WO2010096347A1 - Asymmetric dual directional steerable catheter sheath - Google Patents
Asymmetric dual directional steerable catheter sheath Download PDFInfo
- Publication number
- WO2010096347A1 WO2010096347A1 PCT/US2010/024130 US2010024130W WO2010096347A1 WO 2010096347 A1 WO2010096347 A1 WO 2010096347A1 US 2010024130 W US2010024130 W US 2010024130W WO 2010096347 A1 WO2010096347 A1 WO 2010096347A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lateral side
- elongated member
- distal end
- catheter sheath
- steerable catheter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0138—Tip steering devices having flexible regions as a result of weakened outer material, e.g. slots, slits, cuts, joints or coils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0141—Tip steering devices having flexible regions as a result of using materials with different mechanical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0147—Tip steering devices with movable mechanical means, e.g. pull wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
- A61B2017/00292—Surgical instruments, devices or methods for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
- A61B2017/003—Steerable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M2025/0161—Tip steering devices wherein the distal tips have two or more deflection regions
Definitions
- This invention generally relates to systems for introducing a medical probe adjacent to target tissue, and more particularly to a steerable sheath for intravascularly introducing and positioning a catheter into a body cavity, such as a heart chamber.
- SA node sinoatrial node
- the impulse usually propagates uniformly across the right and left atria and the atrial septum to the atrioventricular node (or
- AV node This propagation causes the atria to contract in an organized manner to transport blood from the atria to the ventricles, and to provide timed stimulation of the ventricles.
- the AV node regulates the propagation delay to the atrioventricular bundle (or "HIS" bundle).
- HIS atrioventricular bundle
- Atrial fibrillation occurs when anatomical obstacles in the heart disrupt the normally uniform propagation of electrical impulses in the atria. These anatomical obstacles (called “conduction blocks”) can cause the electrical impulse to degenerate into several circular wavelets that circulate about the obstacles. These wavelets, called “reentry circuits,” disrupt the normally uniform activation of the left and right atria.
- a surgical method of treating atrial fibrillation by interrupting pathways for reentry circuits is the so-called "maze procedure,” which relies on a prescribed pattern of incisions to anatomically create a convoluted path, or maze, for electrical propagation within the left and right atria.
- the incisions direct the electrical impulse from the SA node along a specified route through all regions of both atria, causing uniform contraction required for normal atrial transport function.
- the incisions finally direct the impulse to the AV node to activate the ventricles, restoring normal atrioventricular synchrony.
- the incisions are also carefully placed to interrupt the conduction routes of the most common reentry circuits.
- the maze procedure has been found very effective in curing atrial fibrillation.
- maze-like procedures have also been developed utilizing electrophysiology procedures, which involve forming lesions on the endocardium (the lesions being 1 to 15 cm in length and of varying shape) using an ablation catheter to effectively create a maze for electrical conduction in a predetermined path.
- the formation of these lesions by soft tissue coagulation also referred to as "ablation" can provide the same therapeutic benefits that the complex incision patterns of the surgical maze procedure presently provides, but without invasive open heart surgery.
- an arrhythmia aberration resides at the base, or within one or more pulmonary veins, wherein the atrial tissue extends.
- physicians use one or more catheters to gain access into interior regions of the pulmonary vein tissue for mapping and ablating targeted tissue areas. Placement of mapping and ablation catheters, or alternatively a combined mapping/ablation catheter, within the vasculature of the patient is typically facilitated with the aid of an introducer guide sheath and/or guide wire.
- the introducer guide sheath may be introduced into the left atrium of the heart using a conventional retrograde approach, i.e., through the respective aortic and mitral valves of the heart.
- a more simple approach is to introduce the introducer guide sheath into the left atrium using a transeptal approach, i.e., through the atrial septum (i.e., fossi ovalis).
- a transeptal approach i.e., through the atrial septum (i.e., fossi ovalis).
- the catheter must be advanced through the guide sheath, into the left atrium, and then maneuvered into or adjacent to a desired pulmonary vein (typically with the aid of a guidewire) before mapping and/or ablating.
- the pulmonary vein may be one of the two left pulmonary veins or one of the two right pulmonary veins. Positioning of the sheath and guidewire are critical to the success of this procedure, since they are the conduit for the ablation catheter and/or mapping catheter. However, the anatomical location of the atrial septum is closer in proximity to the right pulmonary veins than it is to the left pulmonary veins.
- the right pulmonary veins are substantially immediately adjacent to the distal end of the guide sheath while the left pulmonary veins are located on substantially the opposite side of the left atrium from the distal end of the guide sheath.
- the guide sheath must be maneuvered differently when placing the catheter in contact with the left pulmonary veins as opposed to the right pulmonary veins.
- steerable guide sheaths can be used to facilitate the introduction of the catheter within the desired pulmonary vein, the simple curves provided by such steerable guide sheaths do not easily allow the guidance of the catheter within both the left and right pulmonary veins.
- a steerable catheter sheath comprises an elongated member with a distal end, a proximal end and a lumen extending between the proximal end and the distal end, wherein the lumen is configured for receiving a catheter therein.
- the sheath also has a handle coupled to the proximal end of the elongated member and a steering mechanism mounted to the handle. In order to steer the sheath in two directions, the sheath includes first and second steering wires that extend through the elongated member.
- the distal end of the first steering wire is coupled to a first lateral side of the elongated member, wherein tensioning the first steering wire bends the distal end of the elongated member in a first direction to create a first bending configuration.
- the distal end of the second steering wire is coupled to a second lateral side of the elongated member, wherein tensioning the second steering wire bends the distal end of the elongated member in a second direction to create a second bending configuration.
- the proximal ends of the first and second steering wires are coupled to the steering mechanism, such that operation of the steering mechanism tensions one of the first and second steering wires.
- a shape of the first bending configuration is different from a shape of the second bending configuration.
- the first bending configuration has a first radius of curvature
- the second bending configuration has a second radius of curvature, wherein the first and second radii of curvature differ.
- the first bending configuration is configured for pointing the distal end of the elongated member towards a right pulmonary vein and the second bending configuration is configured for pointing the distal end of the elongated member towards a left pulmonary vein when the elongated member is introduced into the left atrium through the atrial septum.
- the elongated member comprises an elongated resilient structure having first and second lateral sides to which the distal ends of the first and second steering wires are respectively affixed.
- the first and second lateral sides of the resilient structure are opposite to each other and have different bending properties.
- a fulcrum point of the first lateral side of the resilient structure is distal to a fulcrum point of the second lateral side of the resilient structure.
- the resilient structure comprises a tube having a first plurality of notches in a first lateral side of the tube and a second plurality of notches in a second lateral side of the tube.
- the first plurality of notches are configured for bending the distal end of the elongated member into the first bending configuration and the second plurality of notches are configured for bending the distal end of the elongated member into the second bending configuration.
- the tube further comprises a plurality of slits in a portion of the first lateral side of the tube for allowing the portion of the tube to bend when the elongated member is steered into the second bending configuration and preventing the portion of the tube from bending when the elongated member is steered into the first bending configuration.
- a fulcrum point of the first lateral side of the tube is located between the slits and the notches on the first lateral side of the tube.
- the resilient structure comprises a coil and an outer coating, the outer coating having a first portion disposed over a first lateral side of the coil, and a second portion disposed over a second lateral side of the coil, wherein the first and second portions have different durometers.
- the first portion of the coating is disposed over a distal region of the first lateral side of the coil
- the second portion of the coating is disposed over the second lateral side of the coil
- a third portion of the coating is disposed over a proximal region of the first lateral side of the coil.
- the first, second, and third portions all have different durometers.
- the first portion has a low durometer
- the second portion has a medium durometer
- the third portion has a high durometer.
- a fulcrum point of the first lateral side of the coil is between the distal region and the proximal region of the first lateral side of the coil.
- the fulcrum point of the first lateral side of the coil is distal to a fulcrum point of the second lateral side of the coil.
- a catheter assembly in one embodiment, includes the steerable catheter sheath as described above and a catheter disposed within the lumen of the elongated member.
