 includes the RTC-ECU 61.
  • the EPS 9 is provided coaxially with the rack 12 and a steering shaft 13 having a rack 12 and a pinion (not shown), a steering shaft 14 with a steering wheel 14 attached at the rear end, and an EPS motor for giving a steering assist force to the rack 12 16 are the main components.
  • the VGS 10 is a known differential gear type interposed between an input shaft on the steering wheel 14 side of the steering shaft 15 and an output shaft on the steering gear 13 side, and by driving the VGS motor 17, The transmission ratio between the amount of rotation of the input shaft and the amount of rotation of the output shaft is changed.
  • both of the RTCs 11 l and 11 r are constituted by direct acting RTC actuators 19 l and 19 r interposed between the vehicle body 2 and the rear wheel side knuckles 18 rl and 18 rr, position sensors not shown, and the like.
  • Each RTC actuator 19 comprises an RTC motor housed in a housing connected to the vehicle body 2 side, a reduction gear, a feed screw mechanism using a trapezoidal screw, and a female screw member of the feed screw mechanism to form a rear wheel knuckle 18
  • the output rod is extended and contracted by the driving of the RTC motor.
  • the feed screw mechanism is provided with a self-locking function, and has a structure in which reverse operation does not occur even when there is input from the output rod side.
  • a wheel speed sensor 20 for detecting the rotation speed (wheel speed) is installed in each of the wheels 3 in the automobile 1
  • a vehicle speed sensor 21 for detecting a vehicle speed is installed in each of the wheels 3 in the automobile 1
  • a vehicle speed sensor 21 for detecting a vehicle speed is installed in each of the wheels 3 in the automobile 1
  • a vehicle speed sensor 21 for detecting a vehicle speed is installed in each of the wheels 3 in the automobile 1
  • a lateral G sensor 22 for detecting lateral acceleration A longitudinal G sensor 23 for detecting longitudinal acceleration
  • a yaw rate sensor 24 for detecting a yaw rate, etc. are installed at appropriate positions of the vehicle body 2
  • a steering angle sensor 25 for detecting the steering angle of the steering wheel 14 is installed on the steering shaft 15.
  • Each of the VSA-ECU 31, ATTS-ECU 41, STG-ECU 51, and RTC-ECU 61 includes a CPU, a ROM, a RAM, a peripheral circuit, an input / output interface, various drivers, and the like. (Controller Area Network)), and exchange signals with each other.
  • the VSA-ECU 31 controls driving of the brakes 5 via a hydraulic unit (not shown).
  • This hydraulic unit is equipped with four systems of electromagnetic valves, hydraulic circuits, etc. that are PWM-controlled, and directly transmits the hydraulic pressure from the brake pedal (brake master cylinder) to the brakes 5 of each wheel 3, and from VSA-ECU 31
  • the hydraulic pressure of different value is supplied to each brake 5 based on the drive signal of Further, this hydraulic unit outputs the value of the hydraulic pressure supplied to each brake 5 to the VSA-ECU 31 as a brake pressure.
  • the vehicle behavior control system includes a VSA-ECU 31, an ATTS-ECU 41, an STG-ECU 51, and an RTC-ECU 61, and each of the ECUs 31, 41, 51, 61 has a battery 27 via a wire harness 26. Power is supplied from
  • a cell motor 28 for starting the engine 7 is connected to the battery 27, and an alternator 29 driven by the engine 7 is connected via a rectifier 30, and the battery 27 is charged by the power generated by the alternator 29. Ru.
  • the voltage applied to each of the VSA, ATTS, STG, and RTC ECUs 31, 41, 51, 61 drops, and this voltage If the allowable voltage range set for each ECU is lower, the ECUs 31, 41, 51, 61 perform control to shut off the power supply with the respective sub CPUs described later, and stop the control operation.
  • the VSA-ECU 31 constantly monitors the control states of other vehicle behavior control devices, that is, ATTS 8, EPS 9, VGS 10 and RTC 11, and also detects each sensor, specifically the wheel speed sensor 20 and the vehicle speed sensor. 21 controls the hydraulic pressure of the brake 5 on the basis of the required state quantities detected by the lateral G sensor 22, the yaw rate sensor 24, the steering angle sensor 25 and the like, whereby the behavior of the automobile 1 is optimized. Thus, the braking force of each wheel 3 is controlled.
  • the main CPU 33 has a base control unit 34 and a coordination control unit 35.
  • the base control unit 34 calculates a control value based on the amount of state detected by the sensors.
  • the control value from the base control unit 34 is corrected based on the coordination control signal received from the RTC-ECU 61, the ATTS-ECU 41, or the STG-ECU 51, or another control value based on the coordination control signal. Is replaced by Further, the coordination control unit 35 generates a coordination control signal so that the RTC-ECU 61, the ATTS-ECU 41, and the STG-ECU 51 can use the control value of the VSA-ECU 31, and this coordination control signal is a predetermined control interval (for example, , 10 ms) to the RTC-ECU 61, the ATTS-ECU 41, and the STG-ECU 51 via the CAN.
  • a predetermined control interval for example, , 10 ms
  • the ATTS-ECU 41 drives and controls the ATTS 8 based on required state quantities detected by the respective sensors, specifically, the vehicle speed sensor 21, the lateral G sensor 22, the longitudinal G sensor 23, the yaw rate sensor 24 and the like.
  • the drive power distribution to the left and right front wheels 3fl and 3fr is controlled so as to generate a yaw rate in the vehicle body 2 by performing the drive power distribution of the engine 7 and to optimize the behavior of the automobile 1.
  • the main CPU 43 of the ATTS-ECU 41 has a base control unit 44 and a coordination control unit 45, and the function of each unit is the same as that in the VSA-ECU 31.
  • the STG-ECU 51 drives the EPS motor 16 based on the required state quantities detected by the respective sensors, specifically the vehicle speed sensor 21, the lateral G sensor 22, the yaw rate sensor 24, and the steering angle sensor 25, and the steering torque. As well as controlling and driving controlling the VGS motor 17, it assists the driver's manual steering force, and improves the running stability or optimizes the behavior of the vehicle 1, and steers the front wheel 3f. Actively control the corners.
  • the main CPU 53 of the STG-ECU 51 includes a base control unit 54 and a coordination control unit 55, and the function of each unit is the same as that in the VSA-ECU 31.
