WO2010101079A1 - 発光装置、発光装置ユニット、および発光装置製造方法 - Google Patents

発光装置、発光装置ユニット、および発光装置製造方法 Download PDF

Info

Publication number
WO2010101079A1
WO2010101079A1 PCT/JP2010/053046 JP2010053046W WO2010101079A1 WO 2010101079 A1 WO2010101079 A1 WO 2010101079A1 JP 2010053046 W JP2010053046 W JP 2010053046W WO 2010101079 A1 WO2010101079 A1 WO 2010101079A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
resistor
substrate
semiconductor light
Prior art date
Application number
PCT/JP2010/053046
Other languages
English (en)
French (fr)
Inventor
雅之 伊藤
宮田 正高
太郎 山室
省二 横田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/254,070 priority Critical patent/US8575630B2/en
Priority to EP10748674.8A priority patent/EP2405490B1/en
Priority to CN2010800095105A priority patent/CN102334201B/zh
Publication of WO2010101079A1 publication Critical patent/WO2010101079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a light emitting device including a light emitting device unit having a semiconductor light emitting element (LED) disposed on a substrate and a resistor connected to the LED, a light emitting device unit constituting the light emitting device, and a light emitting device manufacturing method.
  • LED semiconductor light emitting element
  • LEDs Light Emitting Diodes
  • LEDs Light Emitting Diodes
  • LEDs in particular gallium nitride LEDs, are prone to failure due to electrostatic discharge. That is, the reverse withstand voltage is small.
  • a Zener diode is disposed in antiparallel to the LED (see, for example, Patent Document 1).
  • the zener breakdown bypasses the overcurrent for the forward overvoltage, and the overcurrent is bypassed as the normal forward diode for the reverse overvoltage,” so that the LED Protected. Since the forward voltage of the LED is smaller than the zener breakdown voltage of the zener diode, no current flows in the zener diode even if the forward voltage is applied to the LED, and no energy loss occurs. However, it is not easy to manufacture a zener diode as compared with a resistor, and there is a problem that the burden on mounting for an LED is large. In addition, there is a problem that the reliability over a long period is inferior to resistance.
  • Patent Document 2 a technology in which a resistor is connected in parallel to the LED is disclosed (see, for example, Patent Document 2 or Patent Document 3).
  • a resistor is connected in parallel to each of the LEDs connected in series, and each LED is prevented from turning off even when one LED is disconnected.
  • the resistor acts as a bypass resistor. That is, in order for the bypass resistor to fulfill its purpose, it is necessary to supply a current to the bypass resistor that is sufficient to light other LEDs that are not disconnected, so the resistance value of the resistor used needs to be low. Therefore, there is a problem that the current flowing to the bypass resistor causes a large energy loss.
  • Patent Document 3 is a collective LED element in which a plurality of LED chips are arranged in one package, in which variable resistors are provided in parallel to the respective LED chips in order to adjust the brightness of each LED chip. It is.
  • the resistance value of the resistor in this case needs to be a low resistance that allows a current to an extent that affects the brightness of the LED chip. That is, there is a problem of causing a large energy loss.
  • JP-A-11-298041 JP-A-11-307815 JP 2007-294547 A Japanese Utility Model Application Publication 63-180957
  • the present invention has been made in view of such a situation, and a resistor is connected in parallel to a semiconductor light emitting element, and when a light emitting operation voltage is applied to the semiconductor light emitting element, a current flowing to the resistor flows to the semiconductor light emitting element It is an object of the present invention to provide a light emitting device capable of securing reliability and suppressing energy loss by setting the resistance value to be 1/50 or less of the above.
  • a resistor is connected in parallel to the semiconductor light emitting element so that the current flowing through the resistor is less than or equal to 1/50 of the current flowing through the semiconductor light emitting element when the light emitting operation voltage is applied to the semiconductor light emitting element
  • Another object of the present invention is to provide a light emitting device unit capable of securing reliability and suppressing energy loss by setting a resistance value.
  • the present invention is a light emitting device manufacturing method for manufacturing a light emitting device including a light emitting device unit having a semiconductor light emitting element disposed on a substrate and a resistor connected to the semiconductor light emitting element, Another object of the present invention is to provide a light emitting device manufacturing method for manufacturing a large light emitting device with high productivity by providing a resistance forming step and a light emitting device unit forming step.
  • a light emitting device is a light emitting device comprising a light emitting device unit having a substrate, a semiconductor light emitting element disposed on the substrate, and a resistor connected to the semiconductor light emitting element, wherein the resistor is The resistance value of the resistor is connected in parallel to the semiconductor light emitting element, and the current flowing through the resistor flows to the semiconductor light emitting element when a light emitting operation voltage for causing the semiconductor light emitting element to emit light is applied to the semiconductor light emitting element It is characterized in that it is set to a value equal to or less than one-fifth of.
  • the semiconductor light emitting device when the semiconductor light emitting device is turned off, it is possible to suppress the back electromotive force applied to the semiconductor light emitting device due to the external light to prevent the deterioration of the semiconductor light emitting device.
  • the semiconductor light emitting element When the semiconductor light emitting element is in the light emitting state, it is possible to suppress an increase in power consumption due to the current flowing through the resistor by the light emitting operation voltage, thereby prolonging the life and ensuring reliability, and energy loss
  • the light emitting device can suppress the
  • the semiconductor light emitting element is a gallium nitride based semiconductor light emitting element, and the resistance value of the resistor is 15 k ⁇ or more and 10 M ⁇ or less.
  • the resistance value of the resistor is 150 k ⁇ or more and 1 M ⁇ or less.
  • the resistor is a thick film resistor formed on the substrate.
  • the resistor can be formed on the substrate with high productivity, and the assembly process can be simplified to easily manufacture a large-sized light emitting device.
  • the semiconductor light emitting device and the thick film resistor are provided with wiring electrodes respectively connected, and the wiring electrodes are arranged in parallel so as to arrange the semiconductor light emitting devices inside.
  • the thick film resistor may be connected to cross the wiring electrode.
  • a semiconductor light emitting element, a wiring electrode, and a thick film resistor can be arranged with high accuracy, and a light emitting device capable of emitting light with large area and uniformity can be obtained.
  • the substrate is provided with a recognition pattern serving as a mark in the manufacturing process, and the recognition pattern is formed of the same member as the wiring electrode or the thick film resistor. It features.
  • the recognition pattern used when mounting the semiconductor light emitting element can be easily formed in combination with the formation of the wiring electrode or the thick film resistor, so that the light emitting device can have high productivity. Can.
  • the resistor is a chip resistor mounted on the substrate.
  • the resistor can be mounted on the substrate with high productivity, and the light emitting device unit that can be miniaturized by simplifying the assembly process can be easily manufactured.
  • the light emitting device unit is characterized in that a plurality of the semiconductor light emitting elements are connected in parallel.
  • the light emitting device unit is sealed in a single package.
  • This configuration facilitates the handling and makes it possible to obtain a light emitting device with improved reliability and exchangeability.
  • the light emitting device is characterized by comprising a first combined light emitting device unit in which three or more of the light emitting device units are connected in series.
  • the first combined light emitting device unit in which three or more light emitting device units packaged individually are connected in a string shape is provided, it is possible to obtain a light emitting device having an arbitrary length.
  • the light emitting device according to the present invention is characterized by comprising a second combined light emitting device unit formed on the substrate by connecting three or more of the semiconductor light emitting elements of the light emitting device unit in series.
  • the second combined light emitting device unit in which three or more light emitting device units arranged on the same substrate are connected in series is provided, it is possible to obtain a light emitting device with high mounting density (emission density).
  • the second combined light emitting device unit is sealed in a single package.
  • This configuration facilitates the handling and makes it possible to obtain a light emitting device with improved reliability and exchangeability.
  • the light emitting device unit is provided with a power supply unit for supplying a direct current.
  • a light emitting device unit is a light emitting device unit including a substrate, a semiconductor light emitting element disposed on the substrate, and a resistor connected to the semiconductor light emitting element, wherein the resistor is the semiconductor
  • the resistance value of the resistor is connected in parallel to the light emitting element, and the resistance value of the resistor is the current flowing through the resistor when the light emitting operation voltage causing the semiconductor light emitting element to emit light is applied to the semiconductor light emitting element. It is characterized in that it is set to a value which is 1/50 or less.
  • the semiconductor light emitting device when the semiconductor light emitting device is turned off, it is possible to suppress the back electromotive force applied to the semiconductor light emitting device due to the external light to prevent the deterioration of the semiconductor light emitting device.
  • the semiconductor light emitting element When the semiconductor light emitting element is in the light emitting state, it is possible to suppress an increase in power consumption due to the current flowing through the resistor by the light emitting operation voltage, thereby prolonging the life and ensuring reliability, and energy loss
  • the light emitting device unit can suppress
  • a light emitting device manufacturing method includes a light emitting device unit including a substrate, a semiconductor light emitting element disposed on the substrate, and a resistor connected to the semiconductor light emitting element. And a step of forming a wiring electrode by printing the semiconductor light emitting element and the pair of wiring electrodes connected to the resistor on the substrate by printing, and the resistance so as to mutually connect the pair of wiring electrodes.
  • a plurality of the light emitting device units are disposed in parallel and connected in series, and the wiring electrodes are disposed in parallel corresponding to an end portion of the light emitting device unit.
  • the wiring electrodes of the adjacent light emitting device units may be shared with each other, and the resistance may be extended in a direction crossing the wiring electrodes.
  • the light emitting device unit and the wiring electrodes can be arranged at a high density, so that a large area light emitting device can be easily manufactured.
  • the light emitting device includes a light emitting device unit having a substrate, a semiconductor light emitting element disposed on the substrate, and a resistor connected to the semiconductor light emitting element, the resistor being a semiconductor light emitting element
  • the resistance value of the resistor connected in parallel with the element is equal to or less than 1/50 of the current flowing in the semiconductor light emitting element when the light emitting operation voltage for causing the semiconductor light emitting element to emit light is applied to the semiconductor light emitting element.
  • the semiconductor light emitting element is turned off, the back electromotive force applied to the semiconductor light emitting element due to the external light is suppressed to prevent the deterioration of the semiconductor light emitting element.
  • the semiconductor light emitting element when the semiconductor light emitting element is made to emit light, it is possible to suppress an increase in the power consumption due to the current flowing through the resistor by the light emitting operation voltage, and therefore, the life extension is shown. To maintain the integrity Te, also an effect that the energy loss can be suppressed.
  • the light emitting device unit is a light emitting device unit including a substrate, a semiconductor light emitting element disposed on the substrate, and a resistor connected to the semiconductor light emitting element, the resistor being a semiconductor light emitting element
  • the resistance value of the resistor is equal to or less than 1/50 of the current flowing in the semiconductor light emitting element when the light emitting operation voltage for causing the semiconductor light emitting element to emit light is applied to the semiconductor light emitting element.
  • the semiconductor light emitting element Since it is set to a value, when the semiconductor light emitting element is turned off, the back electromotive force applied to the semiconductor light emitting element due to the external light is suppressed to prevent the deterioration of the semiconductor light emitting element.
  • the semiconductor light emitting element when the semiconductor light emitting element is made to emit light, it is possible to suppress an increase in power consumption due to the current flowing through the resistor by the light emitting operation voltage, and therefore, the lifetime can be extended. Ensuring reliability, also an effect that the energy loss can be suppressed.
  • a light emitting device manufacturing a light emitting device comprising a light emitting device unit having a substrate, a semiconductor light emitting element disposed on the substrate, and a resistor connected to the semiconductor light emitting element.
  • FIG. 1 is a circuit diagram of a light emitting device and a light emitting device unit according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing a light emitting device unit constituting the light emitting device shown in FIG. 1 in a plan view seen from the light emitting surface side.
  • FIG. 3 is a transparent side view showing a central portion of the light emitting device unit shown in FIG.
  • FIG. 4 is a circuit diagram of a light emitting device and a light emitting device unit according to a second embodiment of the present invention.
  • FIG. 5 is an explanatory view for explaining a light emitting device unit and a second combined light emitting device unit constituting the light emitting device shown in FIG.
  • FIG. 6A is a flowchart showing an outline process of a light emitting device manufacturing method according to a third embodiment of the present invention.
  • 6B is an explanatory view showing the state of the substrate in the separation groove forming step shown in FIG. 6A, in which (A) is a side view of the substrate and (B) is a plan view showing the surface of the substrate in which the grooves are formed. It is.
  • FIG. 6C is an explanatory view showing the state of the substrate in the step of forming the wiring electrode shown in FIG.
  • FIG. 6A (A) is a side view of the substrate and a cross-sectional view of the screen mask, (B) is a substrate on which the wiring is formed. It is a top view which shows the surface of.
  • FIG. 6D is a plan view showing the surface state of the substrate in the resistance forming step shown in FIG. 6A.
  • 6E is a plan view showing the surface state after the substrate dividing step, the die bonding step, and the wire bonding step shown in FIG. 6A.
  • FIG. 6F is a side view showing the side surface state of the substrate in the dam sheet affixing step and the LED covering step shown in FIG. 6A.
  • 6G is an explanatory view showing the state of the substrate after the dam sheet removing step shown in FIG. 6A, (A) is a side view of the substrate, (B) is the surface of the substrate on which the phosphor-containing resin portion is formed.
  • FIG. FIG. 7 is a circuit diagram of a light emitting device according to a comparative example
  • FIG. 7 is a circuit diagram of a light emitting device according to a comparative example.
  • the light emitting device 300 according to the comparative example is configured by connecting in parallel three combined light emitting device units 310 configured by connecting a plurality of (eight) light emitting device units 320 in series.
  • the light emitting device unit 320 includes only the semiconductor light emitting element 321 (LED 321) without including a resistor.
  • a light-emitting device is generally installed outdoors or indoors to light an LED at night and use it as illumination. Therefore, in the daytime, it is in a situation exposed to external light such as sunlight, and in some cases, external light may be partially applied only to some LEDs (for example, LEDs 321 other than the LED 321 d) .
  • the composite light emitting device unit 310 is always connected to the power supply unit 350 in a normal state. Further, the operation mode of the power supply unit 350 is a lighting mode in which the switch 353 is closed and the forward voltage is applied to the three combined light emitting device units 310 for lighting, and the switch 353 is opened and the combined light emitting device unit 310 This is one of the turn-off modes in which the (LED 321) is turned off. Therefore, an operation mode in which a reverse bias is applied to the LED 321 d has not been assumed at all.
  • the present inventors considered the cause which led LED321d to a non-lighting based on the novel knowledge regarding the phenomenon mentioned above.
  • the light emitting device 300 is in a state in which a closed circuit is formed via the parallel impedance 352 between the output terminals existing between the output terminal 350a and the output terminal 350b in the light off mode. It has been found that a reverse bias can be applied to (eg LED 321 d).
  • one of the eight LEDs 321 constituting the combined light emitting device unit 310 is shielded from light and the remaining seven LEDs 321 are irradiated with external light.
  • seven LEDs 321 irradiated with external light generate photovoltaic power and apply a reverse bias to one light-shielded LED 321 d.