- the catheter is a tissue ablation catheter.
- a method of using the catheter assembly described above is provided for purposes of better understanding the invention. The method includes introducing the elongated member into a left atrium. In one embodiment, the elongated member is introduced into the left atrium using a transeptal approach where the elongated member passes from a right atrium through an atrial septum into the left atrium.
- the method further comprises tensioning the first steering wire to bend the elongated member in the first direction into the first bending configuration to point the distal end of the elongated member towards a right pulmonary vein.
- the ablation catheter is advanced through the lumen of the elongated member such that the ablation catheter distally extends from the elongated member to contact a first target tissue site within or adjacent to the right pulmonary vein.
- the ablation catheter is then operated to ablate the first target tissue site. After ablation of the first target tissue site, the catheter is retracted into the elongated member.
- the method further comprises tensioning the second steering wire to bend the elongated member in the second direction into the second bending configuration to point the distal end of the elongated member towards a left pulmonary vein.
- the ablation catheter is again advanced through the lumen of the elongated member such that the ablation catheter distally extends from the elongated member to contact a second target tissue site within or adjacent to the left pulmonary vein.
- the catheter is then operated to ablate the second target tissue site. After the second target tissue site is ablated, the ablation catheter is again retracted into the elongated member.
- the steps of tensioning the first steering wire and tensioning the second steering wire may be performed by operating a steering mechanism on the proximal end of the elongated member.
- tensioning the first steering wire causes compression of a first lateral side of a resilient structure carried by the distal end of the elongated member and tensioning the second steering wire causes compression of a second lateral side of the resilient structure.
- tensioning the first steering wire comprises compressing the first lateral side of the resilient structure and expanding the second lateral side of the resilient structure and tensioning the second steering wire comprises compressing the second lateral side of the resilient structure and expanding the first lateral side of the resilient structure.
- a method for positioning a catheter includes introducing a catheter guide sheath into an anatomical cavity; introducing the catheter into the guide sheath; deflecting a distal end of the guide sheath in a first direction into a first bending configuration to point the distal end of the guide sheath towards a first target site; operating the catheter to perform a medical procedure at the first target site; deflecting the distal end of the guide sheath in a second direction into a second bending configuration different from the first bending configuration to point the distal end of the guide sheath toward a second target site different from the first target site; and operating the catheter to perform another medical procedure at the second target site.
- the method also includes advancing the catheter within the guide sheath until a distal end of the catheter extends distally from the distal end of the guide sheath adjacent to the first target site when the distal end of the guide sheath is in the first bending configuration; retracting the catheter within the guide sheath prior to deflecting the distal end of the guide sheath into the second bending configuration; and advancing the catheter within the guide sheath until the distal end of the catheter extends distally from the distal end of the guide sheath adjacent to the second target site when the distal end of the guide sheath is in the second bending configuration.
- the anatomical cavity is a heart chamber
- the first target site is a right pulmonary vein
- the second target site is a left pulmonary vein.
- the method includes passing the distal end of the guide sheath from a right atrium to a left atrium through a septal wall.
- the medical procedures are ablation procedures.
- the method comprises operating a steering mechanism coupled to a proximal end of the guide sheath to deflect the distal end of the guide sheath into the first bending configuration and the second bending configuration.
- deflecting the distal end of the guide sheath in the first direction comprises tensioning a first steering wire
- deflecting the distal end of the guide sheath in the second direction comprises tensioning a second steering wire.
- a steerable catheter sheath in the manner described above allows a user to position the catheter sheath near a target ablation site before the catheter is deployed from the sheath, thereby decreasing the distance traveled by the catheter between the distal end of the sheath and the target tissue site and increasing the ease with which the catheter is retracted back into the sheath after the ablation procedure.
- Fig. 1A is a plan view of a catheter assembly including an ablation catheter and a steerable catheter sheath constructed in accordance with the invention
- Fig. 1 B is a plan view of the steerable catheter sheath constructed in accordance with the invention with a first bent configuration and a second bent configuration shown in phantom;
- Fig. 2A is a cross-sectional view of the steerable catheter sheath taken along line 2A-2A in Fig. 1A;
- Fig. 2B is a cross-sectional view of the steerable catheter sheath taken along Nne 2B-2B in Fig. 2A;
- Fig. 3A is a plan view of a first embodiment of a resilient structure
- Figs. 3B and 3C are plan views of the first embodiment of the resilient structure in the first bent configuration and the second bent configuration, respectively;
- Fig. 4A is a plan view of a second embodiment of a resilient structure and an outer coating shown in phantom;
- Figs. 4B and 4C are cross-sectional views of the steerable catheter sheath, according to the second embodiment, taken along lines 4B-4B and 4C-4C, respectively, of Fig. 4A;
- Figs. 4D and 4E are cross-sectional views of the steerable catheter sheath, taken along line 4D-4D of Fig. 4C, in the first bent configuration and the second bent configuration, respectively;
- Fig. 4F is a plan view of the distal portion of the steerable catheter sheath with the outer coating constructed in accordance with the second embodiment;
- Figs. 5A-5E are plan views of steps of using the catheter assembly shown in Fig. 1A to direct a catheter into a desired position.
- DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS Referring to Fig. 1A, 1A, 2A, and 2B, an exemplary assembly 200 constructed in accordance with the invention is shown.
- the assembly 200 includes a catheter 100 and a steerable catheter sheath 10 sized for receiving the catheter 100 therein.
- the catheter 100 is an ablation catheter or a mapping/ablation catheter and carries ablation and/or mapping elements on a distal end 102 thereof.
- the assembly 200 may further include a guide wire and/or other therapeutic tools (not shown) to be delivered into the left atrium in a desired position.
- a guide wire and/or other therapeutic tools (not shown) to be delivered into the left atrium in a desired position.
- the steerable catheter sheath 10 is described hereinafter for use in the heart for facilitating introduction of the catheter 100 into desirable positions for mapping and ablating arrhythmia substrates, the sheath 10 may be used within any body lumens, chambers or cavities of a patient for therapeutic and diagnostic purposes in those instances where access to interior bodily regions is obtained through, for example, the vascular system or alimentary canal and without complex invasive surgical procedures.
- the sheath 10 also has application in the treatment of ailments of the gastrointestinal tract, prostrate, brain, gall bladder, uterus, and other regions of the body.
- the sheath 10 generally comprises an elongated body 12, a handle 14 coupled to a proximal end 15 of the elongated body 12, and a lumen 30 extending through the elongated body 12 for allowing the catheter 100, guide wire (not shown), and/or other therapeutic tools (also not shown) to be inserted from a proximal end of the handle 14 towards a distal end 13 of the elongated body 12, as indicated by arrow 16 in Fig. 1A.
- the elongated body 12 includes a proximal portion 21 and a steerable distal portion 23.
- the distal end 13 of the elongated body 12 is configured to be introduced through the vasculature of the patient, and into an anatomical cavity, such as the left atrium of the heart.
- the distal portion 23 is configured to selectively bend in two directions, each bending direction having its own specific configuration, as shown in phantom in Fig. 1 B.
- the curvature assumed by bending the distal portion 23 to the right is different from the curvature assumed by bending the distal portion 23 to the left.
- the distal portion 23 assumes a first configuration 18, e.g. a substantially open arch curved profile with a first predetermined circumference.
- the distal portion 23 assumes a second configuration 20, e.g. a sharply curved profile with a second predetermined circumference.
- the second configuration 20 has a substantially smaller radius of curvature than that of the first configuration 18.
- the specific circumferences, radii of curvature, and shapes that the distal portion 23 will assume is related to parameters such as the size, shape, material of construction, and location of various elements of the elongated body 12. It should be well understood that any desired circumference, radius of curvature, and shape of the two bent configurations may be achieved by adjusting such parameters.
- the proximal portion 21 of the elongated body 12 is formed of a composite of
- the distal portion 23 of the elongated body 12 is formed of a more flexible material so that the distal portion 23 has desired bending properties.
- the distal portion 23 comprises an elongated resilient structure 24 shown in phantom in Fig. 1A. As best shown in Figs.