  • the RTC-ECU 61 is based on the required state quantities detected by the respective sensors, specifically, a front wheel steering angle sensor, a vehicle speed sensor 21, a lateral G sensor 22, a yaw rate sensor 24 and a steering angle sensor 25 (not shown).
  • the RTC actuator 19 is controlled to control the toe angles of the left and right rear wheels 3r so as to optimize the behavior of the vehicle 1.
  • the main CPU 63 of the RTC-ECU 61 has a base control unit 64 and a coordination control unit 65, and the function of each unit is the same as that in the VSA-ECU 31.
  • each of the VSA, ATTS, STG and RTC ECUs 31, 41, 51, 61 includes voltage abnormality detection units 32, 42, 52, 62 and sub CPUs 36, 46, 56, 66.
  • the voltage abnormality detection units 32, 42, 52, 62 detect abnormal reduction of the voltage supplied from the battery 27, and the voltage abnormality detection units 32, 42, 52, 62 detect voltage abnormality.
  • the respective sub CPUs 36, 46, 56, 66 cut off the power supply to the respective ECUs 31, 41, 51, 61, and the respective control operations are stopped.
  • the VSA-ECU 31 further includes an EEPROM 37 so that the cooperative control signal received from the other ECUs 41, 51, 61 can be stored. Then, when, for example, the RTC-ECU 61 stops the control operation due to voltage abnormality and stops transmitting the coordinated control signal, the VSA-ECU 31 finally receives the coordinated control signal received from the RTC-ECU 61, that is, the RTC 11 immediately before the shutdown.
  • the cooperation control signal based on the state is held in the EEPROM 37, and while the cooperation control is continued based on this value, the cooperation held in the EEPROM 37 so that the other ECUs 41 and 51 can use the cooperation control signal of the RTC-ECU 61.
  • the ATTS-ECU 41 and the STG-ECU 51 continue to operate the ATTS 8, the EPS motor 16 and the VGS motor based on the coordination control signal of the RTC-ECU 61 transmitted from the VSA-ECU 31. 17 coordinated control can be continued.
  • the VSA-ECU 31 When the engine 7 is started, the VSA-ECU 31 repeatedly executes the following vehicle behavior control procedure at a predetermined control interval (for example, 10 ms).
  • the VSA-ECU 31 determines whether the current communication with the RTC-ECU 61, that is, reception of the coordinated control signal from the RTC-ECU 61 is normally performed, that is, whether or not the coordinated control signal is newly received. (Step 1). When the current communication with the RTC-ECU 61 is normally performed in Step 1 (Yes), the VSA-ECU 31 clears (erases) the information written in the EEPROM 37 (Step 2).
  • the VSA-ECU 31 determines whether the previous communication with the RTC-ECU 61 was normally performed. (Step 3). If the previous communication with the RTC-ECU 61 is normally performed in step 3 (Yes), the VSA-ECU 31 writes the cooperative control signal received in the previous communication in the EEPROM 37 (step 4). On the other hand, if the previous communication with the RTC-ECU 61 is not normally performed in Step 3 (No), the VSA-ECU 31 holds the coordination control signal written in the EEPROM 37 as it is (Step 5), that is, RTC -Hold the coordination control signal last received from the ECU 61.
  • the VSA-ECU 31 determines whether or not the coordinated control signal received from the RTC-ECU 61 is held in the EEPROM 37 (step 6).
  • the coordination control signal is held in step 6 (Yes)
  • the VSA-ECU 31 since the RTC-ECU 61 does not transmit the coordination control signal, the VSA-ECU 31 writes the coordination control signal of the RTC-ECU 61 written in the EEPROM 37 on CAN. (Step 7), and the process ends.
  • step 8 the VSA-ECU 31 does not transmit anything on the CAN (step 8), and ends the present processing.
  • the VSA-ECU 31 includes the EEPROM 37 and does not receive the coordinated control signal from the RTC-ECU 61, the coordinated control signal received from the RTC-ECU 61 at last is held in the EEPROM 37. In order to continue the coordinated control taking into consideration the influence of the toe angle of the rear wheel 3r on the vehicle behavior, it is possible to prevent the vehicle 1 from becoming an unexpected behavior by the operation of the VSA.
  • these ECUs 41 and 55 in order to transmit the coordinated control signal of the RTC-ECU 61 held by the VSA-ECU 31 in the EEPROM 37 to the ATTS-ECU 41 and the STG-ECU 51 via CAN, these ECUs 41 and 55 also Coordinated control taking into consideration the influence of the toe angle on the vehicle behavior can be continued, and the behavior of the automobile 1 due to the operation of the ATTS 8, EPS 9 and VGS 10 is avoided.
  • the VSA-ECU 31 constantly monitors the state of the RTC-ECU 61 (receives the coordinated control signal), and immediately stops the control operation when the RTC-ECU 61 stops the control operation. It is possible to detect and use the coordinated control signal immediately before the stop of the control operation for each coordinated control later.
  • FIG. 3 shows an example in which the coordination control signal is exchanged bi-directionally in each of the ECUs 31, 41, 51, 61 of EPS, VSA and RTC, there may be cases where the coordination control signal is exchanged in one direction.
  • An appropriate configuration can be appropriately adopted according to the control logic of the cooperative control units 35, 45, 55, and 65, and the like.
  • the aspect of the present invention is not limited to the above embodiment.
  • the RTC-ECU 61 has been broken down and stopped operating, for example, the ATTS 8 is fixed in a predetermined driving force distribution state due to the operation stop due to the failure of the ATTS-ECU 41 or a planetary gear
  • the VSA-ECU holds the coordinated control signal finally received from these control devices when the VGS of the equation is fixed at a predetermined steering gear ratio due to the operation stoppage due to the failure of the control device, or VSA-ECU 31
  • Other ECUs or ECUs separately provided for cooperative control may hold the cooperative control signal.
  • the present invention relates to a vehicle coordination having another vehicle behavior control device as a component.
  • vehicle coordination having another vehicle behavior control device as a component.
  • it is applicable also about a control system.
  • CAN was shown here regarding transmission and reception of a cooperation control signal, this invention does not depend on a specific communication form, and may be what communication forms, such as FlexRay.
  • the specific configuration of the vehicle and the specific procedure of control can be appropriately changed without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Regulating Braking Force (AREA)