  • the switch 353 is connected to the side of the voltage source 351 with respect to the parallel impedance 352 between the output terminals.
  • the switch 353 is provided on the side of the combined light emitting device unit 310 with respect to the parallel impedance 352 between the output terminals, that is, when the switch 353 is open, the parallel impedance 352 between the output terminals and the combined light emitting device unit 310 Is considered to be disconnected.
  • a closed circuit is formed by other composite light emitting device units 310 connected in parallel with each other, and a reverse bias is applied to the light-shielded LED 321 d.
  • the LED 321 for example, the LED 321 d
  • the light emitting device 300 combined light emitting device unit 310, LED 321
  • Embodiment 1 A light emitting device and a light emitting device unit according to the present embodiment will be described based on FIGS. 1 to 3.
  • FIG. 1 is a circuit diagram of a light emitting device and a light emitting device unit according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing a light emitting device unit constituting the light emitting device shown in FIG. 1 in a plan view seen from the light emitting surface side.
  • FIG. 3 is a transparent side view showing a central portion of the light emitting device unit shown in FIG.
  • the light emitting device 100 includes a light emitting device unit 120 including a substrate 131, a semiconductor light emitting element 121 disposed on the substrate 131, and a resistor 122 connected to the semiconductor light emitting element 121.
  • the resistor 122 is connected in parallel to the semiconductor light emitting device 121, and the resistance value of the resistor 122 applies the light emitting operation voltage to cause the semiconductor light emitting device 121 to emit light.
  • the current flowing through the resistor 122 is set to a value equal to or less than one-fifth of the current flowing through the semiconductor light emitting element 121.
  • the semiconductor light emitting device 121 when the semiconductor light emitting device 121 is turned off, it is possible to suppress the back electromotive force applied to the semiconductor light emitting device 121 due to the external light to prevent the deterioration of the semiconductor light emitting device 121.
  • the semiconductor light emitting element 121 When the semiconductor light emitting element 121 is made to emit light, it is possible to suppress an increase in power consumption due to the current flowing through the resistor 122 by the light emitting operation voltage, thereby prolonging the life and ensuring reliability.
  • the light emitting device 100 can reduce energy loss.
  • the semiconductor light emitting element 121 is comprised with LED, below, the semiconductor light emitting element 121 may be described with LED121.
  • LED a gallium nitride based semiconductor light emitting element capable of emitting blue light was applied.
  • the gallium nitride based semiconductor light emitting element emits primary light which is blue light having an emission peak in a blue wavelength range of, for example, 400 nm to 500 nm.
  • the light emitting device 100 is formed by connecting three first combined light emitting device units 110 connected in parallel between the output terminal 150 a and the output terminal 150 b of the power supply unit 150.
  • the light shield 160 is schematically shown to explain a state in which a part of the LEDs 121 (for example, the semiconductor light emitting device 121 d) is shielded, and is not provided in the actual light emitting device 100.
  • the LED 121 d is in a light-shielded state.
  • the first combined light emitting device unit 110d is shown to include the light-shielded LED 121d.
  • the first composite light emitting device unit 110 is formed by connecting eight light emitting device units 120 in series in the forward direction.
  • the preferable range of the resistance value of the resistor 122 will be described later.
  • the resistor 122 is configured by, for example, a chip resistor (chip-shaped resistor).
  • the power supply unit 150 can be represented by an equivalent circuit including a voltage source 151, a switch 153, and a parallel impedance 152 between output terminals.
  • the output terminal parallel impedance 152 is connected between the output terminal 150a and the output terminal 150b, and electrically protects the first combined light emitting device unit 110 when the switch 153 is opened.
  • the light emitting device unit 120 (see FIG. 2 and FIG. 3) has a substrate 131 in which the p side terminal 123 (p side terminal line 123 w) and n side terminal 124 (n side terminal line 124 w) are metal insulators.
  • the package 130 is sandwiched by the frame 132, the LED 121, the resistor 122 connected in parallel to the LED 121, and the phosphor-containing resin 133 covering the LED 121.
  • the LED 121 includes a p-side electrode 121p and an n-side electrode 121n, which are a pair of pad electrodes, on the top surface, and is die-bonded to the p-side terminal wiring 123w.
  • the p-side electrode 121p is wire-bonded to the p-side terminal wiring 123w, and the n-side electrode 121n to the n-side terminal wiring 124w by wire 125, respectively.
  • the resistor 122 has a pair of electrodes on the upper surface and the lower surface, the lower surface is fixed with silver paste (not shown) on the n-side terminal wiring 124w, and the electrode on the upper surface is a wire by the wire 125 for the p-side terminal wiring 123w. Bonded. Therefore, the LED 121 and the resistor 122 are connected in parallel.
  • the resistor 122 is mounted on the substrate 131 and configured by the chip resistor 122. Therefore, the resistor 122 can be mounted on the substrate 131 with high productivity, and the light emitting device unit 120 that can be miniaturized by simplifying the assembly process can be easily manufactured. In addition, by connecting a large number of light emitting device units 120, it is possible to configure the light emitting device 100 with a large size.
  • the LED 121 is coated with a phosphor-containing resin 133.
  • the phosphor-containing resin 133 is one in which green and red phosphors are dispersed in a silicone resin.
  • the phosphor absorbs blue light (primary light) emitted from the LED 121 formed of a gallium nitride based semiconductor light emitting element and emits fluorescence (secondary light).
  • the light emitting device unit 120 is configured to mix the primary light and the secondary light to emit white light.
  • the phosphor is a substance that absorbs primary light and emits secondary light having an emission peak in the yellow wavelength range of, for example, 550 nm to 600 nm. Therefore, the light emitting device unit 120 (light emitting device 100) can emit white light by mixing the primary light and the secondary light.
  • BOSE Ba, O, Sr, Si, Eu
  • YAG Ce activated yttrium aluminum garnet
  • alpha sialon (Ca), Si, Al, O, N, Eu
  • beta sialon Si, Al, O, N, Eu
  • a blue light emitting one for example, an ultraviolet (near ultraviolet) LED having a light emission peak wavelength of 390 nm to 420 nm and adding a blue phosphor, a light source with high color rendering can be obtained.
  • an ultraviolet (near ultraviolet) LED having a light emission peak wavelength of 390 nm to 420 nm and adding a blue phosphor
  • the substrate 131 and the frame 132 are made of, for example, polyphthalamide (PPA).
  • PPA polyphthalamide
  • the lower surface can be connected to the terminal (flip chip mounting) without using the wire 125.
  • the light emitting device unit 120 is sealed in a single package 130. Therefore, the light emitting device 100 can be handled easily and has improved reliability and exchangeability.
  • the light emitting device unit 120 is in a state in which one LED 121 is mounted.
  • the present invention is not limited to this, a plurality of LEDs 121 may be connected in parallel. That is, in the light emitting device unit 120, a plurality of LEDs 121 can be connected in parallel. With this configuration, it is possible to emit light in a large area, so that the large light emitting device 100 can be configured as the large light emitting device unit 120.
  • the open circuit voltage (with the resistor 122 removed) by the photovoltaic power was about 2 V per LED.
  • the first combined light emitting device unit 110 for example, the first combined light emitting device unit 110d
  • eight light emitting device units 120 in which the resistors 122 and the LEDs 121 are connected in parallel are connected in series.
  • the worst condition when reverse bias is applied to the light-shielded LED 121 d that is, the condition where the highest reverse bias is applied is outside the first combined light emitting device unit 110 d.
  • a state in which light is irradiated, and the photovoltaic power generated in seven LEDs 121 of the first combined light emitting device unit 110d is added by series connection, and a reverse bias is intensively applied to only one light-shielded LED 121d. it is conceivable that.
  • the energy loss due to the resistor 122 can be several percent or less (eg, 2% or less when 1/50 or less), and further, 1% or less (eg, 1/100 or less).
  • the resistance value R is set so that a current equal to or less than that described above flows, the energy loss due to the resistance 122 can be small enough to be neglected and can fall within a sufficiently acceptable range.
  • 15 k ⁇ can be set as the lower limit value of the resistor 122 (resistance value R). That is, the resistance value R of the resistor 122 is preferably 15 k ⁇ or more, and if it is 150 k ⁇ or more, the energy loss can be further reduced.
  • the reverse bias is alleviated and the effect of suppressing the deterioration of the LED 121 is enhanced, but the energy loss is increased.
  • the resistance value R based on the circuit configuration of the light emitting device 100 and the conditions of use. For example, when the number of series-connected LEDs 121 constituting the first combined light-emitting device unit 110 is large, it is considered that the photovoltaic power due to external light is added by the number of series-connected and the reverse bias is increased. Is preferably set lower.
  • the LED 121 is a gallium nitride based semiconductor light emitting element, and the resistance value R of the resistor 122 is preferably 15 k ⁇ or more and 10 M ⁇ or less.
  • the resistance value R of the resistor 122 be 150 k ⁇ or more and 1 M ⁇ or less.
  • the reliability experiment was performed under the same conditions as the light emitting device 300 for comparison. That is, when the light emitting device 100 is irradiated with external light, one LED 121 d of the first combined light emitting device unit 110 (light emitting device unit 120) is shielded from light.
  • the light emitting device 100 was operated as an LED illumination light source, the switch 153 was opened in the daytime to turn off the light, and in the nighttime, the switch 153 was turned on and the light was turned on for 3000 hours.
  • the switch 153 was turned on and the light was turned on for 3000 hours.
  • the resistor 122 is installed inside the package 130 in FIG. 2, when the resistor 122 is installed outside and connected in parallel to the LED 121, the reverse bias suppression effect can be similarly obtained.
  • the light emitting device 100 includes a first combined light emitting device unit 110 in which three or more light emitting device units 120 are connected in series. According to this configuration, since the first combined light emitting device unit 110 in which three or more light emitting device units 120 individually packaged are connected in a string shape is provided, the light emitting device 100 having an arbitrary length can be obtained.
  • the light emitting device 100 includes a power supply unit 150 that supplies direct current to the light emitting device unit 120 (first combined light emitting device unit 110). With this configuration, the light emitting device 100 with high reliability and little energy loss can be stably operated.
  • the light emitting device unit 120 includes the substrate 131, the semiconductor light emitting element 121 disposed on the substrate 131, and the resistor 122 connected to the semiconductor light emitting element 121.
  • the resistor 122 is connected in parallel to the semiconductor light emitting device 121, and the resistance value R of the resistor 122 flows to the resistor 122 when the light emitting operation voltage causing the semiconductor light emitting device 121 to emit light is applied to the semiconductor light emitting device 121.
  • the current is set to a value equal to or less than one-fifth of the current flowing to the semiconductor light emitting element 121.
  • the semiconductor light emitting device 121 when the semiconductor light emitting device 121 is turned off, the back electromotive force applied to the semiconductor light emitting device 121 (for example, the semiconductor light emitting device 121d) due to the external light is suppressed to deteriorate the semiconductor light emitting device 121d. This can be prevented, and when the semiconductor light emitting element 121 is made to emit light, it is possible to suppress an increase in power consumption due to the current flowing through the resistor 122 by the light emitting operation voltage. That is, the light emitting device unit 120 can extend its life to ensure reliability, and can suppress energy loss.
  • the semiconductor light emitting device unit 120 can extend its life to ensure reliability, and can suppress energy loss.
  • the thick film resistor formed by printing can be used as the resistor 122 as in the second embodiment. Further, as in the second embodiment, it is also possible to provide a wiring electrode (corresponding to the wiring electrode 226 in the second embodiment) and a recognition pattern (corresponding to the recognition pattern 280 in the second embodiment) formed by printing. It is possible.
  • FIG. 4 is a circuit diagram of a light emitting device and a light emitting device unit according to a second embodiment of the present invention.
  • FIG. 5 is an explanatory view for explaining a light emitting device unit and a second combined light emitting device unit constituting the light emitting device shown in FIG. 4, and (A) is a plan view showing a planar state seen from the light emitting surface side, B) is an enlarged perspective side view which shows the side state seen from the arrow mark B direction of (A) in an expansion perspective. In FIG. 5B, illustration of the wire 225 is omitted.
  • the light emitting device 200 includes a light emitting device unit 220 including a substrate 231, a semiconductor light emitting element 221 disposed on the substrate 231, and a resistor 222 connected to the semiconductor light emitting element 221.
  • the semiconductor light emitting element 221 may be described as an LED 221 below.
  • the resistor 222 is connected in parallel to the LED 221, and the resistance value of the resistor 222 is the current flowing through the resistor 222 when the light emission operating voltage causing the LED 221 to emit light is applied. It is set to a value equal to or less than one-fifth of the current flowing through the LED 221.
  • the light emitting device 200 can achieve long life and secure reliability, and can suppress energy loss. It becomes.
  • the LED 221 is the same as the semiconductor light emitting device 121 (LED 121) of the first embodiment, and the resistance R of the resistor 222 is the same as the resistance R of the resistor 122 of the first embodiment.
  • the LED 221 is a gallium nitride based semiconductor light emitting element
  • the resistance value R of the resistor 222 is preferably 15 k ⁇ or more and 10 M ⁇ or less.
  • the resistance value R of the resistor 222 is more preferably 150 k ⁇ or more and 1 M ⁇ or less.
  • one light emitting device unit 220 in which four LEDs 221 and resistors 222 are connected in parallel to a pair of wiring electrodes 226 is connected in series of eighteen light emitting device units 220.
  • the second combined light emitting device unit 210 is thus configured. That is, the light emitting device unit 220 connects a plurality of LEDs 221 in parallel. Therefore, since light emission in a large area is possible, a large light emitting device 200 can be provided.
  • the light emitting device 200 includes, on a substrate 231, a second combined light emitting device unit 210 in which three or more light emitting device units 220 (LEDs 221) are connected in series. Therefore, since the second combined light emitting device unit 210 in which three or more light emitting device units 220 disposed on the same substrate 231 are connected in series is provided, the light emitting device 200 has a high mounting density (emission density). Can.
  • the second synthetic light emitting device unit 210 is covered with the phosphor-containing resin 233 and sealed by one package 230. That is, the second combined light emitting device unit 210 is sealed in a single package 230. Therefore, the light emitting device 200 can be easily handled and has improved reliability and exchangeability.
  • the size of the plane of the light emitting device 200 is determined by the substrate 231, and in this embodiment, the light emitting device has a rectangular shape of 20 mm ⁇ 30 mm.
  • the wiring electrode 226 is a relay electrode serving as a relay wiring when connecting the light emitting device unit 220 connected in series to the light emitting device unit 220 adjacent to each other. That is, the wiring electrode 226 is formed to arrange the four LEDs 221 and the resistor 222 in the middle. Therefore, the wiring electrodes 226 are formed so as to be shared (shared) with each other in the adjacent light emitting device units 220.
  • the resistor 222 is formed on the substrate 231 as a thick film resistor. With this configuration, the resistor 222 can be formed on the substrate 231 with high productivity, and the assembly process can be simplified to easily manufacture the large-sized light emitting device 200 (second combined light emitting device unit 210).
  • the thick film resistor means a resistor formed by transferring a thick film resistor paste by a printing method and baking it.
  • the light emitting device 200 includes the LED 221 and the wiring electrode 226 to which the resistor 222 (thick film resistor) is connected, and the wiring electrode 226 is disposed in parallel so as to dispose the LED 221 inside. ) Intersect with the wiring electrode 226. Therefore, the LED 221, the wiring electrode 226, and the resistor 222 (thick film resistor) can be arranged with high accuracy, so that the light emitting device 200 can emit light with large area and uniformity.
  • the wiring electrodes 226 are arranged in parallel in the longitudinal direction of the substrate 231 as a stripe pattern of 7 rows and 3 columns, and the p-side terminal 223 and the n-side terminal 224 are arranged on one side of the substrate 231 in the lateral direction. It is arranged along.
  • the outermost wiring electrode 226 f and wiring electrode 226 s of the wiring electrodes 226 in the central column among the three columns are adjacent to the light emitting device unit 220 in series with the wiring electrodes 226 in the adjacent columns. It is extended to the side of the row. That is, the rightmost outermost wiring electrode 226f is formed integrally with the upper row wiring electrodes 226, and the leftmost outermost wiring electrode 226s is formed integrally with the lower row wiring electrodes 226. It is done.
