WO2010101171A1 - 木質系バルク燃料用燃焼炉とその燃焼制御方法、その燃焼炉を用いた温風発生装置及び木質系バルク燃料用燃焼炉の排煙利用方法 - Google Patents

木質系バルク燃料用燃焼炉とその燃焼制御方法、その燃焼炉を用いた温風発生装置及び木質系バルク燃料用燃焼炉の排煙利用方法 Download PDF

Info

Publication number
WO2010101171A1
WO2010101171A1 PCT/JP2010/053396 JP2010053396W WO2010101171A1 WO 2010101171 A1 WO2010101171 A1 WO 2010101171A1 JP 2010053396 W JP2010053396 W JP 2010053396W WO 2010101171 A1 WO2010101171 A1 WO 2010101171A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
combustion furnace
furnace chamber
air
smoke
Prior art date
Application number
PCT/JP2010/053396
Other languages
English (en)
French (fr)
Inventor
和雄 宮谷
Original Assignee
Miyatani Kazuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyatani Kazuo filed Critical Miyatani Kazuo
Publication of WO2010101171A1 publication Critical patent/WO2010101171A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M13/00Fumigators; Apparatus for distributing gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B10/00Combustion apparatus characterised by the combination of two or more combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L17/00Inducing draught; Tops for chimneys or ventilating shafts; Terminals for flues
    • F23L17/005Inducing draught; Tops for chimneys or ventilating shafts; Terminals for flues using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention can burn a wood-based bulk combustible (wood, carbide, or bio-based bulk combustible), can control the amount of combustion as required, and can obtain clean exhaust gas.
  • the present invention relates to a wood-based bulk fuel combustion furnace and a combustion control method thereof, a hot air generator using the combustion furnace, and a method for using flue gas in a wood-based bulk fuel combustion furnace.
  • woody bulk combustible refers to wood based fuel such as wood, firewood, bamboo, chips, pellets, charcoal, or bio-based bulk combustible.
  • the “bulk combustible material” is used in comparison with oil or gas that is actively brought into contact with oxygen and burned.
  • “Wikipedia” “Bulk” refers to a part of an object or fluid that does not touch the interface. The part of an object that is paired with the interface, boundary film, material surface, etc.
  • Wikipedia free encyclopedia
  • Bok refers to a part of an object or fluid that does not touch the interface. The part of an object that is paired with the interface, boundary film, material surface, etc.
  • Speaking of the physical properties of a certain substance it refers to the properties of the bulk part.It is a term mainly used in surface chemistry, transfer phenomenology, physical physics, etc.
  • wood-based bulk materials sawn timber, woodworked timber, thinned timber, laminated timber, building waste, agricultural waste, civil engineering waste, etc. are known, but if these can be easily used as fuel, It is very useful for energy conservation and global warming.
  • the present invention provides a combustion technique in which these woody bulk fuels can be easily used as a heat source, and a utilization method as a boiler and a hot air generator.
  • chips and pellet fuel has the advantage that fuel can be supplied in a certain amount, but a furnace equipped with a continuous supply device is required, and a so-called open system furnace must be used. For this reason, facilities and management with strict environmental measures are required.
  • chips and pellet fuel there is a problem that production energy and cost spent for chip formation and molding cannot be ignored compared with fossil energy.
  • the use of the wood-based fuel cannot be easily expanded because the combustion causes the generation of smoke and environmental pollution.
  • Patent Document 1 a first burner of gas or oil fuel is installed under the support plate of the firewood in the combustion housing of the fireplace-type heater, and a pair of burners is further installed behind.
  • Combustion systems have been proposed.
  • soot fuel is burned by a very slow method called an embedding method to suppress smoke generation.
  • an embedding method In order to obtain an appropriate calorific value, a large amount of an oxidation catalyst and a huge furnace are required, and it is difficult to extract an industrially useful amount of heat.
  • the problem to be solved by the present invention is to develop a combustion technology and a boiler that can easily use a wood-based fuel such as a large volume of bulk wood, and thereby provide a device having a function as a heating device. . It is not easy to install a large volume of woody fuel such as bulk wood in a batch type in a closed furnace and ignite it, and burn only the required amount of fuel over a long period to continue the combustion state. . That is, if the entire amount can be burned finally while burning only a part of the injected fuel, the bulk fuel can be effectively used.
  • the present invention can be burned in a bulk state without adding unnecessary processing and cost to the wood-based solid fuel (bulk fuel), and the combustion state is free. It is possible to effectively use the necessary combustion heat instead of the above, and it is possible to control combustion such as suppression of heat generation.
  • a combustion furnace for wood-based bulk fuel, its combustion control method, and hot air generation using the combustion furnace An object is to provide an apparatus.
  • the present invention is a combustion furnace in which a large amount of wood-based bulk fuel such as wood or carbide is charged into a furnace in a batch manner, and after ignition, a combustion amount and a dormant state can be controlled for a long time, and the furnace body has a high internal temperature. It has a heat insulation structure that can keep the low temperature of the outer wall appropriately, the furnace body has a vertical shape and a long depth structure, and fuel wood during combustion is installed vertically, combustion is The fuel is burned in the direction from the top to the bottom of the stacked fuel.
  • thin fuel such as pruned branches is easy to burn and does not necessarily need to be placed vertically.
  • hot air is generated by heat exchange using the outer wall of the furnace chamber or the outer wall of the duct at an appropriate temperature as a heat source, and the combustion exhaust gas is converted into 1 of the tube heat exchanger.
  • This structure is used on the next side to generate hot air.
  • the obtained hot air has a structure capable of obtaining appropriate warm air by mixing with the outside air, and is characterized in that the boiler as a whole has high thermal efficiency and low waste heat.
  • the temperature of the hot air obtained is used as a combustion parameter, and the maximum allowable amount of heat generation is controlled by the maximum allowable temperature of the reaction duct.
  • combustion air has a structure in which an accurate air volume can be supplied between a minimum air volume of 0% and a maximum air volume of 100% by a solenoid valve connected to the outlet of the supply fan to stop the combustion of the furnace.
  • a solenoid valve connected to the outlet of the supply fan to stop the combustion of the furnace.
  • the supply of a minute amount of air capable of maintaining the fire type is guaranteed, and the air can be completely shut off to extinguish the fire.
  • it has a structure that can accurately grasp the state of exhaust gas with an optical transmission smoke sensor, and the optical window has a shielding plate with a small window through which light passes to prevent contamination by smoke. It is characterized in that it has a structure that purges air and clean air from the small windows prevents the ingress of smoke, can accurately grasp the exhaust gas state, and can be used for exhaust gas purification.
  • a combustion furnace for a wood-based bulk fuel according to claim 1 is a combustion furnace chamber for burning a wood-based bulk combustible material, and a casing that covers a back surface, a side surface, and an upper surface of the combustion furnace chamber with a predetermined space.
  • An opening / closing door of the combustion furnace chamber provided on the front surface side of the housing, an air supply means for supplying combustion air from the upper surface side into the combustion furnace chamber, and a smoke exhaust port provided below the back surface of the combustion furnace chamber
  • the smoke exhaust port passes through a duct formed in the space portion and a smoke road to reach the chimney, and further, the air supply control means adjusts the amount of air supplied from the upper surface side into the combustion furnace chamber.
  • An air control means is provided, and this air supply control means enables combustion control in the combustion furnace chamber.
  • the combustion furnace for a wood based bulk fuel wherein the combustion control in the combustion furnace chamber includes a maximum combustion mode, a normal combustion mode, a dormant mode that does not require heat generation, and a fire type mode that maintains a fire type for recombustion. And a fire extinguishing mode.
  • the wood-based bulk fuel combustion furnace according to claim 3 is provided with an in-furnace flue passage leading to the smoke outlet in the combustion furnace chamber, and air preheated in the furnace is supplied to the bottom of the duct.
  • a secondary combustion burner nozzle is installed, an auxiliary burner is provided on the upper part thereof, and an oxidation catalyst is further provided on the upper part thereof, whereby secondary combustion at the secondary combustion burner nozzle, and tertiary combustion by the auxiliary burner, The high temperature flue gas purified through the fourth combustion by the oxidation catalyst is rapidly cooled by the tube heat exchanger and then exhausted from the chimney.
  • a combustion furnace for a wood based bulk fuel according to claim 4 is provided with a smoke sensor for detecting a flue gas concentration on the smoke road, and controlling tertiary combustion by the burner based on the flue gas concentration detected by the smoke sensor.
  • the combustion furnace for wood based bulk fuel wherein the smoke sensor is constituted by an optical sensor, and an optical path scanned by a light beam emitted from the optical sensor is provided so as to cross the smoke road.
  • An air supply for providing a housing for storing the optical sensor, forming a sub-hole through which the light beam passes in a shielding plate that partitions the housing and the optical path, and blocking smoke exhausting from the sub-hole into the housing Means is provided.
  • a combustion control system for a wood-based bulk fuel combustion furnace uses a supply air fan as the air supply means in the wood-based bulk fuel combustion furnace according to any one of claims 1 to 5.
  • an electromagnetic valve is used as the air supply control means, and the amount of combustion air supplied from the air supply fan is controlled between 0% and 100% by the electromagnetic valve to adjust the air amount in each combustion mode. It is characterized by that.
  • a combustion control method for a wood-based bulk fuel combustion furnace comprising: a combustion furnace chamber for burning a wood-based bulk combustible; and a predetermined space portion between a back surface, a side surface, and an upper surface of the combustion furnace chamber.
  • a casing covering the casing, an opening / closing door of the combustion furnace chamber provided on the front side of the casing, an air supply means for supplying combustion air into the combustion furnace chamber from the upper surface side, and provided below the back of the combustion furnace chamber An air amount that is supplied from the upper surface side into the combustion furnace chamber by the air supply control means, and the exhaust port reaches the chimney through the duct formed in the space and the smoke road.
  • ⁇ Fuel is placed vertically in the combustion furnace chamber in a dense form with little gaps, and an openable / closable throat that can ignite the top of the ⁇ fuel is provided in the open / close door, below the upper portion of the ⁇ fuel.
  • the amount of air supplied from the upper surface side into the combustion furnace chamber by the air supply control means is discharged from the chimney by an induction fan provided in the smoke road. It is characterized by adjusting.
  • An apparatus for generating hot air using a wood-based bulk fuel combustion furnace according to claim 8 is the apparatus for generating hot air using a wood-based bulk fuel combustion furnace according to any one of claims 1 to 7.
  • a hot air passage leading to the smoke road is provided between the housing and the combustion furnace chamber, and a heat exchanger is provided in the hot air passage to efficiently generate hot air, and one of the housings.
  • An opening that communicates with the hot air passage is provided in the section, and the hot air is mixed with the low-temperature outside air taken in, and the hot air is blown into the room by a hot air blower.
  • a warm air generator using a wood-based bulk fuel combustion furnace is provided with a temperature sensor for detecting the temperature of the hot air heated by the outer surface of the combustion furnace chamber and the heat exchanger, and a temperature detected by the temperature sensor. And controlling the combustion state of the combustion furnace chamber so that the temperature of the hot air blown into the room becomes a set temperature, and adjusting the inflow amount of outside air taken in from the opening by the outside air adjusting means, To do.
  • a method for using flue gas in a wood-based bulk fuel combustion furnace comprising a combustion furnace chamber for burning a wood-based bulk combustible material, and a predetermined space portion disposed between a back surface, a side surface and an upper surface of the combustion furnace chamber.
  • a smoke exhaust port provided to the chimney through the duct formed in the space and the smoke road, and further supplied to the combustion furnace chamber from the upper surface side by the air supply control means.
  • An air supply control means for adjusting the amount is provided, and by using the air supply control means, a flue gas is supplied into the horticultural facility using a wood-based bulk fuel combustion furnace that enables combustion control in the combustion furnace chamber.
  • wood-based bulk fuel and carbide fuel such as wood can be batch-controlled, the combustion amount, the dormant state, or the recombustion state can be controlled, and can be burned for a long time.
  • a clean exhaust gas combustion furnace can be obtained by using a small amount of auxiliary oil fuel, and that it can be used as a boiler or a heating device suitable for generating hot air or hot water.
  • any wood-based bulk fuel can be used effectively, it can contribute to the purification of the environment and the prevention of global warming as green energy.
  • the combustion state, the dormant state, or the recombustion state is controlled by supplying woody bulk fuel or carbide fuel such as wood to a closed combustion furnace in a batch manner to control combustion. be able to.
  • FIG. 1 is a side view of a combustion furnace showing an embodiment of the present invention.
  • FIG. 2 is a front view of the combustion furnace.
  • FIG. 3 is an explanatory view showing a combustion control method for the combustion furnace and a method for carrying out the same as above.
  • FIG. 4 is an explanatory diagram showing a method for generating hot air in the combustion furnace and a method for carrying out the same as above.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG. 6 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 7 is an explanatory diagram showing the connection structure of the reaction duct.
  • FIG. 8 is an explanatory view showing the mounting structure of the optical sensor.
  • FIG. 8A is a plan view
  • FIG. 8B is a side view
  • FIG. 8C is a plan view.
  • Some basic technologies must be established in order to use a combustion furnace using wood and wood-based bulk fuel or carbide as a heating device.
  • when no thermal power is required it is necessary to leave the fire type in a dormant state. On the other hand, when the thermal power is required, it is necessary to be able to reburn based on the fire type.
  • the present invention provides a batch-type combustion furnace that uses bulk wood such as firewood, bamboo, carbide, or bio combustibles as fuel, and covers the inner wall of the furnace body with a heat insulating material to facilitate the furnace temperature and fuel temperature.
  • the furnace body can be made high and the outer wall temperature of the furnace body can be lowered to about 100 ° C, the combustion amount can be easily controlled, and it can be put in a dormant state when no heat generation is required.
  • the present invention relates to a structure and a method of a wood-based bulk fuel boiler, characterized in that a fire type for reburning can be easily maintained.
  • the fuel dredged into the furnace is well dried. If there is a lot of water, it will be difficult to burn completely and a large amount of wood vinegar will be generated. It is desirable to cut firewood in winter, when the activity of trees is low, and to dry naturally for 1-2 years depending on the size. Woody bulk soot fuel is large and heavy, and is used in large quantities, so it is necessary to bring the soot dry and lightweight to the furnace chamber in an easy posture. For this reason, it is desirable to provide a large opening / closing door in the furnace chamber to make it easy for the importer to enter and exit. Further, the fuel may be mechanically carried into the furnace in units of pallets.