Abstract

【課題】協調制御が行われている複数の車両挙動制御装置のうちの1つが故障により制御作動を停止した場合でも、車両が予期しない挙動となることがないように構成された車両挙動制御システムを提供する。 【解決手段】協調制御信号のやり取りにより協調制御が行われている車両において、RTC-ECU61が故障により制御作動を停止した場合、VSA-ECU31は、RTC-ECU61から最後に受け取った協調制御信号をEEPROM37に保持し、この協調制御信号に基づいて協調制御を継続するとともに、ATTS-ECU41やSTG-ECU51などの他の車両挙動制御装置がRTC-ECU61の協調制御信号を利用し得るように、EEPROM37に保持したRTC-ECU61の協調制御信号をCAN上に送信する。これにより、VSAや他の車両挙動制御装置による協調制御によって自動車1の挙動を適正化することができる。

Description

車両運動制御システム
 本発明は、複数の車両挙動制御装置の間における協調制御信号のやり取りを制御することにより、各車両挙動制御装置を協調的に作動させる車両運動制御システムに関する。
 自動車には、走行安定性の向上などを目的として車体の運動状態を制御する各種の車両挙動制御装置が搭載されている。例えば、左右の後輪のトー角を個別に調整して車両の挙動を安定化する後輪トー角制御装置(特許文献1参照)や、前後左右の車輪ごとの制動力を可変制御することにより車両の挙動を適正化する車両挙動安定化装置(特許文献2参照)、左右駆動輪間での駆動力配分を行う左右駆動力配分装置(特許文献3参照)、電動モータによるアシスト力を車両の挙動(ヨーレイト)に応じて増減して車両の挙動を適正化する電動パワーステアリング装置(特許文献4参照)が知られている。
特許第3179271号公報 特許第3214824号公報 特許第3340038号公報 特許第3110891号公報
 このような車両挙動制御装置が複数搭載された車両においては、各車両挙動制御装置を互いに関連なく動作させると、各車両挙動制御装置の制御が干渉を起こして制御動作が不安定になり、また期待通りの制御効果が得られないなどの不都合が生じることから、所要の信号をやり取りして各車両挙動制御装置を協調した態様で作動させる協調制御が行われる。
 例えば、後輪トー角制御装置が装備された車両では、車両挙動安定化装置や左右駆動力配分装置は、後輪トー角制御装置が送信する後輪のトー角情報に基づいて舵角センサ値を補正して各制御に用いるという協調制御手法をとっている。
 ところが、このような協調制御の下では、後輪トー角制御装置の制御部であるRTC-ECU(Rear Toe Control-Electronic Control Unit)が故障すると、後輪のトー角が制御不能となるため、例えばRTC-ECUに設けられたサブCPUが後輪トー角制御装置の電源を落とすフェールセーフ設計がなされている場合、後輪のトー角はRTC-ECUが故障した時の状態で固定される。そして、車両挙動安定化装置や左右駆動力配分装置は、それ以降、RTC-ECUから後輪のトー角情報を受け取ることができなくなるため、予期しない作動を起こすことが考えられる。
 本発明は、このような発明者の知見に基づき案出されたものであり、その主な目的は、協調制御が行われている複数の車両挙動制御装置のうちの1つが故障した場合でも、車両が予期しない挙動となることがないように構成された車両挙動制御システムを提供することにある。
 このような課題を解決するために、本発明は、複数の車両挙動制御装置を相互に協調した態様で作動させるための車両の挙動制御システムであって、第1の協調制御信号を発生する第1の車両挙動制御装置(61)と、第1の協調制御信号に基づいて、第1の車両挙動制御装置に対して協調した態様で作動する第2の車両挙動制御装置(31)と、第1の協調制御信号を記憶する協調制御信号記憶装置(37)と、記第1の車両挙動制御装置の故障を検出する故障検出装置(62)とを有し、故障検出装置によって第1の車両挙動制御装置の故障が検出された場合、故障検出の直前に協調制御信号記憶装置に記憶された協調制御信号に基づいて、第2の車両挙動制御装置が協調制御を継続することを特徴とする。
 ここで、協調制御とは、相互に協調した態様で作動することを云い、相互に協調した態様とは、複数の装置間で送受信した協調制御信号に基づいて少なくとも1つの車両挙動制御装置が自装置以外の装置の制御状態に応じた制御を行うことを云う。具体的には、例えばセンサ類により検出された所要の状態量に基づいて自装置内で独自に求めた制御値を、他の車両挙動制御装置から受け取った協調制御信号に基づいて補正し、あるいは協調制御信号に基づく別の制御値に置換するものであり、協調制御信号の送信元の車両挙動制御装置においては、所要の状態量に基づいて自装置の制御値を求める一方で、協調制御信号を生成して関連する他の車両挙動制御装置に送信する。
 この発明によれば、第1の車両挙動制御装置が故障により制御作動を停止した場合、第2の車両挙動制御装置は、故障検出の直前に協調制御信号記憶装置に記憶された協調制御信号に基づいて、すなわち、第1の車両挙動制御装置の制御対象が故障時の状態で機能停止しているものとみなし、第1の車両挙動制御装置の制御対象による車両挙動への影響を加味した協調制御を継続するため、第2の車両挙動制御装置の作動によって車両が予期しない挙動となることを回避することができる。なお、ここで、制御作動の停止とは、自装置の制御を行わなくなった状態のことであり、例えば、電圧異常などの原因によりサブCPUによって電力供給が遮断された状態や、断線やリレーの故障などにより車両挙動制御装置に電力が供給されなくなった状態等がある。
 また、本発明の一側面によれば、第1の協調制御信号に基づいて、第1の車両挙動制御装置に対して協調した態様で作動する第3の車両挙動制御装置(41,51)をさらに有し、第2の車両挙動制御装置は、協調制御信号記憶装置を内蔵し、且つ故障検出装置によって第1の車両挙動制御装置の故障が検出された場合に故障検出の直前に協調制御信号記憶装置に記憶された協調制御信号を送信するように構成され、故障検出装置によって第1の車両挙動制御装置の故障が検出された場合、第2の車両挙動制御装置によって送信される協調制御信号に基づいて、第3の車両挙動制御装置が協調制御を継続する構成とすることができる。