- the distal portion 23 of the elongated body 12 includes a lubricious inner coating 26 disposed on the inner surface of the resilient structure 24 to reduce friction during movement of a catheter or guide wire through the lumen 30, and an outer coating 22 disposed on the outer surface of the resilient structure 24.
- the resilient structure 24 may be composed of a suitable resilient material, such as stainless steel or nitinol.
- the inner coating 26 may be PTFE or the like, and the outer coating 22 may be Pebax ®, polyethylene, polyurethane, polyolefin, or any other suitable polymeric or biocompatible material.
- the sheath 10 further comprises a steering mechanism 17 incorporated into the handle 14, and a pair of right and left steering wires 28a, 28b extending through the elongated body 12.
- the steering mechanism 17 is operable to selectively tension the steering wires 28a, 28b, thereby transforming the distal portion 23 of the elongated body 12 from its straight geometry, shown in Fig. 1A, into one of its curved geometries, shown in Fig. 1 B.
- the proximal ends of the steering wires 28a, 28b are coupled to the steering mechanism 17 in the handle 14, while the distal ends of the steering wires 28a, 28b are welded or otherwise affixed to a steering ring 27 that is disposed between the inner coating 26 and the resilient structure 24, as shown in Figs. 2A and 2B.
- one of the steering wires (in this case, the right steering wire 28a) is attached to the right lateral side of the steering ring 27 and the other steering wire (in this case, the left steering wire 28b) is attached to the left lateral side of the steering ring 27.
- the steering wires 28a and 28b may alternatively or additionally be affixed to opposite lateral sides of the resilient structure 24.
- the steering wires 28a and 28b are free to slide within the space 25 between the resilient structure 24 and the inner liner 26.
- the steering wires 28a and 28b are coated (i.e. with Teflon®, not shown) to reduce friction caused by the steering wires 28a and 28b moving relative to the resilient structure 24 and the inner coating 26. Further details of exemplary steering mechanisms can be found in U.S. Patent Nos. 6,579,278, 6,198,974, 5,358,478 and 5,273,535.
- Figs. 2A and 2B depict the resilient structure 24 extending over the steering ring 27, the resilient structure 24 may alternatively not extend over the steering ring 27.
- the steering wires 28a, 28b and steering ring 27 are depicted as being attached to the distal end 13 of the elongated body 12, the attachment may alternatively be proximal to the distal end 13, depending on the desired bending configurations.
- the steering wires 28a and 28b may be attached at different lateral positions along the elongated body 12, in which case the elongated body 12 may include two steering rings wherein the steering wires 28a and 28b are each attached to a different steering ring.
- the asymmetric bending of the distal portion 23 of the elongated body 12 results from different bending properties and different fulcrum point positions on the respective lateral sides 12a and 12b of the distal portion 23 of the elongated body 12.
- the different bending properties and fulcrum point positions may be incorporated in the resilient structure 24 and/or the outer coating 22 where opposite lateral sides of the resilient structure 24 and/or the outer coating 22 are configured to bend differently when the steering mechanism 17 is operated.
- the resilient structure 24 comprises an elongated hypotube 32, a plurality of laser cuts or notches 34 on the right lateral side 32a of the tube 32, and a plurality of laser cuts or notches 33 and a plurality of slits 36 on a left lateral side 32b of the tube 32.
- the notches 33, 34, and slits 36 are configured in a manner that facilitates the bi-directional asymmetric deflection of the distal portion 23 of the elongated body 12.
- the notches 34 are located between a right side fulcrum point 37 and the distal end 13, the notches 33 are located between a left side fulcrum point 35 and the distal end 13, and the slits 36 are located proximal to the left side fulcrum point 35, but distal to the right side fulcrum point 37.
- the slits 36 and notches 33 and 34 can be configured to achieve substantially any desired curve circumference, shape, and fulcrum point position, as long as the bi-directional asymmetric deflection of the distal end 13 can be achieved.
- the slits 36 and notches 33 and 34 may alternatively have sizes and shapes that are different from those depicted in Figs. 3A-3C.
- the size, shape and spacing of the notches 34 on the right lateral side 32a of the hypotube 32 are configured so that, when the right steering wire 28a (not shown here for clarity; see Figs. 2A-2B) is tensioned, the distal portion 23 of the elongated body 12 will bend into the first configuration 18 by compressing the notches 34 on the right lateral side 32a, while expanding the notches 33 and slits 36 on the left lateral side 32b, as shown in Fig. 3B.
- the size, shape and spacing of the notches 33 and the slits 36 on the left lateral side 32b of the hypotube 32 are configured so that, when the left steering wire 28b (not shown here for clarity; see Figs.
- the distal end 13 of the elongated body 12 will bend into the second configuration 20 by compressing the notches 33 on the left lateral side 32b while expanding the notches 34 on the right lateral side 32a, as shown in Fig. 3C.
- Substantially the entire hypotube 32 is free to bend when steered into the first configuration 18.
- the slits 36 are already completely compressed and do not collapse upon one another, thereby preventing a proximal portion 38 of the hypotube 32 from bending when the hypotube 32 is directed into the second configuration 20. Referring to Figs.
- the resilient structure 24 comprises an elongated coil 42 and the outer coating 22 includes portions 22a, 22b and 22c with different durometers.
- the left lateral side distal portion 22a of the coating has a low durometer
- the right lateral side portion 22b of the coating has a medium durometer
- the left lateral side proximal portion 22c has a high durometer.
- the stiffness of the outer coating 22 is not uniform, but varies along its length and circumference.
- the stiffest part of the coating 22 is the left lateral side proximal portion 22c, which is substantially equal in durometer to the coating 22 covering the rest of the elongated body 12 proximal to the resilient structure 24, as best depicted in Fig. 4F.
- Each portion 22a, 22b and 22c of the coating extends about halfway around the circumference of the coil 42, as depicted in Figs. 4B, 4C and 4F. However, it should be well understood that the portions 22a, 22b and 22c may extend around less than half of the circumference of the coil 42 or more than half the circumference of the coil 42.
- the portions 22a, 22b and 22c of the coating 22 may be formed by co-extrusion, compression melting, flow melting and/or the like.
- the coating 22 is applied to the coil 42 by positioning the coil 42 within the coating 22 (which will take the form of a tube) and heat shrinking or the like.
- the coating 22 is arranged, such that a fulcrum point 45 is formed between the left lateral side distal portion 22a and the left lateral side proximal portion 22c of the coating, and a fulcrum point 47 is formed just proximal to the right lateral side portion 22b of the coating, with the fulcrum point 45 being distal to the fulcrum point 47.
- the durometers and relative locations of the coating portions 22a, 22b and 22c are arranged so that when the right steering wire 28a is tensioned, the distal end 13 of the elongated body 12 will bend into the first configuration 18 by compressing the right lateral side 42a of the coil while expanding the left lateral side 42b of the coil, as shown in Fig.
- the distal end 13 of the elongated body 12 will bend into the second configuration 20 by compressing the left lateral side 42b of the coil, while expanding the right lateral side 42a of the coil, as shown in Fig. 4E.
- the coating 22 and the coil 42 can be configured to achieve substantially any desired curve circumference, shape, and fulcrum point position, as long as the bi-directional asymmetric deflection of the distal end 13 can be achieved.
- the asymmetric curves provide the user with flexibility in steering the catheter guide sheath 10 into position.
- the asymmetric curves of the distal portion 23 of the elongated body 12 may be especially advantageous when a transeptal approach is used for entering into the left atrium, i.e., since the first predetermined circumference is larger than the second predetermined circumference, the first configuration 18 is used to point the distal end 13 of the elongated body 12 towards the left pulmonary veins and the second configuration 20 is used to point the distal end 13 of the elongated body 12 towards the right pulmonary veins.
- the guide sheath 10 is introduced into the left atrium 62 of the heart 64 using a transeptal approach.
- a guide catheter or guide wire may be used in association with the guide sheath 10 to aid in directing the guide sheath 10 through the appropriate artery toward the heart 64 (i.e., through the inferior vena cava or superior vena cava into the right atrium).
