WO2010098400A1 - 不織布および電解質膜 - Google Patents

不織布および電解質膜 Download PDF

Info

Publication number
WO2010098400A1
WO2010098400A1 PCT/JP2010/052999 JP2010052999W WO2010098400A1 WO 2010098400 A1 WO2010098400 A1 WO 2010098400A1 JP 2010052999 W JP2010052999 W JP 2010052999W WO 2010098400 A1 WO2010098400 A1 WO 2010098400A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
etfe
electrolyte membrane
fibers
fabric according
Prior art date
Application number
PCT/JP2010/052999
Other languages
English (en)
French (fr)
Inventor
寺田 一郎
省吾 小寺
一夫 浜崎
茂 相田
健 射矢
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201080009734.6A priority Critical patent/CN102333913B/zh
Priority to JP2011501646A priority patent/JP5585575B2/ja
Publication of WO2010098400A1 publication Critical patent/WO2010098400A1/ja
Priority to US13/194,241 priority patent/US8394549B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/601Nonwoven fabric has an elastic quality
    • Y10T442/602Nonwoven fabric comprises an elastic strand or fiber material

Definitions

  • the present invention relates to a nonwoven fabric and an electrolyte membrane reinforced with the nonwoven fabric.
  • Fiber integration that can be used for filters (air filters, bag filters, etc.), battery separators (nickel metal hydride batteries, nickel cadmium batteries, lithium ion batteries, etc.), printed circuit board substrate reinforcement, electrolyte membrane reinforcement, etc.
  • a nonwoven fabric is used as the body.
  • general-purpose materials such as polypropylene, polyester, and polyamide have been used as the material for nonwoven fabrics.
  • fluororesins with excellent heat resistance, chemical resistance, and non-adhesive properties are used in battery separators and semiconductor fields. Is used as a material for high-performance filters for air cleaning, filters for chemical liquid filtration, bag filters for pollution environment countermeasures, and the like.
  • Nonwoven fabrics of fluororesins are known as nonwoven fabrics of fluororesins.
  • a nonwoven fabric obtained by a melt blow method using an ethylene / chlorotrifluoroethylene copolymer (Patent Document 1).
  • a nonwoven fabric obtained by a melt blow method using a tetrafluoroethylene copolymer (Patent Document 2).
  • a nonwoven fabric obtained by a melt blow method using an ethylene / tetrafluoroethylene copolymer hereinafter referred to as ETFE
  • the nonwoven fabric of (1) has insufficient mechanical strength because the fibers are not fused together.
  • the non-woven fabric of (2) has insufficient chemical resistance, water repellency, antifouling property, releasability and the like. Since the tetrafluoroethylene copolymer (3), which is a material for the nonwoven fabric, has a low elastic modulus around room temperature, which is the use environment, the nonwoven fabric has insufficient mechanical strength.
  • ETFE which is the material for the nonwoven fabric of (4), has a high elastic modulus around room temperature, which is the use environment, and is excellent in heat resistance, chemical resistance, and non-adhesiveness.
  • the present invention is a nonwoven fabric excellent in heat resistance and chemical resistance, thin in fiber diameter, excellent in mechanical strength at the use environment temperature; and dimensional stability when containing water, and reinforcement with suppressed increase in resistance due to the reinforcing material An electrolyte membrane is provided.
  • the nonwoven fabric of the present invention has ethylene / tetrafluoroethylene having a storage elastic modulus E ′ at 25 ° C. of 8 ⁇ 10 8 Pa or more and a melt viscosity measured at 300 ° C. of more than 60 Pa ⁇ s and not more than 300 Pa ⁇ s.
  • Copolymer fibers are included, and the average fiber diameter of the fibers is 0.01 to 3 ⁇ m.
  • the basis weight of the nonwoven fabric of the present invention is preferably 1 to 300 g / m 2 .
  • the nonwoven fabric of the present invention is preferably produced by a melt blow method. In the nonwoven fabric of the present invention, it is preferable that at least a part of the intersections between the fibers is fixed by fusion. The fusion is preferably by hot pressing.
  • the maximum strength in the longitudinal direction of the nonwoven fabric of the present invention is preferably 60 N / 10 cm or more when converted to a basis weight of 100 g / m 2 .
  • the maximum vertical hardness of the nonwoven fabric of the present invention is preferably 400 N / 10 cm or more when converted to a weight per unit area of 100 g / m 2 .
  • the ethylene / tetrafluoroethylene copolymer is CH 2 ⁇ CX (CF 2 ) n Y (where X and Y are each a hydrogen atom or a fluorine atom, and n is an integer of 2 to 8)
  • the content of the repeating unit based on the monomer is 0.1 to 7 mol% in the total repeating units of the ethylene / tetrafluoroethylene copolymer. It is preferable that The electrolyte membrane of the present invention is reinforced with the nonwoven fabric of the present invention.
  • the nonwoven fabric of the present invention is excellent in heat resistance and chemical resistance, has a small fiber diameter, and is excellent in mechanical strength at the use environment temperature.
  • the electrolyte membrane of the present invention is excellent in dimensional stability when containing water, and suppresses an increase in resistance due to the reinforcing material.
  • the nonwoven fabric of the present invention contains ETFE fibers having a storage elastic modulus E ′ at 25 ° C. of 8 ⁇ 10 8 Pa or more and a melt viscosity measured at 300 ° C. of more than 60 Pa ⁇ s and not more than 300 Pa ⁇ s. It is a waste.
  • Storage modulus If the storage elastic modulus E ′ at 25 ° C. is 8 ⁇ 10 8 Pa or more, the mechanical strength of the nonwoven fabric is sufficiently high and it is difficult to break during use. In addition, the dimensional stability of the electrolyte membrane reinforced with the nonwoven fabric when wet is improved.
  • the storage elastic modulus E ′ is obtained by performing dynamic viscoelasticity measurement using a dynamic viscoelasticity measuring device for an ETFE film-like sample.
  • Dynamic viscoelasticity measurement refers to the mechanical properties of a sample by sandwiching a film sample between chucks and applying a strain or stress that changes (vibrates) over time and measures the resulting stress or strain. Is a method of measuring.
  • melt viscosity When the melt viscosity measured at 300 ° C. exceeds 60 Pa ⁇ s, the molecular weight is high, so that the mechanical strength of the nonwoven fabric is sufficiently high. If the melt viscosity measured at 300 ° C. is 300 Pa ⁇ s or less, the moldability is good, the average fiber diameter of the nonwoven fabric is thin, and the fiber diameter distribution is also small.
  • the melt viscosity measured at 300 ° C. is preferably 65 to 200 Pa ⁇ s.
  • the melt viscosity (melt fluidity) is preferably measured with a capillary fluidity measuring device (capillary rheometer). This apparatus measures the stress required for extruding molten resin at a constant speed, passing through a capillary, and extruding.
  • the low melt viscosity of ETFE means that the molecular weight of ETFE is low, and the high melt viscosity of ETFE means that the molecular weight of ETFE is high.
  • melt viscosity (melt flowability) of ETFE is measured using a melt flowability measuring device (manufactured by Toyo Seiki Seisakusho, Capillograph, furnace inner diameter: 9.55 mm) with an orifice having a diameter of 1 mm and a length of 10 mm. Set and measure under conditions of cylinder temperature: 300 ° C. and piston speed: 10 mm / min.
  • the temperature for melting ETFE is preferably 5 to 30 ° C. higher than the melting point of ETFE.
  • ETFE is sufficiently melted and measurement becomes easy.
  • the temperature at which ETFE is melted is too high, the viscosity of ETFE becomes too low and the melted ETFE flows out of the orifice in a short time, making measurement difficult.
  • the melting point of ETFE is an endothermic peak when ETFE is heated from room temperature to 300 ° C. in an air atmosphere at 10 ° C./min using a scanning differential thermal analyzer (DSC220CU, manufactured by Seiko Instruments Inc.). Ask from.
  • Examples of a method for adjusting the melt viscosity (melt flowability) of ETFE include the following methods. (1) A method of adjusting the molecular weight based on the concentration of the chain transfer agent during polymerization, the polymerization pressure, the amount of ETFE with respect to the polymerization medium at the end of the polymerization reaction, and the like. (2) A method of cutting molecules to lower viscosity by applying energy such as heat and radiation to ETFE. (3) A method of chemically cleaving the molecular chain of ETFE with radicals. Specifically, a method in which ETFE and an organic peroxide are melt-kneaded with an extruder and the molecular chain of ETFE is cut with generated radicals to lower the viscosity. In the methods (2) to (3), an active functional group such as a carbonyl group is generated at the cleavage site in ETFE, and chemical stability may be lowered. Therefore, an active functional group is not generated. In addition, the method (1) having high productivity is preferable.
  • the average fiber diameter of the fibers constituting the nonwoven fabric is 0.01 to 3 ⁇ m, and more preferably 0.01 to 2 ⁇ m.
  • the average fiber diameter of the fibers is 0.01 ⁇ m or more, the tensile strength per fiber is increased, and the handling properties are improved. If the average fiber diameter of the fibers is 3 ⁇ m or less, the maximum pore diameter of the nonwoven fabric can be reduced.
  • Basis weight of the nonwoven fabric is preferably 1 ⁇ 300g / m 2, more preferably 1 ⁇ 50g / m 2, more preferably 1 ⁇ 10g / m 2. If the fabric weight of a nonwoven fabric is 1 g / m ⁇ 2 > or more, since the intensity
  • the maximum longitudinal strength per unit weight of 100 g / m 2 of the nonwoven fabric is preferably 60 N / 10 cm or more, more preferably 70 N / 10 cm or more, and even more preferably 75 N / 10 cm to 120 N / 10 cm. If the maximum strength is 60 N / 10 cm or more, the mechanical strength of the nonwoven fabric is sufficiently high, and the handling properties are good.
  • the maximum longitudinal strength per unit weight 100 g / m 2 is the maximum value of the force-strain curve force obtained when measuring the tensile strength characteristics of a nonwoven fabric (width 10 cm) with a specific basis weight 100 g It is a value converted per / m 2 , and “longitudinal direction” refers to the machine direction when the nonwoven fabric is continuously produced.
  • the maximum vertical hardness per unit weight of 100 g / m 2 of the nonwoven fabric is preferably 400 N / 10 cm or more, and more preferably 600 N / 10 cm to 1200 N / 10 cm. If the maximum hardness is 400 N / 10 cm or more, the handleability of the nonwoven fabric is good, and the dimensional stability of the electrolyte membrane reinforced with the nonwoven fabric when it is wet is good.
  • the maximum vertical hardness per unit weight of 100 g / m 2 is the initial slope of the force-strain curve with respect to the strain of the force obtained when measuring the tensile strength characteristics of a nonwoven fabric (width 10 cm) having a specific basis weight. The maximum value is a value obtained by converting the basis weight per 100 g / m 2 , and the “longitudinal direction” indicates the machine direction when the nonwoven fabric is continuously produced.
  • ETFE ETFE
  • One kind of ETFE may be used alone, or a mixture of two or more kinds may be used.
  • the storage elastic modulus E ′ at 25 ° C. and the melt viscosity measured at 300 ° C. may be within the above ranges.
  • ETFE has a repeating unit based on ethylene (hereinafter referred to as E) and a repeating unit based on tetrafluoroethylene (hereinafter referred to as TFE), and includes a repeating unit based on E and a repeating unit based on TFE.
  • the molar ratio (repeating unit based on E / repeating unit based on TFE) is preferably 20/80 to 80/20, more preferably 40/60 to 60/40, and 42/58 to 50/50. More preferred. If the molar ratio is extremely large, the heat resistance, weather resistance, chemical resistance, etc. of ETFE may be lowered. If the molar ratio is extremely small, mechanical strength, melt moldability, and the like may decrease.
  • ETFE may have one or more types of repeating units based on other monomers as long as the essential characteristics are not impaired.
  • Other monomers include ⁇ -olefins (propylene, normal butene, isobutene, etc.), CH 2 ⁇ CX (CF 2 ) n Y (where X and Y are each a hydrogen atom or a fluorine atom, and n is 2
  • FAE a compound represented by the formula
  • a fluoroolefin having a hydrogen atom in an unsaturated group (vinylidene fluoride, vinyl fluoride, trifluoroethylene, hexafluoroisobutylene, etc.).
  • Fluoroolefins that do not have hydrogen atoms in the unsaturated group (hexafluoropropylene, chlorotrifluoroethylene, perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), perfluoro (butyl vinyl ether) ), Other perfluoro (alkyl vinyl) Ether), and the like. However, except for the TFE.), And the like.
  • Another monomer may be used individually by 1 type and may use 2 or more types together.
  • the content of repeating units based on other monomers is preferably from 0.01 to 10 mol%, more preferably from 0.1 to 7 mol%, and even more preferably from 0.4 to 4 mol%, based on the total repeating units of ETFE. preferable.
  • FAE is preferable. If n in the formula of FAE is 2 or more, the properties of ETFE (such as stress crack resistance of the molded product) are sufficient. When n is 8 or less, the polymerization reactivity is good.
  • n is more preferably an integer of 2 to 6, and n is More preferred is an integer of 2 to 4.
  • Y is F and n is an integer of 2 to 6.
  • the content of repeating units based on FAE is preferably from 0.01 to 10 mol%, more preferably from 0.1 to 7 mol%, still more preferably from 0.4 to 4 mol%, based on the total repeating units of ETFE. .
  • the content of FAE is 0.01 mol% or more, the molded article has good stress crack resistance and is less prone to fracture phenomena such as cracking under stress.
  • the content of FAE is 10 mol% or less, the mechanical strength is good.
  • Examples of the production method of ETFE include a method in which E, TFE and other monomers as required are introduced into a reactor and copolymerized using a radical polymerization initiator and a chain transfer agent.
  • a bulk polymerization method As the polymerization method, a bulk polymerization method; a solution polymerization method using an organic solvent as a polymerization medium; a suspension polymerization method using an aqueous medium and an appropriate organic solvent as needed; an aqueous medium and an emulsifier as a polymerization medium
  • An emulsion polymerization method may be mentioned, and a solution polymerization method in which E, TFE and, if necessary, other monomers are copolymerized in the presence of a radical polymerization initiator, a chain transfer agent and a polymerization medium is preferable.
  • the polymerization can be carried out as a batch operation or a continuous operation using a single tank or multi-tank type stirring polymerization apparatus, a tube polymerization apparatus
  • radical polymerization initiator an initiator having a half-life of 10 hours and a temperature of 0 to 100 ° C. is preferable, and an initiator having a temperature of 20 to 90 ° C. is more preferable.
