WO2010098102A1 - 転写体およびその製造方法 - Google Patents
転写体およびその製造方法 Download PDFInfo
- Publication number
- WO2010098102A1 WO2010098102A1 PCT/JP2010/001271 JP2010001271W WO2010098102A1 WO 2010098102 A1 WO2010098102 A1 WO 2010098102A1 JP 2010001271 W JP2010001271 W JP 2010001271W WO 2010098102 A1 WO2010098102 A1 WO 2010098102A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorine
- poly
- elastic modulus
- mold
- transfer body
- Prior art date
Links
- 0 C*(C1C=CC2C1)C(C1C3)C2C3*(CC(*)*)=*1C=* Chemical compound C*(C1C=CC2C1)C(C1C3)C2C3*(CC(*)*)=*1C=* 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/005—Surface shaping of articles, e.g. embossing; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
- C08G61/08—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0012—Arrays characterised by the manufacturing method
- G02B3/0031—Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/146—Side-chains containing halogens
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
- C08G2261/3324—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/418—Ring opening metathesis polymerisation [ROMP]
Definitions
- the present invention relates to a transfer body on which a fine pattern is formed, and a method for manufacturing the transfer body.
- Resin moldings with fine patterns include optical elements (microlens arrays, optical waveguides, optical switching, Fresnel zone plates, binary optical elements, blaze optical elements, photonics crystals, etc.), antireflection filters, biochips, microreactor chips, It is useful as a recording medium, display material, catalyst carrier and the like.
- optical elements microlens arrays, optical waveguides, optical switching, Fresnel zone plates, binary optical elements, blaze optical elements, photonics crystals, etc.
- antireflection filters biochips, microreactor chips
- Patent Document 1 and Patent Document 2 In addition, in semiconductor manufacturing processes, a nanoimprint method has been proposed in which a resist is applied onto a silicone substrate and a mold on which a fine pattern is formed is pressure bonded as an alternative to the photolithography method, thereby transferring the fine pattern onto the resist.
- Patent Document 3 and Patent Document 4 In example, Patent Document 3 and Patent Document 4).
- Non-adhesive material having a surface energy of less than about 30 dyn / cm is used as a mold material.
- Non-adhesive materials include fluoropolymers such as fluorinated ethylene propylene copolymer and tetrafluoroethylene polymer, fluorinated siloxane polymers, silicone and the like.
- Patent Document 5 imprints a mold or negative pattern made of a non-adhesive material on a photocurable or thermosetting thin film formed on a substrate. That is, a mold or a negative is used as a lithography tool.
- the non-adhesive material focuses on the role as a release agent.
- a mold using silicone has a low elastic modulus, and it is difficult to accurately transfer the pattern shape.
- a transfer layer made of a thermoplastic resin containing a fluorine-containing polymer having a fluorine content of 35% by mass or more and a mold having a reverse pattern of a desired pattern are pressure-bonded.
- a method of forming a pattern on a transfer layer comprising a step of forming a desired pattern on the transfer layer and a step of releasing the mold from the transfer layer is disclosed. This method is described as being excellent in the releasability of the transfer layer and capable of forming a fine pattern.
- fluoropolymer examples include polytetrafluoroethylene, 1,1,1-trifluoro-2-trifluoromethylpenten-2-ol copolymer, and perfluoro cyclic ether polymer (trade name Cytop (registered trademark)). And a copolymer of chlorotrifluoroethylene and vinyl ether (trade name Lumiflon (registered trademark)) and the like.
- the imprint method based on the pressure heating molding proposed as described above needs to apply a high pressure uniformly over a large area and requires a large thermo-compression molding machine. For this reason, there is a limit to the area of the transfer body that can be industrially implemented, and obtaining a large-area transfer body has a very large problem.
- the present invention uses a specific fluorine-containing cyclic olefin polymer to optimize changes in the elastic modulus and shrinkage of the resin in the heating and cooling processes of the nanoimprint transfer body, and the fine pattern on the mold surface has high dimensional accuracy.
- An object of the present invention is to provide a transfer body having a fine pattern transferred on the surface. Furthermore, the transfer body can be efficiently manufactured with high dimensional accuracy, and a transfer body manufacturing method capable of obtaining a large-area transfer body by a simple process. Further, the transfer body can be used as a replica mold. It is an object of the present invention to provide a method for producing a cured product having a fine pattern transferred onto the surface of a cured resin, and a transfer resin composition capable of molding the transfer body of the present invention.
- a transfer body onto which a fine pattern on the mold surface is transferred A transfer body comprising a fluorine-containing cyclic olefin polymer containing a repeating structural unit represented by the general formula (1) and having a fluorine atom content of 40 to 75% by mass.
- R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 1 ⁇ R 4 is a group containing no fluorine, R 1 ⁇ R 4 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms It is selected from alkoxy or alkoxyalkyl having 2 to 10 carbon atoms, R 1 to R 4 may be the same or different, and R 1 to R 4 may be bonded to each other to form a ring structure.
- the storage elastic modulus or loss elastic modulus of the fluorine-containing cyclic olefin polymer in the tensile mode solid viscoelasticity measurement at a frequency of 1 Hz and a heating rate of 3 ° C./min is in response to a temperature change in a temperature region higher than the glass transition temperature.
- the transfer member according to [1] which has a region that changes in a range of ⁇ 1 to 0 MPa / ° C.
- the storage elastic modulus or loss elastic modulus change region in the temperature region above the glass transition temperature of the fluorine-containing cyclic olefin polymer is in the storage elastic modulus region or loss elastic modulus region of 0.1 MPa or more.
- the transfer body according to 1.
- R 5 to R 8 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 5 ⁇ R 8 is a group containing no fluorine, R 5 ⁇ R 8 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms It is selected from alkoxy or alkoxyalkyl having 2 to 10 carbon atoms, R 5 to R 8 may be the same or different, and R 5 to R 8 may be bonded to each other to form a ring structure.
- n represents an integer of 1 or 2.
- the mold pattern is transferred by bringing the solution containing the fluorine-containing cyclic olefin polymer and an organic solvent into contact with a mold having a fine pattern formed on the surface and evaporating the solvent.
- [8] A method for producing a cured body using the transfer body according to any one of [1] to [4] as a mold, Contacting the surface having the fine pattern of the transfer body with the photocurable monomer composition; Curing the photocurable monomer composition by irradiating light to obtain a cured product; Releasing the cured product from the transfer body; The manufacturing method of the hardened
- a resin composition for transfer for obtaining a transfer body on which a fine pattern on a mold surface is transferred A transfer resin composition comprising a fluorine-containing cyclic olefin polymer containing a repeating structural unit represented by the general formula (1) and having a fluorine atom content of 40 to 75% by mass.
- R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 1 ⁇ R 4 is a group containing no fluorine, R 1 ⁇ R 4 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms It is selected from alkoxy or alkoxyalkyl having 2 to 10 carbon atoms, R 1 to R 4 may be the same or different, and R 1 to R 4 may be bonded to each other to form a ring structure.
- the storage elastic modulus or loss elastic modulus of the fluorine-containing cyclic olefin polymer has a region that changes in a range of ⁇ 1 to 0 MPa / ° C. with respect to a temperature change in a temperature region equal to or higher than the glass transition temperature.
- the storage elastic modulus region or the loss elastic modulus region in the temperature region above the glass transition temperature of the fluorine-containing cyclic olefin polymer is in the storage elastic modulus region or the loss elastic modulus region of 0.1 MPa or more.
- R 5 to R 8 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 5 ⁇ R 8 is a group containing no fluorine, R 5 ⁇ R 8 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms It is selected from alkoxy or alkoxyalkyl having 2 to 10 carbon atoms, R 5 to R 8 may be the same or different, and R 5 to R 8 may be bonded to each other to form a ring structure.
- n represents an integer of 1 or 2.
- the fine pattern includes a convex portion and a concave portion, the width of the convex portion and / or the concave portion is 10 nm to 50 ⁇ m, the depth of the concave portion is 30 nm to 50 ⁇ m, and the ratio of the width of the convex portion to the depth of the concave portion. It means a structure having an aspect ratio of 0.1 to 500.
- the solution made of an organic solvent and the mold surface on which a fine pattern is formed is in contact means that when a solution made of an organic solvent is applied to the mold surface on which a fine pattern is formed, a support ( This includes both cases where the solution is applied to the base material and then the upper surface of the coating layer is pressed with the mold surface on which the fine pattern is formed. The same applies to the case where “the surface having the fine pattern of the transfer body is in contact with the photocurable monomer composition”.
- a hydrogen bond is formed between molecules or within a molecule, and nanoimprinting is performed. It is possible to optimize changes in the elastic modulus and shrinkage rate of the resin in the heating and cooling processes of the transfer body manufacturing process. As a result, a transfer body having a fine pattern on the surface on which a fine pattern on the mold surface is transferred with high dimensional accuracy can be formed, and a large-area transfer body can be obtained by a simple process.
- This transfer member has excellent releasability, good production efficiency, and industrial value.
- FIG. 6 shows the change in solid viscoelasticity measured in the tensile mode of the fluorine-containing cyclic olefin polymer obtained in Example 1 having a flat storage elastic modulus or loss elastic modulus changing region in a temperature range of 113 ° C. to 152 ° C.
- the main chain in the repeating structural unit represented by the general formula (1) has a hydrocarbon structure and a fluorine-containing aliphatic ring structure in the side chain.
- a fluorine-containing cyclic olefin polymer having a fluorine atom content of 40 to 75% by mass is transferred, and the main chain in the repeating structural unit represented by the general formula (1) has a hydrocarbon structure and a fluorine-containing aliphatic ring structure in the side chain.
- a fluorine-containing cyclic olefin polymer having a fluorine atom content of 40 to 75% by mass.
- R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 1 ⁇ R 4 is a group containing no fluorine, R 1 ⁇ R 4 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms It is selected from alkoxy or alkoxyalkyl having 2 to 10 carbon atoms, R 1 to R 4 may be the same or different, and R 1 to R 4 may be bonded to each other to form a ring structure.
- R 1 to R 4 are fluorine or fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethyl, trifluoroethyl, pentafluoroethyl, heptafluoropropyl, hexafluoroisopropyl, heptafluoroisopropyl.
- Fluorine such as alkyl in which part or all of hydrogen of the alkyl group such as hexafluoro-2-methylisopropyl, perfluoro-2-methylisopropyl, n-perfluorobutyl, n-perfluoropentyl, perfluorocyclopentyl is substituted with fluorine.
- Some or all of the hydrogen atoms of alkoxy groups such as heptafluoroisopropoxy, hexafluoro-2-methylisopropoxy, perfluoro-2-methylisopropoxy, n-perfluorobutoxy, n-perfluoropentoxy, perfluorocyclopentoxy, etc.
- fluorine C 1-10 alkoxy containing fluorine such as alkoxy substituted with fluoro, fluoromethoxymethyl, difluoromethoxymethyl, trifluoromethoxymethyl, trifluoroethoxymethyl, pentafluoroethoxymethyl, heptafluoropropoxymethyl, hexafluoroiso Propoxymethyl, heptafluoroisopropoxymethyl, hexafluoro-2-methylisopropoxymethyl, perfluoro-2-methylisopropoxymethyl, n-perfluorobutoxime
- alkoxyalkyls having 2 to 10 carbon atoms containing fluorine such as alkoxyalkyl in which part or all of the hydrogens of alkoxy groups such as til, n-perfluoropentoxymethyl, perfluorocyclopentoxymethyl and the like are substituted with fluorine.
- R 1 to R 4 may be bonded to each other to form a ring structure, and a ring such as perfluorocycloalkyl or perfluorocycloether via oxygen may be formed.
- other R 1 to R 4 not containing fluorine are hydrogen or alkyl having 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, n-pentyl, cyclopentyl and the like.
- alkoxy having 1 to 10 carbon atoms such as methoxy, ethoxy, propoxy, butoxy and pentoxy
- alkoxyalkyl having 2 to 10 carbon atoms such as methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl and pentoxymethyl.
- the fluorine-containing cyclic olefin polymer may be only the repeating structural unit represented by the general formula (1), and from at least two structural units in which at least one of R 1 to R 4 in the general formula (1) is different from each other. It may be.
- the fluorine-containing cyclic olefin copolymer having the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the following general formula (2) is a structural unit [
- the structural unit [A] does not include the repeating structural unit represented by the general formula (2).
- the glass transition temperature as an index representing the heat resistance of the film is represented by the general formula (1) by introducing a rigid aliphatic ring structure of the structural unit [B] represented by the general formula (2).
- the mobility of the polymer decreases under heating, the glass transition temperature increases without impairing the properties of the fluorine-containing polymer, and the heat resistance of the film can be improved.
- the fluorine-containing cyclic olefin polymer may contain a fluorine-containing cyclic olefin copolymer.
- the fluorine-containing cyclic olefin copolymer having the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the following general formula (2) is composed of the repeating structural unit [B].
- the surface hardness such as pencil hardness
- the scratching property of the film surface can be improved.
- R 5 to R 8 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 5 ⁇ R 8 is a group containing no fluorine, R 5 ⁇ R 8 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms It is selected from alkoxy or alkoxyalkyl having 2 to 10 carbon atoms, R 5 to R 8 may be the same or different, and R 5 to R 8 may be bonded to each other to form a ring structure.
- n represents an integer of 1 or 2.
- R 1 to R 4 of the repeating structural unit represented by the general formula (1) and R 5 to R 8 of the repeating structural unit represented by the general formula (2) are the same.
- R 1 to R 4 or R 5 to R 8 may each be composed of two or more different structural units.
- Nonadecanylene ethylene poly (4-perfluorobutyl-10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4-perfluoro-iso-butyl-10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4-methyl-5-tert-butyl-10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4-butyl-5-tert-butyl-10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4-butyl-5-tert-butyl-10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene
- Pentadecanylene ethylene poly (4- (1 ′, 1 ′, 1′-trifluoro-iso-butoxy) -10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4- (1 ′, 1 ′, 1′-trifluoro-iso-butoxy) -10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4-methyl-5- (1 ′, 1 ′, 1′-trifluoro-iso-butoxy) -10,12-pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4-butyl-5- (1 ′, 1 ′, 1′-trifluoro-iso-butoxy) -10,12-pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3,
- Pentadecanylene ethylene poly (4,5-difluoro-4- (2 ′, 2 ′, 3 ′, 3 ′, 3′-pentafluoropropoxy) -5-trifluoromethoxy) -10,12-pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4- (2 ', 2', 3 ', 3', 4 ', 4', 5 ', 5', 6 ', 6', 6'-undecafluorohexoxy) ) -10,12-pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4-methyl-5- (2 ', 2', 3 ', 3', 4 ', 4', 5 ', 5', 6 ', 6', 6'-un) Decafluorohetoxy
- Pentadecanylene ethylene poly (4,5-difluoro-4-trifluoromethoxy-5- (2 ', 2', 3 ', 3', 4 ', 4', 4'-heptafluorobutoxy)- 10,12-Pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4,4,5-trifluoro- (2 ', 2', 3 ', 3', 4 ', 4', 5 ', 5', 6 ', 6', 6) ′ -Undecafluorohetoxy) -10,12-pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3, 6 ] Pentadecanylene ethylene), poly (4,5-bis (2 ′, 2 ′, 3 ′, 3 ′, 4 ′, 4 ′, 4′-heptafluorobutoxy) -10,
- repeating structural units represented by the general formulas (1) and (2) may have a fluorine atom content of 40 to 75 masses as long as the effects of the present invention are not impaired.
- the content of the repeating structural unit of the general formula (1) or the general formula (1) and the general formula (2) is usually 30 to 100% by mass, preferably 70%. To 100% by mass, more preferably 90 to 100% by mass.
- the fluorine-containing cyclic olefin polymer containing the repeating structural unit represented by the general formula (1) has a storage elastic modulus by tensile mode solid viscoelasticity measurement (frequency 1 Hz, temperature increase rate 3 ° C./min).
- the loss elastic modulus has a region that changes in a range of ⁇ 1 to 0 MPa / ° C. with respect to a temperature change in a temperature region equal to or higher than the glass transition temperature.