 第1の車両挙動制御装置が故障により制御作動を停止した場合、第3の車両挙動制御装置が協調制御信号記憶装置を備えていなければ、第3の車両挙動制御装置も予期しない制御を行う虞があるが、この構成によれば、第3の車両挙動制御装置が協調制御信号記憶装置を備えていなくとも、協調制御信号記憶装置を内蔵する第2の車両挙動制御装置から送信された最終協調制御信号に基づいて、すなわち、第1の車両挙動制御装置の制御対象による車両挙動への影響を加味した協調制御を第3の車両挙動制御装置が継続するため、第3の車両挙動制御装置の作動によって車両が予期しない挙動となることを回避することができる。
 また、本発明の一側面によれば、第1の車両挙動制御装置は、左右の後輪(3r)のトー角を可変制御する後輪トー角制御装置(61)であり、第2の車両挙動制御装置は、前後左右の車輪(3)ごとに制動力を可変制御する車両挙動安定化装置(31)である構成とすることができる。
 車両挙動安定化装置は一般に、車両がスリップなどを起こすことを防止するために、センサの検出値に基づいて常時車両挙動を監視するとともに、他の車両挙動制御装置の制御状態をも監視しているため、すなわち、他の車両挙動制御装置から協調制御信号を常時受信しているため、他の車両挙動装置が故障して制御作動を停止した場合、故障直前の最新の協調制御信号を用いて協調制御を行うことができる。また、後輪トー角制御装置は一般に、ロック機能を備えた電動アクチュエータを駆動制御して車両挙動を制御するため、後輪トー角制御装置が故障して制御作動を停止すると、後輪が故障時のトー角で固定されるが、車両挙動安定化装置が受け取った故障直前の後輪トー角を用いて協調制御が行われるため、車両挙動安定化装置または第3の車両挙動制御装置の作動によって車両が予期しない挙動となることを回避することができる。
 この場合、第3の車両挙動制御装置としては、左右の駆動輪間で駆動力の伝達配分を可変制御する駆動力配分装置や、ステアリング操作量と前輪舵角との操舵比特性を可変制御したり、アシスト用モータで前輪およびステアリングホイールを操作したりするアクティブ・フロント・ステアリング装置などが挙げられる。
 このように本発明によれば、第1の車両挙動制御装置が故障により制御作動を停止すると、第1の車両挙動制御装置から最後に受け取った最終協調制御信号に基づいて第2の車両挙動制御装置が協調制御を継続し、第3の車両挙動制御装置は第2の車両挙動制御装置から送信される協調制御に基づいて協調制御を継続するため、故障した第1の車両挙動制御装置による車両挙動への影響を加味した適切な車両挙動制御が行われ、車両が予期しない挙動となることを防止することができる。
実施形態に係る車両の装置構成を示す概略平面図である。 実施形態に係る車両挙動制御システムの概略構成を示すブロック図である。 実施形態に係る車両挙動制御システムのブロック図である。 VSA-ECUによる車両挙動制御手順を示すフロー図である。
 以下、本発明に係る車両挙動制御装置を適用した4輪自動車(車両:以下、単に自動車と記す)の一実施形態について、図面を参照して詳細に説明する。
 先ず、図1を参照して、実施形態に係る自動車1の概略構成について説明する。説明にあたり、4つの車輪3やそれらに対して配置された部材、すなわち、タイヤ4やブレーキ5等については、それぞれ数字の符号に前後左右を示す添字を付して、例えば左前輪3fl、右前輪3fr、左後輪3rl、右後輪3rrと記すとともに、総称する場合には、例えば車輪3と記す。
 図1に示す自動車1では、車体2の前後左右に4つの車輪3がそれぞれ設置されており、これら各車輪3がサスペンションアームやスプリング、ダンパ等からなる図示しないサスペンションを介して車体2に懸架されている。各車輪3には、その外周にタイヤ4が装着されるとともに、内周側にブレーキ(ディスクブレーキキャリパ)5が設置されている。そして、自動車1は、ブレーキ5のブレーキ力を車輪3ごとに可変制御することによって車両挙動を制御するVSA(Vehicle Stability Assist:車両挙動安定化制御システム)-ECU(Electronic Control Unit)31を備えている。
 また、自動車1には、その前部にエンジン7が搭載されるとともに、左右前輪3fl,frに対する駆動力を連続的に可変配分するATTS(Active Torque Transfer System:左右駆動力配分装置)8と、左右前輪3fl,3frの操舵アシストを行うEPS(Electric Power Steering:電動パワーステアリング)9と、ステアリングギヤレシオを連続的に変化させるVGS(Variable Gear ratio Steering system)10と、左右後輪3rl,3rrの転舵にそれぞれ供される左右のRTC(Rear Toe Control system:後輪転舵機構)11l,11rとが設置されている。駆動制御装置としてATTS8はATTS-ECU41を備え、同様に、EPS9およびVGS10はSTG-ECU51を、RTC11はRTC-ECU61をそれぞれ備えている。
 EPS9は、ラック12や図示しないピニオンからなるステアリングギヤ13と、ステアリングホイール14が後端に取り付けられたステアリングシャフト15と、ラック12に同軸的に設けられ、ラック12に操舵アシスト力を与えるEPSモータ16とを主要構成要素としている。VGS10は、ステアリングシャフト15におけるステアリングホイール14側の入力軸とステアリングギヤ13側の出力軸との間に介装された周知の差動歯車式のものであり、VGSモータ17を駆動することにより、入力軸の回転量と出力軸の回転量との伝達比率を変更する。
 また、両RTC11l,11rは、車体2と後輪側ナックル18rl,18rrとの間に介装された直動式のRTCアクチュエータ19l,19rや、図示しないポジションセンサ等から構成されている。各RTCアクチュエータ19は、車体2側に連結されるハウジング内に収容されたRTCモータや、減速機、台形ねじを用いた送りねじ機構、送りねじ機構の雌ねじ部材を構成して後輪側ナックル18に連結された出力ロッド等から構成されており、RTCモータの駆動により出力ロッドが伸縮動する。なお、送りねじ機構は、セルフロック機能を備えており、出力ロッド側から入力があっても逆作動しない構造となっている。