  • radical polymerization initiators include azo compounds (azobisisobutyronitrile, etc.), peroxydicarbonates (diisopropyl peroxydicarbonate, etc.), peroxyesters (tert-butylperoxypivalate, tert-butylperoxide).
  • Chain transfer agents include alcohols (methanol, ethanol, etc.), fluorochlorinated hydrocarbons (1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-1-fluoro Ethane, etc.), hydrocarbons (pentane, hexane, cyclohexane, etc.).
  • concentration of the chain transfer agent is usually about 0.01 to 100% by mass with respect to the polymerization medium.
  • the melt viscosity (molecular weight) of ETFE can be adjusted by adjusting the concentration of the chain transfer agent. That is, the higher the chain transfer agent concentration, the lower the molecular weight ETFE.
  • polymerization medium examples include organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorinated hydrocarbons, alcohols and hydrocarbons, and aqueous media.
  • organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorinated hydrocarbons, alcohols and hydrocarbons, and aqueous media.
  • the polymerization temperature is usually preferably from 0 to 100 ° C, more preferably from 20 to 90 ° C.
  • the polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa. The higher the polymerization pressure, the higher the ETFE and the higher the melt viscosity. Therefore, the melt viscosity can be adjusted by adjusting the polymerization pressure.
  • the polymerization time may vary depending on the polymerization temperature, polymerization pressure, etc., but is usually 1 to 30 hours, and more preferably 2 to 10 hours.
  • the amount of ETFE with respect to the polymerization medium at the end of the polymerization reaction is usually about 0.03 to 0.2 g / cm 3 .
  • the molecular weight of ETFE can also be adjusted by the concentration. That is, the lower the ETFE concentration in the range, the lower the molecular weight ETFE can be obtained.
  • Nonwoven fabric manufacturing method As a manufacturing method of a nonwoven fabric, the well-known nonwoven fabric manufacturing method manufactured with continuous fibers, such as a spun bond method and a melt blow method, is mentioned.
  • the melt-blowing method can increase productivity because the formation of ETFE fibers and the formation of a nonwoven fabric can be performed almost simultaneously. Further, the ETFE fibers constituting the nonwoven fabric can be made very thin.
  • Examples of the method for producing a nonwoven fabric by the melt blow method include a method having the following steps.
  • (I) A step of obtaining a long nonwoven fabric by collecting fibers spun by discharging ETFE from a spinning nozzle in a molten state and stretching it by an air flow on a breathable film substrate or the like on a belt conveyor.
  • (II) A step of laminating and transferring the nonwoven fabric with a long resin film.
  • III A step of adjusting the thickness by compacting by pressing a long nonwoven fabric with a resin film between a pair of rolls and hot pressing.
  • FIG. 1 is a schematic diagram illustrating an example of a nonwoven fabric manufacturing apparatus using a melt blow method.
  • the nonwoven fabric manufacturing apparatus 10 includes an extruder 12 for melting and extruding ETFE; a die 14 having a flow rate adjusting structure and a heated gas introduction structure provided at the tip of the extruder 12; and provided downward from the die 14.
  • a spinning nozzle 20 having a molten resin discharge hole and a gas discharge hole; a belt conveyor 30 installed below the spinning nozzle 20; a suction device 40 provided in the belt conveyor 30; an end of the upper surface of the belt conveyor 30; Non-woven fabric collection means 50 provided in the vicinity.
  • the spinning nozzle 20 has a plurality of molten resin discharge holes 22 penetrating in the vertical direction and arranged in a line along a direction orthogonal to the moving direction of the endless belt of the belt conveyor 30; It has a slit-like gas discharge hole 24 formed so as to sandwich the discharge hole 22 and extending along a direction perpendicular to the moving direction of the endless belt of the belt conveyor 30.
  • the slit width of the gas discharge hole 24 is preferably 100 to 1500 ⁇ m, more preferably 200 to 1000 ⁇ m, and further preferably 300 to 800 ⁇ m.
  • the belt conveyor 30 has four rolls 32 and an endless belt-like air-permeable film-like substrate 34 that is stretched over the four rolls 22.
  • the film-like substrate 34 include a mesh, a cloth, a porous body, and the like. From the viewpoint of a high melting temperature of ETFE, a metal mesh is preferable, and a stainless mesh is more preferable.
  • the mesh opening is preferably 2 mm or less, more preferably 0.15 mm or less, further preferably 0.06 mm or less, and particularly preferably 0.03 mm or less.
  • the nonwoven fabric transfer means 50 includes a resin film roll 52; and a transfer roll 56 for attaching the nonwoven fabric formed on the surface of the film-like substrate 34 of the belt conveyor 30 to the resin film 54 fed from the resin film roll 52. And; a roll 58 for winding the nonwoven fabric together with the resin film 54.
  • the production of the nonwoven fabric using the nonwoven fabric production apparatus 10 is performed as follows.
  • the melted ETFE extruded from the extruder 12 is discharged downward from the molten resin discharge hole 22 of the spinning nozzle 20 after the flow rate is adjusted by the die 14.
  • the heated gas supplied from the die 14 is discharged from the gas discharge hole 24 of the spinning nozzle 20, and an air flow along the molten ETFE discharged from the molten resin discharge hole 22 is generated. Due to the air flow, the molten ETFE discharged from the molten resin discharge hole 22 is drawn and spun to form ultrafine fibers.
  • the ultrafine fibers 26 are sucked through the film-like base material 34 by the suction device 40 and collected on the surface of the moving film-like base material 34, and the nonwoven fabric 28 is continuously formed.
  • the nonwoven fabric 28 is sent to the vicinity of the end of the upper surface of the belt conveyor 30 together with the film-like substrate 34.
  • the nonwoven fabric 28 is formed on the surface of the continuously moving film-like substrate 34, it is continuously formed and becomes a long one.
  • the non-woven fabric 28 may be obtained as a non-woven fabric in which a part of the intersection between the fibers is fused and fixed. Interstitial fusion does not occur, and a cotton-like nonwoven fabric is obtained.
  • the temperature of the die 14 is preferably 320 to 380 ° C., more preferably 340 to 360 ° C. If it is this range, it can shape
  • the temperature of the heated gas discharged from the gas discharge hole 24 is preferably 320 to 400 ° C, more preferably 330 to 390 ° C, and further preferably 340 to 380 ° C.
  • the amount of heated gas discharged from the gas discharge holes 24 are preferably nozzles 1cm per 0.5 ⁇ 10Nm 3 / hr is more preferably 1 ⁇ 7Nm 3 / hr, more preferably 2 ⁇ 5Nm 3 / hr.
  • Examples of the material of the resin film 54 include polyethylene terephthalate (hereinafter referred to as PET), polyethylene naphthalate, ETFE, polypropylene, polycarbonate, polyethylene, polyimide, and laminated films thereof. PET is preferred.
  • the nonwoven fabric 28 with the resin film 54 sent out from the roll 58 is hot-pressed by passing between a pair of heating rolls consisting of a metal roll 62 and a rubber roll 64 via a guide roll 60.
  • the nonwoven fabric 66 is adjusted in thickness, and is wound around a nonwoven fabric roll 68 together with the resin film 54.
  • the temperature of the heating roll is preferably a temperature range in which the fibers are not melted and deformed and have fusion properties.
  • the temperature range from (melting point ⁇ 85 ° C.) to the melting point is preferable, and the temperature range from (melting point ⁇ 70 ° C.) to the melting point is more preferable.
  • the pressure of the hot press is preferably 0.1 to 5 MPa from the viewpoint that the fibers can be fused without causing a large deformation.
  • the press pressure of this type of roll press consisting of metal roll / rubber roll is generally pressed with the pressure calculated from the set pressure and the specification of the pressure cylinder installed in the nip roll because there is deformation due to the pressure of the rubber roll. It is often different from the pressure on things. Therefore, the pressure actually applied can be measured by using a pressure measurement film “Prescale” manufactured by Fuji Film.
  • the melt viscosity at 300 ° C. of ETFE is 60 Pa ⁇ s or less, the fibers are crushed and the voids as the nonwoven fabric are easily blocked. In order to prevent the fibers from being crushed, there is a method of controlling the temperature of the heating roll and the pressure of the hot press, but the allowable range is narrow and the productivity is deteriorated. On the other hand, when the melt viscosity of ETFE at 300 ° C. exceeds 300 Pa ⁇ s, the ETFE is not sufficiently consolidated, and adhesion to the resin film is also lowered. When the temperature of the heating roll is raised in order to improve this problem, the resin film starts to be deformed, and stable continuous production becomes difficult.
  • the nonwoven fabric may be subjected to one or more treatments selected from the group consisting of irradiation with radiation, irradiation with plasma, and chemical treatment with metallic sodium as necessary.
  • polar groups such as —COOH groups, —OH groups, and —COF groups are introduced on the surface of the fiber, and when the nonwoven fabric and other materials are laminated or bonded, the adhesion at the interface between them is improved. Can be increased.
  • the non-woven fabric of the present invention described above is excellent in heat resistance and chemical resistance because it is composed of ETFE fibers. Further, since the storage elastic modulus E ′ at 25 ° C. is 8 ⁇ 10 8 Pa or more and the melt viscosity measured at 300 ° C. is made of ETFE fibers having a viscosity of more than 60 Pa ⁇ s and not more than 300 Pa ⁇ s, the fiber diameter Is thin and has excellent mechanical strength at ambient temperature.
  • the electrolyte membrane of the present invention is an electrolyte membrane mainly composed of an ion exchange resin reinforced with the nonwoven fabric of the present invention.
  • the thickness of the electrolyte membrane is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, and more preferably 5 to 30 ⁇ m. If the thickness of the electrolyte membrane is 100 ⁇ m or less, the resistance can be kept low, and the back diffusion of water produced on the cathode side tends to occur. When the thickness of the electrolyte membrane is 1 ⁇ m or more, the mechanical strength can be sufficiently increased, and the occurrence of gas leakage or the like can be suppressed.
  • the thickness of the nonwoven fabric is preferably 0.5 to 40 ⁇ m, more preferably 1 to 20 ⁇ m, and more preferably 2 to 10 ⁇ m from the viewpoint of the thickness of the electrolyte membrane.
  • the basis weight of the nonwoven fabric is preferably 2 to 20 g / m 2 from the viewpoint of both the reinforcing effect and the reduction of the membrane resistance.
  • ion exchange resin examples include a cation exchange resin made of a hydrocarbon polymer, a cation exchange resin made of a partially fluorinated hydrocarbon polymer, and the like.
  • a fluorocarbon polymer is preferred.
  • the perfluorocarbon polymer may have an etheric oxygen atom or the like.
  • An ion exchange resin may be used individually by 1 type, and may use 2 or more types together.
  • sulfonic acid type perfluorocarbon polymer a known sulfonic acid type perfluorocarbon polymer can be used.
  • the sulfonic acid type perfluorocarbon polymer is obtained by hydrolyzing a perfluorocarbon polymer having an SO 2 F group (hereinafter referred to as a precursor) and then acidifying.
  • the precursor examples include a repeating unit based on the monomer represented by the following formulas (1) to (6), perfluoroolefin (TFE, hexafluoropropylene, etc.), chlorotrifluoroethylene, or perfluoro (alkyl vinyl ether). And a copolymer having a repeating unit based on a monomer represented by the following formulas (1) to (6) and a repeating monomer unit based on TFE is more preferable.
  • the precursor may have two or more repeating units based on monomers represented by the following formulas (1) to (6).
  • Z is a fluorine atom or a trifluoromethyl group
  • l is an integer of 1 to 12
  • m is an integer of 0 to 3
  • p is 0 or 1
  • m + p is 1
  • An integer greater than or equal to k is an integer from 2 to 6
  • R f1 and R f2 are each a single bond or a linear perfluoroalkylene group having 1 to 6 carbon atoms (which may have an etheric oxygen atom), and q is 0 or 1
  • R f3 is a perfluoroalkylene group having 1 to 6 carbon atoms
  • R f4 and R f5 are each a perfluoroalkylene group having 1 to 8 carbon atoms
  • R f6 is a perfluoroalkylene group having 1 to 6 carbon atoms.
  • the mass average molecular weight of the sulfonic acid type perfluorocarbon polymer is preferably 1 ⁇ 10 4 to 1 ⁇ 10 7, and more preferably 5 ⁇ 10 4 to 5 ⁇ 10 6 .
  • the mass average molecular weight is 1 ⁇ 10 4 or more, the physical properties such as the degree of swelling hardly change with time, and the durability of the electrolyte membrane is sufficient.
  • the mass average molecular weight is 1 ⁇ 10 7 or less, solutionization and molding become easy.
  • Examples of the cation exchange resin made of a polymer other than the perfluorocarbon polymer include a copolymer having a repeating unit represented by the following formula (7) and a repeating unit represented by the following formula (8).
  • P 1 is phenyl - up reel group, a biphenyl preparative aryl group, naphthalene - up reel group, phenanthrene aryl group, an anthracene - up reel group
  • P 2 is a phenylene group, a biphenylene group, a naphthylene group, a phenanthrylene group, an anthracylene group
  • a 1 is a —SO 3 M group, a —COOM group (wherein M is a hydrogen atom or an alkali metal atom), or a group that can be converted into these groups by hydrolysis
  • B 1 and B 2 are each an oxygen atom, a sulfur atom, a sulfonyl group, or an isopropylidene group.
  • the structural isomerism of P 1 and P 2 is not particularly limited, and one or more hydrogen atoms of P 1 and P 2 are substituted with a fluorine atom, a chlorine atom, a bromine atom, or an alkyl group having 1 to 3 carbon atoms. May be.
  • the ion exchange capacity of the ion exchange resin is preferably 0.5 to 2.0 meq / g dry resin, more preferably 0.7 to 1.8 meq / g dry resin. If the ion exchange capacity is 0.5 meq / g dry resin or more, the resistance of the electrolyte membrane can be kept low. If the ion exchange capacity is 2.0 meq / g dry resin or less, the affinity for water is moderately suppressed, and the electrolyte membrane does not dissolve during power generation.
  • the electrolyte membrane preferably has an unreinforced layer made of an ion exchange resin as the outermost layer on one or both sides.
  • the resistance at the interface between the electrolyte membrane and the electrode can be kept low.
  • the electrolyte membrane has unreinforced layers on the outermost layers on both sides.