- the characteristic is that at least one of the hydrocarbon structure in the main chain in the repeating structural unit and R 1 to R 4 in the side chain is fluorine, fluorine-containing alkyl, and fluorine-containing carbon atoms of 1 to
- the hydrogen bond expressed by this specific structure has a flat region in which the change in storage elastic modulus or loss elastic modulus with respect to temperature change is ⁇ 1 to 0 MPa / ° C. in the temperature region above the glass transition temperature. More preferably, these changes are ⁇ 0.5 to 0 MPa / ° C., and more preferably ⁇ 0.2 to 0 MPa / ° C.
- the structural unit [A] does not include the repeating structural unit represented by the general formula (2).
- the storage elastic modulus or loss elastic modulus has a flat region, which is a hydrocarbon structure in the main chain in the repeating structural unit and the R 1 to R 4 and R 5 to the side chain.
- At least one of R 8 is a substituent selected from fluorine, fluorine-containing alkyl, fluorine-containing C 1-10 alkoxy, or fluorine-containing C 2-10 alkoxyalkyl. This is due to the formation of hydrogen bonds between or within the polymer molecules. Due to the hydrogen bond expressed by this specific structure, it has a flat region in which the change in storage elastic modulus or loss elastic modulus with respect to temperature change is ⁇ 1 to 0 MPa / ° C. in the temperature region above the glass transition temperature. When this molar ratio exceeds 25/75, the flat storage elastic modulus or loss elastic modulus changing region disappears, and the effect of hydrogen bonding does not appear.
- the fluorine-containing cyclic olefin polymer and fluorine-containing cyclic olefin copolymer of the present invention are amorphous transparent polymers.
- the elastic modulus in the case of amorphous thermoplastic polymers, in the absence of such hydrogen bonding or chemical cross-linking, the elastic modulus rapidly decreases in the temperature range above the glass transition temperature, and the storage elastic modulus against temperature change or The change in loss modulus is at least ⁇ 10 MPa / ° C. or less.
- the excellent characteristics of the fluorine-containing cyclic olefin polymer of the present invention are derived from physical hydrogen bond interaction reversible with respect to temperature change.
- the cyclic olefin copolymer has a flat storage elastic modulus or loss elastic modulus change region in a temperature region equal to or higher than the glass transition temperature in a tensile mode solid viscoelasticity measurement (frequency: 1 Hz, heating rate: 3 ° C./min). It is preferably in the storage elastic modulus or loss elastic modulus region of 0.1 MPa or more, more preferably 0.1 to 10000 MPa, and still more preferably 0.1 to 1000 MPa.
- the pressure is 0.1 MPa or more, the shape can be maintained in the heating and cooling processes in the manufacturing process of the transfer body, the shrinkage change during cooling is small, and the dimensional accuracy of the transfer is increased.
- the nanoimprint method by solution coating heating and drying has a high degree of freedom in film thickness, and is suitable for producing a film of a large-area transfer body.
- the glass transition temperature is usually in the range of 30 to 250 ° C., preferably 50 to 200 ° C., more preferably 60 to 160 ° C.
- the glass transition temperature is 30 ° C. or higher, it is easy to maintain a highly accurate transfer body shape of the molded pattern shape after mold release. Since the treatment temperature can be lowered, yellowing or deterioration of the support is unlikely to occur.
- a fluorine-containing cyclic olefin polymer containing a repeating structural unit represented by the general formula (1) and a fluorine-containing cyclic containing a repeating structural unit represented by the general formula (1) and the general formula (2)
- Fn is the number of fluorine atoms in consideration of the mole fraction in the structural unit represented by General Formula (1) and the repeating structural unit represented by General Formula (2)
- Fw is general Representing the formula weight considering the molar fraction in the repeating structural unit represented by the formula (1) and the repeating structural unit represented by the general formula (2)
- the fluorine atom content is 40 to 75% by mass, The content is preferably 42 to 68% by mass. If the fluorine atom content is less than 40% by mass, the flat storage elastic modulus or loss elastic modulus change region is small or does not appear, and the effect of hydrogen bonding does not appear. On the other hand, if it exceeds 75% by mass, the number of hydrogen in the structural unit is small, and the effect of hydrogen bonding is not exhibited.
- the fluorine-containing cyclic olefin polymer or the fluorine-containing cyclic olefin copolymer has a weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) at a sample concentration of 3.0 to 9.0 mg / ml. Is usually 5,000 to 1,000,000, preferably 10,000 to 300,000. When the weight average molecular weight (Mw) is 5,000 or more, physical properties having a region where the change in storage elastic modulus or loss elastic modulus with respect to temperature change is ⁇ 1 to 0 MPa / ° C. can be exhibited.
- Mw weight average molecular weight
- the molecular weight distribution (Mw / Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), is usually in the range of 1.0 to 5.0.
- the molecular weight distribution is preferably wide, and is preferably 1.4 to 5.0, and more preferably 1.5 to 3.0.
- the fluorine-containing cyclic olefin polymer in the present invention has a specific structure represented by the general formula (1) and the general formula (2), whereby an extremely low refractive index with respect to the D line can be obtained.
- the refractive index for D-line wavelength light is usually 1.48 or less, preferably 1.30 to 1.48, and light exhibits excellent straightness in this refractive index range. Accordingly, the light transmittance in the visible light region is preferably 80% or more, and preferably 85 to 100%.
- the fluorine-containing cyclic olefin polymer or the fluorine-containing cyclic olefin copolymer of the present invention has a mass loss of less than 0.1%, preferably less than 0.07% when heated at 300 ° C. for 5 minutes, and is thermoplastic. And since it is excellent in thermal stability, it can be thermocompression-molded.
- the fluorine-containing cyclic olefin polymer is obtained by polymerizing the fluorine-containing cyclic olefin monomer represented by the general formula (3) with a ring-opening metathesis polymerization catalyst, and hydrogenating the olefin part of the main chain of the resulting polymer. Can be synthesized.
- R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 1 ⁇ R 4 is a group containing no fluorine, R 1 ⁇ R 4 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms It is selected from alkoxy or alkoxyalkyl having 2 to 10 carbon atoms, R 1 to R 4 may be the same or different, and R 1 to R 4 may be bonded to each other to form a ring structure.
- R 1 to R 4 are fluorine or fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethyl, trifluoroethyl, pentafluoroethyl, heptafluoropropyl, hexafluoroisopropyl, heptafluoroisopropyl.
- Fluorine such as alkyl in which part or all of hydrogen of the alkyl group such as hexafluoro-2-methylisopropyl, perfluoro-2-methylisopropyl, n-perfluorobutyl, n-perfluoropentyl, perfluorocyclopentyl is substituted with fluorine.
- alkyl having 1 to 10 carbon atoms Containing alkyl having 1 to 10 carbon atoms, fluoromethoxy, difluoromethoxy, trifluoromethoxy, trifluoroethoxy, pentafluoroethoxy, heptafluoropropoxy, hexafluoroisopropoxy
- alkoxy groups such as heptafluoroisopropoxy, hexafluoro-2-methylisopropoxy, perfluoro-2-methylisopropoxy, n-perfluorobutoxy, n-perfluoropentoxy, perfluorocyclopentoxy, etc.
- C1-C10 alkoxy containing fluorine such as alkoxy substituted with fluorine, fluoromethoxymethyl, difluoromethoxymethyl, trifluoromethoxymethyl, trifluoroethoxymethyl, pentafluoroethoxymethyl, heptafluoropropoxymethyl, hexafluoro Isopropoxymethyl, heptafluoroisopropoxymethyl, hexafluoro-2-methylisopropoxymethyl, perfluoro-2-methylisopropoxymethyl, n-perfluorobutoxy
- alkoxyalkyl having 2 to 10 carbon atoms containing fluorine such as alkoxyalkyl in which part or all of hydrogen of alkoxy group such as methyl, n-perfluoropentoxymethyl and perfluorocyclopentoxymethyl is substituted with fluorine.
- R 1 to R 4 may be bonded to each other to form a ring structure, and a ring such as perfluorocycloalkyl or perfluorocycloether via oxygen may be formed.
- other R 1 to R 4 not containing fluorine are hydrogen or alkyl having 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, n-pentyl, Alkyl such as cyclopentyl, alkoxy having 1 to 10 carbon atoms such as methoxy, ethoxy, propoxy, butoxy and pentoxy, alkoxyalkyl having 2 to 10 carbon atoms such as methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl and pentoxymethyl Illustrated.
- the monomer used for the production of the fluorine-containing cyclic olefin polymer is a fluorine-containing cyclic olefin monomer represented by the general formula (3) alone, and at least one of R 1 to R 4 is different from each other. It may consist of structural units.
- the monomer used in the production of the fluorine-containing cyclic olefin copolymer in the present invention may be copolymerization with a fluorine-containing cyclic olefin comonomer represented by the general formula (4).
- R 5 to R 8 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
- alkoxyalkyl having 2 to 10 carbon atoms which if .R 5 ⁇ R 8 is a group containing no fluorine, R 5 ⁇ R 8 is hydrogen, alkyl of 1 to 10 carbon atoms, from 1 to 10 carbon atoms It is selected from alkoxy or alkoxyalkyl having 2 to 10 carbon atoms, R 5 to R 8 may be the same or different, and R 5 to R 8 may be bonded to each other to form a ring structure.
- n represents an integer of 1 or 2.
- R 5 to R 8 are fluorine or fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethyl, trifluoroethyl, pentafluoroethyl, heptafluoropropyl, hexafluoroisopropyl, heptafluoroisopropyl.
- Fluorine such as alkyl in which part or all of hydrogen of the alkyl group such as hexafluoro-2-methylisopropyl, perfluoro-2-methylisopropyl, n-perfluorobutyl, n-perfluoropentyl, perfluorocyclopentyl is substituted with fluorine.
- Some or all of the hydrogen atoms of alkoxy groups such as heptafluoroisopropoxy, hexafluoro-2-methylisopropoxy, perfluoro-2-methylisopropoxy, n-perfluorobutoxy, n-perfluoropentoxy, perfluorocyclopentoxy, etc.
- fluorine C 1-10 alkoxy containing fluorine such as alkoxy substituted with fluoro, fluoromethoxymethyl, difluoromethoxymethyl, trifluoromethoxymethyl, trifluoroethoxymethyl, pentafluoroethoxymethyl, heptafluoropropoxymethyl, hexafluoroiso Propoxymethyl, heptafluoroisopropoxymethyl, hexafluoro-2-methylisopropoxymethyl, perfluoro-2-methylisopropoxymethyl, n-perfluorobutoxime
- alkoxyalkyls having 2 to 10 carbon atoms containing fluorine such as alkoxyalkyl in which part or all of the hydrogens of alkoxy groups such as til, n-perfluoropentoxymethyl, perfluorocyclopentoxymethyl and the like are substituted with fluorine.
- the R 5 to R 8 may be bonded to each other to form a ring structure, or a ring such as perfluorocycloalkyl or perfluorocycloether via oxygen may be formed.
- other R 5 to R 8 not containing fluorine are hydrogen or alkyl having 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, n-pentyl, Alkyl such as cyclopentyl, alkoxy having 1 to 10 carbon atoms such as methoxy, ethoxy, propoxy, butoxy and pentoxy, alkoxyalkyl having 2 to 10 carbon atoms such as methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl and pentoxymethyl Illustrated.
- the monomer used for the production of the fluorine-containing cyclic olefin copolymer is a fluorine-containing cyclic olefin monomer represented by the general formula (4) alone, and at least one of R 5 to R 8 is different from each other. It may consist of structural units.
- ring-opening metathesis polymerization catalyst used for the polymerization of cyclic olefin monomers include, but are by no as long as the catalyst can be performed ring-opening metathesis polymerization, for example, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OBu t) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OCMe 2 CF 3) 2, W (N-2,6- Pr i 2 C 6 H 3) (CHBu t) (OCMe (CF 3) 2) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OC (CF 3) 3) 2, W (N-2,6- ( Me) 2 C 6 H 3) (CHBu t) (OC (CF 3) 3) 2, W (N-2,6-Pr i 2 C 6 H 3) ( CHCMe 2 Ph) (OBu t) 2, W (N-2,6-Pr
- Pr i in the formula represents an iso- propyl radical
- R represents a methyl group, an alkyl group or a methoxy group such as an ethyl group, an alkoxy group such as ethoxy group
- Bu t represents a tert- butyl group
- Me represents a methyl group
- Ph represents a phenyl group
- Py represents a pyridine group.
- ruthenium alkylidene catalysts such as Ru (CHCHCPh 2 ) (PPh 3 ) 2 Cl 2 (wherein Ph represents a phenyl group) can be preferably used.
- These ring-opening metathesis polymerization catalysts may be used alone or in combination of two or more.
- a ring-opening metathesis polymerization catalyst comprising a combination of an organic transition metal complex, a transition metal halide or a transition metal oxide and a Lewis acid as a promoter can be used.
- the catalytic activity is low, which is not industrially preferable.
- the molar ratio of the fluorine-containing cyclic olefin monomer to the ring-opening metathesis polymerization catalyst is a transition metal alkylidene catalyst 1 in the case of a transition metal alkylidene catalyst such as tungsten, molybdenum, or ruthenium.
- the amount of the monomer is usually 100 to 30,000 mol, preferably 1,000 to 20,000 mol, based on mol.
- olefins can be used as chain transfer agents to control the molecular weight and its distribution.
- the olefin include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and fluorine-containing olefins thereof.
- vinyltrimethylsilane, allyltrimethylsilane examples include silicon-containing olefins such as allyltriethylsilane and allyltriisopropylsilane, and fluorine and silicon-containing olefins.
- dienes include 1,4-pentadiene, 1,5-hexadiene, and 1,6-heptadiene.
- Non-conjugated dienes or these fluorine-containing non-conjugated dienes can be mentioned. Furthermore, these olefins, fluorine-containing olefins, dienes or fluorine-containing dienes may be used alone or in combination of two or more.
- the amount of the olefin, fluorine-containing olefin, diene or fluorine-containing diene used is generally 0.001 to 1,000 mol, preferably 0.01 to 100 mol, based on 1 mol of the olefin or diene. Range.
- the olefin or diene is usually in the range of 0.1 to 1,000 mol, preferably 1 to 500 mol, relative to 1 mol of the transition metal alkylidene catalyst.
- the ring-opening metathesis polymerization of the fluorine-containing cyclic olefin monomer may be used without a solvent or a solvent, and particularly as a solvent to be used, ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane, or dioxane, Esters such as ethyl acetate, propyl acetate or butyl acetate, aromatic hydrocarbons such as benzene, toluene, xylene or ethylbenzene, aliphatic hydrocarbons such as pentane, hexane or heptane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane or Aliphatic cyclic hydrocarbons such as decalin, halogenated hydrocarbons such as methylene dichloride, dichloroethane, dichloroethylene
- the concentration of the fluorine-containing cyclic olefin monomer is usually 5 to 100% by mass, preferably 10%, depending on the reactivity of the monomer and solubility in the polymerization solvent.
- the reaction temperature is usually ⁇ 30 to 150 ° C., preferably 30 to 100 ° C.
- the reaction time is usually 10 minutes to 120 hours, preferably 30 It can be carried out in the range of min to 48 hours.
- the reaction can be stopped with a water deactivator such as aldehydes such as butyraldehyde, ketones such as acetone, alcohols such as methanol, etc., to obtain a polymer solution.
- the fluorine-containing cyclic olefin polymer or fluorine-containing cyclic olefin copolymer of the present invention can be obtained by hydrogenating a olefin portion of the main chain of a polymer obtained by ring-opening metathesis polymerization of a fluorine-containing cyclic olefin monomer with a catalyst.
- the hydrogenation catalyst can be a homogeneous metal complex catalyst or a heterogeneous metal supported catalyst as long as it can hydrogenate the olefin part of the main chain of the polymer without causing a hydrogenation reaction of the solvent used.
- Any homogeneous metal complex catalyst may be used, for example, chlorotris (triphenylphosphine) rhodium, dichlorotris (triphenylphosphine) osmium, dichlorohydridobis (triphenylphosphine) iridium, dichlorotris (triphenylphosphine).