  • the resistor 222 is formed to cross the center of the wiring electrode 226, it is possible to suppress and uniform the variation in the influence of the resistance on the LEDs 221 connected in parallel.
  • the wiring electrodes 226 arranged outside the upper row separately from the central row are integrally formed and connected to the n-side terminal wire 224w, and are arranged separately from the central row outside the lower row
  • the wiring electrode 226 thus formed is integrally formed with and connected to the p-side terminal wiring 223 w to constitute a second combined light emitting device unit 210.
  • the resistors 222 are arranged in a three-row stripe pattern parallel to the sides in the short direction of the substrate 231, formed to cross substantially the centers of the plurality of wiring electrodes 226, and intersecting the wiring electrodes 226. And is connected to the wiring electrode 226.
  • the recognition pattern 280 is used when positioning in a process such as die bonding and wire bonding to be described later, and the workability of the manufacturing process can be improved to achieve high accuracy.
  • the light emitting device 200 includes an output terminal 250 a of a power supply unit 250 (the power supply unit 250 can be represented by an equivalent circuit including a voltage source 251, a switch 253, and a parallel impedance 252 between output terminals). It is assumed that external light is irradiated to the second combined light emitting device unit 210 connected to the output terminal 250 b, and one light emitting device unit 220 d (four LEDs 221 d) is shielded by the light blocking member 260.
  • the resistor 252 forms a closed circuit.
  • the second composite light emitting device unit 210 (light emitting device 220) includes a substrate 231, an LED 221 die-bonded to the substrate 231, and a phosphor-containing resin 233 covering the LED 221.
  • the substrate 231 is formed of a material mainly made of ceramic, resin, metal whose surface is insulated, or the like. Firing is performed when forming a thick film resistor (resistor 222) and an electrode (wiring electrode 226). Therefore, a ceramic substrate such as an alumina substrate, which is a material that is particularly excellent in heat resistance and has a high reflectance, is preferable.
  • a p-side terminal 223, an n-side terminal 224, and a wiring electrode 226 for supplying power from the power supply unit 250 are formed on the surface of the substrate 231, and p is further connected between the p-side terminal 223 and the wiring electrode 226.
  • An n-side terminal wiring 224 w is provided to connect the side terminal wiring 223 w and the n-side terminal 224 to the wiring electrode 226.
  • a resistor 222 is formed as a thick film resistor so as to connect the wiring electrodes 226 with each other across the plurality of wiring electrodes 226.
  • the LED 221 is die-bonded to the substrate 231 by a brazing material or an adhesive.
  • the p-side electrode 221 p and the n-side electrode 221 n which are pad electrodes provided on the surface of the LED 221, are wire-bonded to the wiring electrode 226 formed on the surface of the substrate 231 via the wire 225.
  • the LED 221 is covered with a phosphor-containing resin 233.
  • the phosphor-containing resin 233 can be configured in the same manner as the phosphor-containing resin portion 133 of the first embodiment, and thus the details thereof will be omitted.
  • the resistor 222 has been described as a thick film resistor formed on the substrate 231, it is not limited to the thick film resistor.
  • the resistor 222 can be a chip resistor mounted on the substrate 231. With this configuration, the resistor 222 can be mounted on the substrate 231 with high productivity, and the assembly process can be simplified to easily manufacture the light emitting device 200 of any size.
  • the resistor 222 is connected in parallel to the LED 221, and the photovoltaic power due to the external light incident on the second combined light emitting device unit 210 configuring the LED string is bypassed by the resistor 222, and the reverse bias applied to the LED 221d is It should just be comprised so that it may be relieved.
  • the light emitting device unit 220 can also constitute the second combined light emitting device unit 210 with only one LED 221.
  • the light emitting device 200 includes a power supply unit 250 that supplies direct current to the light emitting device unit 220 (second combined light emitting device unit 210). With this configuration, the light emitting device 200 with high reliability and little energy loss can be operated stably.
  • the light emitting device unit 220 is a light emitting device unit 220 including the substrate 231, the semiconductor light emitting element 221 disposed on the substrate 231, and the resistor 222 connected to the semiconductor light emitting element 221.
  • the resistor 222 is connected in parallel to the semiconductor light emitting device 221, and the resistance value of the resistor 222 indicates the current flowing through the resistor 222 when the light emitting operation voltage causing the semiconductor light emitting device 221 to emit light is applied to the semiconductor light emitting device 221 Is set to a value equal to or less than one-fifth of the current flowing through the semiconductor light emitting element 221.
  • the semiconductor light emitting element 221 when the semiconductor light emitting element 221 is turned off, the back electromotive force applied to the semiconductor light emitting element 221 (for example, the semiconductor light emitting element 221d) due to the external light is suppressed to deteriorate the semiconductor light emitting element 221d. This can be prevented, and when the semiconductor light emitting element 221 is made to emit light, it is possible to suppress an increase in power consumption due to the current flowing through the resistor 222 by the light emitting operation voltage. That is, the light emitting device unit 220 can achieve long life and secure reliability, and can suppress energy loss.
  • the semiconductor light emitting element 221 for example, the semiconductor light emitting element 221d
  • Embodiment 3 A method (manufacturing process) of manufacturing a light emitting device 200 (second synthetic light emitting device unit 210) according to the second embodiment based on FIGS. 6A to 6G is a third embodiment (light emitting device manufacturing method, second synthetic light emission) It demonstrates as apparatus unit manufacturing method. Note that the light emitting device 200 shown in FIG. 6B to FIG. 6G is for describing the process, so the structure is simplified.
  • FIG. 6A is a flowchart showing an outline process of a light emitting device manufacturing method according to a third embodiment of the present invention.
  • the light emitting device manufacturing method for manufacturing the light emitting device 200 includes step S1 (split groove forming step) to step S9 (dam sheet removing step).
  • step S1 is a dividing groove forming step, which is shown in FIG. 6B.
  • Step S2 is a wiring electrode formation step (wiring printing / drying / baking step), and is shown in FIG. 6C.
  • Step S3 is a resistance forming step (resistance printing / drying / baking step), and step S4 is a substrate dividing step, which is shown in FIG. 6D.
  • Step S5 is a die bonding step
  • step S6 is a wire bonding step, which is shown in FIG. 6E.
  • Step S7 is a dam sheet attaching step
  • step S8 is an LED covering step, which is shown in FIG. 6F.
  • Step S9 is a dam sheet removing step, which is shown in FIG. 6G.
  • Step S1: 6B is an explanatory view showing the state of the substrate in the separation groove forming step shown in FIG. 6A, in which (A) is a side view of the substrate and (B) is a plan view showing the surface of the substrate in which the grooves are formed. It is.
  • the substrate 231 is formed by dividing one large mother substrate 231m in step S4, but in the previous steps, it is a large substrate in a state in which the substrates 231 are assembled in consideration of productivity and processability. Processing is performed in the state of the mother substrate 231 m. In this step, division grooves 282 along the outer shape of the substrate 231 are formed on the front or back surface of the mother substrate 231 m by a method such as half die (division groove formation step).
  • the state is not the state of the mother substrate 231 m but the state of the divided substrate 231 in the drawing.
  • FIG. 6C is an explanatory view showing the state of the substrate in the step of forming the wiring electrode shown in FIG. 6A
  • (A) is a side view of the substrate and a cross-sectional view of the screen mask
  • (B) is a substrate on which the wiring is formed. It is a top view which shows the surface of.
  • the screen mask is hatched to clarify the opening 285w.
  • the screen 285 in which the conductor pattern (opening 285w) is perforated is placed on the surface of the substrate 231 (mother substrate 231m), the conductor paste is printed, dried, and fired in an atmosphere of 950 ° C. That is, the wiring (p-side terminal 223, p-side terminal wiring 223w, n-side terminal 224, n-side terminal wiring 224w, wiring electrode 226) is formed (wiring electrode formation step).
  • Electrode 226 is representatively shown.
  • the screen 285 shown in step S2 is a thin plate made of metal such as stainless steel in which a pattern corresponding to the wiring is perforated so that a desired wiring (conductor pattern) is formed on the substrate 231.
  • the Ag / Pd paste is a powder obtained by dispersing Ag, Pd powder, an oxide additive, a low melting glass powder such as lead borosilicate glass, and a component mainly containing a cellulose-based organic binder in a solvent.
  • Step S3 FIG. 6D is a plan view showing the surface state of the substrate in the resistance forming step shown in FIG. 6A.
  • a screen (not shown) in which a resistance pattern is perforated is placed on the surface of a substrate 231 (mother substrate 231 m), a resistor paste is printed, dried, and fired in an atmosphere of 850 ° C. That is, the resistor 222 which is a thick film resistor is formed (resistor forming step). Also, the resistor 222 is extended in the direction intersecting with the wiring electrode 226.
  • the screen used in this step is a thin plate of metal such as stainless steel in which a pattern corresponding to the wiring is perforated, as in the screen used in step S2.
  • step S2 and step S3 are implemented simultaneously, and an electrode (p side terminal 223, p side terminal wiring 223w, n side terminal 224, n side terminal wiring 224w, It may be possible to simultaneously form the wiring electrode 226) and the resistor (resistor 222).
  • a Ru-based paste can be used as a resistance paste.
  • the Ru-based paste is mainly composed of RuO 2, and a sheet resistance in the range of 10 ⁇ / ⁇ to 10 M ⁇ / ⁇ can be obtained.
  • the second combined light emitting device unit 210 (light emitting device 200) can be configured by appropriately connecting the outermost wiring electrode 226 to other wires.
  • the recognition pattern 280 can be formed on a part of the surface of the substrate 231 in step S2 and step S3.
  • the recognition pattern 280 is used when positioning in a process such as die bonding or wire bonding to be described later.
  • the material of the recognition pattern 280 may be either the electrode 226 or the resistor 222 (thick film resistor), and can be formed simultaneously with the formation of the wiring electrode 226 or the resistor 222 (thick film resistor) by screen printing.
  • the substrate 231 is provided with a recognition pattern 280 which is a mark in the manufacturing process, and the recognition pattern 280 is formed of the same member as the wiring electrode 226 or the thick film resistor (resistor 222). Therefore, the recognition pattern 280 used when mounting the LED 221 can be easily formed at the same time as the wiring electrode 226 or the thick film resistor (resistor 222), and thus the light emitting device 200 with high productivity. It can be done.
  • the positioning using the recognition pattern 280 usually has a process of recognizing the pattern (recognition pattern 280) on the surface of the substrate 231 by an imaging device such as a CCD camera, the one having a high contrast with respect to the substrate 231 of the recognition pattern 280 is , Recognition is easy. Therefore, it is more preferable to simultaneously form the thick film resistor 222 having a high contrast color tone.
  • 6E is a plan view showing the surface state after the substrate dividing step, the die bonding step, and the wire bonding step shown in FIG. 6A.
  • Step S4 The mother substrate 231m is divided into individual substrates 231 (substrate division step).
  • substrate division step As a method of division, the upper side of the dividing groove 282 formed in the substrate 231 is sheared from the surface by a cutter, for example. As a result, the substrate is split along the dividing grooves 282, so that the substrate can be easily divided.
  • Step S5 The LED 221 is die-bonded to the divided substrate 231 (die bonding step). Four LEDs 221 are die-bonded between the rows of the pair of opposing wiring electrodes 226 (see FIG. 5). That is, this step is a semiconductor light emitting element arranging step of arranging the semiconductor light emitting element 221 between the pair of wiring electrodes 226.
  • the LEDs 221 are arranged in a zigzag arrangement. That is, die bonding is performed with the sides of the adjacent LEDs 221 shifted from each other so that they do not face each other as much as possible. With such an arrangement, it is possible to suppress absorption or shielding of emitted light between adjacent LEDs 221, and it is possible to improve the light extraction efficiency.
  • Step S6 Wire bonding is performed on the die-bonded LED 221 (wire bonding process).
  • this step is a light emitting device unit forming step of forming the light emitting device unit 220 by connecting the electrode of the semiconductor light emitting element 221 to the wiring electrode 226.
  • the wiring electrodes 226 of the adjacent light emitting device units 220 are used in common.
  • FIG. 6F is a side view showing the side surface state of the substrate in the dam sheet affixing step and the LED covering step shown in FIG. 6A.
  • the dam sheet is hatched to make the through holes 281 w clear.
  • Step S7 Before covering LED221 with fluorescent substance containing resin 233r, dam sheet 281 which is a damming member is stuck on the surface where LED221 of substrate 231 was die-bonded (dam sheet sticking process).
  • the dam sheet 281 is formed with a through hole 281 w for housing the LED 221 (the light emitting device unit 220, the second combined light emitting device unit 210), and a phosphor-containing resin portion 233 (see FIG. 5) for sealing the LED 221 is formed. It is supposed to be shaped. That is, the dam sheet 281 is used to prevent the phosphor-containing resin 233r injected into the through hole 281w from spreading beyond the dam sheet 281.
  • the dam sheet 281 may be formed of, for example, a resin sheet such as Teflon (registered trademark) or fluororubber, and the surface to be attached to the substrate 231 may be coated with an adhesive.
  • Fluororubber is a preferable member because it has high elasticity and can be easily removed in a later step.
  • Step S8 The phosphor-containing resin 233r is injected into the surface of the substrate 231 to which the dam sheet 281 is attached so as to fill the through holes 281w to cover the LEDs 221 (LED covering step).
  • the phosphor-containing resin 233r is obtained by dispersing a phosphor in a transparent resin such as a silicone resin.
  • FIG. 6G is an explanatory view showing a state of the substrate after the dam sheet removing step shown in FIG. 6A, (A) is a side view of the substrate, (B) is a substrate on which a phosphor-containing resin portion is formed. It is a top view which shows the surface.
  • the dam sheet 281 was removed to form the phosphor-containing resin portion 233 (dam sheet removing step).
  • the removal of the dam sheet 281 can be easily implemented by holding and peeling off one end with a jig. At this time, the phosphor-containing resin 233 r that has run out of the through holes 281 w can be removed simultaneously with the dam sheet 281.
  • the second combined light emitting device unit 210 (light emitting device 200) can be formed.
  • the light emitting device manufacturing method manufactures the light emitting device 200 including the light emitting device unit 220 having the semiconductor light emitting element 221 and the resistor 222, and the substrate 231 on which the light emitting device unit 220 is disposed. It is a light emitting device manufacturing method.
  • the wiring electrode forming step of forming the pair of wiring electrodes 226 to which the semiconductor light emitting element 221 and the resistor 222 are connected by printing on the substrate 231 and the pair of wiring electrodes 226 are mutually performed.
  • a resistance forming step of forming a resistor 222 on a substrate 231 by printing to connect a semiconductor light emitting element arrangement step of arranging a semiconductor light emitting element 221 between a pair of wiring electrodes 226, a wiring electrode of the semiconductor light emitting element 221
  • the wiring electrode 226 and the resistor 222 are formed by applying the printing technology, the large-sized light emitting device 200 can be manufactured with high productivity.
  • a plurality of light emitting device units 220 are arranged in parallel and connected in series, and wiring electrodes 226 are made parallel corresponding to the end portions of light emitting device unit 220.
  • the wiring electrodes 226 of the light emitting device units 220 disposed adjacent to each other are shared with each other, and the resistance 222 is extended in a direction intersecting the wiring electrodes 226.
  • the light emitting device unit 220 and the wiring electrodes 226 can be arranged at high density, the light emitting device 200 with a large area can be easily manufactured.
  • the present invention is useful in that it is possible to provide a light emitting device, a light emitting device unit, and a light emitting device manufacturing method for manufacturing the light emitting device, which can ensure reliability and suppress energy loss.
  • Light emitting device 110 1st synthetic light emitting device unit 120
  • Light emitting device unit 121 Semiconductor light emitting element (LED) 121n n side electrode 121p p side electrode 122 resistance (chip resistance) 123 p-side terminal 123 w p-side terminal wiring 124 n-side terminal 124 w n-side terminal wiring 125 wire 130 package 131 substrate 132 frame 133 phosphor-containing resin portion 150 power source portion 150 a output terminal 150 b output terminal 151 voltage source 152 parallel between output terminals Impedance 153 switch 160 Light shield 200 Light emitting device 210 Second composite light emitting device unit 220 Light emitting device unit 221 Semiconductor light emitting element (LED) 221n n-side electrode 221p p-side electrode 222 resistance (thick film resistance) 223 p-side terminal 223 w p-side terminal wiring 224 n-side terminal 224 w n-side terminal wiring 225 wire 226 wiring electrode 230