  • the thickness of the layer that is not reinforced is preferably 1 to 20 ⁇ m, more preferably 2 to 15 ⁇ m, still more preferably 2 to 10 ⁇ m per side.
  • the thickness is 1 ⁇ m or more, the gas barrier property is excellent.
  • the thickness is 20 ⁇ m or less, the resistance of the electrolyte membrane is kept low, and the dimensional stability is improved. Further, in an electrolyte membrane for a polymer electrolyte fuel cell, proton movement is shielded by nonwoven fabric fibers. If the thickness of the unreinforced layer is too thin, the distance for the current to bypass the fiber and detour can be increased, which can cause an unnecessary increase in resistance.
  • the resistance tends to increase. If the thickness of the unreinforced layer is equal to the average fiber diameter of the nonwoven fibers, the current detour distance is reduced and consequently an unnecessary increase in resistance is avoided.
  • the thickness of the unreinforced layer is measured by observing the cross section of the electrolyte membrane with an optical microscope, a laser microscope, an electron microscope or the like.
  • the thickness of the unreinforced layer means the shortest distance between the surface of the electrolyte membrane and the non-woven fiber.
  • the layer that is not reinforced may contain a component that does not cause an increase in resistance other than the nonwoven fabric.
  • Method for manufacturing electrolyte membrane examples include the following methods ( ⁇ ) to ( ⁇ ).
  • ( ⁇ ) A method of applying or impregnating an ion exchange resin solution or dispersion onto the surface of the nonwoven fabric and drying.
  • ( ⁇ ) A method in which an ion exchange resin film formed in advance is laminated on the surface of the nonwoven fabric by heating and integrated.
  • ( ⁇ ) An ion exchange resin film formed in advance is laminated on one surface of the nonwoven fabric by heating and integrated. Further, a solution or dispersion of the ion exchange resin is applied to the other surface of the nonwoven fabric and dried. how to.
  • the electrolyte membrane obtained by the method may be reinforced by subjecting it to a stretching treatment or the like.
  • the electrolyte membrane obtained by this method is preferably provided with an unreinforced layer made of an ion exchange resin as the outermost layer. Further, an unreinforced layer made of an ion exchange resin can be formed by further applying an ion exchange resin solution or dispersion or laminating an ion exchange resin film to the electrolyte membrane obtained by the method. .
  • the electrolyte membrane can be manufactured by a method having the following steps.
  • (IV) A step of obtaining an ion exchange resin membrane with a base film by applying a solution or dispersion of an ion exchange resin to the surface of the base film and drying.
  • (V) A step of obtaining a laminate by hot-pressing the non-woven fabric with a resin film obtained in the step (III) and the ion exchange resin membrane with a base film in a state of being overlapped with each other.
  • the material for the base film include ETFE, PET, polypropylene, and the like, and ETFE is preferable from the viewpoint of durability.
  • a dispersion medium containing alcohol and water is preferable.
  • Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, 2,2,3,3 -Tetrafluoro-1-propanol, 4,4,5,5,5-pentafluoro-1-pentanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 3,3,3 -Trifluoro-1-propanol, 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexanol, 3,3,4,4,5,5,6,6,7, 7,8,8,8-tridecafluoro-1-octanol and the like.
  • the coating method examples include known methods such as a die coating method.
  • the drying temperature is preferably 40 to 130 ° C.
  • the ion exchange resin film may be annealed.
  • the annealing temperature is preferably 130 to 200 ° C.
  • the temperature of the heating roll is preferably 130 to 200 ° C.
  • the pressure of the hot press is preferably 0.1 to 5 MPa.
  • the coating method examples include known methods such as a die coating method.
  • the drying temperature is preferably 40 to 130 ° C.
  • the electrolyte membrane may be annealed.
  • the annealing temperature is preferably 130 to 200 ° C.
  • the electrolyte membrane of the present invention described above is reinforced by the nonwoven fabric of the present invention, it has excellent dimensional stability when containing water, and suppresses an increase in resistance due to the reinforcing material.
  • FIG. 5 is a cross-sectional view showing an example of a membrane electrode assembly for a polymer electrolyte fuel cell (hereinafter referred to as a membrane electrode assembly).
  • the membrane electrode assembly 70 is in contact with each catalyst layer between the anode 80 having the catalyst layer 82 and the gas diffusion layer 84, the cathode 90 having the catalyst layer 92 and the gas diffusion layer 94, and the anode 80 and the cathode 90.
  • the electrolyte membrane 100 is arranged in a state of being attached.
  • the electrolyte membrane 100 is the electrolyte membrane of the present invention.
  • the catalyst layer 82 and the catalyst layer 92 are layers including a catalyst and an ion exchange resin.
  • the catalyst layer 82 and the catalyst layer 92 may be the same component, composition, thickness, or the like, or may be different layers.
  • the catalyst is not particularly limited as long as it promotes the oxidation-reduction reaction in the fuel cell, and a catalyst containing platinum is preferable, and a supported catalyst in which platinum or a platinum alloy is supported on a carbon support is particularly preferable.
  • the carbon carrier include activated carbon and carbon black.
  • the ion exchange resin include the ion exchange resins described above, and a sulfonic acid type perfluorocarbon polymer is preferable from the viewpoint of excellent durability.
  • Gas diffusion layer examples of the constituent material of the gas diffusion layer 84 and the gas diffusion layer 94 (hereinafter collectively referred to as a gas diffusion layer) include porous carbon sheets such as carbon paper, carbon cloth, and carbon felt.
  • the gas diffusion layer is preferably water repellent treated with polytetrafluoroethylene (hereinafter referred to as PTFE) or the like.
  • the membrane / electrode assembly may have a microporous layer (not shown) containing carbon and a binder resin between the catalyst layer and the gas diffusion layer.
  • a microporous layer mainly composed of carbon particles between the catalyst layer and the gas diffusion layer, it becomes difficult for water to block the pores of the gas diffusion layer, and a decrease in gas diffusibility can be suppressed.
  • carbon examples include carbon black and carbon fibers.
  • binder resin a water-repellent nonionic fluorine-containing polymer is preferable, and PTFE is particularly preferable.
  • the membrane / electrode assembly 70 is manufactured, for example, by the following methods (x) to (z).
  • (X) A catalyst layer forming coating solution is applied to both surfaces of the electrolyte membrane 100 and dried to form a catalyst layer to form a membrane catalyst layer assembly, and the membrane catalyst layer assembly is sandwiched between gas diffusion layers.
  • Method. A coating solution for forming a catalyst layer is applied to one side of a sheet to be a gas diffusion layer, and dried to form a catalyst layer to form an electrode (anode 80, cathode 90), and the solid polymer electrolyte membrane 100 Is sandwiched between the electrodes.
  • a catalyst layer-forming coating solution is applied to one side of the substrate film, dried to form a catalyst layer, and the catalyst layer is transferred to both sides of the electrolyte membrane 100 to form a membrane-catalyst layer assembly.
  • the electrolyte membrane 100 and the gas diffusion layer used in the methods (x) to (z) may be in a single wafer state or a web (continuous) state.
  • the coating liquid for forming a catalyst layer is prepared by dispersing a catalyst in a solvent and dissolving or dispersing the ion exchange resin in the solvent.
  • the membrane electrode assembly described above has excellent dimensional stability when containing water, and has an electrolyte membrane in which the increase in resistance due to the reinforcing material is suppressed, so that it has excellent durability and high output.
  • the membrane electrode assembly is used for a polymer electrolyte fuel cell.
  • a polymer electrolyte fuel cell is manufactured, for example, by forming a cell by sandwiching a membrane electrode assembly between two separators and stacking a plurality of cells.
  • the separator include a conductive carbon plate in which a groove serving as a passage for a fuel gas or an oxidizing gas containing oxygen (air, oxygen, etc.) is formed.
  • the polymer electrolyte fuel cell include a hydrogen / oxygen fuel cell and a direct methanol fuel cell (DMFC).
  • Examples 1 and 2 are examples, and examples 3 to 6 are comparative examples.
  • melt viscosity An orifice having a diameter of 1 mm and a length of 10 mm is set in a melt fluidity measuring apparatus (manufactured by Toyo Seiki Seisakusho, Capillograph, furnace inner diameter: 9.55 mm), cylinder temperature: 300 ° C., piston speed: 10 mm / min. The melted ETFE was extruded and the melt viscosity was measured.
  • a PET film with an adhesive was pressed against the nonwoven fabric, the nonwoven fabric was transferred, and the basis weight of the nonwoven fabric was calculated from the transferred area and mass increase.
  • the average fiber diameter of the fibers constituting the nonwoven fabric was determined by measuring the fiber diameter of 200 fibers by electron microscope observation, and taking the average value excluding the 10 thinnest data and the 10 thickest data among the data. .
  • ETFE-5 ETFE (manufactured by Asahi Glass Co., Ltd., trade name: FLUON (registered trademark) • LM-ETFE • LM-740A) was prepared. Table 1 shows the storage elastic modulus E ′ and the melt viscosity measured at 300 ° C.
  • ETFE-6 ETFE (Asahi Glass Co., Ltd., trade name: FLUON (registered trademark) C88AXM) was prepared. Table 1 shows the storage elastic modulus E ′ and the melt viscosity measured at 300 ° C.
  • the die 14 a special die having a flow rate adjustment structure and a heated air introduction structure was used.
  • the spinning nozzle 20 has 10 circular molten resin discharge holes (inner diameter: 400 ⁇ m) arranged in a row with an effective width of 5 cm, and heated air in parallel with the arrangement direction so that a stretching stress is applied to the molten resin.
  • a special nozzle manufactured by Chemical Fiber Nozzle Co., Ltd.
  • ETFE-1 was discharged from the spinning nozzle 20 under the following conditions, and stretched into a fiber 26.
  • the fiber 26 was positioned above a suction device 40 having a suction pump, and was 0.2 m.
  • the non-woven fabric 28 having a width of about 5 cm was formed by collecting on the surface of the film-like substrate 34 (70-mesh stainless steel mesh) moving at a speed of / min. Extruder speed: 1 rpm, Die temperature: 360 ° C.
  • Heated air temperature 230 ° C
  • Heated air flow rate 3 Nm 3 / hr per 1 cm nozzle
  • Flow rate of molten resin from the surplus resin discharge port of the extruder 3.7 g / min
  • Flow rate of molten resin from spinning nozzle about 0.3 g / min.
  • the temperature of heated air made the temperature which a nozzle reaches
  • the nonwoven fabric 28 was moved to the vicinity of the end of the upper surface of the belt conveyor 30 together with the film-like base material 34 at a speed of 0.2 m / min.
  • the nonwoven fabric 28 (length: 3 m) was attached to a resin film 54 (PET film, thickness: 100 ⁇ m), and then wound around a roll 58 together with the resin film 54.
  • the adjusted nonwoven fabric 66 was wound around a nonwoven fabric roll 68 together with the resin film 54.
  • the basis weight, the average fiber diameter, the maximum longitudinal strength and the maximum hardness per unit weight of 100 g / m 2 were measured. The results are shown in Table 2.
  • ion exchange resin trade name, manufactured by Asahi Glass Co., Ltd.
  • Flemion (registered trademark) ethanol solution FSS-2, solid content concentration: 9% by mass
  • Rubber roll temperature 120 ° C.
  • Pressure 0.026 MPa / m for a roll surface length of 600 mm, Feed rate: 0.15 m / min.
  • the thickness of the unreinforced layer on the surface was about 3 ⁇ m on both sides, and the thickness of the reinforced layer was 10 ⁇ m.
  • the rate of dimensional change when the electrolyte membrane contained water was measured. The results are shown in Table 2.
  • Example 2 A consolidated nonwoven fabric and electrolyte membrane were obtained in the same manner as in Example 1 except that ETFE-1 was changed to ETFE-2.
  • Table 2 shows the basis weight, the average fiber diameter, the maximum longitudinal strength and the maximum hardness per unit weight of 100 g / m 2 .
  • Table 2 shows the dimensional change rate of the electrolyte membrane when it contains water.
  • Example 3 A consolidated nonwoven fabric and electrolyte membrane were obtained in the same manner as in Example 1 except that ETFE-1 was changed to ETFE-3.
  • Table 2 shows the basis weight, the average fiber diameter, the maximum longitudinal strength and the maximum hardness per unit weight of 100 g / m 2 .
  • Table 2 shows the dimensional change rate of the electrolyte membrane when it contains water.
  • Example 4 Using ETFE-4, the die temperature is set to 360 ° C., the temperature of the heated air is set to 360 ° C., and the other conditions are the same as in Example 1 to produce a nonwoven fabric. Next, the nonwoven fabric is simply consolidated by a hot press machine at 160 ° C. and 1 MPa. The basis weight, the average fiber diameter, the maximum longitudinal strength and the maximum hardness per unit weight of 100 g / m 2 are the values shown in Table 2. When an electrolyte membrane was produced in the same manner as in Example 1 and the dimensional change rate was measured, the values shown in Table 2 were obtained.
  • Example 5 A consolidated nonwoven fabric was produced using ETFE-5 in the same manner as in Example 4.
  • Table 2 shows the basis weight, the average fiber diameter, the maximum longitudinal strength and the maximum hardness per unit weight of 100 g / m 2 .
  • An electrolyte membrane was produced in the same manner as in Example 1.
  • Table 2 shows the dimensional change rate of the electrolyte membrane when it contains water.
  • Example 6 Using ETFE-6, a consolidated nonwoven fabric is produced in the same manner as in Example 1.
  • the basis weight, the average fiber diameter, the maximum longitudinal strength and the maximum hardness per unit weight of 100 g / m 2 are the values shown in Table 2. Since the fiber diameter is large, the thickness of the non-woven fabric is increased and the electrolyte membrane cannot be produced.
  • the nonwoven fabric of the present invention is particularly useful as a reinforcing material, a filter, a heat insulating material, a moisture-permeable waterproof material, and a flameproof material for an electrolyte membrane for a solid molecular fuel cell. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-0447704 filed on Feb. 26, 2009 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Nonwoven Fabrics (AREA)
  • Fuel Cell (AREA)
  • Filtering Materials (AREA)
  • Conductive Materials (AREA)