- Examples include ruthenium, dichlorotetrakis (triphenylphosphine) ruthenium, chlorohydridocarbonyltris (triphenylphosphine) ruthenium, dichlorotris (trimethylphosphine) ruthenium, and the heterogeneous metal-supported catalyst includes, for example, active Palladium on carbon, alumina-supported palladium, activated carbon-supported rhodium, alumina-supported rhodium, and the like. These hydrogenation catalysts can be used alone or in combination of two or more.
- the amount of the hydrogenation catalyst used is that the metal component in the hydrogenation catalyst is hydrogenated.
- the amount is usually 5 ⁇ 10 ⁇ 4 to 100 parts by mass, preferably 1 ⁇ 10 ⁇ 2 to 30 parts by mass, based on 100 parts by mass of the polymer before treatment.
- the solvent used for hydrogenation is not particularly limited as long as it dissolves the fluorine-containing cyclic olefin polymer or the fluorine-containing cyclic olefin copolymer and the solvent itself is not hydrogenated.
- the hydrogenation reaction of the olefin portion of the main chain is carried out at a hydrogen pressure in the range of normal pressure to 30 MPa, preferably 0.5 to 20 MPa, particularly preferably 2 to 15 MPa, and the reaction temperature is usually 0 to 300 MPa.
- the temperature is preferably from room temperature to 250 ° C., particularly preferably from 50 to 200 ° C.
- the mode of carrying out the hydrogenation reaction is not particularly limited. For example, there are a method in which the catalyst is dispersed or dissolved in a solvent, a method in which the catalyst is packed in a column and the polymer solution is circulated as a stationary phase, and the like. Can be mentioned.
- the hydrogenation treatment of the olefin portion of the main chain is carried out by precipitating the polymer solution of the fluorine-containing cyclic olefin polymer before the hydrogenation treatment in a poor solvent and isolating the polymer, and then dissolving in the solvent again and performing the hydrogenation treatment.
- the hydrogenation treatment may be performed with the hydrogenation catalyst without isolating the polymer from the polymerization solution, and there is no particular limitation.
- the hydrogenation rate of the olefin part of the fluorine-containing cyclic olefin polymer is 50% or more, preferably 70 to 100%, more preferably 90 to 100%. If the hydrogenation rate is less than 50%, the olefin part may deteriorate heat resistance or weather resistance due to oxidation or light absorption deterioration.
- the fluorine-containing cyclic olefin polymer is recovered from the hydrogenated polymer solution and then dissolved again in a solvent and brought into contact with the mold.
- the polymer solution after hydrogenation may be brought into contact with the mold as it is without collecting the cyclic olefin polymer, or two or more kinds of solvents may be mixed with the polymer solution after hydrogenation and brought into contact with the mold.
- the method of recovering the fluorine-containing cyclic olefin polymer from the solution of the polymer after hydrogenation is not particularly limited.
- the method of discharging the reaction solution into a poor solvent under stirring, the steam stripping in which steam is blown into the reaction solution examples thereof include a method of precipitating a polymer by a method such as the above method and recovering the polymer by a method such as filtration, centrifugation, and decantation, or a method of evaporating and removing a solvent from a reaction solution by heating or the like.
- various additives such as a ultraviolet absorber, antioxidant, a flame retardant, and an antistatic agent, can be mix
- the fluorine-containing cyclic olefin polymer or the fluorine-containing cyclic olefin copolymer obtained above is brought into contact with a mold having a fine pattern formed on the surface, and the pattern of the mold is transferred.
- a method of transferring the pattern of the mold by bringing the solution made of the solvent into contact with the mold and evaporating the solvent, or pressing the surface having the fine pattern of the mold onto a film made of these polymers. There is a method of transferring the pattern.
- the polymer solution contains the fluorine-containing cyclic olefin polymer as described above, a transfer body can be efficiently produced with high dimensional accuracy, and a simpler process. Thus, a transfer body can be produced, and a large-area transfer body can be obtained. Therefore, the transfer resin composition of the present invention can improve the production efficiency of the transfer body.
- the shape of the convex part and the concave part of the mold in which a fine pattern is formed on the surface used in the present invention is not particularly limited.
- the shape is a quadrangular shape, a cylindrical shape, a prismatic shape, a triangular pyramid shape, or a polyhedral shape. , Hemispherical and the like.
- examples of the cross-sectional shape of the convex portion and the concave portion include a cross-sectional quadrangle, a cross-sectional triangle, and a cross-sectional semicircle.
- the shape satisfying the above conditions is preferably a pattern having a concavo-convex structure, but the arrangement may be continuous evenly spaced, discontinuous or a combination of unevenly spaced, There is no particular limitation.
- the width of the convex part and / or the concave part of the fine pattern is usually 10 nm to 50 ⁇ m, preferably 20 nm to 1 ⁇ m.
- the depth of the recess is usually 30 nm to 50 ⁇ m, preferably 50 nm to 1 ⁇ m.
- the aspect ratio of the ratio of the width of the convex portion to the depth of the concave portion is usually 0.1 to 500, preferably 0.5 to 20.
- the base material of the mold having a fine pattern formed on the surface used for producing the transfer body of the present invention is a metal material such as nickel, iron, stainless steel, germanium, titanium, silicon, glass, quartz, alumina Inorganic materials such as polyimide, polyamide, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, polyacrylate, polymethacrylate, polyarylate, epoxy resin, silicone resin, and carbon materials such as diamond and graphite.
- the transfer body of the present invention has a mold pattern formed by bringing a solution (transfer resin composition) containing a fluorine-containing cyclic olefin polymer or fluorine-containing cyclic olefin copolymer and an organic solvent into contact with the mold and evaporating the solvent. It can be obtained by transcription.
- the mixing ratio of the polymer and the organic solvent is such that the concentration of the fluorine-containing cyclic olefin polymer with respect to the solution is usually in the range of 5 to 90% by mass, preferably 10 to 60% by mass, and is optimal on the mold after the solvent is evaporated. It is possible to select a concentration that is efficient and suitable for the thickness of the appropriate polymer or the coatability.
- the organic solvent to be used is not particularly limited.
- a solvent having a boiling point of 70 ° C. or higher under atmospheric pressure is preferable from the viewpoint of film forming property, and when the boiling point of the solvent is low, the evaporation rate is high, and the film thickness partially increases when the solvent starts to dry. It causes deterioration of accuracy and fish eyes on the film surface.
- the method for bringing the polymer solution of the present invention into contact with the mold is not particularly limited.
- This method applies a polymer solution onto the fine pattern surface of the mold, or a metal material such as stainless steel or silicon, an inorganic material such as glass or quartz, polyimide, polyamide, polyester, polycarbonate, polyphenylene ether, or polyphenylene.
- Table coat, spin coat, dip coat, die coat, spray coat, bar coat, roll coat on substrate such as sulfide, polyacrylate, polymethacrylate, polyarylate, epoxy resin, silicone resin, etc. DOO, the polymer solution was applied by a method such as curtain flow coating, a fine pattern surface of the mold may be any of a method of contacting covered therewith.
- a method comprising: applying a solution comprising a fluorine-containing cyclic olefin polymer or a fluorine-containing cyclic olefin copolymer and an organic solvent to a mold surface having a fine pattern; and evaporating the organic solvent from the solution.
- the solvent can be evaporated from the coating layer and then pressed with a mold.
- the film thickness on the mold where the solvent is evaporated after the contact is not particularly limited, but is preferably 1 ⁇ m to 10 mm, more preferably 5 ⁇ m to 1 mm, and most preferably 10 ⁇ m to 0.5 mm. Within these ranges, a self-supporting transfer body can be obtained.
- the temperature for evaporating the solvent from the transfer body and drying is usually 10 to 300 ° C., preferably 50 to 200 ° C.
- the pressure is usually 133 Pa to atmospheric pressure
- the drying time is usually 10 ° C.
- the reaction time is from min to 120 hours, preferably from 30 minutes to 48 hours. Further, the drying temperature, pressure, and time may be changed stepwise according to each setting.
- a step of releasing the transfer body is provided.
- the release of the transfer body is preferably performed at a temperature not higher than the glass transition temperature, and more preferably at a temperature not higher than (glass transition temperature ⁇ 20 ° C.), whereby a pattern formed on the transfer body.
- the shape can be maintained with high accuracy and can be easily released.
- the mold may be released from the mold by peeling, or may be peeled by using surface tension after the mold and the transfer body are contacted with a medium such as water by immersion or spraying. it can.
- a resin material or an inorganic material such as glass may be attached to the back surface of the transfer body, and the substrate may be released from the support.
- the transfer body of the present invention can also be obtained by transferring the pattern of the mold by pressing the fine pattern forming surface of the mold onto a film containing a fluorine-containing cyclic olefin polymer or a fluorine-containing cyclic olefin copolymer.
- a method in which a mold heated to a glass transition temperature or higher is pressure-bonded to a film a method in which a film is heated to a glass transition temperature or higher and a mold is pressure-bonded, or a film and a mold are heated to a glass transition temperature or higher to
- the method of pressure bonding is preferred, and the heating temperature is in the range of glass transition temperature to (glass transition temperature + 100 ° C.), preferably (glass transition temperature + 5 ° C.) to (glass transition temperature + 50 ° C.).
- the pressure is usually from 1 MPa to 100 MPa, preferably from 1 MPa to 60 MPa, and the pattern shape formed on the transfer body can be formed with high accuracy.
- Release of the transfer body formed on the mold by pressure bonding is preferably performed at a temperature not higher than the glass transition temperature, and more preferably at a temperature not higher than (glass transition temperature ⁇ 20 ° C.).
- the mold may be released from the mold by peeling, or may be peeled by using surface tension after the mold and the transfer body are contacted with a medium such as water by immersion or spraying. it can.
- a resin material or an inorganic material such as glass may be attached to the back surface of the transfer body, and the substrate may be released from the support.
- the surface having a fine pattern of the transfer body using the fluorine-containing cyclic olefin polymer or the fluorine-containing cyclic olefin copolymer is brought into contact with the photocurable monomer composition, and then transferred after being irradiated with light and cured.
- a cured product having a fine pattern that is peeled off from the body and transferred onto the surface of the photocurable resin can be produced.
- a transfer body composed of a fluorine-containing cyclic olefin polymer or a fluorine-containing cyclic olefin copolymer is used as a replica mold, and a composition of a curable monomer and a photocuring initiator is applied onto the fine pattern surface of the transfer body,
- a composition of a curable monomer and a photocuring initiator is applied on a substrate such as a resin material such as polymethacrylate, polyarylate, epoxy resin, or silicone resin, and the fine pattern surface of the transfer body is covered with the composition.
- Light curing by irradiating light from the back of the pattern on the transfer body It may be any of a method of transferring the resin. Since the transfer body of the present invention is formed from a fluorine-containing cyclic olefin polymer and has excellent transparency, even when light is irradiated from the back side of the pattern of the transfer body, the irradiated light is transmitted through the transfer body and is a photocurable resin. Can be irradiated efficiently.
- the fine pattern surface of the transfer body Apply a curable monomer composition on the surface by a method such as table coating, spin coating, dip coating, die coating, spray coating, bar coating, roll coating, curtain flow coating, or the above metal materials, glass, quartz
- a curable monomer composition on a substrate such as an inorganic material such as a resin material, etc. by a method such as table coating, spin coating, dip coating, die coating, spray coating, bar coating, roll coating, curtain flow coating, etc.
- Photocurable monomer composition by covering the fine pattern surface of the transfer body It can be contacted with.
- the irradiation light is not particularly limited as long as energy that causes radical reaction or ion reaction can be given by irradiating light to the photocuring initiator.
- this light source light having a wavelength of 400 nm or less, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp and a metal halide lamp, i-line, G-line, KrF excimer Laser light or ArF excimer laser light can be used.
- the irradiation intensity to the photocurable monomer composition is controlled for each target product and is not particularly limited.
- the light irradiation intensity in the light wavelength region effective for activation of the photopolymerization initiator described later (which varies depending on the photopolymerization initiator, but usually 300 to 420 nm light) is 0.1 to 100 mW / cm 2 .
- the irradiation intensity to the composition is less than 0.1 mW / cm 2 , the reaction time becomes too long, and when it exceeds 100 mW / cm 2 , it is obtained due to heat radiated from the lamp and heat generated during polymerization of the composition. There is a risk that the cohesive strength of the cured product may be reduced, yellowing or deterioration of the support may occur.
- the light irradiation time is controlled for each target product and is not particularly limited.
- the integrated light amount expressed as the product of the light irradiation intensity and the light irradiation time in the light wavelength region is 3. It can be set to ⁇ 1000 mJ / cm 2 . More preferably, it is 5 to 500 mJ / cm 2 , and particularly preferably 10 to 300 mJ / cm 2 .
- the integration quantity of the composition is less than 3 mJ / cm 2, not sufficient active species generated from the photopolymerization initiator, there is a fear that reduction of the characteristic of the cured product obtained results, a 1000 mJ / cm 2 Exceeding this is disadvantageous for improving productivity.
- the temperature when curable resin is cured by irradiation with light is preferably 0 to 150 ° C., more preferably 0 to 60 ° C.
- the film thickness of the cured resin obtained by curing the curable resin by irradiation with light is not particularly limited, but is preferably 1 ⁇ m to 10 mm, more preferably 5 ⁇ m to 1 mm, and most preferably 10 ⁇ m to 0.5 mm. It is. Within these ranges, an independent cured product can be obtained.
- the release of the fluorine-containing cyclic olefin polymer or fluorine-containing cyclic olefin copolymer from the cured product may be released from the cured product by peeling, or the transfer material may be dissolved and released with an organic solvent. .
- an inorganic material such as a resin material or glass may be attached to the back of the cured product or the back of the transfer body, and the mold may be released using the substrate as a support.
- the mold release by peeling is not particularly limited.
- the cured product and the transfer body can be peeled by using surface tension after contacting the medium with a medium such as water by immersion or spraying.
- the transfer body may be dissolved and released using an organic solvent.
- the organic solvent to be used is not particularly limited.
- metaxylene hexafluoride benzotrifluoride, fluorobenzene, difluorobenzene, hexafluorobenzene, trifluoromethylbenzene
- Fluorine-containing aromatic hydrocarbons such as bis (trifluoromethyl) benzene and metaxylene hexafluoride, fluorine-containing aliphatic hydrocarbons such as perfluorohexane and perfluorooctane, fluorine-containing aliphatic cyclic hydrocarbons such as perfluorocyclodecalin, Fluorine-containing ethers such as perfluoro-2-butyltetrahydrofuran, halogenated hydrocarbons such as chloroform, chlorobenzene, trichlorobenzene, tetrahydrofuran, dibutyl ether, 1,2-dimethoxyethane, dioxane, etc.
- Ethers ethyl acetate, propyl acetate, esters such as butyl acetate, or can be selected in consideration of solubility from ketones such as methyl isobutyl ketone, cyclohexanone.
- Examples of the photocurable monomer of the present invention include a resin containing a compound having a reactive double bond group, a ring-opening polymerizable compound capable of cationic polymerization, and the like. These compounds may have one or more reactive groups in one molecule.
- Examples of the photopolymerization initiator include a photo radical initiator that generates radicals by light irradiation, and a photo cation initiator that generates cations by light irradiation.
- the amount of the photocuring initiator used is preferably 0.05 parts by mass or more with respect to 100 parts by mass of the curable monomer, and 0.1-10. A mass part is more preferable.
- curable monomer of the compound having a reactive double bond group examples include, for example, cyclic olefins such as norbornene and norbornadiene, alkyl vinyl ethers such as cyclohexyl methyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether and ethyl vinyl ether, and vinyl acetate.