 また、自動車1には、各車輪3内にその回転速度(車輪速)を検出する車輪速センサ20が設置される他、車速を検出する車速センサ21、横加速度を検出する横Gセンサ22、前後加速度を検出する前後Gセンサ23、ヨーレイトを検出するヨーレイトセンサ24等が車体2の適所に設置され、ステアリングシャフト15には、ステアリングホイール14の操舵角を検出する操舵角センサ25が設置されている。
 VSA-ECU31、ATTS-ECU41、STG-ECU51、RTC-ECU61はそれぞれ、CPUやROM、RAM、周辺回路、入出力インタフェース、各種ドライバ等から構成されており、通信回線(本実施形態では、CAN(Controller Area Network))を介して接続され、相互に信号を授受する。
 VSA-ECU31は、図示しない油圧ユニットを介して各ブレーキ5を駆動制御する。この油圧ユニットは、PWM制御される電磁バルブや油圧回路等を4系統備えており、ブレーキペダル(ブレーキマスターシリンダ)からの油圧を各車輪3のブレーキ5にそのまま送給する他、VSA-ECU31からの駆動信号に基づいて各ブレーキ5にそれぞれ異なった値の油圧を送給する。また、この油圧ユニットは、各ブレーキ5に供給した油圧の値をブレーキ圧としてVSA-ECU31に出力する。
 図2に示すように、車両挙動制御システムは、VSA-ECU31、ATTS-ECU41、STG-ECU51、RTC-ECU61から構成され、各ECU31,41,51,61にはワイヤハーネス26を介してバッテリ27から電力が供給される。
 バッテリ27には、エンジン7を始動させるセルモータ28が接続されると共に、エンジン7により駆動されるオルタネータ29がレクチファイア30を介して接続されており、オルタネータ29が発生する電力によりバッテリ27が充電される。このように構成される電源装置においては、特にオルタネータ29に失陥が発生すると、VSA、ATTS、STG、及びRTCの各ECU31,41,51,61に印加される電圧が降下し、この電圧がECUごとに設定された許容電圧範囲を下回ると、そのECU31,41,51,61は、後述するそれぞれのサブCPUで電力供給を遮断する制御を行って、制御作動を停止する。
 図3に示すように、VSA-ECU31は、他の車両挙動制御装置、すなわちATTS8、EPS9、VGS10およびRTC11の制御状態を常時監視するとともに、各センサ、具体的には車輪速センサ20、車速センサ21、横Gセンサ22、ヨーレイトセンサ24、操舵角センサ25などにより検出される所要の状態量に基づいて、ブレーキ5の液圧を制御するものであり、これにより自動車1の挙動が適正化するように各車輪3ごとの制動力が制御される。メインCPU33は、ベース制御部34と協調制御部35とを有している。ベース制御部34では、センサ類で検出された状態量に基づいて制御値が算出される。協調制御部35では、RTC-ECU61やATTS-ECU41、STG-ECU51から受け取った協調制御信号に基づいて、ベース制御部34からの制御値が補正される、あるいは協調制御信号に基づく別の制御値に置換される。また、協調制御部35では、RTC-ECU61やATTS-ECU41、STG-ECU51がVSA-ECU31による制御値を利用し得るように協調制御信号が生成され、この協調制御信号が所定の制御インターバル(例えば、10ms)でCANを介してRTC-ECU61やATTS-ECU41、STG-ECU51へ送信される。
 ATTS-ECU41は、各センサ、具体的には車速センサ21、横Gセンサ22、前後Gセンサ23およびヨーレイトセンサ24などにより検出される所要の状態量に基づいて、ATTS8を駆動制御するものであり、エンジン7の駆動力配分を行うことにより車体2にヨーレイトを発生させて自動車1の挙動を適正化するように左右の前輪3fl,3frに対する駆動力配分を制御する。このATTS-ECU41のメインCPU43は、ベース制御部44と、協調制御部45とを有しており、各部の機能はVSA-ECU31内のものと同様である。
 STG-ECU51は、各センサ、具体的には車速センサ21、横Gセンサ22、ヨーレイトセンサ24、操舵角センサ25により検出される所要の状態量および、操舵トルクに基づいて、EPSモータ16を駆動制御するとともに、VGSモータ17を駆動制御するものであり、運転者の手動操舵力を補助するとともに、走行安定性を向上させるように、あるいは自動車1の挙動を適正化するように前輪3fの舵角をアクティブに制御する。このSTG-ECU51のメインCPU53は、VSA-ECU31と同様に、ベース制御部54と、協調制御部55とを有しており、各部の機能はVSA-ECU31内のものと同様である。
 RTC-ECU61は、各センサ、具体的には、図示しない前輪舵角センサ、車速センサ21、横Gセンサ22、ヨーレイトセンサ24、操舵角センサ25により検出される所要の状態量に基づいて、左右のRTCアクチュエータ19を制御するものであり、これにより自動車1の挙動を適正化するように左右の後輪3rのトー角を制御する。このRTC-ECU61のメインCPU63は、VSA-ECU31と同様に、ベース制御部64と、協調制御部65とを有し、各部の機能はVSA-ECU31内のものと同様である。
 VSA、ATTS、STG及びRTCの各ECU31,41,51,61間でやり取りされる協調制御信号には、各ECUの制御ロジックなどに応じて種々のものがあり、例えば、VSA-ECU31に対してRTC-ECU61の制御値(左右の後輪3rのトー角)自体が送られる形態や、VSA-ECU31に対してブレーキ液圧を指示する協調制御信号や他の車両挙動制御装置に対する協調制御信号がそれぞれ送られる形態などを採ることができる。
 さらにこの車両挙動制御システムにおいては、VSA、ATTS、STGおよびRTCの各ECU31,41,51,61が、電圧異常検知部32,42,52,62と、サブCPU36,46,56,66とをそれぞれ有している。電圧異常検知部32,42,52,62は、バッテリ27から供給される電圧の異常な低下を検知するものであり、この電圧異常検知部32,42,52,62で電圧異常が検知されると、各サブCPU36,46,56,66が、各ECU31,41,51,61に対する電力供給をそれぞれ遮断し、各制御作動が停止さるようになっている。