Abstract

 耐熱性、耐薬品性に優れ、繊維径が細く、使用環境温度における機械的強度に優れる不織布;および含水時における寸法安定性に優れ、補強材による抵抗の上昇が抑えられた電解質膜を提供する。 25℃における貯蔵弾性率E'が、8×10Pa以上であり、かつ300℃で測定した溶融粘度が、60Pa・s超300Pa・s以下であるエチレン/テトラフルオロエチレン共重合体の繊維26を含み、該繊維の平均繊維径が0.01~3μmである不織布28;該不織布28で補強された電解質膜。

Description

不織布および電解質膜
 本発明は、不織布および該不織布で補強された電解質膜に関する。
 フィルタ(エアフィルタ、バグフィルタ等。)、電池(ニッケル水素電池、ニッケルカドミウム電池、リチウムイオン電池等。)のセパレータ、プリント基板用基材の補強材、電解質膜の補強材等に使用できる繊維集積体として、不織布が用いられている。
 不織布の材料としては、従来は、ポリプロピレン、ポリエステル、ポリアミド等の汎用素材が用いられていたが、最近では、耐熱性、耐薬品性、非粘着性に優れるフッ素樹脂が、電池のセパレータ、半導体分野における空気清浄用の高性能フィルタや薬液ろ過用フィルタ、公害環境対策等でのバグフィルタ等の材料として用いられている。
 フッ素樹脂の不織布としては、下記のものが知られている。
 (1)ポリテトラフルオロエチレンを延伸し、裁断して繊維化した後、ウォータージェット法、ニードルパンチ法等で繊維を交絡させて得られた不織布。
 (2)エチレン/クロロトリフルオロエチレン共重合体を用いてメルトブロー法で得られた不織布(特許文献1)。
 (3)テトラフルオロエチレン系共重合体を用いてメルトブロー法で得られた不織布(特許文献2)。
 (4)エチレン/テトラフルオロエチレン共重合体(以下、ETFEと記す。)を用いてメルトブロー法で得られた不織布(特許文献3)。
 しかし、(1)の不織布は、繊維が互いに融着していないため、機械的強度が不充分である。
 (2)の不織布は、耐薬品性、撥水性、防汚性、離型性等が不充分である。
 (3)の不織布の材料であるテトラフルオロエチレン系共重合体は、使用環境となる室温付近の弾性率が低いため、該不織布は、機械的強度が不充分である。
 一方、(4)の不織布の材料であるETFEは、使用環境となる室温付近の弾性率が高く、かつ耐熱性、耐薬品性、非粘着性に優れる。しかし、一般成形用のETFEを用いてメルトブロー法で不織布を製造した場合、該ETFEの溶融粘度が高いため、不織布を構成する繊維の平均繊維径が太くなる。その結果、該不織布を電解質膜の補強体として用いた場合には、電解質膜が厚くなり、抵抗が上昇する。また、該不織布を微粒子除去フィルタとして用いた場合には、最大孔径が大きくなり、微粒子除去能力が不充分となる。
特開平7-229048号公報 特開2002-266219号公報 特開2007-18995号公報
 本発明は、耐熱性、耐薬品性に優れ、繊維径が細く、使用環境温度における機械的強度に優れる不織布;および含水時における寸法安定性に優れ、補強材による抵抗の上昇が抑えられた補強された電解質膜を提供する。
 本発明の不織布は、25℃における貯蔵弾性率E’が、8×10Pa以上であり、かつ300℃で測定した溶融粘度が、60Pa・s超300Pa・s以下であるエチレン/テトラフルオロエチレン共重合体の繊維を含み、該繊維の平均繊維径が0.01~3μmであることを特徴とする。
 本発明の不織布の目付量は、1~300g/mであることが好ましい。
 本発明の不織布は、メルトブロー法によって製造されたものであることが好ましい。
 本発明の不織布は、前記繊維間の交点の少なくとも一部が融着によって固定化されたものであることが好ましい。
 前記融着は、熱プレスによるものであることが好ましい。
 本発明の不織布の縦方向の最大強度は、目付量100g/mあたりに換算した場合、60N/10cm以上であることが好ましい。
 本発明の不織布の縦方向の最大硬さは、目付量100g/mあたりに換算した場合、400N/10cm以上であることが好ましい。
 本発明の不織布は、前記エチレン/テトラフルオロエチレン共重合体がCH=CX(CFY(ただし、X、Yはそれぞれ水素原子またはフッ素原子であり、nは2~8の整数である。)で表されるモノマーに基づく繰り返し単位を含有し、該モノマーに基づく繰り返し単位の含有量が、エチレン/テトラフルオロエチレン共重合体の全繰り返し単位中のうち、0.1~7モル%であることが好ましい。
 本発明の電解質膜は、本発明の不織布で補強されたものであることを特徴とする。
 本発明の不織布は、耐熱性、耐薬品性に優れ、繊維径が細く、使用環境温度における機械的強度に優れる。
 本発明の電解質膜は、含水時における寸法安定性に優れ、補強材による抵抗の上昇が抑えられる。
メルトブロー法による不織布製造装置の一例を示す概略図である。 メルトブロー法による不織布製造装置に用いられる紡糸ノズルの断面図の一例である。 図1の不織布製造装置を用いた不織布の製造の様子を示す拡大図である。 不織布を熱プレスして厚さ調整(圧密化)する様子を示す概略図である。 固体高分子形燃料電池用膜電極接合体の断面図の一例である。
<不織布>
 本発明の不織布は、25℃における貯蔵弾性率E’が、8×10Pa以上であり、かつ300℃で測定した溶融粘度が、60Pa・s超300Pa・s以下であるETFEの繊維を含むものである。
(貯蔵弾性率)
 25℃における貯蔵弾性率E’が、8×10Pa以上であれば、不織布の機械的強度が充分高くなり、使用中に破断しにくい。また、該不織布で補強された電解質膜の含水時における寸法安定性が良好となる。
 貯蔵弾性率E’は、ETFEのフィルム状サンプルについて、動的粘弾性測定装置を用いた動的粘弾性測定を行うことにより求める。動的粘弾性測定とは、フィルム状サンプルをチャック間にはさみ、時間によって変化(振動)する歪みまたは応力を与えて、それによって発生する応力または歪みを測定することにより、試料の力学的な性質を測定する方法である。
 ETFEの25℃における貯蔵弾性率E’を8×10Pa以上に調整する方法としては、エチレン/テトラフルオロエチレンの共重合組成比を変化させる方法、他のモノマーの含有量を調整する方法等が挙げられる。
(溶融粘度)
 300℃で測定した溶融粘度が60Pa・sを超えると、分子量が高いため、不織布の機械的強度が充分高くなる。300℃で測定した溶融粘度が300Pa・s以下であれば、成形性が良好となり、不織布の平均繊維径が細くなり、繊維径分布も小さくなる。300℃で測定した溶融粘度は65~200Pa・sが好ましい。
 溶融粘度(溶融流動性)は、キャピラリー流動性測定装置(キャピラリーレオメータ)によって測定することが好ましい。該装置は、溶融した樹脂を、一定速度で押し出してキャピラリーを通過させ、押し出すのに要する応力を測定するものである。ETFEの溶融粘度が低いことはETFEの分子量が低いことを意味し、ETFEの溶融粘度が高いことはETFEの分子量が高いことを意味する。
 ETFEの溶融粘度(溶融流動性)は、具体的には、溶融流動性測定装置(東洋精機製作所社製、キャピログラフ、炉内径:9.55mm)に、直径:1mm、長さ:10mmのオリフィスをセットし、シリンダー温度:300℃、ピストンスピード:10mm/分の条件で測定する。
 ETFEを溶融させる温度は、ETFEの融点よりも5~30℃高い温度が好ましい。ETFEの融点よりも5℃以上高い温度で溶解させることにより、ETFEが充分に溶融し、測定が容易となる。ただし、ETFEを溶融させる温度が高すぎると、ETFEの粘度が低くなりすぎて溶融したETFEが短時間にオリフィスから流出してしまい、測定が困難となる。
 ETFEの融点は、具体的には、走査型示差熱分析器(セイコーインスツルメンツ社製、DSC220CU)を用いて、ETFEを空気雰囲気下に室温から300℃まで10℃/分で加熱した際の吸熱ピークから求める。
 ETFEの溶融粘度(溶融流動性)を調整する方法としては、下記の方法が挙げられる。
 (1)重合時の連鎖移動剤の濃度、重合圧力、重合反応終了時における重合媒体に対するETFEの量等により、分子量を調整する方法。
 (2)ETFEに、熱、放射線等のエネルギーを加えることにより、分子を切断し低粘度化する方法。
 (3)ETFEの分子鎖をラジカルによって化学的に切断する方法。具体的には、ETFEと有機過酸化物とを押出機で溶融混練し、ETFEの分子鎖を発生ラジカルにより切断し、低粘度化する方法。
 (2)~(3)の方法は、ETFE中の切断部位にカルボニル基等の活性な官能基が生成し、化学的安定性が低下する可能性があるため、活性な官能基が生成せず、かつ生産性が高い(1)の方法が好ましい。
(平均繊維径)
 不織布を構成する繊維の平均繊維径は、0.01~3μmであり、0.01~2μmがより好ましい。繊維の平均繊維径が0.01μm以上であれば、繊維1本あたりの引張強度が高くなり、ハンドリング性が良好となる。繊維の平均繊維径が3μm以下であれば、不織布の最大孔径を小さくできる。
(目付量)
 不織布の目付量は、1~300g/mが好ましく、1~50g/mがより好ましく、1~10g/mがさらに好ましい。不織布の目付量が1g/m以上であれば、不織布としての形態を保持できる強度を確保できるので好ましい。不織布の目付量が300g/m以下であれば、強度があり、透過抵抗等が著しく増大することなく、フィルタや電解質膜補強体として使用できるので好ましい。
(最大強度)
 不織布の目付量100g/mあたりの縦方向の最大強度は、60N/10cm以上が好ましく、70N/10cm以上がより好ましく、75N/10cm~120N/10cmがさらに好ましい。最大強度が60N/10cm以上であれば、不織布の機械的強度が充分高く、また、ハンドリング性が良好となる。
 目付量100g/mあたりの縦方向の最大強度とは、特定の目付量の不織布(幅10cm)の引張強度特性を測定した際に得られる力-歪曲線の力の最大値を目付量100g/mあたりに換算した値であり、「縦方向」とは不織布を連続的に作製した際の機械方向をさす。
(最大硬さ)
 不織布の目付量100g/mあたりの縦方向の最大硬さは、400N/10cm以上が好ましく、600N/10cm~1200N/10cmがより好ましい。最大硬さが400N/10cm以上であれば、不織布のハンドリング性が良好となり、また、該不織布で補強された電解質膜の含水時における寸法安定性が良好となる。
 目付量100g/mあたりの縦方向の最大硬さとは、特定の目付量の不織布(幅10cm)の引張強度特性を測定した際に得られる力-歪曲線の力の歪に対する初期の傾きの最大値を目付量100g/mあたりに換算した値であり、「縦方向」とは不織布を連続的に作製した際の機械方向をさす。
(ETFE)
 ETFEは、1種を単独で用いてもよく、2種以上の混合物を用いてもよい。
 2種以上の混合物の場合、該混合物の25℃における貯蔵弾性率E’および300℃で測定した溶融粘度が前記範囲であればよい。
 ETFEとしては、エチレン(以下、Eと記す。)に基づく繰り返し単位とテトラフルオロエチレン(以下、TFEと記す。)に基づく繰り返し単位を有し、Eに基づく繰り返し単位とTFEに基づく繰り返し単位とのモル比(Eに基づく繰り返し単位/TFEに基づく繰り返し単位)が、20/80~80/20のものが好ましく、40/60~60/40のものがより好ましく、42/58~50/50のものがさらに好ましい。該モル比が極端に大きいと、ETFEの耐熱性、耐候性、耐薬品性等が低下する場合がある。該モル比が極端に小さいと、機械的強度、溶融成形性等が低下する場合がある。
 ETFEは、本質的な特性を損なわない範囲で、他のモノマーに基づく繰り返し単位の1種類以上を有していてもよい。
 他のモノマーとしては、α-オレフィン類(プロピレン、ノルマルブテン、イソブテン等。)、CH=CX(CFY(ただし、X、Yはそれぞれ水素原子またはフッ素原子であり、nは2~8の整数である。)で表される化合物(以下、FAEと記す。)、不飽和基に水素原子を有するフルオロオレフィン(フッ化ビニリデン、フッ化ビニル、トリフルオロエチレン、ヘキサフルオロイソブチレン等。)、不飽和基に水素原子を有さないフルオロオレフィン(ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、パーフルオロ(ブチルビニルエーテル)、その他パーフルオロ(アルキルビニルエーテル)等。ただし、TFEを除く。)等が挙げられる。
 他のモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 他のモノマーに基づく繰り返し単位の含有量は、ETFEの全繰り返し単位のうち、0.01~10モル%が好ましく、0.1~7モル%がより好ましく、0.4~4モル%がさらに好ましい。
 他のモノマーとしては、FAEが好ましい。
 FAEの式中のnが2以上であれば、ETFEの特性(成形体の耐ストレスクラック性等。)が充分となる。nが8以下であれば、重合反応性が良好となる。
 FAEとしては、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH等が挙げられる。
 FAEは、1種を単独で用いてもよく、2種以上を併用してもよい。