- Vinyl esters such as (meth) acrylic acid, phenoxyethyl acrylate, benzyl acrylate, stearyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, allyl acrylate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate , 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, pentaaerythritol triacrylate , Dipentaerythritol hexaacrylate, ethoxyethyl acrylate, methoxyethyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, polyoxyethylene glycol diacrylate, tripropylene glycol diacrylate, 2-hydroxy (Meth) acrylic acid such as ethyl
- curable monomer of the ring-opening polymerizable compound capable of cationic polymerization include, for example, cyclohexene epoxide, dicyclopentadiene oxide, limonene dioxide, 4-vinylcyclohexene dioxide, 3,4-epoxycyclohexylmethyl- 3 ′, 4′-epoxycyclohexanecarboxylate, di (3,4-epoxycyclohexyl) adipate, (3,4-epoxycyclohexyl) methyl alcohol, (3,4-epoxy-6-methylcyclohexyl) methyl-3,4 -Epoxy-6-methylcyclohexanecarboxylate, ethylene 1,2-di (3,4-epoxycyclohexanecarboxylic acid) ester, (3,4-epoxycyclohexyl) ethyltrimethoxysilane, phenylglycidyl ether,
- Acetophenones such as' -phenylacetophenone, 2-aminoacetophenone, dialkylaminoacetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin-iso-propyl ether, benzoin-iso-butyl ether, 1-hydroxycyclohexyl phenyl ketone, 2- Hydroxy-2-methyl-1-phenyl-2-methylpropan-1-one, 1- (4-iso-propylphenyl) -2-hydroxy-2-methylpropane-1
- Benzoins such as -one, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylic benzophenone, 4,4'-bis (dimethylamino) Benzophenones such as benzophenone,
- the photocation initiator that generates cations by light irradiation is not particularly limited as long as it is a compound that initiates cationic polymerization of the ring-opening polymerizable compounds that can be cationically polymerized by light irradiation. Is preferably a compound that undergoes a photoreaction and releases a Lewis acid, such as an onium salt with an anion paired with an onium cation.
- onium cations include diphenyliodonium, 4-methoxydiphenyliodonium, bis (4-methylphenyl) iodonium, bis (4-tert-butylphenyl) iodonium, bis (dodecylphenyl) iodonium, triphenylsulfonium, diphenyl -4-thiophenoxyphenylsulfonium, bis [4- (diphenylsulfonio) -phenyl] sulfide, bis [4- (di (4- (2-hydroxyethyl) phenyl) sulfonio) -phenyl] sulfide, ⁇ 5-2 , 4- (cyclopentagenyl) [1,2,3,4,5,6- ⁇ - (methylethyl) benzene] -iron (1+) and the like.
- perchlorate ion trifluoromethanesulfonate ion, toluenesulfonate ion, trinitrotoluenesulfonate ion, and the like can be given.
- anions include tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, hexafluoroarsenate, hexachloroantimonate, tetra (fluorophenyl) borate, tetra (difluorophenyl) borate, tetra (trifluoro).
- Phenyl) borate tetra (tetrafluorophenyl) borate, tetra (pentafluorophenyl) borate, tetra (perfluorophenyl) borate, tetra (trifluoromethylphenyl) borate, tetra (di (trifluoromethyl) phenyl) borate and the like It is done.
- these photocationic initiators may be used alone or in combination of two or more.
- ком ⁇ онент in addition to the monomer having a photocurable group and the photopolymerization initiator in the present invention, other known components may be added as necessary.
- Other components include anti-aging agents, leveling agents, wettability improvers, surfactants, modifiers such as plasticizers, stabilizers such as UV absorbers, preservatives, and antibacterial agents, photosensitizers, and silanes.
- a coupling agent, a solvent, etc. are mentioned.
- thermosetting monomer composition can be used instead of the photocurable monomer composition.
- a thermosetting monomer it is desirable to cure at a temperature lower than the glass transition temperature of the fluorine-containing cyclic olefin polymer or fluorine-containing cyclic olefin polymer, and the fine pattern will be deformed when cured at a temperature higher than that. There is.
- THF tetrahydrofuran
- TFT trifluoromethyltoluene
- Detector RI-2031 and 875-UV manufactured by JASCO, or Model 270 manufactured by Viscotec, serial connection column: Shodex K-806M, 804, 803, 802.5, column temperature: 40 ° C., flow rate: 1.0 ml / min, sample Concentration: 3.0 to 9.0 mg / ml
- composition ratio of fluorine-containing cyclic olefin copolymer The hydrogenated ring-opening metathesis polymer powder was dissolved in deuterated tetrahydrofuran or a mixed solvent of hexafluorobenzene and deuterated chloroform, and orthodifluorobenzene was added as a reference substance, and 373 MHz- 19 F-NMR.
- Fluorine atom content (Fn ⁇ 19) ⁇ 100 / Fw (1)
- Fn Fn 1 ⁇ (1 ⁇ m) + Fn 2 ⁇ m
- m is the molar fraction of the general formula (2)
- Fn 1 is the formula (1)
- Fn 2 represents the number of fluorine atoms in the structural unit represented by the general formula (2)
- Fw Fw 1 ⁇ (1 ⁇ m) + Fw 2 ⁇ m
- Fw 1 represents the general formula (1)
- Fw 2 represents the formula weight of the structural unit represented by the general formula (2).
- Solid viscoelasticity measurement Using RS Instruments-III manufactured by TA instruments, the sample to be measured in a tension mode in a nitrogen atmosphere with a heating rate of 3 ° C / min, a measurement frequency of 1 Hz, and a sample deformation distance between chucks of 0 to 4.2 mm capable of measuring solid viscoelasticity Measured in range.
- SEM pattern observation For observation of the line, space, and cross section of the film-like transfer body onto which the fine pattern was transferred, and measurement of the film thickness, a scanning electron microscope JSM-6701F (hereinafter referred to as SEM) manufactured by JASCO Corporation was used. The width of the line and the space was calculated from an average value obtained by selecting three patterns from an SEM cross-sectional photograph and measuring each line and space at a measurement position at half the height.
- NANOINPRINTER NM-0501 manufactured by Myeongchang Kiko Co., Ltd. was used. A film was sandwiched between the pattern surface of the mold and the silicon wafer, and the mold was pressed at a predetermined temperature and pressure. After the film was cooled, the silicon wafer was peeled off from the back of the film, and then peeled off from the edge of the film in a certain direction.
- UV curing The UV curable resin was cured by irradiating with 450 nm blue light using LUXSPOT-II manufactured by JASCO Corporation as a light source.
- Example 1 Synthesis of poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene) 5,5,6-trifluoro-6- (trifluoromethyl) bicyclo [2.2.1] hept-2-ene and (100 g) in tetrahydrofuran 1-hexene (268mg), Mo (N- 2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (OCMe A tetrahydrofuran solution of (CF 3 ) 2 ) 2 (70 mg) was added, and ring-opening metathesis polymerization was performed at 70 ° C. The olefin part of the obtained polymer was subjected to hydrogenation reaction at 160 ° C.
- the storage elastic modulus is 5.81 to 0.57 MPa in the range of 113 ° C. to 152 ° C. in the flat storage elastic modulus or loss elastic modulus change region above the glass transition temperature.
- the loss elastic modulus in the range from 117 ° C. to 152 ° C. is 3.05 to 0.27 MPa
- the change in storage elastic modulus with respect to temperature is ⁇ 0.13 MPa / ° C.
- the change in loss elastic modulus is ⁇ 0.08 MPa / ° C. Met.
- the results of the solid viscoelasticity measurement are shown in FIG.
- Example 2 Poly synthesis catalyst of (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentylene ethylene) and Mo (N-2,6-Pr i 2 C 6 H 3 ) (CHCMe 2 Ph) (OBu t ) 2 (50 mg), except that poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene was the same as in Example 1. ) Was obtained (98 g). The hydrogenation rate was 100%, the weight average molecular weight (Mw) was 83,000, the molecular weight distribution (Mw / Mn) was 1.73, and the glass transition temperature was 108 ° C. The fluorine atom content was 52.3% by mass.
- the storage elastic modulus is 4.98 to 0.58 MPa in the range of 109 ° C. to 150 ° C. in the change region of the flat storage elastic modulus or loss elastic modulus higher than the glass transition temperature.
- the loss elastic modulus is 2.96 to 0.31 MPa
- the change in storage elastic modulus with respect to temperature is ⁇ 0.11 MPa / ° C.
- the change in loss elastic modulus is ⁇ 0.1.
- the pressure was 07 MPa / ° C.
- Example 3 Synthesis of poly (1,2-difluoro-1-trifluoromethyl-2-perfluoroethyl-3,5-cyclopentyleneethylene)
- the monomer was 5,6-difluoro-5-trifluoromethyl-6 - perfluoroethyl bicyclo [2.2.1] hept-2-ene (50 g), catalyst and Mo (N-2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (OBu t) 2 (17mg ) was obtained in the same manner as in Example 1 except that () was changed to ().
- poly (1,2-difluoro-1-trifluoromethyl-2-perfluoroethyl-3,5-cyclopentyleneethylene) was obtained.
- the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 95,000, the molecular weight distribution (Mw / Mn) was 1.52, and the glass transition temperature was 110 ° C.
- the fluorine atom content was 59.7% by mass.
- the obtained polymer powder after hydrogenation was hot pressed to prepare a hot press sheet having a thickness of 0.37 mm.
- the storage elastic modulus is 5.01 to 0.55 MPa in the range of 115 ° C. to 160 ° C. in the change region of the flat storage elastic modulus or loss elastic modulus higher than the glass transition temperature.
- the loss elastic modulus is 3.10 to 0.24 MPa in the range of 119 ° C. to 160 ° C.
- the change in storage elastic modulus with respect to temperature is ⁇ 0.10 MPa / ° C.
- the change in loss elastic modulus is ⁇ 0.07 MPa. / ° C.
- the obtained polymer solution was solvent-substituted with THF, and the olefin part was hydrogenated with palladium alumina (2.5 g) at 160 ° C. to obtain poly (1,2-difluoro-1-heptafluoro-iso-propyl-2).
- a solution of (trifluoromethyl-3,5-cyclopentyleneethylene) in THF was obtained.
- the solution was added to methanol, and the white polymer was filtered off and dried to obtain 49 g of polymer.
- the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 284000, the molecular weight distribution (Mw / Mn) was 1.40, and the glass transition temperature was 137 ° C.
- the obtained polymer powder after hydrogenation was hot pressed to prepare a hot press sheet having a thickness of 0.37 mm.
- the storage elastic modulus is 4.88 to 0.49 MPa in the range of 157 ° C. to 183 ° C. in the change region of the flat storage elastic modulus or loss elastic modulus higher than the glass transition temperature.
- the loss elastic modulus is 4.30 to 0.26 MPa
- the change in storage elastic modulus with respect to temperature is ⁇ 0.17 MPa / ° C.
- the change in loss elastic modulus is ⁇ 0.19 MPa. / ° C.
- Example 11 Synthesis of poly (1,2-difluoro-1,2-bis (trifluoromethyl) -3,5-cyclopentyleneethylene) and production of transfer body by coating method
- the monomer was 5,6-difluoro Poly (1,2-difluoro-1,2-) similar to Example 1 except that it was changed to -5,6-bis (trifluoromethyl) bicyclo [2.2.1] hept-2-ene (50 g) Bis (trifluoromethyl) -3,5-cyclopentyleneethylene) was obtained (49 g).
- the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 188000, the molecular weight distribution (Mw / Mn) was 1.50, and the glass transition temperature was 126 ° C.
- the fluorine atom content was 56.7% by mass.
- the obtained polymer powder after hydrogenation was hot-pressed and measured using a hot-press sheet having a thickness of 0.37 mm. From the results of solid viscoelasticity measurement measured in the tensile mode, the storage elastic modulus was 4.99 to 0.55 MPa in the range of 131 ° C. to 172 ° C. in the flat storage elastic modulus or loss elastic modulus change region above the glass transition temperature. In the range of 135 ° C.
- Example 12 Synthesis of poly (1,1,2,2,3,3,3a, 6a-octafluorocyclopentyl-3,5-cyclopentyleneethylene) and production of transfer body by coating method 3,3,4,4,5,5,6-octafluorotricyclo [5.2.1.0 2,6 ] dec-8-ene (50 g) (1,1,2,2,3,3,3a, 6a-octafluorocyclopentyl-3,5-cyclopentyleneethylene) was obtained (48 g). The hydrogenation rate was 100%, the weight average molecular weight (Mw) was 126000, the molecular weight distribution (Mw / Mn) was 1.49, and the glass transition temperature was 150 ° C.
- the fluorine atom content was 54.3% by mass.
- the obtained polymer powder after hydrogenation was hot-pressed and measured using a hot-press sheet having a thickness of 0.37 mm.
- the storage elastic modulus is 5.03 to 0.48 MPa in the range of 172 ° C. to 192 ° C. in the change region of the flat storage elastic modulus or loss elastic modulus higher than the glass transition temperature.
- the loss elastic modulus is 3.90 to 0.37 MPa in the range of 176 ° C.
- Example 13 Synthesis of poly (1-fluoro-1-perfluoroethyl-2,2-bis (trifluoromethyl) -3,5-cyclopentyleneethylene) and production of transfer body by coating method Poly (1-fluoro) as in Example 1, except that fluoro-5-perfluoroethyl-6,6-bis (trifluoromethyl) bicyclo [2.2.1] hept-2-ene (50 g) was used. -1-perfluoroethyl-2,2-bis (trifluoromethyl) -3,5-cyclopentyleneethylene) was obtained (48 g).
- the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 126000, the molecular weight distribution (Mw / Mn) was 1.51, and the glass transition temperature was 142 ° C.
- the fluorine atom content was 61.9% by mass.
- the obtained polymer powder after hydrogenation was hot-pressed and measured using a hot-press sheet having a thickness of 0.37 mm.
- the storage elastic modulus was 4.89 to 0.58 MPa in the range of 165 ° C. to 187 ° C. in the flat storage elastic modulus or loss elastic modulus region above the glass transition temperature.
- the loss elastic modulus is 4.50 to 0.40 MPa
- the change in storage elastic modulus with respect to temperature is ⁇ 0.20 MPa / ° C.
- the change in loss elastic modulus is ⁇ 0.23 MPa. / ° C.
- a film-like transfer body having a film thickness of 10 ⁇ m to which a fine pattern was transferred was obtained by the method described in Example 5 except that the drying temperature was changed to 180 ° C.
- L1 572 nm
- L2 418 nm
- L3 1595 nm.
- Example 14 Production of Transfer Material by Thermocompression Bonding
- the obtained film was heated to 160 ° C., brought into contact with mold A, thermocompression bonded at 10 MPa, and held as it was for 5 seconds. After cooling to 70 ° C., the mold was removed to obtain a film-like transfer body having a film thickness of 31 ⁇ m on which the fine pattern was transferred.
- L1 581 nm
- L2 409 nm
- L3 1601 nm.
- Example 16 Production of Acrylic Cured Resin Transfer Body Using Replica Mold
- Acrylic UV curable resin (trade name of Aronix Toagosei Co., Ltd.) 50 mg was uniformly coated on quartz glass with a bar coat.
- a poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene) film-like transfer member prepared in Example 5 as a replica mold was patterned on the coating liquid film. It was pressed so as to cover the surface, and UV was irradiated for 15 minutes from the back surface of the replica mold at room temperature (irradiation dose: 34 mJ / cm 2 ).
- Example 17 Production of Epoxy Cured Resin Transfer Body Using Replica Mold Epoxy cured resin (4,4′-bis (7-oxabicyclo [4.1.0]) using a sulfonium salt as an initiator on quartz glass Heptan-3-yl) 40% by mass, 3-ethyl-3- (phenoxymethyl) oxetane 50% by mass, 1,4-bis [((3-ethyloxetane-3-yl) methoxy) methyl] benzene 10% by mass 53 mg) was uniformly applied by bar coating.
- the storage elastic modulus is 92.3 to 0.11 MPa in the range of 48 ° C. to 57 ° C.
- the loss elastic modulus is 97.1 to 0.13 MPa in the same temperature range
- the change of the storage elastic modulus with respect to the temperature is ⁇ 10 It was 0.2 MPa / ° C.
- the change in loss modulus was ⁇ 10.8 MPa / ° C.
- the storage elastic modulus is 99.3 to 0.12 MPa in the range of 45 ° C. to 55 ° C.