Abstract

 本発明の発光装置、発光装置ユニット、および発光装置を製造する発光装置製造方法の一実施形態では、発光装置(100)は、基板(131)と、基板(131)に配置された半導体発光素子(121)と、半導体発光素子(121)に接続された抵抗(122)とを有する発光装置ユニット(120)を備える。抵抗(122)は、半導体発光素子(121)に並列に接続され、抵抗(122)の抵抗値は、半導体発光素子(121)を発光させる発光動作電圧を半導体発光素子(121)に印加したときに、抵抗(122)に流れる電流が半導体発光素子(121)に流れる電流の50分の1以下となる値に設定されている。

Description

発光装置、発光装置ユニット、および発光装置製造方法
 本発明は、基板に配置された半導体発光素子(LED)と、LEDに接続された抵抗とを有する発光装置ユニットを備える発光装置、発光装置を構成する発光装置ユニット、および発光装置製造方法に関する。
 LED(Light Emitting Diode:発光ダイオード)は、近年の効率向上に伴い、電球あるいは蛍光灯よりも省エネルギーの光源として、表示装置のバックライトや照明器具として広く用いられるようになってきている。このような用途においては、エネルギー効率が非常に重要である。
 LED、特に窒化ガリウム系LEDは静電気放電(Electrostatic discharge)によって故障を起こしやすい。すなわち、逆耐圧が小さいという性質がある。その対策として、LEDに逆並列にツェナーダイオードを配した技術が開示されている(例えば、特許文献1参照。)。
 この場合、「順方向の過電圧に対してはツェナーブレイクダウンにより過電流がバイパスされ、逆方向の過電圧に対しては通常の順方向ダイオードとして過電流がバイパスされる」ので、LEDは、過電圧から保護される。LEDの順方向電圧はツェナーダイオードのツェナーブレイクダウン電圧より小さいので、LEDに順方向電圧を印加してもツェナーダイオードに電流が流れることは無く、エネルギー損失は生じない。しかし、ツェナーダイオードの製造が抵抗に比較して容易ではなく、LEDに対する実装などでの負担が大きいという問題がある。また、長期間にわたる信頼性では、抵抗に比較して劣るという問題がある。
 また、LEDに並列に抵抗を接続した技術が開示されている(例えば、特許文献2または特許文献3参照。)。
 特許文献2に開示された技術は、直列に接続されたLEDのそれぞれに対して並列に抵抗が接続されたものであって、あるLEDが断線した場合にも他のLEDが消灯しないように各抵抗がバイパス抵抗として働くものである。つまり、バイパス抵抗がその目的を果たすためには、断線していない他のLEDを点灯させるに足りる電流をバイパス抵抗に流す必要があるため、使用する抵抗の抵抗値は低いことが必要である。したがって、バイパス抵抗に流れる電流は、大きなエネルギー損失を生じるという問題がある。
 特許文献3に開示された技術は、1つのパッケージに複数のLEDチップを配した集合型LED素子において、各LEDチップの輝度を調整するために、各LEDチップに並列に可変抵抗を設けたものである。この場合の抵抗の抵抗値は、LEDチップの輝度に影響を与える程度の電流が流れるような低抵抗であることが必要である。つまり、大きなエネルギー損失を生じるという問題がある。
 また、LEDに接続する抵抗の形成例として、LEDパッケージ内に厚膜抵抗を設けた技術が開示されている(例えば、特許文献4参照。)。
特開平11-298041号公報 特開平11-307815号公報 特開2007-294547号公報 実開昭63-180957号公報
 本発明はこのような状況に鑑みてなされたものであり、半導体発光素子に並列に抵抗を接続し、半導体発光素子に発光動作電圧を印加したときに抵抗に流れる電流が半導体発光素子に流れる電流の50分の1以下となるように抵抗値を設定することによって、信頼性を確保し、また、エネルギー損失を抑制することができる発光装置を提供することを目的とする。
 また、本発明は、半導体発光素子に並列に抵抗を接続し、発光動作電圧を半導体発光素子に印加したときに抵抗に流れる電流が半導体発光素子に流れる電流の50分の1以下となるように抵抗値を設定することによって、信頼性を確保し、また、エネルギー損失を抑制することができる発光装置ユニットを提供することを他の目的とする。
 また、本発明は、基板に配置された半導体発光素子と、半導体発光素子に接続された抵抗とを有する発光装置ユニットを備える発光装置を製造する発光装置製造方法であって、配線電極形成工程と、抵抗形成工程と、発光装置ユニット形成工程とを備えることによって、大型の発光装置を生産性良く製造する発光装置製造方法を提供することを他の目的とする。
 本発明に係る発光装置は、基板と、該基板に配置された半導体発光素子と、該半導体発光素子に接続された抵抗とを有する発光装置ユニットを備える発光装置であって、前記抵抗は、前記半導体発光素子に並列に接続され、前記抵抗の抵抗値は、前記半導体発光素子を発光させる発光動作電圧を前記半導体発光素子に印加したときに、前記抵抗に流れる電流が前記半導体発光素子に流れる電流の50分の1以下となる値に設定されていることを特徴とする。
 この構成により、半導体発光素子を消灯状態としたときは、外光に起因して半導体発光素子に印加される逆起電力を抑制して半導体発光素子の劣化を防止することが可能となり、また、半導体発光素子を発光状態としたときは、発光動作電圧によって抵抗に流れる電流による消費電力の増加を抑制することが可能となるので、長寿命化を図って信頼性を確保し、また、エネルギー損失を抑制することができる発光装置となる。
 また、本発明に係る発光装置では、前記半導体発光素子は、窒化ガリウム系半導体発光素子であり、前記抵抗の抵抗値は、15kΩ以上10MΩ以下であることを特徴とする。
 この構成により、窒化ガリウム系半導体発光素子を発光状態としたとき並列に接続した抵抗による消費電力の増加を抑制し、窒化ガリウム系半導体発光素子を消灯状態としたとき外光によって印加される逆起電力を抑制することが可能となる。
 また、本発明に係る発光装置では、前記抵抗の抵抗値は、150kΩ以上1MΩ以下であることを特徴とする。
 この構成により、窒化ガリウム系半導体発光素子を発光状態としたときの消費電力をさらに抑制し、窒化ガリウム系半導体発光素子を消灯状態としたときの逆起電力をさらに抑制することが可能となる。
 また、本発明に係る発光装置では、前記抵抗は、前記基板に形成された厚膜抵抗であることを特徴とする。
 この構成により、抵抗を基板に生産性よく形成することが可能となり、組立工程を簡略化して大型の発光装置を容易に製造することができる。
 また、本発明に係る発光装置では、前記半導体発光素子および前記厚膜抵抗がそれぞれ接続された配線電極を備え、該配線電極は、前記半導体発光素子を内側に配置するように平行に配置され、前記厚膜抵抗は、前記配線電極と交差して接続されていることを特徴とする。
 この構成により、半導体発光素子、配線電極、厚膜抵抗を高精度に配置して、大面積で均一性よく発光させることが可能な発光装置とすることができる。
 また、本発明に係る発光装置では、前記基板は、製造工程での目印となる認識パターンを備え、該認識パターンは、前記配線電極または前記厚膜抵抗と同一の部材で形成されていることを特徴とする。
 この構成により、半導体発光素子の実装をするときに利用する認識パターンを配線電極または厚膜抵抗を形成するとき併せて容易に形成することが可能となるので、生産性の高い発光装置とすることができる。
 また、本発明に係る発光装置では、前記抵抗は、前記基板に実装されたチップ抵抗であることを特徴とする。
 この構成により、抵抗を基板に生産性よく実装することが可能となり、組立工程を簡略化して小型化が可能な発光装置ユニットを容易に製造することができる。
 また、本発明に係る発光装置では、前記発光装置ユニットは、前記半導体発光素子を複数個並列に接続していることを特徴とする。
 この構成により、大面積での発光が可能となるので、大型の発光装置ユニットとして、大型の発光装置を構成することができる。
 また、本発明に係る発光装置では、前記発光装置ユニットは、単一のパッケージに封止されていることを特徴とする。
 この構成により、取り扱いが容易となり、信頼性、交換性を向上させた発光装置とすることが可能となる。
 また、本発明に係る発光装置では、前記発光装置ユニットを3個以上直列に接続した第1合成発光装置ユニットを備えることを特徴とする。
 この構成により、個別にパッケージされた発光装置ユニットを3個以上ストリング状に接続した第1合成発光装置ユニットを備えるので、任意の長さを有する発光装置とすることができる。
 また、本発明に係る発光装置では、前記発光装置ユニットの前記半導体発光素子を3個以上直列に接続して前記基板上に構成した第2合成発光装置ユニットを備えることを特徴とする。
 この構成により、同一の基板上に配置された3個以上の発光装置ユニットを直列に接続した第2合成発光装置ユニットを備えるので、実装密度(発光密度)の高い発光装置とすることができる。
 また、本発明に係る発光装置では、前記第2合成発光装置ユニットは、単一のパッケージに封止されていることを特徴とする。
 この構成により、取り扱いが容易となり、信頼性、交換性を向上させた発光装置とすることが可能となる。
 また、本発明に係る発光装置では、前記発光装置ユニットに直流電流を供給する電源部を備えることを特徴とする。
 この構成により、信頼性が高く、エネルギー損失の少ない発光装置を安定して動作させることができる。
 また、本発明に係る発光装置ユニットは、基板と、該基板に配置された半導体発光素子と、該半導体発光素子に接続された抵抗とを有する発光装置ユニットであって、前記抵抗は、前記半導体発光素子に並列に接続され、前記抵抗の抵抗値は、前記半導体発光素子を発光させる発光動作電圧を前記半導体発光素子に印加したときに、前記抵抗に流れる電流が前記半導体発光素子に流れる電流の50分の1以下となる値に設定されていることを特徴とする。
 この構成により、半導体発光素子を消灯状態としたときは、外光に起因して半導体発光素子に印加される逆起電力を抑制して半導体発光素子の劣化を防止することが可能となり、また、半導体発光素子を発光状態としたときは、発光動作電圧によって抵抗に流れる電流による消費電力の増加を抑制することが可能となるので、長寿命化を図って信頼性を確保し、また、エネルギー損失を抑制することができる発光装置ユニットとなる。
 また、本発明に係る発光装置製造方法は、基板と、該基板に配置された半導体発光素子と、該半導体発光素子に接続された抵抗とを有する発光装置ユニットを備える発光装置を製造する発光装置製造方法であって、前記半導体発光素子および前記抵抗が接続される一対の配線電極を前記基板に印刷により形成する配線電極形成工程と、一対の前記配線電極を相互に接続するように前記抵抗を前記基板に印刷により形成する抵抗形成工程と、一対の前記配線電極の間に前記半導体発光素子を配置する半導体発光素子配置工程と、前記半導体発光素子の電極を前記配線電極に接続して前記発光装置ユニットを形成する発光装置ユニット形成工程とを備えることを特徴とする。
 この構成により、印刷技術を適用して配線電極および抵抗を形成することから、大型の発光装置を生産性良く製造することが可能となる。
 また、本発明に係る発光装置製造方法では、前記発光装置ユニットは、複数個平行に配置されて直列に接続され、前記配線電極は、前記発光装置ユニットの端部に対応させて平行に配置され、隣接する前記発光装置ユニットの前記配線電極は、互いに兼用され、前記抵抗は、前記配線電極と交差する方向に延長されていることを特徴とする。
 この構成により、発光装置ユニット、配線電極を高密度に配置することが可能となることから、大面積の発光装置を容易に製造することが可能となる。
 本発明に係る発光装置によれば、基板と、基板に配置された半導体発光素子と、半導体発光素子に接続された抵抗とを有する発光装置ユニットを備える発光装置であって、抵抗は、半導体発光素子に並列に接続され、抵抗の抵抗値は、半導体発光素子を発光させる発光動作電圧を半導体発光素子に印加したときに、抵抗に流れる電流が半導体発光素子に流れる電流の50分の1以下となる値に設定されていることから、半導体発光素子を消灯状態としたときは、外光に起因して半導体発光素子に印加される逆起電力を抑制して半導体発光素子の劣化を防止することが可能となり、また、半導体発光素子を発光状態としたときは、発光動作電圧によって抵抗に流れる電流による消費電力の増加を抑制することが可能となるので、長寿命化を図って信頼性を確保し、また、エネルギー損失を抑制することができるという効果を奏する。
 また、本発明に係る発光装置ユニットによれば、基板と、基板に配置された半導体発光素子と、半導体発光素子に接続された抵抗とを有する発光装置ユニットであって、抵抗は、半導体発光素子に並列に接続され、抵抗の抵抗値は、半導体発光素子を発光させる発光動作電圧を半導体発光素子に印加したときに、抵抗に流れる電流が半導体発光素子に流れる電流の50分の1以下となる値に設定されていることから、半導体発光素子を消灯状態としたときは、外光に起因して半導体発光素子に印加される逆起電力を抑制して半導体発光素子の劣化を防止することが可能となり、また、半導体発光素子を発光状態としたときは、発光動作電圧によって抵抗に流れる電流による消費電力の増加を抑制することが可能となるので、長寿命化を図って信頼性を確保し、また、エネルギー損失を抑制することができるという効果を奏する。
 また、本発明に係る発光装置製造方法によれば、基板と、基板に配置された半導体発光素子と、半導体発光素子に接続された抵抗とを有する発光装置ユニットを備える発光装置を製造する発光装置製造方法であって、半導体発光素子および抵抗が接続される一対の配線電極を基板に印刷により形成する配線電極形成工程と、一対の配線電極を相互に接続するように抵抗を基板に印刷により形成する抵抗形成工程と、一対の配線電極の間に半導体発光素子を配置する半導体発光素子配置工程と、半導体発光素子の電極を配線電極に接続して発光装置ユニットを形成する発光装置ユニット形成工程とを備えることから、印刷技術を適用して配線電極および抵抗を形成することから、大型の発光装置を生産性良く製造することができるという効果を奏する。