- the steering mechanism 17 on the handle 14 (not shown here; see Figs. 1A and 1 B) of the sheath 10 is operated to tension the right steering wire 28a (shown in Figs. 2A and 2B) to steer the distal end 13 into the first bending configuration 18 to point the distal end 13 towards the left pulmonary veins 67, as shown in Fig. 5B.
- the catheter 100 is advanced through the lumen 30 in the elongated body 12 until the distal end 102 of the catheter 100 extends distally from the elongated body 12 and contacts a first target tissue site in or around the left pulmonary veins 67, as shown in Fig. 5C.
- the catheter 100 is operated to map and/or ablate the first target tissue site.
- the catheter 100 is proximally retracted into the elongated body 12. Then, the steering mechanism 17 on the handle 14 of the sheath 10 is operated to tension the left steering wire 28b to steer the distal end 13 into the second bending configuration 20 to point the distal end 13 towards the right pulmonary veins 68, as shown in Fig. 5D. Once the distal end 13 is properly placed, the catheter 100 is again advanced through the lumen 30 of the elongated body 12 until the distal end 102 of the catheter 100 extends distally from the elongated body 12 and contacts a second target tissue site in or around the right pulmonary veins 68, as shown in Fig. 5E. The catheter 100 is then operated to map and/or ablate the second target tissue site.
- the catheter 100 is proximally retracted into the elongated body 12 and the catheter 100 and the sheath 10 are removed from the patient.
- the above-described ablation procedure could alternatively be performed by first steering the catheter sheath 10 towards the right pulmonary veins 68 and then steering the catheter sheath 10 towards the left pulmonary veins 67.
- the method describes, for purposes of better understanding the invention, only two mapping and/or ablating procedures, it should be well understood that the method may include more than two mapping and/or ablating procedures.
- the method may includes multiple mapping and/or ablating procedures while the sheath 10 is in the first bending configuration 18 before steering the sheath 10 into the second bending configuration 20.
- the bending directions of the catheter guide sheath are shown as being 180 degrees apart, it will be understood that the bending directions may be greater than or less than 180 degrees apart. By way of another example, the bending directions may be 90 degrees apart. Further, although the catheter guide sheath is shown as having two bent configurations, it should be understood that the sheath may have more than two bent configurations. By way of yet another example, the catheter guide sheath may have three or four bent configurations that may be symmetrically or asymmetrically disposed around a central axis. Still further, rather than the outer coating 22 with different durometer sections depicted in Figs. 4A-4F, the coil 42 may be formed of a coated wire where the wire coating has sections with varying stiffness profiles. In other words, the coil 42 may include sections with varying bending properties, while the outer coating has uniform bending properties.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Otolaryngology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Mechanical Engineering (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10705047A EP2398543A1 (en) | 2009-02-20 | 2010-02-12 | Asymmetric dual directional steerable catheter sheath |
| JP2011551155A JP2012518470A (ja) | 2009-02-20 | 2010-02-12 | 非対称性二方向可動カテーテルシース |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15424409P | 2009-02-20 | 2009-02-20 | |
| US61/154,244 | 2009-02-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2010096347A1 true WO2010096347A1 (en) | 2010-08-26 |
Family
ID=42237265
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2010/024130 Ceased WO2010096347A1 (en) | 2009-02-20 | 2010-02-12 | Asymmetric dual directional steerable catheter sheath |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US8500733B2 (enExample) |
| EP (1) | EP2398543A1 (enExample) |
| JP (1) | JP2012518470A (enExample) |
| WO (1) | WO2010096347A1 (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014007221A1 (ja) * | 2012-07-05 | 2014-01-09 | Inoue Kanji | 形成線材を有したカテーテル型診断・治療器具及び形成線材と共に用いられるカテーテルチューブ |
| JP2014121633A (ja) * | 2014-02-12 | 2014-07-03 | Kanji Inoue | スタイレットを有したカテーテル型治療・診断器具 |
| US10610293B2 (en) | 2013-12-24 | 2020-04-07 | St. Jude Medical, Cardiology Division, Inc. | Deflectable catheter bodies with corrugated tubular structures |
| US11116941B2 (en) | 2013-12-10 | 2021-09-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter curve shape strut |
Families Citing this family (176)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8774913B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravasculary-induced neuromodulation |
| US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
| US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
| JP2008513060A (ja) | 2004-09-14 | 2008-05-01 | エドワーズ ライフサイエンシーズ アーゲー | 心臓弁逆流の処置のためのデバイスおよび方法 |
| AU2004324043A1 (en) | 2004-10-02 | 2006-04-20 | Christoph Hans Huber | Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support |
| EP1951352B1 (en) | 2005-11-10 | 2017-01-11 | Edwards Lifesciences CardiAQ LLC | Balloon-expandable, self-expanding, vascular prosthesis connecting stent |
| US20090306768A1 (en) | 2006-07-28 | 2009-12-10 | Cardiaq Valve Technologies, Inc. | Percutaneous valve prosthesis and system and method for implanting same |
| US20090276040A1 (en) | 2008-05-01 | 2009-11-05 | Edwards Lifesciences Corporation | Device and method for replacing mitral valve |
| EP2135634B1 (en) * | 2008-06-16 | 2011-10-19 | Greatbatch Ltd. | Bi-Directional Asymmetric Steerable Sheath |
| EP2367505B1 (en) | 2008-09-29 | 2020-08-12 | Edwards Lifesciences CardiAQ LLC | Heart valve |
| US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
| US8652129B2 (en) | 2008-12-31 | 2014-02-18 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation |
| EP2398543A1 (en) | 2009-02-20 | 2011-12-28 | Boston Scientific Scimed, Inc. | Asymmetric dual directional steerable catheter sheath |
| WO2010121076A2 (en) | 2009-04-15 | 2010-10-21 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
| NZ624106A (en) | 2009-04-29 | 2015-12-24 | Cleveland Clinic Foundation | Apparatus and method for replacing a diseased cardiac valve |
| US8449599B2 (en) | 2009-12-04 | 2013-05-28 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
| US8906013B2 (en) | 2010-04-09 | 2014-12-09 | Endosense Sa | Control handle for a contact force ablation catheter |
| US8870863B2 (en) | 2010-04-26 | 2014-10-28 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses, systems, and methods for renal neuromodulation |
| US9918787B2 (en) | 2010-05-05 | 2018-03-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Monitoring, managing and/or protecting system and method for non-targeted tissue |
| JP6125999B2 (ja) | 2010-06-21 | 2017-05-10 | カルディアック バルブ テクノロジーズ,インコーポレーテッド | 人工心臓弁 |