- the loss elastic modulus is 103.2 to 0.11 MPa in the same temperature range
- the change in storage elastic modulus with respect to temperature is ⁇ 9
- the change in loss elastic modulus was ⁇ 10.3 MPa / ° C.
- the storage elastic modulus is 101.1 to 0.11 MPa in the range of 38 ° C. to 49 ° C.
- the loss elastic modulus is 94.8 to 0.12 MPa in the range of 38 ° C. to 49 ° C.
- the change was -9.2 MPa / ° C
- the change in loss elastic modulus was -8.6 MPa / ° C.
- the obtained poly (1-methyl-3,5-cyclopentyleneethylene) was dissolved in cyclohexanone at a concentration of 20% by mass, and 27 mg of the prepared solution was dropped on the pattern of the mold A and uniformly applied by bar coating. did. After drying at room temperature for 30 minutes under a nitrogen stream, drying was performed at 150 ° C. for 30 minutes. The mold was cooled to 5 ° C. under nitrogen and peeling from the mold was attempted, but no film was obtained.
- Example 18 Poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene) and poly (3,3,4-trifluoro-4-trifluoromethyl-7 , 9-Tricyclo [4.3.0.1 2,5 ] decanylene ethylene) copolymer 5,5,6-trifluoro-6- (trifluoromethyl) bicyclo [2.2.1] hept-2 -Ene (50 g) and 8, 8, 9-trifluoro-9- (trifluoromethyl) -tetracyclo [4.4.0.1 2,5 .
- the obtained polymer powder after hydrogenation was hot pressed to prepare a hot press sheet having a thickness of 0.37 mm.
- the storage elastic modulus was 1.21 to 0.26 MPa in the range of 149 ° C. to 163 ° C. in the change region of the flat storage elastic modulus or loss elastic modulus higher than the glass transition temperature.
- the loss elastic modulus is 0.62 to 0.18 MPa
- the change in storage elastic modulus with respect to temperature is ⁇ 0.07 MPa / ° C.
- the change in loss elastic modulus is ⁇ 0.04 MPa. / ° C.
- Example 19 Poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene) and poly (3,3,4-trifluoro-4-trifluoromethyl-7 , 9-Tricyclo [4.3.0.1 2,5 ] decanylene ethylene) copolymer 5,5,6-trifluoro-6- (trifluoromethyl) bicyclo [2.2.1] hept-2 -Ene and 8,8,9-trifluoro-9- (trifluoromethyl) -tetracyclo [4.4.0.1 2,5 .
- the composition ratio [A] / [B] 25/75, and the fluorine atom content was 42.9% by mass.
- the obtained polymer powder after hydrogenation was hot pressed to prepare a hot press sheet having a thickness of 0.37 mm.
- the storage elastic modulus is 1.19 to 0.24 MPa in the range of 195 ° C. to 209 ° C. in the change region of the flat storage elastic modulus or loss elastic modulus higher than the glass transition temperature.
- the loss elastic modulus is 0.60 to 0.16 MPa in the range of 199 ° C. to 209 ° C.
- the change in storage elastic modulus with respect to temperature is ⁇ 0.07 MPa / ° C.
- the change in loss elastic modulus is ⁇ 0.044 MPa. / ° C.
- Example 20 Poly (1,2-difluoro-1,2-bis (trifluoromethyl) -3,5-cyclopentyleneethylene) and poly (3,3,4-trifluoro-4-trifluoromethyl) Synthesis of -7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene) copolymer 5,6-Difluoro-5,6-bis (trifluoromethyl) bicyclo [2.2.1] hept -2-ene (50 g) and 8, 8, 9-trifluoro-9- (trifluoromethyl) -tetracyclo [4.4.0.1 2,5 .
- the composition ratio [A] / [B] 50/50, and the fluorine atom content was 48.4% by mass.
- the obtained polymer powder after hydrogenation was hot-pressed to produce a hot-press sheet having a thickness of 0.36 mm.
- the storage elastic modulus is 1.20 to 0.24 MPa in the range of 178 ° C. to 192 ° C. in the change region of the flat storage elastic modulus or loss elastic modulus higher than the glass transition temperature. In the range of 182 ° C.
- the loss elastic modulus is 0.63 to 0.19 MPa
- the change in storage elastic modulus with respect to temperature is ⁇ 0.07 MPa / ° C.
- the change in loss elastic modulus is ⁇ 0.04 MPa. / ° C.
- Example 21 Synthesis of poly (1,1,2-trifluoro-2-trifluoromethoxy-3,5-cyclopentyleneethylene) 5,5,6-trifluoro-6- (trifluoromethoxy) bicyclo [2.2.1] hept-2-ene and (50 g) in tetrahydrofuran 1-hexene (134mg), Mo (N- 2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (OCMe A tetrahydrofuran solution of (CF 3 ) 2 ) 2 (35 mg) was added, and ring-opening metathesis polymerization was performed at 70 ° C. The olefin part of the obtained polymer was subjected to hydrogenation reaction at 160 ° C.
- the storage elastic modulus is 5.79 to 0.52 MPa in the range of 104 ° C. to 143 ° C. in the change region of the flat storage elastic modulus or loss elastic modulus higher than the glass transition temperature.
- the loss elastic modulus is 3.01 to 0.24 MPa
- the change in storage elastic modulus with respect to temperature is ⁇ 0.14 MPa / ° C.
- the change in loss elastic modulus is ⁇ 0.08 MPa / ° C. Met.
- the mold was cooled to room temperature under nitrogen, and peeled off from the mold to obtain a film-like transfer body having a film thickness of 8 ⁇ m on which a fine pattern was transferred.
- L1 570 nm
- L2 420 nm
- L3 1595 nm.
- the mold was cooled to room temperature under nitrogen, and peeled off from the mold to obtain a film-like transfer body having a film thickness of 8 ⁇ m on which a fine pattern was transferred.
- L1 571 nm
- L2 419 nm
- L3 1594 nm.
- the mold was cooled to room temperature under nitrogen, and peeled off from the mold to obtain a film-like transfer body having a thickness of 9 ⁇ m on which a fine pattern was transferred.
- L1 571 nm
- L2 419 nm
- L3 1595 nm.
- Example 26 Scratch hardness measurement of film by pencil method Mw127000 poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene) synthesized in Example 1 (composition ratio)
- the film was dried at 180 ° C. for 60 minutes under a nitrogen stream and allowed to cool to room temperature under Air to obtain a film having a thickness of 15 ⁇ m coated on a glass substrate.
- the scratch hardness at a load of 100 g was 4B.
- a 15 ⁇ m thick film coated on a glass substrate was obtained by the same method as described above.
- the scratch hardness of the polymer of Example 18 was 3B, that of the polymer of Example 19 was 2B, and the polymer of Example 1 was improved.
- the composition ratio [A] / [B] 10/90, and the fluorine atom content was 27.9% by mass.
- the obtained polymer powder after hydrogenation was hot-pressed to produce a hot-press sheet having a thickness of 0.36 mm. From the result of the solid viscoelasticity measurement measured in the tensile mode, no flat region was found in the temperature region above the glass transition temperature in the change in the storage elastic modulus or loss elastic modulus. Further, the obtained poly (1,2-difluoro-1,2-bis (trifluoromethyl) -3,5-cyclopentyleneethylene) and poly (3-trifluoromethyl-7,9-tricyclo [4.
- the present invention can also take the following aspects.
- at least one of R 1 to R 4 is fluorine or alkyl having 1 to 10 carbons containing fluorine, and other R 1 to R 4 not containing fluorine are ,hydrogen, Alternatively, it may be selected from alkyl having 1 to 10 carbon atoms, and R 1 to R 4 may be bonded to each other to form a ring structure.
- the fluorine-containing cyclic olefin polymer has a region in which a change in storage elastic modulus or loss elastic modulus is ⁇ 1 to 0 MPa / ° C. with respect to a temperature change in a temperature region higher than a glass transition temperature.
- the flat storage elastic modulus or loss elastic modulus change region in the temperature region above the glass transition temperature of the fluorine-containing cyclic olefin polymer is in the storage elastic modulus or loss elastic modulus region of 0.1 MPa or more.
- the mold pattern is transferred by bringing the solution containing the fluorine-containing cyclic olefin polymer and an organic solvent into contact with a mold having a fine pattern formed on the surface and evaporating the solvent (a) ) To (c).
- the pattern of the mold is transferred by pressing a mold having a fine pattern formed on the surface thereof onto the film containing the fluorine-containing cyclic olefin polymer.
- the fluorine-containing cyclic olefin polymer having a specific structure of the present invention is useful as a transfer body per se by a nanoimprint method or as a replica mold, and has extremely high industrial value.
- a transfer body or cured product having a fine pattern obtained using the production method of the present invention is an optical element (microlens array, optical waveguide, optical switching, Fresnel zone plate, binary optical element, blaze optical element, photonic crystal, etc. ), Antireflection filters, biochips, microreactor chips, recording media, display materials, catalyst carriers and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
[1]モールド表面の微細パターンが転写された転写体であって、
一般式(1)で表される繰返し構造単位を含有し、かつ、フッ素原子含有率が40~75質量%であるフッ素含有環状オレフィンポリマーからなることを特徴とする転写体。
前記溶液から溶剤を蒸発させる工程と、
を有することを特徴とする、前記モールドのパターンが転写された[1]~[4]のいずれかに記載の転写体の製造方法。
前記転写体の微細パターンを有する面と、光硬化性モノマー組成物とを接触させる工程と、
前記光硬化性モノマー組成物に光を照射することにより硬化させ、硬化物を得る工程と、
前記硬化物を、前記転写体から離型する工程と、
を有することを特徴とする硬化物の製造方法。
一般式(1)で表される繰返し構造単位を含有し、かつ、フッ素原子含有率が40~75質量%であるフッ素含有環状オレフィンポリマーを含むことを特徴とする転写用樹脂組成物。
さらに、フッ素を含有しないその他のR1~R4は、水素、または、メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル等の炭素数1~10のアルキル、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ等の炭素数1~10のアルコキシ、メトキシメチル、エトキシメチル、プロポキシメチル、ブトキシメチル、ペントキシメチル等の炭素数2~10のアルコキシアルキルが例示される。
ポリ(1-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,7´-トリデカフルオロヘプトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,8´,8´,8´-ペンタデカフルオロオクトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,8´,8´,9´,9´,9´-ヘプタデカフルオロデトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-3,5-シクロペンチレンエチレン)等が挙げられる。
なお、以下の説明において、特に記載がない場合、フッ素含有環状オレフィンポリマーにはフッ素含有環状オレフィンコポリマーを含んでいてもよい。