  • the average temperature in the furnace is high and is 150 ° C. or higher. More desirably, the temperature is higher than 200 ° C. to 300 ° C. For this purpose, it has been found that it is important to increase the average temperature in the furnace by applying heat insulation to the entire interior of the combustion furnace. Further, it is desirable that the outer wall of the combustion furnace is about 100 ° C. and that a hot air of 60 ° C. or more can be easily obtained.
  • the furnace chamber of the present invention is characterized by having a vertical structure with a long depth, and is characterized by an airtight structure except for the outlet of the flue gas to the duct connected to the furnace bottom.
  • the soot fuel placed in the furnace chamber is characterized by vertical placement, and is a combustion control method characterized by being stacked in a dense form with few gaps and gradually burning from the upper part toward the lower part.
  • the furnace chamber is characterized by having a vertical structure with a long depth. This is the structure necessary for the fire and smoke flow to facilitate continuous combustion of the fuel after soaking. It is desirable that the soot is arranged in the furnace in a vertical type and has a close-packed structure. By doing so, more fuel can be thrown into the limited space. For burning soot, there is a big difference in ease of combustion between vertical and horizontal placement. Wood pores grow in the length direction, easily burn in the length direction, have a structure that does not easily burn in the perpendicular direction, and have a characteristic that the combustion state tends to spread in the length direction when igniting the end face of the wood It is better to actively use that.
  • the combustion state can be easily maintained, and the fire of the soot is extinguished on the way. Can be prevented.
  • a conventional method of burning from the lower part of the fuel by installing a grate at the furnace bottom or providing an air supply port on the side surface is not an appropriate method.
  • the combustion heat of one soot is transmitted to the adjacent soot, and there is an effect of facilitating the burning of the adjacent soot.
  • the method of placing fuel is not limited to the method described here, and those that are easy to burn, such as pruned branches, can be placed freely, and pellets and chips can be stacked in bags or stacked. Or may be added together.
  • the most suitable furnace structure for the combustion control method is a vertical type that is long in the depth direction and does not take a wide width. However, even if the shape of the combustion furnace is not a strict vertical type, a similar shape can be used. Extinguishing coal useful for sowing can be obtained in the required amount by stopping the operation of the furnace in a state where most of the fuel is burned and the thermal power is reduced.
  • the furnace chamber of the present invention has a spout capable of igniting the top of the fuel from the front, and the generated flame and smoke are generated from the vertical flue provided on the inner wall of the furnace chamber by an induction fan provided in the flue. It is characterized by a structure that has the function of being discharged to the chimney through a duct connected to the bottom and flowing out into the duct with little resistance to smoke and flame.
  • a small door as a spout that can ignite the top of the fuel from the front of the furnace chamber.
  • a structure that prevents the smoke from flowing out from the entrance through the duct with an induction fan provided in the section is good.
  • the position of the shed is as low as possible from the ceiling of the furnace chamber and is sufficiently lower than the position of the ignited fuel to be ignited.
  • a torch burner is preferably used as a general ignition method.
  • the vertical flue passage 5 in the furnace As a way of burning the fuel accumulated in the furnace, it is preferable to provide a vertical flue passage 5 in the furnace toward the bottom of the furnace and ignite the upper front.
  • the flue gas reaches the in-furnace flue passage 5 on the inner surface of the furnace while passing through the upper part of the accumulated fuel.
  • the upper part of the fuel can be dried and heated. It becomes easy to ignite.
  • the vertical flue gas passage 5 in the inner wall of the furnace chamber 2 prevents the flame from spreading over a wide area in the furnace, and the smoke and flame are easily discharged to the duct entrance at the rear of the furnace bottom. The structure is good.
  • the ignition procedure for the fuel should be as follows. Since a large amount of air is required at the time of ignition, the control panel is operated manually, the air supply fan 10 is started to maximize the opening degree of the electromagnetic valve 11 for air supply, and the small door 25 is opened to freely take in air. . In addition, after igniting the burner 12 for tertiary combustion and preheating the flue for about 10 minutes, the induction fan 29 is started. Next, after firing, the small door 25 is closed after confirming that the fire is ignited by burning firmly for 15 to 30 minutes. By doing in this way, the leakage of smoke from the small door 25 to the outside of the furnace can be eliminated. Unnecessary smoke leaks into the house can cause crop contamination and bee health damage.
  • Combustion state passes through “fire-burning” state in which almost no smoke is emitted from “initial combustion” with a lot of smoke, but if the remaining fuel is about 10% or less and sufficient thermal power cannot be obtained, extinguish the fire. Then, the door is opened, the ash is scraped out, the fuel is again charged, and the next batch operation is started.
  • the small door 25 has a structure in which the combustion state can be inspected and additional fuel can be introduced during operation of the furnace. If the fuel is burned out completely during the time when heating is required and heating becomes impossible, it may be necessary to add fuel to continue combustion until the required time. By introducing additional soot and carbide from the small door 25, the end of combustion can be postponed.
  • the amount of combustion air is controlled within the range of 0 to 100% by the opening degree of the electromagnetic valve 11 directly connected to the combustion air supply fan 10, and the inside of the furnace having an airtight structure is controlled.
  • 2 is a combustion control system that supplies an air amount suitable for maximum combustion, dormancy, reignition, fire extinguishing, and the like.
  • the furnace body In order to realize these combustion states as necessary, such as maximum combustion, normal combustion, dormant combustion, reburning, and fire extinguishing, it is necessary to strictly control the amount of air supplied, To that end, the furnace body must have an airtight structure. In particular, it is not good that there is a backflow of air through the duct connection portion by the air intake fan of the auxiliary burner portion 12 of the tertiary combustion portion.
  • the amount of combustion air is controlled by adjusting the degree of opening of the solenoid valve 11 connected to the air supply fan 10 between 0 and 100%, and enters the furnace having an airtight structure. It can be supplied.
  • the burner 12 can be ignited by the sensor signal provided in the flue to clean the smoke, but if the smoke concentration becomes abnormally high during the initial combustion, the smoke will be cleaned Can be difficult. This is a phenomenon that occurs when combustion air is supplied excessively and fuel burns excessively, and clean exhaust gas can be maintained by reducing the supply air amount and reducing the exhaust gas amount. Thus, even after the burner 12 is ignited, if a state in which the flue gas does not become clean is detected, the amount of supplied air can be suppressed and the normal combustion state can be recovered.
  • the large open / close door 21 in the furnace chamber 2 is likely to leak due to the thermal distortion of the furnace body 1 and the open / close door 21 and the decrease in the elasticity of the packing. This tendency is strong now that asbestos packing cannot be used.
  • this problem is solved by adopting a structure in which the tightening pressure on both sides of the open / close door 21 can be adjusted so that the tightening allowance of the packing can be adjusted in a wide range.
  • the duct that performs the combustion treatment of the flue gas of the present invention is a high-temperature reaction duct 6 that has secondary combustion at the bottom of the duct, tertiary combustion by the auxiliary burner 12, and quaternary combustion by the oxidation catalyst 13, and is heat resistant with large thermal expansion. Since it is made of steel (SUS), it cannot be directly connected to a furnace body made of steel (SS) with low thermal expansion, so the connecting part has a flexible structure to easily absorb the difference in thermal expansion and contraction. It has the duct structure characterized by this.
  • the reaction duct 6 connected to the furnace is a portion that reaches a high temperature of 800 ° C. or higher through secondary combustion, tertiary combustion, and quaternary combustion, and the inner surface of the duct, the burner box, and the catalyst chamber are heat resistant.
  • It consists of a steel plate (SUS).
  • a heat-resistant steel plate has a large thermal expansion, and a heat buffering structure is required between a furnace body having a low temperature and a furnace body having a small thermal expansion, and cannot be directly connected structurally.
  • the connecting portion 7 between the heat-resistant steel plate and the furnace body of the duct has a flexible structure by the bellows shown in FIG. 7, and the heat-resistant steel plate and the steel material can freely absorb a large expansion / contraction difference due to heat. It has a structure.
  • the outside air taken from the top of the furnace is heated through the heat exchanger 31 having the outer wall of the furnace chamber and the flue gas as the primary side to become hot air, and the combustion state and heat generation state of the furnace at the hot air temperature.
  • the hot air is mixed with a necessary amount of outside air to obtain a target hot air temperature. Further, the maximum combustion amount and the heat generation capacity of the furnace are controlled by the allowable maximum temperature of the duct.
  • the outside air is introduced from the top of the furnace body and heated by the outer fin wall, the reaction duct outer wall, and the Elofin tube heat exchanger 31 using the combustion air as a heat source, so that hot air can be efficiently generated. Can be produced.
  • the combustion air at a high temperature is rapidly cooled in the Elofin tube heat exchanger 31 so that recombination of dioxins thermally decomposed in the reaction duct can be suppressed.
  • the outer wall temperature of the furnace chamber is maintained at an appropriate level by the heat insulating material applied to the inner wall of the furnace, and the heat insulating material is applied to the duct surface so that the temperature of the furnace surface and the duct surface is appropriate. It has a structure that can be maintained. Although the temperature of the hot air to be obtained varies depending on the application, it is desirable that the temperature of the hot air is about 100 ° C. or less for heating the garden house.
  • the obtained hot air is provided with dampers 35, 36, and 37 for taking in outside air, mixed with low-temperature outside air, and can be supplied with the temperature of the hot air discharged from the hot air fan being set to 20 ° C. to 60 ° C. .
  • the warm air temperature was easily achieved by automatically controlling the opening degree of the outside air intake damper 36.
  • the outside air sucked from the furnace top is divided into two by a damper provided between the ceiling of the furnace and the outer wall of the furnace top, and a part of the outer periphery of the furnace chamber and the Elofin tube heat exchanger 31 are used. After that, it is heated to become hot air, and the other part is heated by exchanging heat with the outer periphery of the reaction duct to become hot air.
  • the hot air is mixed with low temperature outside air taken from the outside air supply damper at the lower part of the furnace body to become warm air having an appropriate temperature, and is sent out by a hot air fan.
  • the temperature of the hot air can be easily controlled by the opening degree of the outside air intake damper.
  • the optical window connected to the flue is characterized by detecting the transmittance of the light beam crossing the flue to evaluate the flue gas concentration and controlling the drive of the tertiary combustion section by the burner 12.
  • the optical sensor unit is composed of a light emitting diode or laser light emitter and a light receiver, and a purge air blower.
  • a shielding plate 62 with a window provided with a small hole through which a light beam passes is provided on the flue side of the room containing the optical component, and the purified air passes from the optical component room side through the small window hole of the shielding plate into the flue. It comes to flow.
  • a small window hole was used to prevent the back diffusion of the smoke from the flue and the optical window was not contaminated, and the signal stability required for the optical detection of smoke was achieved with a simple structure.
  • the auxiliary oil burner 12 for tertiary combustion is ignited by the signal of the smoke sensor, the smoke is burned at a high temperature, and the purification of the exhaust gas is promoted.
  • the amount of oil consumed when the auxiliary burner 12 is ignited is 1.5 liters / hour.
  • the optical sensor can be used for various purposes by using a sensor corresponding to the type of the flue gas other than the detection of dust and the like.
  • Smoke is often generated from 12 hours to 24 hours after ignition, which is called initial combustion.
  • the smoke from the fuel contains a lot of flammable and light gas, and the secondary combustion section becomes active. Secondary combustion raises the temperature of the entire duct and promotes the purification of smoke.
  • the combustion shifts to a small amount of smoke with little smoke generation. It was intermittent for the burner to operate during initial combustion, and the average ignition time was about 50% of the furnace combustion time.
  • smoke is generated when the amount of air supplied to the furnace is suddenly increased in order to increase the thermal power.
  • the auxiliary burner is temporarily ignited, but it is usually unnecessary. As a result, the burner ignition time was less than about 30% of the total furnace operating time.
  • 1 ton of soot fuel has a calorific value of about 4 million kcal / batch, which corresponds to a calorific value of 440 liters when converted to oil fuel. If 1 million kcal is consumed per day, it can be burned for 4 days, but the amount of oil for auxiliary fuel required during this period is 10% or less. That is, 90% or more of petroleum thermal energy can be replaced with woody bulk fuel by the hot air generator based on the present invention.
  • the cost of building scraps, sawmill mills, thinned wood, agricultural waste, building waste, charcoal, carbide, etc. used as woody biomass fuel is expected to vary greatly depending on the supply status, but the average is ⁇ 5 / kg.
  • Oil oils such as light oil, heavy oil A, waste oil, and bio-based oil have a wide range of costs, but it is expected to be ⁇ 50-100 / kg / liter in the future, so it is understood that the economic effect is epoch-making.
  • the woody biomass boiler is a circulation type carbon dioxide zero emission system, and if fossil fuel and its device are replaced, 90% or more of the warming gas emitted by fossil fuel can be reduced. .
  • This greenhouse gas emission right can be used for further reduction of fuel costs, so that the fuel consumption of the wood-based bulk fuel boiler according to the present invention is expected to be largely offset in the future.
  • the present invention also reduces pesticide-free and pesticide-free cultivation by utilizing a pest repellent effect and anti-fungal effect by diffusing and purifying part of the flue gas in the duct into agricultural facilities and drying rooms.
  • it is characterized by spreading and purifying under the floor in the case of wooden structures, and using it for the control of pests such as termites.
  • the pest control effect by smoke when a part of the smoke was mixed with warm air from the combustion furnace of the hot air generator of the present invention and diffused and discharged into the house, grasshoppers, stink bugs, spiders that were in the house And, it was found that ants were not visible within one day. It has been found that it can be used for extermination of pests because it burns firewood fuel such as cedar, cypress, white oak, red oak and so on, and has a good pest repellent effect by fumigation of smoke generated during initial combustion.
  • the repellent effect of these pests can be smoke at a level where smoke or smoke can be sensed at last, or less, and can be used for growing plants in house cultivation.
  • the use of the soot effect shows many possibilities, and the anti-mold and anti-bacterial effect can be obtained by exterminating pests as well as soot.