 FAEとしては、CH=CH(CFYで表される化合物が好ましく、成形体の耐ストレスラック性に優れる点から、nが2~6の整数であるものがより好ましく、nが2~4の整数であるものがさらに好ましい。なかでも、YがFであり、かつnが2~6の整数であるのが特に好ましい。
 FAEに基づく繰り返し単位の含有量は、ETFEの全繰り返し単位中のうち、0.01~10モル%が好ましく、0.1~7モル%がより好ましく、0.4~4モル%がさらに好ましい。FAEの含有量が0.01モル%以上であれば、成形体の耐ストレスクラック性が良好となり、ストレス下において割れる等の破壊現象が発生しにくい。FAEの含有量が10モル%以下であれば、機械的強度が良好となる。
 ETFEの製造方法としては、E、TFEおよび必要に応じて他のモノマーを反応器に導入し、ラジカル重合開始剤、連鎖移動剤を用いて共重合させる方法が挙げられる。
 重合法としては、塊状重合法;重合媒体として有機溶媒を用いる溶液重合法;重合媒体として水性媒体および必要に応じて適当な有機溶剤を用いる懸濁重合法;重合媒体として水性媒体および乳化剤を用いる乳化重合法が挙げられ、ラジカル重合開始剤、連鎖移動剤、重合媒体の存在下に、E、TFEおよび必要に応じて他のモノマーを共重合させる溶液重合法が好ましい。
 重合は、一槽または多槽式の撹拌型重合装置、管型重合装置等を用い、回分式または連続式操作として実施できる。
 ラジカル重合開始剤としては、半減期が10時間である温度が0~100℃である開始剤が好ましく、20~90℃である開始剤がより好ましい。
 ラジカル重合開始剤としては、アゾ化合物(アゾビスイソブチロニトリル等。)、パーオキシジカーボネート(ジイソプロピルパーオキシジカーボネート等。)、パーオキシエステル(tert-ブチルパーオキシピバレート、tert-ブチルパーオキシイソブチレート、tert-ブチルパーオキシアセテート等。)、非フッ素系ジアシルパーオキシド(イソブチリルパーオキシド、オクタノイルパーオキシド、ベンゾイルパーオキシド、ラウロイルパーオキシド等。)、含フッ素ジアシルパーオキシド((W(CFCOO)、ただし、Wは水素原子、フッ素原子または塩素原子であり、rは1~10の整数である。)等。)、無機過酸化物(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等。)等が挙げられる。
 連鎖移動剤としては、アルコール(メタノール、エタノール等。)、フッ化塩化炭化水素(1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン等。)、炭化水素(ペンタン、ヘキサン、シクロヘキサン等。)等が挙げられる。連鎖移動剤の濃度は、通常、重合媒体に対して、0.01~100質量%程度である。連鎖移動剤の濃度を調整することにより、ETFEの溶融粘度(分子量)を調整できる。すなわち、連鎖移動剤の濃度を高くするほど、低分子量のETFEが得られる。
 重合媒体としては、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒、水性媒体等が挙げられる。
 分子量の低いETFEを製造する場合は、連鎖移動剤として用いる1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンを重合媒体として用いることが好ましい。
 重合温度は、通常、0~100℃が好ましく、20~90℃がより好ましい。
 重合圧力は、0.1~10MPaが好ましく、0.5~3MPaがより好ましい。重合圧力が高くなるほど、ETFEは高分子量化し、溶融粘度が高くなるため、重合圧力を調整することにより溶融粘度を調整できる。
 重合時間は、重合温度、重合圧力等により変わりうるが、通常、1~30時間が好ましく、2~10時間がより好ましい。
 重合反応終了時における重合媒体に対するETFEの量は、通常、0.03~0.2g/cm程度である。該濃度によりETFEの分子量を調整することもできる。すなわち、該範囲で低ETFE濃度とするほど、低分子量のETFEが得られる。
(不織布の製造方法)
 不織布の製造方法としては、スパンボンド法、メルトブロー法等の連続繊維で製造される公知の不織布製造法が挙げられる。
 メルトブロー法は、ETFEの繊維の形成と不織布状物の形成とをほぼ同時に実施できることから生産性を高くすることができる。また、不織布を構成するETFEの繊維を非常に細くすることができる。
 メルトブロー法による不織布の製造方法としては、たとえば、下記の工程を有する方法が挙げられる。
 (I)ETFEを溶融状態で紡糸ノズルから吐出し、気流によって延伸することによって紡糸された繊維を、ベルトコンベア上の通気性フィルム基材等の上に集積して長尺の不織布を得る工程。
 (II)該不織布を、長尺の樹脂フィルムと積層して転写する工程。
 (III)樹脂フィルム付きの長尺の不織布を、一対のロール間に通して熱プレスし、圧密化によって厚さを調整する工程。
 工程(I):
 工程(I)は、公知のメルトブロー法によって行われる。
 図1は、メルトブロー法による不織布製造装置の一例を示す概略図である。不織布製造装置10は、ETFEを溶融させ、押し出す押出機12と;押出機12の先端に設けられた、流量調整構造および加熱気体導入構造を有するダイ14と;ダイ14から下向きに設けられた、溶融樹脂吐出孔および気体吐出孔を有する紡糸ノズル20と;紡糸ノズル20の下方に設置されたベルトコンベア30と;ベルトコンベア30の内部に設けられた吸引装置40と;ベルトコンベア30の上面の終端付近に設けられた不織布回収手段50とを有する。
 紡糸ノズル20は、図2に示すように、鉛直方向に貫通し、かつベルトコンベア30のエンドレスベルトの移動方向に直交する方向に沿って一列に配列した複数の溶融樹脂吐出孔22と;溶融樹脂吐出孔22を挟むように形成された、ベルトコンベア30のエンドレスベルトの移動方向に直交する方向に沿って延びるスリット状の気体吐出孔24とを有する。気体吐出孔24のスリット幅は、100~1500μmが好ましく、200~1000μmがより好ましく、300~800μmがさらに好ましい。
 ベルトコンベア30は、4本のロール32と、4本のロール22に架け渡されたエンドレスベルト状の通気性を有するフィルム状基材34とを有する。フィルム状基材と34しては、メッシュ、布、多孔体等が挙げられ、ETFEの溶融温度が高い点から、金属製メッシュが好ましく、ステンレスメッシュがより好ましい。メッシュの目開きは、2mm以下が好ましく、0.15mm以下がより好ましく、0.06mm以下がさらに好ましく、0.03mm以下が特に好ましい。
 不織布転写手段50は、樹脂フィルムのロール52と;樹脂フィルムのロール52から送り出された樹脂フィルム54に、ベルトコンベア30のフィルム状基材34の表面に形成された不織布を付着させる転写用ロール56と;樹脂フィルム54とともに不織布を巻き取るロール58とを有する。
 不織布製造装置10を用いた不織布の製造は、以下のように行われる。
 押出機12から押し出された溶融状態のETFEは、ダイ14にて流量を調整された後、紡糸ノズル20の溶融樹脂吐出孔22から下方に向けて吐出される。同時に、ダイ14から供給された加熱気体が、紡糸ノズル20の気体吐出孔24から吐出され、溶融樹脂吐出孔22から吐出された溶融状態のETFEに沿う気流が発生する。該気流によって、溶融樹脂吐出孔22から吐出された溶融状態のETFEが延伸、紡糸され、極細の繊維が形成される。
 図3に示すように、極細の繊維26は、吸引装置40によってフィルム状基材34を介して吸引され、移動するフィルム状基材34の表面に捕集され、不織布28が連続的に形成される。
 不織布28は、フィルム状基材34とともにベルトコンベア30の上面の端部付近へと送られる。
 不織布28は、連続的に移動するフィルム状基材34の表面に形成されるため、連続的に形成され、長尺のものとなる。不織布28は、比較的低溶融粘度のETFEを用いた場合には、繊維間の交点の一部が融着、固定化された不織布として得られることがあり、また、場合によっては、繊維間の交点の融着が起こらず、綿状の不織布として得られる。
 ダイ14の温度は、320~380℃が好ましく、340~360℃がより好ましい。該範囲であれば、低圧力損失で成形できる。
 気体吐出孔24から吐出される加熱気体の温度は、320~400℃が好ましく、330~390℃がより好ましく、340~380℃がさらに好ましい。
 気体吐出孔24から吐出される加熱気体の量は、ノズル1cmあたり0.5~10Nm/hrが好ましく、1~7Nm/hrがより好ましく、2~5Nm/hrがさらに好ましい。
 繊維26を不織布の形態で充分に吸着、維持するためには、フィルム状基材34の表面から1cm以内の距離において、0.1m/秒以上の風速を有することが好ましい。
 工程(II):
 図3に示すように、フィルム状基材34とともにベルトコンベア30の上面の終端付近へと送られた不織布28は、樹脂フィルムのロール52から送り出され、転写用ロール56によって樹脂フィルム54に押し付けられて付着した後、樹脂フィルム54とともにロール58に巻き取られて回収される。
 樹脂フィルム54の材料としては、ポリエチレンテレフタレート(以下、PETと記す。)、ポリエチレンナフタレート、ETFE、ポリプロピレン、ポリカーボネート、ポリエチレン、ポリイミド、これらの積層フィルム等が挙げられ、耐熱性、価格等の点からPETが好ましい。
 工程(III):
 樹脂フィルム54とともに得られた不織布28は、嵩高く、肉厚であるため、樹脂フィルム54とともに一対のロール間に通して熱プレスし、圧密化によって厚さを調整するとともに、繊維間の交点が融着していない場合は、同時に、繊維間の交点の一部を融着、固定化する。
 図4に示すように、ロール58から送り出された樹脂フィルム54付き不織布28は、ガイドロール60を経て、金属ロール62とゴムロール64とからなる一対の加熱ロールの間を通ることによって熱プレスされ、厚さが調整された不織布66となり、樹脂フィルム54とともに不織布のロール68に巻き取られる。
 加熱ロールの温度は、繊維が溶融変形せず、かつ融着性を有する温度範囲が好ましい。繊維の材料がETFEの場合、(融点-85℃)~融点の温度範囲が好ましく、(融点-70℃)~融点の温度範囲がより好ましい。
 熱プレスの圧力は、繊維に大きな変形を生じずに融着できる点から、0.1~5MPaが好ましい。金属ロール/ゴムロールからなるこの種のロールプレスの加圧圧力は、一般にゴムロールの圧力による変形があるため、設定圧力とニップロールに装備された圧力シリンダーの仕様から計算される圧力と実際にプレスされるものにかかる圧力とは異なる場合が多い。そこで、富士フィルム社製、圧力測定フィルム「プレスケール」等を用いることで、実際にかかる圧力を測定できる。
 ETFEの300℃の溶融粘度が60Pa・s以下の場合、繊維が潰れ、不織布としての空隙がふさがりやすくなる。繊維を潰さないようにするために、加熱ロールの温度や熱プレスの圧力を制御する方法もあるが、その許容範囲が狭く、生産性が悪くなる。一方、ETFEの300℃の溶融粘度が300Pa・sを超える場合、充分に圧密化されず、また、樹脂フィルムへの付着性も低下する。この課題を改善するために加熱ロールの温度を上昇させると、樹脂フィルムが変形し始め、安定的な連続製造が困難となる。
 不織布には、必要に応じて、放射線照射、プラズマ照射、および金属ナトリウムによる化学処理からなる群から選ばれる1種以上の処理を施してもよい。該処理を行うことにより、繊維の表面に-COOH基、-OH基、-COF基等の極性基が導入され、不織布と他材料とを積層または接着する際に、両者の界面の密着性を高めることができる。
 以上説明した本発明の不織布にあっては、ETFEの繊維からなるため、耐熱性、耐薬品性に優れる。また、25℃における貯蔵弾性率E’が、8×10Pa以上であり、かつ300℃で測定した溶融粘度が、60Pa・s超300Pa・s以下であるETFEの繊維からなるため、繊維径が細く、使用環境温度における機械的強度に優れる。
<電解質膜>
 本発明の電解質膜は、本発明の不織布で補強された、イオン交換樹脂を主成分とする電解質膜である。
 電解質膜の厚さは、固体高分子形燃料電池用の電解質膜として用いる場合、1~100μmが好ましく、3~50μmがより好ましく、5~30μmがより好ましい。電解質膜の厚さが100μm以下であれば、抵抗が低く抑えられ、また、カソード側で生成する水の逆拡散を起こしやすい。電解質膜の厚さが1μm以上であれば、機械的強度を充分に高めることができ、ガス漏れ等の発生が抑えられる。
 不織布の厚さは、電解質膜の厚さの点から、0.5~40μmが好ましく、1~20μmがより好ましく、2~10μmがより好ましい。該場合の不織布の目付量は、補強効果および膜抵抗低減の両立の点から、2~20g/mが好ましい。
(イオン交換樹脂)
 イオン交換樹脂としては、炭化水素系重合体からなる陽イオン交換樹脂、部分フッ素化された炭化水素系重合体からなる陽イオン交換樹脂等が挙げられ、耐久性に優れる点から、スルホン酸型パーフルオロカーボン重合体が好ましい。パーフルオロカーボン重合体は、エーテル結合性の酸素原子等を有していてもよい。