ル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロヘプチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロオクチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロデカニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-6-ペルフルオロペンチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメチル-6-ペルフルオロブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-12-ペルフルオロヘキシル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメチル-5-ペルフルオロペンチル-110,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4, 5-トリス(トリフルオロメチル)-5-ペルフルオロ-tert-ブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(ペルフルオロヘキシル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メトキシ-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(3-フルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-フルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3-ジフルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロエトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロプロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロプロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-ペルフルオロプロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロ-iso-プロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロ-iso-プロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3,4-ビス(トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロ-iso-ブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロ-tert-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロ-iso-ブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-ペルフルオロ-iso-ブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシー4-ペルフルオロエトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ((3,3,4-トリフルオロ-4-ペルフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-ペルフルオロブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フルオロ-3-ペルフルオロエトキシ-2,2-ビス(トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-ペルフルオロプロポキシ-4-トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロヘトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロヘトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-ペルフルオロヘトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘキシル-4-ペルフルオロヘトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-オクチル-4-ペルフルオロヘトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロヘプトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロオクトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロデトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-ペルフルオロペントキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-ペルフルオロブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-ペルフルオロヘトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-ペルフルオロペンチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(ペルフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(ペルフルオロへトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシメチル-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´, 2´, 2´,-トリフルオロエトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(1´, 1´, 1´-トリフルオロ-iso-ブトキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシー4-(2´,2´,2´-トリフルオロエトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フルオロ-3-(2´, 2´, 2´, -トリフルオロエトキシ)-4,4-ビス(トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ)-4-トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘキシル-4-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-オクチル-4-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,7´-トリデカフルオロヘプトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´, 2´, 3´, 3´
, 4´,4´,5´,5´,6´,6´,7´,7´,8´,8´,8´-ペンタデカフルオロオクトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,8´,8´,9´,9´,9´-ヘプタデカフルオロデトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(4-フルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-4-フルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4-ジフルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロエトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロプロポキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロプロポキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-ペルフルオロプロポキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロ-iso-プロポキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロ-iso-プロポキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4,5-ビス(トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロ-iso-ブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロ-tert-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロ-iso-ブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-ペルフルオロ-iso-ブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシー5-ペルフルオロエトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ((4,4,5-トリフルオロ-5-ペルフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-5-ペルフルオロブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フルオロ-4-ペルフルオロエトキシ-5,5-ビス(トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-ペルフルオロプロポキシ-5-トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロヘトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロヘトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-ペルフルオロヘトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ヘキシル-5-ペルフルオロヘトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-オクチル-5-ペルフルオロヘトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロヘプトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロオクトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロデトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-ペルフルオロペントキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-5-ペルフルオロブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-ペルフルオロヘトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-5-ペルフルオロペンチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(ペルフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(ペルフルオロへトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メトキシ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-tert-ブトキシメチル-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(2´, 2´, 2´,-トリフルオロエトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペ
ンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシー5-(2´,2´,2´-トリフルオロエトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-4-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フルオロ-4-(2´, 2´, 2´, -トリフルオロエトキシ)-5,5-ビス(トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-(2´, 2´, 3´, 3´ , 3´-ペンタフルオロプロポキシ)-5-トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ヘキシル-5-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-オクチル-5-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,7´-トリデカフルオロヘプトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,8´,8´,8´-ペンタデカフルオロオクトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,7´,7´,8´,8´,9´,9´,9´-ヘプタデカフルオロデトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-5-(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´-ウンデカフルオロヘトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)等が挙げられる。。
前述と同様に、貯蔵弾性率または損失弾性率の変化が平坦な領域を有し、これは繰り返し構造単位内の主鎖に炭化水素構造と側鎖に前記のR1~R4およびR5~R8うち、それぞれ、少なくとも1つは、フッ素、フッ素を含有するアルキル、フッ素を含有する炭素数1~10のアルコキシ、またはフッ素を含有する炭素数2~10のアルコキシアルキルから選ばれる置換基を有することでポリマーの分子間または分子内で水素結合を形成することによるものである。この特定の構造によって発現する水素結合によってガラス転移温度以上の温度領域において温度変化に対する貯蔵弾性率または損失弾性率の変化が-1~0MPa/℃である平坦な領域を有する。このモル比が25/75を超えると平坦な貯蔵弾性率または損失弾性率の変化領域が消失し、水素結合による効果が現れない。
一般的に非晶性の熱可塑性ポリマーは、このような水素結合や化学的な架橋が存在しない場合、ガラス転移温度以上の温度領域では弾性率は急激に低下し、温度変化に対する貯蔵弾性率または損失弾性率の変化は、少なくとも-10MPa/℃以下を示す。一方、本発明のフッ素含有環状オレフィンポリマーの前記の優れた特性は、温度変化に対して可逆的な物理的な水素結合の相互作用に由来する。
フッ素原子の含有率(質量%)=(Fn×19)×100/Fw (1)
また、1,000,000以下であると、溶剤溶解性や加熱圧着成形時の流動性が良好である。また、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は、通常1.0~5.0の範囲である。
例えば均一な厚みの塗布膜形成や良好な加熱成形性を得るためには、分子量分布は広い方が好ましく、1.4~5.0、さらに1.5~3.0であることが好ましい。
D線波長光に対する屈折率は、通常1.48以下、好ましくは1.30~1.48であり、この屈折率範囲において、光は優れた直進性を示す。これによって可視光領域の光線透過率が80%以上、好ましくは85~100%であることが好ましい。
さらに、フッ素を含有しないその他のR1~R4は、水素、または、炭素数1~10のアルキルとしては、メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル等のアルキル、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ等の炭素数1~10のアルコキシ、メトキシメチル、エトキシメチル、プロポキシメチル、ブトキシメチル、ペントキシメチル等の炭素数2~10のアルコキシアルキルが例示される。
また、R5~R8が互いに結合して環構造を形成していてもよく、ペルフルオロシクロアルキル、酸素を介したペルフルオロシクロエーテル等の環を形成してもよい。
さらに、フッ素を含有しないその他のR5~R8は、水素、または、炭素数1~10のアルキルとしては、メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル等のアルキル、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ等の炭素数1~10のアルコキシ、メトキシメチル、エトキシメチル、プロポキシメチル、ブトキシメチル、ペントキシメチル等の炭素数2~10のアルコキシアルキルが例示される。
H3)(CHCMe2Ph)(OC(CF3)3)2(Py)
)等のモリブデン系アルキリデン触媒や、Ru(CHCHCPh2)(PPh3)2Cl2(但し、式中のPhはフェニル基を示す。)等のルテニウム系アルキリデン触媒を挙げることができ、好ましく使用できる。また、これらの開環メタセシス重合触媒は、単独または二種以上を組み合わせて用いてもよい。
(1)微細パターンを有するモールド表面に、フッ素含有環状オレフィンポリマーまたはフッ素含有環状オレフィンコポリマーと有機溶剤からなる溶液を塗布する工程と、前記溶液から有機溶剤を蒸発させる工程と、を含む方法、
(2)支持体(基材)にフッ素含有環状オレフィンポリマーまたはフッ素含有環状オレフィンコポリマーと有機溶剤からなる溶液を塗布する工程と、塗布層の上面を微細パターンが形成されたモールド表面で押圧する工程と、前記塗布層から溶剤を蒸発させる工程と、を含む方法、
等を挙げることができる。尚、(2)の方法においては、塗布層から溶剤を蒸発させた後、モールドで押圧することもできる。
光硬化性モノマーと光硬化開始剤を混合した組成物を得る場合、光硬化開始剤の使用量は、硬化性モノマー100質量部に対して0.05質量部以上が好ましく、0.1~10質量部がより好ましい。
下記の条件下でゲルパーミュエーションクロマトグラフィー(GPC)を使用して、テトラヒドロフラン(THF)または、トリフルオロメチルトルエン(TFT)に溶解したポリマーの重量平均分子量(Mw)および数平均分子量(Mn)を以下の条件で、ポリスチレンスタンダードによって分子量を較正して測定した。
水素添加反応を行った開環メタセシス重合体の粉末を重水素化クロロホルム、または重水素化テトラヒドロフラン、またはヘキサフルオロベンゼンと重水素化クロロホルムの混合溶媒に溶解し、270MHz-1H-NMRスペクトルを用いてδ=4.5~7.0ppmの主鎖の二重結合炭素に結合する水素に由来する吸収スペクトルの積分値より水素添加率を算出した。
水素添加反応を行った開環メタセシス重合体の粉末を重水素化テトラヒドロフラン、またはヘキサフルオロベンゼンと重水素化クロロホルムの混合溶媒に溶解し、基準物質としてオルトジフルオロベンゼンを加え、373MHz-19F-NMRスペクトルを用いて、δ=-139ppmのオルトジフルオロベンゼンを基準シグナルに一般式(1)および一般式(2)の単位構造それぞれのδ=-150~-200ppmの-CF、δ=-100~-150ppmの-CF2、または、δ=-60~-100ppmの-CF3に由来するシグナルの積分値から組成比を算出した。
フッ素原子含有率は、以下の数式(1)により算出した。
フッ素原子含有率(質量%)=( Fn × 19 ) × 100 / Fw (1)
ここで、数式(1)中、Fn=Fn1×(1-m)+Fn2×mであり、mは一般式(2)のモル分率であり、Fn1は一般式(1)およびFn2は一般式(2)で表わされる構造単位中のフッ素原子の数を表わし、また、Fw=Fw1×(1-m)+Fw2×mであり、Fw1は一般式(1)およびFw2は一般式(2)で表わされる構造単位の式量を表わす。
島津製作所製DSC-50を用い、測定試料を窒素雰囲下で10℃/分の昇温速度で加熱し測定した。
TA instruments社製RSA-IIIを用い、引張りモードで測定試料を窒素雰囲気下、3℃/分の昇温速度、測定周波数1Hz、固体粘弾性測定可能なチャック間試料変形距離0~4.2mmの範囲で測定した。
ガラス基板にスピンコートしたフィルムを用いて、JIS K5600-5-4(鉛筆引っかき試験方法)に準拠し荷重100gの引っかき硬度を測定した。
微細パターンが転写されたフィルム状の転写体のラインとスペースおよび断面の観察、膜厚測定は、日本分光社製 走査型電子顕微鏡 JSM-6701F(以下、SEMと表記する。)を使用した。ラインとスペースの幅は、SEMの断面写真から任意に3点のパターンを選び、高さの1/2を計測位置にラインとスペースそれぞれを計測した平均値により算出した。
協同インターナショナル製シリコンモールドを使用し、モールド寸法は、凸部の幅をL1、凸と凸の等間隔距離をL2、凸部の高さをL3として表し、モールドAのそれぞれの寸法は、L1=420nm、L2=570nm、L3=1600nm、モールドBのそれぞれの寸法は、L1=200nm、L2=100nm、L3=160nmのパターンを有する部分を転写性評価に用いた。
熱圧着法によるインプリントは、明昌機工社製NANOINPRINTER(NM-0501)を使用し、モールドのパターン面を下部にシリコンウェハーとの間にフィルムを挟み所定の温度、圧力でモールドを押し当てた。フィルムの剥離は冷却後、シリコンウェハーをフィルム背面から剥がした後、フィルムの端部から一定方向に剥離した。
ポリマー溶液のコートには、8mm(直径)×100mm(長さ)のガラス製バーコーターを用いた。モールドの乾燥は、窒素気流下室温で30分乾燥した後、所定の温度に設定したイナートオーブンにモールドを移し窒素気流下で所定の時間乾燥した。パターンが転写されたフィルムの剥離は、フィルム端部にカプトンテープを貼り付けテープを支持体に一定方向に剥がした。
UV硬化樹脂の硬化には光源として、日本分光社製LUXSPOT―IIを使用して450nmの青色光を照射し硬化させた。
5,5,6-トリフルオロ-6-(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン(100g)と1-ヘキセン(268mg)のテトラヒドロフラン溶液に、Mo(N-2,6-Pri 2C6H3)(CHCMe2Ph)(OCMe(CF3)2)2(70mg)のテトラヒドロフラン溶液を添加し、70℃にて開環メタセシス重合を行った。得られたポリマーのオレフィン部を、パラジウムアルミナ(5g)によって160℃で水素添加反応を行い、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のテトラヒドロフラン溶液を得た。
溶液をメタノールに加え、白色のポリマーをろ別、乾燥し99gのポリマーを得た。水素添加率は100%、重量平均分子量(Mw)は127000、分子量分布(Mw/Mn)は1.70、ガラス転移温度は109℃であった。フッ素原子含有率は52.3質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.37mmの熱プレスシートを作成した。引張りモードで測定した固体粘弾性測定の結果から、ガラス転移温度以上の平坦な貯蔵弾性率または損失弾性率の変化領域の113℃から152℃の範囲で貯蔵弾性率が5.81~0.57MPa、117℃から152℃の範囲で損失弾性率が3.05~0.27MPaであり、温度に対する貯蔵弾性率の変化は-0.13MPa/℃、損失弾性率の変化は-0.08MPa/℃であった。固体粘弾性測定の結果を図1に示す。
触媒をMo(N-2,6-Pri 2C6H3)(CHCMe2Ph)(OBut)2(50mg)に変更した以外は実施例1と同様にポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)を得た(98g)。水素添加率は100%、重量平均分子量(Mw)は83000、分子量分布(Mw/Mn)は1.73、ガラス転移温度は108℃であった。フッ素原子含有率は52.3質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.37mmの熱プレスシートを作成した。引張りモードで測定した固体粘弾性測定の結果から、ガラス転移温度以上の平坦な貯蔵弾性率または損失弾性率の変化領域の109℃から150℃の範囲で貯蔵弾性率が4.98~0.58MPa、113℃から150℃の範囲で損失弾性率が2.96~0.31MPaであり、温度に対する貯蔵弾性率の変化は-0.11MPa/℃であり、損失弾性率の変化はで-0.07MPa/℃であった。
モノマーを5,6-ジフルオロ-5-トリフルオロメチル-6-ペルフルオロエチルビシクロ[2.2.1]ヘプト-2-エン(50g)、触媒をMo(N-2,6-Pri 2C6H3)(CHCMe2Ph)(OBut)2(17mg)に変更した以外は実施例1と同様にポリ(1,2-ジフルオロ-1-トリフルオロメチル-2-ペルフルオロエチル-3,5-シクロペンチレンエチレン)を得た(49g)。水素添加率は100%、重量平均分子量(Mw)は95000、分子量分布(Mw/Mn)は1.52、ガラス転移温度は110℃であった。フッ素原子含有率は59.7質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.37mmの熱プレスシートを作成した。引張りモードで測定した固体粘弾性測定の結果から、ガラス転移温度以上の平坦な貯蔵弾性率または損失弾性率の変化領域の115℃から160℃の範囲で貯蔵弾性率が5.01~0.55MPa、119℃から160℃の範囲で損失弾性率が3.10~0.24MPaであり、温度に対する貯蔵弾性率の変化は-0.10MPa/℃であり、損失弾性率の変化は-0.07MPa/℃であった。
5,6-ジフルオロ-5-へプタフルオロ-iso-プロピル-6-トリフルオロメチルビシクロ[2.2.1]ヘプト-2-エン(50g)と1-ヘキセン(0.034g)のトリフルオロメチルトルエン溶液に、Mo(N-2,6-Pri 2C6H3)(CHCMe2Ph)(OBut)2(14mg)のトリフルオロメチルトルエン溶液を添加し、70℃にて開環メタセシス重合を行った。得られたポリマー溶液をTHFへ溶媒置換しオレフィン部を、パラジウムアルミナ(2.5g)によって160℃で水素添加反応を行い、ポリ(1,2-ジフルオロ-1-へプタフルオロ-iso-プロピル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のTHF溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し49gのポリマーを得た。水素添加率は100%、重量平均分子量(Mw)は284000、分子量分布(Mw/Mn)は1.40、ガラス転移温度は137℃であった。フッ素原子含有率は61.9質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.37mmの熱プレスシートを作成した。引張りモードで測定した固体粘弾性測定の結果から、ガラス転移温度以上の平坦な貯蔵弾性率または損失弾性率の変化領域の157℃から183℃の範囲で貯蔵弾性率が4.88~0.49MPa、162℃から183℃の範囲で損失弾性率が4.30~0.26MPaであり、温度に対する貯蔵弾性率の変化は-0.17MPa/℃であり、損失弾性率の変化は-0.19MPa/℃であった。
実施例1で合成したMw=127000のポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)を20質量%濃度でシクロヘキサノンに溶解、調製した溶液20mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。