| EP3459500B1 (en) | 2010-09-23 | 2020-09-16 | Edwards Lifesciences CardiAQ LLC | Replacement heart valves and delivery devices |
| US8560086B2 (en) | 2010-12-02 | 2013-10-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode assemblies and methods of construction therefor |
| JP6527329B2 (ja) | 2011-05-03 | 2019-06-05 | シファメド・ホールディングス・エルエルシー | 操縦可能な送達シース |
| US9089631B2 (en) | 2011-07-22 | 2015-07-28 | Cook Medical Technologies Llc | Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages |
| US9375138B2 (en) | 2011-11-25 | 2016-06-28 | Cook Medical Technologies Llc | Steerable guide member and catheter |
| US9821143B2 (en) | 2011-12-15 | 2017-11-21 | Imricor Medical Systems, Inc. | Steerable sheath including elastomeric member |
| US9757538B2 (en) | 2011-12-15 | 2017-09-12 | Imricor Medical Systems, Inc. | MRI compatible control handle for steerable sheath with audible, tactile and/or visual means |
| US20140135745A1 (en) | 2011-12-15 | 2014-05-15 | Imricor Medical Systems, Inc. | Mri compatible handle and steerable sheath |
| US8961550B2 (en) | 2012-04-17 | 2015-02-24 | Indian Wells Medical, Inc. | Steerable endoluminal punch |
| EP3603501B1 (en) | 2012-08-09 | 2025-07-23 | University of Iowa Research Foundation | Catheter systems for surrounding a tissue structure |
| EP2885040A1 (en) * | 2012-08-16 | 2015-06-24 | Cath Med Ltd. | Apparatuses for steering catheters |
| US9314593B2 (en) | 2012-09-24 | 2016-04-19 | Cook Medical Technologies Llc | Medical devices for the identification and treatment of bodily passages |
| US9233225B2 (en) | 2012-11-10 | 2016-01-12 | Curvo Medical, Inc. | Coaxial bi-directional catheter |
| US9549666B2 (en) | 2012-11-10 | 2017-01-24 | Curvo Medical, Inc. | Coaxial micro-endoscope |
| US20140200639A1 (en) | 2013-01-16 | 2014-07-17 | Advanced Neuromodulation Systems, Inc. | Self-expanding neurostimulation leads having broad multi-electrode arrays |
| US9439763B2 (en) | 2013-02-04 | 2016-09-13 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
| US9895055B2 (en) | 2013-02-28 | 2018-02-20 | Cook Medical Technologies Llc | Medical devices, systems, and methods for the visualization and treatment of bodily passages |
| US9474530B2 (en) * | 2013-03-14 | 2016-10-25 | C.R. Bard, Inc. | Handling of fasteners within a surgical instrument |
| US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
| US20140277427A1 (en) | 2013-03-14 | 2014-09-18 | Cardiaq Valve Technologies, Inc. | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
| US9549748B2 (en) | 2013-08-01 | 2017-01-24 | Cook Medical Technologies Llc | Methods of locating and treating tissue in a wall defining a bodily passage |
| US10300286B2 (en) | 2013-09-27 | 2019-05-28 | Medtronic, Inc. | Tools and assemblies thereof for implantable medical devices |
| US9526522B2 (en) | 2013-09-27 | 2016-12-27 | Medtronic, Inc. | Interventional medical systems, tools, and assemblies |
| WO2015061692A1 (en) * | 2013-10-25 | 2015-04-30 | Intuitive Surgical Operations, Inc. | Flexible instrument with embedded actuation conduits |
| US20150126852A1 (en) * | 2013-11-01 | 2015-05-07 | Covidien Lp | Positioning catheter |
| US9839765B2 (en) * | 2013-11-12 | 2017-12-12 | St. Jude Medical, Cardiology Division, Inc. | Transfemoral mitral valve repair delivery device |
| CN105792878A (zh) * | 2013-12-06 | 2016-07-20 | 施菲姆德控股有限责任公司 | 可转向医疗装置、系统和使用方法 |
| EP3091921B1 (en) | 2014-01-06 | 2019-06-19 | Farapulse, Inc. | Apparatus for renal denervation ablation |
| CN106170269B (zh) | 2014-02-21 | 2019-01-11 | 爱德华兹生命科学卡迪尔克有限责任公司 | 用于瓣膜替代品的受控部署的递送装置 |
| US9937323B2 (en) | 2014-02-28 | 2018-04-10 | Cook Medical Technologies Llc | Deflectable catheters, systems, and methods for the visualization and treatment of bodily passages |
| US9572666B2 (en) | 2014-03-17 | 2017-02-21 | Evalve, Inc. | Mitral valve fixation device removal devices and methods |
| CA3187081A1 (en) | 2014-05-02 | 2015-11-05 | Intellimedical Technologies Pty Ltd | Elongate steerable devices for insertion into a subject's body |
| WO2015171418A2 (en) | 2014-05-06 | 2015-11-12 | St. Jude Medical, Cardiology Division, Inc. | Electrode support structure assembly |
| WO2015171921A2 (en) | 2014-05-07 | 2015-11-12 | Mickelson Steven R | Methods and apparatus for selective tissue ablation |
| EP3142584A1 (en) | 2014-05-16 | 2017-03-22 | Iowa Approach Inc. | Methods and apparatus for multi-catheter tissue ablation |
| US20150328000A1 (en) | 2014-05-19 | 2015-11-19 | Cardiaq Valve Technologies, Inc. | Replacement mitral valve with annular flap |
| US10118022B2 (en) | 2014-06-05 | 2018-11-06 | St. Jude Medical, Cardiology Division, Inc. | Deflectable catheter shaft section |
| US9532870B2 (en) | 2014-06-06 | 2017-01-03 | Edwards Lifesciences Corporation | Prosthetic valve for replacing a mitral valve |
| EP4559428A3 (en) | 2014-06-12 | 2025-08-20 | Boston Scientific Scimed, Inc. | Method and apparatus for rapid and selective tissue ablation with cooling |
| EP3154463B1 (en) | 2014-06-12 | 2019-03-27 | Farapulse, Inc. | Apparatus for rapid and selective transurethral tissue ablation |
| US9844645B2 (en) | 2014-06-17 | 2017-12-19 | St. Jude Medical, Cardiology Division, Inc. | Triple coil catheter support |
| WO2015195339A1 (en) * | 2014-06-17 | 2015-12-23 | St. Jude Medical, Cardiology Division, Inc. | Asymmetric catheter curve shapes |
| US10195398B2 (en) | 2014-08-13 | 2019-02-05 | Cook Medical Technologies Llc | Tension member seal and securing mechanism for medical devices |
| US9675798B2 (en) | 2014-08-26 | 2017-06-13 | Medtronic, Inc. | Interventional medical systems, devices, and components thereof |
| US10478620B2 (en) | 2014-08-26 | 2019-11-19 | Medtronic, Inc. | Interventional medical systems, devices, and methods of use |
| CN106852115A (zh) | 2014-09-28 | 2017-06-13 | 卡迪欧凯尼迪克斯公司 | 用于治疗心功能不全的装置 |
| EP3206613B1 (en) | 2014-10-14 | 2019-07-03 | Farapulse, Inc. | Apparatus for rapid and safe pulmonary vein cardiac ablation |
| US10898096B2 (en) | 2014-10-27 | 2021-01-26 | St. Jude Medical, Cardiology Division, Inc. | Apparatus and method for connecting elements in medical devices |
| EP3217904B1 (en) * | 2014-11-14 | 2021-09-08 | Medtronic Ardian Luxembourg S.à.r.l. | Catheter apparatuses for modulation of nerves in communication with the pulmonary system and associated systems |
| EP4410245A3 (en) | 2014-11-26 | 2024-10-16 | Edwards Lifesciences Corporation | Transcatheter prosthetic heart valve and delivery system |
| EP3209235B1 (en) | 2015-01-28 | 2019-06-26 | St. Jude Medical, Cardiology Division, Inc. | Thermal mapping catheter |
| EP3271000B1 (en) | 2015-03-20 | 2020-06-17 | Cardiokinetix, Inc. | Systems for delivering an implantable device |
| CA2979884A1 (en) | 2015-03-27 | 2016-10-06 | Shifamed Holdings, Llc | Steerable medical devices, systems, and methods of use |
| CA2982823A1 (en) | 2015-04-24 | 2016-10-27 | Shifamed Holdings, Llc | Steerable medical devices, systems, and methods of use |
| US10376363B2 (en) | 2015-04-30 | 2019-08-13 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