図1は、本発明の実施の形態1に係る発光装置および発光装置ユニットの回路図である。 図2は、図1で示した発光装置を構成する発光装置ユニットを発光面側から見た平面状態を示す平面図である。 図3は、図2で示した発光装置ユニットの中央部分を透視して示す透視側面図である。 図4は、本発明の実施の形態2に係る発光装置および発光装置ユニットの回路図である。 図5は、図4で示した発光装置を構成する発光装置ユニットおよび第2合成発光装置ユニットを説明する説明図であり、(A)は発光面側から見た平面状態を示す平面図、(B)は(A)の矢符B方向から見た側面状態を拡大透視して示す拡大透視側面図である。 図6Aは、本発明の実施の形態3に係る発光装置製造方法の概略工程を示すフローチャートである。 図6Bは、図6Aで示した分離溝形成工程での基板の状態を示す説明図であり、(A)は基板の側面図、(B)は溝を形成された基板の表面を示す平面図である。 図6Cは、図6Aで示した配線電極形成工程での基板の状態を示す説明図であり、(A)は基板の側面図とスクリーンマスクの断面図、(B)は配線が形成された基板の表面を示す平面図である。 図6Dは、図6Aで示した抵抗形成工程での基板の表面状態を示す平面図である。 図6Eは、図6Aで示した基板分割工程、ダイボンディング工程、ワイヤボンディング工程を経た後の表面状態を示す平面図である。 図6Fは、図6Aで示したダムシート貼り付け工程、LED被覆工程での基板の側面状態を示す側面図である。 図6Gは、図6Aで示したダムシート除去工程後の基板の状態を示す説明図であり、(A)は基板の側面図、(B)は蛍光体含有樹脂部が形成された基板の表面を示す平面図である。 図7は、比較例に係る発光装置の回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 <比較例>
 実施の形態1ないし実施の形態3に示す発光装置での作用についての理解を容易にするため、先ず、比較例としての発光装置について説明する。
 図7は、比較例に係る発光装置の回路図である。
 比較例に係る発光装置300は、発光装置ユニット320を直列に複数(8個)接続して構成した合成発光装置ユニット310を3個並列に接続して構成されている。発光装置ユニット320は、抵抗を備えずに半導体発光素子321(LED321)のみを備えている。
 比較例では、例えば、3個の合成発光装置ユニット310のうち、合成発光装置ユニット310dを構成する発光装置ユニット320の中でLED321dのみを遮光体360により遮光した状態としてある。
 発光装置は、一般的に夜間にLEDを点灯させ照明として用いるように、屋外もしくは屋内に設置される。したがって、日中は太陽光などの外光に曝露される状況にあり、場合によっては一部のLED(例えば、LED321d以外のLED321)のみに対して部分的に外光が照射されることがある。
 発光装置300を屋外に設置し、数千時間にわたって稼働させたところ、遮光されたLED321dが不点灯となる現象が生じた。LED321の特性を評価したところ、10V程度の逆バイアスが印加され続けることによって劣化し、不点灯に至ることがわかった。
 合成発光装置ユニット310は、通常の状態では、電源部350に常時接続されている。また、電源部350の動作モードは、スイッチ353を閉状態とし、3個の合成発光装置ユニット310に順方向電圧を印加して点灯させる点灯モード、スイッチ353を開状態とし、合成発光装置ユニット310(LED321)を消灯させる消灯モードの何れかである。したがって、LED321dに逆バイアスが印加されるような動作モードは従来全く想定されていなかった。
 本発明者らは、上述した現象に関する新規な知見に基づいて、LED321dを不点灯に至らしめた原因を考察した。その結果、発光装置300は、消灯モードにおいて、出力端子350aと出力端子350bとの間に存在する出力端子間並列インピーダンス352を介して閉回路が形成された状態となり、特定の条件では、あるLED(例えばLED321d)に逆バイアスが印加され得ることを見出した。
 例えば、合成発光装置ユニット310を構成する8個のLED321の中で1個のLED321dが遮光され、残り7個のLED321に外光が照射された場合を想定する。この状態では、外光が照射された7個のLED321は、光起電力を生じ、遮光された1個のLED321dに逆バイアスを印加するという状態が考えられる。
 本発明者らは、その逆バイアスの値を次のように算出した。すなわち、発光装置300において、出力端子間並列インピーダンス352の値がZps=14kΩ、外光の強度が、屋外照度に相当する100,000lx(ルクス)である場合を想定してLED321dに印加される逆バイアスの値を算出した。
 つまり、外光が照射された7つのLED321では、それぞれ1~2V程度の光起電力が発生し、LED321は相互に直列に接続されているので、遮光された1つのLED321dに10V程度の逆バイアスが印加されることが判明した。なお、外光としては、屋外における太陽光や、近傍のLED321の発光などが考えられる。
 また、比較例での発光装置300では、スイッチ353は出力端子間並列インピーダンス352に対し電圧源351の側に接続されている。
 比較例に対し、スイッチ353を出力端子間並列インピーダンス352に対して合成発光装置ユニット310の側に備える構成、すなわち、スイッチ353が開状態で、出力端子間並列インピーダンス352と合成発光装置ユニット310とが接続されていない状態とされた場合が考えられる。
 このような場合においても、互いに並列接続された他の合成発光装置ユニット310により閉回路が構成され、遮光されたLED321dに逆バイアスが印加される状態が考えられる。
 上述したとおり、比較例での発光装置300では、遮光状態となるLED321(例えば、LED321d)が存在する場合、LED321dの劣化を生じることがあり、発光装置300(合成発光装置ユニット310、LED321)の信頼性、寿命が低下するという問題がある。
 <実施の形態1>
 図1ないし図3に基づいて、本実施の形態に係る発光装置、発光装置ユニットについて説明する。
 図1は、本発明の実施の形態1に係る発光装置および発光装置ユニットの回路図である。
 図2は、図1で示した発光装置を構成する発光装置ユニットを発光面側から見た平面状態を示す平面図である。
 図3は、図2で示した発光装置ユニットの中央部分を透視して示す透視側面図である。
 本実施の形態に係る発光装置100は、基板131と、基板131に配置された半導体発光素子121と、半導体発光素子121に接続された抵抗122とを有する発光装置ユニット120を備える。
 本実施の形態に係る発光装置100では、抵抗122は、半導体発光素子121に並列に接続され、抵抗122の抵抗値は、半導体発光素子121を発光させる発光動作電圧を半導体発光素子121に印加したときに、抵抗122に流れる電流が半導体発光素子121に流れる電流の50分の1以下となる値に設定されている。
 したがって、半導体発光素子121を消灯状態としたときは、外光に起因して半導体発光素子121に印加される逆起電力を抑制して半導体発光素子121の劣化を防止することが可能となり、また、半導体発光素子121を発光状態としたときは、発光動作電圧によって抵抗122に流れる電流による消費電力の増加を抑制することが可能となるので、長寿命化を図って信頼性を確保し、また、エネルギー損失を抑制することができる発光装置100となる。
 なお、半導体発光素子121は、LEDで構成されるから、以下では、半導体発光素子121をLED121と記載することがある。LEDとしては、青色系の発光が可能である窒化ガリウム系半導体発光素子を適用した。窒化ガリウム系半導体発光素子は、波長が例えば400nm以上500nm以下の青色波長領域に発光ピークを有する青色光である1次光を出射する。
 発光装置100は、並列接続された3個の第1合成発光装置ユニット110を電源部150の出力端子150aと出力端子150bとの間に接続したものである。なお、遮光体160は、一部のLED121(例えば、半導体発光素子121d)が遮光された状態を説明するために模式的に示したものであって、実際の発光装置100に備えるものではない。図では、LED121dが遮光された状態となっている。また、第1合成発光装置ユニット110dは、遮光されたLED121dを含むことを示す。
 第1合成発光装置ユニット110は、8個の発光装置ユニット120を、順方向で直列に接続したものである。また、発光装置ユニット120は、LED121と、LED121に並列に接続された抵抗122(例えば、抵抗値R=1MΩ)とを備える。抵抗122の好ましい抵抗値の範囲については後述する。なお、抵抗122は、例えばチップ抵抗(チップ形状の抵抗体)で構成されている。
 電源部150は、電圧源151、スイッチ153、出力端子間並列インピーダンス152を備えた等価回路で表すことができる。出力端子間並列インピーダンス152は、出力端子150aと出力端子150bとの間に接続され、スイッチ153を開状態としたとき、第1合成発光装置ユニット110を電気的に保護するものである。出力端子間並列インピーダンス152の値は、例えば、Zps=14kΩである。
 (発光装置ユニットの構成)
 発光装置ユニット120(図2、図3参照)は、金属配線であるp側端子123(p側端子配線123w)とn側端子124(n側端子配線124w)とが絶縁体である基板131と枠体132とによって挟まれたパッケージ130と、LED121と、LED121に並列に接続された抵抗122と、LED121を被覆する蛍光体含有樹脂133とを備える。
 LED121は、上面に一対のパッド電極であるp側電極121pおよびn側電極121nを備え、p側端子配線123wにダイボンディングされている。また、p側電極121pはp側端子配線123wに、n側電極121nはn側端子配線124wに、それぞれワイヤ125によりワイヤボンディングされている。
 抵抗122は上面と下面とで一対の電極を備え、下面はn側端子配線124wの上に銀ペースト(図示しない)で固定され、上面の電極はp側端子配線123wに、それぞれワイヤ125によりワイヤボンディングされている。したがって、LED121と抵抗122とは、並列接続された状態となっている。
 つまり、抵抗122は、基板131に実装され、チップ抵抗122で構成してある。したがって、抵抗122を基板131に生産性よく実装することが可能となり、組立工程を簡略化して小型化が可能な発光装置ユニット120を容易に製造することができる。また、発光装置ユニット120を多数接続することによって、大型化した発光装置100を構成することが可能である。
 LED121は蛍光体含有樹脂133により被覆される。蛍光体含有樹脂133は、シリコーン樹脂中に緑色および赤色蛍光体を分散したものである。蛍光体は、窒化ガリウム系半導体発光素子で構成されたLED121が出射する青色光(1次光)を吸収し、蛍光(2次光)を放出する。このようにして発光装置ユニット120は1次光と2次光を混合して白色光を出射するように構成される。
 つまり、蛍光体は1次光を吸収して、例えば波長が550nm以上600nm以下の黄色波長領域に発光ピークを有する2次光を発する物質である。したがって、発光装置ユニット120(発光装置100)は、1次光と2次光とが混合されて白色光を出射することが可能となる。
 なお、蛍光体としては、例えばBOSE(Ba、O、Sr、Si、Eu)などを好適に用いることができる。またBOSEの他、SOSE(Sr、Ba、Si、O、Eu)、YAG(Ce賦活イットリウム・アルミニウム・ガーネット)、αサイアロン((Ca)、Si、Al、O、N、Eu)、βサイアロン(Si、Al、O、N、Eu)等を好適に用いることができる。
 また、LED121を青色発光のものに代え、例えば発光ピーク波長が390nmから420nmの紫外(近紫外)LEDとし、青色蛍光体を加えることにより、演色性の高い光源とすることができる。
 なお、基板131、枠体132は例えばポリフタルアミド(PPA:polyphthalamide)で形成されている。また、LED121として、下面に1つ若しくは2つの電極を有するものを用いた場合には、ワイヤ125を用いずに下面から端子に接続(フリップチップ実装)することができる。
 上述したとおり、発光装置ユニット120は、単一のパッケージ130に封止されている。したがって、取り扱いが容易となり、信頼性、交換性を向上させた発光装置100とすることが可能となる。
 また、以上の説明では、発光装置ユニット120は、1個のLED121を実装した状態としたが、これに限らず、複数のLED121を並列に接続したものでも良い。つまり、発光装置ユニット120は、LED121を複数個並列に接続したものとすることが可能である。この構成により、大面積での発光が可能となるので、大型の発光装置ユニット120として、大型の発光装置100を構成することができる。
 (並列接続した抵抗による逆バイアスの緩和)
 本発明者らは、発光装置100(発光装置ユニット120)のように、LED121のそれぞれに抵抗122を並列接続することにより、外光による光起電力が抑制され、その結果、特定のLED121(例えば、LED121d)に印加される逆バイアスが抑制される可能性を見出し、その効果を検証した。
 第1合成発光装置ユニット110に100,000lxの外光を照射した場合、光起電力による開放電圧(抵抗122を外した状態)は、LED1個当たり、約2Vとなった。それに対し、LED121に抵抗122を並列に接続し、抵抗値R=10MΩとした場合、光起電力は0.5Vであり、抵抗値R=1MΩとした場合、光起電力は0.05Vにまで低下した。
 したがって、抵抗122とLED121とが並列接続された発光装置ユニット120を8個直列接続した第1合成発光装置ユニット110(例えば、第1合成発光装置ユニット110d)に外光を照射し、うち1つのLED121(具体的には、LED121d)を遮光した場合、LED121dに印加される逆バイアスの値は、抵抗値R=10MΩのとき、0.5V×7=3.5Vとなり、抵抗値R=1MΩのとき、0.35Vにまで抑制することが可能となった。
 ここで、遮光されたLED121dに逆バイアスが印加される場合の最悪の条件、すなわち最も高い逆バイアスが印加される条件として考えられるのは、上述したように、第1合成発光装置ユニット110dに外光が照射され、第1合成発光装置ユニット110dのうち7個のLED121に発生した光起電力が直列接続により加算されて、遮光された1つのLED121dのみに集中的に逆バイアスが印加される状態と考えられる。
 したがって、一般的な稼働状態においてはLED121に逆バイアスが印加される条件は幾らか緩和されると考えられるので、抵抗値Rは、R=1MΩよりさらに高い値、例えばR=10MΩとしても、逆バイアスによる影響を許容できる程度に十分低減することが可能となる。
 なお、ここでは8個のLED121が直列に接続された場合には、7個のLED121の光起電力が残り1個のLED121(LED121d)に印加されるものと考えたが、3個以上のLEDが直列接続された場合には、2個以上のLEDの光起電力が残り1個のLEDに印加される可能性があり、その場合開放電圧としては、1個のLEDの光起電力2V×2=4V以上が印加される可能性がある。そのような稼動条件において、本実施の形態に係る抵抗122の並列接続による逆バイアス低減効果を奏することができる。
 (抵抗の下限値と範囲)
 LED121に並列に接続した抵抗122の下限値は、抵抗122に流れる電流が、LED121に流れる電流の1/50以下、さらには、1/100以下となるように設定すれば、抵抗122によるエネルギー損失は数%以下(例えば、1/50以下としたときは、2%以下)、さらには、1%以下(例えば、1/100以下としたとき)とすることができる。つまり、上述した程度以下の電流が流れるように抵抗値Rを設定すれば、抵抗122によるエネルギー損失は、無視しうる程度に小さく、十分許容できる範囲に収めることができる。