次いで、窒素気流下室温で30分乾燥した後、150℃で30分乾燥した。モールドを窒素下で室温まで冷却し、モールドから剥離して微細パターンが転写された膜厚が7μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=568nm、L2=422nm、L3=1594nmであった。
乾燥温度を180℃に変更した以外は実施例5記載の方法により、微細パターンが転写された膜厚が6μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=571nm、L2=419nm、L3=1595nmあった。
実施例5のモールドAをモールドBに変えたこと以外は実施例1と同様にフィルム状の転写体を作製した。膜厚は、7μmであり、SEMパターン観察結果からL1=101nm、L2=199nm、L3=161nmあった。
実施例2で合成したMw=83000のポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)を30質量%濃度でシクロヘキサノンに溶解、調製した溶液250mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。
次いで、窒素気流下室温で30分乾燥した後、180℃で90分乾燥した。モールドを窒素下で室温まで冷却し、モールドから剥離して微細パターンが転写された膜厚が110μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=569nm、L2=421nm、L3=1592nmであった。
実施例3で合成したポリ(1,2-ジフルオロ-1-トリフルオロメチル-2-ペルフルオロエチル-3,5-シクロペンチレンエチレン)を30質量%濃度で酢酸ブチルに溶解、調製した溶液120mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。
次いで、窒素気流下室温で30分乾燥した後、180℃で60分乾燥した。モールドを窒素下で室温まで冷却し、モールドから剥離して微細パターンが転写された膜厚が93μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=569nm、L2=421nm、L3=1595nmであった。
実施例4で合成したポリ(1,2-ジフルオロ-1-へプタフルオロ-iso-プロピル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)を20質量%濃度で1、3-ビス(トリフルオロメチル)ベンゼンに溶解、調製した溶液150mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。
次いで、窒素気流下室温で30分乾燥した後、180℃で60分乾燥した。モールドを窒素下で室温まで冷却し、モールドから剥離して微細パターンが転写された膜厚が87μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=570nm、L2=420nm、L3=1594nmであった。
モノマーを5,6-ジフルオロ-5,6-ビス(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン(50g)に変更した以外は実施例1と同様にポリ(1,2-ジフルオロ-1,2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)を得た(49g)。水素添加率は100%、重量平均分子量(Mw)は188000、分子量分布(Mw/Mn)は1.50、ガラス転移温度は126℃であった。フッ素原子含有率は56.7質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.37mmの熱プレスシートを用いて測定した。引張りモードで測定した固体粘弾性測定の結果から、ガラス転移温度以上の平坦な貯蔵弾性率または損失弾性率の変化領域の131℃から172℃の範囲で貯蔵弾性率が4.99~0.55MPa、135℃から172℃の範囲で損失弾性率が3.70~0.33MPaであり、温度に対する貯蔵弾性率の変化は-0.11MPa/℃であり、損失弾性率の変化は-0.09MPa/℃であった。
次に、乾燥温度を170℃に変更した以外は実施例5記載の方法により、微細パターンが転写された膜厚が10μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=572nm、L2=418nm、L3=1594nmであった。
モノマーを2,3,3,4,4,5,5,6-オクタフルオロトリシクロ[5.2.1.02,6]デカ-8-エン(50g)に変更した以外は実施例1と同様にポリ(1,1,2,2,3,3,3a,6a-オクタフルオロシクロペンチル-3,5-シクロペンチレンエチレン)を得た(48g)。水素添加率は100%、重量平均分子量(Mw)は126000、分子量分布(Mw/Mn)は1.49、ガラス転移温度は150℃であった。フッ素原子含有率は54.3質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.37mmの熱プレスシートを用いて測定した。引張りモードで測定した固体粘弾性測定の結果から、ガラス転移温度以上の平坦な貯蔵弾性率または損失弾性率の変化領域の172℃から192℃の範囲で貯蔵弾性率が5.03~0.48MPa、176℃から192℃の範囲で損失弾性率が3.90~0.37MPaであり、温度に対する貯蔵弾性率の変化は-0.23MPa/℃であり、損失弾性率の変化は-0.22MPa/℃であった。
次に、乾燥温度を190℃に変更した以外は実施例5記載の方法により、微細パターンが転写された膜厚が9μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=573nm、L2=417nm、L3=1596nmであった。
モノマーを5-フルオロ-5-ペルフルオロエチル-6,6-ビス(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン(50g)、に変更した以外は実施例1と同様にポリ(1-フルオロ-1-ペルフルオロエチル-2,2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)を得た(48g)。水素添加率は100%、重量平均分子量(Mw)は126000、分子量分布(Mw/Mn)は1.51、ガラス転移温度は142℃であった。フッ素原子含有率は61.9質量%であった。
次に、乾燥温度を180℃に変更した以外は実施例5記載の方法により、微細パターンが転写された膜厚が10μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=572nm、L2=418nm、L3=1591nmであった。
実施例1で調製したポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のシクロヘキサノン溶液を石英ガラス基板上にアプリケーターで塗膜した。次いで、Air下80℃に加熱したホットプレート上で30分加熱後、窒素気流下230℃で30分乾燥した。放冷後、石英ガラスを離脱させ450mm×550mm(厚み=30μm)のフィルムを得た。
次いで、得られたフィルムを160℃に加熱しモールドAを接触させ10MPaで熱圧着しそのまま5秒間保持した。70℃に冷却後、モールドを離脱させて、微細パターンが転写された膜厚が31μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=581nm、L2=409nm、L3=1601nmであった。
実施例4で合成したポリ(1,2-ジフルオロ-1-へプタフルオロ-iso-プロピル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)を熱プレスし50mm×50mm(厚み=80μm)のフィルムを得た。
次いで、得られたフィルムを180℃に加熱しモールドAを接触させ10MPaで熱圧着しそのまま5秒間保持した。70℃に冷却後、モールドを離脱させて、微細パターンが転写された膜厚が77μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=583nm、L2=407nm、L3=1604nmであった。
石英ガラス上にアクリル系UV硬化樹脂(アロニックス 東亜合成社商品名)50mgをバーコートで均一に塗布した。
次いで、レプリカモールドとして実施例5で作成したポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のフィルム状の転写体を塗布液膜上にパターン面を被せるように押し当て、室温でレプリカモールドの背面よりUVを15分間照射した(照射線量:34mJ/cm2)。照射後、モールドから剥離して微細パターンが転写された膜厚100μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=421nm、L2=569nm、L3=1595nmであった。
石英ガラス上にスルホニウム塩を開始剤とするエポキシ系硬化樹脂(4,4´-ビス(7-オキサビシクロ[4.1.0]ヘプタン-3-イル)40質量%、3-エチル-3-(フェノキシメチル)オキセタン 50質量%、1,4-ビス[((3-エチルオキセタン-3-イル)メトキシ)メチル]ベンゼン 10質量%の混合物)53mgをバーコートで均一に塗布した。
次いで、レプリカモールドとして実施例6で作成したポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のフィルム状の転写体を塗布液膜上にパターン面を被せるように押し当て、室温でレプリカモールドの背面よりUVを15分間照射した(照射線量:34mJ/cm2)。照射後、モールドから剥離して微細パターンが転写された膜厚95μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=420nm、L2=570nm、L3=1596nmであった。
モノマーを5-(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン(10g)に変更した以外は、実施例1と同様にポリ(1-トリフルオロメチル-3,5-シクロペンチレンエチレン)を得た(9g)。水素添加率は100%、重量平均分子量(Mw)は98000、分子量分布(Mw/Mn)は1.17、ガラス転移温度は47℃であった。フッ素原子含有率は34.7質量%であった。
厚みが0.37mmの熱プレスシートを用いて測定した、引張りモードの固体粘弾性測定の結果から、ガラス転移温度以上の温度領域での平坦な貯蔵弾性率または損失弾性率の変化領域は見られず、48℃から57℃の範囲で貯蔵弾性率が92.3~0.11MPa、同じ温度範囲で損失弾性率が97.1~0.13MPaであり、温度に対する貯蔵弾性率の変化は-10.2MPa/℃であり、損失弾性率の変化は-10.8MPa/℃であった。
次いで、得られたポリ(1-トリフルオロメチル-3,5-シクロペンチレンエチレン)を20質量%濃度でシクロヘキサノンに溶解、調製した溶液23mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。窒素気流下室温で30分乾燥した後、150℃で30分乾燥した。モールドを窒素下で5℃まで冷却し、モールドから剥離して微細パターンが転写された膜厚が7μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=569~598nmの乱れたライン形状であった。
モノマーを2、3-ビス(トリフルオロメチル)-7-オキサビシクロ[2.2.1]ヘプト-2-エン(10g)に変更した以外は、実施例1と同様にポリ(3,4-ビス(トリフルオロメチル)-2,5-(1-オキサシクロペンチレン)エチレン)を得た(9g)。水素添加率は100%、重量平均分子量(Mw)は90000、分子量分布(Mw/Mn)は1.41、ガラス転移温度は44℃であった。
厚みが0.37mmの熱プレスシートを用いて測定した、引張りモードの固体粘弾性測定の結果から、ガラス転移温度以上の温度領域での平坦な貯蔵弾性率または損失弾性率の変化領域は見られず、45℃から55℃の範囲で貯蔵弾性率が99.3~0.12MPa、同じ温度範囲で損失弾性率が103.2~0.11MPaであり、温度に対する貯蔵弾性率の変化は-9.9MPa/℃であり、損失弾性率の変化は-10.3MPa/℃であった。
次いで、得られたポリ(3,4-ビス(トリフルオロメチル)-2,5-(1-オキサシクロペンチレン)エチレン)を20質量%濃度でシクロヘキサノンに溶解、調製した溶液24mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。窒素気流下室温で30分乾燥した後、150℃で30分乾燥した。モールドを窒素下で5℃まで冷却し、モールドから剥離して微細パターンが転写された膜厚が8μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=571~601nmの乱れたライン形状であった。
モノマーを5-メチルビシクロ[2.2.1]ヘプト-2-エン(10g)に変更した以外は、実施例1と同様にポリ(1-メチル-3,5-シクロペンチレンエチレン)を得た(9g)。水素添加率は100%、重量平均分子量(Mw)は182000、分子量分布(Mw/Mn)は1.11、ガラス転移温度は34℃であった。
厚みが0.37mmの熱プレスシートを用いて測定した、引張りモードの固体粘弾性測定の結果から、ガラス転移温度以上の温度領域での平坦な貯蔵弾性率または損失弾性率の変化領域は見られず、38℃から49℃の範囲で貯蔵弾性率が101.1~0.11MPa、38℃から49℃の範囲で損失弾性率が94.8~0.12MPaであり、温度に対する貯蔵弾性率の変化は-9.2MPa/℃であり、損失弾性率の変化は-8.6MPa/℃であった。
次いで、得られたポリ(1-メチル-3,5-シクロペンチレンエチレン)を20質量%濃度でシクロヘキサノンに溶解、調製した溶液27mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。窒素気流下室温で30分乾燥した後、150℃で30分乾燥した。モールドを窒素下で5℃まで冷却し、モールドから剥離を試みたがフィルムは得られなかった。
テトラフルオロエチレンと4,5-ジフルオロ-2,2-ビス(トリフルオロメチル)-1,3-ジオキサゾールの共重合体のテフロン(登録商標)AF1600(Aldrich品、ガラス転移温度=162℃)を20質量%含むペルフルオロ-2-n-ブチル-テトラヒドロフラン(フロリナート(登録商標) FC75)溶液25mgを、モールドAおよびモールドBのパターン形成面上にバーコートにより塗布したが、モールド表面上で液弾きを起こし塗膜が出来なかった。
比較例4のテフロン(登録商標)AF1600の粉末を260℃で熱プレスし、50mm×50mm(厚み=90μm)のフィルムを得た。
次いで、得られたフィルムを200℃に加熱しモールドAを接触させ10MPaで熱圧着しそのまま5秒間保持した。70℃に冷却後、モールドを離脱させて、微細パターンが転写された膜厚が85μmのフィルムを得た。
SEMによるパターン観察を行った結果、凸が潰れ転写できていない部分とL1=510~650nmの乱れたライン形状の部分が観察され、転写体が得られなかった。
5,5,6-トリフルオロ-6-(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン(50g)と8, 8, 9-トリフルオロ-9-(トリフルオロメチル)-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(22g)および1-ヘキセン(0.462g)のテトラヒドロフラン溶液に、Mo(N-2,6-Pri 2C6H3)(CHCMe2Ph)(OBut)2(33.9mg)のテトラヒドロフラン溶液を添加し、70℃にて開環メタセシス重合を行った。得られたポリマーのオレフィン部をパラジウムアルミナ(3.6g)によって160℃で水素添加反応を行い、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)とポリ(3, 3, 4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)コポリマーのテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し71gのポリマーを得た。水素添加率は100%、重量平均分子量(Mw)は98000、分子量分布(Mw/Mn)は2.51、ガラス転移温度は129℃であった。組成比[A]/[B]=75/25、フッ素原子含有率は49.2質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.37mmの熱プレスシートを作成した。引張りモードで測定した固体粘弾性測定の結果から、ガラス転移温度以上の平坦な貯蔵弾性率または損失弾性率の変化領域の149℃から163℃の範囲で貯蔵弾性率が1.21~0.26MPa、153℃から163℃の範囲で損失弾性率が0.62~0.18MPaであり、温度に対する貯蔵弾性率の変化は-0.07MPa/℃であり、損失弾性率の変化は-0.04MPa/℃であった。
5,5,6-トリフルオロ-6-(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エンと8, 8, 9-トリフルオロ-9-(トリフルオロメチル)-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセンモノマーの仕込みモル比を25/75に変更した以外は、実施例18と同様にポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)とポリ(3, 3, 4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)コポリマー(62g)を得た。水素添加率は100%、重量平均分子量(Mw)は112000、分子量分布(Mw/Mn)は2.51、ガラス転移温度は175℃であった。組成比[A]/[B]=25/75、フッ素原子含有率は42.9質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.37mmの熱プレスシートを作成した。引張りモードで測定した固体粘弾性測定の結果から、ガラス転移温度以上の平坦な貯蔵弾性率または損失弾性率の変化領域の195℃から209℃の範囲で貯蔵弾性率が1.19~0.24MPa、199℃から209℃の範囲で損失弾性率が0.60~0.16MPaであり、温度に対する貯蔵弾性率の変化は-0.07MPa/℃であり、損失弾性率の変化は-0.044MPa/℃であった。
5,6-ジフルオロ-5,6-ビス(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン(50g)と8, 8, 9-トリフルオロ-9-(トリフルオロメチル)-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(54g)および1-ヘキセン(0.462g)のテトラヒドロフラン溶液に、Mo(N-2,6-Pri 2C6H3)(CHCMe2Ph)(OBut)2(41.3mg)のテトラヒドロフラン溶液を添加し、70℃にて開環メタセシス重合を行った。得られたポリマーのオレフィン部をパラジウムアルミナ(5.0g)によって160℃で水素添加反応を行い、ポリ(1,2-ジフルオロ-1, 2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)とポリ(3, 3, 4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)コポリマーのテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し101gのポリマーを得た。水素添加率は100%、重量平均分子量(Mw)は106000、分子量分布(Mw/Mn)は2.54、ガラス転移温度は158℃であった。組成比[A]/[B]=50/50、フッ素原子含有率は48.4質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.36mmの熱プレスシートを作成した。引張りモードで測定した固体粘弾性測定の結果から、ガラス転移温度以上の平坦な貯蔵弾性率または損失弾性率の変化領域の178℃から192℃の範囲で貯蔵弾性率が1.20~0.24MPa、182℃から192℃の範囲で損失弾性率が0.63~0.19MPaであり、温度に対する貯蔵弾性率の変化は-0.07MPa/℃であり、損失弾性率の変化は-0.04MPa/℃であった。
5,5,6-トリフルオロ-6-(トリフルオロメトキシ)ビシクロ[2.2.1]ヘプト-2-エン(50g)と1-ヘキセン(134mg)のテトラヒドロフラン溶液に、Mo(N-2,6-Pri 2C6H3)(CHCMe2Ph)(OCMe(CF3)2)2(35mg)のテトラヒドロフラン溶液を添加し、70℃にて開環メタセシス重合を行った。得られたポリマーのオレフィン部を、パラジウムアルミナ(2.5g)によって160℃で水素添加反応を行い、ポリ(1,1,2-トリフルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し48gのポリマーを得た。水素添加率は100%、重量平均分子量(Mw)は131000、分子量分布(Mw/Mn)は1.73、ガラス転移温度は101℃であった。フッ素原子含有率は48.7質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.37mmの熱プレスシートを作成した。引張りモードで測定した固体粘弾性測定の結果から、ガラス転移温度以上の平坦な貯蔵弾性率または損失弾性率の変化領域の104℃から143℃の範囲で貯蔵弾性率が5.79~0.52MPa、108℃から141℃の範囲で損失弾性率が3.01~0.24MPaであり、温度に対する貯蔵弾性率の変化は-0.14MPa/℃、損失弾性率の変化は-0.08MPa/℃であった。
実施例18で合成したMw=98000のポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)とポリ(3, 3, 4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)コポリマー(組成比[A]/[B]=75/25)を20質量%濃度でシクロヘキサノンに溶解、調製した溶液30mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。次いで、窒素気流下室温で30分乾燥した後、180℃で60分乾燥した。モールドを窒素下で室温まで冷却し、モールドから剥離して微細パターンが転写された膜厚が8μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=570nm、L2=420nm、L3=1595nmであった。
実施例19で合成したMw=112000のポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)とポリ(3, 3, 4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)コポリマー(組成比[A]/[B]=25/75)を20質量%濃度でシクロヘキサノンに溶解、調製した溶液30mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。次いで、窒素気流下室温で30分乾燥した後、200℃で60分乾燥した。モールドを窒素下で室温まで冷却し、モールドから剥離して微細パターンが転写された膜厚が8μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=571nm、L2=419nm、L3=1594nmであった。
実施例20で合成したMw=106000のポリ(1,2-ジフルオロ-1, 2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)とポリ(3, 3, 4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)コポリマー(組成比[A]/[B]=50/50)を20質量%濃度でシクロヘキサノンに溶解、調製した溶液30mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。次いで、窒素気流下室温で30分乾燥した後、190℃で60分乾燥した。モールドを窒素下で室温まで冷却し、モールドから剥離して微細パターンが転写された膜厚が9μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=571nm、L2=419nm、L3=1595nmであった。
実施例21で合成したMw=131000のポリ(1,1,2-トリフルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)を20質量%濃度でシクロヘキサノンに溶解、調製した溶液30mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。次いで、窒素気流下室温で30分乾燥した後、200℃で60分乾燥した。モールドを窒素下で室温まで冷却し、モールドから剥離して微細パターンが転写された膜厚が8μmのフィルム状の転写体を得た。