| US10602983B2 (en) | 2015-05-08 | 2020-03-31 | St. Jude Medical International Holding S.À R.L. | Integrated sensors for medical devices and method of making integrated sensors for medical devices |
| US10376673B2 (en) | 2015-06-19 | 2019-08-13 | Evalve, Inc. | Catheter guiding system and methods |
| CA2990872C (en) | 2015-06-22 | 2022-03-22 | Edwards Lifescience Cardiaq Llc | Actively controllable heart valve implant and methods of controlling same |
| US10092400B2 (en) | 2015-06-23 | 2018-10-09 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
| US10117744B2 (en) | 2015-08-26 | 2018-11-06 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
| US10575951B2 (en) | 2015-08-26 | 2020-03-03 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement mitral valve |
| US10350066B2 (en) | 2015-08-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
| EP4205685B1 (en) | 2015-10-21 | 2024-08-28 | St. Jude Medical, Cardiology Division, Inc. | High density electrode mapping catheter |
| JP6445742B1 (ja) | 2015-10-21 | 2018-12-26 | セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド | 高密度電極マッピングカテーテル |
| EP3373794B1 (en) | 2015-11-09 | 2022-01-05 | Kalila Medical, Inc. | Steering assemblies for medical devices |
| US20170189097A1 (en) | 2016-01-05 | 2017-07-06 | Iowa Approach Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
| US10130423B1 (en) | 2017-07-06 | 2018-11-20 | Farapulse, Inc. | Systems, devices, and methods for focal ablation |
| US10172673B2 (en) | 2016-01-05 | 2019-01-08 | Farapulse, Inc. | Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue |
| US12144541B2 (en) | 2016-01-05 | 2024-11-19 | Boston Scientific Scimed, Inc. | Systems, apparatuses and methods for delivery of ablative energy to tissue |
| US10660702B2 (en) | 2016-01-05 | 2020-05-26 | Farapulse, Inc. | Systems, devices, and methods for focal ablation |
| US10583270B2 (en) | 2016-03-14 | 2020-03-10 | Covidien Lp | Compound curve navigation catheter |
| US10143823B2 (en) | 2016-04-29 | 2018-12-04 | Medtronic, Inc. | Interventional medical systems and improved assemblies thereof and associated methods of use |
| US12364537B2 (en) | 2016-05-02 | 2025-07-22 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
| JP6528010B1 (ja) | 2016-05-03 | 2019-06-12 | セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド | イリゲーション型高密度電極カテーテル |
| US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
| EP3471631A4 (en) | 2016-06-16 | 2020-03-04 | Farapulse, Inc. | Systems, apparatuses, and methods for guide wire delivery |
| US10736632B2 (en) | 2016-07-06 | 2020-08-11 | Evalve, Inc. | Methods and devices for valve clip excision |
| US10350062B2 (en) | 2016-07-21 | 2019-07-16 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
| US11324495B2 (en) | 2016-07-29 | 2022-05-10 | Cephea Valve Technologies, Inc. | Systems and methods for delivering an intravascular device to the mitral annulus |
| US10646689B2 (en) | 2016-07-29 | 2020-05-12 | Cephea Valve Technologies, Inc. | Mechanical interlock for catheters |
| US10974027B2 (en) | 2016-07-29 | 2021-04-13 | Cephea Valve Technologies, Inc. | Combination steerable catheter and systems |
| US10661052B2 (en) | 2016-07-29 | 2020-05-26 | Cephea Valve Technologies, Inc. | Intravascular device delivery sheath |
| US10639151B2 (en) | 2016-07-29 | 2020-05-05 | Cephea Valve Technologies, Inc. | Threaded coil |
| US10751485B2 (en) | 2016-08-29 | 2020-08-25 | Cephea Valve Technologies, Inc. | Methods, systems, and devices for sealing and flushing a delivery system |
| US10933216B2 (en) | 2016-08-29 | 2021-03-02 | Cephea Valve Technologies, Inc. | Multilumen catheter |
| US11045315B2 (en) * | 2016-08-29 | 2021-06-29 | Cephea Valve Technologies, Inc. | Methods of steering and delivery of intravascular devices |
| US20180056043A1 (en) * | 2016-08-29 | 2018-03-01 | Randolf Von Oepen | Adjustable guidewire receiving member |
| US11109967B2 (en) * | 2016-08-29 | 2021-09-07 | Cephea Valve Technologies, Inc. | Systems and methods for loading and deploying an intravascular device |
| US11071564B2 (en) | 2016-10-05 | 2021-07-27 | Evalve, Inc. | Cardiac valve cutting device |
| US10874512B2 (en) | 2016-10-05 | 2020-12-29 | Cephea Valve Technologies, Inc. | System and methods for delivering and deploying an artificial heart valve within the mitral annulus |
| WO2018080985A1 (en) | 2016-10-24 | 2018-05-03 | St. Jude Medical, Cardiology Division, Inc. | Catheter insertion devices |
| US11172858B2 (en) | 2016-10-28 | 2021-11-16 | St. Jude Medical, Cardiology Division, Inc. | Flexible high-density mapping catheter |
| US10363138B2 (en) | 2016-11-09 | 2019-07-30 | Evalve, Inc. | Devices for adjusting the curvature of cardiac valve structures |
| US10631981B2 (en) | 2016-11-15 | 2020-04-28 | Cephea Valve Technologies, Inc. | Delivery catheter distal cap |
| CN106344150A (zh) * | 2016-11-23 | 2017-01-25 | 常州朗合医疗器械有限公司 | 射频消融导管及系统 |
| US10653523B2 (en) * | 2017-01-19 | 2020-05-19 | 4C Medical Technologies, Inc. | Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves |
| CN110177494A (zh) | 2017-01-19 | 2019-08-27 | 圣犹达医疗用品心脏病学部门有限公司 | 鞘可视化 |
| US10561495B2 (en) | 2017-01-24 | 2020-02-18 | 4C Medical Technologies, Inc. | Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve |
| US12029647B2 (en) | 2017-03-07 | 2024-07-09 | 4C Medical Technologies, Inc. | Systems, methods and devices for prosthetic heart valve with single valve leaflet |
| US10786651B2 (en) | 2017-03-07 | 2020-09-29 | Talon Medical, LLC | Steerable guide catheter |
| US9987081B1 (en) | 2017-04-27 | 2018-06-05 | Iowa Approach, Inc. | Systems, devices, and methods for signal generation |
| US10617867B2 (en) | 2017-04-28 | 2020-04-14 | Farapulse, Inc. | Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue |
| US12036113B2 (en) | 2017-06-14 | 2024-07-16 | 4C Medical Technologies, Inc. | Delivery of heart chamber prosthetic valve implant |
| ES2923913T3 (es) | 2017-07-06 | 2022-10-03 | Edwards Lifesciences Corp | Sistema de suministro de carril orientable |
| US11647935B2 (en) | 2017-07-24 | 2023-05-16 | St. Jude Medical, Cardiology Division, Inc. | Masked ring electrodes |
| CN115844523A (zh) | 2017-09-12 | 2023-03-28 | 波士顿科学医学有限公司 | 用于心室局灶性消融的系统、设备和方法 |
| CN111491582B (zh) | 2017-11-28 | 2023-12-05 | 圣犹达医疗用品心脏病学部门有限公司 | 受控式可膨胀导管 |
| CN117481869A (zh) | 2018-01-25 | 2024-02-02 | 爱德华兹生命科学公司 | 在部署后用于辅助置换瓣膜重新捕获和重新定位的递送系统 |
| EP4275738B1 (en) | 2018-02-08 | 2025-12-17 | Boston Scientific Scimed, Inc. | Apparatus for controlled delivery of pulsed electric field ablative energy to tissue |
| US11051934B2 (en) | 2018-02-28 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic mitral valve with improved anchors and seal |
| US20190336198A1 (en) | 2018-05-03 | 2019-11-07 | Farapulse, Inc. | Systems, devices, and methods for ablation using surgical clamps |
| JP2021522903A (ja) | 2018-05-07 | 2021-09-02 | ファラパルス,インコーポレイテッド | 組織へアブレーションエネルギーを送達するためのシステム、装置、および方法 |
| WO2019217300A1 (en) | 2018-05-07 | 2019-11-14 | Farapulse, Inc. | Epicardial ablation catheter |
| WO2019217317A1 (en) | 2018-05-07 | 2019-11-14 | Farapulse, Inc. | Systems, apparatuses, and methods for filtering high voltage noise induced by pulsed electric field ablation |