 例えば、抵抗122が並列接続されたLED121(窒化ガリウム系半導体発光素子)の端子に3Vの駆動電圧(発光動作電圧)を印加したとき、LED121に20mAの電流が流れ、抵抗122にその1/100の電流が流れることを前提条件にすると、オームの法則から、抵抗122の抵抗値R=3(V)/0.0002(A)=15kΩとなる。また、抵抗値R=150kΩであれば、抵抗122にはLED121に流れる電流の1/1000しか流れず、エネルギー損失はさらに減少する。
 以上の状況から、抵抗122(抵抗値R)の下限値としては、15kΩを設定することができる。つまり、抵抗122の抵抗値Rとしては、15kΩ以上が好ましく、150kΩ以上であればさらにエネルギー損失を低減することができる。
 なお、上述したとおり、抵抗値Rが低いほど、逆バイアスが緩和され、LED121の劣化の抑制効果は高くなるが、他方、エネルギー損失は大きくなる。
 したがって、発光装置100の回路構成や使用条件などの兼合いにより、抵抗値Rを決定することが好ましい。例えば、第1合成発光装置ユニット110を構成するLED121の直列接続数が多い場合は、外光による光起電力が直列接続数の分だけ加算され、逆バイアスが高くなると考えられので、抵抗値Rは、低めに設定することが好ましい。
 つまり、抵抗122による逆バイアスの緩和効果、および、抵抗122によるエネルギー損失の抑制の双方を勘案することが必要である。
 したがって、本実施の形態では、LED121は、窒化ガリウム系半導体発光素子であり、抵抗122の抵抗値Rは、15kΩ以上10MΩ以下とすることが好ましい。この構成により、窒化ガリウム系半導体発光素子を発光状態としたとき並列に接続した抵抗122による消費電力の増加を抑制し、窒化ガリウム系半導体発光素子を消灯状態としたとき外光によって印加される逆起電力を抑制することが可能となる。
 また、さらには、抵抗122の抵抗値Rは、150kΩ以上1MΩ以下とすることがより好ましい。この構成により、窒化ガリウム系半導体発光素子を発光状態としたときの消費電力をさらに抑制し、窒化ガリウム系半導体発光素子を消灯状態としたときの逆起電力をさらに抑制することが可能となる。
 (発光装置の信頼性)
 本実施の形態に係る発光装置100について、比較用の発光装置300と同等の条件で信頼性実験を行った。すなわち、発光装置100に外光を照射したとき、第1合成発光装置ユニット110(発光装置ユニット120)のうち1つのLED121dを遮光した状態とした。
 この状態で、発光装置100をLED照明光源として稼働させ、日中はスイッチ153を開状態として消灯、夜間はスイッチ153を閉状態として点灯させ、3000時間経過させた。その結果、発光装置100(LED121d)に故障は認められず安定して動作し、LED121dの劣化が抑制される効果が確認された。
 発光装置100では、スイッチ153を開状態として第1合成発光装置ユニット110(第1合成発光装置ユニット110d)に外光を照射し、うち1個のLED121dを遮光した場合、抵抗122の抵抗値R=1MΩのときに、LED121dに印加される逆バイアスは、0.05V×7=0.35Vと見積もられる。そのため、LED121dの劣化が抑制されたものと推定される。
 なお、図2では、抵抗122は、パッケージ130の内部に設置されているが、抵抗122を外部に設置してLED121に並列接続した場合、同様に、逆バイアス抑制効果が得られる。
 また、抵抗122を発光装置ユニット120の内部に設置した場合は、発光装置ユニット120の取り扱い時における静電破壊を抑制する効果がある。
 発光装置100は、発光装置ユニット120を3個以上直列に接続した第1合成発光装置ユニット110を備える。この構成により、個別にパッケージされた発光装置ユニット120を3個以上ストリング状に接続した第1合成発光装置ユニット110を備えるので、任意の長さを有する発光装置100とすることができる。
 発光装置100は、発光装置ユニット120(第1合成発光装置ユニット110)に直流電流を供給する電源部150を備える。この構成により、信頼性が高く、エネルギー損失の少ない発光装置100を安定して動作させることができる。
 上述したとおり、本実施の形態に係る発光装置ユニット120は、基板131と、基板131に配置された半導体発光素子121と、半導体発光素子121に接続された抵抗122とを有する発光装置ユニット120であって、抵抗122は、半導体発光素子121に並列に接続され、抵抗122の抵抗値Rは、半導体発光素子121を発光させる発光動作電圧を半導体発光素子121に印加したときに、抵抗122に流れる電流が半導体発光素子121に流れる電流の50分の1以下となる値に設定されている。
 したがって、半導体発光素子121を消灯状態としたときは、外光に起因して半導体発光素子121(例えば、半導体発光素子121d)に印加される逆起電力を抑制して半導体発光素子121dの劣化を防止することが可能となり、また、半導体発光素子121を発光状態としたときは、発光動作電圧によって抵抗122に流れる電流による消費電力の増加を抑制することが可能となる。つまり、発光装置ユニット120は、長寿命化を図って信頼性を確保し、また、エネルギー損失を抑制することができる。
 なお、本実施の形態に係る発光装置ユニット120は、実施の形態2と同様に、印刷により形成された厚膜抵抗を抵抗122とすることも可能である。また、実施の形態2と同様に、印刷により形成された配線電極(実施の形態2での配線電極226に対応)、認識パターン(実施の形態2での認識パターン280に対応)を設けることも可能である。
 <実施の形態2>
 図4および図5に基づいて、本実施の形態に係る発光装置、発光装置ユニットについて説明する。なお、基本的な構成は、実施の形態1の場合と同様であるので、適宜説明を省略する。
 図4は、本発明の実施の形態2に係る発光装置および発光装置ユニットの回路図である。
 図5は、図4で示した発光装置を構成する発光装置ユニットおよび第2合成発光装置ユニットを説明する説明図であり、(A)は発光面側から見た平面状態を示す平面図、(B)は(A)の矢符B方向から見た側面状態を拡大透視して示す拡大透視側面図である。なお、図5(B)では、ワイヤ225の図示を省略している。
 本実施の形態に係る発光装置200は、基板231と、基板231に配置された半導体発光素子221と、半導体発光素子221に接続された抵抗222とを有する発光装置ユニット220を備える。以下では、半導体発光素子221をLED221と記載することがある。
 本実施の形態に係る発光装置200では、抵抗222は、LED221に並列に接続され、抵抗222の抵抗値は、LED221を発光させる発光動作電圧をLED221に印加したときに、抵抗222に流れる電流がLED221に流れる電流の50分の1以下となる値に設定されている。
 したがって、LED221を消灯状態としたときは、外光に起因してLED221に印加される逆起電力を抑制してLED221の劣化を防止することが可能となり、また、LED221を発光状態としたときは、発光動作電圧によって抵抗222に流れる電流による消費電力の増加を抑制することが可能となるので、長寿命化を図って信頼性を確保し、また、エネルギー損失を抑制することができる発光装置200となる。
 なお、LED221は、実施の形態1の半導体発光素子121(LED121)と同様であり、抵抗222の抵抗値Rは、実施の形態1の抵抗122の抵抗値Rと同様の構成としてある。
 つまり、LED221は、窒化ガリウム系半導体発光素子であり、抵抗222の抵抗値Rは、15kΩ以上10MΩ以下であることが好ましい。この構成により、窒化ガリウム系半導体発光素子を発光状態としたとき並列に接続した抵抗222による消費電力の増加を抑制し、窒化ガリウム系半導体発光素子を消灯状態としたとき外光によって印加される逆起電力を抑制することが可能となる。
 また、抵抗222の抵抗値Rは、150kΩ以上1MΩ以下であることがさらに好ましい。この構成により、窒化ガリウム系半導体発光素子を発光状態としたときの消費電力をさらに抑制し、窒化ガリウム系半導体発光素子を消灯状態としたときの逆起電力をさらに抑制することが可能となる。
 本実施の形態に係る発光装置200は、一対の配線電極226に4個のLED221と抵抗222とが並列接続されたものを1つの発光装置ユニット220とし、発光装置ユニット220を18個直列接続して第2合成発光装置ユニット210を構成している。つまり、発光装置ユニット220は、LED221を複数個並列に接続している。したがって、大面積での発光が可能となるので、大型の発光装置200とすることができる。
 発光装置200は、発光装置ユニット220(LED221)を3個以上直列に接続した第2合成発光装置ユニット210を基板231上に備える。したがって、同一の基板231の上に配置された3個以上の発光装置ユニット220を直列に接続した第2合成発光装置ユニット210を備えるので、実装密度(発光密度)の高い発光装置200とすることができる。
 また、第2合成発光装置ユニット210は、蛍光体含有樹脂233により被覆されて1つのパッケージ230によって封止されている。つまり、第2合成発光装置ユニット210は、単一のパッケージ230に封止されている。したがって、取り扱いが容易となり、信頼性、交換性を向上させた発光装置200とすることが可能となる。
 発光装置200の平面の大きさは、基板231で定まり、本実施の形態では、20mm×30mmの矩形状の発光装置とした。
 なお、配線電極226は、相互に直列接続される発光装置ユニット220と隣接する発光装置ユニット220とを接続するときに中継配線となる中継電極である。つまり、配線電極226は、4個のLED221と抵抗222とを中間に配置するように形成される。したがって、配線電極226は、隣接する発光装置ユニット220では相互に共有(兼用)させて形成されている。
 抵抗222は、基板231に厚膜抵抗として形成されている。この構成により、抵抗222を基板231に生産性よく形成することが可能となり、組立工程を簡略化して大型の発光装置200(第2合成発光装置ユニット210)を容易に製造することができる。各発光装置ユニット220の抵抗222は、抵抗値R=100kΩとした。なお、厚膜抵抗とは、厚膜抵抗ペーストを印刷法により転写し、焼成により形成した抵抗をいう。
 つまり、発光装置200は、LED221および抵抗222(厚膜抵抗)が接続される配線電極226を備え、配線電極226は、LED221を内側に配置するように平行に配置され、抵抗222(厚膜抵抗)は、配線電極226と交差している。したがって、LED221、配線電極226、抵抗222(厚膜抵抗)を高精度に配置して、大面積で均一性よく発光させることが可能な発光装置200とすることができる。
 配線電極226は、基板231の長手方向の辺と平行に、7行3列の筋状のパターンとして配列され、p側端子223およびn側端子224は、基板231の短手方向の1辺に沿って配列されている。
 また、3列の内で中央列の配線電極226の内で最も外側の配線電極226f、配線電極226sは、隣接する列の配線電極226に対して発光装置ユニット220を直列接続するように隣接する列の側へ延長されている。つまり、右側で最も外側の配線電極226fは、上側列の配線電極226と一体に形成され、左側で最も外側の配線電極226sは、下側列の配線電極226と一体に形成されるように形成されている。
 また、抵抗222は、配線電極226の中央を横断する形態で形成されていることから、複数並列接続されたLED221に対する抵抗の影響のバラツキを抑制して均一化することが可能となる。
 また、上側列の外側に中央列とは分離して配置された配線電極226は、n側端子配線224wと一体に形成されて接続され、下側列の外側に中央列とは分離して配置された配線電極226は、p側端子配線223wと一体に形成されて接続され、第2合成発光装置ユニット210を構成している。
 抵抗222は、基板231の短手方向の辺と平行に3行の筋状のパターンとして配列され、複数の配線電極226それぞれの略中央を横断するように形成され、配線電極226と交差する部分で配線電極226と接続されている。
 配線電極226または抵抗222(厚膜抵抗)を形成するときに、基板231の表面の一部分に、併せて認識パターン280を形成することが可能である。認識パターン280は後述するダイボンディングやワイヤボンディングなどの工程において位置決めをする際に用いられ、製造工程の作業性を向上させ、高精度化を図ることができる。
 本実施の形態に係る発光装置200について、電源部250(電源部250は、電圧源251、スイッチ253、出力端子間並列インピーダンス252を備えた等価回路で表すことができる。)の出力端子250aと出力端子250bとの間に接続された第2合成発光装置ユニット210に外光が照射され、うち1つの発光装置ユニット220d(4個のLED221d)が遮光体260により遮光された状態を想定する。
 スイッチ253が開の状態であっても、抵抗252により閉回路が形成される。この状態で、他の発光装置ユニット220が外光により発生する光起電力を0.015Vとすると、遮光された発光装置ユニット220dに印加される逆バイアスは0.015V×17=0.255Vにしか達せず、LED221dの劣化を抑制することが可能となる。
 第2合成発光装置ユニット210(発光装置220)は、基板231と、基板231にダイボンディングされたLED221と、LED221を被覆する蛍光体含有樹脂233とを備える。
 基板231はセラミック、樹脂、および表面が絶縁された金属などを主とする材質により形成される。厚膜抵抗(抵抗222)や電極(配線電極226)を形成する際に焼成を行う。したがって、特に耐熱性に優れ、反射率の高い材料であるアルミナ基板等のセラミック基板が好適である。
 基板231の表面には、電源部250から電力を供給するためのp側端子223、n側端子224、および配線電極226が形成され、さらに、p側端子223と配線電極226とを接続するp側端子配線223w、n側端子224と配線電極226とを接続するn側端子配線224wが形成されている。また、配線と同様に、複数の配線電極226相互間を横断して配線電極226相互を接続するように、抵抗222が厚膜抵抗として形成されている。
 LED221は、ロウ材もしくは接着剤等により基板231にダイボンディングされている。LED221の表面に備えられたパッド電極であるp側電極221pおよびn側電極221nは、ワイヤ225を介して基板231の表面に形成された配線電極226にワイヤボンディングされている。
 また、LED221は蛍光体含有樹脂233により被覆されている。蛍光体含有樹脂233は、実施の形態1の蛍光体含有樹脂部133と同様に構成することができるので詳細は省略する。
 抵抗222は、基板231に形成された厚膜抵抗として説明したが、厚膜抵抗に限るものではない。例えば、実施の形態1の抵抗122(チップ抵抗)と同様、抵抗222は、基板231に実装されたチップ抵抗とすることができる。この構成により、抵抗222を基板231に生産性よく実装することが可能となり、組立工程を簡略化して任意の大きさの発光装置200を容易に製造することができる。