SEMによるパターン観察を行った結果、L1=571nm、L2=419nm、L3=1594nmであった。
実施例1で合成したMw127000のポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)(組成比[A]/[B]=100/0)を20質量%の濃度でシクロヘキサノンに溶解、調整した溶液をガラス基板上に滴下し、スピンコートで均一に塗布した。次いで、窒素気流下180℃で60分間乾燥し、Air下で室温放冷する事によりガラス基板上にコートした厚み15μmのフィルムを得た。荷重100gの引っかき硬度は4Bであった。
ポリマーを実施例18(Mw98000、組成比[A]/[B]=75/25)、実施例19(Mw112000、組成比[A]/[B]=25/75)で合成したコポリマーに変更したこと以外は上記と同様な方法により、ガラス基板上にコートした厚み15μmのフィルムを得た。引っかき硬度を測定した結果は、実施例18のポリマーで3B、実施例19のポリマーで2Bと実施例1のポリマーより何れも引っかき硬度は向上した。
5,6-ジフルオロ-5,6-ビス(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン(5g)と8-トリフルオロメチル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(39g)および1-ヘキセン(0.418g)のテトラヒドロフラン溶液に、Mo(N-2,6-Pri 2C6H3)(CHCMe2Ph)(OBut)2(20mg)のテトラヒドロフラン溶液を添加し、70℃で開環メタセシス重合を行った。得られたポリマーのオレフィン部をパラジウムアルミナ(2.2g)によって160℃で水素添加反応を行い、ポリ(1,2-ジフルオロ-1, 2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)とポリ(3-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)コポリマーのテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し42gのポリマーを得た。水素添加率は100%、重量平均分子量(Mw)は94000、分子量分布(Mw/Mn)は2.57、ガラス転移温度は176℃であった。組成比[A]/[B]=10/90、フッ素原子含有率は27.9質量%であった。
次いで、得られた水素添加後のポリマー粉を熱プレスし、厚みが0.36mmの熱プレスシートを作成した。引張りモードで測定した固体粘弾性測定の結果から、貯蔵弾性率または損失弾性率の変化において、ガラス転移温度以上の温度領域で平坦な領域は見られなかった。
さらに、得られたポリ(1,2-ジフルオロ-1, 2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)とポリ(3-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)コポリマー(組成比[A]/[B]=10/90)を20質量%濃度でシクロヘキサノンに溶解、調製した溶液30mgをモールドAのパターン上に滴下し、バーコートで均一に塗布した。窒素気流下室温で30分乾燥した後、200℃で60分乾燥した。モールドを窒素下で室温まで冷却し、モールドから剥離したフィルムの転写面をSEM観察するとパターンは乱れ良好な転写体は得られなかった。
(a)一般式(1)で表される繰返し構造単位を含有し、かつ、フッ素原子含有率が40~75質量%であるフッ素含有環状オレフィンポリマーにモールド表面の微細パターンを転写させることにより得られる微細パターンを表面に有することを特徴とする転写体。
る炭素数1~10のアルキルであり、フッ素を含有しないその他のR1~R4は、水素、
または、炭素数1~10のアルキルから選ばれ、R1~R4が互いに結合して環構造を形
成していてもよい。)
Claims (12)
- モールド表面の微細パターンが転写された転写体であって、
一般式(1)で表される繰返し構造単位を含有し、かつ、フッ素原子含有率が40~75質量%であるフッ素含有環状オレフィンポリマーからなることを特徴とする転写体。
- 周波数1Hz、昇温速度3℃/分の引張りモード固体粘弾性測定における前記フッ素含有環状オレフィンポリマーの貯蔵弾性率または損失弾性率が、ガラス転移温度以上の温度領域における温度変化に対して-1~0MPa/℃の範囲で変化する領域を有することを特徴とする請求項1に記載の転写体。
- 前記フッ素含有環状オレフィンポリマーのガラス転移温度以上の温度領域における貯蔵弾性率または損失弾性率の前記変化領域が、0.1MPa以上の貯蔵弾性率領域または損失弾性率領域にあることを特徴とする請求項2に記載の転写体。
- 前記フッ素含有環状オレフィンポリマーが、前記一般式(1)で表される繰り返し構造単位 [A]と、一般式(2)で表される繰り返し構造単位[B]とから構成され、そのモル比が [A]/[B]=95/5~25/75であり、かつ、フッ素原子含有率が40~75質量%であることを特徴とする請求項1~3のいずれか1項に記載の転写体。
- 前記フッ素含有環状オレフィンポリマーと有機溶剤からなる溶液と、表面に微細パターンを形成させたモールドとを接触させ、溶剤を蒸発させることによってモールドのパターンを転写させることを特徴とする請求項1~4のいずれか1項に記載のフッ素含有環状オレフィンポリマーを用いた転写体の製造方法。
- 微細パターンを有するモールド表面に、前記フッ素含有環状オレフィンポリマーと有機溶剤からなる溶液を塗布する工程と、
前記溶液から溶剤を蒸発させる工程と、
を有することを特徴とする、前記モールドのパターンが転写された請求項1~4のいずれか1項に記載の転写体の製造方法。 - 前記フッ素含有環状オレフィンポリマーを含有するフィルム表面を、モールドの微細パターンを有する面で押圧することを特徴とする、前記モールドのパターンが転写された請求項1~4のいずれか1項に記載の転写体の製造方法。
- 請求項1~4のいずれか1項に記載の転写体をモールドとして用いる、硬化体の製造方法であって、
前記転写体の微細パターンを有する面と、光硬化性モノマー組成物とを接触させる工程と、
前記光硬化性モノマー組成物に光を照射することにより硬化させ、硬化物を得る工程と、
前記硬化物を、前記転写体から離型する工程と、
を有することを特徴とする硬化物の製造方法。 - モールド表面の微細パターンが転写された転写体を得るための転写用樹脂組成物であって、
一般式(1)で表される繰返し構造単位を含有し、かつ、フッ素原子含有率が40~75質量%であるフッ素含有環状オレフィンポリマーを含むことを特徴とする転写用樹脂組成物。
- 前記フッ素含有環状オレフィンポリマーの貯蔵弾性率または損失弾性率が、ガラス転移温度以上の温度領域における温度変化に対して-1~0MPa/℃の範囲で変化する領域を有することを特徴とする請求項9に記載の転写用樹脂組成物。
- 前記フッ素含有環状オレフィンポリマーのガラス転移温度以上の温度領域における貯蔵弾性率または損失弾性率の前記変化領域が、0.1MPa以上の貯蔵弾性率領域または損失弾性率領域にあることを特徴とする請求項10に記載の転写用樹脂組成物。
- 前記フッ素含有環状オレフィンポリマーが、前記一般式(1)で表される繰り返し構造単位 [A]と、一般式(2)で表される繰り返し構造単位[B]とから構成され、そのモル比が [A]/[B]=95/5~25/75であり、かつ、フッ素原子含有率が40~75質量%であることを特徴とする請求項9~11のいずれか1項に記載の転写用樹脂組成物。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080009493.5A CN102334177B (zh) | 2009-02-27 | 2010-02-25 | 转印体及其制造方法 |
US13/201,973 US20110301313A1 (en) | 2009-02-27 | 2010-02-25 | Imprint product and method for producing the same |
KR1020117022552A KR101336532B1 (ko) | 2009-02-27 | 2010-02-25 | 전사체 및 그의 제조방법 |
JP2011501509A JP5301648B2 (ja) | 2009-02-27 | 2010-02-25 | 転写体およびその製造方法 |
US14/035,149 US9314963B2 (en) | 2009-02-27 | 2013-09-24 | Imprint product and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009046122 | 2009-02-27 | ||
JP2009-046122 | 2009-02-27 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/201,973 A-371-Of-International US20110301313A1 (en) | 2009-02-27 | 2010-02-25 | Imprint product and method for producing the same |
US14/035,149 Division US9314963B2 (en) | 2009-02-27 | 2013-09-24 | Imprint product and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010098102A1 true WO2010098102A1 (ja) | 2010-09-02 |
Family
ID=42665317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/001271 WO2010098102A1 (ja) | 2009-02-27 | 2010-02-25 | 転写体およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20110301313A1 (ja) |
JP (1) | JP5301648B2 (ja) |
KR (1) | KR101336532B1 (ja) |
CN (1) | CN102334177B (ja) |
TW (1) | TWI471352B (ja) |
WO (1) | WO2010098102A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018225707A1 (ja) * | 2017-06-09 | 2018-12-13 | 三井化学株式会社 | 微細凹凸パターン付き基板の製造方法、樹脂組成物および積層体 |
KR20200096626A (ko) | 2018-01-19 | 2020-08-12 | 미쓰이 가가쿠 가부시키가이샤 | 요철 구조체의 제조 방법, 요철 구조체를 제조하는 방법에 이용되는 적층체 및 당해 적층체의 제조 방법 |
WO2021009980A1 (ja) * | 2019-07-12 | 2021-01-21 | 三井化学株式会社 | 光硬化性組成物、凹凸構造体の製造方法、微細凹凸パターンを形成する方法および凹凸構造体 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010218597A (ja) * | 2009-03-13 | 2010-09-30 | Toshiba Corp | パターン転写用樹脂スタンパ、及びこれを用いた磁気記録媒体の製造方法 |
WO2011024421A1 (ja) * | 2009-08-26 | 2011-03-03 | 三井化学株式会社 | フッ素含有環状オレフィンポリマー組成物、該組成物から得られた転写体およびその製造方法 |
EP2617548B1 (en) * | 2010-09-16 | 2016-08-31 | NGK Insulators, Ltd. | Use of a forming mold for yielding a molded product made from a slurry |
KR101529418B1 (ko) * | 2011-04-15 | 2015-06-16 | 미쯔비시 레이온 가부시끼가이샤 | 활성 에너지선 경화성 수지 조성물, 성형품, 미세 요철 구조체, 발수성 물품, 몰드, 및 미세 요철 구조체의 제조 방법 |
EP2982709B1 (en) * | 2014-08-07 | 2017-06-28 | Telene SAS | Curable composition and molded article comprising the composition |
KR101966323B1 (ko) | 2016-03-31 | 2019-04-05 | 동우 화인켐 주식회사 | 필름 터치 센서 및 이를 포함하는 터치 스크린 패널 |
DE102017004546B4 (de) * | 2017-05-12 | 2022-01-05 | L/N Health And Beauty Aps | Kit zur Nagelkorrektur |
US11415880B2 (en) * | 2018-05-09 | 2022-08-16 | Facebook Technologies, Llc | Nanoimprint lithography material with switchable mechanical properties |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005049741A1 (en) * | 2003-11-19 | 2005-06-02 | Koninklijke Philips Electronics N.V. | Formation of self-assembled monolayers |
JP2008105414A (ja) * | 2006-09-27 | 2008-05-08 | Fujifilm Corp | 光ナノインプリントリソグラフィ用硬化性組成物およびそれを用いたパターン形成方法 |
JP2008202022A (ja) * | 2007-01-23 | 2008-09-04 | Fujifilm Corp | 光ナノインプリントリソグラフィ用硬化性組成物およびそれを用いたパターン形成方法 |
WO2009093661A1 (ja) * | 2008-01-25 | 2009-07-30 | Kyowa Hakko Chemical Co., Ltd. | 金属膜のパターン形成方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482742B1 (en) | 2000-07-18 | 2002-11-19 | Stephen Y. Chou | Fluid pressure imprint lithography |
US6334960B1 (en) | 1999-03-11 | 2002-01-01 | Board Of Regents, The University Of Texas System | Step and flash imprint lithography |
JP2000323461A (ja) | 1999-05-11 | 2000-11-24 | Nec Corp | 微細パターン形成装置、その製造方法、および形成方法 |
JP4150839B2 (ja) * | 1999-11-10 | 2008-09-17 | Jsr株式会社 | 熱硬化性樹脂組成物およびその硬化物 |
JP2002184719A (ja) * | 2000-12-19 | 2002-06-28 | Matsushita Electric Ind Co Ltd | パターン形成方法 |
US6875819B2 (en) * | 2001-04-27 | 2005-04-05 | Mitsui Chemicals, Inc. | Fluorinated cycloolefin polymers, processes for preparation of fluorinated cycloofefin monomers and polymers thereof, and use of the same |
JP3932971B2 (ja) * | 2001-09-04 | 2007-06-20 | Jsr株式会社 | 重合体組成物および電線被覆材 |
US20030071016A1 (en) | 2001-10-11 | 2003-04-17 | Wu-Sheng Shih | Patterned structure reproduction using nonsticking mold |
JP3967114B2 (ja) * | 2001-11-22 | 2007-08-29 | 株式会社東芝 | 加工方法 |
JP2006054300A (ja) * | 2004-08-11 | 2006-02-23 | Asahi Glass Co Ltd | 転写層にパターンを形成する方法 |
JPWO2006112062A1 (ja) * | 2005-03-30 | 2008-11-27 | 日本ゼオン株式会社 | 樹脂型及びそれを用いた成形体の製造方法 |
JP2007088172A (ja) | 2005-09-21 | 2007-04-05 | Sumitomo Bakelite Co Ltd | 樹脂組成物、積層体、配線板および配線板の製造方法 |
US8211984B2 (en) * | 2006-07-21 | 2012-07-03 | Mitsui Chemicals, Inc. | Ring-opening metathesis polymer, hydrogenated product thereof, method for preparing the same, and use thereof |
JP5515232B2 (ja) * | 2008-03-26 | 2014-06-11 | 信越化学工業株式会社 | 高分子化合物及びその製造方法、並びにレジスト材料及びパターン形成方法 |
-
2010
- 2010-02-25 CN CN201080009493.5A patent/CN102334177B/zh active Active
- 2010-02-25 KR KR1020117022552A patent/KR101336532B1/ko active IP Right Grant
- 2010-02-25 WO PCT/JP2010/001271 patent/WO2010098102A1/ja active Application Filing
- 2010-02-25 US US13/201,973 patent/US20110301313A1/en not_active Abandoned
- 2010-02-25 JP JP2011501509A patent/JP5301648B2/ja active Active
- 2010-02-26 TW TW99105687A patent/TWI471352B/zh active
-
2013
- 2013-09-24 US US14/035,149 patent/US9314963B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005049741A1 (en) * | 2003-11-19 | 2005-06-02 | Koninklijke Philips Electronics N.V. | Formation of self-assembled monolayers |
JP2008105414A (ja) * | 2006-09-27 | 2008-05-08 | Fujifilm Corp | 光ナノインプリントリソグラフィ用硬化性組成物およびそれを用いたパターン形成方法 |
JP2008202022A (ja) * | 2007-01-23 | 2008-09-04 | Fujifilm Corp | 光ナノインプリントリソグラフィ用硬化性組成物およびそれを用いたパターン形成方法 |
WO2009093661A1 (ja) * | 2008-01-25 | 2009-07-30 | Kyowa Hakko Chemical Co., Ltd. | 金属膜のパターン形成方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018225707A1 (ja) * | 2017-06-09 | 2018-12-13 | 三井化学株式会社 | 微細凹凸パターン付き基板の製造方法、樹脂組成物および積層体 |
JPWO2018225707A1 (ja) * | 2017-06-09 | 2019-12-19 | 三井化学株式会社 | 微細凹凸パターン付き基板の製造方法、樹脂組成物および積層体 |
US11474429B2 (en) | 2017-06-09 | 2022-10-18 | Mitsui Chemicals, Inc. | Method of producing substrate with fine uneven pattern, resin composition, and laminate |
KR20200096626A (ko) | 2018-01-19 | 2020-08-12 | 미쓰이 가가쿠 가부시키가이샤 | 요철 구조체의 제조 방법, 요철 구조체를 제조하는 방법에 이용되는 적층체 및 당해 적층체의 제조 방법 |
WO2021009980A1 (ja) * | 2019-07-12 | 2021-01-21 | 三井化学株式会社 | 光硬化性組成物、凹凸構造体の製造方法、微細凹凸パターンを形成する方法および凹凸構造体 |
JPWO2021009980A1 (ja) * | 2019-07-12 | 2021-11-25 | 三井化学株式会社 | 光硬化性組成物、凹凸構造体の製造方法、微細凹凸パターンを形成する方法および凹凸構造体 |
JP7284820B2 (ja) | 2019-07-12 | 2023-05-31 | 三井化学株式会社 | 光硬化性組成物、凹凸構造体の製造方法、微細凹凸パターンを形成する方法および凹凸構造体 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010098102A1 (ja) | 2012-08-30 |
US9314963B2 (en) | 2016-04-19 |
US20110301313A1 (en) | 2011-12-08 |
CN102334177A (zh) | 2012-01-25 |
US20140021648A1 (en) | 2014-01-23 |
KR101336532B1 (ko) | 2013-12-03 |
KR20110129930A (ko) | 2011-12-02 |
TWI471352B (zh) | 2015-02-01 |
JP5301648B2 (ja) | 2013-09-25 |
TW201038615A (en) | 2010-11-01 |
CN102334177B (zh) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5466705B2 (ja) | フッ素含有環状オレフィンポリマー組成物、該組成物から得られた転写体およびその製造方法 | |
JP5301648B2 (ja) | 転写体およびその製造方法 | |
Du et al. | Modulus-and surface-energy-tunable thiol–ene for uv micromolding of coatings | |
JP6386370B2 (ja) | 積層構造物、光硬化性組成物および積層構造物の製造方法 | |
JP6846516B2 (ja) | 微細凹凸パターン付き基板の製造方法、樹脂組成物および積層体 | |
JP7284820B2 (ja) | 光硬化性組成物、凹凸構造体の製造方法、微細凹凸パターンを形成する方法および凹凸構造体 | |
JPWO2014162928A1 (ja) | 光学フィルムおよびその製造方法 | |
WO2019142528A1 (ja) | 凹凸構造体の製造方法、凹凸構造体を製造する方法に用いられる積層体および当該積層体の製造方法 | |
JP2009202510A (ja) | 微細加工樹脂シート | |
JP2022025841A (ja) | フィルターおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080009493.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10745987 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011501509 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13201973 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117022552 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10745987 Country of ref document: EP Kind code of ref document: A1 |