 イオン交換樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 スルホン酸型パーフルオロカーボン重合体としては、公知のスルホン酸型パーフルオロカーボン重合体を用いることができる。
 スルホン酸型パーフルオロカーボン重合体は、SOF基を有するパーフルオロカーボン重合体(以下、前駆体と記す。)を加水分解し、ついで酸型化処理して得られる。
 前駆体としては、下式(1)~(6)で表されるモノマーに基づく繰り返し単位と、パーフルオロオレフィン(TFE、ヘキサフルオロプロピレン等。)、クロロトリフルオロエチレン、またはパーフルオロ(アルキルビニルエーテル)に基づく繰り返し単位とを有する共重合体が好ましく、下式(1)~(6)で表されるモノマーに基づく繰り返し単位とTFEに基づく繰り返しモノマー単位とを有する共重合体がより好ましい。前駆体は、下式(1)~(6)で表されるモノマーに基づく繰り返し単位を2種以上有してもよい。
Figure JPOXMLDOC01-appb-C000001
 ただし、Zは、フッ素原子またはトリフルオロメチル基であり、lは、1~12の整数であり、mは、0~3の整数であり、pは、0または1であり、m+pは、1以上の整数であり、
 kは、2~6の整数であり、
 Rf1、Rf2は、それぞれ単結合または炭素数1~6の直鎖パーフルオロアルキレン基(ただし、エーテル性酸素原子を有していてもよい。)であり、qは、0または1であり、
 Rf3は、炭素数1~6のパーフルオロアルキレン基であり、
 Rf4、Rf5は、それぞれ炭素数1~8のパーフルオロアルキレン基であり、
 Rf6は、炭素数1~6のパーフルオロアルキレン基である。
 スルホン酸型パーフルオロカーボン重合体の質量平均分子量は、1×10~1×10が好ましく、5×10~5×10がより好ましい。質量平均分子量が1×10以上であれば、膨潤度等の物性が経時的に変化しにくく、電解質膜の耐久性が充分となる。質量平均分子量が1×10以下であれば、溶液化および成形が容易となる。
 パーフルオロカーボン重合体以外の重合体からなる陽イオン交換樹脂としては、下式(7)で表される繰り返し単位と下式(8)で表される繰り返し単位とを有する共重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 ただし、Pは、フェニルトリール基、ビフェニルトリール基、ナフタレントリール基、フェナントレントリール基、アントラセントリール基であり、
 Pは、フェニレン基、ビフェニレン基、ナフチレン基、フェナントリレン基、アントラシレン基であり、
 Aは、-SOM基、-COOM基(ただし、Mは、水素原子またはアルカリ金属原子である。)、または加水分解によりこれらの基に転換し得る基であり、
 B、Bは、それぞれ酸素原子、イオウ原子、スルホニル基、またはイソプロピリデン基である。
 PおよびPの構造異性は、特に限定されず、PおよびPの水素原子の1個以上がフッ素原子、塩素原子、臭素原子、または炭素数1~3のアルキル基に置換されていてもよい。
 イオン交換樹脂のイオン交換容量は、0.5~2.0ミリ当量/グラム乾燥樹脂が好ましく、0.7~1.8ミリ当量/グラム乾燥樹脂がより好ましい。イオン交換容量が0.5ミリ当量/グラム乾燥樹脂以上であれば、電解質膜の抵抗が低く抑えられる。イオン交換容量が2.0ミリ当量/グラム乾燥樹脂以下であれば、水に対する親和性が適度に抑えられ、発電時に電解質膜が溶解することがない。
(補強されない層)
 電解質膜は、片面または両面の最外層として、イオン交換樹脂からなる補強されない層を有することが好ましい。補強されない層を有する場合、電解質膜と電極との界面における抵抗が低く抑えられる。電解質膜は、両面の最外層に、補強されない層を有することがより好ましい。
 補強されない層の厚さは、片面あたり1~20μmが好ましく、2~15μmがより好ましく、2~10μmがさらに好ましい。厚さが1μm以上であれば、ガスバリアー性に優れる。厚さが20μm以下であれば、電解質膜の抵抗が低く抑えられ、また、寸法安定性が良好になる。
 また、固体高分子形燃料電池用の電解質膜においては、プロトンの移動が不織布の繊維に遮蔽される。補強されない層の厚さが薄すぎると、電流が繊維を回避して迂回するための距離が大きくなり、不要な抵抗上昇の要因となり得る。特に、補強されない層の厚さが不織布の繊維の平均繊維径の半分以下である場合、抵抗の上昇が起こりやすくなる。補強されない層の厚さが不織布の繊維の平均繊維径と同等である場合、電流の迂回距離が小さくなり、結果として抵抗の不要な上昇が避けられる。
 補強されない層の厚さは、電解質膜の断面を光学顕微鏡、レーザー顕微鏡、電子顕微鏡等で観察することにより測定される。補強されない層の厚さは、電解質膜の表面と不織布の繊維との最短距離を意味する。
 補強されない層は、不織布以外の、抵抗上昇を招かない成分を含んでいてもよい。
(電解質膜の製造方法)
 電解質膜の製造方法としては、下記の方法(α)~(γ)が挙げられる。
 (α)不織布の表面に、イオン交換樹脂の溶液または分散液を塗工し、または含浸させ、乾燥する方法。
 (β)不織布の表面に、あらかじめ形成しておいたイオン交換樹脂膜を加熱積層して一体化する方法。
 (γ)不織布の一方の面に、あらかじめ形成しておいたイオン交換樹脂膜を加熱積層して一体化し、さらに不織布の他方の面に、イオン交換樹脂の溶液または分散液を塗工し、乾燥する方法。
 該方法で得られた電解質膜に延伸処理等を施して強化してもよい。
 該方法で得られた電解質膜には、最外層としてイオン交換樹脂からなる補強されない層が形成されていることが好ましい。また、該方法で得られた電解質膜に、さらにイオン交換樹脂の溶液または分散液を塗工したり、イオン交換樹脂膜を積層したりすることによってもイオン交換樹脂からなる補強されない層を形成できる。
 以下、方法(γ)による電解質膜の製造方法の一例を説明する。
 電解質膜は、下記の工程を有する方法で製造できる。
 (IV)基材フィルムの表面に、イオン交換樹脂の溶液または分散液を塗工し、乾燥することによって基材フィルム付きイオン交換樹脂膜を得る工程。
 (V)上述した工程(III)で得られた樹脂フィルム付き不織布と、基材フィルム付きイオン交換樹脂膜とを重ねた状態で一対のロール間に通して熱プレスし、積層体を得る工程。
 (VI)積層体から樹脂フィルムを剥がした後、不織布側の表面に、イオン交換樹脂の溶液または分散液を塗工し、乾燥することによって基材フィルム付き電解質膜を得る工程。
 工程(IV):
 基材フィルムのロールから送り出された基材フィルムの表面に、イオン交換樹脂を分散媒に分散させた分散液を塗工し、乾燥することによってイオン交換樹脂膜を形成し、基材フィルムとともにイオン交換樹脂膜のロールに巻き取る。
 基材フィルムの材料としては、ETFE、PET、ポリプロピレン等が挙げられ、耐久性の点から、ETFEが好ましい。
 分散媒としては、アルコールおよび水を含む分散媒が好ましい。アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、2,2,3,3-テトラフルオロ-1-プロパノール、4,4,5,5,5-ペンタフルオロ-1-ペンタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、3,3,3-トリフルオロ-1-プロパノール、3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール等が挙げられる。
 塗工方法としては、ダイコート法等の公知の方法が挙げられる。
 乾燥温度は、40~130℃が好ましい。
 イオン交換樹脂膜を安定化させるために、イオン交換樹脂膜にアニール処理を施してもよい。アニール処理の温度は、130~200℃が好ましい。
 工程(V):
 工程(III)にて得られた不織布のロールから送り出された樹脂フィルム付き不織布と、工程(IV)にて得られたイオン交換樹脂膜のロールから送り出された基材フィルム付きイオン交換樹脂膜とを、不織布とイオン交換樹脂膜とが接するように重ねあわせ、該状態で一対の加熱ロール間に通して熱プレスし、得られた積層体を積層体のロールに巻き取る。
 加熱ロールの温度は、130~200℃が好ましい。
 熱プレスの圧力は、0.1~5MPaが好ましい。
 工程(VI):
 積層体のロールから送り出された積層体から樹脂フィルムを剥がした後、不織布側の表面に、イオン交換樹脂の分散液を塗工し、乾燥することによって基材フィルム付き電解質膜を得る。
 塗工方法としては、ダイコート法等の公知の方法が挙げられる。
 乾燥温度は、40~130℃が好ましい。
 電解質膜を安定化させるために、電解質膜にアニール処理を施してもよい。アニール処理の温度は、130~200℃が好ましい。
 以上説明した本発明の電解質膜にあっては、本発明の不織布により補強されているため、含水時における寸法安定性に優れ、補強材による抵抗の上昇が抑えられる。
<膜電極接合体>
 図5は、固体高分子形燃料電池用膜電極接合体(以下、膜電極接合体と記す。)の一例を示す断面図である。膜電極接合体70は、触媒層82およびガス拡散層84を有するアノード80と、触媒層92およびガス拡散層94を有するカソード90と、アノード80とカソード90との間に、各触媒層に接した状態で配置される電解質膜100とを有する。
(電解質膜)
 電解質膜100は、本発明の電解質膜である。
(触媒層)
 触媒層82および触媒層92(以下、まとめて触媒層と記す。)は、触媒およびイオン交換樹脂を含む層である。触媒層82および触媒層92は、成分、組成、厚さ等が同じ層であってもよく、異なる層であってもよい。
 触媒としては、燃料電池における酸化還元反応を促進するものであればよく、白金を含む触媒が好ましく、白金または白金合金がカーボン担体に担持された担持触媒が特に好ましい。
 カーボン担体としては、活性炭、カーボンブラック等が挙げられる。
 イオン交換樹脂としては、上述したイオン交換樹脂が挙げられ、耐久性に優れる点から、スルホン酸型パーフルオロカーボン重合体が好ましい。
(ガス拡散層)
 ガス拡散層84およびガス拡散層94(以下、まとめてガス拡散層と記す。)の構成材料としては、カーボンペーパー、カーボンクロス、カーボンフェルト等の多孔質カーボンシートが挙げられる。ガス拡散層は、ポリテトラフルオロエチレン(以下、PTFEと記す。)等によって撥水化処理されていることが好ましい。
(マイクロポーラス層)
 膜電極接合体は、触媒層とガス拡散層との間に、カーボンと結着樹脂とを含むマイクロポーラス層(図示略)を有していてもよい。
 触媒層とガス拡散層との間に、カーボン粒子を主体とするマイクロポーラス層を設けることにより、水がガス拡散層の細孔を塞ぎにくくなり、ガス拡散性の低下が抑えられる。
 カーボンとしては、カーボンブラック、カーボンファイバー類等が挙げられる。
 結着樹脂としては、撥水性の非イオン性含フッ素ポリマーが好ましく、PTFEが特に好ましい。
(膜電極接合体の製造方法)
 膜電極接合体70は、たとえば、下記の方法(x)~(z)にて製造される。
 (x)電解質膜100の両面に、触媒層形成用塗工液を塗工し、乾燥させて触媒層を形成して膜触媒層接合体とし、該膜触媒層接合体をガス拡散層で挟み込む方法。
 (y)ガス拡散層となるシートの片面に、触媒層形成用塗工液を塗工し、乾燥させて触媒層を形成して電極(アノード80、カソード90)とし、固体高分子電解質膜100を該電極で挟み込む方法。
 (z)基材フィルムの片面に、触媒層形成用塗工液を塗工し、乾燥させて触媒層を形成し、該触媒層を電解質膜100の両面に転写して膜触媒層接合体とし、該膜触媒層接合体をガス拡散層で挟み込む方法。
 方法(x)~(z)で用いる電解質膜100およびガス拡散層は、枚葉の状態であってもよく、ウェブ(連続体)の状態であってもよい。
 触媒層形成用塗工液は、触媒を溶媒に分散させ、イオン交換樹脂を溶媒に溶解または分散させることにより調製される。
 以上説明した膜電極接合体は、含水時における寸法安定性に優れ、補強材による抵抗の上昇が抑えられた電解質膜を有するため、耐久性に優れ、出力が高い。
<固体高分子形燃料電池>
 膜電極接合体は、固体高分子形燃料電池に用いられる。固体高分子形燃料電池は、たとえば、2つのセパレータの間に膜電極接合体を挟んでセルを形成し、複数のセルをスタックすることにより製造される。
 セパレータとしては、燃料ガスまたは酸素を含む酸化剤ガス(空気、酸素等。)の通路となる溝が形成された導電性カーボン板等が挙げられる。
 固体高分子形燃料電池の種類としては、水素/酸素型燃料電池、直接メタノール型燃料電池(DMFC)等が挙げられる。
 以下、実施例により本発明を具体的に説明するが、本発明の技術的範囲がこれに限定されるものではない。
 例1、2は実施例であり、例3~6は比較例である。
(繰り返し単位の割合)
 ETFEを構成する各繰り返し単位の割合は、全フッ素量測定および溶融19F-NMR測定の結果から求めた。
(貯蔵弾性率E’)
 幅:5mm、長さ:30mm、厚さ:150μmのETFEのフィルムについて、動的粘弾性測定装置(アイティ計測制御社製、DVA200)を用い、チャック間:20mm、測定周波数:1Hz、昇温速度:2℃/分の条件にて、動的粘弾性測定を行い、貯蔵弾性率E’のグラフから25℃における貯蔵弾性率E’を読み取った。