 つまり、抵抗222は、LED221に並列に接続され、LEDストリングを構成する第2合成発光装置ユニット210に入射した外光による光起電力が、抵抗222によりバイパスされ、LED221dに印加される逆バイアスが緩和されるように構成されておれば良い。
 なお、発光装置ユニット220は、実施の形態1の場合と同様に、LED221を1個のみとして第2合成発光装置ユニット210を構成することも可能である。
 発光装置200は、発光装置ユニット220(第2合成発光装置ユニット210)に直流電流を供給する電源部250を備える。この構成により、信頼性が高く、エネルギー損失の少ない発光装置200を安定して動作させることができる。
 上述したとおり、本実施の形態に係る発光装置ユニット220は、基板231と、基板231に配置された半導体発光素子221と、半導体発光素子221に接続された抵抗222とを有する発光装置ユニット220であって、抵抗222は、半導体発光素子221に並列に接続され、抵抗222の抵抗値は、半導体発光素子221を発光させる発光動作電圧を半導体発光素子221に印加したときに、抵抗222に流れる電流が半導体発光素子221に流れる電流の50分の1以下となる値に設定されている。
 したがって、半導体発光素子221を消灯状態としたときは、外光に起因して半導体発光素子221(例えば、半導体発光素子221d)に印加される逆起電力を抑制して半導体発光素子221dの劣化を防止することが可能となり、また、半導体発光素子221を発光状態としたときは、発光動作電圧によって抵抗222に流れる電流による消費電力の増加を抑制することが可能となる。つまり、発光装置ユニット220は、長寿命化を図って信頼性を確保し、また、エネルギー損失を抑制することができる。
 <実施の形態3>
 図6Aないし図6Gに基づいて、実施の形態2に係る発光装置200(第2合成発光装置ユニット210)を製造する方法(製造工程)を実施の形態3(発光装置製造方法、第2合成発光装置ユニット製造方法)として説明する。なお、図6Bないし図6Gで示す発光装置200は、工程を説明するためのものであるので、構造を簡略化してある。
 図6Aは、本発明の実施の形態3に係る発光装置製造方法の概略工程を示すフローチャートである。
 発光装置200を製造する発光装置製造方法は、ステップS1(分割溝形成工程)からステップS9(ダムシート除去工程)までを備える。
 つまり、ステップS1は、分割溝形成工程であり、図6Bで示す。ステップS2は、配線電極形成工程(配線印刷・乾燥・焼成工程)であり、図6Cで示す。ステップS3は、抵抗形成工程(抵抗印刷・乾燥・焼成工程)、ステップS4は、基板分割工程であり、図6Dで示す。ステップS5は、ダイボンディング工程、ステップS6は、ワイヤボンディング工程であり、図6Eで示す。ステップS7は、ダムシート貼り付け工程、ステップS8は、LED被覆工程であり、図6Fで示す。ステップS9は、ダムシート除去工程であり、図6Gで示す。
 ステップS1:
 図6Bは、図6Aで示した分離溝形成工程での基板の状態を示す説明図であり、(A)は基板の側面図、(B)は溝を形成された基板の表面を示す平面図である。
 基板231は、一枚の大きな母基板231mをステップS4で分割して形成されるが、それまでの工程では、生産性、加工性を考慮して基板231を集合させた状態の大きな基板である母基板231mの状態で処理を施される。本ステップでは、母基板231mの表面または裏面に、基板231の外形に沿う分割溝282がハーフダイスなどの方法により形成される(分割溝形成工程)。
 なお、図6C以下では、図面上、母基板231mの状態ではなく、分割される基板231の状態で示す。
 ステップS2:
 図6Cは、図6Aで示した配線電極形成工程での基板の状態を示す説明図であり、(A)は基板の側面図とスクリーンマスクの断面図、(B)は配線が形成された基板の表面を示す平面図である。なお、スクリーンマスクは、開口285wを明確にするためにハッチングを施している。
 導体パターン(開口285w)が穿孔されたスクリーン285を基板231(母基板231m)の表面に載置し、導体ペーストを印刷した後、乾燥させ、950℃の雰囲気中で焼成する。つまり、配線(p側端子223、p側端子配線223w、n側端子224、n側端子配線224w、配線電極226)を形成する(配線電極形成工程)。
 なお、導体パターンの対象となる配線としては、p側端子223、p側端子配線223w、n側端子224、n側端子配線224w、配線電極226があるが、図6Cでは、必須の電極として配線電極226を代表的に示す。
 なお、ステップS2で示したスクリーン285は、基板231に所望の配線(導体パターン)が形成されるように、ステンレスなど金属の薄板に配線に対応させたパターンを穿孔させたものである。
 また、導体ペーストとしては、例えばAg/Pdペーストが用いられる。Ag/Pdペーストは、Ag、Pdの粉末、酸化物添加剤、硼珪酸鉛ガラスなどの低融点ガラス粉末、セルロース系有機バインダを主とする成分が溶剤に分散されたものである。
 ステップS3:
 図6Dは、図6Aで示した抵抗形成工程での基板の表面状態を示す平面図である。
 抵抗パターンが穿孔されたスクリーン(不図示)を基板231(母基板231m)の表面に載置し、抵抗ペーストを印刷した後、乾燥させ、850℃の雰囲気中で焼成する。つまり、厚膜抵抗である抵抗222を形成する(抵抗形成工程)。また、抵抗222は、配線電極226と交差する方向に延長されている。
 本ステップで用いるスクリーンは、ステップS2で用いるスクリーンと同様、ステンレスなど金属の薄板に配線に対応させたパターンを穿孔させたものである。
 なお、導体ペーストと抵抗パターンの焼成温度が同等である場合、ステップS2とステップS3を同時に実施して電極(p側端子223、p側端子配線223w、n側端子224、n側端子配線224w、配線電極226)と抵抗(抵抗222)を同時に形成することが可能な場合がある。
 また、抵抗ペーストとしては、例えばRu系ペーストを用いることができる。Ru系ペーストはRuO2を主成分とし、シート抵抗の範囲が10Ω/□~10MΩ/□のものが得られる。
 つまり、長方形状の配線電極226がマトリックス状に配置され、各列の配線電極226を横断するように抵抗222が配置されている。最外側の配線電極226を適宜他の配線と接続することによって、第2合成発光装置ユニット210(発光装置200)を構成することができる。
 なお、ステップS2、ステップS3で基板231の表面の一部分に、認識パターン280を形成することができる。認識パターン280は後述するダイボンディングやワイヤボンディングなどの工程において位置決めをする際に用いられる。
 認識パターン280の材質は、電極226または抵抗222(厚膜抵抗)の材質の何れでも良く、スクリーン印刷により配線電極226または抵抗222(厚膜抵抗)を形成するのと同時に形成することができる。
 つまり、基板231は、製造工程での目印となる認識パターン280を備え、認識パターン280は、配線電極226または厚膜抵抗(抵抗222)と同一の部材で形成されている。したがって、LED221の実装をするときに利用する認識パターン280を配線電極226または厚膜抵抗(抵抗222)を形成するとき併せて容易に形成することが可能となるので、生産性の高い発光装置200とすることができる。
 なお、認識パターン280を用いた位置決めは、通常、CCDカメラなど撮像手段により基板231の表面のパターン(認識パターン280)を認識する過程を有するが、認識パターン280の基板231に対するコントラストの高い方が、認識は容易である。従って、コントラストの高い色合いを有する厚膜抵抗222と同時に形成することが、より好ましい。
 図6Eは、図6Aで示した基板分割工程、ダイボンディング工程、ワイヤボンディング工程を経た後の表面状態を示す平面図である。
 ステップS4:
 母基板231mを個別の基板231に分割する(基板分割工程)。分割の方法としては、基板231に形成された分割溝282の上方を表面から、例えば、カッタにより剪断する。これにより、基板は分割溝282に沿って割れるので、容易に分割することができる。
 ステップS5:
 分割した基板231に対して、LED221をダイボンディングする(ダイボンディング工程)。対向する一対の配線電極226の行間に4個のLED221がダイボンディングされる(図5参照)。つまり、本工程は、一対の配線電極226の間に半導体発光素子221を配置する半導体発光素子配置工程である。
 ダイボンディングの際、LED221はジグザグ配置となるように配置する。すなわち、隣り合うLED221の辺同士ができるだけ対向しないように相互にずらしてダイボンディングする。このような配置により、隣り合うLED221の間で出射光を吸収しあったり、遮光しあったりすることが抑制され、光取出し効率を向上させることが可能となる。
 ステップS6:
 ダイボンディングされたLED221に対してワイヤボンディングを施す(ワイヤボンディング工程)。
 つまり、LED221の電極(n側電極221n、p側電極221p)と配線電極226とがワイヤボンディングにより接続され、発光装置ユニット220が直列配置された第2合成発光装置ユニット210を形成することができる。したがって、本工程は、半導体発光素子221の電極を配線電極226に接続して発光装置ユニット220を形成する発光装置ユニット形成工程である。
 なお、隣接する発光装置ユニット220の配線電極226は、互いに兼用されている。
 図6Fは、図6Aで示したダムシート貼り付け工程、LED被覆工程での基板の側面状態を示す側面図である。なお、ダムシートは、貫通孔281wを明確にするためにハッチングを施している。
 ステップS7:
 LED221を蛍光体含有樹脂233rで被覆する前に、基板231のLED221がダイボンディングされた表面に、堰き止め部材であるダムシート281を貼り付ける(ダムシート貼り付け工程)。
 ダムシート281は、LED221(発光装置ユニット220、第2合成発光装置ユニット210)を収容する貫通孔281wが形成されており、LED221を封止する蛍光体含有樹脂部233(図5参照)が形成される形状とされている。つまり、ダムシート281は、貫通孔281wに注入された蛍光体含有樹脂233rがダムシート281を超えて拡がらない様に堰き止めるものである。
 ダムシート281は、例えばテフロン(登録商標)、フッ素ゴムなどの樹脂製シートで形成され、基板231に貼り付ける面に粘着材が塗布されたものを用いることができる。フッ素ゴムは弾力性が高く、後の工程で容易に除去することができるので好ましい部材である。
 ステップS8:
 ダムシート281が貼り付けられた基板231の表面に対して貫通孔281wを満たすように蛍光体含有樹脂233rを注入してLED221を被覆する(LED被覆工程)。蛍光体含有樹脂233rは、シリコーン樹脂など透明樹脂に蛍光体を分散させたものである。
 ステップS9:
 図6Gは、図6Aで示したダムシート除去工程後の基板の状態を示す説明図であり、(A)は基板の側面図、(B)は蛍光体含有樹脂部部が形成された基板の表面を示す平面図である。
 貫通孔281wに充填した蛍光体含有樹脂233rを150℃120分の条件で硬化させた後、ダムシート281を除去して蛍光体含有樹脂部233を形成した(ダムシート除去工程)。
 ダムシート281の除去は、一端を治具により把持して引き剥すことにより容易に実施することができる。この際、貫通孔281wからはみ出した蛍光体含有樹脂233rはダムシート281と共に同時に除去することができる。
 以上の製造工程により、図6G(図5参照)で示すとおり、第2合成発光装置ユニット210(発光装置200)を形成することができる。
 上述したとおり、本実施の形態に係る発光装置製造方法は、半導体発光素子221および抵抗222を有する発光装置ユニット220と、発光装置ユニット220が配置された基板231とを備える発光装置200を製造する発光装置製造方法である。
 本実施の形態に係る発光装置製造方法では、半導体発光素子221および抵抗222が接続される一対の配線電極226を基板231に印刷により形成する配線電極形成工程と、一対の配線電極226を相互に接続するように抵抗222を基板231に印刷により形成する抵抗形成工程と、一対の配線電極226の間に半導体発光素子221を配置する半導体発光素子配置工程と、半導体発光素子221の電極を配線電極226に接続して発光装置ユニット220を形成する発光装置ユニット形成工程とを備える。
 したがって、印刷技術を適用して配線電極226および抵抗222を形成することから、大型の発光装置200を生産性良く製造することが可能となる。
 また、本実施の形態に係る発光装置製造方法では、発光装置ユニット220は、複数個平行に配置されて直列に接続され、配線電極226は、発光装置ユニット220の端部に対応させて平行に配置され、隣接する発光装置ユニット220の配線電極226は、互いに兼用され、抵抗222は、配線電極226と交差する方向に延長されている。
 したがって、発光装置ユニット220、配線電極226を高密度に配置することが可能となることから、大面積の発光装置200を容易に製造することが可能となる。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 なお、この出願は、日本で2009年3月3日に出願された特願2009-049634号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。また、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組み込まれるものである。
 本発明は、信頼性を確保し、エネルギー損失を抑制することができる発光装置、発光装置ユニット、および発光装置を製造する発光装置製造方法を提供することができる点で有用である。
 100 発光装置
 110 第1合成発光装置ユニット
 120 発光装置ユニット
 121 半導体発光素子(LED)
 121n n側電極
 121p p側電極
 122 抵抗(チップ抵抗)
 123 p側端子
 123w p側端子配線
 124 n側端子
 124w n側端子配線
 125 ワイヤ
 130 パッケージ
 131 基板
 132 枠体
 133 蛍光体含有樹脂部
 150 電源部
 150a 出力端子
 150b 出力端子
 151 電圧源
 152 出力端子間並列インピーダンス
 153 スイッチ
 160 遮光体
 200 発光装置
 210 第2合成発光装置ユニット
 220 発光装置ユニット
 221 半導体発光素子(LED)
 221n n側電極
 221p p側電極
 222 抵抗(厚膜抵抗)
 223 p側端子
 223w p側端子配線
 224 n側端子
 224w n側端子配線
 225 ワイヤ
 226 配線電極
 230 パッケージ
 231 基板
 233 蛍光体含有樹脂部
 250 電源部
 250a 出力端子
 250b 出力端子
 251 電圧源
 252 出力端子間並列インピーダンス
 253 スイッチ
 260 遮光体
 280 認識パターン
 281 ダムシート
 281w 貫通孔
 285 スクリーン
 285w 開口