  • the hot air generator using the combustion furnace of the present embodiment includes a combustion furnace chamber 1 in which a wood-based bulk fuel such as wood or a carbide as a fuel is supplied and burned in a batch manner, and a rear surface of the combustion furnace chamber 1. Between the smoke road 15 extending from the smoke outlet 3 formed in the lower part to the chimney 14, the box-shaped housing 20 covering the combustion furnace chamber 1, and the combustion furnace chamber 1 including the housing 20 and the smoke road 15 And a warm air fan 39 (warm air blower) for blowing the warm air in the warm air path 30 out of the room.
  • a wood-based bulk fuel such as wood or a carbide as a fuel
  • the combustion furnace chamber 1 is a box type that is generally closed and has a front surface opened.
  • the combustion furnace chamber 1 is covered with a heat insulating material 4 and the combustion furnace chamber 1 is provided on the front surface of the housing 20.
  • the inner surface of the opening / closing door 21 of the chamber 1 is covered with a heat insulating material 22.
  • a packing (not shown) is attached to the inner surface of the open / close door 21, and the combustion furnace chamber 1 is sealed by bringing the packing into close contact with the front surface of the housing 20.
  • a plurality of handles 23 for adjusting the tightening pressure of the opening / closing door 21 are provided on both sides of the opening / closing door 21.
  • an opening 24 is formed in the upper part of the opening / closing door 21, and the small door 25 that opens and closes the opening 24 adjusts the tightening margin of packing (not shown) provided on the small door 25 by the handle 23 ⁇ / b> A, similar to the opening / closing door 21. It can be done.
  • An in-furnace flue passage 5 is formed in the furnace 2 of the combustion furnace chamber 1 so as to communicate with the flue port 3, and the in-furnace flue gas is disposed outside the flue port 3.
  • a cylindrical reaction duct 6 made of a heat-resistant steel plate (SUS) communicating with the passage 5 is connected.
  • the reaction duct 6 is surrounded by a heat insulating material having a low heat load around the heat-resistant steel plate.
  • the reaction duct 6 rises vertically from the smoke outlet 3 and connects the reaction duct 6 and the chimney 14 with a smoke duct 6A extending in the horizontal direction.
  • the reaction duct 6, the smoke exhaust duct 6A, and the chimney 14 are connected to each other. Constitutes the smoke road 15.
  • the connecting portion 7 of the reaction duct 6 to the combustion furnace chamber 1 is They are connected to each other with a flexible structure so that they can absorb large expansion and contraction caused by heat freely.
  • an air supply duct 9 is provided in the combustion furnace chamber 1 so as to be located in the upper portion of the in-furnace flue passage 5 and air is directed toward the lower portion of the furnace chamber.
  • the air supply fan 10 which is an air supply means is connected by providing a nozzle hole.
  • the air supply duct 9 is provided with an electromagnetic valve 11 as an air supply control means, and the electromagnetic valve 11 adjusts the opening degree of the air supply duct 9 and supplies the air into the combustion furnace chamber 1. Combustion control in the combustion furnace chamber 1 is performed by adjusting the amount of air.
  • An auxiliary burner 12 for burning the exhaust gas from the combustion furnace chamber 1 is provided in an almost middle portion of the reaction duct 6, and an oxidation catalyst 13 is disposed on the auxiliary burner 12.
  • Smoke exhaust purified through secondary combustion, tertiary combustion by the auxiliary burner 12 and quaternary combustion by the oxidation catalyst 13 is passed through the smoke exhaust duct 6A by the induction fan 29 provided in the chimney 14, and the smoke exhaust section. 14 is exhausted to the outside.
  • a hot air passage 30 is formed between the housing 20 and the combustion furnace chamber 1, and a heat exchanger 31 made of an erotic fin tube is disposed outside the smoke exhaust duct 6A and located in the hot air passage 30.
  • the outside air taken into the warm air passage 30 is heated by the heat exchanger 31 and the outer wall of the combustion furnace chamber 1 and is blown into the room as warm air from the outlet 40 by the warm air fan 39.
  • the top plate, the back plate, and the front plate of the housing 20 have outside air introduction ports 32, 33, and 34 serving as openings that communicate with the hot air passage 30 in order to take outside air a into the hot air passage 30.
  • a hot air passage 30 between the ceiling of the furnace chamber 1 and the housing 20 is divided into two by a damper 37 provided in the housing 20, and a part of the hot air passage 30 is heated by the outer peripheral portion of the combustion furnace chamber 1 and the heat exchanger 31 to generate hot air h. The other part is heated by exchanging heat with the outer periphery of the reaction duct 6 to become hot air h1.
  • a temperature sensor 38 for detecting the temperature of the hot air h is provided in the hot air passage 30 formed in the outer peripheral portion of the combustion furnace chamber 1 in which the heat exchanger 31 is disposed, and the temperature sensor 38 detects the temperature of the hot air h.
  • the degree of opening and closing of the damper 35 that opens and closes the outside air inlet 33 formed at the lower front of the housing 20 is controlled, and the low temperature outside air and hot air h, h1 taken from the outside air inlet 34 formed at the lower front of the housing 20 are controlled. Is mixed to an appropriate temperature h2, for example, depending on the application, but for heating a horticultural house, the maximum temperature is controlled to be about 50 ° C. and blown out from the outlet 40 by the hot air fan 39. .
  • an optical sensor 45 is provided as a smoke sensor at the base of the chimney 14, and the auxiliary burner 12 for tertiary combustion is controlled by a detection signal of the optical sensor 45.
  • a cylindrical pipe 15A serving as an optical path of the optical sensor 45 is fixed so as to cross the chimney 14, and sensor housings 46 of the optical sensor 45 are attached to both ends of the pipe 15A.
  • the optical window side of the sensor housing 46 is provided with a shielding plate 47 having a small window (not shown) through which light passes to prevent contamination by smoke, and the sensor housing 46 is used for purging as air supply means for always purging fresh air.
  • An air introduction port 48 is provided, and the air introduced from the air introduction port 48 is blown from the small window of the shielding plate 47 to the pipe line 15 ⁇ / b> A side, thereby preventing smoke from entering the sensor housing 46.
  • reference numeral 26 denotes a secondary combustion nozzle
  • 27 denotes a flue gas diffusion valve. The smoke in the combustion furnace chamber 1 can be added to hot air and mixed.
  • the combustion furnace chamber 1 was installed in a lightweight steel glass house (200 m 2 ), and performance evaluation based on a planting test was performed.
  • the size of the combustion furnace chamber 1 was 1.5 m 3, and about 700 kg of a batch of dried assembled end stock was charged.
  • the fuels were arranged in a dense form in the vertical direction, and flammable charcoal and newspaper were placed in the upper center, and the open / close door 21 of the combustion furnace chamber 1 was closed.
  • the temperature inside the reaction duct 6 began to rise immediately after the auxiliary burner 12 was ignited, and after 20 minutes, the reaction duct 6 reached 700 ° C. to 800 ° C., and smoke was transparent and clean exhaust gas was obtained.
  • easily combustible gases burn in the secondary combustion part in the in-furnace flue passage 5 communicating with the lowermost part of the reaction duct 6 and greatly contribute to the heating of the entire upper part of the reaction duct 6.
  • the auxiliary burner 12 was stopped in the state.
  • hot air of 60 to 80 ° C. could be obtained by sending and burning a maximum of 3.0 m 3 / min of air by the air supply fan 10.
  • the smoke When the temperature of the reaction duct 6 is high, the smoke is purified, there is no secondary combustion, and when the temperature of the reaction duct 6 decreases, the purification of the smoke becomes insufficient and the auxiliary burner 12 automatically ignites.
  • the ignition cycle was approximately 64 minutes and was at rest for about 50% of the time.
  • the furnace temperature increased, and 60 ° C hot air and 50 ° C hot air were obtained continuously.
  • the outer wall temperature of the combustion furnace chamber 1 was about 100 ° C., and hot air having an appropriate temperature was obtained.
  • the “initial combustion mode” with a lot of smoke shifted to the “open flame combustion mode” in which no smoke was generated after about 12 hours.
  • the result of installing a hot air generator using the combustion furnace chamber 1 in the house and controlling the house temperature as a typical combustion test by blowing hot air at 50 ° C. to a polyduct at 4,000 m 3 / h The result of the heating performance which was substantially satisfactory was obtained.
  • insects when some of the smoke generated from the combustion furnace chamber 1 was diffused into the house, insects, grasshoppers, ants, stink bugs, spiders, etc. found in the house disappeared from the house. As a result of further observation, it was found that these insects showed a clear repellent effect against the smoke component generated by this device. In other words, it was found that the purifying effect of cypress and cedar smoke is seen, and the occurrence of aphids and molds is also suppressed. As for this effect, when the house was left open for more than one month, the repellent effect of the insects decreased, and the insects appeared again in the house.
  • the inner wall of the combustion furnace chamber 1 is a structure of steel that is not covered with a heat-insulating heat insulating material, and the other part is the same as the structure described above, and as a result of an operation test, the combustion furnace chamber 1
  • the outer wall temperature of No. 1 was high, the hot air temperature obtained was high, and it was difficult to obtain hot air at an appropriate temperature around 60 ° C. It was also found that fuel combustion promotion, dormancy, and the rise time in the re-combustion cycle are long, and the maintenance of the fire type during dormancy is unstable, and the combustion state is difficult to control.
  • the entire inner wall surface of the combustion furnace chamber 1 and the inner surface of the open / close door 21, the reaction duct 6 and the smoke exhaust duct 6 ⁇ / b> A are covered with the heat insulating materials 4, 22, and 28.
  • the outer wall of the combustion furnace chamber 1 is about 100 ° C., and a structure that can easily withstand hot air of 60 ° C. or higher is adopted.
  • the temperature of the smoke in the furnace chamber decreases, and it takes a long time to burn the fuel and increase the temperature of the furnace chamber during the initial combustion.
  • the reaction duct 6 made of a heat-resistant steel plate and the combustion furnace chamber 1 made of a general steel plate have different thermal expansions, so that a destructive force is generated due to local thermal strain at a high temperature.
  • the connection part 7 between the combustion furnace chamber 1 and the reaction duct 6 and the flue gas duct 6A has a flexible bellows flexible structure, so that it can absorb large expansion and contraction due to heat freely, and the connection part 7 is damaged. Therefore, the high-temperature reaction duct 6 is small and stable.
  • the solenoid valve 11 that opens and closes the air supply duct 9 is closed and the supply of preheated air to the secondary combustion section (furnace flue gas passage 5) is stopped to stop the secondary combustion, the tertiary combustion section
  • the combustion of the auxiliary burner 12 became unstable. This is because the amount of air necessary for combusting a relatively large amount of combustible gas with only the auxiliary burner 12 is insufficient, and a stable combustion function of the secondary combustion section is required.
  • the smoke concentration is detected by the optical sensor 45, the auxiliary burner 12 for tertiary combustion is controlled based on the detection signal of the optical sensor 45, and the amount of combustion air is determined by the air supply duct.
  • the amount of combustion air is controlled by an electromagnetic valve 11 that opens and closes 9, and is supplied to the inside of the combustion furnace chamber 1 having an airtight structure and to the secondary combustion burner portion. Also, by controlling the amount of combustion air between 0% and 100% by the solenoid valve 11 and supplying it into the combustion furnace chamber 1 having an airtight structure, it is suitable for the maximum combustion mode, the sleep mode, the reignition mode, and the fire extinguishing mode. It is possible to supply a sufficient amount of air.
  • the auxiliary burner 12 can be ignited by a signal from the optical sensor 45 to clean the smoke.
  • the detection signal from the optical sensor 45 is important in determining the amount of combustion in the combustion furnace chamber 1, and if soot due to flue gas adheres to the optical sensor 45, the detection accuracy may be adversely affected.
  • fresh air is introduced from the purge air introduction port 48 and blown from the small window of the shielding plate 47 to the side of the conduit 15 ⁇ / b> A serving as an optical path, so that smoke enters the sensor housing 46. Can be prevented.
  • the soot caused by the flue gas does not adhere to the optical sensor 45, the optical sensor 45 can be kept clean at all times, and the detection of the flue gas concentration by the optical sensor 45 can be kept stable.
  • the outside air taken in from the outside air inlet 32 formed on the top plate of the casing 20 is heated by the outer peripheral portion of the combustion furnace chamber 1 and the heat exchanger 31 and blown out as warm air h2 for heating.
  • a temperature sensor 38 for detecting the temperature of the hot air h1 is provided in the hot air passage 30 formed in the outer peripheral portion of the combustion furnace chamber 1 in which the heat exchanger 31 is disposed. Based on the detected temperature, the opening of the outside air intake dampers 35 and 36 is automatically controlled to mix the hot air heated in the hot air passage 30 with the outside air, and the temperature of the hot air blown out from the outlet 40 is 20 ° C. It is set to ⁇ 50 ° C. and blown out by the hot air fan 39.
  • the auxiliary burner 12 for tertiary combustion is ignited by the signal of the optical sensor 45, and the smoke is combusted at a high temperature.
  • the purification of is promoted.
  • the amount of oil consumed when the auxiliary burner 12 is ignited is 1.5 liters / hour, and smoke is often generated during the initial combustion for 12 to 24 hours after ignition. During this time, smoke from the fuel is combustible. Therefore, secondary combustion in the furnace flue passage 5 becomes active. This secondary combustion raises the temperature of the entire reaction duct 6 and promotes the purification of smoke. After 12 to 24 hours after ignition, the mode shifts to the low-smoke generation and combustion mode.
  • the auxiliary burner 12 It was intermittent for the auxiliary burner 12 to operate during initial combustion, and the average ignition time was about 50% of the combustion time in the combustion furnace chamber 1.
  • smoke is generated when the amount of air supplied to the combustion furnace chamber 1 is suddenly increased in order to increase the thermal power.
  • the auxiliary burner 12 is temporarily ignited.
  • the ignition time of the auxiliary burner 12 was about 30% or less of the total operation time of the combustion furnace chamber 1.
  • wood biomass fuel used as wood biomass fuel
  • the cost of building scraps, sawmill mills, thinned wood, agricultural waste, building waste, charcoal, carbide, etc. used as wood biomass fuel is expected to vary greatly depending on the supply status, but the average is ⁇ 5 / kg is there.
  • Oil fuels such as light oil, heavy oil A, waste oil, and bio-based oil are wide in cost, but it is expected to be ⁇ 50-100 / kg / liter in the future, so its economic effect is high.
  • the woody biomass boiler is a circulation type carbon dioxide zero emission system. If fossil fuel and its equipment are replaced, 90% or more of the warming gas discharged from fossil fuel can be reduced. This greenhouse gas emission right can be further used to reduce fuel costs, and the fuel efficiency of the wood-based bulk fuel boiler according to the present invention will be kept as low as possible in the future.
  • the Example of this invention was explained in full detail, this invention is not limited to the said Example, A various deformation
  • the basic structure of the combustion furnace such as the shape of the combustion furnace chamber, the main fuel, the arrangement of smoke roads and hot air passages, or the opening / closing door packing structure may be selected as appropriate.
  • the batch-type combustion furnace of the present invention can use wood-based fuel, charcoal, or various bio-based bulk combustibles such as firewood, which are easily available and inexpensive, as a fuel. It is suitable for various uses as a heating device, and is also suitable as a countermeasure against global warming as a zero emission type heat source of carbon dioxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