| US12156979B2 (en) | 2018-05-21 | 2024-12-03 | St. Jude Medical, Cardiology Division, Inc. | Deflectable catheter shaft with pullwire anchor feature |
| EP3768185B1 (en) | 2018-05-21 | 2023-06-14 | St. Jude Medical, Cardiology Division, Inc. | Radio-frequency ablation and direct current electroporation catheters |
| WO2020039392A2 (en) | 2018-08-23 | 2020-02-27 | St. Jude Medical, Cardiology Division, Inc. | Curved high density electrode mapping catheter |
| US11857441B2 (en) | 2018-09-04 | 2024-01-02 | 4C Medical Technologies, Inc. | Stent loading device |
| WO2020061359A1 (en) | 2018-09-20 | 2020-03-26 | Farapulse, Inc. | Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue |
| US12082936B2 (en) | 2018-09-27 | 2024-09-10 | St. Jude Medical, Cardiology Division, Inc. | Uniform mapping balloon |
| US11918762B2 (en) | 2018-10-03 | 2024-03-05 | St. Jude Medical, Cardiology Division, Inc. | Reduced actuation force electrophysiology catheter handle |
| US12102531B2 (en) | 2018-10-22 | 2024-10-01 | Evalve, Inc. | Tissue cutting systems, devices and methods |
| US11724068B2 (en) | 2018-11-16 | 2023-08-15 | Cephea Valve Technologies, Inc. | Intravascular delivery system |
| EP3886766A1 (en) * | 2018-11-27 | 2021-10-06 | Boston Scientific Scimed Inc. | Systems and methods for treating regurgitating cardiac valves |
| EP3952790A1 (en) | 2019-04-12 | 2022-02-16 | W.L. Gore & Associates, Inc. | Valve with multi-part frame and associated resilient bridging features |
| US11452628B2 (en) | 2019-04-15 | 2022-09-27 | 4C Medical Technologies, Inc. | Loading systems for collapsible prosthetic heart valve devices and methods thereof |
| CA3137105A1 (en) | 2019-04-23 | 2020-10-29 | Edwards Lifesciences Corporation | Motorized implant delivery system |
| US11622675B2 (en) * | 2019-05-15 | 2023-04-11 | Boston Scientific Scimed, Inc. | Medical device having asymmetric bending |
| AU2020279633B2 (en) | 2019-05-17 | 2025-08-14 | Boston Scientific Scimed, Inc. | Systems and devices for an endoscope tubeless working channel |
| US10625080B1 (en) | 2019-09-17 | 2020-04-21 | Farapulse, Inc. | Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation |
| CA3143060A1 (en) * | 2019-10-23 | 2021-04-29 | Edwards Lifesciences Corporation | Systems and methods for tricuspid valve treatment |
| US11944769B2 (en) * | 2019-11-12 | 2024-04-02 | Acclarent, Inc. | Steerable guide with partial sleeve |
| US11497541B2 (en) | 2019-11-20 | 2022-11-15 | Boston Scientific Scimed, Inc. | Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses |
| US11065047B2 (en) | 2019-11-20 | 2021-07-20 | Farapulse, Inc. | Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses |
| US10842572B1 (en) | 2019-11-25 | 2020-11-24 | Farapulse, Inc. | Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines |
| US11931253B2 (en) | 2020-01-31 | 2024-03-19 | 4C Medical Technologies, Inc. | Prosthetic heart valve delivery system: ball-slide attachment |
| US12133797B2 (en) | 2020-01-31 | 2024-11-05 | 4C Medical Technologies, Inc. | Prosthetic heart valve delivery system: paddle attachment feature |
| US12053375B2 (en) | 2020-03-05 | 2024-08-06 | 4C Medical Technologies, Inc. | Prosthetic mitral valve with improved atrial and/or annular apposition and paravalvular leakage mitigation |
| US11992403B2 (en) | 2020-03-06 | 2024-05-28 | 4C Medical Technologies, Inc. | Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells |
| US12178444B2 (en) | 2020-05-06 | 2024-12-31 | Evalve, Inc. | Clip removal systems and methods |
| US12171485B2 (en) | 2020-05-06 | 2024-12-24 | Evalve, Inc. | Systems and methods for leaflet cutting using a hook catheter |
| US12171486B2 (en) | 2020-05-06 | 2024-12-24 | Evalve, Inc. | Devices and methods for clip separation |
| US12414811B2 (en) | 2020-05-06 | 2025-09-16 | Evalve, Inc. | Devices and methods for leaflet cutting |
| US12048448B2 (en) | 2020-05-06 | 2024-07-30 | Evalve, Inc. | Leaflet grasping and cutting device |
| EP4185228A1 (en) | 2020-07-24 | 2023-05-31 | Boston Scientific Scimed Inc. | Electric field application for single shot cardiac ablation by irreversible electroporation |
| US12310652B2 (en) | 2020-07-24 | 2025-05-27 | Boston Scientific Scimed, Inc. | Hybrid electroporation ablation catheter |
| JP2023536910A (ja) * | 2020-08-05 | 2023-08-30 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 胆道および/または膵道に沿った狭窄を処置するためのデバイス |
| EP4167886B1 (en) | 2020-08-18 | 2024-05-01 | St. Jude Medical, Cardiology Division, Inc. | High-density electrode catheters with magnetic position tracking |
| WO2022072385A2 (en) | 2020-09-30 | 2022-04-07 | Boston Scientific Scimed Inc | Pretreatment waveform for irreversible electroporation |
| CN116490239A (zh) | 2020-11-09 | 2023-07-25 | 敏捷设备有限公司 | 用于操纵导管的装置 |
| WO2022109034A1 (en) * | 2020-11-18 | 2022-05-27 | Inari Medical, Inc. | Catheters having steerable distal portions, and associated systems and methods |
| EP4247297A1 (en) | 2020-12-18 | 2023-09-27 | Edwards Lifesciences Corporation | Storage jar assembly for aprosthetic heart valve |
| US12343071B2 (en) | 2021-01-27 | 2025-07-01 | Boston Scientific Scimed, Inc | Voltage controlled pulse sequences for irreversible electroporation ablations |
| WO2022251453A1 (en) * | 2021-05-26 | 2022-12-01 | Ppc Broadband, Inc. | Flexible cable support |
| US20230181241A1 (en) * | 2021-12-10 | 2023-06-15 | Biosense Webster (Israel) Ltd. | Electrical paths along flexible section of deflectable sheath |
| US20250249215A1 (en) * | 2024-02-01 | 2025-08-07 | Centerline Biomedical, Inc. | Steerable sheath |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5273535A (en) | 1991-11-08 | 1993-12-28 | Ep Technologies, Inc. | Catheter with electrode tip having asymmetric left and right curve configurations |
| WO1994011057A1 (en) * | 1992-11-16 | 1994-05-26 | Boaz Avitall | Catheter deflection control |
| US5358478A (en) | 1990-02-02 | 1994-10-25 | Ep Technologies, Inc. | Catheter steering assembly providing asymmetric left and right curve configurations |
| US5575810A (en) | 1993-10-15 | 1996-11-19 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
| WO1999015070A1 (en) * | 1997-09-22 | 1999-04-01 | Endosurgical Concepts, Inc. | Selectively manipulable cathether |
| US6198974B1 (en) | 1998-08-14 | 2001-03-06 | Cordis Webster, Inc. | Bi-directional steerable catheter |
| US6579278B1 (en) | 2000-05-05 | 2003-06-17 | Scimed Life Systems, Inc. | Bi-directional steerable catheter with asymmetric fulcrum |
| US20030114832A1 (en) * | 2001-12-14 | 2003-06-19 | Kohler Robert Edward | Interventional catheter with three dimensional articulation |
| US20030195495A1 (en) * | 1996-11-08 | 2003-10-16 | Thomas J. Fogarty, M.D. | Transvascular TMR device and method |
| WO2004103434A2 (en) * | 2003-05-19 | 2004-12-02 | Evalve, Inc. | Articulatable access sheath and methods of use |
| WO2005094661A1 (en) * | 2004-03-30 | 2005-10-13 | Cathrx Ltd | A catheter steering device |
| US20050256452A1 (en) * | 2002-11-15 | 2005-11-17 | Demarchi Thomas | Steerable vascular sheath |