(溶融粘度)
 溶融流動性測定装置(東洋精機製作所社製、キャピログラフ、炉内径:9.55mm)に、直径:1mm、長さ:10mmのオリフィスをセットし、シリンダー温度:300℃、ピストンスピード:10mm/分の条件で溶融したETFEを押し出し、溶融粘度を測定した。
(不織布の目付量)
 不織布に粘着剤付きのPETフィルムを押し付け、不織布を移しとり、移しとった面積と質量増加量とから不織布の目付量を計算した。
(繊維の平均繊維径)
 不織布を構成している繊維の平均繊維径は、電子顕微鏡観察により、繊維200本の繊維径を測定し、データのうち最も細い10本のデータおよび最も太いデータ10本を除いた平均値とした。
(最大強度、最大硬さ)
 不織布の圧密化を行った後、1時間以内に、幅:100mm、長さ:30mmに裁断し、チャック間:10mm、引張速度:10mm/分の条件にて、引張試験を実施し、不織布の10cm幅あたりの引張強度を測定した。伸度に対する強度の曲線の最大値を最大強度とし、また、初期の曲線の傾きの最大値を最大硬さとした。
(含水時の寸法変化率)
 電解質膜を縦方向、横方向にそれぞれ2枚、短冊形(2cm×10cm)に切り出し、サンプルとした。サンプルに、短辺方向と平行に6cm間隔のラインを引いた。
 サンプルを、温度:25℃、湿度:50%の雰囲気に2時間保持し、ライン間の長さを測定した。
 ついで、2枚のサンプルのうち一方に20mN、もう一方に60mNの張力をかけた状態で、90℃のイオン交換水に2時間浸漬した後、水中でライン間の長さを測定した。
 測定されたサンプルの伸びから、張力の影響を取り除くために、下式(9)により、張力が0となるサンプルの伸びを算出し、縦方向の伸びと横方向の伸びの平均値を求め、寸法変化率とした。
 (張力0Nの伸び)=(張力20mNの伸び)-{(張力60mNの伸び)-(張力20mNの伸び)}÷2 ・・・(9)。
(ETFE)
 ETFE-1:
 真空引きした430Lのステンレス製オートクレーブに、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(旭硝子社製、商品名:AK225cb、以下AK225cbと記す。)の391kg、CH=CH(CFFの3.0kgを仕込み、撹拌しながら66℃まで昇温し、E/TFE=17/83(モル%)の混合ガスをオートクレーブの圧力が1.6MPaGになるまで導入し、重合開始剤としてtert-ブチルパーオキシピバレートの0.3質量%AK225cb溶液の2.5Lを注入して重合を開始した。重合中は、圧力が1.6MPaGとなるようにE/TFE=46/54(モル%)の混合ガスおよび混合ガスに対して1.4モル%に相当する量のCH=CH(CFFを連続的に添加し、E/TFE混合ガスを30kg仕込んだ後、オートクレーブを冷却し、残留ガスをパージし、重合を終了させた。
 得られたスラリ状のETFE-1を、水の340kgを仕込んだ850Lの造粒槽に投入し、ついで撹拌しながら105℃まで昇温し、溶媒を留出、除去しながら造粒した。得られた造粒物を150℃で5時間乾燥することにより、30kgのETFE-1を得た。各繰り返し単位の割合、貯蔵弾性率E’、300℃で測定された溶融粘度を表1に示す。
 ETFE-2:
 真空引きした1.2Lのステンレス製オートクレーブに、CF(CFHの1202g、メタノールの19.5g、CH=CH(CFFの3.5g、E/TFE=17/83(モル%)の164gを仕込み、撹拌しながら66℃まで昇温したところ、オートクレーブの圧力が1.5MPaGになった。続いて重合開始剤としてtert-ブチルパーオキシピバレートの1.0質量%CF(CFH溶液の4mLを注入して重合を開始した。重合中は、圧力が1.5MPaGとなるようにE/TFE=46/54(モル%)の混合ガスおよび混合ガスに対して0.7モル%に相当する量のCH=CH(CFFを連続的に添加し、E/TFE混合ガスを90g仕込んだ後、オートクレーブを冷却し、残留ガスをパージし、重合を終了させた。
 得られたスラリ状のETFEをロータリーエバポレーターに移し、溶媒を蒸発させて粉末状のETFEを得た。得られた粉末状のETFEを150℃で15時間乾燥することにより、87gのETFE-2を得た。各繰り返し単位の割合、貯蔵弾性率E’、300℃で測定された溶融粘度を表1に示す。
 ETFE-3:
 真空引きした430Lのステンレス製オートクレーブに、AK225cbの393kg、CH=CH(CFFの2.2kgを仕込み、撹拌しながら66℃まで昇温し、E/TFE=16/84(モル%)の混合ガスをオートクレーブの圧力が1.45MPaGになるまで導入し、重合開始剤としてtert-ブチルパーオキシピバレートの0.3質量%AK225cb溶液の2.0Lを注入して重合を開始した。重合中は、圧力が1.45MPaGとなるようにE/TFE=46/54(モル%)の混合ガスおよび混合ガスに対して1.4モル%に相当する量のCH=CH(CFFを連続的に添加し、E/TFE混合ガスを30kg仕込んだ後、オートクレーブを冷却し、残留ガスをパージし、重合を終了させた。
 得られたスラリ状のETFE-3を、水の340kgを仕込んだ850Lの造粒槽に投入し、ついで撹拌しながら105℃まで昇温し、溶媒を留出、除去しながら造粒した。得られた造粒物を150℃で5時間乾燥することにより、27kgのETFE-3を得た。各繰り返し単位の割合、貯蔵弾性率E’、300℃で測定された溶融粘度を表1に示す。
 ETFE-4:
 真空引きした94Lのステンレス製オートクレーブに、AK225cbの87.3kg、CH=CH(CFFの860gを仕込み、撹拌しながら66℃まで昇温し、E/TFE=11/89(モル%)の混合ガスをオートクレーブの圧力が1.4MPaGになるまで導入し、重合開始剤としてtert-ブチルパーオキシピバレートの1質量%AK225cb溶液の677gを注入して重合を開始した。重合中は、圧力が1.4MPaGとなるようにE/TFE=40/60(モル%)の混合ガスおよび混合ガスに対して3.3モル%に相当する量のCH=CH(CFFを連続的に添加し、E/TFE混合ガスを7.1kg仕込んだ後、オートクレーブを冷却し、残留ガスをパージし、重合を終了させた。
 得られたスラリ状のETFE-4を、水の77kgを仕込んだ200Lの造粒槽に投入し、ついで撹拌しながら105℃まで昇温し、溶媒を留出、除去しながら造粒した。得られた造粒物を150℃で5時間乾燥することにより、7.0kgのETFE-4を得た。各繰り返し単位の割合、貯蔵弾性率E’、300℃で測定された溶融粘度を表1に示す。
 ETFE-5:
 ETFE(旭硝子社製、商品名:FLUON(登録商標)・LM-ETFE・LM-740A)を用意した。貯蔵弾性率E’、300℃で測定された溶融粘度を表1に示す。
 ETFE-6:
 ETFE(旭硝子社製、商品名:FLUON(登録商標)・C88AXM)を用意した。貯蔵弾性率E’、300℃で測定された溶融粘度を表1に示す。
Figure JPOXMLDOC01-appb-T000003
〔例1〕
 工程(I):
 図1に示す不織布製造装置10を用意した。
 押出機12としては、単軸押出機(田辺プラスチック社製、口径:30mm、L/D=24)を用いた。
 ダイ14としては、流量調整構造および加熱空気導入構造を有する特殊ダイを用いた。
 紡糸ノズル20としては、有効幅:5cmに一列に配列した10個の円形の溶融樹脂吐出孔(内径:400μm)と、該配列方向と平行に、溶融樹脂に延伸応力がかかるように加熱空気を噴出させることが可能な、スリット状の気体吐出孔(幅:1mm)とを有するメルトブロー不織布製造用特殊ノズル(化繊ノズル社製)を用いた。
 図3に示すように、ETFE-1を下記条件にて紡糸ノズル20から吐出し、延伸して繊維26とし、該繊維26を、吸引ポンプを有する吸引装置40の上方に位置し、0.2m/分の速度で移動するフィルム状基材34(70メッシュのステンレスメッシュ)の表面に捕集して幅:約5cmの不織布28を形成した。
 押出機の回転数:1rpm、
 ダイ温度:360℃、
 加熱空気の温度:230℃、
 加熱空気の流量:ノズル1cmあたり3Nm/hr、
 押出機の余剰樹脂排出口からの溶融樹脂の流量:3.7g/分、
 紡糸ノズルからの溶融樹脂の流量:約0.3g/分。
 なお、加熱空気の温度は、加熱空気のみでノズルを加熱した場合に、ノズルが到達する温度を加熱空気の温度とした。
 工程(II):
 不織布28を、0.2m/分の速度でフィルム状基材34とともにベルトコンベア30の上面の端部付近へ移動させた。
 不織布28(長さ:3m)を、樹脂フィルム54(PETフィルム、厚さ:100μm)に付着させた後、樹脂フィルム54とともにロール58に巻き取った。
 工程(III):
 図4に示すように、ロール58から送り出された樹脂フィルム54付き不織布28を、下記条件にて金属ロール62とゴムロール64とからなる一対の加熱ロールの間に通し、熱プレスして、厚さ調整された不織布66とし、樹脂フィルム54とともに不織布のロール68に巻き取った。不織布の目付、平均繊維径、目付量100g/mあたりの縦方向の最大強度、最大硬さを測定した。結果を表2に示す。
 金属ロールの温度:210℃、
 ゴムロールの温度:100℃、
 圧力:600mmのロール面長に対して15000N、
 送り速度:0.15m/分。
 工程(IV):
 基材フィルムのロールから送り出された基材フィルム(ETFEフィルム、旭硝子社製、商品名:アフレックス(登録商標)100N、厚さ:100μm)の表面に、イオン交換樹脂(旭硝子社製、商品名:Flemion(登録商標))のエタノール溶液(FSS-2、固形分濃度:9質量%)をダイコート法により塗工し、80℃で5分間乾燥することによって厚さ:3μmのイオン交換樹脂膜を形成し、基材フィルムとともにイオン交換樹脂膜のロールに巻き取った。
 工程(V):
 工程(III)にて得られた不織布のロールから送り出された樹脂フィルム付き不織布と、工程(IV)にて得られたイオン交換樹脂膜のロールから送り出された基材フィルム付きイオン交換樹脂膜とを、不織布とイオン交換樹脂膜とが接するように重ねあわせ、下記条件で前記加熱ロール間に通して熱プレスし、得られた積層体を積層体のロールに巻き取った。
 金属ロールの温度:120℃、
 ゴムロールの温度:120℃、
 圧力:600mmのロール面長に対して0.026MPa/m、
 送り速度:0.15m/分。
 工程(VI):
 積層体のロールから送り出された積層体から樹脂フィルムを剥がした後、不織布側の表面に、イオン交換樹脂(旭硝子社製、商品名:Flemion(登録商標))のエタノール溶液(FSS-2、固形分濃度:9%)をダイコート法により塗工し、80℃で15分間乾燥させ、さらに加熱ロールにて加圧を行った。その後、枚葉に切断し、140℃30分の条件でさらに残留溶媒等を除去し、厚さ:16μmの電解質膜を得た。電子顕微鏡の断面観察から、表面の補強されない層の厚さは両側約3μmであり、補強された層の厚さは10μmであった。電解質膜の含水時の寸法変化率を測定した。結果を表2に示す。
〔例2〕
 ETFE-1をETFE-2に変更した以外は、例1と同様にして圧密化された不織布および電解質膜を得た。
 不織布の目付、平均繊維径、目付量100g/mあたりの縦方向の最大強度、最大硬さを表2に示す。
 電解質膜の含水時の寸法変化率を表2に示す。
〔例3〕
 ETFE-1をETFE-3に変更した以外は、例1と同様にして圧密化された不織布および電解質膜を得た。
 不織布の目付、平均繊維径、目付量100g/mあたりの縦方向の最大強度、最大硬さを表2に示す。
 電解質膜の含水時の寸法変化率を表2に示す。
〔例4〕
 ETFE-4を用い、ダイ温度:360℃、加熱空気の温度:360℃に設定し、その他の条件は例1と同じで、不織布を製造する。ついで、該不織布を、簡易的に熱プレス機にて、160℃、1MPaの条件で圧密化する。得られた不織布の目付、平均繊維径、目付量100g/mあたりの縦方向の最大強度、最大硬さは表2に示す値となる。
 例1と同様にして電解質膜を製造し、寸法変化率を測定すると、表2に示す値となる。
〔例5〕
 ETFE-5を用い、例4と同様にして圧密化された不織布を製造した。不織布の目付、平均繊維径、目付量100g/mあたりの縦方向の最大強度、最大硬さを表2に示す。
 例1と同様にして電解質膜を製造した。電解質膜の含水時の寸法変化率を表2に示す。
〔例6〕
 ETFE-6を用い、例1と同様にして圧密化された不織布を製造する。得られた不織布の目付、平均繊維径、目付量100g/mあたりの縦方向の最大強度、最大硬さは表2に示す値となる。繊維径が大きいため、不織布の厚さが厚くなり、電解質膜を製造できない。
Figure JPOXMLDOC01-appb-T000004
 本発明の不織布は、固体分子形燃料電池用電解質膜の補強材、フィルタ、保温材、透湿防水素材、防炎素材として特に有用である。
 なお、2009年2月26日に出願された日本特許出願2009-044704号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 26 繊維
 28 不織布
 66 不織布
 100 電解質膜