 VSA-ECU31は、さらにEEPROM37を備えており、他のECU41,51,61から受け取った協調制御信号を記憶できるようになっている。そして、VSA-ECU31は、例えばRTC-ECU61が電圧異常により制御作動を停止し、協調制御信号を送信しなくなった場合、RTC-ECU61から最後に受け取った協調制御信号、すなわち作動停止直前のRTC11の状態に基づく協調制御信号をEEPROM37に保持し、この値に基づいて協調制御を継続するとともに、他のECU41,51がこのRTC-ECU61の協調制御信号を利用し得るように、EEPROM37に保持した協調制御信号をCAN上に送信する。したがって、RTC-ECU61が故障により作動を停止した後にも、ATTS-ECU41およびSTG-ECU51は、VSA-ECU31から送信されたRTC-ECU61の協調制御信号に基づいて、ATTS8、EPSモータ16およびVGSモータ17の協調制御を継続することができる。
 次に、図4を参照して、RTC-ECU61が作動停止した場合のVSA-ECU31による車両挙動制御手順について説明する。エンジン7が始動されると、VSA-ECU31は、以下の車両挙動制御手順を所定の制御インターバル(例えば、10ms)で繰り返し実行する。
 VSA-ECU31は、まず、RTC-ECU61との今回の通信、すなわちRTC-ECU61からの協調制御信号の受け取りが正常に行われたか否か、すなわち協調制御信号を新たに受け取ったか否かを判定する(ステップ1)。ステップ1でRTC-ECU61との今回の通信が正常に行われていた場合(Yes)、VSA-ECU31はEEPROM37に書き込まれた情報をクリア(消去)する(ステップ2)。
 一方、ステップ1でRTC-ECU61との今回の通信が正常に行われていなかった場合(No)、VSA-ECU31は、RTC-ECU61との前回の通信が正常に行われたか否かを判定する(ステップ3)。ステップ3でRTC-ECU61との前回の通信が正常に行われていた場合(Yes)、VSA-ECU31はEEPROM37に前回の通信で受け取った協調制御信号を書き込む(ステップ4)。一方、ステップ3でRTC-ECU61との前回の通信が正常に行われていなかった場合(No)、VSA-ECU31はEEPROM37に書き込まれている協調制御信号をそのまま保持する(ステップ5)、すなわちRTC-ECU61から最後に受け取った協調制御信号を保持する。
 次に、VSA-ECU31は、EEPROM37にRTC-ECU61から受け取った協調制御信号が保持されているか否かを判定する(ステップ6)。ステップ6で協調制御信号が保持されている場合(Yes)、RTC-ECU61が協調制御信号を送信していないので、VSA-ECU31は、EEPROM37に書き込まれたRTC-ECU61の協調制御信号をCAN上に送信し(ステップ7)、本処理を終了する。
 一方、ステップ6で協調制御信号の値が保持されていない場合(No)、VSA-ECU31は、CAN上に何も送信せず(ステップ8)本処理を終了する。
 このように、VSA-ECU31がEEPROM37を備え、RTC-ECU61からの協調制御信号を受け取らなかった場合に、RTC-ECU61から最後に受け取った協調制御信号をEEPROM37に保持し、この協調制御信号に基づいて、後輪3rのトー角による車両挙動への影響を加味した協調制御を継続するため、VSAの作動によって自動車1が予期しない挙動となることが回避される。
 また、このような場合に、VSA-ECU31がEEPROM37に保持したRTC-ECU61の協調制御信号をCANを介してATTS-ECU41およびSTG-ECU51に送信するため、これら各ECU41,55も後輪3rのトー角による車両挙動への影響を加味した協調制御を継続することができ、ATTS8、EPS9およびVGS10の作動によって自動車1が予期しない挙動となることが回避される。
 さらに、EEPROM37がVSA-ECU31に備えられているため、VSA-ECU31が常時RTC-ECU61の状態を監視し(協調制御信号を受け取り)、RTC-ECU61が制御作動を停止した場合に即座にこれを検知して制御作動の停止直前の協調制御信号を後の各協調制御に利用することができる。
 なお、図3では、EPS、VSA及びRTCの各ECU31,41,51,61において、双方向で協調制御信号をやり取りする例を示したが、協調制御信号のやり取りが一方向となる場合もあり、協調制御部35,45,55,65の制御ロジックなどに応じて適宜に適切な構成を採用することができる。
 以上で具体的実施形態の説明を終えるが、本発明の態様は上記実施形態に限られるものではない。例えば、上記実施形態では、RTC-ECU61が故障して作動停止した場合について説明したが、例えばATTS8がATTS-ECU41の故障による作動停止により所定の駆動力配分状態で固定された場合や、遊星歯車式のVGSが制御装置の故障による作動停止により所定の操舵ギヤ比で固定された場合に、これら制御装置から最後に受け取った協調制御信号をVSA-ECUが保持するような形態や、VSA-ECU31以外のECU、あるいは協調制御用に別途設けられたECUが協調制御信号を保持する形態などであってもよい。また、ここで示した例は、VSA、ATTS、EPS、VGS及びRTCを含む車両用協調制御システムについてのものであったが、本発明は他の車両挙動制御装置を構成要素とする車両用協調制御システムについても当然に適用可能である。更にここでは、協調制御信号の送受信に関し、CANを用いた例を示したが、本発明は特定の通信形態に依存するものではなく、FlexRayなど、どのような通信形態であっても良い。その他、車両の具体的構成や制御の具体的手順等についても、本発明の主旨を逸脱しない範囲で適宜変更可能である。
1  自動車
3  車輪
5  ブレーキ
7  エンジン
8  ATTS
9  EPS
10  VGS
11  RTC
16  EPSモータ
17  VGSモータ
19  RTCアクチュエータ
31  VSA-ECU
37  EEPROM
41  ATTS-ECU
51  STG-ECU
61  RTC-ECU