| US20070225681A1 (en) * | 2006-03-21 | 2007-09-27 | Medtronic Vascular | Catheter Having a Selectively Formable Distal Section |
| US20080300462A1 (en) * | 2007-05-31 | 2008-12-04 | Boston Scientific Scimed, Inc. | Active controlled bending in medical devices |
| EP2135634A1 (en) * | 2008-06-16 | 2009-12-23 | Greatbatch Ltd. | Bi-Directional Asymmetric Steerable Sheath |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7972323B1 (en) * | 1998-10-02 | 2011-07-05 | Boston Scientific Scimed, Inc. | Steerable device for introducing diagnostic and therapeutic apparatus into the body |
| US6890329B2 (en) * | 1999-06-15 | 2005-05-10 | Cryocath Technologies Inc. | Defined deflection structure |
| US6640120B1 (en) * | 2000-10-05 | 2003-10-28 | Scimed Life Systems, Inc. | Probe assembly for mapping and ablating pulmonary vein tissue and method of using same |
| US6551271B2 (en) * | 2001-04-30 | 2003-04-22 | Biosense Webster, Inc. | Asymmetrical bidirectional steerable catheter |
| US7276062B2 (en) * | 2003-03-12 | 2007-10-02 | Biosence Webster, Inc. | Deflectable catheter with hinge |
| US7481793B2 (en) * | 2003-12-10 | 2009-01-27 | Boston Scientic Scimed, Inc. | Modular steerable sheath catheters |
| US7922654B2 (en) * | 2004-08-09 | 2011-04-12 | Boston Scientific Scimed, Inc. | Fiber optic imaging catheter |
| CA2569378A1 (en) * | 2004-06-14 | 2005-12-29 | Applied Medical Resources Corporation | Steerable vascular sheath |
| US8409191B2 (en) * | 2004-11-04 | 2013-04-02 | Boston Scientific Scimed, Inc. | Preshaped ablation catheter for ablating pulmonary vein ostia within the heart |
| US9084694B2 (en) * | 2005-09-09 | 2015-07-21 | Boston Scientific Scimed, Inc. | Coil shaft |
| US8821477B2 (en) * | 2007-08-06 | 2014-09-02 | Boston Scientific Scimed, Inc. | Alternative micromachined structures |
| EP2398543A1 (en) | 2009-02-20 | 2011-12-28 | Boston Scientific Scimed, Inc. | Asymmetric dual directional steerable catheter sheath |
-
2010
- 2010-02-12 EP EP10705047A patent/EP2398543A1/en not_active Ceased
- 2010-02-12 US US12/705,228 patent/US8500733B2/en active Active
- 2010-02-12 WO PCT/US2010/024130 patent/WO2010096347A1/en not_active Ceased
- 2010-02-12 JP JP2011551155A patent/JP2012518470A/ja not_active Ceased
-
2013
- 2013-08-05 US US13/959,388 patent/US9326815B2/en active Active
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5358478A (en) | 1990-02-02 | 1994-10-25 | Ep Technologies, Inc. | Catheter steering assembly providing asymmetric left and right curve configurations |
| US5273535A (en) | 1991-11-08 | 1993-12-28 | Ep Technologies, Inc. | Catheter with electrode tip having asymmetric left and right curve configurations |
| WO1994011057A1 (en) * | 1992-11-16 | 1994-05-26 | Boaz Avitall | Catheter deflection control |
| US5575810A (en) | 1993-10-15 | 1996-11-19 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
| US20030195495A1 (en) * | 1996-11-08 | 2003-10-16 | Thomas J. Fogarty, M.D. | Transvascular TMR device and method |
| WO1999015070A1 (en) * | 1997-09-22 | 1999-04-01 | Endosurgical Concepts, Inc. | Selectively manipulable cathether |
| US6198974B1 (en) | 1998-08-14 | 2001-03-06 | Cordis Webster, Inc. | Bi-directional steerable catheter |
| US6579278B1 (en) | 2000-05-05 | 2003-06-17 | Scimed Life Systems, Inc. | Bi-directional steerable catheter with asymmetric fulcrum |
| US20030114832A1 (en) * | 2001-12-14 | 2003-06-19 | Kohler Robert Edward | Interventional catheter with three dimensional articulation |
| US20050256452A1 (en) * | 2002-11-15 | 2005-11-17 | Demarchi Thomas | Steerable vascular sheath |
| WO2004103434A2 (en) * | 2003-05-19 | 2004-12-02 | Evalve, Inc. | Articulatable access sheath and methods of use |
| WO2005094661A1 (en) * | 2004-03-30 | 2005-10-13 | Cathrx Ltd | A catheter steering device |
| US20070225681A1 (en) * | 2006-03-21 | 2007-09-27 | Medtronic Vascular | Catheter Having a Selectively Formable Distal Section |
| US20080300462A1 (en) * | 2007-05-31 | 2008-12-04 | Boston Scientific Scimed, Inc. | Active controlled bending in medical devices |
| EP2135634A1 (en) * | 2008-06-16 | 2009-12-23 | Greatbatch Ltd. | Bi-Directional Asymmetric Steerable Sheath |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014007221A1 (ja) * | 2012-07-05 | 2014-01-09 | Inoue Kanji | 形成線材を有したカテーテル型診断・治療器具及び形成線材と共に用いられるカテーテルチューブ |
| JP2014054270A (ja) * | 2012-07-05 | 2014-03-27 | Kanji Inoue | スタイレットを有したカテーテル型治療・診断器具およびスタイレットが用いられるカテーテルチューブ |
| CN104394922A (zh) * | 2012-07-05 | 2015-03-04 | 有限会社Ptmc研究所 | 具有形成线材的导管型诊断或治疗器械及与形成线材一同使用的导管 |
| US9511205B2 (en) | 2012-07-05 | 2016-12-06 | Ptmc Institute | Catheter-type therapeutic or diagnostic instrument provided with shaped wire members and catheter tube to be used together with shaped wire members |
| US11116941B2 (en) | 2013-12-10 | 2021-09-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter curve shape strut |
| US10610293B2 (en) | 2013-12-24 | 2020-04-07 | St. Jude Medical, Cardiology Division, Inc. | Deflectable catheter bodies with corrugated tubular structures |
| JP2014121633A (ja) * | 2014-02-12 | 2014-07-03 | Kanji Inoue | スタイレットを有したカテーテル型治療・診断器具 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20100217261A1 (en) | 2010-08-26 |
| US8500733B2 (en) | 2013-08-06 |
| JP2012518470A (ja) | 2012-08-16 |
| EP2398543A1 (en) | 2011-12-28 |
| US9326815B2 (en) | 2016-05-03 |
| US20130317498A1 (en) | 2013-11-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9326815B2 (en) | Asymmetric dual directional steerable catheter sheath | |
| JP6828099B2 (ja) | 円環状電極及び点電極を有する多電極バルーンカテーテル | |
| US6711444B2 (en) | Methods of deploying helical diagnostic and therapeutic element supporting structures within the body | |
| US9186481B2 (en) | Preshaped ablation catheter for ablating pulmonary vein ostia within the heart | |
| US7419477B2 (en) | Catheterization method using proximal articulation and pre-formed distal end | |
| EP0784453B1 (en) | Flexible electrode support structure | |
| US6939349B2 (en) | Structures for deploying electrode elements | |
| EP1341463B1 (en) | Ablation catheter assembly for isolating a pulmonary vein | |
| EP1326550B1 (en) | Heart wall ablation/mapping catheter | |
| US6241728B1 (en) | Left atrium ablation catheter and method | |
| EP2364118B1 (en) | Loop structures for supporting diagnostic and/or therapeutic elements in contact with tissue | |
| JP5102033B2 (ja) | 拡張可能な経中隔シース | |
| EP3503956B1 (en) | Multilumen catheter | |
| WO2014077893A1 (en) | Steerable assembly for surgical catheter | |
| WO2008098074A2 (en) | A delivery system for delivering a medical device to a location within a patient's body | |
| JP2016112422A (ja) | トレーニング処理された支持部材を有するepカテーテル、及び関連する方法 | |
| US20040087935A1 (en) | Electrophysiological probes having tissue insulation and /or heating device cooling apparatus | |
| WO2006115683A1 (en) | Variable size apparatus for supporting diagnostic and/or therapeutic elements in contact with tissue |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10705047 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011551155 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010705047 Country of ref document: EP |