Claims (9)

  1.  25℃における貯蔵弾性率E’が、8×10Pa以上であり、かつ300℃で測定した溶融粘度が、60Pa・s超300Pa・s以下であるエチレン/テトラフルオロエチレン共重合体の繊維を含み、該繊維の平均繊維径が0.01~3μmである、不織布。
  2.  目付量が、1~300g/mである、請求項1に記載の不織布。
  3.  メルトブロー法によって製造されたものである、請求項1または2に記載の不織布。
  4.  前記繊維間の交点の少なくとも一部が融着によって固定化されたものである、請求項1~3のいずれかに記載の不織布。
  5.  前記融着が、熱プレスによるものである、請求項4に記載の不織布。
  6.  目付量100g/mあたりの縦方向の最大強度が、60N/10cm以上である、請求項1~5のいずれかに記載の不織布。
  7.  目付量100g/mあたりの縦方向の最大硬さが、400N/10cm以上である、請求項1~6のいずれかに記載の不織布。
  8.  前記エチレン/テトラフルオロエチレン共重合体がCH=CX(CFY(ただし、X、Yはそれぞれ水素原子またはフッ素原子であり、nは2~8の整数である。)で表されるモノマーに基づく繰り返し単位を含有し、該モノマーに基づく繰り返し単位の含有量が、エチレン/テトラフルオロエチレン共重合体の全繰り返し単位中のうち、0.1~7モル%である、請求項1~7のいずれかに記載の不織布。
  9.  請求項1~8のいずれかに記載の不織布で補強された、電解質膜。
PCT/JP2010/052999 2009-02-26 2010-02-25 不織布および電解質膜 WO2010098400A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080009734.6A CN102333913B (zh) 2009-02-26 2010-02-25 无纺布及电解质膜
JP2011501646A JP5585575B2 (ja) 2009-02-26 2010-02-25 不織布および電解質膜
US13/194,241 US8394549B2 (en) 2009-02-26 2011-07-29 Nonwoven fabric and electrolyte membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-044704 2009-02-26
JP2009044704 2009-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/194,241 Continuation US8394549B2 (en) 2009-02-26 2011-07-29 Nonwoven fabric and electrolyte membrane

Publications (1)

Publication Number Publication Date
WO2010098400A1 true WO2010098400A1 (ja) 2010-09-02

Family

ID=42665604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052999 WO2010098400A1 (ja) 2009-02-26 2010-02-25 不織布および電解質膜

Country Status (4)

Country Link
US (1) US8394549B2 (ja)
JP (1) JP5585575B2 (ja)
CN (1) CN102333913B (ja)
WO (1) WO2010098400A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093432A1 (ja) * 2011-01-07 2012-07-12 パナソニック株式会社 固体高分子型燃料電池用電解質膜、及び、当該電解質膜を有する膜電極接合体、並びに、固体高分子型燃料電池
JP2015050155A (ja) * 2013-09-04 2015-03-16 凸版印刷株式会社 膜電極接合体の製造装置、及び製造方法
WO2017218781A1 (en) * 2016-06-17 2017-12-21 3M Innovative Properties Company Ion exchange membrane and method of producing same, membrane electrode assembly, and redox flow battery
CN113437435B (zh) * 2021-06-23 2023-05-26 江苏星源新材料科技有限公司 涂覆浆料、涂覆隔膜及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884527A (zh) * 2012-12-27 2015-09-02 旭硝子株式会社 含乙烯/四氟乙烯共聚物的混合聚合物、该混合聚合物的成形体、太阳能电池用背板以及该成形体的制造方法
US11111612B2 (en) 2014-05-19 2021-09-07 Arkema Inc. High melt flow fluoropolymer composition
DK3779016T3 (da) * 2018-03-30 2023-05-08 Mitsui Chemicals Inc Ikke-vævet stoflaminat, strækbart ikke-vævet stoflaminat samt tekstilprodukt
CN109183280B (zh) * 2018-09-03 2020-09-08 河南克莱威纳米碳材料有限公司 一种防火耐高温远红外发射无纺布及其制备方法
CN109473613B (zh) * 2018-10-26 2021-06-15 中原工学院 一种复合型非织造电池隔膜及其制备方法
CN112853626B (zh) * 2019-11-26 2022-08-05 浙江省化工研究院有限公司 一种ectfe熔喷膜及其制备方法
US20210329990A1 (en) * 2020-04-27 2021-10-28 Ion Defense Technologies, LLC Article for personal protective equipment using an electroceutical system
CN115213997B (zh) * 2022-07-28 2024-02-13 青海津立投资有限公司 一种净水盐砖的压制工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257311A (ja) * 1991-02-01 1992-09-11 Mitsubishi Rayon Co Ltd ポリ弗化ビニリデン系複合体繊維及びその製造法
JP2002266219A (ja) * 2001-03-05 2002-09-18 Daikin Ind Ltd テトラフルオロエチレン系不織布
JP2008243420A (ja) * 2007-03-26 2008-10-09 Asahi Glass Co Ltd フッ素系不織布の製造方法、フッ素系不織布、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229048A (ja) 1994-02-16 1995-08-29 Toyobo Co Ltd 不織布およびその製造法
US6841243B2 (en) * 1999-01-29 2005-01-11 E. I. Du Pont De Nemours And Company High speed melt spinning of fluoropolymer fibers
CN1136266C (zh) * 2000-06-07 2004-01-28 信息产业部电子第十八研究所 三元共聚物电解质膜及电池
CN1513069A (zh) * 2001-06-21 2004-07-14 大金工业株式会社 无纺织物及利用此类无纺织物的层叠物与带状物
JP4956961B2 (ja) 2004-12-22 2012-06-20 旭硝子株式会社 電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
DE602005014437D1 (de) * 2004-12-22 2009-06-25 Asahi Glass Co Ltd Elektrolytmembran, Verfahren zu deren Herstellung und Membran-Elektrodenanordnung für Festpolymerbrennstoffzellen
ES2313691T3 (es) * 2006-04-03 2009-03-01 Asahi Glass Company, Limited Composicion copolimerica de etileno/tetrafluoroetileno.
JP5233381B2 (ja) * 2008-03-06 2013-07-10 旭硝子株式会社 エチレン/テトラフルオロエチレン共重合体の不織布
JP5040888B2 (ja) 2008-10-17 2012-10-03 旭硝子株式会社 繊維の製造方法および触媒層の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257311A (ja) * 1991-02-01 1992-09-11 Mitsubishi Rayon Co Ltd ポリ弗化ビニリデン系複合体繊維及びその製造法
JP2002266219A (ja) * 2001-03-05 2002-09-18 Daikin Ind Ltd テトラフルオロエチレン系不織布
JP2008243420A (ja) * 2007-03-26 2008-10-09 Asahi Glass Co Ltd フッ素系不織布の製造方法、フッ素系不織布、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093432A1 (ja) * 2011-01-07 2012-07-12 パナソニック株式会社 固体高分子型燃料電池用電解質膜、及び、当該電解質膜を有する膜電極接合体、並びに、固体高分子型燃料電池
JP5193394B2 (ja) * 2011-01-07 2013-05-08 パナソニック株式会社 固体高分子型燃料電池用電解質膜、及び、当該電解質膜を有する膜電極接合体、並びに、固体高分子型燃料電池
EP2642569A1 (en) * 2011-01-07 2013-09-25 Panasonic Corporation Electrolyte membrane for solid polymer fuel cells, membrane electrode assembly having said electrolyte membrane, and solid polymer fuel cell
EP2642569A4 (en) * 2011-01-07 2013-12-18 Panasonic Corp ELECTROLYTE MEMBRANE FOR FESTPOLYMER FUEL CELLS, MEMBRANE ELECTRODE UNIT WITH THIS ELECTROLYTE MEMBRANE AND FESTPOLYMER FUEL CELL
US9419301B2 (en) 2011-01-07 2016-08-16 Panasonic Intellectual Property Management Co., Ltd. Electrolyte membrane for solid polymer fuel cells, membrane electrode assembly having said electrolyte membrane, and solid polymer fuel cell
JP2015050155A (ja) * 2013-09-04 2015-03-16 凸版印刷株式会社 膜電極接合体の製造装置、及び製造方法
WO2017218781A1 (en) * 2016-06-17 2017-12-21 3M Innovative Properties Company Ion exchange membrane and method of producing same, membrane electrode assembly, and redox flow battery
CN113437435B (zh) * 2021-06-23 2023-05-26 江苏星源新材料科技有限公司 涂覆浆料、涂覆隔膜及其制备方法

Also Published As

Publication number Publication date
JPWO2010098400A1 (ja) 2012-09-06
JP5585575B2 (ja) 2014-09-10
US8394549B2 (en) 2013-03-12
CN102333913A (zh) 2012-01-25
US20110281196A1 (en) 2011-11-17
CN102333913B (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5585575B2 (ja) 不織布および電解質膜
JP5163209B2 (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP4956961B2 (ja) 電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
US9118043B2 (en) Membrane/electrode assembly for polymer electrolyte fuel cells and polymer electrolyte fuel cell
US8268900B2 (en) Electrolyte membrane, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells
US11414502B2 (en) Fluorosulfonyl group or sulfonic acid group-containing polymer, its production method and its application
US7311989B2 (en) Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
JP5277740B2 (ja) 触媒層の形成方法および固体高分子形燃料電池用膜電極接合体の製造方法
US8673517B2 (en) Polymer electrolyte membrane composed of a fluorinated proton conductive polymer and a fluorinated reinforcing material
US7927690B2 (en) Nonwoven fabric made of an ethylene/tetrafluoroethylene copolymer
JP2009245639A (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP5505408B2 (ja) 固体高分子形燃料電池用電解質膜および固体高分子形燃料電池用膜電極接合体
JP5320799B2 (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP5196576B2 (ja) 極細フィラメントの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009734.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011501646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746279

Country of ref document: EP

Kind code of ref document: A1