Claims (16)

  1.  基板と、該基板に配置された半導体発光素子と、該半導体発光素子に接続された抵抗とを有する発光装置ユニットを備える発光装置であって、
     前記抵抗は、前記半導体発光素子に並列に接続され、前記抵抗の抵抗値は、前記半導体発光素子を発光させる発光動作電圧を前記半導体発光素子に印加したときに、前記抵抗に流れる電流が前記半導体発光素子に流れる電流の50分の1以下となる値に設定されていること
     を特徴とする発光装置。
  2.  請求項1に記載の発光装置であって、
     前記半導体発光素子は、窒化ガリウム系半導体発光素子であり、前記抵抗の抵抗値は、15kΩ以上10MΩ以下であること
     を特徴とする発光装置。
  3.  請求項2に記載の発光装置であって、
     前記抵抗の抵抗値は、150kΩ以上1MΩ以下であること
     を特徴とする発光装置。
  4.  請求項1ないし請求項3のいずれか一つに記載の発光装置であって、
     前記抵抗は、前記基板に形成された厚膜抵抗であること
     を特徴とする発光装置。
  5.  請求項4に記載の発光装置であって、
     前記半導体発光素子および前記厚膜抵抗がそれぞれ接続された配線電極を備え、該配線電極は、前記半導体発光素子を内側に配置するように平行に配置され、前記厚膜抵抗は、前記配線電極と交差して接続されていること
     を特徴とする発光装置。
  6.  請求項5に記載の発光装置であって、
     前記基板は、製造工程での目印となる認識パターンを備え、該認識パターンは、前記配線電極または前記厚膜抵抗と同一の部材で形成されていること
     を特徴とする発光装置。
  7.  請求項1ないし請求項3のいずれか一つに記載の発光装置であって、
     前記抵抗は、前記基板に実装されたチップ抵抗であること
     を特徴とする発光装置。
  8.  請求項1ないし請求項7のいずれか一つに記載の発光装置であって、
     前記発光装置ユニットは、前記半導体発光素子を複数個並列に接続していること
     を特徴とする発光装置。
  9.  請求項1ないし請求項8のいずれか一つに記載の発光装置であって、
     前記発光装置ユニットは、単一のパッケージに封止されていること
     を特徴とする発光装置。
  10.  請求項9に記載の発光装置であって、
     前記発光装置ユニットを3個以上直列に接続した第1合成発光装置ユニットを備えること
     を特徴とする発光装置。
  11.  請求項1ないし請求項8のいずれか一つに記載の発光装置であって、
     前記発光装置ユニットの前記半導体発光素子を3個以上直列に接続して前記基板上に構成した第2合成発光装置ユニットを備えること
     を特徴とする発光装置。
  12.  請求項11に記載の発光装置であって、
     前記第2合成発光装置ユニットは、単一のパッケージに封止されていること
     を特徴とする発光装置。
  13.  請求項1ないし請求項12のいずれか一つに記載の発光装置であって、
     前記発光装置ユニットに直流電流を供給する電源部を備えること
     を特徴とする発光装置。
  14.  基板と、該基板に配置された半導体発光素子と、該半導体発光素子に接続された抵抗とを有する発光装置ユニットであって、
     前記抵抗は、前記半導体発光素子に並列に接続され、前記抵抗の抵抗値は、前記半導体発光素子を発光させる発光動作電圧を前記半導体発光素子に印加したときに、前記抵抗に流れる電流が前記半導体発光素子に流れる電流の50分の1以下となる値に設定されていること
     を特徴とする発光装置ユニット。
  15.  基板と、該基板に配置された半導体発光素子と、該半導体発光素子に接続された抵抗とを有する発光装置ユニットを備える発光装置を製造する発光装置製造方法であって、
     前記半導体発光素子および前記抵抗が接続される一対の配線電極を前記基板に印刷により形成する配線電極形成工程と、
     一対の前記配線電極を相互に接続するように前記抵抗を前記基板に印刷により形成する抵抗形成工程と、
     一対の前記配線電極の間に前記半導体発光素子を配置する半導体発光素子配置工程と、
     前記半導体発光素子の電極を前記配線電極に接続して前記発光装置ユニットを形成する発光装置ユニット形成工程とを備えること
     を特徴とする発光装置製造方法。
  16.  請求項15に記載の発光装置製造方法であって、
     前記発光装置ユニットは、複数個平行に配置されて直列に接続され、前記配線電極は、前記発光装置ユニットの端部に対応させて平行に配置され、隣接する前記発光装置ユニットの前記配線電極は、互いに兼用され、前記抵抗は、前記配線電極と交差する方向に延長されていること
     を特徴とする発光装置製造方法。
PCT/JP2010/053046 2009-03-03 2010-02-26 発光装置、発光装置ユニット、および発光装置製造方法 WO2010101079A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/254,070 US8575630B2 (en) 2009-03-03 2010-02-26 Light emitting device, light emitting device unit, and method for fabricating light emitting device
EP10748674.8A EP2405490B1 (en) 2009-03-03 2010-02-26 Light emitting device and light emitting device fabrication method
CN2010800095105A CN102334201B (zh) 2009-03-03 2010-02-26 发光装置、发光装置单元、以及发光装置制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009049634A JP5283539B2 (ja) 2009-03-03 2009-03-03 発光装置、発光装置ユニット、および発光装置製造方法
JP2009-049634 2009-03-03

Publications (1)

Publication Number Publication Date
WO2010101079A1 true WO2010101079A1 (ja) 2010-09-10

Family

ID=42709638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053046 WO2010101079A1 (ja) 2009-03-03 2010-02-26 発光装置、発光装置ユニット、および発光装置製造方法

Country Status (5)

Country Link
US (1) US8575630B2 (ja)
EP (1) EP2405490B1 (ja)
JP (1) JP5283539B2 (ja)
CN (1) CN102334201B (ja)
WO (1) WO2010101079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329290A (zh) * 2010-11-22 2013-09-25 科锐公司 发光器件和方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726409B2 (ja) * 2009-07-01 2015-06-03 シャープ株式会社 発光装置および発光装置の製造方法
JP5623062B2 (ja) 2009-11-13 2014-11-12 シャープ株式会社 発光装置およびその製造方法
JP2011151268A (ja) 2010-01-22 2011-08-04 Sharp Corp 発光装置
JP5017399B2 (ja) * 2010-03-09 2012-09-05 株式会社東芝 半導体発光装置および半導体発光装置の製造方法
JP2012004519A (ja) 2010-05-17 2012-01-05 Sharp Corp 発光装置および照明装置
US8696159B2 (en) 2010-09-20 2014-04-15 Cree, Inc. Multi-chip LED devices
JP5612991B2 (ja) 2010-09-30 2014-10-22 シャープ株式会社 発光装置及びこれを備えた照明装置
US8652860B2 (en) 2011-01-09 2014-02-18 Bridgelux, Inc. Packaging photon building blocks having only top side connections in a molded interconnect structure
US8354684B2 (en) 2011-01-09 2013-01-15 Bridgelux, Inc. Packaging photon building blocks having only top side connections in an interconnect structure
WO2012168834A1 (en) * 2011-06-08 2012-12-13 Koninklijke Philips Electronics N.V. Diode lighting arrangement
WO2013154181A1 (ja) * 2012-04-13 2013-10-17 株式会社ドゥエルアソシエイツ チップオンボード型のパッケージ基板を有する発光装置の製造方法
EP2882000A4 (en) 2012-08-06 2016-03-16 Sharp Kk LIGHT EMITTING APPARATUS AND METHOD FOR MANUFACTURING THE SAME
CN102829445A (zh) * 2012-09-04 2012-12-19 苏州金科信汇光电科技有限公司 具有平衡机制的集成式led及其制造工艺
US9171826B2 (en) 2012-09-04 2015-10-27 Micron Technology, Inc. High voltage solid-state transducers and solid-state transducer arrays having electrical cross-connections and associated systems and methods
TWI586205B (zh) * 2012-11-26 2017-06-01 魏慶德 Led驅動電路之直流核心電路
US9773761B2 (en) * 2013-07-09 2017-09-26 Psi Co., Ltd Ultra-small LED electrode assembly and method for manufacturing same
KR101429095B1 (ko) * 2013-07-09 2014-08-12 피에스아이 주식회사 초소형 led 전극어셈블리를 이용한 led 램프
CN103941434B (zh) * 2013-11-15 2017-09-05 上海中航光电子有限公司 背光源模块及其静电损伤检测方法
US9273995B2 (en) * 2014-02-04 2016-03-01 Excelitas Technologies Philippines, Inc. Light emitting diode output power control
KR20170104031A (ko) * 2016-03-03 2017-09-14 삼성전자주식회사 패키지 기판 및 발광소자 패키지
US20210074880A1 (en) * 2018-12-18 2021-03-11 Bolb Inc. Light-output-power self-awareness light-emitting device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454360U (ja) * 1977-09-22 1979-04-14
JPS6346781A (ja) * 1986-08-14 1988-02-27 Omron Tateisi Electronics Co 抵抗付モノリシツク・フオトダイオ−ド・アレイ
JPS63145352U (ja) * 1987-03-16 1988-09-26
JPS63180957U (ja) 1987-05-14 1988-11-22
JPH06318732A (ja) * 1993-03-08 1994-11-15 Stanley Electric Co Ltd 車両用led灯具
JPH11298041A (ja) 1998-04-15 1999-10-29 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子及び光源装置
JPH11307815A (ja) 1998-04-23 1999-11-05 Abikkusu Kk 交流電源用led集合ランプ
JP2004029370A (ja) * 2002-06-26 2004-01-29 Advanced Display Inc 面状光源装置及びそれを用いた液晶表示装置
JP2004193530A (ja) * 2002-12-06 2004-07-08 Michifumi Kajimoto 並列抵抗器付き直列受光器
JP2004340830A (ja) * 2003-05-16 2004-12-02 Calsonic Kansei Corp 照明装置及び該照明装置を有する車両用表示装置
JP2007294547A (ja) 2006-04-21 2007-11-08 Sharp Corp 半導体発光装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454360A (en) 1977-10-07 1979-04-28 Mitsubishi Heavy Ind Ltd Flow pipe for high-temperature high-pressure fluid
JPS63145352A (ja) 1986-12-09 1988-06-17 Sekisui Chem Co Ltd 半硬質塩化ビニル樹脂組成物
JPS63180957A (ja) 1987-01-22 1988-07-26 Canon Inc 電子写真感光体
TW402856B (en) * 1996-12-26 2000-08-21 Palite Corp LED illuminator
DE60336252D1 (de) * 2002-08-29 2011-04-14 Seoul Semiconductor Co Ltd Lichtemittierendes bauelement mit lichtemittierenden dioden
JP2005216812A (ja) * 2004-02-02 2005-08-11 Pioneer Electronic Corp 点灯装置および照明装置
EP2280430B1 (en) 2005-03-11 2020-01-01 Seoul Semiconductor Co., Ltd. LED package having an array of light emitting cells coupled in series
KR101241973B1 (ko) * 2005-03-11 2013-03-08 서울반도체 주식회사 발광 장치 및 이의 제조 방법
JP4971623B2 (ja) * 2005-11-04 2012-07-11 コーア株式会社 Led光源装置の製造方法
US20080149951A1 (en) * 2006-12-22 2008-06-26 Industrial Technology Research Institute Light emitting device
WO2008105245A1 (ja) 2007-02-28 2008-09-04 Koa Corporation 発光部品およびその製造法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454360U (ja) * 1977-09-22 1979-04-14
JPS6346781A (ja) * 1986-08-14 1988-02-27 Omron Tateisi Electronics Co 抵抗付モノリシツク・フオトダイオ−ド・アレイ
JPS63145352U (ja) * 1987-03-16 1988-09-26
JPS63180957U (ja) 1987-05-14 1988-11-22
JPH06318732A (ja) * 1993-03-08 1994-11-15 Stanley Electric Co Ltd 車両用led灯具
JPH11298041A (ja) 1998-04-15 1999-10-29 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子及び光源装置
JPH11307815A (ja) 1998-04-23 1999-11-05 Abikkusu Kk 交流電源用led集合ランプ
JP2004029370A (ja) * 2002-06-26 2004-01-29 Advanced Display Inc 面状光源装置及びそれを用いた液晶表示装置
JP2004193530A (ja) * 2002-12-06 2004-07-08 Michifumi Kajimoto 並列抵抗器付き直列受光器
JP2004340830A (ja) * 2003-05-16 2004-12-02 Calsonic Kansei Corp 照明装置及び該照明装置を有する車両用表示装置
JP2007294547A (ja) 2006-04-21 2007-11-08 Sharp Corp 半導体発光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329290A (zh) * 2010-11-22 2013-09-25 科锐公司 发光器件和方法

Also Published As

Publication number Publication date
US20110316011A1 (en) 2011-12-29
EP2405490A1 (en) 2012-01-11
CN102334201B (zh) 2013-08-21
JP5283539B2 (ja) 2013-09-04
EP2405490B1 (en) 2018-01-10
JP2010205920A (ja) 2010-09-16
EP2405490A4 (en) 2013-12-11
CN102334201A (zh) 2012-01-25
US8575630B2 (en) 2013-11-05

Similar Documents

Publication Publication Date Title
WO2010101079A1 (ja) 発光装置、発光装置ユニット、および発光装置製造方法
US10707188B2 (en) Light emitting device
JP5726409B2 (ja) 発光装置および発光装置の製造方法
US9224720B2 (en) Light-emitting device including light-emitting diode element that is mounted on outer portion of electrode
US10573779B2 (en) Method for manufacturing light emitting unit
KR100634189B1 (ko) 박막형 발광 다이오드 패키지 및 그 제조 방법
US9768228B2 (en) Semiconductor device and method for manufacturing the same
WO2011129203A1 (ja) 発光装置
JPWO2011129202A1 (ja) 発光装置および発光装置の製造方法
US20110309381A1 (en) Light-emitting device and lighting apparatus
WO2014024627A1 (ja) 発光装置および発光装置の製造方法
KR101179579B1 (ko) 엘이디 조명 모듈 및 그의 제조 방법
KR100683612B1 (ko) 발광 장치
CN105280795A (zh) 发光单元与发光模块
KR101396586B1 (ko) 하이브리드 발광 소자
JP6092136B2 (ja) 発光装置
US20160013166A1 (en) Light emitting module
US20140159061A1 (en) Protection element and light emitting device using same
JP5865929B2 (ja) 発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009510.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13254070

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010748674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7122/CHENP/2011

Country of ref document: IN