Claims (3)

  1.  複数の車両挙動制御装置を相互に協調した態様で作動させるための車両の挙動制御システムであって、
     第1の協調制御信号を発生する第1の車両挙動制御装置と、
     前記第1の協調制御信号に基づいて、前記第1の車両挙動制御装置に対して協調した態様で作動する第2の車両挙動制御装置と、
     前記第1の協調制御信号を記憶する協調制御信号記憶装置と、
     前記第1の車両挙動制御装置の故障を検出する故障検出装置とを有し、
     前記故障検出装置によって前記第1の車両挙動制御装置の故障が検出された場合、故障検出の直前に前記協調制御信号記憶装置に記憶された協調制御信号に基づいて、前記第2の車両挙動制御装置が協調制御を継続することを特徴とする車両の挙動制御システム。
  2.  前記第1の協調制御信号に基づいて、前記第1の車両挙動制御装置に対して協調した態様で作動する第3の車両挙動制御装置をさらに有し、
     前記第2の車両挙動制御装置は、前記協調制御信号記憶装置を内蔵し、且つ前記故障検出装置によって前記第1の車両挙動制御装置の故障が検出された場合に故障検出の直前に前記協調制御信号記憶装置に記憶された協調制御信号を送信するように構成され、
     前記故障検出装置によって前記第1の車両挙動制御装置の故障が検出された場合、前記第2の車両挙動制御装置によって送信される協調制御信号に基づいて、前記第3の車両挙動制御装置が協調制御を継続することを特徴とする、請求項1に記載の車両の挙動制御システム。
  3.  前記第1の車両挙動制御装置は、左右の後輪のトー角を可変制御する後輪トー角制御装置であり、
     前記第2の車両挙動制御装置は、前後左右の車輪ごとに制動力を可変制御する車両挙動安定化装置であることを特徴とする、請求項2に記載の車両の挙動制御システム。
PCT/JP2010/001555 2009-03-09 2010-03-05 車両運動制御システム WO2010103768A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10750526.5A EP2407365B1 (en) 2009-03-09 2010-03-05 Vehicle motion control system
JP2011503679A JP5369170B2 (ja) 2009-03-09 2010-03-05 車両運動制御システム
US13/203,424 US8761995B2 (en) 2009-03-09 2010-03-05 Vehicle motion control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-055276 2009-03-09
JP2009055276 2009-03-09

Publications (1)

Publication Number Publication Date
WO2010103768A1 true WO2010103768A1 (ja) 2010-09-16

Family

ID=42728064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001555 WO2010103768A1 (ja) 2009-03-09 2010-03-05 車両運動制御システム

Country Status (4)