大容量のバルク状木材や木質系燃料をバッチ式で大量に炉内に設置し、これを燃料として長期に渡り必要量のみを燃焼させ、かつ、排煙のクリーン化を図る。 燃焼炉室1に燃料となる薪M等を縦型に設置し上部から下方に向かって燃焼させ、燃焼空気を電磁弁11によって0%~100%の間で気密構造を持つ燃焼炉室1内へ供給し、最大燃焼モード、休眠モード、再点火モード、消火モードに適した空気量を供給する。燃焼炉室1からの排煙濃度を光センサ45で検出し、その検出信号に基づいて補助バーナ12を制御するとともに、熱交換器31で加熱した温風路30内の温度を温度センサ38で検出し、温度センサ38からの検知温度に基づいて外気取り入れ用のダンパ35,36,37の開度を自動制御し、吹き出し口40から吹き出す温風の温度を制御する。

Description

木質系バルク燃料用燃焼炉とその燃焼制御方法、その燃焼炉を用いた温風発生装置及び木質系バルク燃料用燃焼炉の排煙利用方法
 本発明は、木質系バルク状可燃物(木材、炭化物、あるいは、バイオ系バルク状可燃物)を燃焼することが出来、必要に応じて燃焼量を制御出来、クリーンな排気ガスを得ることが出来る木質系バルク燃料用燃焼炉とその燃焼制御方法、その燃焼炉を用いた温風発生装置及び木質系バルク燃料用燃焼炉の排煙利用方法に関するものである。
 本発明において「木質系バルク状可燃物」とは、木材、薪、竹、チップ、ペレットなど木質系燃料、炭化物、あるいは、バイオ系のバルク状可燃物をいう。また、「バルク状可燃物」とは、酸素と積極的に接触させて燃焼させる石油やガスに対比して用いるものである。フリー百科事典『ウィキペディア(Wikipedia)』によると「バルク(Bulk)とは、ある物体、流体のうち界面に触れていない部分を指す。物体の、界面や境膜、物質表面などと対になる部分であり、ある物質の物性といえばバルク部分が持つ性質を指す。主に界面化学、移動現象論、物性物理などで用いられる用語である。」「地球上に存在する純物質と混合物のおよそ全ては、他のいかなる物体にも触れることなく、それのみで存在することはない。たとえば海水は海底や海岸、空気とふれあい、コップの水はコップの表面や空気とふれあわずには存在できない。しかしその一方で、海水の大部分、コップの水の大部分はそうした他者と触れ合わず自分自身とのみ触れ合っている。この、自分自身とのみ触れあい、他者からの影響が無視できる領域をバルクと呼ぶ。」このような意味合いでバルク状で燃焼される木質系燃料を「木質系バルク状可燃物」という。この木質系バルク状可燃物は、人類の歴史とともに有用な熱源として利用されてきており、地球温暖化に関して、炭酸ガス対策上ゼロエミッション型燃料として注目される。木質系バルク状材料として、製材端材、木工端材、間伐材、集成端材、建築廃材、農業廃材、土木廃材等が知られているが、これらを燃料として容易に利用することができれば、省エネルギー対策及び地球温暖化対策として大変有用である。本発明は、これらの木質系バルク状燃料を容易に熱源として利用できる燃焼技術とボイラおよび温風発生装置としての利用方法を提供するものである。
 木質系燃料の使用方法として、従来からいろり、かまど、薪ストーブ、ペレットボイラ、ペレット発電機等多くの利用方法が知られている。バルクの薪を使う方法では、燃焼状態にあわせて薪燃料を絶え間なく供給することと、薪の積み上げ方や燃え方に応じて燃焼を管理するために常に人手が必要であるという不都合がある。規模の大きい薪蒸気機関や薪ストーブでは、燃料は大きくても5~20cm程度に切断し人的または機械的手段で連続的な供給がはかられる。また、排煙には不完全燃焼による煤や一酸化炭素等が排出されるので、環境汚染対策が難しいという欠点があった。また、オイルバーナによる二次燃焼装置を用いて不完全燃焼による煙の発生を抑制する方法が知られており焼却装置としての機能をもつものが知られているが、本来暖房装置として備えるべき長時間の制御機能を持つものは知られていない。
 チップやペレット燃料の利用では、燃料の定量供給が可能になるというメリットがあるが、連続供給装置を備える炉が必要であり、いわゆる、開放系の炉を使う必要がある。このため、厳しい環境対策を施した設備と管理が必要となる。また、チップやペレット燃料では、チップ化や成型に費やす生産エネルギーとコストが化石エネルギーと比較して無視することが出来ないという問題がある。また、燃焼に伴い、発煙と環境汚染の発生を伴うので、木質系燃料の使用を安易に広げることができないという問題がある。
 この改善策として、特許文献1では、暖炉型暖房機の燃焼筺体内の薪の支持板の下にガス又はオイル燃料の第1バーナを設置し、更に後方に一対のバーナを設置するなど複雑な燃焼系が提案されている。しかしながら、一般的には、多数のバーナを用いるのは効果的な方法ではないという問題があるうえに、クリーンな排ガスが得られないという問題がある。特許文献2と特許文献3では、薪燃料を埋薪法という非常に緩慢な方法で燃焼し発煙を抑制する方法が提案されているが、燃焼初期には長時間の発煙が発生するのでこれを処理する必要がある上に適切な発熱量を得るには大量の酸化触媒と巨大な炉が必要となり、工業的に有用な熱量を取り出すのは困難である。
特開2006-183920号公報 特開2004-245563号公報 特開2003-343840号公報
 本発明が解決しょうとする課題は、大容量のバルク状木材等の木質系燃料を容易に利用できる燃焼技術とボイラを開発し、それにより暖房装置としての機能を持つ装置を提供することである。大容量のバルク状木材等の木質系燃料をバッチ式で大量に閉鎖型の炉内に設置して点火し、長期にわたり燃料の必要量のみを燃焼させて燃焼状態を継続するのは容易ではない。つまり、投入した燃料の一部のみを燃焼させながら最終的には全量を燃やすことができるならば、バルク状燃料の有効利用が可能になる。また、燃焼条件として実用上不可欠な、燃焼状態を自由に変えて必要な燃焼熱を取出したり、発熱を抑制したり、更には休眠状態(実質的に燃焼の進行をストップさせる状態)にしたり、休眠状態から再稼動のために再燃焼状態に復帰する必要があるので、これ等の燃焼技術の問題が解決される必要がある。
 このように炉の燃焼状態を自由に制御しようとすると、炉全体にわたり高度な不完全燃焼状態が起こるので、排煙は濃度の高い一酸化炭素や煤塵を多く含む上に、効率よく燃焼熱を取り出し、排ガスをクリーンに保てるというバッチ式の炉やボイラ、または、有用な小型暖房装置は知られてなく、燃焼状態を容易に制御するのは困難であるという問題がある。
 本発明は、このような課題に鑑み、木質系固体燃料(バルク状燃料)に必要以上の加工やコストを加えないで、バルク状のままで燃焼させることができ、かつ、その燃焼状態を自由に変えて必要な燃焼熱を有効利用することが可能で、かつ、発熱を抑制等の燃焼制御が可能な木質系バルク燃料用燃焼炉とその燃焼制御方法及びその燃焼炉を用いた温風発生装置を提供することを目的とする。
 本発明は、大量の木材等の木質系バルク燃料、または、炭化物をバッチ式で炉に投入し、点火後、長期間燃焼量や休眠状態を制御できる燃焼炉であり、炉体は高い内部温度と外壁の低い温度を適切に保つことが出来る保温構造からなり、炉体の形は縦型で奥行きの長い構造とし、燃焼時の燃料の木材を縦型に設置することを特徴とし、燃焼は積み上げた燃料の頂部から底部の方向に向かって燃焼させることを特徴とする。しかし、燃料が剪定枝のように細いものは燃焼しやすいので必ずしも縦置きにする必要はない。
 さらに本発明においては、温風を発生させるために、適切な温度にした炉室の外壁やダクトの外壁を熱源とする熱交換により熱風を発生させると共に、燃焼排ガスをチューブ型熱交換器の1次側に用いて熱風を発生させる構造である。得られた熱風は外気と混合して適切な温風を得ることが出来る構造であり、全体として熱効率が高く廃熱が少ないボイラとなることを特徴とする。また、炉の燃焼量を把握する手段として、得られる熱風の温度を燃焼パラメターとして用いることを特長とし、発熱量の最大許容量は反応ダクトの許容最高温度で制御することを特徴とする。
 さらに本発明においては、燃焼用空気は供給ファンの出口に接続した電磁弁にて最少空気量0%と最大空気量100%の間で正確な風量を供給できる構造とし、炉の燃焼を停止させる休眠状態では火種を維持することが出来る微量の空気の供給が保証され、消火するには空気を完全に遮断できることを特徴とする。また、光学式の透過型排煙センサにて排ガスの状態を正確に把握できる構造を持ち、光学窓は煙による汚染を防ぐために光を通す小窓を持つ遮蔽板を有し、光学窓側から常に空気をパージして当該小窓からクリーンな空気が煙の進入を防ぐ構造を有し、排ガス状態を正確に把握し、排煙浄化に使用できることを特徴とする。
 請求項1の木質系バルク燃料用燃焼炉は、木質系バルク状可燃物を燃焼させる燃焼炉室と、この燃焼炉室の背面と側面と上面とを所定の空間部を配して覆う筺体と、この筺体の前面側に設けた前記燃焼炉室の開閉扉と、前記燃焼炉室内に上面側より燃焼用空気を供給する給気手段と、前記燃焼炉室の背面下方に設けた排煙口とを備え、該排煙口は前記空間部に形成されたダクト及び煙道路を経て煙突部に至り、さらに前記給気制御手段により前記燃焼炉室内に上面側より供給する空気量を調整する給気制御手段を設け、この給気制御手段によって、前記燃焼炉室内の燃焼制御を可能とすることを特徴とする。
 請求項2の木質系バルク燃料用燃焼炉は、前記燃焼炉室内の燃焼制御は、燃焼モードとして、最大燃焼モード、通常燃焼モード、発熱を要しない休眠モード、再燃用の火種を維持する火種モード及び消火モードであることを特徴とする。
 請求項3の木質系バルク燃料用燃焼炉は、前記燃焼炉室内において、前記排煙口に至る炉内煙道通路を設けるとともに、前記ダクトの底部に炉内で予熱された空気が供給される二次燃焼バーナ用ノズルが設置され、その上部に補助バーナを設け、更に上部に酸化触媒とを設けることにより、前記二次燃焼バーナ用ノズルでの二次燃焼と、前記補助バーナによる三次燃焼と、前記酸化触媒による四次燃焼を経て浄化した高温の排煙を前記チューブ型熱交換機で急冷した後、前記煙突部から排煙させることを特徴とする。
 請求項4の木質系バルク燃料用燃焼炉は、前記煙道路に排煙濃度を検出する煙センサを設け、この煙センサで検知する排煙濃度に基づいて前記バーナによる三次燃焼を制御することを特徴とする。
 請求項5の木質系バルク燃料用燃焼炉は、前記煙センサを光学センサで構成し、この光学センサから照射した光ビームが走査する光路を前記煙道路に対して横断するように設けるとともに、この光学センサを収納するハウジングを設け、該ハウジングと前記光路とを仕切る遮蔽板に前記光ビームが通過する子孔を形成するとともに、該子孔から前記ハウジング内に侵入する排煙を遮断するエア供給手段を設けたことを特徴とする。
 請求項6の木質系バルク燃料用燃焼炉の燃焼制御システムは、前記請求項1~5の何れか1項に記載の木質系バルク燃料用燃焼炉において、前記給気手段として給気ファンを用いるとともに、その給気制御手段として電磁弁を用い、この電磁弁によって前記給気ファンから供給される燃焼空気量を0~100%の間で制御し、前記各燃焼モードでの空気量を調整することを特徴とする。
 請求項7の木質系バルク燃料用燃焼炉の燃焼制御方法は、木質系バルク状可燃物を燃焼させる燃焼炉室と、この燃焼炉室の背面と側面と上面とを所定の空間部を配して覆う筺体と、この筺体の前面側に設けた前記燃焼炉室の開閉扉と、前記燃焼炉室内に上面側より燃焼用空気を供給する給気手段と、前記燃焼炉室の背面下方に設けた排煙口とを備え、該排煙口は前記空間部に形成されたダクト及び煙道路を経て煙突部に至り、さらに前記給気制御手段により前記燃焼炉室内に上面側より供給する空気量を調整する給気制御手段を設け、この給気制御手段によって、前記燃焼炉室内の燃焼制御する方法であって、前記燃焼炉室の内壁面を断熱材で覆って高い保温性をもたせ、炉室下部に前記排煙口を備えた気密構造とするとともに、燃料として薪燃料を縦置きとして隙間の少ない稠密形に積み上げた状態で燃焼炉室内に配置し、その薪燃料の頂部に点火できる開閉自在な焚口を前記開閉扉に設けて、前記薪燃料上部より下部に向かって燃焼させるとともに、燃焼によって発生する火炎や煙を前記煙道路中に設けられた誘引ファンにより煙突部から排出し、前記給気制御手段により前記燃焼炉室内に上面側より供給する空気量を調整することを特徴とする。
 請求項8の木質系バルク燃料用燃焼炉を用いた温風発生装置は、前記請求項1~7の何れか1項に記載の木質系バルク燃料用燃焼炉を用いた温風発生装置であって、前記筺体と前記燃焼炉室との間に前記煙道路に至る温風路を設け、この温風路内に位置して熱交換器を設け効率よく熱風を発生するとともに、前記筺体の一部に前記温風路と連通する開口部を設けて取り入れた低い温度の外気と当該熱風を混合して温風とし、温風送風機によって室内へと送風するように構成したことを特徴とする。
 請求項9の木質系バルク燃料用燃焼炉を用いた温風発生装置は、前記燃焼炉室外面と熱交換器で加熱された熱風の温度を検出する温度センサを設け、この温度センサの検知温度に基づいて室内に送風する温風温度が設定温度となるように、前記燃焼炉室の燃焼状態を制御するとともに、前記開口部から取り入れる外気の流入量を外気調整手段によって調整することを特徴とする。
 請求項10の木質系バルク燃料用燃焼炉の排煙利用方法は、木質系バルク状可燃物を燃焼させる燃焼炉室と、この燃焼炉室の背面と側面と上面とを所定の空間部を配して覆う筺体と、この筺体の前面側に設けた前記燃焼炉室の開閉扉と、前記燃焼炉室内に上面側より燃焼用空気を供給する給気手段と、前記燃焼炉室の背面下方に設けた排煙口とを備え、該排煙口は前記空間部に形成されたダクト及び煙道路を経て煙突部に至り、さらに前記給気制御手段により前記燃焼炉室内に上面側より供給する空気量を調整する給気制御手段を設け、この給気制御手段によって、前記燃焼炉室内の燃焼制御を可能とする木質系バルク燃料用燃焼炉を用いて、排煙を園芸施設内に供給して園芸施設内を薫淨し、又は排煙を木造建造物の床下に供給して床下を薫淨し、園芸施設内農業での減農薬、無農薬栽培を促進し、又は木造建造物のシロアリによる食害を低減することを特徴とする。
 本発明は、木材等の木質系バルク燃料や炭化物燃料をバッチ式で、燃焼量、休眠状態、または、再燃焼状態を制御することができ、長期間燃焼することができ、安価な主燃料とわずかな補助用のオイル燃料を用いてクリーンな排ガスの燃焼炉を得ることができるとともに、温風や温水を発生するのに適したボイラや暖房装置として利用できるという利点がある。また、あらゆる木質系バルク状燃料の有効利用が出来るため、環境の浄化とグリーンエネルギーとして地球温暖化の防止に貢献することが出来る。さらに、本発明においては、木材等の木質系バルク燃料や炭化物燃料を閉鎖式の燃焼炉にバッチ式に供給して燃焼を制御することにより燃焼状態、休眠状態、または、再燃焼状態を制御することができる。
図1は、本発明の一実施例を示す燃焼炉の側面図である。 図2は、同上、燃焼炉の正面図である。 図3は、同上、燃焼炉の燃焼制御方法とその実施方法を示した説明図である。 図4は、同上、燃焼炉の温風発生方法とその実施方法を示した説明図である。 図5は、同上、図1のA-A線断面図である。 図6は、同上、図1のB-B線断面図である。 図7は、同上、反応ダクトの接続構造を示す説明図である。 図8は、同上、光学センサの取り付け構造を示す説明図であり、図8(A)は平面図、図8(B)は側面図、図8(C)は平面図を示している。
 木材及び木質系バルク燃料や炭化物を燃料とする燃焼炉を暖房装置として利用するには、いくつかの基本技術が確立されなければならない。第1に、燃料の燃焼量と発熱量を自由に制御することが必要であるが、バッチ式の多量の燃料に点火したとき、全体を一度に燃焼させるのは容易であるが、火力を必要量に抑えるため燃料の一部のみを燃やし続けるのは困難であり、高度の不完全燃焼を伴うのが普通である。また、最終的には燃料の全量を残さずに燃やす必要があるが、容易なことではない。また、火力を必要としない時は火種を残して休眠状態におく必要があり、反対に火力を必要とする時は、火種が元になって再燃焼ができる必要がある。第2に、燃焼で発生する煙による大気汚染を防ぎ、クリーンな排気ガスとして放出される必要がある。
 本発明は、薪等バルク状の木材、竹、炭化物、又は、バイオ系可燃物を燃料とするバッチ型燃焼炉において、炉体の内壁を断熱材で覆い炉内温度と燃料の温度を容易に高くすることが出来、且つ、炉体の外壁温度を100℃程度に低く出来る炉体であって、燃焼量の制御を容易に行うことができ、発熱を要しないときには休眠状態に置く事が出来、かつ、再燃用の火種を容易に維持することが出来ることを特徴とする、木質系バルク燃料ボイラの構造とその方法に関する。このような燃焼条件が必要とされる木質系バルク燃料用のバッチ式ボイラを鋭意研究し、必須となる燃焼技術と温風発生技術を発明するにいたったので、以下にその内容を詳しく説明する。
 炉に投入する燃料の薪はよく乾燥したものが望ましい。水分が多いと完全燃焼しにくい上に水分の多い大量の木酢を発生することになり燃焼制御上好ましくない。薪は、冬期、樹木の活動が低いときに伐採し、サイズによって1~2年程自然乾燥したものが望ましい。木質のバルク状薪燃料は大きく重たいうえに大量に使用するので、乾燥して軽量になった薪を楽な姿勢で炉室に運び込める必要がある。そのため、炉室には大きな開閉扉を設け搬入者の出入りが楽な構造にすることが望ましい。また、燃料をパレット単位で機械的に炉内へ搬入してもよい。
 炉体内で薪等の燃料を燃焼させるに当たり、燃料の一部を燃焼させるだけでは炉内や燃焼炉自体の温度上昇には限界がある。燃焼炉の一部分の燃料が燃焼しているとき炉体から出てダクトに排出される煙の平均温度は150℃~300℃となることが多く、炉内全体の温度は決して高くならない。
 燃焼炉の燃料に点火と消火を容易に繰り返すには、炉内の平均温度が高く150℃以上にあることが望ましい。更に望ましくは、200℃~300℃と高めの温度になることが望ましい。この目的のためには、燃焼炉の内部全体に断熱材を施し、炉内の平均温度を上げることが肝要であることがわかった。また、燃焼炉の外壁は約100℃として、60℃以上の熱風が容易にえられる構造とすることが望ましい。
 また、本発明の炉室は縦型で奥行きの長い構造を持つことを特徴とし、炉底に接続されたダクトへの排煙の出口を除いて、気密構造であることを特徴とする。また、炉室に置く薪燃料は縦置きを特徴とし、隙間の少ない稠密形に積み上げて、上部より下部に向かって徐々に燃焼させることを特徴とする燃焼制御方法である。
 このように、炉室は縦型で奥行きの長い構造を持つことを特徴としている。これは、焚き付け後、火や煙の流れが燃料の継続的な燃焼を容易にするために必要な構造である。炉内に薪燃料を積み上げる薪の並べ方は、縦型で最密充填構造をとることが望ましい。そうすることにより限られた空間により多くの燃料を投入することができる。薪を燃焼するには、縦置きと横置きでは燃焼の容易さに大きな差がある。木材の気孔は長さ方向に成長していて長さ方向に燃焼しやすく、直角方向には燃えにくい構造を持っており、木材の端面に着火すると長さ方向に燃焼状態が広がりやすい特徴があることを積極的に利用するのがよい。このように、燃料の上部より下部に向かって徐々に燃焼させることを特徴とする燃焼制御方法を用いるのが良く、燃焼状態を容易に維持することができ、薪の火が途中で消えるのを防ぐことが出来る。これに対して、炉底に火格子を設置したり、側面に空気供給口を設けるなどして、燃料の下部から燃焼させる従来の方法は適切な方法ではない。また、最密充填構造をとることで一本の薪の燃焼熱が隣接する薪に伝わり、隣接する薪の燃焼を容易にする効果がある。このようにすることにより、バッチ式に積み上げられた燃料により炉内全体が木質系バルク状燃料により充満された状態を作ることができる。しかし、燃料の置き方はここで述べた方法に限定されるものではなく、剪定枝など燃焼しやすいものは置く方向を自由にできる、また、ペレットやチップなどは袋に入れて積み上げたり、薪と共に投入したりしてもよい。
 焚き付けは燃えやすい消し炭、小枝、適度のサイズの薪等を使うのがよい。また、焚き付けを置く位置は、積み上げた燃料上部中央手前に置いて着火するのがよく、排煙は炉の後方壁面に沿って設けた垂直方向の煙道を経て炉室下部にあるダクト入り口へ流出させるのがよい。このように、当該燃焼制御方法に最も適した炉の構造は、縦型で奥方向に長めであり、横巾を広く取らないものが望ましい。しかし、燃焼炉の形状は、厳密な縦型でなくとも、類似した形状ならば利用することが出来る。焚き付けに有用な消し炭は、燃料の大部分が燃焼し火力が落ちた状態で炉の運転を止め、消火状態にすることで必要量が得られることになる。
 本発明の炉室は、手前から燃料の頂部に点火できる焚口をもち、発生する火炎や煙は、煙道に設けられた誘引ファンにより、炉室奥壁に設けた垂直方向の煙道から炉底に接続されたダクトを通して煙突部へ排出され、煙や火炎が少ない抵抗でダクト部へ流出できる機能を有する構造を特徴としている。
 燃料に点火するには、色んな方法があるが、炉室の手前から燃料の頂部に点火できる焚口としての小扉をもつのがよく、燃料の頂部に点火し、焚付け時の煙は煙道部に設けた誘引ファンにてダクトを経由して排出し、煙が焚口から室内に流れ出るのを防ぐ構造がよい。また、小扉からハウス内へ煙が逆流するのを防ぐために、焚口の位置は炉室天井から出来るだけ下方にき、点火する焚き付け燃料の位置よりも十分に低くすることが望ましい。点火方法には各種の手段があるが、消炭を用いると少量の紙とマッチで容易に点火できる。一般の焚き付けに点火する方法としては、トーチバーナが好んで用いられる。
 炉内に積み上げた燃料の燃やし方として、炉の奥底部に向かって垂直の炉内排煙通路5を設け、手前上部に着火するのがよい。燃料の手前上部に着火すると、排煙は積み上げた燃料上部を通過しながら炉奥面の炉内排煙通路5へ達するが、この間に燃料上部を乾燥加熱することができ、燃料の上部全体が着火し易くなる。炉室2奥壁にある上下方向の炉内排煙通路5が、火炎が炉内で広範囲に広がるのを防ぎ、煙や火炎が炉底後部にあるダクト入り口へ容易に排出されることを特徴とする構造がよい。他方、炉内から直接煙突へ抜ける煙道を設け、焚き付け時に煙道に設けたシャッタをあけて煙を直接煙突に排出する構造をとることもできる。しかし、この場合は煙をクリーンにする二次~四次燃焼の機構を利用できないので環境維持のためには利用しない方がよい。
 薪燃料への点火手順は次のようにするのが良い。点火時は多くの空気が必要なので、制御盤は手動運転とし、給気ファン10を始動し給気用電磁バルブ11の開度を最大にし、かつ、小扉25を開けて空気を自由に取り入れる。また、三次燃焼用のバーナ12に点火し、約10分間程度煙道の予備加熱をした後、誘引ファン29を始動する。次に焚き付けに点火後、15~30分の間しっかりと燃やすことにより火が薪燃料に着火するのを確かめてから小扉25を閉める。このようにすることで、小扉25から炉外へ煙の漏出をなくすことが出来る。また、ハウス内へ必要以上の煙の漏出は、作物の汚染や蜂の健康被害の原因になることがある。
 燃料への着火後、自動運転に切り替えることができる。燃焼状態は、煙の多い「初期燃焼」から煙が殆ど出なくなる「おき火燃焼」状態を経ることになるが、残った燃料が約10%以下になり十分な火力が得られない場合、消火して、開閉扉を開き灰を掻き出して、再度燃料を投入し、次のバッチ運転に移ることになる。小扉25は、炉の運転中、燃焼状態を点検したり、追加の燃料を投入することができる構造になっている。暖房が必要な時間帯に燃料が全焼し暖房が出来なくなると困るので、必要な時間帯まで燃焼を継続させるために燃料を追加することがある。小扉25から、追加の薪や炭化物を投入することにより、燃焼終了時を先送りすることが出来る。
 本発明の燃焼制御システムにおいては、燃焼空気量は、燃焼用給気ファン10に直結した電磁弁11の開口度により燃焼空気量を0~100%の間で制御し、気密構造を持つ炉内2へ供給できることを特徴とし、最大燃焼時、休眠時、再点火時、消火時等に適した空気量を供給する燃焼制御システムである。
 燃料の燃焼状態として、最大燃焼、通常燃焼、休眠燃焼、再燃焼、および、消火等、必要に応じてこれらの燃焼状態を実現するには、供給する空気量を厳密に制御する必要があり、それには炉体が気密な構造でなければならない。特に、三次燃焼部の補助バーナ部12の空気取り入れファンによるダクト接続部を経た空気の逆流があるのも良くない。上記燃焼制御システムによると、燃焼空気量は、給気ファン10と接続した電磁弁11の開口度を0~100%の間で調整して制御される構造であり、気密構造を持つ炉内へ供給できることを特徴としている。
 排煙濃度が高くなると煙道に設けたセンサの信号でバーナ12を点火させ排煙をクリーン化することが出来る構造であるが、初期燃焼時に排煙濃度が異常に高くなると排煙のクリーン化が困難になることがある。これは、燃焼空気が過剰に供給され燃料が過剰に燃焼することにより起こる現象であり、給気量を低くして排煙量を低減することによりクリーンな排煙を維持できる。このように、バーナ12点火後も、排煙がクリーンにならない状態を検出すると、給気量を抑制して正常な燃焼状態を取り戻すことが出来る。
 炉室2の大きな開閉扉21は、炉体1や開閉扉21の熱歪やパッキンの弾力の低下などが原因でリークが起こり易い。アスベストパッキンを使えない現在ではこの傾向が強い。本装置では、開閉扉21の両サイドの締め付け圧を調節可能な構造にし、パッキンの締め代を広範囲に調節できるようにすることで、この問題を解決した。
 本発明の排煙の燃焼処理をおこなうダクトは、ダクト底部の二次燃焼、補助バーナ12による三次燃焼、および、酸化触媒13による四次燃焼を備える高温反応ダクト6であり、熱膨張の大きい耐熱鋼材(SUS)からなるので、熱膨張の低い鋼材(SS)からなる炉体と直接接続することができないので、接続部は柔軟な構造を取り入れて熱伸縮の差を容易に吸収できるようにしたことを特徴とするダクト構造を有している。
 これによれば、炉につながる反応ダクト6は二次燃焼、三次燃焼、及び、四次燃焼を経て800℃以上の高温になる部分であり、ダクト内面、バーナボックス、及び、触媒室は、耐熱鋼板(SUS)で構成される。耐熱鋼板は大きな熱膨張をもち、低い温度の炉体と小さい熱膨張を持つ炉体との間に、熱緩衝構造が必要であり、構造的に直接接続することはできない。ダクトの耐熱鋼板と炉体との接続部7は、図7に示したベローズによる柔軟な構造をしており、耐熱鋼板と鋼材とは互いに熱による大きな伸縮差を自由に吸収できることを特徴とする構造になっている。
 本発明において、炉の頭頂部より取り入れた外気は、炉室の外壁と排煙を1次側とする熱交換器31を経て加熱され熱風となり、当該熱風温度にて炉の燃焼状態や発熱状態を判断することを特徴とする炉の燃焼制御方法を特徴とし、当該熱風は必要量の外気と混合され目的の温風温度を得る。また、炉の最大燃焼量と発熱容量はダクトの許容最高温度で抑制することを特徴とする。
 温風を発生するために、外気を加熱して適切な温度の熱風を発生する必要がある。本発明によれば、外気を炉体の頂部より導入し、炉室外壁と反応ダクト外壁、および、燃焼空気を熱源とするエロフィンチューブ熱交換器31にて加熱することにより、効率よく熱風を作り出すことができる。この時、エロフィンチューブ熱交換器31内では高い温度の燃焼空気が急冷却され、反応ダクト内で熱分解されたダイオキシン類の再結合を抑制できる構造になっている。炉室の外壁温度は炉の内壁に施された断熱材により適切な温度が保たれており、また、ダクトの表面には断熱材が施工され、炉体表面やダクト表面の温度が適切な値に保たれる構造になっている。得られる熱風の温度は、用途により異なるが、園芸用ハウスの暖房用には、熱風の温度は約100℃以下とするのが望ましい。
 炉の燃焼量を容易に判断することのできるパラメターを見つけるのは容易ではない。1~2トンの大量の薪燃料の一部を燃焼させるとき、燃焼部は燃料の上部を中心にした炉内のごく一部であり場所が不特定である。従って排煙の熱量は炉内を通過してくる経路により、未燃焼部の乾燥や加熱に利用され排煙の温度は異なっている。いろいろの研究の結果、炉体を熱源として熱交換後にえられる熱風の温度が最も良く燃焼量を反映していることが判明した。得られた熱風は、外気取り入れ用のダンパ35,36,37を設け、低い温度の外気と混合させて温風ファンから排出する温風の温度を20℃~60℃にして供給することが出来る。温風温度は外気取り入れ用のダンパ36の開度を自動制御することで容易に達成された。
 温風発生装置では、炉頂から吸入される外気は、炉の天井と炉頂外壁の間に設けたダンパにより二分され、一部は炉室の外周部とエロフィンチューブ型熱交換器31を経て加温されて熱風になり、他の一部は反応ダクトの外周部と熱交換して加温され熱風になる。当該熱風は、炉体の下部で外気給気用ダンパから取りいれた低い温度の外気と混合されて適切な温度の温風となり、温風ファンにより送り出される。温風の温度は外気取り入れダンパの開度によって容易に制御することができる。
 本発明においては、煙道を横断する光ビームの透過率を検出して排煙濃度を評価し、バーナ12による三次燃焼部の駆動を制御することを特徴とし、当該煙道に接続する光学窓には光ビームを通す小さな孔を設け、光学素子側から当該孔を通して清浄な外気を吹き出し、煙の拡散による光路の汚染を防ぐことができる構造とされる。
 これによると、煙道部を通過する光ビームの透過率を検出し、煙濃度から燃焼状態を判定することができる。光センサ部は、発光ダイオード又はレーザ発光器と受光器、および、パージ用エアー送風機で構成する。光部品を内蔵する部屋の煙道側に光ビームを通す小孔を設けた窓付き遮蔽板62を設け、浄化したエアーが光学部品室側から遮蔽板の小さな窓孔を通過して煙道内に流れるようになっている。小さな窓孔を用いて煙道からの煙の逆拡散を防ぎ且つ光学窓の汚染が生じなく、簡単な構造で煙の光学的検出に必要な信号の安定性を実現した。
 炉の不完全燃焼により煙が発生すると、煙センサの信号により三次燃焼用の補助オイルバーナ12が点火し、煙は高温で燃焼し、排煙の浄化が促進される。補助バーナ12の点火時のオイルの消費量は1.5リットル/時である。当該、光センサは、煤塵等の検出以外にも排煙ガスの種類に応じたセンサを用いることにより、多用途の利用が出来る。
 点火後12時間~24時間は煙の発生が多く、これを初期燃焼と呼ぶ。この間、燃料からの煙は可燃性の軽量なガスを多く含んでおり、二次燃焼部が活発になる。二次燃焼によりダクト全体の温度が高くなり、煙の浄化が促進される特徴がある。点火後12時間から24時間後には煙の発生の少ないおきび燃焼に移行する。初期燃焼時にバーナが作動するのは間歇的であり、平均の点火時間は、炉の燃焼時間の約50%であった。おき火燃焼時では、火力を増加するために炉への給気量を急に大きくしたとき発煙があるので、このとき補助バーナが一時的に点火するが、通常は不要であった。結果として、バーナの点火時間は炉の全動作時間の約30%以下であった。
 熱エネルギーの代替効果について、薪燃料1トンは、約400万kcal/batchの熱量をもつので、これはオイル燃料に換算すると440リットルの熱量に相当する。1日に100万kcal消費すると4日間燃焼することができるが、この間に必要な補助燃料用のオイルは10%以下である。つまり、本願発明に基づく温風発生機により、石油熱エネルギーの90%以上を木質バルク燃料で代替することができる。
 木質バイオマス燃料として使用する建築端材、製材所端材、間伐材、農業廃材、建築廃材、炭、炭化物等のコストはその供給状態により大きな巾が見込まれるが、平均¥5/kgである。オイル燃料として軽油、A重油、廃油、バイオ系オイル等コストの巾は広いが、今後¥50~100/kg/リットルと見込まれるので、その経済効果は画期的であることが理解される。
 二酸化炭素ガスの排出について、当該木質バイオマスボイラは、循環型の炭酸ガスゼロエミッションシステムであり、化石燃料とその装置を代替すると、化石燃料の排出する温暖化ガスの90%以上を削減することが出来る。この、温暖化ガスの排出権は、更に燃料経費の削減に利用することが出来るので、本発明になる木質系バルク燃料ボイラの燃費は、今後、大部分が相殺されると予想される。
 本発明は、また、ダクト内の排煙の一部を、農業施設内や乾燥室に拡散・薫浄することにより、害虫の忌避効果や抗カビ効果を利用して、減農薬や無農薬栽培の効果をあげることを特徴とし、また、木造の建造物では、床下に拡散・薫浄し、シロアリなどの害虫の防除に利用することを特徴とする。
 煙による害虫駆除効果について、本願発明の温風発生装置の燃焼炉から排煙の一部を温風に混合しハウス内に拡散・排出したところ、ハウス内にいたバッタ類、カメムシ類、クモ類、および、アリ類の姿が1日以内に見えなくなることが判明した。スギ、ヒノキ、ホワイトオーク、レッドオーク等の薪燃料を燃焼させ、初期燃焼時に出る煙の薫蒸による害虫忌避効果がつよいので、害虫の駆除に利用できることが見出された。これらの害虫の忌避効果は煙の濃度として目や臭覚にようやく刺激を感ずる程度、または、それ以下の濃度の煙で良く、ハウス栽培の植物育成に利用できる。この薫淨効果の利用は多くの可能性を示しており、薫煙と同様に害虫を駆除することにより抗カビや抗菌効果が得られることになる。
 本願発明においては、栽培する植物にたいする減農薬効果や、育成する植物の種類と煙の濃度を適切に調整することにより無農薬栽培を行える可能性が得られた。ダクト内の排煙の一部を、農業施設内や乾燥室に拡散・薫浄することにより、害虫の忌避効果や抗カビ効果を利用して、減農薬や無農薬栽培の効果をあげることを特徴とし、また、木造の建造物では、床下に拡散・薫浄し、害虫の防除に利用できる。この結果、農薬や殺虫剤を使用する作業者への薬害を軽減できることが期待されている。
 以下、本発明を実施するための最良の形態としての実施例を図1から図8を参照して説明する。もちろん、本発明は、その発明の趣旨に反さない範囲で、実施例において説明した以外のものに対しても容易に適用可能なことは説明を要するまでもない。なお、実施例の説明において前後、上下、前面・背面等の位置関係を示す用語は図1又は図3に示された前後・上下関係において用いている。
 本実施例の燃焼炉を用いた温風発生装置は、燃料となる木材等の木質系バルク燃料、または、炭化物をバッチ式で供給して燃焼する燃焼炉室1と、燃焼炉室1の背面下部に形成する排煙口3から煙突部14に至る煙道路15と、前記燃焼炉室1を覆う箱型の筺体20と、この筺体20と前記煙道路15を含む燃焼炉室1との間に形成される温風路30と、この温風路30内の温風を室外に吹き出す温風ファン39(温風送風機)などで構成される。
 前記燃焼炉室1は、全体的には閉鎖型で前面を開口した箱型であり、燃焼炉室1の内壁面全体を断熱材4で覆うとともに、前記筺体20の前面に設けた前記燃焼炉室1の開閉扉21の内面を断熱材22で覆っている。また、開閉扉21は内面にパッキン(図示しない)が装着され、そのパッキンを筺体20の前面に密着させて前記燃焼炉室1を密閉する構造となっている。ところで、燃焼炉室1の開閉扉21の熱歪やパッキンの弾力の低下などが原因でリークが起こり易い。特に、アスベストパッキンを使えない近年ではこの傾向が強い。このため、本実施例では、図2などに示すように、開閉扉21の両サイドに開閉扉21の締め付け圧を調節する複数のハンドル23が備えられており、そのハンドル23によって開閉扉21を締め付けてパッキンの締め代を広範囲に渡って調節できるようになっている。また、開閉扉21の上部に焚口24が形成され、この焚口24を開閉する小扉25も前記開閉扉21と同様、ハンドル23Aによって小扉25に設けたパッキン(図示しない)の締め代を調節できるようになっている。
 前記燃焼炉室1の炉内2には前記排煙口3と連通するように仕切られた炉内排煙通路5が形成されるとともに、前記排煙口3の外側には前記炉内排煙通路5と連通する耐熱鋼板(SUS)から成る筒形の反応ダクト6が接続されている。この反応ダクト6は、耐熱鋼板の周囲を熱負荷の低い断熱材で囲われている。また、反応ダクト6は排煙口3から垂直に立ち上がり、その反応ダクト6と煙突部14とを水平方向に延びる排煙ダクト6Aで連結し、これら反応ダクト6、排煙ダクト6A及び煙突部14によって前記煙道路15を構成している。また、耐熱鋼板からなる反応ダクト6と一般的な鋼板から成る燃焼炉室1とは、熱膨張を異なるため、図7に示すように、反応ダクト6の燃焼炉室1との接続部7は互いに柔軟な構造で接続され、熱による大きな伸縮を自由に吸収できるようになっている。また、前記炉内排煙通路5の上部に位置して燃焼炉室1内に燃焼用空気を取り入れる給気用ダクト9を設け、この給気用ダクト9に、炉室の下部に向けて空気を噴き出すノズルの穴を設け給気手段である給気ファン10を接続する。また、前記空気供給用ダクト9には給気制御手段として電磁弁11が設けられ、この電磁弁11によって、空気供給用ダクト9の開口度を調整して燃焼炉室1内に供給する燃焼用空気量を調整して燃焼炉室1内の燃焼制御を行う。
 前記反応ダクト6のほぼ中間部には、前記燃焼炉室1からの排気ガスを燃焼させる補助バーナ12を設けるとともに、その上部に酸化触媒13を配置し、前記炉内排煙通路5での二次燃焼、前記補助バーナ12による三次燃焼および、酸化触媒13による四次燃焼を経て浄化させた排煙は、煙突部14に設けた誘引ファン29によって前記排煙ダクト6Aを経由して排煙部14から外部に排気される。
 次に主に図4を参照して本実施例における温風発生装置について説明する。前記筺体20と燃焼炉室1との間には温風路30が形成され、この温風路30内に位置して前記排煙ダクト6Aの外側にエロフィンチューブからなる熱交換器31が配置され、温風路30に取り入れた外気を前記熱交換器31及び燃焼炉室1の外壁で加熱し、温風ファン39によって吹き出し口40から温風として室内へと送風するように構成している。また、前記筺体20の天板と背面板及び前面板には、前記温風路30内に外気aを取り入れるために、該温風路30と連通する開口部として外気導入口32,33,34がそれぞれ形成されており、筺体20の背面板及び前面板に形成する外気導入口33,34には外気の流入量を調整する外気調整手段としてダンパ35,36が設けられており、さらに、燃焼炉室1の天井と筺体20との間の温風路30は筺体20内に設けたダンパ37により二分され、一部は燃焼炉室1の外周部と熱交換器31によって加熱されて熱風hになり、他の一部は反応ダクト6の外周部と熱交換して加温され熱風h1となる。また、前記熱交換器31が配置された燃焼炉室1の外周部に形成された温風路30には熱風hの温度を検出する温度センサ38が設けられ、この温度センサ38の検知温度によって前記筺体20の前面下部に形成する前記外気導入口33を開閉するダンパ35の開閉度を制御し、筺体20の前面下部に形成する外気導入口34から取りいれた低い温度の外気と熱風h,h1とを混合させて適切な温度h2、例えば、用途により異なるが、園芸用ハウスの暖房用としては、最高温度は約50℃前後となるよう制御して、温風ファン39によって吹き出し口40から吹き出す。
 また、図8に示すように、前記煙突部14の基部には煙センサとして光学センサ45が設けられており、この光学センサ45の検知信号により三次燃焼用の補助バーナ12を制御する。光学センサ45の光路となる筒状の管路15Aが煙突部14を横断するように固定され、その管路15Aの両端に光学センサ45のセンサハウジング46を取り付けている。このセンサハウジング46の光学窓側は煙による汚染を防ぐために光を通す小窓(図示しない)を有する遮蔽板47を備えるとともに、センサハウジング46には常に新鮮なエアをパージするエア供給手段たるパージ用エア導入口48が設けられており、このエア導入口48から導入したエアを遮蔽板47の小窓から管路15A側に送風することによって、センサハウジング46内への煙の進入を防ぐ構造を有している。なお、図3において符号26は二次燃焼ノズル、27は排煙拡散用バルブであり、燃焼炉室1内の煙を温風に添加し混合することが出来る。
 以上のように構成される本実施例において、前記燃焼炉室1を軽量鉄骨ガラス製ハウス(200m)内に設置し、植栽試験を前提とする性能評価を行った。燃焼炉室1の大きさは1.5mあり、乾燥した集成端材を1バッチ約700kg投入した。燃料は上下方向に稠密型に立てて並べ、上部中央部に燃え易い消炭と新聞紙の焚き付けを置き、燃焼炉室1の開閉扉21を閉じた。制御盤をマニュアルモードにし、補助バーナ12を点火して約10分後、熱交換器31と煙突部14が加温された後、給気ファン10と誘引ファン29をフル稼働して空気を燃焼炉室1内に入れ、小扉25からガストーチにて焚き付けに点火した。約、20分燃焼することにより集成材の火力が強くなったのをみて、小扉25を閉じて制御盤を自動運転に切り替えた。煙突からの煙は、点火直後の一時期は目視できるほどの白煙であったが、小扉25を閉じて約5分後に煙は透明になり目視できなくなった。
 反応ダクト6内の温度は補助バーナ12の点火直後から上昇し始め、20分経過すると反応ダクト6は700℃~800℃に達し、煙は透明でクリーンな排ガスが得られた。特に、初期燃焼では反応ダクト6の最下部と連通する炉内排煙通路5での二次燃焼部で燃焼容易性ガス類が燃焼し、反応ダクト6上部全体の加熱に大きく寄与するとともに、この状態で補助バーナ12を休止した。初期燃焼時には給気ファン10により最大3.0m/minの空気を送り燃焼させることで60~80℃の熱風を得ることが出来た。反応ダクト6の温度が高いとき煙は浄化されており、二次燃焼がなく、反応ダクト6の温度が下がると煙の浄化が不十分となり補助バーナ12が自動で点火するが、補助バーナ12の点火サイクルは略64分であり、約50%の時間は休止状態であった。
 燃料点火後、1時間で炉温は高くなり、60℃の熱風と50℃の温風が連続的に得られた。このとき、燃焼炉室1の外壁温度は約100℃であり、適切な温度の熱風が得られた。煙の多い「初期燃焼モード」は、約12時間後、煙の発生しない「おき火燃焼モード」に移行した。ハウス内に燃焼炉室1を用いた温風発生装置を設置し、代表的な燃焼試験として、50℃の温風を毎時4,000mをポリダクトに送風し、ハウス温度の制御を行った結果、略満足すべき加熱性能の結果が得られた。
 また、燃焼炉室1から発生する煙の一部をハウス内に拡散させると、ハウス内に見られた昆虫類の、バッタ、アリ、カメムシ、クモ等がハウスから姿を消すことを見出した。観察を進めた結果、本装置で発生する煙成分に対して、これらの昆虫が明瞭な忌避効果を表すことが判明した。つまり、ヒノキやスギの煙による薫浄効果が見られる上に、アブラムシやカビの発生も抑制されることがわかった。この効果は、1月以上ハウスを開放して放置すると、昆虫類の忌避効果は低下し、再び昆虫類がハウス内に出現した。
 このように、本発明装置から得られる煙の一部を農業施設内や乾燥室に拡散・薫浄することにより、害虫の忌避効果を利用して減農薬や無農薬栽培の効果をあげることや、乾燥室に拡散・薫浄し、防カビ対策に利用できると結論された。また、木造の建造物にあっては、温風による暖房と共に煙の一部を床下に拡散・薫浄することにより、アリ等の害虫による被害を軽減する効果がある。当該薫淨効果を利用することにより、園芸施設内で作業者が受ける薬害被害を軽減できるとして期待されている。
 また、燃焼炉室1の内壁は保温性の断熱材で被覆しない鋼鉄のままの構造で、他の部分は上に述べた構造と同じにした装置を作成して運転試験した結果、燃焼炉室1の外壁温度が高く、得られる熱風温度が高くなり、60℃近辺の適切な温度の熱風を得ることが困難であった。また、燃料の燃焼促進や、休眠、および、再燃焼サイクルにおける立ち上がり時間が長くなること、休眠時の火種の維持が不安定であり、燃焼状態を制御しにくいことがわかった。このため、本実施例では燃焼炉室1の内壁面全体及びその開閉扉21の内面、反応ダクト6と排煙ダクト6Aを断熱材4,22,28で覆う構造とし、燃焼炉室1内の平均温度を上げる構造とするとともに、燃焼炉室1の外壁は約100℃として、60℃以上の熱風が容易に耐えられる構造とした。また、炉室内の断熱材のうち、天井部分のみを取り除くと、炉室内の煙の温度が低下し、初期燃焼時の燃料の燃焼と炉室の温度の上昇に長い時間が必要になり、結果として燃焼量の制御に2倍以上の時間が必要になった。一方、耐熱鋼板からなる反応ダクト6と一般的な鋼板から成る燃焼炉室1とは、熱膨張を異なるため、高温における局所熱ひずみによる破壊力が発生するが、本実施例において、反応ダクト6の燃焼炉室1と及び反応ダクト6と排煙ダクト6Aとの接続部7は伸縮性のあるベローズの柔軟な構造とすることにより、熱による大きな伸縮を自由に吸収でき、接続部7の破損を防止することができ、小形で安定な高温反応ダクト6となる。
 また、燃料として薪Mを用いる場合、薪Mを水平方向に積み上げると、積み重ねた部分では空隙が出来にくいが、横方向には空隙が出やすい欠点がある。また、燃焼させると、着火し難く、炉全体の燃料が下方に向かって平均に燃焼しにくい上に、炉底に近づくにつれて炉のコーナ部では燃え残りの燃料が出やすいことが判った。この結果、薪Mを燃料とする場合、薪Mを縦型で最密充填構造をとることが望ましい。そうすることにより限られた空間により多くの燃料を投入することができるとともに、木材(薪M)の気孔は長さ方向に成長していて長さ方向に燃焼しやすく、直角方向には燃えにくい構造を持っており、木材の端面に着火すると長さ方向に燃焼状態が広がりやすい特徴があり、薪Mを縦型で気密に並べて充填することで、燃料となる薪Mの上部より下部に向かって徐々に燃焼させ、その燃焼状態を容易に維持することができるとともに、薪Mの火が途中で消えるのを防ぐことが出来る。また、最密充填構造をとることで一本の薪Mの燃焼熱が隣接する薪Mに伝わり、隣接する薪Mの燃焼を容易にする効果がある。
 また、空気供給用ダクト9を開閉する電磁弁11を閉じて、二次燃焼部(炉内排煙通路5)への予熱空気の供給を停止して二次燃焼を止めると、三次燃焼部の補助バーナ12の燃焼が不安定になった。これは、発生量が比較的多い可燃性ガスを、補助バーナ12だけで燃焼するには必要な空気量が不足するからであり、二次燃焼部の安定した燃焼機能が必要である。このため、本実施例では、排煙濃度を光センサ45で検知し、この光センサ45の検知信号に基づいて三次燃焼用の補助バーナ12を制御するとともに、燃焼空気量は、空気供給用ダクト9を開閉する電磁弁11によって燃焼空気量を制御し、気密構造を持つ燃焼炉室1内と二次燃焼バーナ部へ供給される。また、電磁弁11によって燃焼空気量を0~100%の間で制御し、気密構造を持つ燃焼炉室1内へ供給することによって、最大燃焼モード、休眠モード、再点火モード、消火モードに適した空気量を供給することが可能である。
 また、初期燃焼とおき火燃焼を通して煤塵濃度の測定を行った結果、本装置では媒塵量が0.1μg/m3より遥かに少なくなることがわかった、しかし、二次燃焼、三次燃焼、または、四次燃焼のいずれの機能を取り除いても、煤塵量は0.1μg/m3、または、それ以上になることが分かった。すなわち、炉内排煙通路5での二次燃焼、補助バーナ12での三次燃焼、酸化触媒13による四次燃焼によって浄化したクリーンな排煙を維持できる。このように、バーナ点火後も、排煙がクリーンにならない状態を光センサ45で検出すると、電磁弁11による給気量を抑制して正常な燃焼状態を取り戻すことが出来る。このように、排煙濃度が高くなると光センサ45からの信号で補助バーナ12を点火させ排煙をクリーン化することが出来る構造である。
 また、光センサ45からの検知信号は燃焼炉室1の燃焼量を判断する上で重要であり、排煙による煤が光センサ45に付着した場合、検知精度に悪影響を与える虞れがある、しかし、本実施例では、パージ用エア導入口48から新鮮なエアを導入し、遮蔽板47の小窓から光路となる管路15A側に送風することによって、センサハウジング46内への煙の進入を防ぐことができる。これにより、排煙による煤が光センサ45に付着することなく、光センサ45を常に清浄な状態で保つことができ、光センサ45による排煙濃度の検出を安定した状態に保つことができる。
 また、本実施例は、筺体20の天板に形成する外気導入口32から取り入れた外気を燃焼炉室1の外周部と熱交換器31によって加熱し、暖房用の温風h2として吹き出しているが、温風を制御する上で燃焼炉室1の燃焼量を容易に判断することのできるパラメターを見つけるのは容易ではない。すなわち、1~2トンの大量の薪燃料の一部を燃焼させるとき、燃焼部は燃料上部のごく一部であり場所が不特定である。従って排煙の熱量は炉内を通過してくる経路により、未燃焼部の乾燥や加熱に利用され排煙の温度は異なっている。各種研究の結果、燃焼炉室1を熱源として熱交換後に得られる熱風の温度が最も良く燃焼量を反映していることが判明した。このため、本実施例では、熱交換器31が配置された燃焼炉室1の外周部に形成された温風路30に熱風h1の温度を検出する温度センサ38を設け、この温度センサ38からの検知温度に基づいて外気取り入れ用のダンパ35と36の開度を自動制御して温風路30内で加熱された熱風と外気と混合させて吹き出し口40から吹き出す温風の温度を20℃~50℃にして温風ファン39によって吹き出すようにしている。
 以上にように、本実施例では、燃焼炉室1の不完全燃焼により煙が発生すると、光センサ45の信号により三次燃焼用の補助バーナ12が点火し、煙は高温で燃焼し、排煙の浄化が促進される。この補助バーナ12の点火時のオイルの消費量は1.5リットル/時であり、また、点火後12時間~24時間の初期燃焼時には煙の発生が多く、この間、燃料からの煙は可燃性の軽量なガスを多く含んでおり、炉内排煙通路5での二次燃焼が活発になる。この二次燃焼により反応ダクト6全体の温度が高くなり、煙の浄化が促進される。点火後12時間から24時間後には煙の発生の少ないおきび燃焼モードに移行する。初期燃焼時に補助バーナ12が作動するのは間歇的であり、平均の点火時間は、燃焼炉室1の燃焼時間の約50%であった。一方、おき火燃焼モードでは、火力を増加するために燃焼炉室1への給気量を急に大きくしたとき発煙があるので、このとき補助バーナ12を一時的に点火するが、通常は不要であり、結果として、補助バーナ12の点火時間は燃焼炉室1の全動作時間の約30%以下であった。
 また、薪燃料1トンは、約400万kcal/batchの熱量をもつので、これはオイル燃料に換算すると440リットルの熱量に相当する。1日に100万kcal消費すると4日間燃焼することができるが、この間に必要な補助燃料用のオイルは10%以下である。つまり、本発明に基づく温風発生機により、石油熱エネルギーの90%以上を木質バルク燃料で代替することができる。
 さらに、木質バイオマス燃料として使用する建築端材、製材所端材、間伐材、農業廃材、建築廃材、炭、炭化物等のコストはその供給状態により大きな巾が見込まれるが、平均¥5/kgである。オイル燃料として軽油、A重油、廃油、バイオ系オイル等コストの巾は広いが、今後¥50~100/kg/リットルと見込まれるので、その経済効果は高いものである。
 また、木質バイオマスボイラは、循環型の炭酸ガスゼロエミッションシステムであり、化石燃料とその装置を代替すると、化石燃料の排出する温暖化ガスの90%以上を削減することが出来る。この、温暖化ガスの排出権は、更に燃料経費の削減に利用することが出来、本発明になる木質系バルク燃料ボイラの燃費は、今後、限りなく低く抑えられることになる。
 当該温風発生装置のダクトから排煙の一部をハウス内に拡散・排出することにより、ハウス内にいたバッタ類、カメムシ類、クモ類、および、アリ類などの駆除にも効果があることが判明した。すなわち、スギ、ヒノキ、ホワイトオーク、レッドオーク等の薪燃料を燃焼させ、初期燃焼時に出る煙の薫蒸による害虫忌避効果がつよいので、害虫の駆除に利用できる。これらの害虫の忌避効果は煙の濃度として目に刺激を感ずる程度、または、それ以下の煙で良く、ハウス栽培の植物育成に利用できる。この薫淨効果の利用は多くの可能性を示しており、薫煙と同様に抗カビや抗菌効果が得られることになる。したがって、栽培する植物にたいする減農薬効果や、育成する植物の種類と煙の濃度を適切に調整することにより無農薬栽培を行える可能性が得られるとともに、排煙の一部を、農業施設内や乾燥室に拡散・薫浄することにより、害虫の忌避効果や抗カビ効果を利用して、減農薬や無農薬栽培の効果も得られ、また、木造の建造物では、床下に拡散・薫浄し、害虫の防除としての利用も可能となる。また、薫淨効果を利用して園芸施設内の農薬散布や建造物内消毒作業で働く作業者の薬害被害が低減されるとして期待される。
 以上、本発明の実施例について詳述したが、本発明は前記実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、燃焼炉室の形状や主燃料あるは煙道路や温風路の配置あるいは開閉扉のパッキン構造といった燃焼炉としての基本的構造などは適宜選定すればよい。
 本発明のバッチ型燃焼炉は、入手が容易で安価な薪等の木質系燃料、炭化物、又は、多様なバイオ系バルク状可燃物を燃料として利用することができるので、画期的な低燃費暖房装置として多様な用途に適しており、炭酸ガスのゼロエミッション型熱源として温暖化対策にも適している。
1 燃焼炉室
3 排煙口
4 断熱材
5 炉内排煙通路
6 反応ダクト
6A 排煙ダクト
7 接続部
9 給気用ダクト
10 給気ファン(給気手段)
11 電磁弁(給気制御手段)
12 補助バーナ
13 酸化触媒
14 煙突部
15 煙道路
20 筺体
21 開閉扉
22 断熱材
25 小扉
28 断熱材
29 誘引ファン
30 温風路
31 熱交換器
32,33,34 外気導入口(開口部)
35,36,37 ダンパ(外気調整手段)
38 温度センサ
39 温風ファン(温風送風機)
40 吹き出し口
45 光学センサ(煙センサ)
46 センサハウジング
47 遮蔽板
48 パージ用エア導入口(エア供給手段)
15A 管路
h,h1 熱風
 

Claims (10)

  1.  木質系バルク状可燃物を燃焼させる燃焼炉室と、この燃焼炉室の背面と側面と上面とを所定の空間部を配して覆う筺体と、この筺体の前面側に設けた前記燃焼炉室の開閉扉と、前記燃焼炉室内に上面側より燃焼用空気を供給する給気手段と、前記燃焼炉室の背面下方に設けた排煙口とを備え、該排煙口は前記空間部に形成されたダクト及び煙道路を経て煙突部に至り、さらに前記給気制御手段により前記燃焼炉室内に上面側より供給する空気量を調整する給気制御手段を設け、この給気制御手段によって、前記燃焼炉室内の燃焼制御を可能とすることを特徴とする木質系バルク燃料用燃焼炉。
  2.  前記燃焼炉室内の燃焼制御は、燃焼モードとして、最大燃焼モード、通常燃焼モード、発熱を要しない休眠モード、再燃用の火種を維持する火種モード及び消火モードであることを特徴とする請求項1記載の木質系バルク燃料用燃焼炉。
  3.  前記燃焼炉室内において、前記排煙口に至る炉内煙道通路を設けるとともに前記ダクトの底部に予熱空気で燃焼させる二次燃焼用ノズルを設置し、その上部に補助バーナを、更に上部に酸化触媒とを設け、前記二次燃焼用ノズルでの二次燃焼と、前記補助バーナによる三次燃焼と、前記酸化触媒による四次燃焼を経て浄化した排煙を前記煙突部から排煙させたことを特徴とする請求項1又は2記載の木質系バルク燃料用燃焼炉。
  4.  前記煙道路に排煙濃度を検出する煙センサを設け、この煙センサで検知する排煙濃度に基づいて前記バーナによる三次燃焼を制御することを特徴とする請求項3記載の木質系バルク燃料用燃焼炉。
  5.  前記煙センサを光学センサで構成し、この光学センサから照射した光ビームが走査する光路を前記煙道路に対して横断するように設けるとともに、この光学センサを収納するハウジングを設け、該ハウジングと前記光路とを仕切る遮蔽板に前記光ビームが通過する子孔を形成するとともに、該子孔から前記ハウジング内に侵入する排煙を遮断するエア供給手段を設けたことを特徴とする請求項4記載の木質系バルク燃料用燃焼炉。
  6.  前記請求項1~5の何れか1項に記載の木質系バルク燃料用燃焼炉において、前記給気手段として給気ファンを用いるとともに、その給気制御手段として電磁弁を用い、この電磁弁によって前記給気ファンから供給される燃焼空気量を0~100%の間で制御し、前記各燃焼モードでの空気量を調整することを特徴とする木質系バルク燃料用燃焼炉の燃焼制御システム。
  7.  木質系バルク状可燃物を燃焼させる燃焼炉室と、この燃焼炉室の背面と側面と上面とを所定の空間部を配して覆う筺体と、この筺体の前面側に設けた前記燃焼炉室の開閉扉と、前記燃焼炉室内に上面側より燃焼用空気を供給する給気手段と、前記燃焼炉室の背面下方に設けた排煙口とを備え、該排煙口は前記空間部に形成されたダクト及び煙道路を経て煙突部に至り、さらに前記給気制御手段により前記燃焼炉室内に上面側より供給する空気量を調整する給気制御手段を設け、この給気制御手段によって、前記燃焼炉室内の燃焼制御する方法であって、前記燃焼炉室の内壁面を断熱材で覆って高い保温性をもたせ、炉室下部に前記排煙口を備えた気密構造とするとともに、燃料として薪燃料を縦置きとして隙間の少ない稠密形に積み上げた状態で燃焼炉室内に配置し、その薪燃料の頂部に点火できる開閉自在な焚口を前記開閉扉に設けて、前記薪燃料上部より下部に向かって燃焼させるとともに、燃焼によって発生する火炎や煙を前記煙道路中に設けられた誘引ファンにより煙突部から排出し、前記給気制御手段により前記燃焼炉室内に上面側より供給する空気量を調整することを特徴とする木質系バルク燃料用燃焼炉の燃焼制御方法。
  8.  前記請求項1~7の何れか1項に記載の木質系バルク燃料用燃焼炉を用いた温風発生装置であって、前記筺体と前記燃焼炉室との間に前記煙道路に至る温風路を設け、この温風路内に位置して熱交換器を設け効率よく熱風を発生するとともに、前記筺体の一部に前記温風路と連通する開口部を設けて取り入れた低い温度の外気と当該熱風を混合して温風とし、温風送風機によって温風として室内へと送風するように構成したことを特徴とする木質系バルク燃料用燃焼炉を用いた温風発生装置。
  9.  前記燃焼炉室外面と熱交換器で加熱された熱風の温度を検出する温度センサを設け、この温度センサの検知温度に基づいて室内に送風する温風温度が設定温度となるように、前記燃焼炉室の燃焼状態を制御するとともに、前記開口部から取り入れる外気の流入量を外気調整手段によって調整することを特徴とする請求項8記載の木質系バルク燃料用燃焼炉を用いた温風発生装置。
  10.  木質系バルク状可燃物を燃焼させる燃焼炉室と、この燃焼炉室の背面と側面と上面とを所定の空間部を配して覆う筺体と、この筺体の前面側に設けた前記燃焼炉室の開閉扉と、前記燃焼炉室内に上面側より燃焼用空気を供給する給気手段と、前記燃焼炉室の背面下方に設けた排煙口とを備え、該排煙口は前記空間部に形成されたダクト及び煙道路を経て煙突部に至り、さらに前記給気制御手段により前記燃焼炉室内に上面側より供給する空気量を調整する給気制御手段を設け、この給気制御手段によって、前記燃焼炉室内の燃焼制御を可能とする木質系バルク燃料用燃焼炉を用いて、排煙を園芸施設内に供給して園芸施設内を薫淨し、又は排煙を木造建造物の床下に供給して床下を薫淨し、園芸施設内農業での減農薬、無農薬栽培を促進し、又は木造建造物のシロアリによる食害を低減することを特徴とする木質系バルク燃料用燃焼炉の排煙利用方法。
PCT/JP2010/053396 2009-03-03 2010-03-03 木質系バルク燃料用燃焼炉とその燃焼制御方法、その燃焼炉を用いた温風発生装置及び木質系バルク燃料用燃焼炉の排煙利用方法 WO2010101171A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-049241 2009-03-03
JP2009049241 2009-03-03
JP2010045982A JP4734462B2 (ja) 2009-03-03 2010-03-02 木質系バルク燃料用燃焼炉とその燃焼制御方法、その燃焼炉を用いた温風発生装置及び木質系バルク燃料用燃焼炉の排煙利用方法
JP2010-045982 2010-03-02

Publications (1)

Publication Number Publication Date
WO2010101171A1 true WO2010101171A1 (ja) 2010-09-10

Family

ID=42709726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053396 WO2010101171A1 (ja) 2009-03-03 2010-03-03 木質系バルク燃料用燃焼炉とその燃焼制御方法、その燃焼炉を用いた温風発生装置及び木質系バルク燃料用燃焼炉の排煙利用方法

Country Status (2)

Country Link
JP (1) JP4734462B2 (ja)
WO (1) WO2010101171A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134314A (zh) * 2013-01-30 2013-06-05 北京华索科技股份有限公司 一种节能碳阳极焙烧系统及其方法
RU2492388C1 (ru) * 2012-02-03 2013-09-10 Марина Геннадьевна Поликарпова Водогрейный котел
CN104729081A (zh) * 2015-03-23 2015-06-24 张家港市江南锅炉压力容器有限公司 一种节能型热风炉
CN105444154A (zh) * 2015-12-09 2016-03-30 张建臣 化石燃料洁净烧解炉
CN105464792A (zh) * 2014-09-25 2016-04-06 马自达汽车株式会社 发动机的排气控制装置
US9803862B2 (en) 2010-06-04 2017-10-31 Maxitrol Company Control system and method for a solid fuel combustion appliance
US10234139B2 (en) 2010-06-04 2019-03-19 Maxitrol Company Control system and method for a solid fuel combustion appliance
CN110030584A (zh) * 2019-04-11 2019-07-19 北华大学 一种可调风力且实时显示温度的电加热阴燃炉
US11022305B2 (en) 2010-06-04 2021-06-01 Maxitrol Company Control system and method for a solid fuel combustion appliance
CN113547110A (zh) * 2021-06-29 2021-10-26 洛阳盛鑫工矿设备有限公司 一种烘烤炉自动控制系统
CN113883498A (zh) * 2021-09-14 2022-01-04 临沂誉龙环保节能设备有限公司 一种节能锅炉
CN115264474A (zh) * 2022-08-06 2022-11-01 江苏华世尔锅炉节能设备有限公司 一种工业锅炉用加热速率快的智能锅炉

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6232540B2 (ja) * 2016-03-30 2017-11-22 和雄 宮谷 固体燃料の燃焼装置および固体燃料の燃焼方法、並びに、気体加熱装置、液体加熱装置、発電システムおよび冷房システム
JP6232539B2 (ja) * 2016-03-30 2017-11-22 和雄 宮谷 固体燃料の燃焼装置および固体燃料の燃焼方法、並びに、気体加熱装置、液体加熱装置、発電システムおよび冷房システム
WO2017168772A1 (ja) * 2016-03-30 2017-10-05 和雄 宮谷 固体燃料の燃焼装置および固体燃料の燃焼方法、並びに、気体加熱装置、液体加熱装置、発電システムおよび冷房システム
JP6277475B2 (ja) * 2016-03-30 2018-02-14 和雄 宮谷 固体燃料の燃焼装置および固体燃料の燃焼方法、並びに、気体加熱装置、液体加熱装置、発電システムおよび冷房システム
JP7019760B2 (ja) * 2020-07-16 2022-02-15 博志 西村 焼却装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162307A (en) * 1980-05-16 1981-12-14 Sumitomo Electric Ind Ltd Combustion apparatus for solid fuel
JPS5733746A (en) * 1980-08-05 1982-02-23 Corona Kogyo Kk Hot air device using solid fuel
JPS5918116U (ja) * 1982-07-26 1984-02-03 株式会社正英製作所 固体燃料の燃焼装置
JPS6091911U (ja) * 1983-11-23 1985-06-24 藤森 秀一 燃焼装置
JPS6136606A (ja) * 1984-07-27 1986-02-21 Takeshi Hara 木質固型燃料燃焼装置
JPS622962U (ja) * 1985-06-21 1987-01-09
JPH01234713A (ja) * 1988-03-16 1989-09-20 Ngk Insulators Ltd 焼却装置の温度制御方法
JP2001012716A (ja) * 1989-03-20 2001-01-19 Tsunehisa Matsuoka 乾留ガス化燃焼装置の燃焼制御システム
JP2008196757A (ja) * 2007-02-10 2008-08-28 Ehime Univ 木質バイオマス暖房装置
JP2008224143A (ja) * 2007-03-13 2008-09-25 Kurimoto Ltd 廃棄物の焼却装置及び焼却方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162307A (en) * 1980-05-16 1981-12-14 Sumitomo Electric Ind Ltd Combustion apparatus for solid fuel
JPS5733746A (en) * 1980-08-05 1982-02-23 Corona Kogyo Kk Hot air device using solid fuel
JPS5918116U (ja) * 1982-07-26 1984-02-03 株式会社正英製作所 固体燃料の燃焼装置
JPS6091911U (ja) * 1983-11-23 1985-06-24 藤森 秀一 燃焼装置
JPS6136606A (ja) * 1984-07-27 1986-02-21 Takeshi Hara 木質固型燃料燃焼装置
JPS622962U (ja) * 1985-06-21 1987-01-09
JPH01234713A (ja) * 1988-03-16 1989-09-20 Ngk Insulators Ltd 焼却装置の温度制御方法
JP2001012716A (ja) * 1989-03-20 2001-01-19 Tsunehisa Matsuoka 乾留ガス化燃焼装置の燃焼制御システム
JP2008196757A (ja) * 2007-02-10 2008-08-28 Ehime Univ 木質バイオマス暖房装置
JP2008224143A (ja) * 2007-03-13 2008-09-25 Kurimoto Ltd 廃棄物の焼却装置及び焼却方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11022305B2 (en) 2010-06-04 2021-06-01 Maxitrol Company Control system and method for a solid fuel combustion appliance
US9803862B2 (en) 2010-06-04 2017-10-31 Maxitrol Company Control system and method for a solid fuel combustion appliance
US10234139B2 (en) 2010-06-04 2019-03-19 Maxitrol Company Control system and method for a solid fuel combustion appliance
RU2492388C1 (ru) * 2012-02-03 2013-09-10 Марина Геннадьевна Поликарпова Водогрейный котел
CN103134314A (zh) * 2013-01-30 2013-06-05 北京华索科技股份有限公司 一种节能碳阳极焙烧系统及其方法
CN105464792A (zh) * 2014-09-25 2016-04-06 马自达汽车株式会社 发动机的排气控制装置
CN105464792B (zh) * 2014-09-25 2018-07-31 马自达汽车株式会社 发动机的排气控制装置
CN104729081A (zh) * 2015-03-23 2015-06-24 张家港市江南锅炉压力容器有限公司 一种节能型热风炉
CN105444154A (zh) * 2015-12-09 2016-03-30 张建臣 化石燃料洁净烧解炉
CN110030584A (zh) * 2019-04-11 2019-07-19 北华大学 一种可调风力且实时显示温度的电加热阴燃炉
CN110030584B (zh) * 2019-04-11 2020-07-31 北华大学 一种可调风力且实时显示温度的电加热阴燃炉
CN113547110A (zh) * 2021-06-29 2021-10-26 洛阳盛鑫工矿设备有限公司 一种烘烤炉自动控制系统
CN113547110B (zh) * 2021-06-29 2023-12-05 洛阳盛鑫工矿设备有限公司 一种烘烤炉自动控制系统
CN113883498A (zh) * 2021-09-14 2022-01-04 临沂誉龙环保节能设备有限公司 一种节能锅炉
CN113883498B (zh) * 2021-09-14 2023-10-10 临沂誉龙环保节能设备有限公司 一种节能锅炉
CN115264474A (zh) * 2022-08-06 2022-11-01 江苏华世尔锅炉节能设备有限公司 一种工业锅炉用加热速率快的智能锅炉
CN115264474B (zh) * 2022-08-06 2024-02-09 江苏华世尔锅炉压力容器有限公司 一种工业锅炉用加热速率快的智能锅炉

Also Published As

Publication number Publication date
JP2010230305A (ja) 2010-10-14
JP4734462B2 (ja) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4734462B2 (ja) 木質系バルク燃料用燃焼炉とその燃焼制御方法、その燃焼炉を用いた温風発生装置及び木質系バルク燃料用燃焼炉の排煙利用方法
CA2625536C (en) Wood fired boiler
RU153204U1 (ru) Котел отопительный
JP2009068817A (ja) 木質系バイオマス、または、炭化物を燃料とするバッチ式燃焼用ボイラと温風発生装置
US9568214B2 (en) Systems and methods for heating water using biofuel
KR100679316B1 (ko) 화목 보일러
RU2319077C1 (ru) Печь
KR20100137897A (ko) 연기 발생이 없는 화목 연소장치
KR101005721B1 (ko) 화목보일러
CN206281210U (zh) 一种冷凝式内燃多回程锅炉
RU2661516C2 (ru) Твердотопливный газогенераторный котёл
US6145500A (en) Heating device
CN207894028U (zh) 一种生物质无烟热风炉
JP2010255971A (ja) バイオマス燃焼装置
KR102413149B1 (ko) 완전연소가 유도되는 화목난로
KR100264288B1 (ko) 고체 연료용 열풍기
RU219323U1 (ru) Твердотопливная мобильная печь длительного горения
CN212456782U (zh) 一种双锅筒纵置式室燃生物质粉体蒸汽锅炉
KR101380157B1 (ko) 배기폐쇄 안전장치 구조를 가지는 펠릿 보일러
KR100405332B1 (ko) 가스 및 액체연료 겸용 온풍기
KR200412477Y1 (ko) 폐자재 소각용 난로
JP3882023B2 (ja) 熱分解装置、熱分解装置を用いた熱供給方法、木質系燃料の熱分解方法
KR200360939Y1 (ko) 쓰레기를 활용하는 소각로 겸용 보일러
JP6401682B2 (ja) 火葬炉
WO2006090482A1 (ja) 熱分解装置、熱分解装置を用いた熱供給方法、木質系燃料の熱分解方法、排煙処理装置、排煙利用システム、排煙利用装置、排煙利用装置の排煙供給方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748765

Country of ref document: EP

Kind code of ref document: A1