Country Link
US (1) US8761995B2 (ja)
EP (1) EP2407365B1 (ja)
JP (1) JP5369170B2 (ja)
WO (1) WO2010103768A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120064220A (ko) * 2010-12-09 2012-06-19 현대모비스 주식회사 차량 자세 관리시스템의 오작동 방지장치 및 그 방법
JP2013112264A (ja) * 2011-11-30 2013-06-10 Toyota Motor Corp 車両操舵制御システム
KR101903966B1 (ko) * 2011-10-24 2018-10-04 현대모비스 주식회사 차량자세제어를 위한 페일 세이프 제어 방법 및 장치
WO2020066304A1 (ja) * 2018-09-28 2020-04-02 日立オートモティブシステムズ株式会社 車載電子制御システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5651442B2 (ja) * 2010-11-29 2015-01-14 矢崎総業株式会社 動作支援装置、電子機器、電子制御装置、及び、制御システム
JP6591273B2 (ja) * 2015-12-03 2019-10-16 本田技研工業株式会社 車両操舵支援装置
DE102018207542B4 (de) * 2018-05-15 2021-01-14 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung für eine Steuerung eines sicherheitsrelevanten Vorganges, sowie Fahrzeug
JP7048439B2 (ja) 2018-07-03 2022-04-05 本田技研工業株式会社 制御装置、制御ユニット、制御方法、およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263182A (ja) * 2004-03-22 2005-09-29 Hitachi Ltd 車両制御装置
JP2006056469A (ja) * 2004-08-23 2006-03-02 Honda Motor Co Ltd 車両の走行制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4020567A1 (de) 1990-06-28 1992-01-02 Bayerische Motoren Werke Ag Verfahren zum betrieb einer lenkeinrichtung fuer die hinterraeder eines kraftfahrzeugs
JP3014823B2 (ja) * 1991-09-19 2000-02-28 マツダ株式会社 車両の総合制御装置
JP3110891B2 (ja) 1992-09-16 2000-11-20 本田技研工業株式会社 車両用操舵装置
JP3179271B2 (ja) 1993-12-01 2001-06-25 本田技研工業株式会社 前後輪操舵装置の制御方法
JP3340038B2 (ja) 1996-11-14 2002-10-28 本田技研工業株式会社 左右輪駆動力配分装置
DE19735015B4 (de) * 1997-08-13 2016-11-24 Volkswagen Ag Verfahren und Vorrichtung für Sicherheitsstrategien in Kraftfahrzeugen
JP3214824B2 (ja) 1997-08-28 2001-10-02 本田技研工業株式会社 車両の運動制御装置
DE10356509A1 (de) 2003-12-03 2005-07-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Koordination eines Fahrdynamikreglungssystems mit einem aktiven Lenksystem
KR100747303B1 (ko) * 2005-11-11 2007-08-07 현대자동차주식회사 하이브리드 차량의 페일 세이프티 제어 시스템
JP4448838B2 (ja) * 2006-08-25 2010-04-14 本田技研工業株式会社 車両のトー角可変制御装置
EP1975041B1 (en) 2007-03-27 2013-10-16 Honda Motor Co., Ltd. Steering system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263182A (ja) * 2004-03-22 2005-09-29 Hitachi Ltd 車両制御装置
JP2006056469A (ja) * 2004-08-23 2006-03-02 Honda Motor Co Ltd 車両の走行制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407365A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120064220A (ko) * 2010-12-09 2012-06-19 현대모비스 주식회사 차량 자세 관리시스템의 오작동 방지장치 및 그 방법
KR101715271B1 (ko) * 2010-12-09 2017-03-13 현대모비스 주식회사 차량 자세 관리시스템의 오작동 방지장치 및 그 방법
KR101903966B1 (ko) * 2011-10-24 2018-10-04 현대모비스 주식회사 차량자세제어를 위한 페일 세이프 제어 방법 및 장치
JP2013112264A (ja) * 2011-11-30 2013-06-10 Toyota Motor Corp 車両操舵制御システム
WO2020066304A1 (ja) * 2018-09-28 2020-04-02 日立オートモティブシステムズ株式会社 車載電子制御システム
JP2020050302A (ja) * 2018-09-28 2020-04-02 日立オートモティブシステムズ株式会社 車載電子制御システム
JP7193289B2 (ja) 2018-09-28 2022-12-20 日立Astemo株式会社 車載電子制御システム

Also Published As

Publication number Publication date
US8761995B2 (en) 2014-06-24
JPWO2010103768A1 (ja) 2012-09-13
EP2407365B1 (en) 2014-01-08
EP2407365A1 (en) 2012-01-18
JP5369170B2 (ja) 2013-12-18
US20110307142A1 (en) 2011-12-15
EP2407365A4 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2010103768A1 (ja) 車両運動制御システム
US11332140B2 (en) Steering system
JP5327333B2 (ja) 車両の走行制御装置
EP2091807B1 (en) Articulation control system
EP1219525A2 (en) Redundant steer-by-wire system
WO2014108968A1 (ja) 車両用走行制御装置、車両用走行制御方法
US8200394B2 (en) System and method for adjustment of a steer angle of a wheel of a motor vehicle
JP4876425B2 (ja) 車両制御システム
US9738177B2 (en) Electric vehicle
JP2008528351A (ja) 車両の走行動特性制御装置及び方法
JP6089117B2 (ja) 2つの操舵車軸を有する車両のパワーステアリングシステム制御方法
KR101650992B1 (ko) 스티어링 각도의 전기 기계적 설정 방법 및 전기 기계식 스티어링 시스템을 구비한 자동차
CN115697795A (zh) 具有esc容错的制动系统的车辆系统
JP2006321271A (ja) 車両用操舵装置
WO2006073205A1 (ja) 車輌の運転支援制御、駆動力制御、制動力制御を総合的に実行する車輌の総合制御装置
JP2007245821A (ja) 車両用操舵装置
KR20110050893A (ko) 통합 페일 세이프 제어부를 가지는 자동차의 차체 제어 장치
JP5135100B2 (ja) 車両運動制御システム
JP5397119B2 (ja) 左右独立駆動車両の駆動力制御装置
JP4382345B2 (ja) 車両用操舵装置
JP2008044466A (ja) 車両用操舵装置
JP4412476B2 (ja) 四輪独立制駆動車輌の走行制御装置
JP2010013101A (ja) ブレーキ制御システム
JP5029342B2 (ja) 車両運動制御システム
CN208006935U (zh) 轻型货车专用esc系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011503679

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010750526

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13203424

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE