WO2010095682A1 - 肥満の評価方法 - Google Patents

肥満の評価方法 Download PDF

Info

Publication number
WO2010095682A1
WO2010095682A1 PCT/JP2010/052443 JP2010052443W WO2010095682A1 WO 2010095682 A1 WO2010095682 A1 WO 2010095682A1 JP 2010052443 W JP2010052443 W JP 2010052443W WO 2010095682 A1 WO2010095682 A1 WO 2010095682A1
Authority
WO
WIPO (PCT)
Prior art keywords
obesity
glu
discriminant
formula
equation
Prior art date
Application number
PCT/JP2010/052443
Other languages
English (en)
French (fr)
Inventor
孝幸 田中
浩史 山本
敏彦 安東
實 山門
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2011500646A priority Critical patent/JP5817527B2/ja
Priority to CN2010800088563A priority patent/CN102326084A/zh
Publication of WO2010095682A1 publication Critical patent/WO2010095682A1/ja
Priority to US13/137,373 priority patent/US20120041684A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • G01N33/6815Assays for specific amino acids containing sulfur, e.g. cysteine, cystine, methionine, homocysteine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/044Hyperlipemia or hypolipemia, e.g. dyslipidaemia, obesity

Definitions

  • the present invention relates to a method for evaluating obesity using the amino acid concentration in blood (plasma).
  • BMI Body Mass Index
  • body fat percentage has a problem that the measurement error is large.
  • built-in fat area has a problem that the measurement cost is high and the frequency of exposure is high. Therefore, these alternative indicators are required.
  • Non-Patent Document 1 Chevalier et al.
  • She et al. Non-Patent Document 2
  • branched-chain amino acids valine, leucine, isoleucine
  • the ratio of tryptophan to the sum of branched-chain amino acids and aromatic amino acids is more obese than healthy individuals.
  • Non-Patent Document 5 plasma branched-chain amino acids and glutamic acid are increased in obese as compared to healthy individuals, and glycine, tryptophan, threonine, histidine, taurine, citrulline, and cystine. It has been reported that it is decreased in obese compared with healthy individuals.
  • Non-Patent Document 6 it is reported that branched-chain amino acids and aromatic amino acids in plasma are increased in obese subjects compared to healthy subjects.
  • Patent Literature 1 and Patent Literature 2 relating to a method for associating an amino acid concentration with a biological state are disclosed as prior patents. Further, Patent Document 3 regarding a method for evaluating the state of metabolic syndrome using amino acid concentration and Patent Document 4 regarding a method for evaluating visceral fat accumulation using amino acid concentration are disclosed.
  • the present invention has been made in view of the above problems.
  • amino acid concentrations in blood the concentrations of amino acids related to apparent obesity, hidden obesity, and obesity states defined by BMI and VFA (Viseral Fat Area).
  • An object of the present invention is to provide an obesity evaluation method that can accurately evaluate apparent obesity, hidden obesity, and obesity.
  • the present inventors have searched and identified amino acid variables that are more specific for apparent obesity, hidden obesity, and obesity status defined by BMI and VFA.
  • the present inventors have found that a multivariate discriminant (index formula, correlation formula) containing the identified amino acid concentration as a variable has a significant correlation with these obesity states, thereby completing the present invention.
  • the obesity evaluation method includes a measurement step of measuring amino acid concentration data relating to amino acid concentration values from blood collected from an evaluation object, and the measurement At least one of Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp included in the amino acid concentration data of the evaluation object measured in step
  • the obesity evaluation method is the obesity evaluation method described above, wherein the concentration value reference evaluation step includes Glu, Ser included in the amino acid concentration data of the evaluation object measured in the measurement step. , Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp, and defined by the BMI and the VFA for the evaluation object based on the concentration value Healthy or apparent obesity, healthy or hidden obesity, healthy or obese, apparent obesity or hidden obesity, apparent obesity or obesity, hidden obesity or obesity, or healthy or apparent A concentration for determining whether obesity, hidden obesity or obesity And further comprising a value criterion discriminating step.
  • the obesity evaluation method is the obesity evaluation method described above, wherein the concentration value reference evaluation step includes Glu, Ser included in the amino acid concentration data of the evaluation object measured in the measurement step. , Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp at least one of the concentration values and the preset multivariate discrimination using the amino acid concentration as a variable
  • a discriminant value calculating step for calculating a discriminant value that is a value of the multivariate discriminant based on the formula; and, based on the discriminant value calculated in the discriminant value calculating step, the apparent obesity,
  • a discriminant value criterion evaluation step for evaluating at least one of obesity and the obesity, Discriminant is Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, characterized in that it comprises at least one as the variable of Trp.
  • the obesity evaluation method is the obesity evaluation method described above, wherein the discriminant value reference evaluation step is based on the discriminant value calculated in the discriminant value calculation step.
  • Healthy or apparent obesity defined by the BMI and the VFA the healthy or hidden obesity, the healthy or obese, the apparent obesity or the hidden obesity, the apparent obesity or the obesity, the hidden obesity or the obesity
  • the method further includes a discrimination value criterion discrimination step for discriminating whether the subject is the normal or apparent obesity, the hidden obesity or the obesity.
  • the obesity evaluation method according to the present invention is the obesity evaluation method described above, wherein the multivariate discriminant is one fractional expression or a sum of a plurality of the fractional expressions, or a logistic regression equation, a linear discriminant. , Multiple regression equation, formula created by support vector machine, formula created by Mahalanobis distance method, formula created by canonical discriminant analysis, formula created by decision tree And
  • the obesity evaluation method is the above-described obesity evaluation method, wherein the multivariate discrimination is performed when the discrimination value criterion discrimination step determines whether the subject is healthy or apparent obesity.
  • the equations are Equation 1, Equation 2, Glu, Thr, Phe as logistic regression equation, Pro, Asn, Thr, Arg, Tyr, Orn as Logistic regression equation, His, Thr, Val. , Orn, Trp are the linear discriminants using the variables, or Ser, Pro, Asn, Orn, Phe, Val, Leu, Ile are the linear discriminants using the variables. a 1 (Glu / Gly) + b 1 (His / Ile) + c 1 (Thr / Phe) + d 1 ...
  • the obesity evaluation method is the obesity evaluation method described above, wherein in the discrimination value criterion discrimination step, it is determined whether or not the healthy or hidden obesity is the multivariate discrimination.
  • the equation is expressed by the logistic regression equation using Equation 3, Equation 4, Glu, Ser, Ala, Orn, Leu, Trp as the variables, and Glu, Ser, Gly, Cit, Ala, Val, Leu, Ile as the variables.
  • the obesity evaluation method is the obesity evaluation method described above, wherein in the discrimination value criterion discrimination step, it is determined whether or not the subject is healthy or obese, the multivariate discriminant Is the logistic regression equation with Glu, Ser, Cit, Ala, Tyr, and Trp as the variables, and Glu, Ser, Ala, Tyr, Trp, Val, Leu, and Ile as the variables.
  • the method for evaluating obesity is the method for evaluating obesity described above, in which it is determined whether the apparent obesity or the hidden obesity is determined in the determination value criterion determination step.
  • the discriminant is represented by the logistic regression equation using Equation 7, Equation 8, Glu, Thr, Ala, Arg, Tyr, Lys as the variables, Pro, Gly, Gln, Ala, Orn, Val, Leu, Ile as the variables.
  • the logistic regression equation is the linear discriminant using His, Thr, Ala, Tyr, Orn, Phe as the variable, or the linear discriminant using Ser, Pro, Gly, Cit, Lys, Phe as the variable. It is characterized by that.
  • the obesity evaluation method is the obesity evaluation method described above, wherein in the discrimination value criterion discrimination step, it is determined whether the apparent obesity or the obesity is the multivariate discrimination.
  • the equations are Equation 9, Equation 10, Glu, Asn, Gly, His, Leu, Trp as the variables, and the logistic regression equation, Glu, Ala, ABA, Met, Lys, Val, Leu, Ile as the variables.
  • the obesity evaluation method is the obesity evaluation method described above, wherein in the discrimination value criterion discrimination step, it is determined whether the hidden obesity or the obesity is the multivariate discrimination.
  • the equations are Equation 11, Equation 12, Glu, Gly, Cit, Tyr, Val, Phe as the variables, and the logistic regression equation, Glu, Pro, Cit, Tyr, Phe, Trp as the variables. , Glu, Cit, Tyr, Orn, Met, Trp as the variables, or the linear discriminant with Glu, Pro, His, Met, Phe as the variables. a 11 (Glu / Gln) + b 11 (Tyr / Gly) + c 11 (Lys / Trp) + d 11 ...
  • the obesity evaluation method is the obesity evaluation method described above, wherein the discrimination value criterion discrimination step discriminates whether it is the normal or apparent obesity, the hidden obesity or the obesity.
  • the multivariate discriminant is expressed by the logistic regression equation using the equation 13, Glu, Gly, Ala, Tyr, Trp, Val, Leu, Ile, or Glu, Ala, Arg, Tyr, Orn, Val. , Leu, and Ile are the linear discriminants using the variables.
  • (Formula 13) (In Equation 13, a 13 , b 13 , c 13 , and d 13 are arbitrary non-zero real numbers, and e 13 is an arbitrary real number.)
  • the obesity evaluation apparatus includes a control unit and a storage unit, and is based on apparent obesity, hidden obesity, and obesity defined by BMI (Body Mass Index) and VFA (Viseral Fat Area).
  • An obesity evaluation apparatus that evaluates at least one state, wherein the control means includes Glu, Ser, Pro, Gly, Ala, Cys2, Tyr included in the amino acid concentration data of the evaluation target acquired in advance concerning the concentration value of amino acids. , Val, Orn, Met, Lys, Ile, Leu, Phe, Trp, based on the multivariate discriminant stored in the storage means using the concentration value and the concentration of the amino acid as a variable.
  • a discriminant value calculating means for calculating a discriminant value which is a value of a variable discriminant;
  • a discriminant value criterion-evaluating unit that evaluates at least one of the apparent obesity, the hidden obesity, and the obesity for the evaluation object based on the discriminant value calculated by another value calculating unit;
  • the discriminant includes at least one of Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp as the variable.
  • the obesity evaluation apparatus is the obesity evaluation apparatus described above, wherein the discriminant value criterion-evaluating unit is configured to determine the BMI for the evaluation object based on the discriminant value calculated by the discriminant value calculating unit. And the healthy or apparent obesity defined by the VFA, the healthy or the hidden obesity, the healthy or the obese, the apparent or the hidden obesity, the apparent or the obese, the hidden or the obese, or It is further characterized by further comprising a discriminant value criterion discriminating unit for discriminating whether the subject is normal, apparent obesity, hidden obesity or obesity.
  • the obesity evaluation apparatus is the obesity evaluation apparatus described above, wherein the multivariate discriminant is one fractional expression or a sum of the plurality of fractional expressions, or a logistic regression equation, a linear discriminant, a weight It is one of a regression formula, a formula created with a support vector machine, a formula created with Mahalanobis distance method, a formula created with canonical discriminant analysis, or a formula created with a decision tree. .
  • the obesity evaluation apparatus is the obesity evaluation apparatus described above, wherein the multivariate discriminant is used when the discriminant value criterion determination unit determines whether the subject is healthy or apparent obesity.
  • Equation 1 Equation 2, Glu, Thr, Phe as logistic regression equation, Pro, Asn, Thr, Arg, Tyr, Orn as logistic regression equation, His, Thr, Val, Orn , Trp as the variable, or Ser, Pro, Asn, Orn, Phe, Val, Leu, and Ile as the linear discriminant.
  • the multivariate discriminant is , Equation 3, Equation 4, Glu, Ser, Ala, Orn, Leu, Trp as the variables
  • the logistic regression equation, Glu, Ser, Gly, Cit, Ala, Val, Leu, Ile is a regression equation, the linear discriminant using Glu, Ser, His, Thr, Lys, Phe as the variable, or the linear discriminant using Glu, His, ABA, Tyr, Met, Lys as the variable.
  • the multivariate discriminant is: Formula 5 and Formula 6, Glu, Ser, Cit, Ala, Tyr, Trp and the logistic regression equation with Glu, Ser, Ala, Tyr, Trp, Val, Leu, and Ile as the variables. And the linear discriminant having Glu, Thr, Ala, Tyr, Orn, Lys as the variable, or the linear discriminant having Glu, Pro, His, Cit, Orn, Lys as the variable. To do. a 5 (Glu / Ser) + b 5 (Cit / Ala) + c 5 (Trp / Tyr) + d 5 ...
  • the obesity evaluation apparatus is the obesity evaluation apparatus described above, wherein the discriminant value criterion determination unit determines whether the apparent obesity or the hidden obesity is the multivariate discriminant.
  • the logistic regression equation using Equation 7, Equation 8, Glu, Thr, Ala, Arg, Tyr, Lys as the variable, and Pro, Gly, Gln, Ala, Orn, Val, Leu, Ile as the variable.
  • the obesity evaluation apparatus is the obesity evaluation apparatus described above, wherein the multivariate discriminant is used when the discriminant value criterion discrimination unit determines whether the apparent obesity or the obesity.
  • Equation 10 Equation 10, Glu, Asn, Gly, His, Leu, Trp as the variables
  • the logistic regression equation, Glu, Ala, ABA, Met, Lys, Val, Leu, Ile as the variables Regression equation, the linear discriminant using Glu, Gly, His, Ala, Lys as the variable, or the linear discriminant using Glu, Thr, Ala, ABA, Lys, Val, Leu, Ile as the variables. It is characterized by.
  • the obesity evaluation apparatus is the obesity evaluation apparatus described above, wherein when the discrimination value criterion determination unit determines whether the obesity obesity or the obesity, the multivariate discriminant is , Expression 11, Expression 12, Logistic regression equation with Glu, Gly, Cit, Tyr, Val, Phe as the variables, Logistic regression equation with Glu, Pro, Cit, Tyr, Phe, Trp as the variables, Glu , Cit, Tyr, Orn, Met, Trp as the variables, or the linear discriminant with Glu, Pro, His, Met, Phe as the variables. a 11 (Glu / Gln) + b 11 (Tyr / Gly) + c 11 (Lys / Trp) + d 11 ...
  • the obesity evaluation apparatus is the obesity evaluation apparatus described above, wherein the discrimination value criterion discrimination means discriminates whether the condition is the normal or apparent obesity, the hidden obesity or the obesity.
  • the multivariate discriminant is expressed by the logistic regression equation with Glu, Gly, Ala, Tyr, Trp, Val, Leu, Ile as the variable, or Glu, Ala, Arg, Tyr, Orn, Val, Leu. , Ile is the linear discriminant having the variable.
  • (Formula 13) (In Equation 13, a 13 , b 13 , c 13 , and d 13 are arbitrary non-zero real numbers, and e 13 is an arbitrary real number.)
  • the obesity evaluation apparatus is the obesity evaluation apparatus described above, wherein the control means relates to an index representing at least one state of the amino acid concentration data and the apparent obesity, the hidden obesity, and the obesity.
  • Multivariate discriminant creation means for creating the multivariate discriminant for storing the multivariate discriminant stored in the storage means based on the obesity state information stored in the storage means including obesity state index data, and creating the multivariate discriminant expression Means for creating a candidate multivariate discriminant that is a candidate for the multivariate discriminant based on a predetermined formula creation method from the obesity state information; and creating the candidate multivariate discriminant
  • a candidate multivariate discriminant verification means for verifying the candidate multivariate discriminant created by means based on a predetermined verification method, and a verification by the candidate multivariate discriminant verification means.
  • a combination of the amino acid concentration data included in the obesity state information used when creating the candidate multivariate discriminant is selected by selecting a variable of the candidate multivariate discriminant based on a predetermined variable selection method from the result.
  • Variable selection means for selecting, based on the verification results accumulated by repeatedly executing the candidate multivariate discriminant creation means, the candidate multivariate discriminant verification means and the variable selection means,
  • the multivariate discriminant is created by selecting the candidate multivariate discriminant adopted as the multivariate discriminant from candidate multivariate discriminants.
  • the obesity evaluation method is an appearance defined by BMI (Body Mass Index) and VFA (Visual Fat Area) for an evaluation object, which is executed in an information processing apparatus including a control unit and a storage unit.
  • the multivariate discriminant based on the multivariate discriminant A discriminant value calculating step that calculates a discriminant value that is a value, and at least one state of the apparent obesity, the hidden obesity, and the obesity for the evaluation object based on the discriminant value calculated in the discriminant value calculating step
  • the multivariate discriminant includes Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, and Trp. At least one is included as the variable.
  • the obesity evaluation method is the obesity evaluation method described above, wherein the discriminant value reference evaluation step is configured to calculate the BMI for the evaluation object based on the discriminant value calculated in the discriminant value calculation step.
  • the healthy or apparent obesity defined by the VFA the healthy or the hidden obesity, the healthy or the obese, the apparent or the hidden obesity, the apparent or the obese, the hidden or the obese, or The method further includes a discrimination value criterion discrimination step for discriminating whether the subject is the normal or apparent obesity, the hidden obesity or the obesity.
  • the obesity evaluation method is the obesity evaluation method described above, wherein the multivariate discriminant is a fractional expression or a sum of a plurality of fractional expressions, or a logistic regression equation, a linear discriminant, It is one of a regression formula, a formula created with a support vector machine, a formula created with Mahalanobis distance method, a formula created with canonical discriminant analysis, or a formula created with a decision tree. .
  • the multivariate discriminant is , Equation 1, Equation 2, Glu, Thr, Phe as logistic regression equation, Pro, Asn, Thr, Arg, Tyr, Orn as logistic regression equation, His, Thr, Val, Orn , Trp as the variable, or Ser, Pro, Asn, Orn, Phe, Val, Leu, and Ile as the linear discriminant.
  • the multivariate discriminant is , Equation 3, Equation 4, Glu, Ser, Ala, Orn, Leu, Trp as the variables
  • the logistic regression equation, Glu, Ser, Gly, Cit, Ala, Val, Leu, Ile is a regression equation, the linear discriminant using Glu, Ser, His, Thr, Lys, Phe as the variable, or the linear discriminant using Glu, His, ABA, Tyr, Met, Lys as the variable.
  • the multivariate discriminant is: Formula 5 and Formula 6, Glu, Ser, Cit, Ala, Tyr, Trp and the logistic regression equation with Glu, Ser, Ala, Tyr, Trp, Val, Leu, and Ile as the variables.
  • the obesity evaluation method is the obesity evaluation method described above, wherein in the discrimination value criterion discrimination step, it is determined whether the apparent obesity or the hidden obesity is the multivariate discriminant.
  • the multivariate discriminant is , Equation 10, Equation 10, Glu, Asn, Gly, His, Leu, Trp as the variables
  • the logistic regression equation, Glu, Ala, ABA, Met, Lys, Val, Leu, Ile as the variables Regression equation, the linear discriminant having Glu, Gly, His, Ala, Lys as the variables, or the linear discriminant having Glu, Thr, Ala, ABA, Lys, Val, Leu, Ile as the variables. It is characterized by.
  • the multivariate discriminant is , Equation 11, Equation 12, Glu, Gly, Cit, Tyr, Val, Phe using the logistic regression equation as the variable, Glu, Pro, Cit, Tyr, Phe, Trp as the variable, the logistic regression equation, Glu , Cit, Tyr, Orn, Met, Trp as the variables, or the linear discriminant with Glu, Pro, His, Met, Phe as the variables.
  • the obesity evaluation method is the obesity evaluation method described above, wherein in the discrimination value criterion discrimination step, it is discriminated whether it is the normal or apparent obesity, the hidden obesity or the obesity.
  • the multivariate discriminant is expressed by the logistic regression equation with Glu, Gly, Ala, Tyr, Trp, Val, Leu, Ile as the variable, or Glu, Ala, Arg, Tyr, Orn, Val, Leu. , Ile is the linear discriminant having the variable.
  • (Formula 13) (In Equation 13, a 13 , b 13 , c 13 , and d 13 are arbitrary non-zero real numbers, and e 13 is an arbitrary real number.)
  • the obesity evaluation method is the obesity evaluation method described above, wherein the amino acid concentration data and at least one of the apparent obesity, the hidden obesity, and the obesity are executed by the control means.
  • a multivariate discriminant creating step for creating the multivariate discriminant stored in the storage unit based on the obesity state information stored in the storage unit including the obesity state index data relating to the index to represent, the multivariate
  • the discriminant creating step includes a candidate multivariate discriminant creating step for creating a candidate multivariate discriminant that is a candidate for the multivariate discriminant based on the obesity state information based on a predetermined formula creating method, and the candidate multivariate creating step
  • a candidate multivariate discriminant verification step for verifying the candidate multivariate discriminant created in the discriminant creation step based on a predetermined verification method;
  • the obesity state used when creating the candidate multivariate discriminant by selecting a variable of the candidate multivariate discriminant based on a predetermined variable selection method from the verification result in the candidate multivariate discriminant verification step A variable selection
  • the obesity evaluation system includes a control means and a storage means, and the evaluation object includes apparent obesity, hidden obesity and obesity defined by BMI (Body Mass Index) and VFA (Viseral Fat Area).
  • An obesity evaluation system configured to connect an obesity evaluation apparatus that evaluates at least one state and an information communication terminal apparatus that provides amino acid concentration data of the evaluation target relating to an amino acid concentration value through a network
  • the information communication terminal device includes an amino acid concentration data transmitting means for transmitting the amino acid concentration data to be evaluated to the obesity evaluating device, the apparent obesity transmitted from the obesity evaluating device, the hidden obesity, and The assessment of at least one condition assessment of the obesity;
  • An evaluation result receiving means for receiving the evaluation result of the object, wherein the control means of the obesity evaluation apparatus receives the amino acid concentration data of the evaluation object transmitted from the information communication terminal apparatus.
  • Discriminant value calculating means for calculating a discriminant value that is a value of the multivariate discriminant based on the multivariate discriminant stored in the storage means using at least one of the concentration value and the amino acid concentration as a variable And based on the discriminant value calculated by the discriminant value calculating means, the apparent obesity, the hidden A discriminant value criterion-evaluating unit that evaluates at least one of obesity and the obesity; an evaluation result transmitting unit that transmits the evaluation result of the evaluation target in the discriminant value criterion-evaluating unit to the information communication terminal device;
  • the multivariate discriminant includes at least one of Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp as the variable. It
  • the obesity evaluation program according to the present invention is defined by BMI (Body Mass Index) and VFA (Visual Fat Area) for evaluation targets to be executed in an information processing apparatus including a control unit and a storage unit.
  • An obesity evaluation program for evaluating at least one of apparent obesity, hidden obesity, and obesity, and is included in the previously obtained amino acid concentration data of the evaluation object regarding the amino acid concentration value to be executed by the control means Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp
  • the storage means using as a variable the concentration value of the amino acid and the concentration of the amino acid Based on the multivariate discriminant stored in A discriminant value calculating step for calculating a discriminant value which is a value of the multivariate discriminant, and the apparent obesity, the hidden obesity and the evaluation object based on the discriminant value calculated in the discriminant value calculating step.
  • a discriminant value criterion evaluation step for evaluating at least one state of obesity wherein the multivariate discriminant is Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile. , Leu, Phe, Trp, including at least one of the variables.
  • a recording medium according to the present invention is a computer-readable recording medium and records the obesity evaluation program described above.
  • amino acid concentration data relating to amino acid concentration values is measured from blood collected from an evaluation object, and Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Based on the concentration value of at least one of Val, Orn, Met, Lys, Ile, Leu, Phe, and Trp, at least one state of apparent obesity, hidden obesity, and obesity defined by BMI and VFA is evaluated for each subject to be evaluated To evaluate.
  • BMI and VFA amino acid concentrations related to apparent obesity, hidden obesity, and obesity defined by BMI and VFA out of amino acid concentrations in blood, apparent obesity, hidden obesity, and obesity are accurately determined. There is an effect that it can be evaluated.
  • Glu amino acid concentration data
  • Ser, Pro Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp included in the measured amino acid concentration data.
  • healthy or apparent obesity as defined by BMI and VFA, healthy or hidden obesity, healthy or obese, apparent obesity or obese, apparent obesity or obesity, hidden obesity or obesity, Alternatively, it is determined whether or not the subject is healthy or apparent obesity, hidden obesity or obesity.
  • a discriminant value, which is a value of the multivariate discriminant, is calculated based on what includes at least one as a variable, and at least one of apparent obesity, hidden obesity, and obesity is evaluated for each evaluation object based on the calculated discriminant value. Evaluate one state. This makes it possible to accurately evaluate the status of apparent obesity, hidden obesity, and obesity using the discriminant value obtained with a multivariate discriminant that has a significant correlation with apparent obesity, hidden obesity, and obesity status. There is an effect.
  • healthy or apparent obesity defined by BMI and VFA
  • healthy or hidden obesity healthy or obese, apparent obesity or hidden obesity, apparent obesity or Whether obesity, hidden obesity or obesity, or normal or apparent obesity, or hidden obesity or obesity is determined.
  • This makes it possible to distinguish between two groups of normal and apparent obesity, two groups of healthy and hidden obesity, two groups of healthy and obese, two groups of apparent obesity and hidden obesity, two groups of apparent obesity and obese, and hidden obesity. It is possible to accurately discriminate these two groups by using the discriminant value obtained by the multivariate discriminant useful for two-group discrimination between normal and apparent obesity and two-group discrimination between normal or apparent obesity and hidden obesity or obesity. There is an effect.
  • the multivariate discriminant can be one fractional expression or a sum of a plurality of fractional expressions, or a logistic regression formula, a linear discriminant formula, a multiple regression formula, a formula created with a support vector machine, a Mahalanobis distance Any one of an expression created by the method, an expression created by canonical discriminant analysis, and an expression created by a decision tree.
  • This makes it possible to distinguish between two groups of normal and apparent obesity, two groups of healthy and hidden obesity, two groups of healthy and obese, two groups of apparent obesity and hidden obesity, two groups of apparent obesity and obese, and hidden obesity.
  • the two-group discrimination can be performed more accurately by using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between normal and apparent obesity and the two-group discrimination between normal or apparent obesity and hidden obesity or obesity. There is an effect.
  • the multivariate discriminant when determining whether or not the subject is healthy or apparently obese, is expressed by the following formulas: Formula 1, Formula 2, Logistic regression equation using Glu, Thr, Phe as variables, Pro, Asn , Thr, Arg, Tyr, Orn as logistic regression equations, His, Thr, Val, Orn, Trp as linear variables, or Ser, Pro, Asn, Orn, Phe, Val, Leu, Ile as variables. It is a linear discriminant used as a variable.
  • the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal and apparent obesity.
  • the multivariate discriminant when determining whether or not the subject is healthy or hidden obesity, is a logistic that uses Equation 3, Equation 4, Glu, Ser, Ala, Orn, Leu, Trp as variables. Regression equation, logistic regression equation with Glu, Ser, Gly, Cit, Ala, Val, Leu, Ile as variables, linear discriminant with Glu, Ser, His, Thr, Lys, Phe as variables, or Glu, His, It is a linear discriminant using ABA, Tyr, Met, and Lys as variables.
  • the discriminant value obtained by the multivariate discriminant that is particularly useful for the 2-group discrimination between normal and hidden obesity can be used to achieve the effect that the 2-group discrimination can be performed with higher accuracy.
  • the multivariate discriminant when determining whether or not the subject is healthy or obese, is represented by logistic regression using Equations 5 and 6, Glu, Ser, Cit, Ala, Tyr, Trp as variables.
  • logistic regression equation with Glu, Ser, Ala, Tyr, Trp, Val, Leu, Ile as variables
  • linear discriminant with Glu, Thr, Ala, Tyr, Orn, Lys as variables
  • Glu, Pro, His , Cit, Orn, Lys are linear discriminants.
  • the discriminant value obtained by the multivariate discriminant particularly useful for the 2-group discrimination between healthy and obese can be used to achieve the effect that the 2-group discrimination can be performed with higher accuracy.
  • the multivariate discriminant when discriminating whether it is apparent obesity or hidden obesity, uses Equation 7, Equation 8, Glu, Thr, Ala, Arg, Tyr, Lys as variables.
  • the discriminant value obtained by the multivariate discriminant particularly useful for the 2-group discrimination of apparent obesity or hidden obesity is used, and this has the effect that the 2-group discrimination can be performed more accurately.
  • the multivariate discriminant when discriminating whether or not it is apparent obesity or obesity, is a logistic using Equation 9, Equation 10, Glu, Asn, Gly, His, Leu, Trp as variables.
  • the discriminant value obtained by the multivariate discriminant that is particularly useful for apparent obesity or obesity two-group discrimination is used, and this has the effect that the two-group discrimination can be performed more accurately.
  • the multivariate discriminant when determining whether or not the patient is obese obesity or obesity, is a logistic that uses Equation 11, Equation 12, Glu, Gly, Cit, Tyr, Val, and Phe as variables.
  • the discriminant value obtained by the multivariate discriminant particularly useful for the 2-group discrimination of hidden obesity or obesity is used, and this has the effect that the 2-group discrimination can be performed with higher accuracy.
  • the multivariate discriminant when discriminating whether healthy or apparent obesity or hidden obesity or obesity, is expressed by Equation 13, Glu, Gly, Ala, Tyr, Trp, Val, Leu, It is a logistic regression equation with Ile as a variable, or a linear discriminant with Glu, Ala, Arg, Tyr, Orn, Val, Leu, and Ile as variables.
  • the discrimination value obtained by the multivariate discriminant particularly useful for the 2-group discrimination between normal or apparent obesity and hidden obesity or obesity can be used to achieve the effect that the 2-group discrimination can be performed with higher accuracy.
  • the storage means Create a multivariate discriminant stored in Specifically, (1) a candidate multivariate discriminant is created based on a predetermined formula creation method from obesity status information, (2) the created candidate multivariate discriminant is verified based on a predetermined verification method, (3) A combination of amino acid concentration data included in obesity status information used when creating a candidate multivariate discriminant by selecting a variable of the candidate multivariate discriminant based on a predetermined variable selection method from the verification result Based on the verification results accumulated by repeatedly executing (4), (1), (2), and (3), candidate multiples that are adopted as multivariate discriminants from a plurality of candidate multivariate discriminants are selected. A multivariate discriminant is created by selecting a variable discriminant. This produces an effect that a multivariate discriminant optimum for apparent obesity, hidden obesity, and obesity state evaluation can
  • the obesity evaluation program recorded in the recording medium is read by the computer and executed, so that the computer executes the obesity evaluation program, so that the same effect as described above can be obtained. There is an effect.
  • apparent obesity, hidden obesity, obesity state evaluation, in addition to amino acid concentration, other biological information for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, For example, blood glucose level, blood pressure level, gender, age, liver disease index, eating habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • the present invention when evaluating the state of apparent obesity, hidden obesity, and obesity, as a variable in the multivariate discriminant, in addition to the concentration of amino acid, other biological information (for example, sugar, lipid, protein, peptide, mineral, It is also possible to further use biological metabolites such as hormones, and other biological indicators such as blood glucose level, blood pressure level, gender, age, liver disease index, eating habits, drinking habits, exercise habits, obesity, disease history, etc.) Absent.
  • FIG. 1 is a principle configuration diagram showing the basic principle of the present invention.
  • FIG. 2 is a flowchart illustrating an example of an obesity evaluation method according to the first embodiment.
  • FIG. 3 is a principle configuration diagram showing the basic principle of the present invention.
  • FIG. 4 is a diagram illustrating an example of the overall configuration of the present system.
  • FIG. 5 is a diagram showing another example of the overall configuration of the present system.
  • FIG. 6 is a block diagram showing an example of the configuration of the obesity evaluation apparatus 100 of the present system.
  • FIG. 7 is a diagram illustrating an example of information stored in the user information file 106a.
  • FIG. 8 is a diagram showing an example of information stored in the amino acid concentration data file 106b.
  • FIG. 9 is a diagram illustrating an example of information stored in the obesity state information file 106c.
  • FIG. 10 is a diagram illustrating an example of information stored in the designated obesity state information file 106d.
  • FIG. 11 is a diagram illustrating an example of information stored in the candidate multivariate discriminant file 106e1.
  • FIG. 12 is a diagram illustrating an example of information stored in the verification result file 106e2.
  • FIG. 13 is a diagram illustrating an example of information stored in the selected obesity state information file 106e3.
  • FIG. 14 is a diagram illustrating an example of information stored in the multivariate discriminant file 106e4.
  • FIG. 15 is a diagram illustrating an example of information stored in the discrimination value file 106f.
  • FIG. 16 is a diagram illustrating an example of information stored in the evaluation result file 106g.
  • FIG. 17 is a block diagram showing a configuration of the multivariate discriminant-preparing part 102h.
  • FIG. 18 is a block diagram illustrating a configuration of the discriminant value criterion-evaluating unit 102j.
  • FIG. 19 is a block diagram illustrating an example of the configuration of the client apparatus 200 of the present system.
  • FIG. 20 is a block diagram showing an example of the configuration of the database apparatus 400 of this system.
  • FIG. 21 is a flowchart showing an example of an obesity evaluation service process performed in the present system.
  • FIG. 22 is a flowchart illustrating an example of multivariate discriminant creation processing performed by the obesity evaluation apparatus 100 of the present system.
  • FIG. 23 is a box-and-whisker diagram regarding the distribution of amino acid variables in the healthy group, apparent obesity group, hidden obesity group, and obesity group.
  • FIG. 24 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to index formula 1.
  • FIG. 25 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to index formula 1.
  • FIG. 26 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group and an apparent obesity group.
  • FIG. 27 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 2.
  • FIG. 28 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to index formula 2.
  • FIG. 24 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to index formula 2.
  • FIG. 29 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group and an apparent obesity group.
  • FIG. 30 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 3.
  • FIG. 31 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 3.
  • FIG. 32 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group and an apparent obesity group.
  • FIG. 33 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 4.
  • FIG. 34 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 4.
  • FIG. 35 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group and a hidden obesity group.
  • FIG. 36 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 5.
  • FIG. 37 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 5.
  • FIG. 38 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group and a hidden obesity group.
  • FIG. 39 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 6.
  • FIG. 40 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 6.
  • FIG. 41 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group and a hidden obesity group.
  • FIG. 42 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 7.
  • FIG. 43 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 7.
  • FIG. 44 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group and an obese group.
  • FIG. 45 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 8.
  • FIG. 46 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 8.
  • FIG. 47 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group and an obese group.
  • FIG. 48 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 9.
  • FIG. 49 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 9.
  • FIG. 50 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group and an obese group.
  • FIG. 51 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 10.
  • FIG. 52 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 10.
  • FIG. 53 is a diagram showing the area under the ROC curve in two-group discrimination between an apparent obesity group and a hidden obesity group.
  • FIG. 54 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 11.
  • FIG. 55 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 11.
  • FIG. 56 is a diagram showing the area under the ROC curve in two-group discrimination between an apparent obesity group and a hidden obesity group.
  • FIG. 57 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 12.
  • FIG. 58 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 12.
  • FIG. 59 is a diagram showing an area under the ROC curve in two-group discrimination between an apparent obesity group and a hidden obesity group.
  • FIG. 60 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 13.
  • FIG. 61 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 13.
  • FIG. 62 is a diagram showing an area under the ROC curve in two-group discrimination between an apparent obesity group and a hidden obesity group.
  • FIG. 63 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 14.
  • FIG. 64 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 14.
  • FIG. 65 is a diagram showing an area under the ROC curve in two-group discrimination between an apparent obesity group and an obesity group.
  • FIG. 66 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 15.
  • FIG. 67 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 15.
  • FIG. 68 is a diagram showing the area under the ROC curve in two-group discrimination between an apparent obesity group and an obesity group.
  • FIG. 69 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 16.
  • FIG. 70 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 16.
  • FIG. 71 is a diagram showing the area under the ROC curve in the two-group discrimination between the hidden obesity group and the obesity group.
  • FIG. 72 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 17.
  • FIG. 73 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 17.
  • FIG. 74 is a diagram showing the area under the ROC curve in the two-group discrimination between the hidden obesity group and the obesity group.
  • FIG. 75 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 18;
  • FIG. 76 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 18;
  • FIG. 77 is a diagram showing the area under the ROC curve in the two-group discrimination between the hidden obesity group and the obesity group.
  • FIG. 78 is a two-group discrimination performance of a healthy group and an apparent obesity group, a healthy group and a hidden obesity group, a healthy group and an obese group, an apparent obesity group and a hidden obesity group, an apparent obesity group and an obese group, and a hidden obesity group and an obese group. It is a figure which shows the verification result.
  • FIG. 79 is a two-group discrimination performance of a healthy group and an apparent obesity group, a healthy group and a hidden obesity group, a healthy group and an obese group, an apparent obesity group and a hidden obesity group, an apparent obesity group and an obese group, and a hidden obesity group and an obese group.
  • FIG. 80 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 19.
  • FIG. 81 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 19.
  • 82 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 20.
  • FIG. FIG. 83 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 20.
  • 84 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 21.
  • FIG. FIG. 85 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 21.
  • FIG. 80 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 19.
  • FIG. 81 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 19.
  • 82 is a diagram showing a list of multivari
  • FIG. 86 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 22.
  • 87 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 22.
  • FIG. FIG. 88 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 23.
  • FIG. 89 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 23.
  • FIG. 90 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 24.
  • FIG. 91 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 24.
  • FIG. 92 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 25.
  • FIG. 93 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 25.
  • FIG. 94 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 26.
  • FIG. 95 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 26.
  • FIG. 96 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 27.
  • FIG. 97 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 27.
  • FIG. 98 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 28.
  • 99 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 28.
  • FIG. 100 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 29.
  • FIG. 101 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 29.
  • FIG. 102 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 30.
  • FIG. 103 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 30.
  • FIG. 104 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 31.
  • FIG. 105 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 31.
  • FIG. 106 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 32.
  • FIG. 107 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 32.
  • FIG. 108 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 33.
  • FIG. 109 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 33.
  • FIG. 110 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 34.
  • FIG. FIG. 111 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 34.
  • FIG. 112 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 35.
  • FIG. 113 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 35.
  • FIG. 114 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 36.
  • FIG. 115 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 36.
  • FIG. 116 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 37.
  • FIG. FIG. 117 is a diagram showing a list of multivariate discriminants having a discrimination performance equivalent to that of the index formula 37.
  • FIG. 118 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group / apparent obesity group and a hidden obesity group / obesity group.
  • FIG. 119 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 38.
  • 120 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 38.
  • 121 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group / apparent obesity group and a hidden obesity group / obesity group.
  • 122 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 39.
  • FIG. FIG. 123 is a diagram showing a list of multivariate discriminants having discriminative ability equivalent to the index formula 39.
  • FIG. 124 is a diagram showing the area under the ROC curve in two-group discrimination between a healthy group / apparent obesity group and a hidden obesity group / obesity group.
  • Embodiments of an obesity evaluation method according to the present invention (first embodiment) and embodiments of an obesity evaluation apparatus, an obesity evaluation method, an obesity evaluation system, an obesity evaluation program, and a recording medium according to the present invention (first embodiment) Second Embodiment) will be described in detail with reference to the drawings. In addition, this invention is not limited by this Embodiment.
  • FIG. 1 is a principle configuration diagram showing the basic principle of the present invention.
  • amino acid concentration data relating to amino acid concentration values is measured from blood collected from an evaluation target (for example, an individual such as an animal or a human) (step S-11).
  • the blood amino acid concentration was analyzed as follows. The collected blood sample was collected in a heparinized tube, and the collected blood sample was centrifuged to separate plasma from the blood. All plasma samples were stored frozen at -70 ° C. until measurement of amino acid concentration.
  • sulfosalicylic acid was added and protein removal treatment was performed by adjusting the concentration to 3%, and an amino acid analyzer based on the principle of high performance liquid chromatography (HPLC) using a ninhydrin reaction in a post column was used for the measurement.
  • the unit of amino acid concentration may be obtained by adding / subtracting / dividing an arbitrary constant to / from these concentrations, for example, molar concentration or weight concentration.
  • step S-11 of Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, and Trp included in the amino acid concentration data to be evaluated measured in step S-11. Based on at least one concentration value, at least one state of apparent obesity, hidden obesity, and obesity defined by BMI (Body Mass Index) and VFA (Viseral Fat Area) is evaluated (step S-). 12).
  • BMI Body Mass Index
  • VFA Vehicle Fat Area
  • amino acid concentration data relating to amino acid concentration values is measured from blood collected from an evaluation object, and Glu, Ser, Pro, Gly, Ala, Cys2 included in the measured amino acid concentration data of the evaluation object.
  • Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp, and at least one of apparent obesity, hidden obesity and obesity defined by BMI and VFA for each evaluation object Evaluate one state.
  • step S-12 data such as missing values and outliers may be removed from the amino acid concentration data to be evaluated measured in step S-11. Thereby, apparent obesity, hidden obesity, and obesity state evaluation can be more accurately evaluated.
  • step S-12 Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, and Le included in the amino acid concentration data to be evaluated measured in step S-11.
  • healthy or apparent obesity healthy or hidden obesity, healthy or obese, apparent or obese, apparent obesity or obesity, as defined by BMI and VFA, Whether it is hidden obesity or obesity, or “healthy or apparent obesity” or “hidden obesity or obesity” may be determined.
  • step S-12 Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, and Le included in the amino acid concentration data to be evaluated measured in step S-11.
  • It is a preset multivariate discriminant using at least one concentration value of Phe and Trp and the concentration of amino acid as a variable, and is Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys. , Ile, Leu, Phe, and Trp as a variable, a discriminant value that is the value of the multivariate discriminant is calculated, and based on the calculated discriminant value, an evaluation target is obtained. At least one condition of obesity, hidden obesity and obesity may be assessed. Thereby, apparent obesity, hidden obesity, and the state of obesity can be accurately evaluated using a discriminant value obtained by a multivariate discriminant having a significant correlation with apparent obesity, hidden obesity, and obesity.
  • step S-12 based on the calculated discriminant value, for the evaluation object, healthy or apparent obesity defined by BMI and VFA, healthy or hidden obesity, healthy or obese, apparent obesity or hidden obesity, apparent obesity or Whether it is obesity, hidden obesity or obesity, or “healthy or apparent obesity” or “hidden obesity or obesity” may be determined. Specifically, by comparing the discriminant value with a preset threshold value (cut-off value), for each evaluation object, healthy or apparent obesity, healthy or hidden obesity, healthy or obese, apparent obesity or hidden obesity, apparent Whether it is obesity or obesity, hidden obesity or obesity, or “healthy or apparent obesity” or “hidden obesity or obesity” may be determined.
  • a preset threshold value cut-off value
  • the multivariate discriminant is a multivariate discriminant, the sum of one fractional formula or multiple fractional formulas, or a logistic regression formula, linear discriminant formula, multiple regression formula, formula created with support vector machine, Mahalanobis distance Any one of an expression created by the method, an expression created by canonical discriminant analysis, and an expression created by a decision tree may be used. This makes it possible to distinguish between two groups of normal and apparent obesity, two groups of healthy and hidden obesity, two groups of healthy and obese, two groups of apparent obesity and hidden obesity, two groups of apparent obesity and obese, and hidden obesity. The two-group discrimination can be performed more accurately by using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between normal and apparent obesity and the two-group discrimination between normal or apparent obesity and hidden obesity or obesity. .
  • the multivariate discriminant is expressed by a logistic regression equation, Pro, Asn, Thr, using Equation 1, Equation 2, Glu, Thr, Phe as variables.
  • Logistic regression equation with Arg, Tyr, Orn as variables
  • linear discriminant with His, Thr, Val, Orn, Trp as variables
  • Ser, Pro, Asn, Orn, Phe, BCAA as variables Good.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal and apparent obesity.
  • the variable “BCAA” represents “the sum of the variables Val, Leu, and Ile”.
  • the multivariate discriminant is expressed by a logistic regression equation using Glu, Ser, Ala, Orn, Leu, Trp as a variable, Glu, Ser, , Gly, Cit, Ala, BCAA as a variable, logistic regression equation, Glu, Ser, His, Thr, Lys, Phe as a linear discriminant, or Glu, His, ABA, Tyr, Met, Lys as a variable It may be a linear discriminant.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal and hidden obesity.
  • the multivariate discriminant is expressed by a logistic regression equation using Glu, Ser, Cit, Ala, Tyr, Trp as variables, Glu, Ser, Logistic regression equation with Ala, Tyr, Trp, BCAA as variables, linear discriminant with Glu, Thr, Ala, Tyr, Orn, Lys as variables, or Glu, Pro, His, Cit, Orn, Lys as variables.
  • a linear discriminant may be used.
  • the multivariate discriminant is expressed by a logistic regression equation with a variable of Equation 7, Equation 8, Glu, Thr, Ala, Arg, Tyr, Lys, Pro, Logistic regression equation with Gly, Gln, Ala, Orn, BCAA as variables, linear discriminant with His, Thr, Ala, Tyr, Orn, Phe as variables, or Ser, Pro, Gly, Cit, Lys, Phe as variables May be a linear discriminant.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of apparent obesity or hidden obesity.
  • the multivariate discriminant is expressed by the logistic regression equation using Glu, Asn, Gly, His, Leu, Trp as variables, Glu, Ala, , ABA, Met, Lys, BCAA as logistic regression equations, Glu, Gly, His, Ala, Lys as linear discriminants, or Glu, Thr, Ala, ABA, Lys, BCAA as linear variables A discriminant may be used.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant that is particularly useful for apparent obesity or two-group discrimination of obesity.
  • the multivariate discriminant is expressed by a logistic regression equation using Gul, Gly, Cit, Tyr, Val, Phe as variables, Glu, Pro, , Cit, Tyr, Phe, Trp as variables, logistic regression equation, Glu, Cit, Tyr, Orn, Met, Trp as variables, or linear discriminant with Glu, Pro, His, Met, Phe as variables A discriminant may be used. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of hidden obesity or obesity.
  • the multivariate discriminant is a logistic with Equation 13, Glu, Gly, Ala, Tyr, Trp, BCAA as variables.
  • a regression equation or a linear discriminant using Glu, Ala, Arg, Tyr, Orn, BCAA as variables may be used.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal or apparent obesity and hidden obesity or obesity.
  • Each multivariate discriminant described above is described in the method described in International Publication No. 2004/052191, which is an international application by the present applicant, or in International Publication No. 2006/098192, which is an international application by the present applicant. It can be created by a method (multivariate discriminant creation process described in the second embodiment to be described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is expressed as apparent obesity or hidden obesity defined by BMI and VFA, regardless of the unit of amino acid concentration in the amino acid concentration data as input data. It can be suitably used for the evaluation of obesity status.
  • the fractional expression means that the numerator of the fractional expression is represented by the sum of amino acids A, B, C,... And / or the denominator of the fractional expression is the sum of amino acids a, b, c,. It is represented by
  • the fractional expression includes a sum of fractional expressions ⁇ , ⁇ , ⁇ ,.
  • the fractional expression also includes a divided fractional expression.
  • An appropriate coefficient may be added to each amino acid used in the numerator and denominator.
  • amino acids used in the numerator and denominator may overlap.
  • an appropriate coefficient may be attached to each fractional expression.
  • the value of the coefficient of each variable and the value of the constant term may be real numbers.
  • the combination of the numerator variable and the denominator variable is generally reversed in the sign of the correlation with the objective variable, but since the correlation is maintained, it can be considered equivalent in discriminability. Combinations of swapping numerator and denominator variables are also included.
  • the multivariate discriminant generally means a formula used in multivariate analysis. For example, multiple regression, multiple logistic regression, linear discriminant function, Mahalanobis distance, canonical discriminant function, support vector machine, decision Includes trees. Also included are expressions as indicated by the sum of different forms of multivariate discriminants.
  • a coefficient and a constant term are added to each variable.
  • the coefficient and the constant term are preferably real numbers, more preferably data. Values belonging to the range of 99% confidence intervals of the coefficients and constant terms obtained from the data, more preferably belonging to the range of 95% confidence intervals of the coefficients and constant terms obtained from the data Any value can be used.
  • each coefficient and its confidence interval may be obtained by multiplying it by a real number
  • the value of the constant term and its confidence interval may be obtained by adding / subtracting / multiplying / dividing an arbitrary real constant thereto.
  • apparent obesity, hidden obesity, obesity state evaluation, in addition to the concentration of amino acids, other biological information for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, For example, blood glucose level, blood pressure level, gender, age, liver disease index, eating habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • the present invention when evaluating the state of apparent obesity, hidden obesity, and obesity, as a variable in the multivariate discriminant, in addition to the concentration of amino acid, other biological information (for example, sugar, lipid, protein, peptide, mineral, It is also possible to further use biological metabolites such as hormones, and other biological indicators such as blood glucose level, blood pressure level, gender, age, liver disease index, eating habits, drinking habits, exercise habits, obesity, disease history, etc.) Absent.
  • FIG. 2 is a flowchart illustrating an example of an obesity evaluation method according to the first embodiment.
  • amino acid concentration data relating to amino acid concentration values is measured from blood collected from individuals such as animals and humans (step SA-11).
  • the amino acid concentration value is measured by the method described above.
  • step SA-12 data such as missing values and outliers are removed from the amino acid concentration data of the individual measured in step SA-11 (step SA-12).
  • the individual can be healthy or apparently obese, healthy or hidden obesity, healthy or obese, apparent It is determined whether the subject is obese or hidden obesity, apparent obesity or obesity, hidden obesity or obesity, or healthy or apparent obesity or hidden obesity or obesity (step SA-13).
  • amino acid concentration data is measured from blood collected from an individual, and (2) from the measured amino acid concentration data of the individual. Data such as missing values and outliers are removed, and (3) Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, and Val included in the amino acid concentration data of individuals from which data such as missing values and outliers have been removed.
  • step SA-13 Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, and the like included in the amino acid concentration data of the individual from which data such as missing values and outliers were removed in step SA-12.
  • a discriminant value is calculated, and the calculated discriminant value is compared with a preset threshold value (cut-off value), so that each individual is healthy.
  • Hidden obesity or obesity or may be determined whether or not healthy or apparently obesity or hidden obesity or obesity. This makes it possible to distinguish between two groups of normal and apparent obesity, two groups of healthy and hidden obesity, two groups of healthy and obese, two groups of apparent obesity and hidden obesity, two groups of apparent obesity and obese, and hidden obesity.
  • the two-group discrimination can be performed with high accuracy by using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between normal and apparent obesity and the two-group discrimination between normal or apparent obesity and hidden obesity or obesity.
  • the multivariate discriminant is one fractional expression or the sum of a plurality of fractional expressions, or a logistic regression formula, a linear discriminant formula, a multiple regression formula, a formula created with a support vector machine, a Mahalanobis distance Any one of an expression created by the method, an expression created by canonical discriminant analysis, and an expression created by a decision tree may be used. This makes it possible to distinguish between two groups of normal and apparent obesity, two groups of healthy and hidden obesity, two groups of healthy and obese, two groups of apparent obesity and hidden obesity, two groups of apparent obesity and obese, and hidden obesity. The two-group discrimination can be performed more accurately by using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between normal and apparent obesity and the two-group discrimination between normal or apparent obesity and hidden obesity or obesity. .
  • the multivariate discriminant is expressed by a logistic regression equation, Pro, Asn, Thr, using Equation 1, Equation 2, Glu, Thr, Phe as variables.
  • the multivariate discriminant is expressed by a logistic regression equation using Glu, Ser, Ala, Orn, Leu, Trp as a variable, Glu, Ser, , Gly, Cit, Ala, BCAA as a variable, logistic regression equation, Glu, Ser, His, Thr, Lys, Phe as a linear discriminant, or Glu, His, ABA, Tyr, Met, Lys as a variable It may be a linear discriminant.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal and hidden obesity.
  • the multivariate discriminant is expressed by a logistic regression equation using Glu, Ser, Cit, Ala, Tyr, Trp as variables, Glu, Ser, Logistic regression equation with Ala, Tyr, Trp, BCAA as variables, linear discriminant with Glu, Thr, Ala, Tyr, Orn, Lys as variables, or Glu, Pro, His, Cit, Orn, Lys as variables.
  • a linear discriminant may be used.
  • the multivariate discriminant is expressed by a logistic regression equation with a variable of Equation 7, Equation 8, Glu, Thr, Ala, Arg, Tyr, Lys, Pro, Logistic regression equation with Gly, Gln, Ala, Orn, BCAA as variables, linear discriminant with His, Thr, Ala, Tyr, Orn, Phe as variables, or Ser, Pro, Gly, Cit, Lys, Phe as variables May be a linear discriminant.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of apparent obesity or hidden obesity.
  • the multivariate discriminant is expressed by the logistic regression equation using Glu, Asn, Gly, His, Leu, Trp as variables, Glu, Ala, , ABA, Met, Lys, BCAA as logistic regression equations, Glu, Gly, His, Ala, Lys as linear discriminants, or Glu, Thr, Ala, ABA, Lys, BCAA as linear variables A discriminant may be used.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant that is particularly useful for apparent obesity or two-group discrimination of obesity.
  • the multivariate discriminant is expressed by a logistic regression equation using Gul, Gly, Cit, Tyr, Val, Phe as variables, Glu, Pro, , Cit, Tyr, Phe, Trp as variables, logistic regression equation, Glu, Cit, Tyr, Orn, Met, Trp as variables, or linear discriminant with Glu, Pro, His, Met, Phe as variables A discriminant may be used. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of hidden obesity or obesity.
  • the multivariate discriminant is a logistic regression equation using Equation 13, Glu, Gly, Ala, Tyr, Trp, BCAA as a variable, or A linear discriminant having Glu, Ala, Arg, Tyr, Orn, and BCAA as variables may be used.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal or apparent obesity and hidden obesity or obesity.
  • Each multivariate discriminant described above is described in the method described in International Publication No. 2004/052191, which is an international application by the present applicant, or in International Publication No. 2006/098192, which is an international application by the present applicant. It can be created by a method (multivariate discriminant creation process described in the second embodiment to be described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is suitable for evaluation of apparent obesity, hidden obesity, and obesity status regardless of the unit of amino acid concentration in the amino acid concentration data as input data. Can be used.
  • FIG. 3 is a principle configuration diagram showing the basic principle of the present invention.
  • Met, Lys, Ile, Leu, Phe, Trp is a multivariate discriminant stored in a storage unit that changes the concentration of amino acids and the concentration of amino acids, and is Glu, Ser, Pro, Gly, Ala, Cys2. , Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp, and the like, the discriminant value that is the value of the multivariate discriminant is calculated (step S- 21).
  • step S-22 apparent obesity and hidden obesity defined by BMI (Body Mass Index) and VFA (Viseral Fat Area) are evaluated for each evaluation object based on the discriminant value calculated in step S-21. At least one of obesity and obesity is evaluated (step S-22).
  • BMI Body Mass Index
  • VFA Vehicle Fat Area
  • a discriminant value, which is the value of the multivariate discriminant, is calculated based on what includes at least one as a variable. Based on the calculated discriminant value, apparent obesity defined by BMI and VFA, hidden At least one condition of obesity and obesity is assessed. Thereby, apparent obesity, hidden obesity, and the state of obesity can be accurately evaluated using a discriminant value obtained by a multivariate discriminant having a significant correlation with apparent obesity, hidden obesity, and obesity.
  • step S-22 based on the discriminant value calculated in step S-21, healthy or apparent obesity defined by BMI and VFA, healthy or hidden obesity, healthy or obese, apparent obesity or Whether it is hidden obesity, apparent obesity or obesity, hidden obesity or obesity, or “healthy or apparent obesity” or “hidden obesity or obesity” may be determined. Specifically, by comparing the discriminant value with a preset threshold value (cut-off value), for each evaluation object, healthy or apparent obesity, healthy or hidden obesity, healthy or obese, apparent obesity or hidden obesity, apparent Whether it is obesity or obesity, hidden obesity or obesity, or “healthy or apparent obesity” or “hidden obesity or obesity” may be determined.
  • a preset threshold value cut-off value
  • the two-group discrimination can be performed with high accuracy by using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between normal and apparent obesity and the two-group discrimination between normal or apparent obesity and hidden obesity or obesity.
  • the multivariate discriminant can be one fractional expression or the sum of multiple fractional expressions, or a logistic regression formula, linear discriminant formula, multiple regression formula, formula created with support vector machine, formula created with Mahalanobis distance method Any one of an expression created by canonical discriminant analysis and an expression created by a decision tree may be used. This makes it possible to distinguish between two groups of normal and apparent obesity, two groups of healthy and hidden obesity, two groups of healthy and obese, two groups of apparent obesity and hidden obesity, two groups of apparent obesity and obese, and hidden obesity. The two-group discrimination can be performed more accurately by using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between normal and apparent obesity and the two-group discrimination between normal or apparent obesity and hidden obesity or obesity. .
  • the multivariate discriminant is expressed by a logistic regression equation, Pro, Asn, Thr, using Equation 1, Equation 2, Glu, Thr, Phe as variables.
  • Logistic regression equation with Arg, Tyr, Orn as variables
  • linear discriminant with His, Thr, Val, Orn, Trp as variables
  • Ser, Pro, Asn, Orn, Phe, BCAA as variables Good.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal and apparent obesity.
  • the variable “BCAA” represents “the sum of the variables Val, Leu, and Ile”.
  • the multivariate discriminant is expressed by a logistic regression equation using Glu, Ser, Ala, Orn, Leu, Trp as a variable, Glu, Ser, , Gly, Cit, Ala, BCAA as a variable, logistic regression equation, Glu, Ser, His, Thr, Lys, Phe as a linear discriminant, or Glu, His, ABA, Tyr, Met, Lys as a variable It may be a linear discriminant.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal and hidden obesity.
  • the multivariate discriminant is expressed by a logistic regression equation using Glu, Ser, Cit, Ala, Tyr, Trp as variables, Glu, Ser, Logistic regression equation with Ala, Tyr, Trp, BCAA as variables, linear discriminant with Glu, Thr, Ala, Tyr, Orn, Lys as variables, or Glu, Pro, His, Cit, Orn, Lys as variables.
  • a linear discriminant may be used.
  • the multivariate discriminant is expressed by a logistic regression equation with a variable of Equation 7, Equation 8, Glu, Thr, Ala, Arg, Tyr, Lys, Pro, Logistic regression equation with Gly, Gln, Ala, Orn, BCAA as variables, linear discriminant with His, Thr, Ala, Tyr, Orn, Phe as variables, or Ser, Pro, Gly, Cit, Lys, Phe as variables May be a linear discriminant.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of apparent obesity or hidden obesity.
  • the multivariate discriminant is expressed by the logistic regression equation using Glu, Asn, Gly, His, Leu, Trp as variables, Glu, Ala, , ABA, Met, Lys, BCAA as logistic regression equations, Glu, Gly, His, Ala, Lys as linear discriminants, or Glu, Thr, Ala, ABA, Lys, BCAA as linear variables A discriminant may be used.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant that is particularly useful for apparent obesity or two-group discrimination of obesity.
  • the multivariate discriminant is expressed by a logistic regression equation using Gul, Gly, Cit, Tyr, Val, Phe as variables, Glu, Pro, , Cit, Tyr, Phe, Trp as variables, logistic regression equation, Glu, Cit, Tyr, Orn, Met, Trp as variables, or linear discriminant with Glu, Pro, His, Met, Phe as variables A discriminant may be used. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of hidden obesity or obesity.
  • the multivariate discriminant is a logistic with Equation 13, Glu, Gly, Ala, Tyr, Trp, BCAA as variables.
  • a regression equation or a linear discriminant using Glu, Ala, Arg, Tyr, Orn, BCAA as variables may be used.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal or apparent obesity and hidden obesity or obesity.
  • Each multivariate discriminant described above is described in the method described in International Publication No. 2004/052191, which is an international application by the present applicant, or in International Publication No. 2006/098192, which is an international application by the present applicant. It can be created by a method (multivariate discriminant creation process described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is expressed as apparent obesity or hidden obesity defined by BMI and VFA, regardless of the unit of amino acid concentration in the amino acid concentration data as input data. It can be suitably used for the evaluation of obesity status.
  • the fractional expression means that the numerator of the fractional expression is represented by the sum of amino acids A, B, C,... And / or the denominator of the fractional expression is the sum of amino acids a, b, c,. It is represented by
  • the fractional expression includes a sum of fractional expressions ⁇ , ⁇ , ⁇ ,.
  • the fractional expression also includes a divided fractional expression.
  • An appropriate coefficient may be added to each amino acid used in the numerator and denominator.
  • amino acids used in the numerator and denominator may overlap.
  • an appropriate coefficient may be attached to each fractional expression.
  • the value of the coefficient of each variable and the value of the constant term may be real numbers.
  • the combination of the numerator variable and the denominator variable is generally reversed in the sign of the correlation with the objective variable, but since the correlation is maintained, it can be considered equivalent in discriminability. Combinations of swapping numerator and denominator variables are also included.
  • the multivariate discriminant generally means a formula used in multivariate analysis. For example, multiple regression, multiple logistic regression, linear discriminant function, Mahalanobis distance, canonical discriminant function, support vector machine, decision Includes trees. Also included are expressions as indicated by the sum of different forms of multivariate discriminants.
  • a coefficient and a constant term are added to each variable.
  • the coefficient and the constant term are preferably real numbers, more preferably data. Values belonging to the range of 99% confidence intervals of the coefficients and constant terms obtained from the data, more preferably belonging to the range of 95% confidence intervals of the coefficients and constant terms obtained from the data Any value can be used.
  • each coefficient and its confidence interval may be obtained by multiplying it by a real number
  • the value of the constant term and its confidence interval may be obtained by adding / subtracting / multiplying / dividing an arbitrary real constant thereto.
  • apparent obesity, hidden obesity, obesity state evaluation, in addition to the concentration of amino acids, other biological information for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, For example, blood glucose level, blood pressure level, gender, age, liver disease index, eating habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • the present invention when evaluating the state of apparent obesity, hidden obesity, and obesity, as a variable in the multivariate discriminant, in addition to the concentration of amino acid, other biological information (for example, sugar, lipid, protein, peptide, mineral, It is also possible to further use biological metabolites such as hormones, and other biological indicators such as blood glucose level, blood pressure level, gender, age, liver disease index, eating habits, drinking habits, exercise habits, obesity, disease history, etc.) Absent.
  • step 1 to step 4 the outline of the multivariate discriminant creation process (step 1 to step 4) will be described in detail.
  • a predetermined formula is obtained from obesity state information stored in a storage unit including amino acid concentration data and obesity state index data relating to an index representing at least one state of apparent obesity, hidden obesity, and obesity.
  • a plurality of different formula creation methods (main component analysis, discriminant analysis, support vector machine, multiple regression analysis, logistic regression analysis, k-means method, cluster analysis, decision tree, etc.) are obtained from obesity status information.
  • a plurality of candidate multivariate discriminants may be created by using the above in combination.
  • a plurality of different algorithms for obesity status information which is multivariate data composed of amino acid concentration data and obesity status index data obtained by analyzing blood obtained from a number of normal groups and obesity groups
  • a plurality of groups of candidate multivariate discriminants may be created in parallel. For example, two different candidate multivariate discriminants may be created by performing discriminant analysis and logistic regression analysis simultaneously using different algorithms.
  • the candidate multivariate discriminant can be created by converting the obesity state information using the candidate multivariate discriminant created by performing the principal component analysis and performing the discriminant analysis on the converted obesity state information. Good. Thereby, finally, an appropriate multivariate discriminant suitable for the diagnosis condition can be created.
  • the candidate multivariate discriminant created using principal component analysis is a linear expression composed of amino acid variables that maximizes the variance of all amino acid concentration data.
  • the candidate multivariate discriminant created using discriminant analysis is a high-order formula (index or index) consisting of amino acid variables that minimizes the ratio of the sum of variances within each group to the variance of all amino acid concentration data. Including logarithm).
  • the candidate multivariate discriminant created using the support vector machine is a higher-order formula (including a kernel function) made up of amino acid variables that maximizes the boundary between groups.
  • the candidate multivariate discriminant created using multiple regression analysis is a higher-order expression composed of amino acid variables that minimizes the sum of distances from all amino acid concentration data.
  • a candidate multivariate discriminant created using logistic regression analysis is a fractional expression having a natural logarithm as a term, which is a linear expression composed of amino acid variables that maximize the likelihood.
  • the k-means method searches k neighborhoods of each amino acid concentration data, defines the largest group among the groups to which the neighboring points belong as the group to which the data belongs, This is a method of selecting an amino acid variable that best matches the group to which the group belongs.
  • Cluster analysis is a method of clustering (grouping) points that are closest to each other in all amino acid concentration data. Further, the decision tree is a technique for predicting a group of amino acid concentration data from patterns that can be taken by amino acid variables having higher ranks by adding ranks to amino acid variables.
  • the present invention verifies (mutually verifies) the candidate multivariate discriminant created in step 1 based on a predetermined verification method in the control unit (step 2).
  • the candidate multivariate discriminant is verified for each candidate multivariate discriminant created in step 1.
  • step 2 at least one of the discrimination rate, sensitivity, specificity, information criterion, etc. of the candidate multivariate discriminant based on at least one of the bootstrap method, holdout method, leave one out method, etc. May be verified. Thereby, a candidate multivariate discriminant with high predictability or robustness in consideration of obesity state information and diagnosis conditions can be created.
  • the discrimination rate is the ratio of the correct obesity status evaluated in the present invention among all input data.
  • Sensitivity is the correct proportion of the obesity state evaluated in the present invention among the obesity states described in the input data.
  • the specificity is a ratio of the obesity state evaluated in the present invention is correct in the obesity described in the input data is normal.
  • the information criterion is the sum of the number of amino acid variables of the candidate multivariate discriminant prepared in step 1 and the obesity status evaluated in the present invention and the obesity status described in the input data. It is a thing.
  • the predictability is an average of the discrimination rate, sensitivity, and specificity obtained by repeating the verification of the candidate multivariate discriminant.
  • Robustness is the variance of discrimination rate, sensitivity, and specificity obtained by repeating verification of candidate multivariate discriminants.
  • the present invention selects the candidate multivariate discriminant variable by selecting a variable of the candidate multivariate discriminant from the verification result in step 2 based on a predetermined variable selection method.
  • a combination of amino acid concentration data included in the obesity state information used when creating the discriminant is selected (step 3).
  • Amino acid variables are selected for each candidate multivariate discriminant created in step 1. Thereby, the amino acid variable of a candidate multivariate discriminant can be selected appropriately.
  • Step 1 is executed again using the obesity state information including the amino acid concentration data selected in Step 3.
  • step 3 the amino acid variable of the candidate multivariate discriminant may be selected from the verification result in step 2 based on at least one of the stepwise method, the best path method, the neighborhood search method, and the genetic algorithm. .
  • the best path method is a method of selecting amino acid variables by sequentially reducing amino acid variables included in the candidate multivariate discriminant one by one and optimizing the evaluation index given by the candidate multivariate discriminant. is there.
  • a multivariate discriminant is created by selecting candidate multivariate discriminants to be adopted as multivariate discriminants from the formula (step 4).
  • selecting candidate multivariate discriminants for example, selecting the optimal one from among candidate multivariate discriminants created by the same formula creation method, and selecting the most suitable from all candidate multivariate discriminants There is a case to choose one.
  • the multivariate discriminant creation process processing related to creation of a candidate multivariate discriminant, verification of the candidate multivariate discriminant, and selection of a variable of the candidate multivariate discriminant based on the obesity state information.
  • systematization systematization
  • a multivariate discriminant optimum for apparent obesity, hidden obesity, and obesity status evaluation can be created.
  • amino acid concentrations are used for multivariate statistical analysis, and variable selection methods and cross-validation are combined in order to select optimal and robust variable sets. Extract the variable discriminant.
  • logistic regression, linear discrimination, support vector machine, Mahalanobis distance method, multiple regression analysis, cluster analysis, and the like can be used.
  • FIG. 4 is a diagram showing an example of the overall configuration of the present system.
  • FIG. 5 is a diagram showing another example of the overall configuration of the present system.
  • the system includes an obesity evaluation apparatus 100 that evaluates at least one state of apparent obesity, hidden obesity, and obesity defined by BMI and VFA, and an evaluation regarding the concentration value of amino acids.
  • a client apparatus 200 (corresponding to the information communication terminal apparatus of the present invention) that provides target amino acid concentration data is configured to be communicably connected via a network 300.
  • this system uses obesity state information used when creating a multivariate discriminant with the obesity evaluation apparatus 100, apparent obesity and hidden obesity.
  • the database apparatus 400 storing a multivariate discriminant used for performing the obesity state evaluation may be configured to be communicably connected via the network 300.
  • information on the status of apparent obesity, hidden obesity, obesity, etc. from the obesity evaluation apparatus 100 to the client apparatus 200 or the database apparatus 400 or from the client apparatus 200 or the database apparatus 400 to the obesity evaluation apparatus 100 via the network 300.
  • the information on apparent obesity, hidden obesity, and the state of obesity is information on values measured for specific items related to apparent obesity, hidden obesity, and obesity states of organisms including humans.
  • information regarding apparent obesity, hidden obesity, and the state of obesity is generated by the obesity evaluation apparatus 100, the client apparatus 200, and other apparatuses (for example, various measurement apparatuses) and is mainly stored in the database apparatus 400.
  • FIG. 6 is a block diagram showing an example of the configuration of the obesity evaluation apparatus 100 of the present system, and conceptually shows only the portion related to the present invention in the configuration.
  • the obesity evaluation apparatus 100 is configured to connect the obesity evaluation apparatus to the network 300 via a control unit 102 such as a CPU that controls the obesity evaluation apparatus in an integrated manner, a communication apparatus such as a router, and a wired or wireless communication line such as a dedicated line.
  • a communication interface unit 104 connected to be communicable with each other, a storage unit 106 for storing various databases, tables, files and the like, and an input / output interface unit 108 connected to the input device 112 and the output device 114. These units are communicably connected via an arbitrary communication path.
  • the obesity-evaluating apparatus 100 may be configured with the same housing as various analytical apparatuses (for example, an amino acid analyzer).
  • the specific form of distribution / integration of the obesity evaluation apparatus 100 is not limited to the illustrated one, and all or a part thereof is functionally or physically distributed / integrated in an arbitrary unit according to various loads. You may comprise. For example, a part of the processing may be realized using CGI (Common Gateway Interface).
  • CGI Common Gateway Interface
  • the storage unit 106 is a storage means, and for example, a memory device such as a RAM / ROM, a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used.
  • the storage unit 106 stores a computer program for giving instructions to the CPU and performing various processes in cooperation with an OS (Operating System).
  • the storage unit 106 includes a user information file 106a, an amino acid concentration data file 106b, an obesity state information file 106c, a specified obesity state information file 106d, a multivariate discriminant-related information database 106e, and a discriminant value.
  • a file 106f and an evaluation result file 106g are stored.
  • the user information file 106a stores user information related to users.
  • FIG. 7 is a diagram illustrating an example of information stored in the user information file 106a.
  • the information stored in the user information file 106a includes a user ID for uniquely identifying a user and authentication for whether or not the user is a valid person.
  • the amino acid concentration data file 106b stores amino acid concentration data relating to amino acid concentration values.
  • FIG. 8 is a diagram showing an example of information stored in the amino acid concentration data file 106b. As shown in FIG. 8, the information stored in the amino acid concentration data file 106b is configured by associating an individual number for uniquely identifying an individual (sample) to be evaluated with amino acid concentration data. Yes.
  • amino acid concentration data is treated as a numerical value, that is, a continuous scale, but the amino acid concentration data may be a nominal scale or an order scale. In the case of a nominal scale or an order scale, analysis may be performed by giving an arbitrary numerical value to each state.
  • amino acid concentration data includes other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, etc., blood glucose levels, blood pressure levels, sex, age, liver disease indicators, dietary habits, alcohol consumption, etc. You may combine biomarkers such as habit, exercise habit, obesity level, and disease history.
  • biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, etc.
  • blood glucose levels blood pressure levels, sex, age, liver disease indicators, dietary habits, alcohol consumption, etc.
  • biomarkers such as habit, exercise habit, obesity level, and disease history.
  • the obesity state information file 106c stores obesity state information used when creating a multivariate discriminant.
  • FIG. 9 is a diagram illustrating an example of information stored in the obesity state information file 106c.
  • the information stored in the obesity state information file 106c includes an individual number and an index (index T 1 , index T 2 , index T 3. )
  • Obesity state index data (T) and amino acid concentration data are associated with each other.
  • obesity state index data and amino acid concentration data are treated as numerical values (that is, a continuous scale), but the obesity state index data and amino acid concentration data may be a nominal scale or an order scale. In the case of a nominal scale or an order scale, analysis may be performed by giving an arbitrary numerical value to each state.
  • the obesity state index data is a known single state index serving as a marker of apparent obesity, hidden obesity, and obesity, and numerical data may be used.
  • the designated obesity state information file 106d stores the obesity state information specified by the obesity state information specifying unit 102g described later.
  • FIG. 10 is a diagram illustrating an example of information stored in the designated obesity state information file 106d. As shown in FIG. 10, the information stored in the designated obesity state information file 106d is configured by associating an individual number, designated obesity state index data, and designated amino acid concentration data with each other.
  • the multivariate discriminant-related information database 106e includes a candidate multivariate discriminant file 106e1 for storing the candidate multivariate discriminant created by the candidate multivariate discriminant-preparing part 102h1, which will be described later, and a candidate multivariate discriminant described later.
  • a verification result file 106e2 for storing a verification result in the discriminant verification unit 102h2
  • a selected obesity status information file 106e3 for storing obesity status information including a combination of amino acid concentration data selected by a variable selection unit 102h3, which will be described later, and a later-described
  • a multivariate discriminant file 106e4 that stores the multivariate discriminant created by the multivariate discriminant creation unit 102h.
  • the candidate multivariate discriminant file 106e1 stores the candidate multivariate discriminant created by the candidate multivariate discriminant creation unit 102h1 described later.
  • FIG. 11 is a diagram illustrating an example of information stored in the candidate multivariate discriminant file 106e1.
  • information stored in the candidate multivariate discriminant file 106e1 includes the rank, the candidate multivariate discriminant (in FIG. 11, F 1 (Gly, Leu, Phe,%)) And F 2. (Gly, Leu, Phe,%), F 3 (Gly, Leu, Phe,%) And the like are associated with each other.
  • FIG. 12 is a diagram illustrating an example of information stored in the verification result file 106e2.
  • the information stored in the verification result file 106e2 includes rank, candidate multivariate discriminant (in FIG. 12, F k (Gly, Leu, Phe,%) And F m (Gly, Leu, Phe,%), F.sub.l (Gly, Leu, Phe,. They are related to each other.
  • the selected obesity state information file 106e3 stores obesity state information including a combination of amino acid concentration data corresponding to variables selected by the variable selection unit 102h3 described later.
  • FIG. 13 is a diagram illustrating an example of information stored in the selected obesity state information file 106e3. As shown in FIG. 13, the information stored in the selected obesity state information file 106e3 is selected by the individual number, the obesity state index data specified by the obesity state information specifying unit 102g described later, and the variable selecting unit 102h3 described later. The amino acid concentration data is associated with each other.
  • the multivariate discriminant file 106e4 stores the multivariate discriminant created by the multivariate discriminant-preparing part 102h described later.
  • FIG. 14 is a diagram illustrating an example of information stored in the multivariate discriminant file 106e4.
  • the information stored in the multivariate discriminant file 106e4 includes the rank, the multivariate discriminant (in FIG. 14, F p (Phe,%) And F p (Gly, Leu, Phe). ), F k (Gly, Leu, Phe,...)), A threshold corresponding to each formula creation method, a verification result of each multivariate discriminant (for example, an evaluation value of each multivariate discriminant), Are related to each other.
  • the discriminant value file 106f stores the discriminant value calculated by the discriminant value calculator 102i described later.
  • FIG. 15 is a diagram illustrating an example of information stored in the discrimination value file 106f. As shown in FIG. 15, information stored in the discriminant value file 106f includes an individual number for uniquely identifying an individual (sample) to be evaluated and a rank (for uniquely identifying a multivariate discriminant). Number) and the discrimination value are associated with each other.
  • the evaluation result file 106g stores an evaluation result in a discriminant value criterion-evaluating unit 102j described later (specifically, a discrimination result in a discriminant value criterion-discriminating unit 102j1 described later).
  • FIG. 16 is a diagram illustrating an example of information stored in the evaluation result file 106g.
  • Information stored in the evaluation result file 106g includes an individual number for uniquely identifying an individual (sample) to be evaluated, amino acid concentration data of the evaluation target acquired in advance, and a discriminant value calculated by a multivariate discriminant. And evaluation results regarding apparent obesity, hidden obesity, and obesity state evaluation are associated with each other.
  • the storage unit 106 stores various types of Web data for providing the Web site to the client device 200, a CGI program, and the like as other information in addition to the information described above.
  • the Web data includes data for displaying various Web pages, which will be described later, and the data is formed as a text file described in, for example, HTML or XML.
  • a part file, a work file, and other temporary files for creating Web data are also stored in the storage unit 106.
  • the storage unit 106 stores audio for transmission to the client device 200 as an audio file such as WAVE format or AIFF format, and stores still images and moving images as image files such as JPEG format or MPEG2 format as necessary. Or can be stored.
  • the communication interface unit 104 mediates communication between the obesity evaluation apparatus 100 and the network 300 (or a communication apparatus such as a router). That is, the communication interface unit 104 has a function of communicating data with other terminals via a communication line.
  • the input / output interface unit 108 is connected to the input device 112 and the output device 114.
  • a monitor including a home television
  • a speaker or a printer can be used as the output device 114 (hereinafter, the output device 114 may be described as the monitor 114).
  • the input device 112 a monitor that realizes a pointing device function in cooperation with a mouse can be used in addition to a keyboard, a mouse, and a microphone.
  • the control unit 102 has an internal memory for storing a control program such as an OS (Operating System), a program that defines various processing procedures, and necessary data, and performs various information processing based on these programs. Execute. As shown in the figure, the control unit 102 is roughly divided into a request interpretation unit 102a, a browsing processing unit 102b, an authentication processing unit 102c, an email generation unit 102d, a Web page generation unit 102e, a reception unit 102f, and an obesity state information designation unit 102g.
  • a multivariate discriminant creation unit 102h, a discriminant value calculation unit 102i, a discriminant value criterion evaluation unit 102j, a result output unit 102k, and a transmission unit 102m are provided.
  • the controller 102 removes data with missing values, removes data with many outliers, and has missing values with respect to obesity status information transmitted from the database device 400 and amino acid concentration data transmitted from the client device 200. Data processing such as removal of variables with a lot of data is also performed.
  • the request interpretation unit 102a interprets the request content from the client device 200 or the database device 400, and passes the processing to each unit of the control unit 102 according to the interpretation result.
  • the browsing processing unit 102b Upon receiving browsing requests for various screens from the client device 200, the browsing processing unit 102b generates and transmits Web data for these screens.
  • the authentication processing unit 102c makes an authentication determination.
  • the e-mail generation unit 102d generates an e-mail including various types of information.
  • the web page generation unit 102e generates a web page that the user browses on the client device 200.
  • the receiving unit 102 f receives information (specifically, amino acid concentration data, obesity status information, multivariate discriminant, etc.) transmitted from the client device 200 or the database device 400 via the network 300.
  • the obesity state information designating unit 102g designates target obesity state index data and amino acid concentration data when creating a multivariate discriminant.
  • the multivariate discriminant creating unit 102h creates a multivariate discriminant based on the obesity state information received by the receiving unit 102f and the obesity state information specified by the obesity state information specifying unit 102g. Specifically, the multivariate discriminant-preparing part 102h is accumulated by repeatedly executing the candidate multivariate discriminant-preparing part 102h1, the candidate multivariate discriminant-verifying part 102h2, and the variable selecting part 102h3 from the obesity state information. A multivariate discriminant is created by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from a plurality of candidate multivariate discriminants based on the verification result.
  • the multivariate discriminant-preparing unit 102h selects a desired multivariate discriminant from the storage unit 106, A multivariate discriminant may be created.
  • the multivariate discriminant creation unit 102h creates a multivariate discriminant by selecting and downloading a desired multivariate discriminant from another computer device (for example, the database device 400) that stores the multivariate discriminant in advance. May be.
  • FIG. 17 is a block diagram showing the configuration of the multivariate discriminant-preparing part 102h, and conceptually shows only the part related to the present invention.
  • the multivariate discriminant creation unit 102h further includes a candidate multivariate discriminant creation unit 102h1, a candidate multivariate discriminant verification unit 102h2, and a variable selection unit 102h3.
  • the candidate multivariate discriminant-preparing part 102h1 creates a candidate multivariate discriminant that is a candidate for the multivariate discriminant from the obesity state information based on a predetermined formula creation method.
  • the candidate multivariate discriminant-preparing part 102h1 may create a plurality of candidate multivariate discriminants from the obesity state information by using a plurality of different formula creation methods.
  • the candidate multivariate discriminant verification unit 102h2 verifies the candidate multivariate discriminant created by the candidate multivariate discriminant creation unit 102h1 based on a predetermined verification method. It should be noted that the candidate multivariate discriminant verification unit 102h2 is based on at least one of the bootstrap method, the holdout method, and the leave one-out method. At least one of them may be verified.
  • variable selection unit 102h3 creates a candidate multivariate discriminant by selecting a variable of the candidate multivariate discriminant based on a predetermined variable selection method from the verification result in the candidate multivariate discriminant verification unit 102h2.
  • a combination of amino acid concentration data included in the obesity status information to be used is selected.
  • the variable selection unit 102h3 may select a variable of the candidate multivariate discriminant from the verification result based on at least one of the stepwise method, the best path method, the neighborhood search method, and the genetic algorithm.
  • the discriminant value calculation unit 102 i uses the multivariate discriminant created by the multivariate discriminant creation unit 102 h (for example, Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Val, Orn, Met, Lys). , Ile, Leu, Phe, Trp including at least one as a variable), and the amino acid concentration data to be evaluated received by the receiving unit 102f (for example, Glu, Ser, Pro, Gly, Ala, Cys2, Tyr, Based on Val, Orn, Met, Lys, Ile, Leu, Phe, Trp), a discriminant value that is the value of the multivariate discriminant is calculated.
  • the multivariate discriminant is the sum of one fractional formula or multiple fractional formulas, or a logistic regression formula, linear discriminant formula, multiple regression formula, formula created with support vector machine, Mahalanobis distance formula Any one of an expression, an expression created by canonical discriminant analysis, and an expression created by a decision tree may be used.
  • the multivariate discriminant uses Equation 1, Equation 2, Glu, Thr, and Phe as variables.
  • Logistic regression equation, Logistic regression equation with Pro, Asn, Thr, Arg, Tyr, Orn as variables, Linear discriminant with His, Thr, Val, Orn, Trp as variables, or Ser, Pro, Asn, Orn, Phe , BCAA as a variable may be used.
  • the multivariate discriminant is expressed by Equation 3, Equation 4, Glu, Ser, Ala, Orn, Leu, Trp as variables.
  • Logistic regression equation, logistic regression equation with Glu, Ser, Gly, Cit, Ala, BCAA as variables, linear discriminant equation with Glu, Ser, His, Thr, Lys, Phe as variables, or Glu, His, ABA, A linear discriminant having Tyr, Met, and Lys as variables may be used. a 3 (Ser / Ala) + b 3 (Gly / Tyr) + c 3 (Trp / Glu) + d 3 ...
  • the multivariate discriminant uses Equation 5, Equation 6, Glu, Ser, Cit, Ala, Tyr, Trp as variables.
  • Logistic regression equation, logistic regression equation with Glu, Ser, Ala, Tyr, Trp, BCAA as variables, linear discriminant equation with Glu, Thr, Ala, Tyr, Orn, Lys as variables, or Glu, Pro, His, Cit , Orn, Lys may be used as a linear discriminant.
  • the multivariate discriminant is expressed by Equations 7, 8, Glu, Thr, Ala, Arg, Tyr, Lys as variables.
  • a logistic regression equation with Pro, Gly, Gln, Ala, Orn, BCAA as variables, a linear discriminant with His, Thr, Ala, Tyr, Orn, Phe as variables, or Ser, Pro, Gly , Cit, Lys, Phe may be linear discriminants.
  • the multivariate discriminant is expressed by Equations 9, 10, Glu, Asn, Gly, His, Leu, Trp as variables.
  • Logistic regression equation, logistic regression equation with Glu, Ala, ABA, Met, Lys, BCAA as variables, linear discriminant equation with Glu, Gly, His, Ala, Lys as variables, or Glu, Thr, Ala, ABA, A linear discriminant having Lys and BCAA as variables may be used.
  • Equation 10 a 10 (Glu / Asn) + b 10 (ABA / Ser) + c 10 (Lys / Gln) + d 10 (BCAA / Trp) + e 10 (Equation 10) (In Equation 9, a 9 , b 9 , and c 9 are arbitrary non-zero real numbers and d 9 is an arbitrary real number. In Equation 10, a 10 , b 10 , c 10 , and d 10 are non-zero arbitrary real numbers, e 10 is an arbitrary real number.)
  • the discrimination value criterion discrimination unit 102j1 discriminates whether or not it is obesity obesity or obesity
  • the multivariate discriminant is obtained by using Equation 11, Equation 12, Glu, Gly, Cit, Tyr, Val, Phe as variables.
  • a linear discriminant having Met and Phe as variables may be used.
  • the multivariate discriminant is expressed by Equation 13, Glu, Gly, Ala, Tyr, Trp, BCAA.
  • a logistic regression equation using variables, or a linear discriminant using Glu, Ala, Arg, Tyr, Orn, BCAA as variables may be used.
  • the discriminant value criterion-evaluating unit 102j evaluates at least one of apparent obesity, hidden obesity, and obesity for each evaluation object based on the discriminant value calculated by the discriminant value calculating unit 102i.
  • the discriminant value criterion-evaluating unit 102j further includes a discriminant value criterion-discriminating unit 102j1.
  • FIG. 18 is a block diagram showing the configuration of the discriminant value criterion-evaluating unit 102j, and conceptually shows only the portion related to the present invention.
  • the discriminant value criterion discriminating unit 102j1 is, for each evaluation target, healthy or apparent obesity, healthy or hidden obesity, healthy or obese, apparent or obese, apparent obesity or obese, It is discriminated whether it is hidden obesity or obesity, or normal or apparent obesity or hidden obesity or obesity. Specifically, the discriminant value criterion discriminating unit 102j1 compares the discriminant value with a preset threshold value (cut-off value) to determine whether the evaluation target is healthy or apparent obesity, healthy or hidden obesity, healthy or obese Whether apparent obesity or obesity, apparent obesity or obesity, hidden obesity or obesity, or normal or apparent obesity or hidden obesity or obesity is determined.
  • a preset threshold value cut-off value
  • the result output unit 102k displays the processing results in the respective processing units of the control unit 102 (evaluation results in the discrimination value criterion evaluation unit 102j (specifically, discrimination results in the discrimination value criterion discrimination unit 102j1)). Output) to the output device 114.
  • the transmission unit 102m transmits the evaluation result to the client device 200 that is the transmission source of the amino acid concentration data to be evaluated, or the multivariate discriminant and the evaluation result created by the obesity evaluation device 100 to the database device 400. Or send.
  • FIG. 19 is a block diagram showing an example of the configuration of the client device 200 of the present system, and conceptually shows only the portion related to the present invention in the configuration.
  • the client device 200 includes a control unit 210, a ROM 220, an HD 230, a RAM 240, an input device 250, an output device 260, an input / output IF 270, and a communication IF 280. These units are communicably connected via an arbitrary communication path. Has been.
  • the control unit 210 includes a web browser 211, an electronic mailer 212, a reception unit 213, and a transmission unit 214.
  • the web browser 211 interprets the web data and performs a browsing process for displaying the interpreted web data on a monitor 261 described later. Note that the web browser 211 may be plugged in with various software such as a stream player having a function of receiving, displaying, and feedbacking the stream video.
  • the electronic mailer 212 transmits and receives electronic mail according to a predetermined communication protocol (for example, SMTP (Simple Mail Transfer Protocol), POP3 (Post Office Protocol version 3), etc.).
  • the receiving unit 213 receives various information such as an evaluation result transmitted from the obesity evaluation apparatus 100 via the communication IF 280.
  • the transmission unit 214 transmits various types of information such as amino acid concentration data to be evaluated to the obesity evaluation apparatus 100 via the communication IF 280.
  • the input device 250 is a keyboard, a mouse, a microphone, or the like.
  • a monitor 261 which will be described later, also realizes a pointing device function in cooperation with the mouse.
  • the output device 260 is an output unit that outputs information received via the communication IF 280, and includes a monitor (including a home television) 261 and a printer 262. In addition, the output device 260 may be provided with a speaker or the like.
  • the input / output IF 270 is connected to the input device 250 and the output device 260.
  • the communication IF 280 connects the client device 200 and the network 300 (or a communication device such as a router) so that they can communicate with each other.
  • the client device 200 is connected to the network 300 via a communication device such as a modem, TA, or router and a telephone line, or via a dedicated line.
  • the client apparatus 200 can access the obesity evaluation apparatus 100 according to a predetermined communication protocol.
  • an information processing device for example, a known personal computer, workstation, home game device, Internet TV, PHS terminal, portable terminal, mobile body
  • peripheral devices such as a printer, a monitor, and an image scanner as necessary.
  • the client apparatus 200 may be realized by mounting software (including programs, data, and the like) that realizes a Web data browsing function and an electronic mail function in a communication terminal / information processing terminal such as a PDA.
  • control unit 210 of the client device 200 may be realized by a CPU and a program that is interpreted and executed by the CPU and all or any part of the processing performed by the control unit 210.
  • the ROM 220 or the HD 230 stores computer programs for giving instructions to the CPU in cooperation with an OS (Operating System) and performing various processes.
  • the computer program is executed by being loaded into the RAM 240, and constitutes the control unit 210 in cooperation with the CPU.
  • the computer program may be recorded in an application program server connected to the client apparatus 200 via an arbitrary network, and the client apparatus 200 may download all or a part thereof as necessary. .
  • all or any part of the processing performed by the control unit 210 may be realized by hardware such as wired logic.
  • the network 300 has a function of connecting the obesity evaluation apparatus 100, the client apparatus 200, and the database apparatus 400 so that they can communicate with each other, such as the Internet, an intranet, a LAN (including both wired and wireless), and the like.
  • the network 300 includes a VAN, a personal computer communication network, a public telephone network (including both analog / digital), a dedicated line network (including both analog / digital), a CATV network, and a mobile line switching network.
  • a portable packet switching network including IMT2000, GSM, or PDC / PDC-P
  • a wireless paging network including IMT2000, GSM, or PDC / PDC-P
  • a local wireless network such as Bluetooth (registered trademark)
  • a PHS network such as a satellite communication network (CS , BS, ISDB, etc.).
  • FIG. 20 is a block diagram showing an example of the configuration of the database apparatus 400 of this system, and conceptually shows only the portion related to the present invention in the configuration.
  • the database apparatus 400 includes obesity evaluation apparatus 100 or obesity state information used when creating a multivariate discriminant with the database apparatus, multivariate discriminants created with the obesity evaluation apparatus 100, evaluation results with the obesity evaluation apparatus 100, and the like. It has a function to store.
  • the database device 400 includes a control unit 402 such as a CPU that controls the database device in an integrated manner, a communication device such as a router, and a wired or wireless communication circuit such as a dedicated line.
  • a communication interface unit 404 that connects the apparatus to the network 300 to be communicable, a storage unit 406 that stores various databases, tables, and files (for example, files for Web pages), and an input unit that connects to the input unit 412 and the output unit 414.
  • the output interface unit 408 is configured to be communicable via an arbitrary communication path.
  • the storage unit 406 is a storage means, and for example, a memory device such as a RAM / ROM, a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used.
  • the storage unit 406 stores various programs used for various processes.
  • the communication interface unit 404 mediates communication between the database device 400 and the network 300 (or a communication device such as a router). That is, the communication interface unit 404 has a function of communicating data with other terminals via a communication line.
  • the input / output interface unit 408 is connected to the input device 412 and the output device 414.
  • the output device 414 in addition to a monitor (including a home television), a speaker or a printer can be used as the output device 414 (hereinafter, the output device 414 may be described as the monitor 414).
  • the input device 412 can be a monitor that realizes a pointing device function in cooperation with the mouse.
  • the control unit 402 has an internal memory for storing a control program such as an OS (Operating System), a program that defines various processing procedures, and necessary data, and performs various information processing based on these programs. Execute. As shown in the figure, the control unit 402 is roughly divided into a request interpreting unit 402a, a browsing processing unit 402b, an authentication processing unit 402c, an e-mail generating unit 402d, a Web page generating unit 402e, and a transmitting unit 402f.
  • a control program such as an OS (Operating System)
  • OS Operating System
  • the request interpretation unit 402a interprets the request content from the obesity evaluation apparatus 100, and passes the processing to each unit of the control unit 402 according to the interpretation result.
  • the browsing processing unit 402b Upon receiving browsing requests for various screens from the obesity evaluation apparatus 100, the browsing processing unit 402b generates and transmits Web data for these screens.
  • the authentication processing unit 402c makes an authentication determination.
  • the e-mail generation unit 402d generates an e-mail including various types of information.
  • the web page generation unit 402e generates a web page that the user browses on the client device 200.
  • the transmitting unit 402f transmits various types of information such as obesity state information and multivariate discriminants to the obesity evaluation apparatus 100.
  • FIG. 21 is a flowchart illustrating an example of the obesity evaluation service process.
  • the amino acid concentration data used in this process relates to the amino acid concentration value obtained by analyzing blood collected in advance from an individual.
  • a method for analyzing amino acids in blood will be briefly described. First, a collected blood sample is collected in a heparinized tube, and then the plasma is separated by centrifuging the tube. All separated plasma samples are stored frozen at -70 ° C. until the measurement of amino acid concentration. Then, at the time of measuring the amino acid concentration, sulfosalicylic acid is added to the plasma sample, and protein removal treatment is performed by adjusting the concentration by 3%.
  • the amino acid concentration was measured using an amino acid analyzer based on the principle of high performance liquid chromatography (HPLC) using a ninhydrin reaction in a post column.
  • HPLC high performance liquid chromatography
  • the client apparatus 200 accesses the obesity evaluation apparatus 100. . Specifically, when the user instructs to update the screen of the Web browser 211 of the client apparatus 200, the Web browser 211 transmits the address of the Web site provided by the obesity evaluation apparatus 100 to the obesity evaluation apparatus 100 according to a predetermined communication protocol. By doing so, a transmission request for a Web page corresponding to the amino acid concentration data transmission screen is made to the obesity evaluation apparatus 100 by routing based on the address.
  • an address such as a URL
  • the obesity evaluation apparatus 100 receives the transmission from the client apparatus 200 at the request interpretation unit 102a, analyzes the content of the transmission, and moves the processing to each unit of the control unit 102 according to the analysis result.
  • the content of the transmission is a transmission request for a Web page corresponding to the amino acid concentration data transmission screen
  • the obesity evaluation apparatus 100 is stored mainly in the browsing processing unit 102b in a predetermined storage area of the storage unit 106.
  • Web data for displaying the Web page that has been displayed is acquired, and the acquired Web data is transmitted to the client device 200. More specifically, when there is a web page transmission request corresponding to the amino acid concentration data transmission screen from the user, the obesity evaluation apparatus 100 first inputs a user ID and a user password by the control unit 102.
  • the obesity evaluation apparatus 100 causes the authentication processing unit 102c to input the input user ID and password and the user ID and user stored in the user information file 106a. Make an authentication decision with the password. And the obesity evaluation apparatus 100 transmits the web data for displaying the web page corresponding to an amino acid concentration data transmission screen to the client apparatus 200 by the browsing process part 102b only when authentication is possible.
  • the client device 200 is identified by the IP address transmitted from the client device 200 together with the transmission request.
  • the client apparatus 200 receives the Web data transmitted from the obesity evaluation apparatus 100 (for displaying a Web page corresponding to the amino acid concentration data transmission screen) by the receiving unit 213, and the received Web data is Web The data is interpreted by the browser 211 and the amino acid concentration data transmission screen is displayed on the monitor 261.
  • step SA-21 when the user inputs / selects individual amino acid concentration data or the like via the input device 250 on the amino acid concentration data transmission screen displayed on the monitor 261, the client device 200 uses the transmission unit 214 to input information and By transmitting an identifier for specifying the selection item to the obesity evaluation apparatus 100, the amino acid concentration data of the individual to be evaluated is transmitted to the obesity evaluation apparatus 100 (step SA-21).
  • the transmission of amino acid concentration data in step SA-21 may be realized by an existing file transfer technique such as FTP.
  • the obesity evaluation apparatus 100 interprets the request content of the client apparatus 200 by interpreting the identifier transmitted from the client apparatus 200 by the request interpretation unit 102a, and Glu, Ser, Pro, Gly, Ala, Cys2, and so on.
  • Multivariate discriminant for evaluation of apparent obesity, hidden obesity, and obesity status including at least one of Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp (specifically, healthy and 2-group discrimination of apparent obesity, 2-group discrimination between healthy and hidden obesity, 2-group discrimination between healthy and obese, 2-group discrimination between apparent obesity and hidden obesity, 2-group discrimination between apparent obesity and obesity, 2 groups of hidden obesity and obesity
  • a request for transmission of discrimination or a multivariate discriminant for discrimination between two groups of normal or apparent obesity and hidden obesity or obesity) is sent to the database apparatus 400.
  • the database device 400 interprets the transmission request from the obesity evaluation device 100 by the request interpretation unit 402a and stores the Glu, Ser, Pro, Gly, Ala, Cys2, stored in a predetermined storage area of the storage unit 406.
  • a multivariate discriminant (for example, the latest updated one) including at least one of Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, and Trp as a variable is transmitted to the obesity evaluation apparatus 100 (step SA). -22).
  • the multivariate discriminant transmitted to the obesity evaluation apparatus 100 is one fractional expression or the sum of a plurality of fractional expressions, or a logistic regression formula, linear discriminant formula, multiple regression formula, support vector machine. Any one of the formulas created in (1), formulas created by Mahalanobis distance method, formulas created by canonical discriminant analysis, and formulas created by decision trees may be used.
  • the multivariate discriminant is a logistic regression equation using Equation 1, Equation 2, Glu, Thr, Phe as variables, Logistic regression equation with Pro, Asn, Thr, Arg, Tyr, Orn as variables, linear discriminant with His, Thr, Val, Orn, Trp as variables, or Ser, Pro, Asn, Orn, Phe, BCAA as variables May be a linear discriminant.
  • the multivariate discriminant is a logistic that uses Equation 3, Equation 4, Glu, Ser, Ala, Orn, Leu, Trp as variables.
  • Regression equation, logistic regression equation with Glu, Ser, Gly, Cit, Ala, BCAA as variables, linear discriminant equation with Glu, Ser, His, Thr, Lys, Phe as variables, or Glu, His, ABA, Tyr, A linear discriminant having Met and Lys as variables may be used.
  • the multivariate discriminant is expressed by logistic regression using Equation 5, Equation 6, Glu, Ser, Cit, Ala, Tyr, Trp as variables.
  • Formula, logistic regression equation with Glu, Ser, Ala, Tyr, Trp, BCAA as variables, linear discriminant with Glu, Thr, Ala, Tyr, Orn, Lys as variables, or Glu, Pro, His, Cit, Orn , Lys may be a linear discriminant.
  • the multivariate discriminant uses Equation 7, Equation 8, Glu, Thr, Ala, Arg, Tyr, Lys as variables.
  • Logistic regression equation, logistic regression equation with Pro, Gly, Gln, Ala, Orn, BCAA as variables, linear discriminant with His, Thr, Ala, Tyr, Orn, Phe as variables, or Ser, Pro, Gly, Cit , Lys, Phe may be used as a linear discriminant.
  • the multivariate discriminant is a logistic that uses Equation 9, Equation 10, Glu, Asn, Gly, His, Leu, Trp as variables.
  • Regression equation, logistic regression equation with Glu, Ala, ABA, Met, Lys, BCAA as variables, linear discriminant equation with Glu, Gly, His, Ala, Lys as variables, or Glu, Thr, Ala, ABA, Lys, A linear discriminant using BCAA as a variable may be used.
  • Equation 10 a 10 (Glu / Asn) + b 10 (ABA / Ser) + c 10 (Lys / Gln) + d 10 (BCAA / Trp) + e 10 (Equation 10) (In Equation 9, a 9 , b 9 , and c 9 are arbitrary non-zero real numbers and d 9 is an arbitrary real number. In Equation 10, a 10 , b 10 , c 10 , and d 10 are non-zero arbitrary real numbers, e 10 is an arbitrary real number.)
  • the multivariate discriminant is a logistic that uses Equation 11, Equation 12, Glu, Gly, Cit, Tyr, Val, Phe as variables.
  • Regression equation, logistic regression equation with variables Glu, Pro, Cit, Tyr, Phe, Trp, linear discriminant equation with variables Glu, Cit, Tyr, Orn, Met, Trp, or Glu, Pro, His, Met, A linear discriminant using Phe as a variable may be used.
  • the multivariate discriminant is expressed by Equation 13, Glu, Gly, Ala, Tyr, Trp, BCAA as variables. Or a linear discriminant using Glu, Ala, Arg, Tyr, Orn, BCAA as variables.
  • a 13 , b 13 , c 13 , and d 13 are arbitrary non-zero real numbers, and e 13 is an arbitrary real number.
  • the obesity evaluation apparatus 100 receives the individual amino acid concentration data transmitted from the client apparatus 200 and the multivariate discriminant transmitted from the database apparatus 400 by the receiving unit 102f, and the received amino acid concentration data is converted into the amino acid concentration.
  • the data is stored in a predetermined storage area of the data file 106b, and the received multivariate discriminant is stored in a predetermined storage area of the multivariate discriminant file 106e4 (step SA-23).
  • the controller 102 removes data such as missing values and outliers from the amino acid concentration data of the individual received in step SA-23 (step SA-24).
  • the discriminant value calculation unit 102i uses the Glu, Ser, Pro, Gly, Ala included in the amino acid concentration data of the individual from which data such as missing values and outliers have been removed in Step SA-24. , Cys2, Tyr, Val, Orn, Met, Lys, Ile, Leu, Phe, Trp, and the discriminant value is calculated based on the multivariate discriminant received in step SA-23 ( Step SA-25).
  • the obesity evaluation apparatus 100 compares the discriminant value calculated in step SA-25 with a preset threshold value (cut-off value) by the discriminant value criterion discriminating unit 102j1 to determine whether the individual is healthy or apparent.
  • Obesity, healthy or hidden obesity, healthy or obese, apparent obesity or hidden obesity, apparent obesity or obesity, hidden obesity or obesity, or whether healthy or apparent obese or hidden obesity or obesity Is stored in a predetermined storage area of the evaluation result file 106g (step SA-26).
  • the obesity evaluation apparatus 100 transmits the discrimination result obtained in step SA-26 to the client apparatus 200 and the database apparatus 400 that are the transmission source of the amino acid concentration data, in the transmission unit 102m (step SA-27).
  • the web page generation unit 102e creates a web page for displaying the discrimination result, and stores web data corresponding to the created web page in a predetermined storage in the storage unit 106. Store in the area.
  • the client device 200 transmits a request for browsing the Web page to the obesity evaluation device 100. To do.
  • the browsing processing unit 102 b interprets the browsing request transmitted from the client device 200 and stores Web data corresponding to the Web page for displaying the determination result in a predetermined storage area of the storage unit 106. Read from.
  • the obesity evaluation apparatus 100 transmits the read Web data to the client apparatus 200 and transmits the Web data or the determination result to the database apparatus 400 by the transmission unit 102m.
  • the obesity evaluation apparatus 100 may notify the user client apparatus 200 of the determination result by e-mail at the control unit 102. Specifically, the obesity evaluation apparatus 100 first refers to the user information stored in the user information file 106a based on the user ID or the like in the e-mail generation unit 102d according to the transmission timing. Get the email address of. Next, the obesity evaluation apparatus 100 uses the e-mail generation unit 102d to generate data related to the e-mail including the user's name and determination result with the acquired e-mail address as the destination. Next, the obesity evaluation apparatus 100 transmits the generated data to the user client apparatus 200 by the transmission unit 102m.
  • the obesity evaluation apparatus 100 may transmit the determination result to the user client apparatus 200 using an existing file transfer technology such as FTP.
  • the database device 400 receives the determination result or Web data transmitted from the obesity evaluation device 100 by the control unit 402, and stores the received determination result or Web data in a predetermined storage area of the storage unit 406. (Accumulate) (step SA-28).
  • the client device 200 receives the Web data transmitted from the obesity evaluation device 100 by the receiving unit 213, interprets the received Web data by the Web browser 211, and displays the Web page screen on which the individual determination result is written. Is displayed on the monitor 261 (step SA-29).
  • the client apparatus 200 receives an e-mail transmitted from the obesity evaluation apparatus 100 at an arbitrary timing by a known function of the e-mailer 212. The received e-mail is displayed on the monitor 261.
  • the user browses the Web page displayed on the monitor 261, so that the user can see healthy or apparent obesity, healthy or hidden obesity, healthy or obese, apparent obesity or hidden obesity, apparent obesity or obese, hidden obesity or obesity.
  • the user may print the display content of the Web page displayed on the monitor 261 with the printer 262.
  • the user browses the e-mail displayed on the monitor 261 so that normal or apparent obesity, normal or hidden obesity, normal or Individual discrimination results regarding obesity, apparent obesity or hidden obesity, apparent obesity or obesity, hidden obesity or obesity, or healthy or apparent obesity or hidden obesity or obesity can be confirmed.
  • the user may print the content of the e-mail displayed on the monitor 261 with the printer 262.
  • the client apparatus 200 transmits the amino acid concentration data of the individual to the obesity evaluation apparatus 100
  • the database apparatus 400 receives a request from the obesity evaluation apparatus 100 and is healthy.
  • the variable discriminant is transmitted to the obesity evaluation apparatus 100.
  • the obesity evaluation apparatus 100 (1) receives amino acid concentration data from the client apparatus 200 and receives a multivariate discriminant from the database apparatus 400, and (2) based on the received amino acid concentration data and the multivariate discriminant.
  • the multivariate discriminant is a sum of one fractional formula or a plurality of fractional formulas, a logistic regression formula, a linear discriminant formula, a multiple regression formula, a formula created by a support vector machine, Any one of an expression created by the Mahalanobis distance method, an expression created by canonical discriminant analysis, and an expression created by a decision tree may be used.
  • This makes it possible to distinguish between two groups of normal and apparent obesity, two groups of healthy and hidden obesity, two groups of healthy and obese, two groups of apparent obesity and hidden obesity, two groups of apparent obesity and obese, and hidden obesity.
  • the two-group discrimination can be performed more accurately by using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between normal and apparent obesity and the two-group discrimination between normal or apparent obesity and hidden obesity or obesity. .
  • the multivariate discriminant is a logistic regression equation using Equation 1, Equation 2, Glu, Thr, Phe as variables, Logistic regression equation with Pro, Asn, Thr, Arg, Tyr, Orn as variables, linear discriminant with His, Thr, Val, Orn, Trp as variables, or Ser, Pro, Asn, Orn, Phe, BCAA as variables May be a linear discriminant.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal and apparent obesity.
  • the multivariate discriminant is a logistic that uses Equation 3, Equation 4, Glu, Ser, Ala, Orn, Leu, Trp as variables.
  • Regression equation, logistic regression equation with Glu, Ser, Gly, Cit, Ala, BCAA as variables, linear discriminant equation with Glu, Ser, His, Thr, Lys, Phe as variables, or Glu, His, ABA, Tyr, A linear discriminant having Met and Lys as variables may be used.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal and hidden obesity.
  • the multivariate discriminant is expressed by logistic regression using Equation 5, Equation 6, Glu, Ser, Cit, Ala, Tyr, Trp as variables.
  • Formula, logistic regression equation with Glu, Ser, Ala, Tyr, Trp, BCAA as variables, linear discriminant with Glu, Thr, Ala, Tyr, Orn, Lys as variables, or Glu, Pro, His, Cit, Orn , Lys may be a linear discriminant.
  • the multivariate discriminant uses Equation 7, Equation 8, Glu, Thr, Ala, Arg, Tyr, Lys as variables.
  • Logistic regression equation, logistic regression equation with Pro, Gly, Gln, Ala, Orn, BCAA as variables, linear discriminant with His, Thr, Ala, Tyr, Orn, Phe as variables, or Ser, Pro, Gly, Cit , Lys, Phe may be used as a linear discriminant.
  • the multivariate discriminant is a logistic that uses Equation 9, Equation 10, Glu, Asn, Gly, His, Leu, Trp as variables.
  • Regression equation, logistic regression equation with Glu, Ala, ABA, Met, Lys, BCAA as variables, linear discriminant equation with Glu, Gly, His, Ala, Lys as variables, or Glu, Thr, Ala, ABA, Lys, A linear discriminant using BCAA as a variable may be used.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant that is particularly useful for apparent obesity or two-group discrimination of obesity.
  • the multivariate discriminant is a logistic that uses Equation 11, Equation 12, Glu, Gly, Cit, Tyr, Val, Phe as variables.
  • Regression equation, logistic regression equation with variables Glu, Pro, Cit, Tyr, Phe, Trp, linear discriminant equation with variables Glu, Cit, Tyr, Orn, Met, Trp, or Glu, Pro, His, Met, A linear discriminant using Phe as a variable may be used. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of hidden obesity or obesity.
  • the multivariate discriminant is expressed by Equation 13, Glu, Gly, Ala, Tyr, Trp, BCAA as variables. Or a linear discriminant using Glu, Ala, Arg, Tyr, Orn, BCAA as variables.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between normal or apparent obesity and hidden obesity or obesity.
  • Each multivariate discriminant described above is described in the method described in International Publication No. 2004/052191 which is an international application by the present applicant, or in International Publication No. 2006/098192 which is an international application by the present applicant. It can be created by a method (multivariate discriminant creation process described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is suitable for evaluation of apparent obesity, hidden obesity, and obesity status regardless of the unit of amino acid concentration in the amino acid concentration data as input data. Can be used.
  • the obesity evaluation apparatus, obesity evaluation method, obesity evaluation system, obesity evaluation program, and recording medium according to the present invention may be implemented in various different embodiments other than the second embodiment described above.
  • all or part of the processes described as being performed automatically can be performed manually, or the processes described as being performed manually. All or a part of the above can be automatically performed by a known method.
  • the processing procedures, control procedures, specific names, information including parameters such as various registration data and search conditions, screen examples, and database configurations shown in the above documents and drawings, unless otherwise specified. It can be changed arbitrarily.
  • each illustrated component is functionally conceptual and does not necessarily need to be physically configured as illustrated.
  • each part of the obesity evaluation apparatus 100 or a processing function included in each apparatus is a CPU (Central Processing Unit) and a program interpreted and executed by the CPU. All or any part thereof can be realized, and can also be realized as hardware by wired logic.
  • CPU Central Processing Unit
  • program is a data processing method described in an arbitrary language or description method, and may be in any form such as source code or binary code.
  • the “program” is not necessarily limited to a single configuration, but is distributed in the form of a plurality of modules and libraries, or in cooperation with a separate program typified by an OS (Operating System). Includes those that achieve that function.
  • the program is recorded on a recording medium and mechanically read by the obesity evaluation apparatus 100 as necessary.
  • a reading procedure, an installation procedure after reading, and the like a well-known configuration and procedure can be used.
  • “recording medium” includes any “portable physical medium”, any “fixed physical medium”, and “communication medium”.
  • the “portable physical medium” is a flexible disk, magneto-optical disk, ROM, EPROM, EEPROM, CD-ROM, MO, DVD, or the like.
  • the “fixed physical medium” is a ROM, RAM, HD or the like built in various computer systems.
  • a “communication medium” is a program that holds a program in a short period of time, such as a communication line or a carrier wave in the case of transmitting a program via a network such as a LAN, WAN, or the Internet.
  • FIG. 22 is a flowchart illustrating an example of multivariate discriminant creation processing.
  • the multivariate discriminant creation process may be performed by the database apparatus 400 that manages obesity state information.
  • the obesity evaluation apparatus 100 stores the obesity condition information acquired in advance from the database apparatus 400 in a predetermined storage area of the obesity condition information file 106c.
  • the obesity evaluation apparatus 100 stores obesity state information including obesity state index data and amino acid concentration data specified in advance by the obesity state information specifying unit 102g in a predetermined storage area of the specified obesity state information file 106d.
  • the multivariate discriminant-preparing part 102h is a candidate multivariate discriminant-preparing part 102h1 based on a predetermined formula creation method from obesity state information stored in a predetermined storage area of the designated obesity state information file 106d. A multivariate discriminant is created, and the created candidate multivariate discriminant is stored in a predetermined storage area of the candidate multivariate discriminant file 106e1 (step SB-21).
  • the multivariate discriminant-preparing part 102h is a candidate multivariate discriminant-preparing part 102h1, and a plurality of different formula creation methods (principal component analysis, discriminant analysis, support vector machine, multiple regression analysis, logistic regression) Analysis, k-means method, cluster analysis, decision tree, etc.
  • the multivariate discriminant-preparing part 102h is a candidate multivariate discriminant-preparing part 102h1, and executes various calculations (for example, average and variance) corresponding to the selected formula selection method based on the obesity state information.
  • the multivariate discriminant-preparing part 102h determines the calculation result and parameters of the determined candidate multivariate discriminant-expression in the candidate multivariate discriminant-preparing part 102h1. Thereby, a candidate multivariate discriminant is created based on the selected formula creation method.
  • a candidate multivariate discriminant when created simultaneously and in parallel (in parallel) by using a plurality of different formula creation techniques, the above-described processing may be executed in parallel for each selected formula creation technique.
  • the candidate multivariate discriminant when creating candidate multivariate discriminants serially using multiple different formula creation methods, for example, convert obesity status information using candidate multivariate discriminants created by performing principal component analysis Then, the candidate multivariate discriminant may be created by performing discriminant analysis on the converted obesity state information.
  • the multivariate discriminant-preparing part 102h uses the candidate multivariate discriminant-verifying part 102h2 to verify (mutually verify) the candidate multivariate discriminant created in step SB-21 based on a predetermined verification method.
  • the result is stored in a predetermined storage area of the verification result file 106e2 (step SB-22).
  • the multivariate discriminant-preparing part 102h is a candidate multivariate discriminant-verifying part 102h2, based on obesity state information stored in a predetermined storage area of the designated obesity state information file 106d.
  • the verification data used when verifying the formula is created, and the candidate multivariate discriminant is verified based on the created verification data.
  • the multivariate discriminant-preparing unit 102h is a candidate multivariate discriminant-verifying unit 102h2.
  • Each candidate multivariate discriminant corresponding to the formula creation method is verified based on a predetermined verification method.
  • step SB-22 among the discrimination rate, sensitivity, specificity, information criterion, etc. of the candidate multivariate discriminant based on at least one of the bootstrap method, holdout method, leave one out method, etc. You may verify about at least one. Thereby, a candidate index formula having high predictability or robustness in consideration of obesity state information and diagnostic conditions can be selected.
  • the multivariate discriminant-preparing part 102h selects a candidate multivariate discriminant variable from the verification result in step SB-22 based on a predetermined variable selection method by the variable selection part 102h3, A combination of amino acid concentration data included in the obesity state information used when creating the multivariate discriminant is selected, and obesity state information including the selected combination of amino acid concentration data is stored in a predetermined storage area of the selected obesity state information file 106e3.
  • Store step SB-23.
  • step SB-21 a plurality of candidate multivariate discriminants are created in combination with a plurality of different formula creation methods.
  • a predetermined verification method is used for each candidate multivariate discriminant corresponding to each formula creation method.
  • the multivariate discriminant-preparing part 102h uses the variable selection part 102h3 for each candidate multivariate discriminant corresponding to the verification result in step SB-22. Select a variable for the candidate multivariate discriminant based on the variable selection technique.
  • the variable of the candidate multivariate discriminant may be selected from the verification result based on at least one of the stepwise method, the best path method, the neighborhood search method, and the genetic algorithm.
  • the best path method is a method of selecting variables by sequentially reducing the variables included in the candidate multivariate discriminant one by one and optimizing the evaluation index given by the candidate multivariate discriminant.
  • the multivariate discriminant-preparing part 102h uses the variable selection part 102h3 to combine amino acid concentration data based on the obesity state information stored in the predetermined storage area of the designated obesity state information file 106d. May be selected.
  • the multivariate discriminant-preparing part 102h determines whether or not all combinations of amino acid concentration data included in the obesity state information stored in the predetermined storage area of the designated obesity state information file 106d have been completed. When the determination result is “end” (step SB-24: Yes), the process proceeds to the next step (step SB-25). When the determination result is not “end” (step SB-24: No) ) Returns to Step SB-21.
  • the multivariate discriminant-preparing part 102h determines whether or not the preset number of times has ended, and if the determination result is “end” (step SB-24: Yes), the next step (step The process proceeds to SB-25), and if the determination result is not “end” (step SB-24: No), the process may return to step SB-21.
  • the multivariate discriminant-preparing part 102h uses the amino acid concentration data included in the obesity state information stored in the predetermined storage area of the designated obesity state information file 106d as a combination of the amino acid concentration data selected in step SB-23. Or the combination of the amino acid concentration data selected in the previous step SB-23, and if the determination result is “same” (step SB-24: Yes) The process proceeds to step (step SB-25), and if the determination result is not “same” (step SB-24: No), the process may return to step SB-21. Further, when the verification result is specifically an evaluation value related to each candidate multivariate discriminant, the multivariate discriminant creation unit 102h compares the evaluation value with a predetermined threshold corresponding to each formula creation method. Based on the result, it may be determined whether to proceed to Step SB-25 or to return to Step SB-21.
  • the multivariate discriminant-preparing part 102h determines a multivariate discriminant by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from a plurality of candidate multivariate discriminants based on the verification result. Then, the determined multivariate discriminant (selected candidate multivariate discriminant) is stored in a predetermined storage area of the multivariate discriminant file 106e4 (step SB-25).
  • step SB-25 for example, selecting the optimum one from candidate multivariate discriminants created by the same formula creation method and selecting the optimum one from all candidate multivariate discriminants There is a case to do.
  • the blood amino acid concentration was measured from a blood sample of a medical checkup by the amino acid analysis method described above.
  • the examinees were divided into healthy groups (BMI ⁇ 25, VFA (visceral fat area) ⁇ 100 cm 2 ), apparent obesity groups (BMI ⁇ 25, VFA ⁇ 100 cm 2 ), hidden obesity groups (BMI ⁇ 25, VFA ⁇ 100 cm 2 ) and Divided into 4 groups of obesity group (BMI ⁇ 25, VFA ⁇ 100 cm 2 ).
  • the distribution of amino acid variables among the 4 groups is shown in FIG. In the figure, “1” indicates a healthy group, “2” indicates an apparent obesity group, “3” indicates a hidden obesity group, and “4” indicates an amino acid variable distribution of the obesity group.
  • a Kruskal Wallis test was performed between the four groups for the purpose of assessing obesity.
  • Example 1 The sample data used in Example 1 was used. Using the method described in International Publication No. WO 2004/052191 which is an international application by the present applicant, an index that maximizes the 2-group discrimination performance of a healthy group and an apparent obesity group is eagerly searched, and a plurality of same performances are obtained.
  • the index formula 1 was obtained among the indices. In addition to that, a plurality of multivariate discriminants having discriminative ability equivalent to the index formula 1 were obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 24 and 25 may be obtained by multiplying the values by real numbers or by adding arbitrary constant terms.
  • Index formula 1 0.707 (Glu) / (Gly) ⁇ 0.095557 (His) / (Ile) +0.1031 (Thr) / (Phe) +0.875
  • the area under the curve of the ROC curve (FIG. 26) is evaluated, and 0.876 ⁇ 0.039 (95% confidence interval is 0.800 to 0.953). )was gotten.
  • the cut-off value for the 2-group discrimination between the healthy group and the apparent obesity group according to the index formula 1 is 1.151 when the optimum cut-off value is obtained with the prevalence of apparent obesity as 6%.
  • a sensitivity of 80.00%, a specificity of 92.68%, a positive predictive value of 41.10%, a negative predictive value of 98.64%, and a correct diagnosis rate of 91.92% were obtained. Thereby, it was found that the index formula 1 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • the logistic analysis (variable coverage method based on ROC maximum criteria) is used to search for an index that maximizes the 2-group discrimination performance between the healthy group and the apparent obesity group, and the logistic regression formula (amino acid) composed of Glu, Thr, and Phe as index formula 2 0.0616, 0.0250, -0.0488, -5.5278) were obtained in this order for the number coefficients and constant terms of variables: Glu, Thr, Phe.
  • a plurality of logistic regression equations having a discrimination performance equivalent to that of the index formula 2 was obtained. They are shown in FIGS.
  • the values of the coefficients in the equations shown in FIGS. 27 and 28 may be values obtained by multiplying them by a real number.
  • the area under the curve of the ROC curve (FIG. 29) is evaluated, and 0.817 ⁇ 0.053 (95% confidence interval is 0.714 to 0.920). )was gotten.
  • the cut-off value of the 2-group discrimination between the healthy group and the apparent obesity group according to the index formula 2 when the optimum cut-off value is obtained by setting the prevalence of apparent obesity to 6%, the cut-off value becomes 0.061, Sensitivity was 90.00%, specificity was 79.27%, positive predictive value was 21.70%, negative predictive value was 99.20%, and correct diagnosis rate was 79.91%. Thereby, it was found that the index formula 2 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used. An index that maximizes the 2-group discrimination performance of the healthy group and the apparent obesity group is searched by linear discriminant analysis (variable coverage method), and a linear discriminant function composed of His, Thr, Val, Orn, and Trp as index formula 3 (The number coefficients and constant terms of the amino acid variables His, Thr, Val, Orn, Trp are 0.8411, -0.457, -0.1973, -0.1053, -0.1838, -49.56) in this order. Obtained. In addition to that, a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 3 were obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 30 and 31 may be obtained by multiplying the values by real numbers or by adding arbitrary constant terms.
  • the area under the curve of the ROC curve (FIG. 32) is evaluated, and 0.826 ⁇ 0.051 (95% confidence interval is 0.726 to 0.925). )was gotten.
  • the cut-off value of the 2-group discrimination between the healthy group and the apparent obesity group according to the index formula 3 is 6.29 when the optimum cut-off value is obtained with the prevalence of apparent obesity as 6%.
  • a sensitivity of 80.00%, specificity of 75.61%, a positive predictive value of 17.31%, a negative predictive value of 98.34%, and a correct diagnosis rate of 75.87% were obtained. Thereby, it was found that the index formula 3 is a useful index having high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used. Using the method described in International Publication No. WO 2004/052191, which is an international application by the present applicant, an earnest search is performed for an index that maximizes the 2-group discrimination performance of a healthy group and a hidden obesity group, and a plurality of same performances are obtained.
  • the index formula 4 was obtained among the indices. In addition to that, a plurality of multivariate discriminants having discriminative ability equivalent to the index formula 4 were obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 33 and 34 may be values obtained by multiplying the coefficients by real numbers, or those with arbitrary constant terms added.
  • Index formula 4 -1.314 (Ser) / (Ala) -0.08432 (Gly) / (Tyr) -0.1957 (Trp) / (Glu) +2.529
  • the area under the curve of the ROC curve (FIG. 35) is evaluated, and 0.807 ⁇ 0.024 (95% confidence interval is 0.760 to 0.854). )was gotten.
  • the cut-off value of the 2-group discrimination between the healthy group and the hidden obesity group according to the index formula 4 when the optimum cut-off value is obtained with the prevalence of hidden obesity being 50%, the cut-off value is 1.534, A sensitivity of 71.01%, a specificity of 70.12%, a positive predictive value of 70.38%, a negative predictive value of 70.75%, and a correct diagnosis rate of 70.56% were obtained. Thereby, it was found that the index formula 4 is a useful index having high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • An index that maximizes the 2-group discrimination performance of the healthy group and the hidden obesity group is searched by logistic analysis (variable coverage method based on ROC maximum criteria), and is composed of Glu, Ser, Ala, Orn, Leu, and Trp as index formula 5.
  • Logistic regression equation (amino acid variables: Glu, Ser, Ala, Orn, Leu, Trp, number coefficient and constant term are 0.0606, -0.0262, 0.0052, 0.0156, 0.0148,- 0.0299, -2.3421).
  • a plurality of logistic regression equations having a discrimination performance equivalent to that of the index formula 5 was obtained. They are shown in FIGS.
  • the values of the coefficients in the equations shown in FIGS. 36 and 37 may be values obtained by multiplying them by a real number.
  • the area under the curve of the ROC curve (FIG. 38) is evaluated, and 0.799 ⁇ 0.024 (95% confidence interval is 0.751 to 0.847). )was gotten.
  • the cut-off value of the 2-group discrimination between the healthy group and the hidden obesity group according to the index formula 5 when the optimum cut-off value is obtained with the prevalence of hidden obesity as 50%, the cut-off value becomes 0.485, A sensitivity of 73.96%, a specificity of 71.34%, a positive predictive value of 72.07%, a negative predictive value of 73.26%, and a correct diagnosis rate of 72.65% were obtained. Thereby, it was found that the index formula 5 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • An index that maximizes the 2-group discrimination performance of the healthy group and the hidden obesity group is searched by linear discriminant analysis (variable coverage method), and the linear discriminant composed of Glu, Ser, His, Thr, Lys, and Phe as the index formula 6 Function (number coefficients and constant terms of amino acid variables Glu, Ser, His, Thr, Lys, Phe are 0.9185, -0.3667, 0.08611, 0.05409, 0.1007, -0.0387, 29.51) was obtained.
  • a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 6 were obtained. They are shown in FIGS. It should be noted that the values of the coefficients in the equations shown in FIGS. 39 and 40 may be values obtained by multiplying them by a real number, or those obtained by adding an arbitrary constant term.
  • the area under the curve of the ROC curve (FIG. 41) is evaluated, and 0.803 ⁇ 0.024 (95% confidence interval is 0.756 to 0.851). ) Is obtained.
  • the cut-off value for the 2-group discrimination between the healthy group and the hidden obesity group according to the index formula 6 when the optimum cut-off value is obtained with the prevalence of hidden obesity being 50%, the cut-off value is -0.06.
  • the sensitivity was 70.41%, the specificity was 75.61%, the positive predictive value was 74.27%, the negative predictive value was 71.88%, and the correct diagnosis rate was 73.01%. Thereby, it was found that the index formula 6 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • an earnest search is performed for an index that maximizes the 2-group discrimination performance between a healthy group and an obese group,
  • the index formula 7 was obtained in the index.
  • a plurality of multivariate discriminants having discriminative ability equivalent to the index formula 7 are obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 42 and 43 may be values obtained by multiplying them by a real number or those added with an arbitrary constant term.
  • Index formula 7 1.1 (Glu) / (Ser) -3.72 (Cit) / (Ala) -0.5253 (Trp) / (Tyr) +1.704
  • the area under the curve of the ROC curve (FIG. 44) is evaluated, and 0.945 ⁇ 0.013 (95% confidence interval is 0.919 to 0.971) was gotten.
  • the cut-off value for distinguishing between the normal group and the obese group based on the index formula 7 when the optimum cut-off value is obtained with the prevalence of obesity being 42%, the cut-off value is 1.446, and the sensitivity is 86. .55%, specificity 92.07%, positive predictive value 88.77%, negative predictive value 90.44% and correct diagnosis rate 89.76%. Thereby, it was found that the index formula 7 is a useful index having high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • An index that maximizes the 2-group discrimination performance of the healthy group and the obese group is searched by logistic analysis (variable coverage method based on ROC maximum criteria), and is composed of Glu, Ser, Cit, Ala, Tyr, and Trp as index formula 8.
  • Logistic regression equation (amino acid variables: Glu, Ser, Cit, Ala, Tyr, Trp, number coefficient and constant term are 0.1299, -0.0384, -0.0633, 0.0115, 0.0536,- 0.0480, ⁇ 5.8449) were obtained.
  • a plurality of logistic regression equations having a discrimination performance equivalent to that of the index formula 8 was obtained. They are shown in FIGS.
  • the values of the coefficients in the equations shown in FIGS. 45 and 46 may be values obtained by multiplying them by a real number.
  • the area under the curve of the ROC curve (FIG. 47) is evaluated, 0.945 ⁇ 0.013 (95% confidence interval is 0.919 to 0.971) was gotten.
  • the cut-off value for discriminating between the normal group and the obese group based on the index formula 8 the optimum cut-off value is obtained with the prevalence of obesity being 42%, and the cut-off value is 0.441, and the sensitivity is 86. .55%, specificity 90.24%, positive predictive value 86.53%, negative predictive value 90.26%, correct diagnosis rate 88.69%. Thereby, it was found that the index formula 8 is a useful index having high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used. An index that maximizes the 2-group discrimination performance of a healthy group and an obese group is searched by linear discriminant analysis (variable coverage method), and a linear discriminant function composed of Glu, Thr, Ala, Tyr, Orn, Lys as index formula 9 (The number coefficients and constant terms of the amino acid variables Glu, Thr, Ala, Tyr, Orn, Lys are 0.9113, -0.06324, 0.07523, 0.354, 0.1762, 0.05985, 115. 6) was obtained. In addition to that, a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 9 were obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 48 and 49 may be values obtained by multiplying them by a real number or those added with an arbitrary constant term.
  • the area under the curve of the ROC curve (FIG. 50) is evaluated, and 0.943 ⁇ 0.014 (95% confidence interval is 0.917 to 0.970) was gotten.
  • the cut-off value for distinguishing between the normal group and the obese group based on the index formula 9 when the optimum cut-off value is obtained with the prevalence of the obese group being 42%, the cut-off value is 0.08, and the sensitivity 85.71%, specificity 87.20%, positive predictive value 82.90%, negative predictive value 89.39%, correct diagnosis rate 86.57%. Thereby, it was found that the index formula 9 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used. Using the method described in International Publication No. WO 2004/052191, which is an international application by the present applicant, an earnest search is performed for an index that maximizes the 2-group discrimination performance of the apparent obesity group and the hidden obesity group, and equivalent performance is obtained. Index formula 4 was obtained among the multiple indexes. In addition to that, a plurality of multivariate discriminants having a discrimination performance equivalent to that of the index formula 10 was obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 51 and 52 may be values obtained by multiplying the coefficients by real numbers, or those with arbitrary constant terms added. Index formula 10: -0.09376 (Thr) / (Tyr) +0.0108 (Ala) / (Ile) +0.3634 (Arg) / (Gln) +1.969
  • the area under the curve of the ROC curve (FIG. 53) is evaluated, and 0.766 ⁇ 0.090 (95% confidence interval is 0.590 to 0.00). 941) was obtained.
  • the cut-off value for discriminating two groups of the apparent obesity group and the hidden obesity group based on the index formula 10 is 1.934 when the optimum cut-off value is obtained with the prevalence of hidden obesity being 6%.
  • the sensitivity was 71.60%, the specificity was 80.00%, the positive predictive value was 18.60%, the negative predictive value was 97.78%, and the correct diagnosis rate was 79.50%. Thereby, it was found that the index formula 10 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • An index that maximizes the two-group discrimination performance of the apparent obesity group and the hidden obesity group is searched by logistic analysis (variable coverage method based on ROC maximum criteria), and is composed of Glu, Thr, Ala, Arg, Tyr, and Lys as index formula 11.
  • Logistic regression equation (amino acid variables: Glu, Thr, Ala, Arg, Tyr, Lys, number coefficient and constant term are 0.0015, -0.0157, 0.0018, 0.0157, 0.0101, -0.0046, 2.7478).
  • a plurality of logistic regression equations having a discrimination performance equivalent to that of the index formula 11 was obtained. They are shown in FIGS.
  • the values of the coefficients in the equations shown in FIGS. 54 and 55 may be values obtained by multiplying them by a real number.
  • the area under the curve of the ROC curve (FIG. 56) is evaluated, and 0.750 ⁇ 0.091 (95% confidence interval is 0.571 to 0.00). 929) was obtained.
  • the cut-off value for discriminating two groups of the apparent obesity group and the hidden obesity group based on the index formula 11 is 0.942 when the optimum cut-off value is obtained with the prevalence of hidden obesity being 6%.
  • the sensitivity was 72.78%, the specificity was 80.0%, the positive predictive value was 18.85%, the negative predictive value was 97.87%, and the correct diagnosis rate was 79.57%. Thereby, it was found that the index formula 11 is a useful index having high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • An index that maximizes the two-group discrimination performance of the apparent obesity group and the hidden obesity group is searched by linear discriminant analysis (variable coverage method), and the index formula 12 is composed of His, Thr, Ala, Tyr, Orn, and Phe.
  • Discriminant function number coefficients and constant terms of amino acid variables His, Thr, Ala, Tyr, Orn, Phe are -0.7968, 0.4249, -0.01413, -0.1258, 0.2072, 0 3544, -37.77).
  • a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 12 were obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 57 and 58 may be values obtained by multiplying them by a real number or those added with an arbitrary constant term.
  • the area under the curve of the ROC curve (FIG. 59) is evaluated, and 0.69 ⁇ 0.095 (95% confidence interval is 0.504 to 0.00). 877) was obtained.
  • the cut-off value for discriminating between the apparent obesity group and the hidden obesity group based on the index formula 12 is -0.27 when the optimum cut-off value is obtained with the prevalence of hidden obesity being 6%.
  • the sensitivity was 60.95%, the specificity was 70.00%, the positive predictive value was 11.48%, the negative predictive value was 96.56%, and the correct diagnosis rate was 69.46%.
  • the index formula 12 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • an earnest search is performed for an index that maximizes the two-group discrimination performance between the apparent obesity group and the obesity group, and a plurality of same performances are obtained.
  • index formula 13 was obtained.
  • a plurality of multivariate discriminants having discriminative ability equivalent to the index formula 13 were obtained. They are shown in FIGS.
  • the values of the coefficients in the equations shown in FIGS. 60 and 61 may be values obtained by multiplying them by a real number or those added with an arbitrary constant term.
  • Index formula 13 -0.04311 (Gly) / (Glu) +0.2488 (His) / (Trp) +0.4275 (Leu) / (Gln) +1.669
  • the area under the curve of the ROC curve (FIG. 62) is evaluated, and 0.830 ⁇ 0.081 (95% confidence interval is 0.671 to 0.990). )was gotten.
  • the cut-off value for discriminating two groups of the apparent obesity group and the obesity group based on the index formula 13 when the optimum cut-off value is obtained with the prevalence of obesity being 8%, the cut-off value is 1.882, and the sensitivity 78.15%, specificity 70.00%, positive predictive value 18.47%, negative predictive value 97.36%, correct diagnosis rate 70.65% were obtained. Thereby, it was found that the index formula 3 is a useful index having high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • An index that maximizes the two-group discrimination performance of the apparent obesity group and the obesity group is searched by logistic analysis (variable coverage method based on ROC maximum criteria), and is composed of Glu, Asn, Gly, His, Leu, and Trp as index formula 14.
  • Logistic regression equation (amino acid variables: Glu, Asn, Gly, His, Leu, Trp, number coefficient and constant term are 0.0365, -0.0572, -0.0151, 0.0831, 0.0236, -0.0681, 1.3616).
  • a plurality of logistic regression equations having a discrimination performance equivalent to that of the index formula 14 was obtained. They are shown in FIGS. 63 and 64. Note that the value of each coefficient in the equations shown in FIGS. 63 and 64 may be obtained by multiplying it by a real number.
  • the area under the curve of the ROC curve (FIG. 65) is evaluated, and 0.835 ⁇ 0.080 (95% confidence interval is 0.678 to 0.993). )was gotten.
  • the cut-off value for discriminating two groups of the apparent obesity group and the obesity group based on the index formula 14 when the optimum cut-off value is obtained with the prevalence of obesity being 8%, the cut-off value is 0.938, and the sensitivity 71.42%, specificity 80.0%, positive predictive value 23.70%, negative predictive value 96.99%, and correct diagnosis rate 79.31% were obtained. Thereby, it was found that the index formula 14 is a useful index having high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used. An index that maximizes the two-group discrimination performance of the apparent obesity group and the obesity group is searched by linear discriminant analysis (variable coverage method), and a linear discriminant function composed of Glu, Gly, His, Ala, Lys as index formula 15 (The number coefficients and constant terms of the amino acid variables Glu, Gly, His, Ala, Lys are -0.3357, 0.3859, -0.8555, -0.06068, -0.05278, -47.92) in this order. Obtained. In addition to that, a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 15 were obtained. They are shown in FIGS. The values of the coefficients in the equations shown in FIGS. 66 and 67 may be values obtained by multiplying the coefficients by real numbers, or may be added with arbitrary constant terms.
  • the area under the curve of the ROC curve (FIG. 68) is evaluated, and 0.796 ⁇ 0.087 (95% confidence interval is 0.626 to 0.965). )was gotten.
  • the cut-off value for discriminating two groups of the apparent obesity group and the obesity group based on the index formula 15 when the optimum cut-off value is obtained with the prevalence of obesity being 8%, the cut-off value is ⁇ 0.43, A sensitivity of 75.63%, specificity of 70.00%, positive predictive value of 17.98%, negative predictive value of 97.06%, and correct diagnosis rate of 70.45% were obtained. Thereby, it was found that the index formula 15 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • an index that maximizes the two-group discrimination performance of the hidden obesity group and the obesity group is eagerly searched, and a plurality of same performances are obtained.
  • the index formula 16 was obtained among the indices.
  • a plurality of multivariate discriminants having discriminative ability equivalent to the index formula 16 were obtained. They are shown in FIG. 69 and FIG. Note that the values of the coefficients in the equations shown in FIGS. 69 and 70 may be obtained by multiplying the values by real numbers or by adding arbitrary constant terms.
  • Index formula 16 3.588 (Glu) / (Gln) +1.041 (Tyr) / (Gly) +0.1111 (Lys) / (Trp) +0.2534
  • the area under the curve of the ROC curve (FIG. 71) is evaluated, and 0.772 ⁇ 0.027 (95% confidence interval is 0.719 to 0.825). )was gotten.
  • the cut-off value for discriminating between the two groups of hidden obesity group and obesity group based on the index formula 16 when the optimum cut-off value is obtained with the prevalence of obesity being 41%, the cut-off value is 1.403, and the sensitivity 73.11%, specificity 70.41%, positive predictive value 63.20%, negative predictive value 79.03% and correct diagnosis rate 71.52% were obtained. Thereby, it was found that the index formula 16 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • An index that maximizes the discrimination performance of the two groups of hidden obesity group and obesity group is searched by logistic analysis (variable coverage method based on ROC maximum standard), and is composed of Glu, Gly, Cit, Tyr, Val, Phe as index formula 17.
  • Logistic regression equation (amino acid variables: Glu, Gly, Cit, Tyr, Val, Phe number coefficient and constant term are 0.0337, -0.0080, -0.0225, 0.0193, 0.0051, 0.0110, -3.4665) were obtained.
  • a plurality of logistic regression equations having a discrimination performance equivalent to that of the index formula 17 was obtained. They are shown in FIGS.
  • the values of the coefficients in the equations shown in FIGS. 72 and 73 may be obtained by multiplying the values by real numbers.
  • the area under the curve of the ROC curve (FIG. 74) is evaluated, and 0.765 ⁇ 0.027 (95% confidence interval is 0.711 to 0.819). )was gotten.
  • the cut-off value for discriminating two groups of the hidden obesity group and the obesity group based on the index formula 17 when the optimum cut-off value is obtained with the prevalence of obesity being 41%, the cut-off value is 0.423, and the sensitivity The results were 70.59%, specificity 72.19%, positive predictive value 63.82%, negative predictive value 77.93%, and correct diagnosis rate 71.53%. Thereby, it was found that the index formula 17 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • An index that maximizes the two-group discrimination performance of the hidden obesity group and the obesity group is searched by linear discriminant analysis (variable coverage method), and the linear discriminant composed of Glu, Cit, Tyr, Orn, Met, and Trp as the index formula 18 Functions (number coefficients and constant terms of amino acid variables Glu, Cit, Tyr, Orn, Met, Trp are 0.5718, -0.5757, 0.2897, 0.2952, 0.3839, -0.1522, 56.1) was obtained.
  • a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 18 were obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 75 and 76 may be obtained by multiplying the values by real numbers or by adding arbitrary constant terms.
  • the area under the curve of the ROC curve (FIG. 77) is evaluated, and 0.763 ⁇ 0.028 (95% confidence interval is 0.709 to 0.817). )was gotten.
  • the cut-off value for discriminating the two groups of the hidden obesity group and the obese group based on the index formula 18 when the optimal cut-off value is obtained with the prevalence of obesity being 41%, the cut-off value is 0.05, and the sensitivity As a result, 68.07%, specificity 71.60%, positive predictive value 62.48%, negative predictive value 76.34%, and correct diagnosis rate 70.15% were obtained. Thereby, it was found that the index formula 18 is a useful index with high diagnostic performance.
  • Example 1 The sample data used in Example 1 was used.
  • index formulas 1 and 4 top two index formulas shown in FIGS. 78 and 79 described in International Publication No. 2008/015929, which is an international application by the present applicant.
  • the healthy group using the index formulas 1, 2, 3, 4, 5 and 6 (the lower six index formulas shown in FIGS. 78 and 79) described in International Publication No. 2009/001862, the healthy group, the apparent obesity group, and the healthy group
  • the group discrimination performance of a group and a hidden obesity group, a healthy group and an obesity group, an apparent obesity group and a hidden obesity group, an apparent obesity group and an obesity group, and a hidden obesity group and an obesity group were verified.
  • each of the two groups is discriminated by using any of the formulas, which exceeds the area under the ROC curve obtained in Examples 2 to 19 described above. Was not obtained.
  • the multivariate discriminant in the present invention is higher in discriminating the index formula group described in International Publication No. 2008/015929 and International Publication No. 2009/001862 which are international applications by the present applicant. It was confirmed to have performance.
  • the blood amino acid concentration was measured from a blood sample of a medical checkup by the amino acid analysis method described above.
  • the examinees were divided into healthy groups (BMI ⁇ 25, VFA (visceral fat area) ⁇ 100 cm 2 ), apparent obesity groups (BMI ⁇ 25, VFA ⁇ 100 cm 2 ), hidden obesity groups (BMI ⁇ 25, VFA ⁇ 100 cm 2 ) and Divided into 4 groups of obesity group (BMI ⁇ 25, VFA ⁇ 100 cm 2 ). Using the method described in International Publication No.
  • Index formula 19 was obtained among the index formulas having performance.
  • a plurality of multivariate discriminants having a discrimination performance equivalent to that of the index formula 19 was obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 80 and 81 may be values obtained by multiplying them by a real number or those added with an arbitrary constant term.
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the two-group discrimination performance of the healthy group and the apparent obesity group was searched by logistic analysis (variable coverage method based on ROC maximum criteria), and the following logistic regression equation was obtained as the index formula 20. In addition to that, a plurality of logistic regression equations having a discrimination performance equivalent to that of the index formula 20 was obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 82 and 83 may be obtained by multiplying them by a real number. Index formula 20: ( ⁇ 2.084) + (0.008061) Pro + ( ⁇ 0.04049) Asn + (0.01199) Thr + ( ⁇ 0.01557) Arg + (0.01880) Tyr + ( ⁇ 0.01445) Orn
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the 2-group discrimination performance of the healthy group and the apparent obesity group was searched by linear discriminant analysis (variable coverage method based on ROC maximum criteria), and the following linear discriminant function was obtained as index formula 21 (in the formula:
  • the amino acid variable “BCAA” represents “Val + Leu + Ile” (the same applies hereinafter).
  • a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 21 are obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 84 and 85 may be values obtained by multiplying them by a real number or those added with an arbitrary constant term.
  • Index formula 21 ( ⁇ 0.119) Ser + (0.3378) Pro + ( ⁇ 0.7534) Asn + ( ⁇ 0.4598) Orn + (0.3022) Phe + (0.03812) BCAA + (9.616)
  • Example 21 The sample data used in Example 21 was used.
  • Index formula 22 was obtained among a plurality of indexes having performance.
  • a plurality of multivariate discriminants having discriminative ability equivalent to the index formula 22 were obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 86 and 87 may be values obtained by multiplying them by a real number or those added with an arbitrary constant term.
  • Index formula 22 -0.06266 (Ser / Cit) -0.5982 (Gly / BCAA) -0.2097 (Gln / Ala) -0.07107 (Thr / Glu) +2.611
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the two-group discrimination performance of the healthy group and the hidden obesity group was searched by logistic analysis (variable coverage method based on the ROC maximum criterion), and the following logistic regression equation was obtained as the index formula 23. In addition to that, a plurality of logistic regression equations having a discrimination performance equivalent to that of the index formula 23 was obtained. They are shown in FIGS. 88 and 89. Note that the values of the coefficients in the equations shown in FIGS. 88 and 89 may be obtained by multiplying them by a real number. Index formula 23: ( ⁇ 3.093) + (0.03470) Glu + ( ⁇ 0.01294) Ser + ( ⁇ 0.006954) Gly + (0.02725) Cit + (0.003579) Ala + (0.005453) BCAA
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the 2-group discrimination performance of the healthy group and the hidden obesity group was searched by linear discriminant analysis (variable coverage method based on the ROC maximum criterion), and the following linear discriminant function was obtained as the index formula 24. In addition to that, a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 24 are obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 90 and 91 may be obtained by multiplying them by a real number or by adding an arbitrary constant term. Index formula 24: ( ⁇ 0.6904) Glu + ( ⁇ 0.1513) His + (0.004091) ABA + ( ⁇ 0.473) Tyr + (0.513) Met + ( ⁇ 0.1166) Lys + ( ⁇ 87.84)
  • Example 21 The sample data used in Example 21 was used.
  • an index that maximizes the 2-group discrimination performance between a healthy group and an obese group is eagerly searched based on the ROC maximum standard, and equivalent performance is obtained.
  • the index formula 25 was obtained among a plurality of indices having In addition to that, a plurality of multivariate discriminants having discriminative ability equivalent to the index formula 25 were obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 92 and 93 may be obtained by multiplying the values by real numbers or by adding arbitrary constant terms.
  • Index formula 25 1.383 (Glu / Gly) -0.9712 (Ser / Ala) -0.4993 (Trp / Tyr) +0.03613 (BCAA / Asn) +1.467
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the two-group discrimination performance of the healthy group and the obese group was searched by logistic analysis (variable coverage method based on ROC maximum criteria), and the following logistic regression equation was obtained as index formula 26. In addition to that, a plurality of logistic regression equations having a discrimination performance equivalent to the index formula 26 was obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 94 and 95 may be obtained by multiplying them by a real number. Index formula 26: ( ⁇ 5.188) + (0.05264) Glu + ( ⁇ 0.02294) Ser + (0.003777) Ala + (0.03438) Tyr + ( ⁇ 0.03567) Trp + (0.006689) BCAA
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the two-group discrimination performance of the healthy group and the obese group was searched by linear discriminant analysis (variable coverage method based on the ROC maximum criterion), and the following linear discriminant function was obtained as index formula 27. In addition to that, a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 27 are obtained. They are shown in FIGS. The values of the coefficients in the equations shown in FIGS. 96 and 97 may be values obtained by multiplying them by a real number or those added with an arbitrary constant term. Index formula 27: ( ⁇ 0.8287) Glu + ( ⁇ 0.128) Pro + ( ⁇ 0.1247) His + (0.5022) Cit + ( ⁇ 0.1066) Orn + ( ⁇ 0.1333) Lys + ( ⁇ 85.16 )
  • Index formula 28 was obtained among a plurality of indexes having the following performance.
  • a plurality of multivariate discriminants having discriminative ability equivalent to the index formula 28 are obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 98 and 99 may be obtained by multiplying the values by real numbers or by adding arbitrary constant terms.
  • Index formula 28 -0.4309 (Pro / BCAA) -0.05254 (Gly / Orn) -0.119 (Gln / Ala) +0.3006 (ABA / Thr) +2.374
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the two-group discrimination performance of the apparent obesity group and the hidden obesity group was searched by logistic analysis (variable coverage method based on the ROC maximum criterion), and the following logistic regression equation was obtained as the index formula 29. In addition to that, a plurality of logistic regression equations having a discrimination performance equivalent to that of the index formula 29 was obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 100 and 101 may be obtained by multiplying them by a real number. Index formula 29: (0.8539) + ( ⁇ 0.009752) Pro + ( ⁇ 0.006173) Gly + ( ⁇ 0.003777) Gln + (0.004300) Ala + (0.04151) Orn + (0.005553) BCAA
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the two-group discrimination performance of the apparent obesity group and the hidden obesity group was searched by linear discriminant analysis (variable coverage method based on ROC maximum criteria), and the following linear discriminant function was obtained as index formula 30. In addition to that, a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 30 were obtained. They are shown in FIGS. Note that the values of the coefficients in the equations shown in FIGS. 102 and 103 may be obtained by multiplying the values by real numbers or by adding arbitrary constant terms. Index formula 30: ( ⁇ 0.1417) Ser + ( ⁇ 0.0738) Pro + ( ⁇ 0.1559) Gly + (0.9202) Cit + (0.2841) Lys + (0.1505) Phe + (37.55)
  • Example 21 The sample data used in Example 21 was used.
  • the index formula 31 was obtained among a plurality of indices having performance.
  • a plurality of multivariate discriminants having a discrimination performance equivalent to that of the index formula 31 was obtained. They are shown in FIGS. 104 and 105. Note that the values of the coefficients in the equations shown in FIGS. 104 and 105 may be values obtained by multiplying them by a real number, or those obtained by adding an arbitrary constant term.
  • Index formula 31 0.09865 (Glu / Asn) +0.4357 (ABA / Ser) +0.4758 (Lys / Gln) +0.02968 (BCAA / Trp) +1.232
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the two-group discrimination performance between the apparent obesity group and the obesity group was searched by logistic analysis (variable coverage method based on the ROC maximum standard), and the following logistic regression equation was obtained as the index formula 32. In addition to that, a plurality of logistic regression equations having a discrimination performance equivalent to that of the index formula 32 was obtained. They are shown in FIGS. The values of the coefficients in the equations shown in FIGS. 106 and 107 may be values obtained by multiplying them by real numbers. Index formula 32: ( ⁇ 4.831) + (0.03153) Glu + (0.003510) Ala + (0.03078) ABA + ( ⁇ 0.06069) Met + (0.01118) Lys + (0.005459) BCAA
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the 2-group discrimination performance of the apparent obesity group and the obesity group was searched by linear discriminant analysis (variable coverage method based on the ROC maximum criterion), and the following linear discriminant function was obtained as the index formula 33. In addition to that, a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 33 are obtained. They are shown in FIGS. It should be noted that the values of the coefficients in the equations shown in FIGS. Index formula 33: ( ⁇ 0.6047) Glu + (0.2229) Thr + ( ⁇ 0.07818) Ala + ( ⁇ 0.7123) ABA + ( ⁇ 0.2426) Lys + ( ⁇ 0.1109) BCAA + ( ⁇ 161.8 )
  • Example 21 The sample data used in Example 21 was used.
  • the index formula 34 was obtained among a plurality of indices having performance.
  • a plurality of multivariate discriminants having discriminative ability equivalent to the index formula 34 are obtained. They are shown in FIGS. 110 and 111. Note that the values of the coefficients in the equations shown in FIG. 110 and FIG. Index formula 34: 0.2224 (Glu / Asn) ⁇ 0.2481 (His / Thr) +0.1695 (Phe / Cit) ⁇ 0.3708 (Trp / Tyr) +1.288
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the two-group discrimination performance between the hidden obesity group and the obesity group was searched by logistic analysis (variable coverage method based on the ROC maximum criterion), and the following logistic regression equation was obtained as the index formula 35. In addition to that, a plurality of logistic regression equations having a discrimination performance equivalent to the index formula 35 was obtained. They are shown in FIGS. 112 and 113. The values of the coefficients in the equations shown in FIGS. 112 and 113 may be obtained by multiplying the values by real numbers. Index formula 35: ( ⁇ 1.853) + (0.02439) Glu + (0.004286) Pro + ( ⁇ 0.04532) Cit + (0.01405) Tyr + (0.01594) Phe + ( ⁇ 0.016885) Trp
  • Example 21 The sample data used in Example 21 was used. An index that maximizes the 2-group discrimination performance of the hidden obesity group and the obesity group was searched by linear discriminant analysis (variable coverage method based on the ROC maximum criterion), and the following linear discriminant function was obtained as the index formula 36. In addition to that, a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 36 are obtained. They are shown in FIGS. 114 and 115. Note that the values of the coefficients in the equations shown in FIGS. 114 and 115 may be obtained by multiplying the values by real numbers or by adding arbitrary constant terms. Index formula 36: (0.7779) Glu + (0.1223) Pro + ( ⁇ 0.2246) His + (0.3704) Met + (0.4384) Phe + (83.09)
  • Example 21 The sample data used in Example 21 was used.
  • 2-group discrimination performance of VFA is less than 100 cm 2 "normal group + apparent obese” (normal group - apparent obese) and VFA are 100 cm 2 or more "hidden obese + obese” (hidden obese, obese)
  • a logistic analysis (variable coverage method based on ROC maximum criteria) is used to search for an index that maximizes the value, and a logistic regression equation (amino acid variables: Glu, Gly) composed of Glu, Gly, Ala, Tyr, Trp, BCAA as index formula 37 , Ala, Tyr, Trp, BCAA number coefficient and constant term in this order 0.0379, -0.0070, 0.0034, 0.0196, -0.0216, 0.0054, -3.5250) It was.
  • the index formula 37 is a useful index with high diagnostic performance.
  • Example 21 The sample data used in Example 21 was used.
  • An index that maximizes the discrimination performance of the two groups of the healthy group / apparent obesity group and the hidden obesity group / obesity group is searched by linear discriminant analysis (variable coverage method based on the ROC maximum standard), and Glu, Ala, Arg, Linear discriminant function composed of Tyr, Orn, BCAA (number coefficients and constant terms of amino acid variables Glu, Ala, Arg, Tyr, Orn, BCAA are -0.7787, -0.07736, 0.2248,- 0.4318, 0.379, -0.08375, -94.83) were obtained.
  • a plurality of linear discriminant functions having discriminative ability equivalent to the index formula 38 are obtained. They are shown in FIGS.
  • the area under the curve of the ROC curve (FIG. 121) is evaluated, and 0.782 ⁇ 0.013 (95% confidence interval is 0.757 to 0.807) was obtained.
  • the optimal cut-off value is obtained with the prevalence of hidden obesity / obesity as 60%.
  • the cutoff value was -185, and the sensitivity was 70.01%, the specificity was 70.10%, the positive predictive value was 77.84%, the negative predictive value was 60.91%, and the correct diagnosis rate was 70.05%. Thereby, it was found that the index formula 38 is a useful index with high diagnostic performance.
  • Example 21 The sample data used in Example 21 was used.
  • an earnest search is performed for an index that maximizes the discrimination performance between a normal group / apparent obesity group and a hidden obesity group / obesity group.
  • the index formula 39 is obtained among a plurality of indices having equivalent performance.
  • a plurality of multivariate discriminants having discriminative ability equivalent to the index formula 39 are obtained. They are shown in FIGS. 122 and 123. Note that the values of the coefficients in the equations shown in FIGS. 122 and 123 may be obtained by multiplying them by a real number or by adding an arbitrary constant term.
  • Index formula 39 0.2541 (Glu / Asn) ⁇ 0.7493 (Ser / Ala) ⁇ 0.3896 (Cit / Phe) +0.2152 (Tyr / Trp) +1.102
  • the index formula 39 is a useful index having high diagnostic performance.
  • the method for evaluating obesity according to the present invention can be widely implemented in many industrial fields, in particular, in fields such as pharmaceuticals, foods, and medicine, and in particular, apparent obesity defined by BMI and VFA. It is extremely useful in the field of bioinformatics for predicting the progression of obesity, hidden obesity, obesity, disease risk, proteome and metabolome analysis.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 血液中のアミノ酸の濃度のうちBMIおよびVFAで定義される見掛け肥満や隠れ肥満、肥満の状態と関連するアミノ酸の濃度を利用して、見掛け肥満や隠れ肥満、肥満の状態を精度よく評価することができる肥満の評価方法を提供することを課題とする。本発明にかかる肥満の評価方法によれば、評価対象から採取した血液からアミノ酸の濃度値に関するアミノ酸濃度データを測定し、測定した評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値に基づいて、評価対象につき、BMIおよびVFAで定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する。

Description

肥満の評価方法
 本発明は、血液(血漿)中のアミノ酸濃度を利用した肥満の評価方法に関するものである。
 2006年に厚生労働省が実施した「平成18年国民健康・栄養調査結果」によると、日本人の肥満者数は増加傾向にあり、特に男性においては、全ての年齢階級において肥満者の割合が20年前(昭和61年)および10年前(平成8年)と比べて増加している。肥満を放置しておくと糖尿病や高脂血症、心筋梗塞、狭心症、脳梗塞、脳血栓、痛風、脂肪肝、睡眠時無呼吸症候群、変形性関節症、腰痛などの疾患リスクが高まるため、肥満者を早期にスクリーングし生活習慣の改善を促す必要がある。そのためには、肥満の状態を定量的且つ簡便且つ迅速にスクリーニングできる指標が必要である。
 ここで、肥満の状態を評価する既存の指標としては、BMI(Body Mass Index)や体脂肪率、内臓脂肪面積がある。しかし、BMIは、標準体型の人には適用できるが、骨太な人や足長な人、骨細の人、筋肉の多い人等には適用できないという問題がある。また、体脂肪率は、測定誤差が大きいという問題がある。また、内蔵脂肪面積は、測定コストが高く、被爆の頻度が高くなるという問題がある。そのため、これらの代替となる指標が求められている。
 ところで、血中アミノ酸の濃度が、肥満者で変化することについては知られている。例えば、Chevalierら(非特許文献1)やSheら(非特許文献2)によれば、血漿中の分岐鎖アミノ酸(バリン、ロイシン、イソロイシン)が、健常者に比べて肥満者で増加していることが報告されている。Breumら(非特許文献3)やJeevanandamら(非特許文献4)によれば、血漿中の分岐鎖アミノ酸と芳香族アミノ酸(チロシン、フェニルアラニン)の総和に対するトリプトファンの比率が、健常者に比べて肥満者で減少していることが報告されている。Caballeroら(非特許文献5)によれば、血漿中の分岐鎖アミノ酸とグルタミン酸が、健常者に比べて肥満者で増加していること、グリシン、トリプトファン、スレオニン、ヒスチジン、タウリン、シトルリン、シスチンが、健常者に比べて肥満者で減少していることが報告されている。Dornerら(非特許文献6)によれば、血漿中の分岐鎖アミノ酸と芳香族アミノ酸が、健常者に比べて肥満者で増加していることが報告されている。
 また、先行特許として、アミノ酸濃度と生体状態とを関連付ける方法に関する特許文献1および特許文献2が公開されている。また、アミノ酸濃度を用いてメタボリックシンドロームの状態を評価する方法に関する特許文献3や、アミノ酸濃度を用いて内臓脂肪蓄積を評価する方法に関する特許文献4が公開されている。
国際公開第2004/052191号 国際公開第2006/098192号 国際公開第2008/015929号 国際公開第2009/001862号
Chevalier,S.,Burgess,SC.,et.al.,"The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism.",Diabetes,2006,55,p675-681 She,P.,Van,HC.,et.al.,"Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism.",American journal of physiology,Endocrinology and metabolism,2007,293,6,p1552-1563 Breum,L.,Rasmussen,MH.,et.al.,"Twenty-four-hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction.",The American journal of clinical nutrition,2003,77,5,p1122-1128 Jeevanandam,M.,Ramias,L.,et.al.,"Altered plasma free amino acid levels in obese traumatized man.",Metabolism:clinical and experimental,1991,40,4,p385-390 Caballero,B.,Finer,N.,Wurtman,RJ.,et.al.,"Plasma amino acids and insulin levels in obesity: response to carbohydrate intake and tryptophan supplements.",Metabolism:clinical and experimental,1988,37,7,p672-676 Dorner, G., Bewer, G., et. al., Changes of the plasma tryptophan to neutral amino acids ratio in formula-fed infants: possible effects on brain development., Experimental and clinical endocrinology, 1983, 82, 3, p368-371
 しかしながら、これまで、複数のアミノ酸を変数として、肥満の状態を評価する方法の開発は行われておらず、実用化されていないという問題点があった。また、特許文献1、特許文献2、特許文献3および特許文献4に開示されている指標式群で肥満の状態を評価しても、十分な精度を得ることができないという問題点がある。
 本発明は、上記問題点に鑑みてなされたもので、血液中のアミノ酸の濃度のうちBMIおよびVFA(Visceral Fat Area)で定義される見掛け肥満や隠れ肥満、肥満の状態と関連するアミノ酸の濃度を利用して、見掛け肥満や隠れ肥満、肥満の状態を精度よく評価することができる肥満の評価方法を提供することを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討した結果、BMIおよびVFAで定義される見掛け肥満や隠れ肥満、肥満の状態評価に対して、より特異的なアミノ酸変数を探索・同定すると共に、同定したアミノ酸の濃度を変数として含む多変量判別式(指標式、相関式)がこれらの肥満の状態に有意な相関があることを見出し、本発明を完成するに至った。
 すなわち、上述した課題を解決し、目的を達成するために、本発明にかかる肥満の評価方法は、評価対象から採取した血液からアミノ酸の濃度値に関するアミノ酸濃度データを測定する測定ステップと、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、BMI(Body Mass Index)およびVFA(Visceral Fat Area)で定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する濃度値基準評価ステップとを含むことを特徴とする。
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記BMIおよび前記VFAで定義される健常または前記見掛け肥満、前記健常または前記隠れ肥満、前記健常または前記肥満、前記見掛け肥満または前記隠れ肥満、前記見掛け肥満または前記肥満、前記隠れ肥満または前記肥満、または、前記健常もしくは前記見掛け肥満または前記隠れ肥満もしくは前記肥満であるか否かを判別する濃度値基準判別ステップをさらに含むことを特徴とする。
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの前記濃度値、および前記アミノ酸の濃度を変数とする予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記見掛け肥満、前記隠れ肥満および前記肥満のうち少なくとも1つの状態を評価する判別値基準評価ステップとをさらに含み、前記多変量判別式は、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを前記変数として含むことを特徴とする。
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記BMIおよび前記VFAで定義される健常または前記見掛け肥満、前記健常または前記隠れ肥満、前記健常または前記肥満、前記見掛け肥満または前記隠れ肥満、前記見掛け肥満または前記肥満、前記隠れ肥満または前記肥満、または、前記健常もしくは前記見掛け肥満または前記隠れ肥満もしくは前記肥満であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記多変量判別式は、1つの分数式または複数の前記分数式の和、もしくはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記判別値基準判別ステップにて前記健常または前記見掛け肥満であるか否かを判別する場合、前記多変量判別式は、数式1、数式2、Glu,Thr,Pheを前記変数とする前記ロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを前記変数とする前記ロジスティック回帰式、His,Thr,Val,Orn,Trpを前記変数とする前記線形判別式、またはSer,Pro,Asn,Orn,Phe,Val,Leu,Ileを前記変数とする前記線形判別式であることを特徴とする。
(Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                       ・・・(数式1)
(Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                       ・・・(数式2)
(数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記判別値基準判別ステップにて前記健常または前記隠れ肥満であるか否かを判別する場合、前記多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを前記変数とする前記線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを前記変数とする前記線形判別式であることを特徴とする。
(Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                       ・・・(数式3)
(Ser/Cit)+b(Gly/(Val+Leu+Ile))+c(Gln/Ala)+d(Thr/Glu)+e
                       ・・・(数式4)
(数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記判別値基準判別ステップにて前記健常または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを前記変数とする前記線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを前記変数とする前記線形判別式であることを特徴とする。
(Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                       ・・・(数式5)
(Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d((Val+Leu+Ile)/Asn)+e
                       ・・・(数式6)
(数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記判別値基準判別ステップにて前記見掛け肥満または前記隠れ肥満であるか否かを判別する場合、前記多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを前記変数とする前記ロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを前記変数とする前記線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを前記変数とする前記線形判別式であることを特徴とする。
(Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                       ・・・(数式7)
(Pro/(Val+Leu+Ile))+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                       ・・・(数式8)
(数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記判別値基準判別ステップにて前記見掛け肥満または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ala,ABA,Met,Lys,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Gly,His,Ala,Lysを前記変数とする前記線形判別式、またはGlu,Thr,Ala,ABA,Lys,Val,Leu,Ileを前記変数とする前記線形判別式であることを特徴とする。
(Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                       ・・・(数式9)
10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10((Val+Leu+Ile)/Trp)+e10
                      ・・・(数式10)
(数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記判別値基準判別ステップにて前記隠れ肥満または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを前記変数とする前記ロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを前記変数とする前記ロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを前記変数とする前記線形判別式、またはGlu,Pro,His,Met,Pheを前記変数とする前記線形判別式であることを特徴とする。
11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                      ・・・(数式11)
12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                      ・・・(数式12)
(数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
 また、本発明にかかる肥満の評価方法は、前記に記載の肥満の評価方法において、前記判別値基準判別ステップにて前記健常もしくは前記見掛け肥満または前記隠れ肥満もしくは前記肥満であるか否かを判別する場合、前記多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,Val,Leu,Ileを前記変数とする前記線形判別式であることを特徴とする。
13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                      ・・・(数式13)
(数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
 また、本発明にかかる肥満評価装置は、制御手段と記憶手段とを備え、評価対象につき、BMI(Body Mass Index)およびVFA(Visceral Fat Area)で定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する肥満評価装置であって、前記制御手段は、アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの前記濃度値、および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記見掛け肥満、前記隠れ肥満および前記肥満のうち少なくとも1つの状態を評価する判別値基準評価手段とを備え、前記多変量判別式は、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを前記変数として含むことを特徴とする。
 また、本発明にかかる肥満評価装置は、前記に記載の肥満評価装置において、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記BMIおよび前記VFAで定義される健常または前記見掛け肥満、前記健常または前記隠れ肥満、前記健常または前記肥満、前記見掛け肥満または前記隠れ肥満、前記見掛け肥満または前記肥満、前記隠れ肥満または前記肥満、または、前記健常もしくは前記見掛け肥満または前記隠れ肥満もしくは前記肥満であるか否かを判別する判別値基準判別手段をさらに備えたことを特徴とする。
 また、本発明にかかる肥満評価装置は、前記に記載の肥満評価装置において、前記多変量判別式は、1つの分数式または複数の前記分数式の和、もしくはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
 また、本発明にかかる肥満評価装置は、前記に記載の肥満評価装置において、前記判別値基準判別手段にて前記健常または前記見掛け肥満であるか否かを判別する場合、前記多変量判別式は、数式1、数式2、Glu,Thr,Pheを前記変数とする前記ロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを前記変数とする前記ロジスティック回帰式、His,Thr,Val,Orn,Trpを前記変数とする前記線形判別式、またはSer,Pro,Asn,Orn,Phe,Val,Leu,Ileを前記変数とする前記線形判別式であることを特徴とする。
(Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                       ・・・(数式1)
(Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                       ・・・(数式2)
(数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満評価装置は、前記に記載の肥満評価装置において、前記判別値基準判別手段にて前記健常または前記隠れ肥満であるか否かを判別する場合、前記多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを前記変数とする前記線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを前記変数とする前記線形判別式であることを特徴とする。
(Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                       ・・・(数式3)
(Ser/Cit)+b(Gly/(Val+Leu+Ile))+c(Gln/Ala)+d(Thr/Glu)+e
                       ・・・(数式4)
(数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満評価装置は、前記に記載の肥満評価装置において、前記判別値基準判別手段にて前記健常または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを前記変数とする前記線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを前記変数とする前記線形判別式であることを特徴とする。
(Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                       ・・・(数式5)
(Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d((Val+Leu+Ile)/Asn)+e
                       ・・・(数式6)
(数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満評価装置は、前記に記載の肥満評価装置において、前記判別値基準判別手段にて前記見掛け肥満または前記隠れ肥満であるか否かを判別する場合、前記多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを前記変数とする前記ロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを前記変数とする前記線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを前記変数とする前記線形判別式であることを特徴とする。
(Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                       ・・・(数式7)
(Pro/(Val+Leu+Ile))+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                       ・・・(数式8)
(数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満評価装置は、前記に記載の肥満評価装置において、前記判別値基準判別手段にて前記見掛け肥満または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ala,ABA,Met,Lys,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Gly,His,Ala,Lysを前記変数とする前記線形判別式、またはGlu,Thr,Ala,ABA,Lys,Val,Leu,Ileを前記変数とする前記線形判別式であることを特徴とする。
(Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                       ・・・(数式9)
10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10((Val+Leu+Ile)/Trp)+e10
                      ・・・(数式10)
(数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
 また、本発明にかかる肥満評価装置は、前記に記載の肥満評価装置において、前記判別値基準判別手段にて前記隠れ肥満または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを前記変数とする前記ロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを前記変数とする前記ロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを前記変数とする前記線形判別式、またはGlu,Pro,His,Met,Pheを前記変数とする前記線形判別式であることを特徴とする。
11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                      ・・・(数式11)
12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                      ・・・(数式12)
(数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
 また、本発明にかかる肥満評価装置は、前記に記載の肥満評価装置において、前記判別値基準判別手段にて前記健常もしくは前記見掛け肥満または前記隠れ肥満もしくは前記肥満であるか否かを判別する場合、前記多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,Val,Leu,Ileを前記変数とする前記線形判別式であることを特徴とする。
13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                      ・・・(数式13)
(数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
 また、本発明にかかる肥満評価装置は、前記に記載の肥満評価装置において、前記制御手段は、前記アミノ酸濃度データと前記見掛け肥満、前記隠れ肥満および前記肥満のうち少なくとも1つの状態を表す指標に関する肥満状態指標データとを含む前記記憶手段で記憶した肥満状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成手段をさらに備え、前記多変量判別式作成手段は、前記肥満状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成手段と、前記候補多変量判別式作成手段で作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証手段と、前記候補多変量判別式検証手段での検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用いる前記肥満状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択手段と、をさらに備え、前記候補多変量判別式作成手段、前記候補多変量判別式検証手段および前記変数選択手段を繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
 また、本発明にかかる肥満評価方法は、制御手段と記憶手段とを備えた情報処理装置において実行される、評価対象につき、BMI(Body Mass Index)およびVFA(Visceral Fat Area)で定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する肥満評価方法であって、前記制御手段において実行される、アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの前記濃度値、および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記見掛け肥満、前記隠れ肥満および前記肥満のうち少なくとも1つの状態を評価する判別値基準評価ステップとを含み、前記多変量判別式は、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを前記変数として含むことを特徴とする。
 また、本発明にかかる肥満評価方法は、前記に記載の肥満評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記BMIおよび前記VFAで定義される健常または前記見掛け肥満、前記健常または前記隠れ肥満、前記健常または前記肥満、前記見掛け肥満または前記隠れ肥満、前記見掛け肥満または前記肥満、前記隠れ肥満または前記肥満、または、前記健常もしくは前記見掛け肥満または前記隠れ肥満もしくは前記肥満であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
 また、本発明にかかる肥満評価方法は、前記に記載の肥満評価方法において、前記多変量判別式は、1つの分数式または複数の前記分数式の和、もしくはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
 また、本発明にかかる肥満評価方法は、前記に記載の肥満評価方法において、前記判別値基準判別ステップにて前記健常または前記見掛け肥満であるか否かを判別する場合、前記多変量判別式は、数式1、数式2、Glu,Thr,Pheを前記変数とする前記ロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを前記変数とする前記ロジスティック回帰式、His,Thr,Val,Orn,Trpを前記変数とする前記線形判別式、またはSer,Pro,Asn,Orn,Phe,Val,Leu,Ileを前記変数とする前記線形判別式であることを特徴とする。
(Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                       ・・・(数式1)
(Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                       ・・・(数式2)
(数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満評価方法は、前記に記載の肥満評価方法において、前記判別値基準判別ステップにて前記健常または前記隠れ肥満であるか否かを判別する場合、前記多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを前記変数とする前記線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを前記変数とする前記線形判別式であることを特徴とする。
(Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                       ・・・(数式3)
(Ser/Cit)+b(Gly/(Val+Leu+Ile))+c(Gln/Ala)+d(Thr/Glu)+e
                       ・・・(数式4)
(数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満評価方法は、前記に記載の肥満評価方法において、前記判別値基準判別ステップにて前記健常または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを前記変数とする前記線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを前記変数とする前記線形判別式であることを特徴とする。
(Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                       ・・・(数式5)
(Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d((Val+Leu+Ile)/Asn)+e
                       ・・・(数式6)
(数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満評価方法は、前記に記載の肥満評価方法において、前記判別値基準判別ステップにて前記見掛け肥満または前記隠れ肥満であるか否かを判別する場合、前記多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを前記変数とする前記ロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを前記変数とする前記線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを前記変数とする前記線形判別式であることを特徴とする。
(Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                       ・・・(数式7)
(Pro/(Val+Leu+Ile))+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                       ・・・(数式8)
(数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明にかかる肥満評価方法は、前記に記載の肥満評価方法において、前記判別値基準判別ステップにて前記見掛け肥満または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ala,ABA,Met,Lys,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Gly,His,Ala,Lysを前記変数とする前記線形判別式、またはGlu,Thr,Ala,ABA,Lys,Val,Leu,Ileを前記変数とする前記線形判別式であることを特徴とする。
(Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                       ・・・(数式9)
10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10((Val+Leu+Ile)/Trp)+e10
                      ・・・(数式10)
(数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
 また、本発明にかかる肥満評価方法は、前記に記載の肥満評価方法において、前記判別値基準判別ステップにて前記隠れ肥満または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを前記変数とする前記ロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを前記変数とする前記ロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを前記変数とする前記線形判別式、またはGlu,Pro,His,Met,Pheを前記変数とする前記線形判別式であることを特徴とする。
11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                      ・・・(数式11)
12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                      ・・・(数式12)
(数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
 また、本発明にかかる肥満評価方法は、前記に記載の肥満評価方法において、前記判別値基準判別ステップにて前記健常もしくは前記見掛け肥満または前記隠れ肥満もしくは前記肥満であるか否かを判別する場合、前記多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,Val,Leu,Ileを前記変数とする前記線形判別式であることを特徴とする。
13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                      ・・・(数式13)
(数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
 また、本発明にかかる肥満評価方法は、前記に記載の肥満評価方法において、前記制御手段において実行される、前記アミノ酸濃度データと前記見掛け肥満、前記隠れ肥満および前記肥満のうち少なくとも1つの状態を表す指標に関する肥満状態指標データとを含む前記記憶手段で記憶した肥満状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成ステップをさらに含み、前記多変量判別式作成ステップは、前記肥満状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成ステップと、前記候補多変量判別式作成ステップで作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証ステップと、前記候補多変量判別式検証ステップでの検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用いる前記肥満状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択ステップと、をさらに含み、前記候補多変量判別式作成ステップ、前記候補多変量判別式検証ステップおよび前記変数選択ステップを繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
 また、本発明にかかる肥満評価システムは、制御手段と記憶手段とを備え、評価対象につき、BMI(Body Mass Index)およびVFA(Visceral Fat Area)で定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する肥満評価装置と、アミノ酸の濃度値に関する前記評価対象のアミノ酸濃度データを提供する情報通信端末装置とを、ネットワークを介して通信可能に接続して構成された肥満評価システムであって、前記情報通信端末装置は、前記評価対象の前記アミノ酸濃度データを前記肥満評価装置へ送信するアミノ酸濃度データ送信手段と、前記肥満評価装置から送信された前記見掛け肥満、前記隠れ肥満および前記肥満のうち少なくとも1つの状態評価に関する前記評価対象の評価結果を受信する評価結果受信手段とを備え、前記肥満評価装置の前記制御手段は、前記情報通信端末装置から送信された前記評価対象の前記アミノ酸濃度データを受信するアミノ酸濃度データ受信手段と、前記アミノ酸濃度データ受信手段で受信した前記評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの前記濃度値、および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記見掛け肥満、前記隠れ肥満および前記肥満のうち少なくとも1つの状態を評価する判別値基準評価手段と、前記判別値基準評価手段での前記評価対象の前記評価結果を前記情報通信端末装置へ送信する評価結果送信手段と、を備え、前記多変量判別式は、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを前記変数として含むことを特徴とする。
 また、本発明にかかる肥満評価プログラムは、制御手段と記憶手段とを備えた情報処理装置において実行させるための、評価対象につき、BMI(Body Mass Index)およびVFA(Visceral Fat Area)で定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する肥満評価プログラムであって、前記制御手段において実行させるための、アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの前記濃度値、および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記見掛け肥満、前記隠れ肥満および前記肥満のうち少なくとも1つの状態を評価する判別値基準評価ステップとを含み、前記多変量判別式は、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを前記変数として含むことを特徴とする。
 また、本発明にかかる記録媒体は、コンピュータ読み取り可能な記録媒体であって、前記に記載の肥満評価プログラムを記録したことを特徴とする。
 本発明によれば、評価対象から採取した血液からアミノ酸の濃度値に関するアミノ酸濃度データを測定し、測定した評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値に基づいて、評価対象につき、BMIおよびVFAで定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する。これにより、血液中のアミノ酸の濃度のうちBMIおよびVFAで定義される見掛け肥満や隠れ肥満、肥満の状態と関連するアミノ酸の濃度を利用して、見掛け肥満や隠れ肥満、肥満の状態を精度よく評価することができるという効果を奏する。
 また、本発明によれば、測定した評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値に基づいて、評価対象につき、BMIおよびVFAで定義される健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する。これにより、血液中のアミノ酸の濃度のうち、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用なアミノ酸の濃度を利用して、これらの2群判別を精度よく行うことができるという効果を奏する。
 また、本発明によれば、評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値、およびアミノ酸の濃度を変数とする多変量判別式であってGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき、見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する。これにより、見掛け肥満や隠れ肥満、肥満の状態と有意な相関がある多変量判別式で得られる判別値を利用して、見掛け肥満や隠れ肥満、肥満の状態を精度よく評価することができるという効果を奏する。
 また、本発明によれば、算出した判別値に基づいて、評価対象につき、BMIおよびVFAで定義される健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する。これにより、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別を精度よく行うことができるという効果を奏する。
 また、本発明によれば、多変量判別式は、1つの分数式または複数の分数式の和、もしくはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つである。これにより、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別をさらに精度よく行うことができるという効果を奏する。
 また、本発明によれば、健常または見掛け肥満であるか否かを判別する場合、多変量判別式は、数式1、数式2、Glu,Thr,Pheを変数とするロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを変数とするロジスティック回帰式、His,Thr,Val,Orn,Trpを変数とする線形判別式、またはSer,Pro,Asn,Orn,Phe,Val,Leu,Ileを変数とする線形判別式である。これにより、健常と見掛け肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。
(Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                       ・・・(数式1)
(Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                       ・・・(数式2)
(数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明によれば、健常または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを変数とするロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,Val,Leu,Ileを変数とするロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを変数とする線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを変数とする線形判別式である。これにより、健常と隠れ肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。
(Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                       ・・・(数式3)
(Ser/Cit)+b(Gly/(Val+Leu+Ile))+c(Gln/Ala)+d(Thr/Glu)+e
                       ・・・(数式4)
(数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明によれば、健常または肥満であるか否かを判別する場合、多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを変数とするロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,Val,Leu,Ileを変数とするロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを変数とする線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを変数とする線形判別式である。これにより、健常と肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。
(Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                       ・・・(数式5)
(Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d((Val+Leu+Ile)/Asn)+e
                       ・・・(数式6)
(数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明によれば、見掛け肥満または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを変数とするロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,Val,Leu,Ileを変数とするロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを変数とする線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを変数とする線形判別式である。これにより、見掛け肥満または隠れ肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。
(Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                       ・・・(数式7)
(Pro/(Val+Leu+Ile))+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                       ・・・(数式8)
(数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、本発明によれば、見掛け肥満または肥満であるか否かを判別する場合、多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを変数とするロジスティック回帰式、Glu,Ala,ABA,Met,Lys,Val,Leu,Ileを変数とするロジスティック回帰式、Glu,Gly,His,Ala,Lysを変数とする線形判別式、またはGlu,Thr,Ala,ABA,Lys,Val,Leu,Ileを変数とする線形判別式である。これにより、見掛け肥満または肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。
(Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                       ・・・(数式9)
10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10((Val+Leu+Ile)/Trp)+e10
                      ・・・(数式10)
(数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
 また、本発明によれば、隠れ肥満または肥満であるか否かを判別する場合、多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを変数とするロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを変数とするロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを変数とする線形判別式、またはGlu,Pro,His,Met,Pheを変数とする線形判別式である。これにより、隠れ肥満または肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。
11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                      ・・・(数式11)
12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                      ・・・(数式12)
(数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
 また、本発明によれば、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する場合、多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,Val,Leu,Ileを変数とするロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,Val,Leu,Ileを変数とする線形判別式である。これにより、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。
13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                      ・・・(数式13)
(数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
 また、本発明によれば、アミノ酸濃度データと見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を表す指標に関する肥満状態指標データとを含む記憶手段で記憶した肥満状態情報に基づいて、記憶手段で記憶する多変量判別式を作成する。具体的には、(1)肥満状態情報から所定の式作成手法に基づいて候補多変量判別式を作成し、(2)作成した候補多変量判別式を所定の検証手法に基づいて検証し、(3)その検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる肥満状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、(4)(1)、(2)および(3)を繰り返し実行して蓄積した検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する。これにより、見掛け肥満や隠れ肥満、肥満の状態評価に最適な多変量判別式を作成することができるという効果を奏する。
 また、本発明によれば、当該記録媒体に記録された肥満評価プログラムをコンピュータに読み取らせて実行することで、コンピュータに肥満評価プログラムを実行させるので、上記と同様の効果を得ることができるという効果を奏する。
 なお、本発明は、見掛け肥満や隠れ肥満、肥満の状態評価を行う際、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。また、本発明は、見掛け肥満や隠れ肥満、肥満の状態評価を行う際、多変量判別式における変数として、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。
図1は、本発明の基本原理を示す原理構成図である。 図2は、第1実施形態にかかる肥満の評価方法の一例を示すフローチャートである。 図3は、本発明の基本原理を示す原理構成図である。 図4は、本システムの全体構成の一例を示す図である。 図5は、本システムの全体構成の他の一例を示す図である。 図6は、本システムの肥満評価装置100の構成の一例を示すブロック図である。 図7は、利用者情報ファイル106aに格納される情報の一例を示す図である。 図8は、アミノ酸濃度データファイル106bに格納される情報の一例を示す図である。 図9は、肥満状態情報ファイル106cに格納される情報の一例を示す図である。 図10は、指定肥満状態情報ファイル106dに格納される情報の一例を示す図である。 図11は、候補多変量判別式ファイル106e1に格納される情報の一例を示す図である。 図12は、検証結果ファイル106e2に格納される情報の一例を示す図である。 図13は、選択肥満状態情報ファイル106e3に格納される情報の一例を示す図である。 図14は、多変量判別式ファイル106e4に格納される情報の一例を示す図である。 図15は、判別値ファイル106fに格納される情報の一例を示す図である。 図16は、評価結果ファイル106gに格納される情報の一例を示す図である。 図17は、多変量判別式作成部102hの構成を示すブロック図である。 図18は、判別値基準評価部102jの構成を示すブロック図である。 図19は、本システムのクライアント装置200の構成の一例を示すブロック図である。 図20は、本システムのデータベース装置400の構成の一例を示すブロック図である。 図21は、本システムで行う肥満評価サービス処理の一例を示すフローチャートである。 図22は、本システムの肥満評価装置100で行う多変量判別式作成処理の一例を示すフローチャートである。 図23は、健常群、見掛け肥満群、隠れ肥満群および肥満群のアミノ酸変数の分布に関する箱ひげ図である。 図24は、指標式1と同等の判別性能を有する多変量判別式の一覧を示す図である。 図25は、指標式1と同等の判別性能を有する多変量判別式の一覧を示す図である。 図26は、健常群と見掛け肥満群の2群判別におけるROC曲線下面積を示す図である。 図27は、指標式2と同等の判別性能を有する多変量判別式の一覧を示す図である。 図28は、指標式2と同等の判別性能を有する多変量判別式の一覧を示す図である。 図29は、健常群と見掛け肥満群の2群判別におけるROC曲線下面積を示す図である。 図30は、指標式3と同等の判別性能を有する多変量判別式の一覧を示す図である。 図31は、指標式3と同等の判別性能を有する多変量判別式の一覧を示す図である。 図32は、健常群と見掛け肥満群の2群判別におけるROC曲線下面積を示す図である。 図33は、指標式4と同等の判別性能を有する多変量判別式の一覧を示す図である。 図34は、指標式4と同等の判別性能を有する多変量判別式の一覧を示す図である。 図35は、健常群と隠れ肥満群の2群判別におけるROC曲線下面積を示す図である。 図36は、指標式5と同等の判別性能を有する多変量判別式の一覧を示す図である。 図37は、指標式5と同等の判別性能を有する多変量判別式の一覧を示す図である。 図38は、健常群と隠れ肥満群の2群判別におけるROC曲線下面積を示す図である。 図39は、指標式6と同等の判別性能を有する多変量判別式の一覧を示す図である。 図40は、指標式6と同等の判別性能を有する多変量判別式の一覧を示す図である。 図41は、健常群と隠れ肥満群の2群判別におけるROC曲線下面積を示す図である。 図42は、指標式7と同等の判別性能を有する多変量判別式の一覧を示す図である。 図43は、指標式7と同等の判別性能を有する多変量判別式の一覧を示す図である。 図44は、健常群と肥満群の2群判別におけるROC曲線下面積を示す図である。 図45は、指標式8と同等の判別性能を有する多変量判別式の一覧を示す図である。 図46は、指標式8と同等の判別性能を有する多変量判別式の一覧を示す図である。 図47は、健常群と肥満群の2群判別におけるROC曲線下面積を示す図である。 図48は、指標式9と同等の判別性能を有する多変量判別式の一覧を示す図である。 図49は、指標式9と同等の判別性能を有する多変量判別式の一覧を示す図である。 図50は、健常群と肥満群の2群判別におけるROC曲線下面積を示す図である。 図51は、指標式10と同等の判別性能を有する多変量判別式の一覧を示す図である。 図52は、指標式10と同等の判別性能を有する多変量判別式の一覧を示す図である。 図53は、見掛け肥満群と隠れ肥満群の2群判別におけるROC曲線下面積を示す図である。 図54は、指標式11と同等の判別性能を有する多変量判別式の一覧を示す図である。 図55は、指標式11と同等の判別性能を有する多変量判別式の一覧を示す図である。 図56は、見掛け肥満群と隠れ肥満群の2群判別におけるROC曲線下面積を示す図である。 図57は、指標式12と同等の判別性能を有する多変量判別式の一覧を示す図である。 図58は、指標式12と同等の判別性能を有する多変量判別式の一覧を示す図である。 図59は、見掛け肥満群と隠れ肥満群の2群判別におけるROC曲線下面積を示す図である。 図60は、指標式13と同等の判別性能を有する多変量判別式の一覧を示す図である。 図61は、指標式13と同等の判別性能を有する多変量判別式の一覧を示す図である。 図62は、見掛け肥満群と隠れ肥満群の2群判別におけるROC曲線下面積を示す図である。 図63は、指標式14と同等の判別性能を有する多変量判別式の一覧を示す図である。 図64は、指標式14と同等の判別性能を有する多変量判別式の一覧を示す図である。 図65は、見掛け肥満群と肥満群の2群判別におけるROC曲線下面積を示す図である。 図66は、指標式15と同等の判別性能を有する多変量判別式の一覧を示す図である。 図67は、指標式15と同等の判別性能を有する多変量判別式の一覧を示す図である。 図68は、見掛け肥満群と肥満群の2群判別におけるROC曲線下面積を示す図である。 図69は、指標式16と同等の判別性能を有する多変量判別式の一覧を示す図である。 図70は、指標式16と同等の判別性能を有する多変量判別式の一覧を示す図である。 図71は、隠れ肥満群と肥満群の2群判別におけるROC曲線下面積を示す図である。 図72は、指標式17と同等の判別性能を有する多変量判別式の一覧を示す図である。 図73は、指標式17と同等の判別性能を有する多変量判別式の一覧を示す図である。 図74は、隠れ肥満群と肥満群の2群判別におけるROC曲線下面積を示す図である。 図75は、指標式18と同等の判別性能を有する多変量判別式の一覧を示す図である。 図76は、指標式18と同等の判別性能を有する多変量判別式の一覧を示す図である。 図77は、隠れ肥満群と肥満群の2群判別におけるROC曲線下面積を示す図である。 図78は、健常群と見掛け肥満群、健常群と隠れ肥満群、健常群と肥満群、見掛け肥満群と隠れ肥満群、見掛け肥満群と肥満群、隠れ肥満群と肥満群の2群判別性能の検証結果を示す図である。 図79は、健常群と見掛け肥満群、健常群と隠れ肥満群、健常群と肥満群、見掛け肥満群と隠れ肥満群、見掛け肥満群と肥満群、隠れ肥満群と肥満群の2群判別性能の検証結果を示す図である。 図80は、指標式19と同等の判別性能を有する多変量判別式の一覧を示す図である。 図81は、指標式19と同等の判別性能を有する多変量判別式の一覧を示す図である。 図82は、指標式20と同等の判別性能を有する多変量判別式の一覧を示す図である。 図83は、指標式20と同等の判別性能を有する多変量判別式の一覧を示す図である。 図84は、指標式21と同等の判別性能を有する多変量判別式の一覧を示す図である。 図85は、指標式21と同等の判別性能を有する多変量判別式の一覧を示す図である。 図86は、指標式22と同等の判別性能を有する多変量判別式の一覧を示す図である。 図87は、指標式22と同等の判別性能を有する多変量判別式の一覧を示す図である。 図88は、指標式23と同等の判別性能を有する多変量判別式の一覧を示す図である。 図89は、指標式23と同等の判別性能を有する多変量判別式の一覧を示す図である。 図90は、指標式24と同等の判別性能を有する多変量判別式の一覧を示す図である。 図91は、指標式24と同等の判別性能を有する多変量判別式の一覧を示す図である。 図92は、指標式25と同等の判別性能を有する多変量判別式の一覧を示す図である。 図93は、指標式25と同等の判別性能を有する多変量判別式の一覧を示す図である。 図94は、指標式26と同等の判別性能を有する多変量判別式の一覧を示す図である。 図95は、指標式26と同等の判別性能を有する多変量判別式の一覧を示す図である。 図96は、指標式27と同等の判別性能を有する多変量判別式の一覧を示す図である。 図97は、指標式27と同等の判別性能を有する多変量判別式の一覧を示す図である。 図98は、指標式28と同等の判別性能を有する多変量判別式の一覧を示す図である。 図99は、指標式28と同等の判別性能を有する多変量判別式の一覧を示す図である。 図100は、指標式29と同等の判別性能を有する多変量判別式の一覧を示す図である。 図101は、指標式29と同等の判別性能を有する多変量判別式の一覧を示す図である。 図102は、指標式30と同等の判別性能を有する多変量判別式の一覧を示す図である。 図103は、指標式30と同等の判別性能を有する多変量判別式の一覧を示す図である。 図104は、指標式31と同等の判別性能を有する多変量判別式の一覧を示す図である。 図105は、指標式31と同等の判別性能を有する多変量判別式の一覧を示す図である。 図106は、指標式32と同等の判別性能を有する多変量判別式の一覧を示す図である。 図107は、指標式32と同等の判別性能を有する多変量判別式の一覧を示す図である。 図108は、指標式33と同等の判別性能を有する多変量判別式の一覧を示す図である。 図109は、指標式33と同等の判別性能を有する多変量判別式の一覧を示す図である。 図110は、指標式34と同等の判別性能を有する多変量判別式の一覧を示す図である。 図111は、指標式34と同等の判別性能を有する多変量判別式の一覧を示す図である。 図112は、指標式35と同等の判別性能を有する多変量判別式の一覧を示す図である。 図113は、指標式35と同等の判別性能を有する多変量判別式の一覧を示す図である。 図114は、指標式36と同等の判別性能を有する多変量判別式の一覧を示す図である。 図115は、指標式36と同等の判別性能を有する多変量判別式の一覧を示す図である。 図116は、指標式37と同等の判別性能を有する多変量判別式の一覧を示す図である。 図117は、指標式37と同等の判別性能を有する多変量判別式の一覧を示す図である。 図118は、健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別におけるROC曲線下面積を示す図である。 図119は、指標式38と同等の判別性能を有する多変量判別式の一覧を示す図である。 図120は、指標式38と同等の判別性能を有する多変量判別式の一覧を示す図である。 図121は、健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別におけるROC曲線下面積を示す図である。 図122は、指標式39と同等の判別性能を有する多変量判別式の一覧を示す図である。 図123は、指標式39と同等の判別性能を有する多変量判別式の一覧を示す図である。 図124は、健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別におけるROC曲線下面積を示す図である。
 以下に、本発明にかかる肥満の評価方法の実施の形態(第1実施形態)、ならびに本発明にかかる肥満評価装置、肥満評価方法、肥満評価システム、肥満評価プログラムおよび記録媒体の実施の形態(第2実施形態)を、図面に基づいて詳細に説明する。なお、本実施の形態により本発明が限定されるものではない。
[第1実施形態]
[1-1.本発明の概要]
 ここでは、本発明にかかる肥満の評価方法の概要について図1を参照して説明する。図1は本発明の基本原理を示す原理構成図である。
 まず、評価対象(例えば動物やヒトなどの個体)から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを測定する(ステップS-11)。ここで、血中アミノ酸濃度の分析は次のように行った。採血した血液サンプルを、ヘパリン処理したチューブに採取し、採取した血液サンプルを遠心することにより血液から血漿を分離した。全ての血漿サンプルは、アミノ酸濃度の測定時まで-70℃で凍結保存した。アミノ酸濃度測定時には、スルホサリチル酸を添加し3%濃度調整により除蛋白処理を行い、測定には、ポストカラムでニンヒドリン反応を用いた高速液体クロマトグラフィー(HPLC)を原理としたアミノ酸分析機を使用した。なお、アミノ酸濃度の単位は、例えばモル濃度や重量濃度、これらの濃度に任意の定数を加減乗除することで得られるものでもよい。
 つぎに、ステップS-11で測定した評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値に基づいて、評価対象につき、BMI(Body Mass Index)およびVFA(Visceral Fat Area)で定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する(ステップS-12)。
 以上、本発明によれば、評価対象から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを測定し、測定した評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値に基づいて、評価対象につき、BMIおよびVFAで定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する。これにより、血液中のアミノ酸の濃度のうちBMIおよびVFAで定義される見掛け肥満や隠れ肥満、肥満の状態と関連するアミノ酸の濃度を利用して、見掛け肥満や隠れ肥満、肥満の状態を精度よく評価することができる。
 ここで、ステップS-12を実行する前に、ステップS-11で測定した評価対象のアミノ酸濃度データから欠損値や外れ値などのデータを除去してもよい。これにより、見掛け肥満や隠れ肥満、肥満の状態評価をさらに精度よく評価することができる。
 また、ステップS-12では、ステップS-11で測定した評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値に基づいて、評価対象につき、BMIおよびVFAで定義される健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、「健常もしくは見掛け肥満」または「隠れ肥満もしくは肥満」であるか否かを判別してもよい。具体的には、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、「健常もしくは見掛け肥満」または「隠れ肥満もしくは肥満」であるか否かを判別してもよい。これにより、血液中のアミノ酸の濃度のうち、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用なアミノ酸の濃度を利用して、これらの2群判別を精度よく行うことができる。
 また、ステップS-12では、ステップS-11で測定した評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値、およびアミノ酸の濃度を変数とする予め設定した多変量判別式であってGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき、見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価してもよい。これにより、見掛け肥満や隠れ肥満、肥満の状態と有意な相関がある多変量判別式で得られる判別値を利用して、見掛け肥満や隠れ肥満、肥満の状態を精度よく評価することができる。
 また、ステップS-12では、算出した判別値に基づいて、評価対象につき、BMIおよびVFAで定義される健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、「健常もしくは見掛け肥満」または「隠れ肥満もしくは肥満」であるか否かを判別してもよい。具体的には、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、「健常もしくは見掛け肥満」または「隠れ肥満もしくは肥満」であるか否かを判別してもよい。これにより、これにより、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別を精度よく行うことができる。
 なお、多変量判別式は、多変量判別式は、1つの分数式または複数の分数式の和、もしくはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別をさらに精度よく行うことができる。
 具体的には、健常または見掛け肥満であるか否かを判別する場合、多変量判別式は、数式1、数式2、Glu,Thr,Pheを変数とするロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを変数とするロジスティック回帰式、His,Thr,Val,Orn,Trpを変数とする線形判別式、またはSer,Pro,Asn,Orn,Phe,BCAAを変数とする線形判別式でもよい。これにより、健常と見掛け肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。ここで、本実施形態において、変数「BCAA」は「変数Val,LeuおよびIleの和」を表す。
(Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                       ・・・(数式1)
(Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                       ・・・(数式2)
(数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、健常または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを変数とするロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,BCAAを変数とするロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを変数とする線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを変数とする線形判別式でもよい。これにより、健常と隠れ肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                       ・・・(数式3)
(Ser/Cit)+b(Gly/BCAA)+c(Gln/Ala)+d(Thr/Glu)+e
                       ・・・(数式4)
(数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、健常または肥満であるか否かを判別する場合、多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを変数とするロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを変数とする線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを変数とする線形判別式でもよい。これにより、健常と肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                       ・・・(数式5)
(Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d(BCAA/Asn)+e
                       ・・・(数式6)
(数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、見掛け肥満または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを変数とするロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,BCAAを変数とするロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを変数とする線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを変数とする線形判別式でもよい。これにより、見掛け肥満または隠れ肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                       ・・・(数式7)
(Pro/BCAA)+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                       ・・・(数式8)
(数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、見掛け肥満または肥満であるか否かを判別する場合、多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを変数とするロジスティック回帰式、Glu,Ala,ABA,Met,Lys,BCAAを変数とするロジスティック回帰式、Glu,Gly,His,Ala,Lysを変数とする線形判別式、またはGlu,Thr,Ala,ABA,Lys,BCAAを変数とする線形判別式でもよい。これにより、見掛け肥満または肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                       ・・・(数式9)
10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10(BCAA/Trp)+e10
                      ・・・(数式10)
(数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
 また、隠れ肥満または肥満であるか否かを判別する場合、多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを変数とするロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを変数とするロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを変数とする線形判別式、またはGlu,Pro,His,Met,Pheを変数とする線形判別式でもよい。これにより、隠れ肥満または肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                      ・・・(数式11)
12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                      ・・・(数式12)
(数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
 また、「健常もしくは見掛け肥満」または「隠れ肥満もしくは肥満」であるか否かを判別する場合、多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,BCAAを変数とする線形判別式でもよい。これにより、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                      ・・・(数式13)
(数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
 また、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する第2実施形態に記載の多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を、BMIおよびVFAで定義される見掛け肥満や隠れ肥満、肥満の状態評価に好適に用いることができる。
 また、分数式とは、当該分数式の分子がアミノ酸A,B,C,・・・の和で表わされ及び/又は当該分数式の分母がアミノ酸a,b,c,・・・の和で表わされるものである。また、分数式には、このような構成の分数式α,β,γ,・・・の和(例えばα+βのようなもの)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母に用いられるアミノ酸にはそれぞれ適当な係数がついてもかまわない。また、分子や分母に用いられるアミノ酸は重複してもかまわない。また、各分数式に適当な係数がついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかまわない。分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、目的変数との相関の正負の符号は概して逆転するが、それらの相関性は保たれるので、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わせも、包含するものである。
 また、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例えば重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変量判別式の和で示されるような式も含まれる。また、重回帰式、多重ロジスティック回帰式、正準判別関数においては各変数に係数および定数項が付加されるが、この場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判別を行うために得られた係数および定数項の99%信頼区間の範囲に属する値、さらに好ましくはデータから判別を行うために得られた係数および定数項の95%信頼区間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は、それを実数倍したものでもよく、定数項の値、及びその信頼区間は、それに任意の実定数を加減乗除したものでもよい。ロジスティック回帰、線形判別、重回帰分析などの表示式を指標に用いる場合、表示式の線形変換(定数の加算、定数倍)や単調増加(減少)の変換(例えばlogit変換など)は判別性能を変えるものではなく同等であるので、表示式はそれらを含むものである。
 そして、本発明は、見掛け肥満や隠れ肥満、肥満の状態評価を行う際、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。また、本発明は、見掛け肥満や隠れ肥満、肥満の状態評価を行う際、多変量判別式における変数として、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。
[1-2.第1実施形態にかかる肥満の評価方法]
 ここでは、第1実施形態にかかる肥満の評価方法について図2を参照して説明する。図2は、第1実施形態にかかる肥満の評価方法の一例を示すフローチャートである。
 まず、動物やヒトなどの個体から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを測定する(ステップSA-11)。なお、アミノ酸の濃度値の測定は、上述した方法で行う。
 つぎに、ステップSA-11で測定した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去する(ステップSA-12)。
 つぎに、ステップSA-12で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する(ステップSA-13)。
[1-3.第1実施形態のまとめ、およびその他の実施形態]
 以上、詳細に説明したように、第1実施形態にかかる肥満の評価方法によれば、(1)個体から採取した血液からアミノ酸濃度データを測定し、(2)測定した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去し、(3)欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する。これにより、血液中のアミノ酸の濃度のうち、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用なアミノ酸の濃度を利用して、これらの2群判別を精度よく行うことができる。
 ここで、ステップSA-13において、ステップSA-12で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値、およびGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別してもよい。これにより、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別を精度よく行うことができる。
 なお、ステップSA-13において、多変量判別式は、1つの分数式または複数の分数式の和、もしくはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別をさらに精度よく行うことができる。
 具体的には、健常または見掛け肥満であるか否かを判別する場合、多変量判別式は、数式1、数式2、Glu,Thr,Pheを変数とするロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを変数とするロジスティック回帰式、His,Thr,Val,Orn,Trpを変数とする線形判別式、またはSer,Pro,Asn,Orn,Phe,BCAAを変数とする線形判別式でもよい。これにより、これにより、健常と見掛け肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                       ・・・(数式1)
(Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                       ・・・(数式2)
(数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、健常または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを変数とするロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,BCAAを変数とするロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを変数とする線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを変数とする線形判別式でもよい。これにより、健常と隠れ肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                       ・・・(数式3)
(Ser/Cit)+b(Gly/BCAA)+c(Gln/Ala)+d(Thr/Glu)+e
                       ・・・(数式4)
(数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、健常または肥満であるか否かを判別する場合、多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを変数とするロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを変数とする線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを変数とする線形判別式でもよい。これにより、健常と肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                       ・・・(数式5)
(Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d(BCAA/Asn)+e
                       ・・・(数式6)
(数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、見掛け肥満または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを変数とするロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,BCAAを変数とするロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを変数とする線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを変数とする線形判別式でもよい。これにより、見掛け肥満または隠れ肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                       ・・・(数式7)
(Pro/BCAA)+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                       ・・・(数式8)
(数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、見掛け肥満または肥満であるか否かを判別する場合、多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを変数とするロジスティック回帰式、Glu,Ala,ABA,Met,Lys,BCAAを変数とするロジスティック回帰式、Glu,Gly,His,Ala,Lysを変数とする線形判別式、またはGlu,Thr,Ala,ABA,Lys,BCAAを変数とする線形判別式でもよい。これにより、見掛け肥満または肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                       ・・・(数式9)
10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10(BCAA/Trp)+e10
                      ・・・(数式10)
(数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
 また、隠れ肥満または肥満であるか否かを判別する場合、多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを変数とするロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを変数とするロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを変数とする線形判別式、またはGlu,Pro,His,Met,Pheを変数とする線形判別式でもよい。これにより、隠れ肥満または肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                      ・・・(数式11)
12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                      ・・・(数式12)
(数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
 また、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する場合、多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,BCAAを変数とする線形判別式でもよい。これにより、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                      ・・・(数式13)
(数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
 また、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する第2実施形態に記載の多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を、見掛け肥満や隠れ肥満、肥満の状態評価に好適に用いることができる。
[第2実施形態]
[2-1.本発明の概要]
 ここでは、本発明にかかる肥満評価装置、肥満評価方法、肥満評価システム、肥満評価プログラムおよび記録媒体の概要について、図3を参照して説明する。図3は本発明の基本原理を示す原理構成図である。
 まず、本発明は、制御部で、アミノ酸の濃度値に関する予め取得した評価対象(例えば動物やヒトなどの個体)のアミノ酸濃度データGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値、およびアミノ酸の濃度を変数する記憶部で記憶した多変量判別式であってGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を算出する(ステップS-21)。
 つぎに、本発明は、制御部で、ステップS-21で算出した判別値に基づいて、評価対象につき、BMI(Body Mass Index)およびVFA(Visceral Fat Area)で定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する(ステップS-22)。
 以上、本発明によれば、評価対象のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値、およびアミノ酸の濃度を変数とする多変量判別式であってGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき、BMIおよびVFAで定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する。これにより、見掛け肥満や隠れ肥満、肥満の状態と有意な相関がある多変量判別式で得られる判別値を利用して、見掛け肥満や隠れ肥満、肥満の状態を精度よく評価することができる。
 ここで、ステップS-22では、ステップS-21で算出した判別値に基づいて、評価対象につき、BMIおよびVFAで定義される健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、「健常もしくは見掛け肥満」または「隠れ肥満もしくは肥満」であるか否かを判別してもよい。具体的には、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、「健常もしくは見掛け肥満」または「隠れ肥満もしくは肥満」であるか否かを判別してもよい。これにより、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別を精度よく行うことができる。
 なお、多変量判別式は、1つの分数式または複数の分数式の和、もしくはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別をさらに精度よく行うことができる。
 具体的には、健常または見掛け肥満であるか否かを判別する場合、多変量判別式は、数式1、数式2、Glu,Thr,Pheを変数とするロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを変数とするロジスティック回帰式、His,Thr,Val,Orn,Trpを変数とする線形判別式、またはSer,Pro,Asn,Orn,Phe,BCAAを変数とする線形判別式でもよい。これにより、健常と見掛け肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。ここで、本実施形態において、変数「BCAA」は「変数Val,LeuおよびIleの和」を表す。
(Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                       ・・・(数式1)
(Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                       ・・・(数式2)
(数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、健常または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを変数とするロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,BCAAを変数とするロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを変数とする線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを変数とする線形判別式でもよい。これにより、健常と隠れ肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                       ・・・(数式3)
(Ser/Cit)+b(Gly/BCAA)+c(Gln/Ala)+d(Thr/Glu)+e
                       ・・・(数式4)
(数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、健常または肥満であるか否かを判別する場合、多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを変数とするロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを変数とする線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを変数とする線形判別式でもよい。これにより、健常と肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                       ・・・(数式5)
(Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d(BCAA/Asn)+e
                       ・・・(数式6)
(数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、見掛け肥満または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを変数とするロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,BCAAを変数とするロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを変数とする線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを変数とする線形判別式でもよい。これにより、見掛け肥満または隠れ肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                       ・・・(数式7)
(Pro/BCAA)+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                       ・・・(数式8)
(数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、見掛け肥満または肥満であるか否かを判別する場合、多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを変数とするロジスティック回帰式、Glu,Ala,ABA,Met,Lys,BCAAを変数とするロジスティック回帰式、Glu,Gly,His,Ala,Lysを変数とする線形判別式、またはGlu,Thr,Ala,ABA,Lys,BCAAを変数とする線形判別式でもよい。これにより、見掛け肥満または肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                       ・・・(数式9)
10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10(BCAA/Trp)+e10
                      ・・・(数式10)
(数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
 また、隠れ肥満または肥満であるか否かを判別する場合、多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを変数とするロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを変数とするロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを変数とする線形判別式、またはGlu,Pro,His,Met,Pheを変数とする線形判別式でもよい。これにより、隠れ肥満または肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                      ・・・(数式11)
12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                      ・・・(数式12)
(数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
 また、「健常もしくは見掛け肥満」または「隠れ肥満もしくは肥満」であるか否かを判別する場合、多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,BCAAを変数とする線形判別式でもよい。これにより、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                      ・・・(数式13)
(数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
 また、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を、BMIおよびVFAで定義される見掛け肥満や隠れ肥満、肥満の状態評価に好適に用いることができる。
 また、分数式とは、当該分数式の分子がアミノ酸A,B,C,・・・の和で表わされ及び/又は当該分数式の分母がアミノ酸a,b,c,・・・の和で表わされるものである。また、分数式には、このような構成の分数式α,β,γ,・・・の和(例えばα+βのようなもの)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母に用いられるアミノ酸にはそれぞれ適当な係数がついてもかまわない。また、分子や分母に用いられるアミノ酸は重複してもかまわない。また、各分数式に適当な係数がついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかまわない。分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、目的変数との相関の正負の符号は概して逆転するが、それらの相関性は保たれるので、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わせも、包含するものである。
 また、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例えば重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変量判別式の和で示されるような式も含まれる。また、重回帰式、多重ロジスティック回帰式、正準判別関数においては各変数に係数および定数項が付加されるが、この場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判別を行うために得られた係数および定数項の99%信頼区間の範囲に属する値、さらに好ましくはデータから判別を行うために得られた係数および定数項の95%信頼区間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は、それを実数倍したものでもよく、定数項の値、及びその信頼区間は、それに任意の実定数を加減乗除したものでもよい。ロジスティック回帰、線形判別、重回帰分析などの表示式を指標に用いる場合、表示式の線形変換(定数の加算、定数倍)や単調増加(減少)の変換(例えばlogit変換など)は判別性能を変えるものではなく同等であるので、表示式はそれらを含むものである。
 そして、本発明は、見掛け肥満や隠れ肥満、肥満の状態評価を行う際、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。また、本発明は、見掛け肥満や隠れ肥満、肥満の状態評価を行う際、多変量判別式における変数として、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。
 ここで、多変量判別式作成処理(工程1~工程4)の概要について詳細に説明する。
 まず、本発明は、制御部で、アミノ酸濃度データと見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を表す指標に関する肥満状態指標データとを含む記憶部で記憶した肥満状態情報から所定の式作成手法に基づいて、多変量判別式の候補である候補多変量判別式(例えば、y=a+a+・・・+a、y:肥満状態指標データ、x:アミノ酸濃度データ、a:定数、i=1,2,・・・,n)を作成する(工程1)。なお、事前に、肥満状態情報から欠損値や外れ値などを持つデータを除去してもよい。
 なお、工程1において、肥満状態情報から、複数の異なる式作成手法(主成分分析や判別分析、サポートベクターマシン、重回帰分析、ロジスティック回帰分析、k-means法、クラスター解析、決定木などの多変量解析に関するものを含む。)を併用して複数の候補多変量判別式を作成してもよい。具体的には、多数の正常群および肥満群から得た血液を分析して得たアミノ酸濃度データおよび肥満状態指標データから構成される多変量データである肥満状態情報に対して、複数の異なるアルゴリズムを利用して複数群の候補多変量判別式を同時並行的に作成してもよい。例えば、異なるアルゴリズムを利用して判別分析およびロジスティック回帰分析を同時に行い、2つの異なる候補多変量判別式を作成してもよい。また、主成分分析を行って作成した候補多変量判別式を利用して肥満状態情報を変換し、変換した肥満状態情報に対して判別分析を行うことで候補多変量判別式を作成してもよい。これにより、最終的に、診断条件に合った適切な多変量判別式を作成することができる。
 ここで、主成分分析を用いて作成した候補多変量判別式は、全てのアミノ酸濃度データの分散を最大にするような各アミノ酸変数からなる一次式である。また、判別分析を用いて作成した候補多変量判別式は、各群内の分散の和の全てのアミノ酸濃度データの分散に対する比を最小にするような各アミノ酸変数からなる高次式(指数や対数を含む)である。また、サポートベクターマシンを用いて作成した候補多変量判別式は、群間の境界を最大にするような各アミノ酸変数からなる高次式(カーネル関数を含む)である。また、重回帰分析を用いて作成した候補多変量判別式は、全てのアミノ酸濃度データからの距離の和を最小にするような各アミノ酸変数からなる高次式である。ロジスティック回帰分析を用いて作成した候補多変量判別式は、尤度を最大にするような各アミノ酸変数からなる一次式を指数とする自然対数を項に持つ分数式である。また、k-means法とは、各アミノ酸濃度データのk個近傍を探索し、近傍点の属する群の中で一番多いものをそのデータの所属群と定義し、入力されたアミノ酸濃度データの属する群と定義された群とが最も合致するようなアミノ酸変数を選択する手法である。また、クラスター解析とは、全てのアミノ酸濃度データの中で最も近い距離にある点同士をクラスタリング(群化)する手法である。また、決定木とは、アミノ酸変数に序列をつけて、序列が上位であるアミノ酸変数の取りうるパターンからアミノ酸濃度データの群を予測する手法である。
 多変量判別式作成処理の説明に戻り、本発明は、制御部で、工程1で作成した候補多変量判別式を、所定の検証手法に基づいて検証(相互検証)する(工程2)。候補多変量判別式の検証は、工程1で作成した各候補多変量判別式に対して行う。
 なお、工程2において、ブートストラップ法やホールドアウト法、リーブワンアウト法などのうち少なくとも1つに基づいて候補多変量判別式の判別率や感度、特異性、情報量基準などのうち少なくとも1つに関して検証してもよい。これにより、肥満状態情報や診断条件を考慮した予測性または頑健性の高い候補多変量判別式を作成することができる。
 ここで、判別率とは、全入力データの中で、本発明で評価した肥満の状態が正しい割合である。また、感度とは、入力データに記載された肥満の状態になっているものの中で、本発明で評価した肥満の状態が正しい割合である。また、特異性とは、入力データに記載された肥満が正常になっているものの中で、本発明で評価した肥満の状態が正しい割合である。また、情報量基準とは、工程1で作成した候補多変量判別式のアミノ酸変数の数と、本発明で評価した肥満の状態および入力データに記載された肥満の状態の差異と、を足し合わせたものである。また、予測性とは、候補多変量判別式の検証を繰り返すことで得られた判別率や感度、特異性を平均したものである。また、頑健性とは、候補多変量判別式の検証を繰り返すことで得られた判別率や感度、特異性の分散である。
 多変量判別式作成処理の説明に戻り、本発明は、制御部で、工程2での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる肥満状態情報に含まれるアミノ酸濃度データの組み合わせを選択する(工程3)。アミノ酸変数の選択は、工程1で作成した各候補多変量判別式に対して行う。これにより、候補多変量判別式のアミノ酸変数を適切に選択することができる。そして、工程3で選択したアミノ酸濃度データを含む肥満状態情報を用いて再び工程1を実行する。
 なお、工程3において、工程2での検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式のアミノ酸変数を選択してもよい。
 ここで、ベストパス法とは、候補多変量判別式に含まれるアミノ酸変数を1つずつ順次減らしていき、候補多変量判別式が与える評価指標を最適化することでアミノ酸変数を選択する方法である。
 多変量判別式作成処理の説明に戻り、本発明は、制御部で、上述した工程1、工程2および工程3を繰り返し実行し、これにより蓄積した検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する(工程4)。なお、候補多変量判別式の選出には、例えば、同じ式作成手法で作成した候補多変量判別式の中から最適なものを選出する場合と、すべての候補多変量判別式の中から最適なものを選出する場合とがある。
 以上、説明したように、多変量判別式作成処理では、肥満状態情報に基づいて、候補多変量判別式の作成、候補多変量判別式の検証および候補多変量判別式の変数の選択に関する処理を一連の流れで体系化(システム化)して実行することにより、見掛け肥満や隠れ肥満および肥満の状態評価に最適な多変量判別式を作成することができる。換言すると、多変量判別式作成処理では、アミノ酸濃度を多変量の統計解析に用い、最適でロバストな変数の組を選択するために変数選択法とクロスバリデーションとを組み合わせて、診断性能の高い多変量判別式を抽出する。多変量判別式としては、ロジスティック回帰、線形判別、サポートベクターマシン、マハラノビス距離法、重回帰分析、クラスター解析などを用いることができる。
[2-2.システム構成]
 ここでは、第2実施形態にかかる肥満評価システム(以下では本システムと記す場合がある。)の構成について、図4から図20を参照して説明する。なお、本システムはあくまでも一例であり、本発明はこれに限定されない。
 まず、本システムの全体構成について図4および図5を参照して説明する。図4は本システムの全体構成の一例を示す図である。また、図5は本システムの全体構成の他の一例を示す図である。本システムは、図4に示すように、評価対象につき、BMIおよびVFAで定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態評価を行う肥満評価装置100と、アミノ酸の濃度値に関する評価対象のアミノ酸濃度データを提供するクライアント装置200(本発明の情報通信端末装置に相当)とを、ネットワーク300を介して通信可能に接続して構成されている。
 なお、本システムは、図5に示すように、肥満評価装置100やクライアント装置200の他に、肥満評価装置100で多変量判別式を作成する際に用いる肥満状態情報や、見掛け肥満や隠れ肥満、肥満の状態評価を行うために用いる多変量判別式などを格納したデータベース装置400を、ネットワーク300を介して通信可能に接続して構成されてもよい。これにより、ネットワーク300を介して、肥満評価装置100からクライアント装置200やデータベース装置400へ、あるいはクライアント装置200やデータベース装置400から肥満評価装置100へ、見掛け肥満や隠れ肥満、肥満の状態に関する情報などが提供される。ここで、見掛け肥満や隠れ肥満、肥満の状態に関する情報とは、ヒトを含む生物の見掛け肥満や隠れ肥満、肥満の状態に関する特定の項目について測定した値に関する情報である。また、見掛け肥満や隠れ肥満、肥満の状態に関する情報は、肥満評価装置100やクライアント装置200や他の装置(例えば各種の計測装置等)で生成され、主にデータベース装置400に蓄積される。
 つぎに、本システムの肥満評価装置100の構成について図6から図18を参照して説明する。図6は、本システムの肥満評価装置100の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
 肥満評価装置100は、当該肥満評価装置を統括的に制御するCPU等の制御部102と、ルータ等の通信装置および専用線等の有線または無線の通信回線を介して当該肥満評価装置をネットワーク300に通信可能に接続する通信インターフェース部104と、各種のデータベースやテーブルやファイルなどを格納する記憶部106と、入力装置112や出力装置114に接続する入出力インターフェース部108と、で構成されており、これら各部は任意の通信路を介して通信可能に接続されている。ここで、肥満評価装置100は、各種の分析装置(例えばアミノ酸アナライザー等)と同一筐体で構成されてもよい。また、肥満評価装置100の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷等に応じた任意の単位で、機能的または物理的に分散・統合して構成してもよい。例えば、処理の一部をCGI(Common Gateway Interface)を用いて実現してもよい。
 記憶部106は、ストレージ手段であり、例えば、RAM・ROM等のメモリ装置や、ハードディスクのような固定ディスク装置、フレキシブルディスク、光ディスク等を用いることができる。記憶部106には、OS(Operating System)と協働してCPUに命令を与え各種処理を行うためのコンピュータプログラムが記録されている。記憶部106は、図示の如く、利用者情報ファイル106aと、アミノ酸濃度データファイル106bと、肥満状態情報ファイル106cと、指定肥満状態情報ファイル106dと、多変量判別式関連情報データベース106eと、判別値ファイル106fと、評価結果ファイル106gと、を格納する。
 利用者情報ファイル106aは、利用者に関する利用者情報を格納する。図7は、利用者情報ファイル106aに格納される情報の一例を示す図である。利用者情報ファイル106aに格納される情報は、図7に示すように、利用者を一意に識別するための利用者IDと、利用者が正当な者であるか否かの認証を行うための利用者パスワードと、利用者の氏名と、利用者の所属する所属先を一意に識別するための所属先IDと、利用者の所属する所属先の部門を一意に識別するための部門IDと、部門名と、利用者の電子メールアドレスと、を相互に関連付けて構成されている。
 図6に戻り、アミノ酸濃度データファイル106bは、アミノ酸の濃度値に関するアミノ酸濃度データを格納する。図8は、アミノ酸濃度データファイル106bに格納される情報の一例を示す図である。アミノ酸濃度データファイル106bに格納される情報は、図8に示すように、評価対象である個体(サンプル)を一意に識別するための個体番号と、アミノ酸濃度データとを相互に関連付けて構成されている。ここで、図8では、アミノ酸濃度データを数値、すなわち連続尺度として扱っているが、アミノ酸濃度データは名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれの状態に対して任意の数値を与えることで解析してもよい。また、アミノ酸濃度データに、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)を組み合わせてもよい。
 図6に戻り、肥満状態情報ファイル106cは、多変量判別式を作成する際に用いる肥満状態情報を格納する。図9は、肥満状態情報ファイル106cに格納される情報の一例を示す図である。肥満状態情報ファイル106cに格納される情報は、図9に示すように、個体番号と、見掛け肥満や隠れ肥満、肥満の状態を表す指標(指標T、指標T、指標T・・・)に関する肥満状態指標データ(T)と、アミノ酸濃度データと、を相互に関連付けて構成されている。ここで、図9では、肥満状態指標データおよびアミノ酸濃度データを数値(すなわち連続尺度)として扱っているが、肥満状態指標データおよびアミノ酸濃度データは名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれの状態に対して任意の数値を与えることで解析してもよい。また、肥満状態指標データは、見掛け肥満や隠れ肥満、肥満の状態のマーカーとなる既知の単一の状態指標であり、数値データを用いてもよい。
 図6に戻り、指定肥満状態情報ファイル106dは、後述する肥満状態情報指定部102gで指定した肥満状態情報を格納する。図10は、指定肥満状態情報ファイル106dに格納される情報の一例を示す図である。指定肥満状態情報ファイル106dに格納される情報は、図10に示すように、個体番号と、指定した肥満状態指標データと、指定したアミノ酸濃度データと、を相互に関連付けて構成されている。
 図6に戻り、多変量判別式関連情報データベース106eは、後述する候補多変量判別式作成部102h1で作成した候補多変量判別式を格納する候補多変量判別式ファイル106e1と、後述する候補多変量判別式検証部102h2での検証結果を格納する検証結果ファイル106e2と、後述する変数選択部102h3で選択したアミノ酸濃度データの組み合わせを含む肥満状態情報を格納する選択肥満状態情報ファイル106e3と、後述する多変量判別式作成部102hで作成した多変量判別式を格納する多変量判別式ファイル106e4と、で構成される。
 候補多変量判別式ファイル106e1は、後述する候補多変量判別式作成部102h1で作成した候補多変量判別式を格納する。図11は、候補多変量判別式ファイル106e1に格納される情報の一例を示す図である。候補多変量判別式ファイル106e1に格納される情報は、図11に示すように、ランクと、候補多変量判別式(図11では、F(Gly,Leu,Phe,・・・)やF(Gly,Leu,Phe,・・・)、F(Gly,Leu,Phe,・・・)など)とを相互に関連付けて構成されている。
 図6に戻り、検証結果ファイル106e2は、後述する候補多変量判別式検証部102h2での検証結果を格納する。図12は、検証結果ファイル106e2に格納される情報の一例を示す図である。検証結果ファイル106e2に格納される情報は、図12に示すように、ランクと、候補多変量判別式(図12では、F(Gly,Leu,Phe,・・・)やF(Gly,Leu,Phe,・・・)、F(Gly,Leu,Phe,・・・)など)と、各候補多変量判別式の検証結果(例えば各候補多変量判別式の評価値)と、を相互に関連付けて構成されている。
 図6に戻り、選択肥満状態情報ファイル106e3は、後述する変数選択部102h3で選択した変数に対応するアミノ酸濃度データの組み合わせを含む肥満状態情報を格納する。図13は、選択肥満状態情報ファイル106e3に格納される情報の一例を示す図である。選択肥満状態情報ファイル106e3に格納される情報は、図13に示すように、個体番号と、後述する肥満状態情報指定部102gで指定した肥満状態指標データと、後述する変数選択部102h3で選択したアミノ酸濃度データと、を相互に関連付けて構成されている。
 図6に戻り、多変量判別式ファイル106e4は、後述する多変量判別式作成部102hで作成した多変量判別式を格納する。図14は、多変量判別式ファイル106e4に格納される情報の一例を示す図である。多変量判別式ファイル106e4に格納される情報は、図14に示すように、ランクと、多変量判別式(図14では、F(Phe,・・・)やF(Gly,Leu,Phe)、F(Gly,Leu,Phe,・・・)など)と、各式作成手法に対応する閾値と、各多変量判別式の検証結果(例えば各多変量判別式の評価値)と、を相互に関連付けて構成されている。
 図6に戻り、判別値ファイル106fは、後述する判別値算出部102iで算出した判別値を格納する。図15は、判別値ファイル106fに格納される情報の一例を示す図である。判別値ファイル106fに格納される情報は、図15に示すように、評価対象である個体(サンプル)を一意に識別するための個体番号と、ランク(多変量判別式を一意に識別するための番号)と、判別値と、を相互に関連付けて構成されている。
 図6に戻り、評価結果ファイル106gは、後述する判別値基準評価部102jでの評価結果(具体的には、後述する判別値基準判別部102j1での判別結果)を格納する。図16は、評価結果ファイル106gに格納される情報の一例を示す図である。評価結果ファイル106gに格納される情報は、評価対象である個体(サンプル)を一意に識別するための個体番号と、予め取得した評価対象のアミノ酸濃度データと、多変量判別式で算出した判別値と、見掛け肥満や隠れ肥満、肥満の状態評価に関する評価結果と、を相互に関連付けて構成されている。
 図6に戻り、記憶部106には、上述した情報以外にその他情報として、Webサイトをクライアント装置200に提供するための各種のWebデータや、CGIプログラム等が記録されている。Webデータとしては後述する各種のWebページを表示するためのデータ等があり、これらデータは例えばHTMLやXMLで記述されたテキストファイルとして形成されている。また、Webデータを作成するための部品用のファイルや作業用のファイルやその他一時的なファイル等も記憶部106に記憶される。記憶部106には、必要に応じて、クライアント装置200に送信するための音声をWAVE形式やAIFF形式の如き音声ファイルで格納したり、静止画や動画をJPEG形式やMPEG2形式の如き画像ファイルで格納したりすることができる。
 通信インターフェース部104は、肥満評価装置100とネットワーク300(またはルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース部104は、他の端末と通信回線を介してデータを通信する機能を有する。
 入出力インターフェース部108は、入力装置112や出力装置114に接続する。ここで、出力装置114には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下では、出力装置114をモニタ114として記載する場合がある。)。入力装置112には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。
 制御部102は、OS(Operating System)等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、これらのプログラムに基づいて種々の情報処理を実行する。制御部102は、図示の如く、大別して、要求解釈部102aと閲覧処理部102bと認証処理部102cと電子メール生成部102dとWebページ生成部102eと受信部102fと肥満状態情報指定部102gと多変量判別式作成部102hと判別値算出部102iと判別値基準評価部102jと結果出力部102kと送信部102mとを備えている。制御部102は、データベース装置400から送信された肥満状態情報やクライアント装置200から送信されたアミノ酸濃度データに対して、欠損値のあるデータの除去・外れ値の多いデータの除去・欠損値のあるデータの多い変数の除去などのデータ処理も行う。
 要求解釈部102aは、クライアント装置200やデータベース装置400からの要求内容を解釈し、その解釈結果に応じて制御部102の各部に処理を受け渡す。閲覧処理部102bは、クライアント装置200からの各種画面の閲覧要求を受けて、これら画面のWebデータの生成や送信を行なう。認証処理部102cは、クライアント装置200やデータベース装置400からの認証要求を受けて、認証判断を行う。電子メール生成部102dは、各種の情報を含んだ電子メールを生成する。Webページ生成部102eは、利用者がクライアント装置200で閲覧するWebページを生成する。
 受信部102fは、クライアント装置200やデータベース装置400から送信された情報(具体的には、アミノ酸濃度データや肥満状態情報、多変量判別式など)を、ネットワーク300を介して受信する。肥満状態情報指定部102gは、多変量判別式を作成するにあたり、対象とする肥満状態指標データおよびアミノ酸濃度データを指定する。
 多変量判別式作成部102hは、受信部102fで受信した肥満状態情報や肥満状態情報指定部102gで指定した肥満状態情報に基づいて多変量判別式を作成する。具体的には、多変量判別式作成部102hは、肥満状態情報から、候補多変量判別式作成部102h1、候補多変量判別式検証部102h2および変数選択部102h3を繰り返し実行させることにより蓄積された検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する。
 なお、多変量判別式が予め記憶部106の所定の記憶領域に格納されている場合には、多変量判別式作成部102hは、記憶部106から所望の多変量判別式を選択することで、多変量判別式を作成してもよい。また、多変量判別式作成部102hは、多変量判別式を予め格納した他のコンピュータ装置(例えばデータベース装置400)から所望の多変量判別式を選択しダウンロードすることで、多変量判別式を作成してもよい。
 ここで、多変量判別式作成部102hの構成について図17を参照して説明する。図17は、多変量判別式作成部102hの構成を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。多変量判別式作成部102hは、候補多変量判別式作成部102h1と、候補多変量判別式検証部102h2と、変数選択部102h3と、をさらに備えている。候補多変量判別式作成部102h1は、肥満状態情報から所定の式作成手法に基づいて多変量判別式の候補である候補多変量判別式を作成する。なお、候補多変量判別式作成部102h1は、肥満状態情報から、複数の異なる式作成手法を併用して複数の候補多変量判別式を作成してもよい。候補多変量判別式検証部102h2は、候補多変量判別式作成部102h1で作成した候補多変量判別式を所定の検証手法に基づいて検証する。なお、候補多変量判別式検証部102h2は、ブートストラップ法、ホールドアウト法、リーブワンアウト法のうち少なくとも1つに基づいて候補多変量判別式の判別率、感度、特異性、情報量基準のうち少なくとも1つに関して検証してもよい。変数選択部102h3は、候補多変量判別式検証部102h2での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる肥満状態情報に含まれるアミノ酸濃度データの組み合わせを選択する。なお、変数選択部102h3は、検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式の変数を選択してもよい。
 図6に戻り、判別値算出部102iは、多変量判別式作成部102hで作成した多変量判別式(例えば、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを変数として含むもの)、および受信部102fで受信した評価対象のアミノ酸濃度データ(例えば、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値)に基づいて、当該多変量判別式の値である判別値を算出する。
 ここで、多変量判別式は、1つの分数式または複数の分数式の和、またはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。
 具体的には、後述する判別値基準判別部102j1にて健常または見掛け肥満であるか否かを判別する場合、多変量判別式は、数式1、数式2、Glu,Thr,Pheを変数とするロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを変数とするロジスティック回帰式、His,Thr,Val,Orn,Trpを変数とする線形判別式、またはSer,Pro,Asn,Orn,Phe,BCAAを変数とする線形判別式でもよい。
(Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                       ・・・(数式1)
(Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                       ・・・(数式2)
(数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、判別値基準判別部102j1にて健常または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを変数とするロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,BCAAを変数とするロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを変数とする線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを変数とする線形判別式でもよい。
(Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                       ・・・(数式3)
(Ser/Cit)+b(Gly/BCAA)+c(Gln/Ala)+d(Thr/Glu)+e
                       ・・・(数式4)
(数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、判別値基準判別部102j1にて健常または肥満であるか否かを判別する場合、多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを変数とするロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを変数とする線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを変数とする線形判別式でもよい。
(Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                       ・・・(数式5)
(Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d(BCAA/Asn)+e
                       ・・・(数式6)
(数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、判別値基準判別部102j1にて見掛け肥満または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを変数とするロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,BCAAを変数とするロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを変数とする線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを変数とする線形判別式でもよい。
(Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                       ・・・(数式7)
(Pro/BCAA)+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                       ・・・(数式8)
(数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、判別値基準判別部102j1にて見掛け肥満または肥満であるか否かを判別する場合、多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを変数とするロジスティック回帰式、Glu,Ala,ABA,Met,Lys,BCAAを変数とするロジスティック回帰式、Glu,Gly,His,Ala,Lysを変数とする線形判別式、またはGlu,Thr,Ala,ABA,Lys,BCAAを変数とする線形判別式でもよい。
(Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                       ・・・(数式9)
10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10(BCAA/Trp)+e10
                      ・・・(数式10)
(数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
 また、判別値基準判別部102j1にて隠れ肥満または肥満であるか否かを判別する場合、多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを変数とするロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを変数とするロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを変数とする線形判別式、またはGlu,Pro,His,Met,Pheを変数とする線形判別式でもよい。
11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                      ・・・(数式11)
12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                      ・・・(数式12)
(数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
 また、判別値基準判別部102j1にて健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する場合、多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,BCAAを変数とする線形判別式でもよい。
13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                      ・・・(数式13)
(数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
 判別値基準評価部102jは、判別値算出部102iで算出した判別値に基づいて、評価対象につき、見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する。判別値基準評価部102jは、判別値基準判別部102j1をさらに備えている。ここで、判別値基準評価部102jの構成について図18を参照して説明する。図18は、判別値基準評価部102jの構成を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。判別値基準判別部102j1は、判別値に基づいて、評価対象につき、BMIおよびVFAで定義される健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する。具体的には、判別値基準判別部102j1は、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する。
 図6に戻り、結果出力部102kは、制御部102の各処理部での処理結果(判別値基準評価部102jでの評価結果(具体的には判別値基準判別部102j1での判別結果)を含む)等を出力装置114に出力する。
 送信部102mは、評価対象のアミノ酸濃度データの送信元のクライアント装置200に対して評価結果を送信したり、データベース装置400に対して、肥満評価装置100で作成した多変量判別式や評価結果を送信したりする。
 つぎに、本システムのクライアント装置200の構成について図19を参照して説明する。図19は、本システムのクライアント装置200の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
 クライアント装置200は、制御部210とROM220とHD230とRAM240と入力装置250と出力装置260と入出力IF270と通信IF280とで構成されており、これら各部は任意の通信路を介して通信可能に接続されている。
 制御部210は、Webブラウザ211、電子メーラ212、受信部213、送信部214を備えている。Webブラウザ211は、Webデータを解釈し、解釈したWebデータを後述するモニタ261に表示するブラウズ処理を行う。なお、Webブラウザ211には、ストリーム映像の受信・表示・フィードバック等を行う機能を備えたストリームプレイヤ等の各種のソフトウェアをプラグインしてもよい。電子メーラ212は、所定の通信規約(例えば、SMTP(Simple Mail Transfer Protocol)やPOP3(Post Office Protocol version 3)等)に従って電子メールの送受信を行う。受信部213は、通信IF280を介して、肥満評価装置100から送信された評価結果などの各種情報を受信する。送信部214は、通信IF280を介して、評価対象のアミノ酸濃度データなどの各種情報を肥満評価装置100へ送信する。
 入力装置250はキーボードやマウスやマイク等である。なお、後述するモニタ261もマウスと協働してポインティングデバイス機能を実現する。出力装置260は、通信IF280を介して受信した情報を出力する出力手段であり、モニタ(家庭用テレビを含む)261およびプリンタ262を含む。この他、出力装置260にスピーカ等を設けてもよい。入出力IF270は入力装置250や出力装置260に接続する。
 通信IF280は、クライアント装置200とネットワーク300(またはルータ等の通信装置)とを通信可能に接続する。換言すると、クライアント装置200は、モデムやTAやルータなどの通信装置および電話回線を介して、または専用線を介してネットワーク300に接続される。これにより、クライアント装置200は、所定の通信規約に従って肥満評価装置100にアクセスすることができる。
 ここで、プリンタ・モニタ・イメージスキャナ等の周辺装置を必要に応じて接続した情報処理装置(例えば、既知のパーソナルコンピュータ・ワークステーション・家庭用ゲーム装置・インターネットTV・PHS端末・携帯端末・移動体通信端末・PDA等の情報処理端末など)に、Webデータのブラウジング機能や電子メール機能を実現させるソフトウェア(プログラム、データ等を含む)を実装することにより、クライアント装置200を実現してもよい。
 また、クライアント装置200の制御部210は、制御部210で行う処理の全部または任意の一部を、CPUおよび当該CPUにて解釈して実行するプログラムで実現してもよい。ROM220またはHD230には、OS(Operating System)と協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。当該コンピュータプログラムは、RAM240にロードされることで実行され、CPUと協働して制御部210を構成する。また、当該コンピュータプログラムは、クライアント装置200と任意のネットワークを介して接続されるアプリケーションプログラムサーバに記録されてもよく、クライアント装置200は、必要に応じてその全部または一部をダウンロードしてもよい。また、制御部210で行う処理の全部または任意の一部を、ワイヤードロジック等によるハードウェアで実現してもよい。
 つぎに、本システムのネットワーク300について図4、図5を参照して説明する。ネットワーク300は、肥満評価装置100とクライアント装置200とデータベース装置400とを相互に通信可能に接続する機能を有し、例えばインターネットやイントラネットやLAN(有線/無線の双方を含む)等である。なお、ネットワーク300は、VANや、パソコン通信網や、公衆電話網(アナログ/デジタルの双方を含む)や、専用回線網(アナログ/デジタルの双方を含む)や、CATV網や、携帯回線交換網または携帯パケット交換網(IMT2000方式、GSM方式またはPDC/PDC-P方式等を含む)や、無線呼出網や、Bluetooth(登録商標)等の局所無線網や、PHS網や、衛星通信網(CS、BSまたはISDB等を含む)等でもよい。
 つぎに、本システムのデータベース装置400の構成について図20を参照して説明する。図20は、本システムのデータベース装置400の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
 データベース装置400は、肥満評価装置100または当該データベース装置で多変量判別式を作成する際に用いる肥満状態情報や、肥満評価装置100で作成した多変量判別式、肥満評価装置100での評価結果などを格納する機能を有する。図20に示すように、データベース装置400は、当該データベース装置を統括的に制御するCPU等の制御部402と、ルータ等の通信装置および専用線等の有線または無線の通信回路を介して当該データベース装置をネットワーク300に通信可能に接続する通信インターフェース部404と、各種のデータベースやテーブルやファイル(例えばWebページ用ファイル)などを格納する記憶部406と、入力装置412や出力装置414に接続する入出力インターフェース部408と、で構成されており、これら各部は任意の通信路を介して通信可能に接続されている。
 記憶部406は、ストレージ手段であり、例えば、RAM・ROM等のメモリ装置や、ハードディスクのような固定ディスク装置や、フレキシブルディスクや、光ディスク等を用いることができる。記憶部406には、各種処理に用いる各種プログラム等を格納する。通信インターフェース部404は、データベース装置400とネットワーク300(またはルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース部404は、他の端末と通信回線を介してデータを通信する機能を有する。入出力インターフェース部408は、入力装置412や出力装置414に接続する。ここで、出力装置414には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下で、出力装置414をモニタ414として記載する場合がある。)。また、入力装置412には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。
 制御部402は、OS(Operating System)等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、これらのプログラムに基づいて種々の情報処理を実行する。制御部402は、図示の如く、大別して、要求解釈部402aと閲覧処理部402bと認証処理部402cと電子メール生成部402dとWebページ生成部402eと送信部402fとを備えている。
 要求解釈部402aは、肥満評価装置100からの要求内容を解釈し、その解釈結果に応じて制御部402の各部に処理を受け渡す。閲覧処理部402bは、肥満評価装置100からの各種画面の閲覧要求を受けて、これら画面のWebデータの生成や送信を行う。認証処理部402cは、肥満評価装置100からの認証要求を受けて、認証判断を行う。電子メール生成部402dは、各種の情報を含んだ電子メールを生成する。Webページ生成部402eは、利用者がクライアント装置200で閲覧するWebページを生成する。送信部402fは、肥満状態情報や多変量判別式などの各種情報を、肥満評価装置100へ送信する。
[2-3.本システムの処理]
 ここでは、以上のように構成された本システムで行われる肥満評価サービス処理の一例を、図21を参照して説明する。図21は、肥満評価サービス処理の一例を示すフローチャートである。
 なお、本処理で用いるアミノ酸濃度データは、個体から予め採取した血液を分析して得たアミノ酸の濃度値に関するものである。ここで、血液中のアミノ酸の分析方法について簡単に説明する。まず、採血した血液サンプルを、ヘパリン処理したチューブに採取し、その後、当該チューブに対して遠心分離を行うことで血漿を分離する。なお、分離したすべての血漿サンプルは、アミノ酸濃度の測定時まで-70℃で凍結保存する。そして、アミノ酸濃度の測定時に、血漿サンプルに対してスルホサリチル酸を添加し、3%濃度調整により除蛋白処理を行う。なお、アミノ酸濃度の測定には、ポストカラムでニンヒドリン反応を用いた高速液体クロマトグラフィー(HPLC)を原理としたアミノ酸分析機を使用した。
 まず、Webブラウザ211を表示した画面上で利用者が入力装置250を介して肥満評価装置100が提供するWebサイトのアドレス(URLなど)を指定すると、クライアント装置200は肥満評価装置100へアクセスする。具体的には、利用者がクライアント装置200のWebブラウザ211の画面更新を指示すると、Webブラウザ211は、肥満評価装置100が提供するWebサイトのアドレスを所定の通信規約で肥満評価装置100へ送信することで、アミノ酸濃度データ送信画面に対応するWebページの送信要求を、当該アドレスに基づくルーティングで肥満評価装置100へ行う。
 つぎに、肥満評価装置100は、要求解釈部102aで、クライアント装置200からの送信を受け、当該送信の内容を解析し、解析結果に応じて制御部102の各部に処理を移す。具体的には、送信の内容がアミノ酸濃度データ送信画面に対応するWebページの送信要求であった場合、肥満評価装置100は、主として閲覧処理部102bで、記憶部106の所定の記憶領域に格納されている当該Webページを表示するためのWebデータを取得し、取得したWebデータをクライアント装置200へ送信する。より具体的には、利用者からアミノ酸濃度データ送信画面に対応するWebページの送信要求があった場合、肥満評価装置100は、まず、制御部102で、利用者IDや利用者パスワードの入力を利用者に対して求める。そして、利用者IDやパスワードが入力されると、肥満評価装置100は、認証処理部102cで、入力された利用者IDやパスワードと利用者情報ファイル106aに格納されている利用者IDや利用者パスワードとの認証判断を行う。そして、肥満評価装置100は、認証可の場合にのみ、閲覧処理部102bで、アミノ酸濃度データ送信画面に対応するWebページを表示するためのWebデータをクライアント装置200へ送信する。なお、クライアント装置200の特定は、クライアント装置200から送信要求と共に送信されたIPアドレスで行う。
 つぎに、クライアント装置200は、肥満評価装置100から送信されたWebデータ(アミノ酸濃度データ送信画面に対応するWebページを表示するためのもの)を受信部213で受信し、受信したWebデータをWebブラウザ211で解釈し、モニタ261にアミノ酸濃度データ送信画面を表示する。
 つぎに、モニタ261に表示されたアミノ酸濃度データ送信画面に対し利用者が入力装置250を介して個体のアミノ酸濃度データなどを入力・選択すると、クライアント装置200は、送信部214で、入力情報や選択事項を特定するための識別子を肥満評価装置100へ送信することで、評価対象の個体のアミノ酸濃度データを肥満評価装置100へ送信する(ステップSA-21)。なお、ステップSA-21におけるアミノ酸濃度データの送信は、FTP等の既存のファイル転送技術等により実現してもよい。
 つぎに、肥満評価装置100は、要求解釈部102aで、クライアント装置200から送信された識別子を解釈することによりクライアント装置200の要求内容を解釈し、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを変数として含む見掛け肥満や隠れ肥満、肥満の状態評価用の多変量判別式(具体的には、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、または、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別用の多変量判別式)の送信要求をデータベース装置400へ行う。
 つぎに、データベース装置400は、要求解釈部402aで、肥満評価装置100からの送信要求を解釈し、記憶部406の所定の記憶領域に格納した、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを変数として含む多変量判別式(例えばアップデートされた最新のもの)を肥満評価装置100へ送信する(ステップSA-22)。
 ここで、ステップSA-22において、肥満評価装置100へ送信する多変量判別式は、1つの分数式または複数の分数式の和、またはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。
 具体的には、ステップSA-26にて健常または見掛け肥満であるか否かを判別する場合、多変量判別式は、数式1、数式2、Glu,Thr,Pheを変数とするロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを変数とするロジスティック回帰式、His,Thr,Val,Orn,Trpを変数とする線形判別式、またはSer,Pro,Asn,Orn,Phe,BCAAを変数とする線形判別式でもよい。
(Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                       ・・・(数式1)
(Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                       ・・・(数式2)
(数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、ステップSA-26にて健常または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを変数とするロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,BCAAを変数とするロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを変数とする線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを変数とする線形判別式でもよい。
(Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                       ・・・(数式3)
(Ser/Cit)+b(Gly/BCAA)+c(Gln/Ala)+d(Thr/Glu)+e
                       ・・・(数式4)
(数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、ステップSA-26にて健常または肥満であるか否かを判別する場合、多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを変数とするロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを変数とする線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを変数とする線形判別式でもよい。
(Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                       ・・・(数式5)
(Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d(BCAA/Asn)+e
                       ・・・(数式6)
(数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、ステップSA-26にて見掛け肥満または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを変数とするロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,BCAAを変数とするロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを変数とする線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを変数とする線形判別式でもよい。
(Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                       ・・・(数式7)
(Pro/BCAA)+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                       ・・・(数式8)
(数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、ステップSA-26にて見掛け肥満または肥満であるか否かを判別する場合、多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを変数とするロジスティック回帰式、Glu,Ala,ABA,Met,Lys,BCAAを変数とするロジスティック回帰式、Glu,Gly,His,Ala,Lysを変数とする線形判別式、またはGlu,Thr,Ala,ABA,Lys,BCAAを変数とする線形判別式でもよい。
(Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                       ・・・(数式9)
10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10(BCAA/Trp)+e10
                      ・・・(数式10)
(数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
 また、ステップSA-26にて隠れ肥満または肥満であるか否かを判別する場合、多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを変数とするロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを変数とするロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを変数とする線形判別式、またはGlu,Pro,His,Met,Pheを変数とする線形判別式でもよい。
11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                      ・・・(数式11)
12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                      ・・・(数式12)
(数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
 また、ステップSA-26にて健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する場合、多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,BCAAを変数とする線形判別式でもよい。
13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                      ・・・(数式13)
(数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
 つぎに、肥満評価装置100は、受信部102fで、クライアント装置200から送信された個体のアミノ酸濃度データおよびデータベース装置400から送信された多変量判別式を受信し、受信したアミノ酸濃度データをアミノ酸濃度データファイル106bの所定の記憶領域に格納すると共に、受信した多変量判別式を多変量判別式ファイル106e4の所定の記憶領域に格納する(ステップSA-23)。
 つぎに、肥満評価装置100は、制御部102で、ステップSA-23で受信した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去する(ステップSA-24)。
 つぎに、肥満評価装置100は、判別値算出部102iで、ステップSA-24で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの濃度値、およびステップSA-23で受信した多変量判別式に基づいて、判別値を算出する(ステップSA-25)。
 つぎに、肥満評価装置100は、判別値基準判別部102j1で、ステップSA-25で算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別し、その判別結果を評価結果ファイル106gの所定の記憶領域に格納する(ステップSA-26)。
 つぎに、肥満評価装置100は、送信部102mで、ステップSA-26で得た判別結果を、アミノ酸濃度データの送信元のクライアント装置200とデータベース装置400とへ送信する(ステップSA-27)。具体的には、まず、肥満評価装置100は、Webページ生成部102eで、判別結果を表示するためのWebページを作成し、作成したWebページに対応するWebデータを記憶部106の所定の記憶領域に格納する。ついで、利用者がクライアント装置200のWebブラウザ211に入力装置250を介して所定のURLを入力し上述した認証を経た後、クライアント装置200は、当該Webページの閲覧要求を肥満評価装置100へ送信する。ついで、肥満評価装置100は、閲覧処理部102bで、クライアント装置200から送信された閲覧要求を解釈し、判別結果を表示するためのWebページに対応するWebデータを記憶部106の所定の記憶領域から読み出す。そして、肥満評価装置100は、送信部102mで、読み出したWebデータをクライアント装置200へ送信すると共に、当該Webデータ又は判別結果をデータベース装置400へ送信する。
 ここで、ステップSA-27において、肥満評価装置100は、制御部102で、判別結果を電子メールで利用者のクライアント装置200へ通知してもよい。具体的には、まず、肥満評価装置100は、電子メール生成部102dで、利用者IDなどを基にして利用者情報ファイル106aに格納されている利用者情報を送信タイミングに従って参照し、利用者の電子メールアドレスを取得する。ついで、肥満評価装置100は、電子メール生成部102dで、取得した電子メールアドレスを宛て先とし利用者の氏名および判別結果を含む電子メールに関するデータを生成する。ついで、肥満評価装置100は、送信部102mで、生成した当該データを利用者のクライアント装置200へ送信する。
 また、ステップSA-27において、肥満評価装置100は、FTP等の既存のファイル転送技術等で、判別結果を利用者のクライアント装置200へ送信してもよい。
 図21の説明に戻り、データベース装置400は、制御部402で、肥満評価装置100から送信された判別結果またはWebデータを受信し、受信した判別結果またはWebデータを記憶部406の所定の記憶領域に保存(蓄積)する(ステップSA-28)。
 また、クライアント装置200は、受信部213で、肥満評価装置100から送信されたWebデータを受信し、受信したWebデータをWebブラウザ211で解釈し、個体の判別結果が記されたWebページの画面をモニタ261に表示する(ステップSA-29)。なお、判別結果が肥満評価装置100から電子メールで送信された場合には、クライアント装置200は、電子メーラ212の公知の機能で、肥満評価装置100から送信された電子メールを任意のタイミングで受信し、受信した電子メールをモニタ261に表示する。
 以上により、利用者は、モニタ261に表示されたWebページを閲覧することで、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かに関する個体の判別結果を確認することができる。なお、利用者は、モニタ261に表示されたWebページの表示内容をプリンタ262で印刷してもよい。
 また、判別結果が肥満評価装置100から電子メールで送信された場合には、利用者は、モニタ261に表示された電子メールを閲覧することで、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かに関する個体の判別結果を確認することができる。利用者は、モニタ261に表示された電子メールの表示内容をプリンタ262で印刷してもよい。
 これにて、肥満評価サービス処理の説明を終了する。
[2-4.第2実施形態のまとめ、およびその他の実施形態]
 以上、詳細に説明したように、肥満評価システムによれば、クライアント装置200は個体のアミノ酸濃度データを肥満評価装置100へ送信し、データベース装置400は肥満評価装置100からの要求を受けて、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かの判別用の多変量判別式を肥満評価装置100へ送信する。そして、肥満評価装置100は、(1)クライアント装置200からアミノ酸濃度データを受信すると共にデータベース装置400から多変量判別式を受信し、(2)受信したアミノ酸濃度データおよび多変量判別式に基づいて判別値を算出し、(3)算出した判別値と予め設定した閾値とを比較することで個体につき、健常または見掛け肥満、健常または隠れ肥満、健常または肥満、見掛け肥満または隠れ肥満、見掛け肥満または肥満、隠れ肥満または肥満、または、健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別し、(4)この判別結果をクライアント装置200やデータベース装置400へ送信する。そして、クライアント装置200は肥満評価装置100から送信された判別結果を受信して表示し、データベース装置400は肥満評価装置100から送信された判別結果を受信して格納する。これにより、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別を精度よく行うことができる。
 ここで、肥満評価システムによれば、多変量判別式は、1つの分数式または複数の分数式の和、またはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、健常と見掛け肥満の2群判別や健常と隠れ肥満の2群判別、健常と肥満の2群判別、見掛け肥満と隠れ肥満の2群判別、見掛け肥満と肥満の2群判別、隠れ肥満と肥満の2群判別、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別をさらに精度よく行うことができる。
 具体的には、ステップSA-26にて健常または見掛け肥満であるか否かを判別する場合、多変量判別式は、数式1、数式2、Glu,Thr,Pheを変数とするロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを変数とするロジスティック回帰式、His,Thr,Val,Orn,Trpを変数とする線形判別式、またはSer,Pro,Asn,Orn,Phe,BCAAを変数とする線形判別式でもよい。これにより、健常と見掛け肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                       ・・・(数式1)
(Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                       ・・・(数式2)
(数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、ステップSA-26にて健常または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを変数とするロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,BCAAを変数とするロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを変数とする線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを変数とする線形判別式でもよい。これにより、健常と隠れ肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                       ・・・(数式3)
(Ser/Cit)+b(Gly/BCAA)+c(Gln/Ala)+d(Thr/Glu)+e
                       ・・・(数式4)
(数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、ステップSA-26にて健常または肥満であるか否かを判別する場合、多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを変数とするロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを変数とする線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを変数とする線形判別式でもよい。これにより、健常と肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                       ・・・(数式5)
(Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d(BCAA/Asn)+e
                       ・・・(数式6)
(数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、ステップSA-26にて見掛け肥満または隠れ肥満であるか否かを判別する場合、多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを変数とするロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,BCAAを変数とするロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを変数とする線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを変数とする線形判別式でもよい。これにより、見掛け肥満または隠れ肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                       ・・・(数式7)
(Pro/BCAA)+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                       ・・・(数式8)
(数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
 また、ステップSA-26にて見掛け肥満または肥満であるか否かを判別する場合、多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを変数とするロジスティック回帰式、Glu,Ala,ABA,Met,Lys,BCAAを変数とするロジスティック回帰式、Glu,Gly,His,Ala,Lysを変数とする線形判別式、またはGlu,Thr,Ala,ABA,Lys,BCAAを変数とする線形判別式でもよい。これにより、見掛け肥満または肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
(Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                       ・・・(数式9)
10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10(BCAA/Trp)+e10
                      ・・・(数式10)
(数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
 また、ステップSA-26にて隠れ肥満または肥満であるか否かを判別する場合、多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを変数とするロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを変数とするロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを変数とする線形判別式、またはGlu,Pro,His,Met,Pheを変数とする線形判別式でもよい。これにより、隠れ肥満または肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                      ・・・(数式11)
12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                      ・・・(数式12)
(数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
 また、ステップSA-26にて健常もしくは見掛け肥満または隠れ肥満もしくは肥満であるか否かを判別する場合、多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,BCAAを変数とするロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,BCAAを変数とする線形判別式でもよい。これにより、健常もしくは見掛け肥満と隠れ肥満もしくは肥満の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。
13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                      ・・・(数式13)
(数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
 なお、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を、見掛け肥満や隠れ肥満、肥満の状態評価に好適に用いることができる。
 また、本発明にかかる肥満評価装置、肥満評価方法、肥満評価システム、肥満評価プログラムおよび記録媒体は、上述した第2実施形態以外にも、種々の異なる実施形態にて実施されてよいものである。例えば、上述した第2実施形態で説明した各処理のうち、自動的に行なわれるものとして説明した処理の全部または一部を手動的に行うこともでき、手動的に行なわれるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種の登録データおよび検索条件等のパラメータを含む情報、画面例、データベース構成については、特記する場合を除いて任意に変更することができる。例えば、肥満評価装置100に関して、図示の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。また、肥満評価装置100の各部または各装置が備える処理機能(特に制御部102にて行なわれる各処理機能)については、CPU(Central Processing Unit)および当該CPUにて解釈実行されるプログラムにて、その全部または任意の一部を実現することができ、ワイヤードロジックによるハードウェアとして実現することもできる。
 ここで、「プログラム」とは任意の言語や記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は、必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものを含む。なお、プログラムは、記録媒体に記録されており、必要に応じて肥満評価装置100に機械的に読み取られる。記録媒体に記録されたプログラムを各装置で読み取るための具体的な構成や読み取り手順や読み取り後のインストール手順等については、周知の構成や手順を用いることができる。
 また、「記録媒体」とは任意の「可搬用の物理媒体」や任意の「固定用の物理媒体」や「通信媒体」を含むものとする。なお、「可搬用の物理媒体」とはフレキシブルディスクや光磁気ディスクやROMやEPROMやEEPROMやCD-ROMやMOやDVD等である。「固定用の物理媒体」とは各種コンピュータシステムに内蔵されるROMやRAMやHD等である。「通信媒体」とは、LANやWANやインターネット等のネットワークを介してプログラムを送信する場合における通信回線や搬送波のように、短期にプログラムを保持するものである。
 最後に、肥満評価装置100で行う多変量判別式作成処理の一例について図22を参照して詳細に説明する。図22は多変量判別式作成処理の一例を示すフローチャートである。なお、当該多変量判別式作成処理は、肥満状態情報を管理するデータベース装置400で行ってもよい。
 なお、本説明では、肥満評価装置100は、データベース装置400から事前に取得した肥満状態情報を、肥満状態情報ファイル106cの所定の記憶領域に格納しているものとする。また、肥満評価装置100は、肥満状態情報指定部102gで事前に指定した肥満状態指標データおよびアミノ酸濃度データを含む肥満状態情報を、指定肥満状態情報ファイル106dの所定の記憶領域に格納しているものとする。
 まず、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、指定肥満状態情報ファイル106dの所定の記憶領域に格納されている肥満状態情報から所定の式作成手法に基づいて候補多変量判別式を作成し、作成した候補多変量判別式を候補多変量判別式ファイル106e1の所定の記憶領域に格納する(ステップSB-21)。具体的には、まず、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、複数の異なる式作成手法(主成分分析や判別分析、サポートベクターマシン、重回帰分析、ロジスティック回帰分析、k-means法、クラスター解析、決定木などの多変量解析に関するものを含む。)の中から所望のものを1つ選択し、選択した式作成手法に基づいて、作成する候補多変量判別式の形(式の形)を決定する。つぎに、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、肥満状態情報に基づいて、選択した式選択手法に対応する種々(例えば平均や分散など)の計算を実行する。つぎに、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、計算結果および決定した候補多変量判別式のパラメータを決定する。これにより、選択した式作成手法に基づいて候補多変量判別式が作成される。なお、複数の異なる式作成手法を併用して候補多変量判別式を同時並行(並列)的に作成する場合は、選択した式作成手法ごとに上記の処理を並行して実行すればよい。また、複数の異なる式作成手法を併用して候補多変量判別式を直列的に作成する場合は、例えば、主成分分析を行って作成した候補多変量判別式を利用して肥満状態情報を変換し、変換した肥満状態情報に対して判別分析を行うことで候補多変量判別式を作成してもよい。
 つぎに、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、ステップSB-21で作成した候補多変量判別式を所定の検証手法に基づいて検証(相互検証)し、検証結果を検証結果ファイル106e2の所定の記憶領域に格納する(ステップSB-22)。具体的には、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、指定肥満状態情報ファイル106dの所定の記憶領域に格納されている肥満状態情報に基づいて候補多変量判別式を検証する際に用いる検証用データを作成し、作成した検証用データに基づいて候補多変量判別式を検証する。なお、ステップSB-21で複数の異なる式作成手法を併用して候補多変量判別式を複数作成した場合には、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、各式作成手法に対応する候補多変量判別式ごとに所定の検証手法に基づいて検証する。ここで、ステップSB-22において、ブートストラップ法やホールドアウト法、リーブワンアウト法などのうち少なくとも1つに基づいて候補多変量判別式の判別率や感度、特異性、情報量基準などのうち少なくとも1つに関して検証してもよい。これにより、肥満状態情報や診断条件を考慮した予測性または頑健性の高い候補指標式を選択することができる。
 つぎに、多変量判別式作成部102hは、変数選択部102h3で、ステップSB-22での検証結果から所定の変数選択手法に基づいて、候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる肥満状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、選択したアミノ酸濃度データの組み合わせを含む肥満状態情報を選択肥満状態情報ファイル106e3の所定の記憶領域に格納する(ステップSB-23)。なお、ステップSB-21で複数の異なる式作成手法を併用して候補多変量判別式を複数作成し、ステップSB-22で各式作成手法に対応する候補多変量判別式ごとに所定の検証手法に基づいて検証した場合には、ステップSB-23において、多変量判別式作成部102hは、変数選択部102h3で、ステップSB-22での検証結果に対応する候補多変量判別式ごとに所定の変数選択手法に基づいて候補多変量判別式の変数を選択する。ここで、ステップSB-23において、検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式の変数を選択してもよい。なお、ベストパス法とは、候補多変量判別式に含まれる変数を1つずつ順次減らしていき、候補多変量判別式が与える評価指標を最適化することで変数を選択する方法である。また、ステップSB-23において、多変量判別式作成部102hは、変数選択部102h3で、指定肥満状態情報ファイル106dの所定の記憶領域に格納されている肥満状態情報に基づいてアミノ酸濃度データの組み合わせを選択してもよい。
 つぎに、多変量判別式作成部102hは、指定肥満状態情報ファイル106dの所定の記憶領域に格納されている肥満状態情報に含まれるアミノ酸濃度データの全ての組み合わせが終了したか否かを判定し、判定結果が「終了」であった場合(ステップSB-24:Yes)には次のステップ(ステップSB-25)へ進み、判定結果が「終了」でなかった場合(ステップSB-24:No)にはステップSB-21へ戻る。なお、多変量判別式作成部102hは、予め設定した回数が終了したか否かを判定し、判定結果が「終了」であった場合には(ステップSB-24:Yes)次のステップ(ステップSB-25)へ進み、判定結果が「終了」でなかった場合(ステップSB-24:No)にはステップSB-21へ戻ってもよい。また、多変量判別式作成部102hは、ステップSB-23で選択したアミノ酸濃度データの組み合わせが、指定肥満状態情報ファイル106dの所定の記憶領域に格納されている肥満状態情報に含まれるアミノ酸濃度データの組み合わせまたは前回のステップSB-23で選択したアミノ酸濃度データの組み合わせと同じであるか否かを判定し、判定結果が「同じ」であった場合(ステップSB-24:Yes)には次のステップ(ステップSB-25)へ進み、判定結果が「同じ」でなかった場合(ステップSB-24:No)にはステップSB-21へ戻ってもよい。また、多変量判別式作成部102hは、検証結果が具体的には各候補多変量判別式に関する評価値である場合には、当該評価値と各式作成手法に対応する所定の閾値との比較結果に基づいて、ステップSB-25へ進むかステップSB-21へ戻るかを判定してもよい。
 ついで、多変量判別式作成部102hは、検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで多変量判別式を決定し、決定した多変量判別式(選出した候補多変量判別式)を多変量判別式ファイル106e4の所定の記憶領域に格納する(ステップSB-25)。ここで、ステップSB-25において、例えば、同じ式作成手法で作成した候補多変量判別式の中から最適なものを選出する場合と、すべての候補多変量判別式の中から最適なものを選出する場合とがある。
 これにて、多変量判別式作成処理の説明を終了する。
 人間ドック受診者の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。受診者を、健常群(BMI<25、VFA(内臓脂肪面積)<100cm)、見掛け肥満群(BMI≧25、VFA<100cm)、隠れ肥満群(BMI<25、VFA≧100cm)および肥満群(BMI≧25、VFA≧100cm)の4群に分けた。4群間のアミノ酸変数の分布を図23に示す。当該図中、“1”は健常群、“2”は見掛け肥満群、“3”は隠れ肥満群、“4”は肥満群のアミノ酸変数の分布を示す。肥満状態の評価を目的に、4群間でKruskal Wallis検定を実施した。
 4群間では、Glu、Ser、Pro、Gly、Ala、Cys2、Tyr、Val、Orn、Met、Lys、Ile、Leu、Phe、Trpが有意に変化しており、4群間の判別能を持つことが判明した。
 実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、健常群と見掛け肥満群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式1が得られた。なお、この他に指標式1と同等の判別性能を有する多変量判別式は複数得られた。それらを図24、図25に示す。なお、図24、図25に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式1:0.707(Glu)/(Gly)-0.09557(His)/(Ile)+0.1031(Thr)/(Phe)+0.875
 指標式1による健常群と見掛け肥満群の2群判別に関して、ROC曲線(図26)の曲線下面積で評価し、0.876±0.039(95%信頼区間は0.800~0.953)が得られた。また、指標式1による健常群と見掛け肥満群の2群判別のカットオフ値について、見掛け肥満の有症率を6%として最適なカットオフ値を求めると、カットオフ値が1.151となり、感度80.00%、特異度92.68%、陽性適中率41.10%、陰性適中率98.64%、正診率91.92%が得られた。これにより、指標式1が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。健常群と見掛け肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式2としてGlu、Thr、Pheから構成されるロジスティック回帰式(アミノ酸変数:Glu、Thr、Pheの数係数と定数項は順に、0.0616、0.0250、-0.0488、-5.5278)が得られた。なお、この他に指標式2と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図27、図28に示す。なお、図27、図28に示す式における各係数の値は、それを実数倍したものでもよい。
 指標式2による健常群と見掛け肥満群の2群判別に関して、ROC曲線(図29)の曲線下面積で評価し、0.817±0.053(95%信頼区間は0.714~0.920)が得られた。また、指標式2による健常群と見掛け肥満群の2群判別のカットオフ値について、見掛け肥満の有症率を6%として最適なカットオフ値を求めると、カットオフ値が0.061となり、感度90.00%、特異度79.27%、陽性適中率21.70%、陰性適中率99.20%、正診率79.91%が得られた。これにより、指標式2が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。健常群と見掛け肥満群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式3としてHis、Thr、Val、Orn、Trpから構成される線形判別関数(アミノ酸変数His、Thr、Val、Orn、Trpの数係数と定数項は順に、0.8411、-0.457、-0.1973、-0.1053、-0.1838、-49.56)が得られた。なお、この他に指標式3と同等の判別性能を有する線形判別関数は複数得られた。それらを図30、図31に示す。なお、図30、図31に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
 指標式3による健常群と見掛け肥満群の2群判別に関して、ROC曲線(図32)の曲線下面積で評価し、0.826±0.051(95%信頼区間は0.726~0.925)が得られた。また、指標式3による健常群と見掛け肥満群の2群判別のカットオフ値について、見掛け肥満の有症率を6%として最適なカットオフ値を求めると、カットオフ値が6.29となり、感度80.00%、特異度75.61%、陽性適中率17.31%、陰性適中率98.34%、正診率75.87%が得られた。これにより、指標式3が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、健常群と隠れ肥満群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式4が得られた。なお、この他に指標式4と同等の判別性能を有する多変量判別式は複数得られた。それらを図33、図34に示す。なお、図33、図34に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式4:-1.314(Ser)/(Ala)-0.08432(Gly)/(Tyr)-0.1957(Trp)/(Glu)+2.529
 指標式4による健常群と隠れ肥満群の2群判別に関して、ROC曲線(図35)の曲線下面積で評価し、0.807±0.024(95%信頼区間は0.760~0.854)が得られた。また、指標式4による健常群と隠れ肥満群の2群判別のカットオフ値について、隠れ肥満の有症率を50%として最適なカットオフ値を求めると、カットオフ値が1.534となり、感度71.01%、特異度70.12%、陽性適中率70.38%、陰性適中率70.75%、正診率70.56%が得られた。これにより、指標式4が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。健常群と隠れ肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式5としてGlu、Ser、Ala、Orn、Leu、Trpから構成されるロジスティック回帰式(アミノ酸変数: Glu、Ser、Ala、Orn、Leu、Trpの数係数と定数項は順に、0.0606、-0.0262、0.0052、0.0156、0.0148、-0.0299、-2.3421)が得られた。なお、この他に指標式5と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図36、図37に示す。なお、図36、図37に示す式における各係数の値は、それを実数倍したものでもよい。
 指標式5による健常群と隠れ肥満群の2群判別に関して、ROC曲線(図38)の曲線下面積で評価し、0.799±0.024(95%信頼区間は0.751~0.847)が得られた。また、指標式5による健常群と隠れ肥満群の2群判別のカットオフ値について、隠れ肥満の有症率を50%として最適なカットオフ値を求めると、カットオフ値が0.485となり、感度73.96%、特異度71.34%、陽性適中率72.07%、陰性適中率73.26%、正診率72.65%が得られた。これにより、指標式5が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。健常群と隠れ肥満群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式6としてGlu、Ser、His、Thr、Lys、Pheから構成される線形判別関数(アミノ酸変数Glu、Ser、His、Thr、Lys、Pheの数係数と定数項は順に、0.9185、-0.3667、0.08611、0.05409、0.1007、-0.0387、29.51)が得られた。なお、この他に指標式6と同等の判別性能を有する線形判別関数は複数得られた。それらを図39、図40に示す。なお、図39、図40に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
 指標式6による健常群と隠れ肥満群の2群判別に関して、ROC曲線(図41)の曲線下面積で評価し、0.803±0.024(95%信頼区間は0.756~0.851)が得られ。また、指標式6による健常群と隠れ肥満群の2群判別のカットオフ値について、隠れ肥満の有症率を50%として最適なカットオフ値を求めると、カットオフ値が-0.06となり、感度70.41%、特異度75.61%、陽性適中率74.27%、陰性適中率71.88%、正診率73.01%が得られた。これにより、指標式6が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、健常群と肥満群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式7が得られた。なお、この他に指標式7と同等の判別性能を有する多変量判別式は複数得られた。それらを図42、図43に示す。なお、図42、図43に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式7:1.1(Glu)/(Ser)-3.72(Cit)/(Ala)-0.5253(Trp)/(Tyr)+1.704
 指標式7による健常群と肥満群の2群判別に関して、ROC曲線(図44)の曲線下面積で評価し、0.945±0.013(95%信頼区間は0.919~0.971)が得られた。また、指標式7による健常群と肥満群の2群判別のカットオフ値について、肥満の有症率を42%として最適なカットオフ値を求めると、カットオフ値が1.446となり、感度86.55%、特異度92.07%、陽性適中率88.77%、陰性適中率90.44%、正診率89.76%が得られた。これにより、指標式7が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。健常群と肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式8としてGlu、Ser、Cit、Ala、Tyr、Trpから構成されるロジスティック回帰式(アミノ酸変数:Glu、Ser、Cit、Ala、Tyr、Trpの数係数と定数項は順に、0.1299、-0.0384、-0.0633、0.0115、0.0536、-0.0480、-5.8449)が得られた。なお、この他に指標式8と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図45、図46に示す。なお、図45、図46に示す式における各係数の値は、それを実数倍したものでもよい。
 指標式8による健常群と肥満群の2群判別に関して、ROC曲線(図47)の曲線下面積で評価し、0.945±0.013(95%信頼区間は0.919~0.971)が得られた。また、指標式8による健常群と肥満群の2群判別のカットオフ値について、肥満の有症率を42%として最適なカットオフ値を求めると、カットオフ値が0.441となり、感度86.55%、特異度90.24%、陽性適中率86.53%、陰性適中率90.26%、正診率88.69%が得られた。これにより、指標式8が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。健常群と肥満群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式9としてGlu、Thr、Ala、Tyr、Orn、Lysから構成される線形判別関数(アミノ酸変数Glu、Thr、Ala、Tyr、Orn、Lysの数係数と定数項は順に、0.9113、-0.06324、0.07523、0.354、0.1762、0.05985、115.6)が得られた。なお、この他に指標式9と同等の判別性能を有する線形判別関数は複数得られた。それらを図48、図49に示す。なお、図48、図49に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
 指標式9による健常群と肥満群の2群判別に関して、ROC曲線(図50)の曲線下面積で評価し、0.943±0.014(95%信頼区間は0.917~0.970)が得られた。また、指標式9による健常群と肥満群の2群判別のカットオフ値について、肥満群の有症率を42%として最適なカットオフ値を求めると、カットオフ値が0.08となり、感度85.71%、特異度87.20%、陽性適中率82.90%、陰性適中率89.39%、正診率86.57%が得られた。これにより、指標式9が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、見掛け肥満群と隠れ肥満群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式4が得られた。なお、この他に指標式10と同等の判別性能を有する多変量判別式は複数得られた。それらを図51、図52に示す。なお、図51、図52に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式10:-0.09376(Thr)/(Tyr)+0.0108(Ala)/(Ile)+0.3634(Arg)/(Gln)+1.969
 指標式10による見掛け肥満群と隠れ肥満群の2群判別に関して、ROC曲線(図53)の曲線下面積で評価し、0.766±0.090(95%信頼区間は0.590~0.941)が得られた。また、指標式10による見掛け肥満群と隠れ肥満群の2群判別のカットオフ値について、隠れ肥満の有症率を6%として最適なカットオフ値を求めると、カットオフ値が1.934となり、感度71.60%、特異度80.00%、陽性適中率18.60%、陰性適中率97.78%、正診率79.50%が得られた。これにより、指標式10が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。見掛け肥満群と隠れ肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式11としてGlu、Thr、Ala、Arg、Tyr、Lysから構成されるロジスティック回帰式(アミノ酸変数:Glu、Thr、Ala、Arg、Tyr、Lysの数係数と定数項は順に、0.0015、-0.0157、0.0018、0.0157、0.0101、-0.0046、2.7478)が得られた。なお、この他に指標式11と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図54、図55に示す。なお、図54、図55に示す式における各係数の値は、それを実数倍したものでもよい。
 指標式11による見掛け肥満群と隠れ肥満群の2群判別に関して、ROC曲線(図56)の曲線下面積で評価し、0.750±0.091(95%信頼区間は0.571~0.929)が得られた。また、指標式11による見掛け肥満群と隠れ肥満群の2群判別のカットオフ値について、隠れ肥満の有症率を6%として最適なカットオフ値を求めると、カットオフ値が0.942となり、感度72.78%、特異度80.0%、陽性適中率18.85%、陰性適中率97.87%、正診率79.57%が得られた。これにより、指標式11が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。見掛け肥満群と隠れ肥満群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式12としてHis、Thr、Ala、Tyr、Orn、Pheから構成される線形判別関数(アミノ酸変数His、Thr、Ala、Tyr、Orn、Pheの数係数と定数項は順に、-0.7968、0.4249、-0.01413、-0.1258、0.2072、-0.3544、-37.77)が得られた。なお、この他に指標式12と同等の判別性能を有する線形判別関数は複数得られた。それらを図57、図58に示す。なお、図57、図58に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
 指標式12による見掛け肥満群と隠れ肥満群の2群判別に関して、ROC曲線(図59)の曲線下面積で評価し、0.69±0.095(95%信頼区間は0.504~0.877)が得られた。また、指標式12による見掛け肥満群と隠れ肥満群の2群判別のカットオフ値について、隠れ肥満の有症率を6%として最適なカットオフ値を求めると、カットオフ値が-0.27となり、感度60.95%、特異度70.00%、陽性適中率11.48%、陰性適中率96.56%、正診率69.46%が得られた。これにより、指標式12が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、見掛け肥満群と肥満群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式13が得られた。なお、この他に指標式13と同等の判別性能を有する多変量判別式は複数得られた。それらを図60、図61に示す。なお、図60、図61に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式13:-0.04311(Gly)/(Glu)+0.2488(His)/(Trp)+0.4275(Leu)/(Gln)+1.669
 指標式13による見掛け肥満群と肥満群の2群判別に関して、ROC曲線(図62)の曲線下面積で評価し、0.830±0.081(95%信頼区間は0.671~0.990)が得られた。また、指標式13による見掛け肥満群と肥満群の2群判別のカットオフ値について、肥満の有症率を8%として最適なカットオフ値を求めると、カットオフ値が1.882となり、感度78.15%、特異度70.00%、陽性適中率18.47%、陰性適中率97.36%、正診率70.65%が得られた。これにより、指標式3が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。見掛け肥満群と肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式14としてGlu、Asn、Gly、His、Leu、Trpから構成されるロジスティック回帰式(アミノ酸変数:Glu、Asn、Gly、His、Leu、Trpの数係数と定数項は順に、0.0365、-0.0572、-0.0151、0.0831、0.0236、-0.0681、1.3616)が得られた。なお、この他に指標式14と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図63、図64に示す。なお、図63、図64に示す式における各係数の値は、それを実数倍したものでもよい。
 指標式14による見掛け肥満群と肥満群の2群判別に関して、ROC曲線(図65)の曲線下面積で評価し、0.835±0.080(95%信頼区間は0.678~0.993)が得られた。また、指標式14による見掛け肥満群と肥満群の2群判別のカットオフ値について、肥満の有症率を8%として最適なカットオフ値を求めると、カットオフ値が0.938となり、感度71.42%、特異度80.0%、陽性適中率23.70%、陰性適中率96.99%、正診率79.31%が得られた。これにより、指標式14が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。見掛け肥満群と肥満群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式15としてGlu、Gly、His、Ala、Lysから構成される線形判別関数(アミノ酸変数Glu、Gly、His、Ala、Lysの数係数と定数項は順に、-0.3357、0.3859、-0.8555、-0.06068、-0.05278、-47.92)が得られた。なお、この他に指標式15と同等の判別性能を有する線形判別関数は複数得られた。それらを図66、図67に示す。なお、図66、図67に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
 指標式15による見掛け肥満群と肥満群の2群判別に関して、ROC曲線(図68)の曲線下面積で評価し、0.796±0.087(95%信頼区間は0.626~0.965)が得られた。また、指標式15による見掛け肥満群と肥満群の2群判別のカットオフ値について、肥満の有症率を8%として最適なカットオフ値を求めると、カットオフ値が-0.43となり、感度75.63%、特異度70.00%、陽性適中率17.98%、陰性適中率97.06%、正診率70.45%が得られた。これにより、指標式15が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、隠れ肥満群と肥満群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式16が得られた。なお、この他に指標式16と同等の判別性能を有する多変量判別式は複数得られた。それらを図69、図70に示す。なお、図69、図70に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式16:3.588(Glu)/(Gln)+1.041(Tyr)/(Gly)+0.1111(Lys)/(Trp)+0.2534
 指標式16による隠れ肥満群と肥満群の2群判別に関して、ROC曲線(図71)の曲線下面積で評価し、0.772±0.027(95%信頼区間は0.719~0.825)が得られた。また、指標式16による隠れ肥満群と肥満群の2群判別のカットオフ値について、肥満の有症率を41%として最適なカットオフ値を求めると、カットオフ値が1.403となり、感度73.11%、特異度70.41%、陽性適中率63.20%、陰性適中率79.03%、正診率71.52%が得られた。これにより、指標式16が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。隠れ肥満群と肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式17としてGlu、Gly、Cit、Tyr、Val、Pheから構成されるロジスティック回帰式(アミノ酸変数:Glu、Gly、Cit、Tyr、Val、Pheの数係数と定数項は順に、0.0337、-0.0080、-0.0225、0.0193、0.0051、0.0110、-3.4665)が得られた。なお、この他に指標式17と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図72、図73に示す。なお、図72、図73に示す式における各係数の値は、それを実数倍したものでもよい。
 指標式17による隠れ肥満群と肥満群の2群判別に関して、ROC曲線(図74)の曲線下面積で評価し、0.765±0.027(95%信頼区間は0.711~0.819)が得られた。また、指標式17による隠れ肥満群と肥満群の2群判別のカットオフ値について、肥満の有症率を41%として最適なカットオフ値を求めると、カットオフ値が0.423となり、感度70.59%、特異度72.19%、陽性適中率63.82%、陰性適中率77.93%、正診率71.53%が得られた。これにより、指標式17が診断性能の高い有用な指標であることが判明した。
 実施例1で用いたサンプルデータを用いた。隠れ肥満群と肥満群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式18としてGlu、Cit、Tyr、Orn、Met、Trpから構成される線形判別関数(アミノ酸変数Glu、Cit、Tyr、Orn、Met、Trpの数係数と定数項は順に、0.5718、-0.5757、0.2897、0.2952、0.3839、-0.1522、56.1)が得られた。なお、この他に指標式18と同等の判別性能を有する線形判別関数は複数得られた。それらを図75、図76に示す。なお、図75、図76に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
 指標式18による隠れ肥満群と肥満群の2群判別に関して、ROC曲線(図77)の曲線下面積で評価し、0.763±0.028(95%信頼区間は0.709~0.817)が得られた。また、指標式18による隠れ肥満群と肥満群の2群判別のカットオフ値について、肥満の有症率を41%として最適なカットオフ値を求めると、カットオフ値が0.05となり、感度68.07%、特異度71.60%、陽性適中率62.48%、陰性適中率76.34%、正診率70.15%が得られた。これにより、指標式18が診断性能の高い有用な指標であることが判明した。
 実施例1に用いたサンプルデータを用いた。上述した実施例2~19に対する比較例として、本出願人による国際出願である国際公開第2008/015929号に記載の指標式1および4(図78、図79に示す上2つの指標式)、ならびに国際公開第2009/001862号に記載の指標式1、2、3、4、5および6(図78、図79に示す下6つの指標式)を用いて、健常群と見掛け肥満群、健常群と隠れ肥満群、健常群と肥満群、見掛け肥満群と隠れ肥満群、見掛け肥満群と肥満群、隠れ肥満群と肥満群の2群判別性能を検証した。その結果、図78、79に示すように、それぞれの2群判別に対し、いずれの式を用いても、上述した実施例2~19で得られたROC曲線の曲線下面積の値を上回るものは得られなかった。これにより、本発明における多変量判別式が、本出願人による国際出願である国際公開第2008/015929号、国際公開第2009/001862号に記載の指標式群よりも、これらの判別に関して高い判別性能を有することが確認された。
 人間ドック受診者の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。受診者を、健常群(BMI<25、VFA(内臓脂肪面積)<100cm)、見掛け肥満群(BMI≧25、VFA<100cm)、隠れ肥満群(BMI<25、VFA≧100cm)および肥満群(BMI≧25、VFA≧100cm)の4群に分けた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、健常群と見掛け肥満群の2群判別性能を最大化する指標をROC最大基準により鋭意探索し、同等の性能を有する複数の指標式の中に指標式19が得られた。なお、この他に指標式19と同等の判別性能を有する多変量判別式は複数得られた。それらを図80、図81に示す。なお、図80、図81に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式19:0.08284(Pro/Ser)+0.05648(Thr/Asn)-0.098(Arg/Tyr)-0.8067(Orn/Gln)+1.059
 実施例21で用いたサンプルデータを用いた。健常群と見掛け肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式20として以下のロジスティック回帰式が得られた。なお、この他に指標式20と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図82、図83に示す。なお、図82、図83に示す式における各係数の値は、それを実数倍したものでもよい。
指標式20:(-2.084)+(0.008061)Pro+(-0.04049)Asn+(0.01199)Thr+(-0.01557)Arg+(0.01880)Tyr+(-0.01445)Orn
 実施例21で用いたサンプルデータを用いた。健常群と見掛け肥満群の2群判別性能を最大化する指標を線形判別分析(ROC最大基準による変数網羅法)により探索し、指標式21として以下の線形判別関数が得られた(式中のアミノ酸変数「BCAA」は「Val+Leu+Ile」を表す。以下同様。)。なお、この他に指標式21と同等の判別性能を有する線形判別関数は複数得られた。それらを図84、図85に示す。なお、図84、図85に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式21:(-0.119)Ser+(0.3378)Pro+(-0.7534)Asn+(-0.4598)Orn+(0.3022)Phe+(0.03812)BCAA+(9.616)
 実施例21で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、健常群と隠れ肥満群の2群判別性能を最大化する指標をROC最大基準により鋭意探索し、同等の性能を持つ複数の指標の中に指標式22が得られた。なお、この他に指標式22と同等の判別性能を有する多変量判別式は複数得られた。それらを図86、図87に示す。なお、図86、図87に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式22:-0.06266(Ser/Cit)-0.5982(Gly/BCAA)-0.2097(Gln/Ala)-0.07107(Thr/Glu)+2.611
 実施例21で用いたサンプルデータを用いた。健常群と隠れ肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式23として以下のロジスティック回帰式が得られた。なお、この他に指標式23と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図88、図89に示す。なお、図88、図89に示す式における各係数の値は、それを実数倍したものでもよい。
指標式23:(-3.093)+(0.03470)Glu+(-0.01294)Ser+(-0.006954)Gly+(0.02725)Cit+(0.003579)Ala+(0.005453)BCAA
 実施例21で用いたサンプルデータを用いた。健常群と隠れ肥満群の2群判別性能を最大化する指標を線形判別分析(ROC最大基準による変数網羅法)により探索し、指標式24として以下の線形判別関数が得られた。なお、この他に指標式24と同等の判別性能を有する線形判別関数は複数得られた。それらを図90、図91に示す。なお、図90、図91に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式24:(-0.6904)Glu+(-0.1513)His+(0.004091)ABA+(-0.473)Tyr+(0.513)Met+(-0.1166)Lys+(-87.84)
 実施例21で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、健常群と肥満群の2群判別性能を最大化する指標をROC最大基準により鋭意探索し、同等の性能を持つ複数の指標の中に指標式25が得られた。なお、この他に指標式25と同等の判別性能を有する多変量判別式は複数得られた。それらを図92、図93に示す。なお、図92、図93に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式25:1.383(Glu/Gly)-0.9712(Ser/Ala)-0.4993(Trp/Tyr)+0.03613(BCAA/Asn)+1.467
 実施例21で用いたサンプルデータを用いた。健常群と肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式26として以下のロジスティック回帰式が得られた。なお、この他に指標式26と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図94、図95に示す。なお、図94、図95に示す式における各係数の値は、それを実数倍したものでもよい。
指標式26:(-5.188)+(0.05264)Glu+(-0.02294)Ser+(0.003777)Ala+(0.03438)Tyr+(-0.03567)Trp+(0.006689)BCAA
 実施例21で用いたサンプルデータを用いた。健常群と肥満群の2群判別性能を最大化する指標を線形判別分析(ROC最大基準による変数網羅法)により探索し、指標式27として以下の線形判別関数が得られた。なお、この他に指標式27と同等の判別性能を有する線形判別関数は複数得られた。それらを図96、図97に示す。なお、図96、図97に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式27:(-0.8287)Glu+(-0.128)Pro+(-0.1247)His+(0.5022)Cit+(-0.1066)Orn+(-0.1333)Lys+(-85.16)
 実施例21で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、見掛け肥満群と隠れ肥満群の2群判別性能を最大化する指標をROC最大基準により鋭意探索し、同等の性能を持つ複数の指標の中に指標式28が得られた。なお、この他に指標式28と同等の判別性能を有する多変量判別式は複数得られた。それらを図98、図99に示す。なお、図98、図99に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式28:-0.4309(Pro/BCAA)-0.05254(Gly/Orn)-0.119(Gln/Ala)+0.3006(ABA/Thr)+2.374
 実施例21で用いたサンプルデータを用いた。見掛け肥満群と隠れ肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式29として以下のロジスティック回帰式が得られた。なお、この他に指標式29と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図100、図101に示す。なお、図100、図101に示す式における各係数の値は、それを実数倍したものでもよい。
指標式29:(0.8539)+(-0.009752)Pro+(-0.006173)Gly+(-0.003777)Gln+(0.004300)Ala+(0.04151)Orn+(0.005553)BCAA
 実施例21で用いたサンプルデータを用いた。見掛け肥満群と隠れ肥満群の2群判別性能を最大化する指標を線形判別分析(ROC最大基準による変数網羅法)により探索し、指標式30として以下の線形判別関数が得られた。なお、この他に指標式30と同等の判別性能を有する線形判別関数は複数得られた。それらを図102、図103に示す。なお、図102、図103に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式30:(-0.1417)Ser+(-0.0738)Pro+(-0.1559)Gly+(0.9202)Cit+(0.2841)Lys+(0.1505)Phe+(37.55)
 実施例21で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、見掛け肥満群と肥満群の2群判別性能を最大化する指標をROC最大基準により鋭意探索し、同等の性能を持つ複数の指標の中に指標式31が得られた。なお、この他に指標式31と同等の判別性能を有する多変量判別式は複数得られた。それらを図104、図105に示す。なお、図104、図105に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式31:0.09865(Glu/Asn)+0.4357(ABA/Ser)+0.4758(Lys/Gln)+0.02968(BCAA/Trp)+1.232
 実施例21で用いたサンプルデータを用いた。見掛け肥満群と肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式32として以下のロジスティック回帰式が得られた。なお、この他に指標式32と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図106、図107に示す。なお、図106、図107に示す式における各係数の値は、それを実数倍したものでもよい。
指標式32:(-4.831)+(0.03153)Glu+(0.003510)Ala+(0.03078)ABA+(-0.06069)Met+(0.01118)Lys+(0.005459)BCAA
 実施例21で用いたサンプルデータを用いた。見掛け肥満群と肥満群の2群判別性能を最大化する指標を線形判別分析(ROC最大基準による変数網羅法)により探索し、指標式33として以下の線形判別関数が得られた。なお、この他に指標式33と同等の判別性能を有する線形判別関数は複数得られた。それらを図108、図109に示す。なお、図108、図109に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式33:(-0.6047)Glu+(0.2229)Thr+(-0.07818)Ala+(-0.7123)ABA+(-0.2426)Lys+(-0.1109)BCAA+(-161.8)
 実施例21で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、隠れ肥満群と肥満群の2群判別性能を最大化する指標をROC最大基準により鋭意探索し、同等の性能を持つ複数の指標の中に指標式34が得られた。なお、この他に指標式34と同等の判別性能を有する多変量判別式は複数得られた。それらを図110、図111に示す。なお、図110、図111に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式34:0.2224(Glu/Asn)-0.2481(His/Thr)+0.1695(Phe/Cit)-0.3708(Trp/Tyr)+1.288
 実施例21で用いたサンプルデータを用いた。隠れ肥満群と肥満群の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式35として以下のロジスティック回帰式が得られた。なお、この他に指標式35と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図112、図113に示す。なお、図112、図113に示す式における各係数の値は、それを実数倍したものでもよい。
指標式35:(-1.853)+(0.02439)Glu+(0.004286)Pro+(-0.04532)Cit+(0.01405)Tyr+(0.01594)Phe+(-0.01685)Trp
 実施例21で用いたサンプルデータを用いた。隠れ肥満群と肥満群の2群判別性能を最大化する指標を線形判別分析(ROC最大基準による変数網羅法)により探索し、指標式36として以下の線形判別関数が得られた。なお、この他に指標式36と同等の判別性能を有する線形判別関数は複数得られた。それらを図114、図115に示す。なお、図114、図115に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式36:(0.7779)Glu+(0.1223)Pro+(-0.2246)His+(0.3704)Met+(0.4384)Phe+(83.09)
 実施例21で用いたサンプルデータを用いた。VFAが100cm未満の「健常群+見掛け肥満群」(健常群・見掛け肥満群)とVFAが100cm以上の「隠れ肥満群+肥満群」(隠れ肥満群・肥満群)の2群判別性能を最大化する指標をロジスティック解析(ROC最大基準による変数網羅法)により探索し、指標式37としてGlu、Gly、Ala、Tyr、Trp、BCAAから構成されるロジスティック回帰式(アミノ酸変数:Glu、Gly、Ala、Tyr、Trp、BCAAの数係数と定数項は順に、0.0379、-0.0070、0.0034、0.0196、-0.0216、0.0054、-3.5250)が得られた。なお、この他に指標式37と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図116、図117に示す。なお、図116、図117に示す式における各係数の値は、それを実数倍したものでもよい。
指標式37:(-3.5250)+(0.0379)Glu+(-0.0070)Gly+(0.0034)Ala+(0.0196)Tyr+(-0.0216)Trp+(0.0054)BCAA
 指標式37による健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別に関して、ROC曲線(図118)の曲線下面積で評価し、0.807±0.012(95%信頼区間は0.783~0.831)が得られた。また、指標式37による健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別のカットオフ値について、隠れ肥満・肥満の有症率を60%として最適なカットオフ値を求めると、カットオフ値が0.210となり、感度76.58%、特異度69.24%、陽性適中率78.88%、陰性適中率66.35%、正診率73.65%が得られた。これにより、指標式37が診断性能の高い有用な指標であることが判明した。
実施例21で用いたサンプルデータを用いた。健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別性能を最大化する指標を線形判別分析(ROC最大基準による変数網羅法)により探索し、指標式38としてGlu、Ala、Arg、Tyr、Orn、BCAAから構成される線形判別関数(アミノ酸変数Glu、Ala、Arg、Tyr、Orn、BCAAの数係数と定数項は順に、-0.7787、-0.07736、0.2248、-0.4318、0.379、-0.08375、-94.83)が得られた。なお、この他に指標式38と同等の判別性能を有する線形判別関数は複数得られた。それらを図119、図120に示す。なお、図119、図120に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式38:(-0.7787)Glu+(-0.07736)Ala+(0.2248)Arg+(-0.4318)Tyr+(0.379)Orn+(-0.08375)BCAA+(-94.83)
 指標式38による健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別に関して、ROC曲線(図121)の曲線下面積で評価し、0.782±0.013(95%信頼区間は0.757~0.807)が得られた。また、指標式38による健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別のカットオフ値について、隠れ肥満・肥満の有症率を60%として最適なカットオフ値を求めると、カットオフ値が-185となり、感度70.01%、特異度70.10%、陽性適中率77.84%、陰性適中率60.91%、正診率70.05%が得られた。これにより、指標式38が診断性能の高い有用な指標であることが判明した。
 実施例21で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式39が得られた。なお、この他に指標式39と同等の判別性能を有する多変量判別式は複数得られた。それらを図122、図123に示す。なお、図122、図123に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式39:0.2541(Glu/Asn)-0.7493(Ser/Ala)-0.3896(Cit/Phe)+0.2152(Tyr/Trp)+1.102
 指標式39による健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別に関して、ROC曲線(図124)の曲線下面積で評価し、0.776±0.013(95%信頼区間は0.750~0.801)が得られた。また、指標式39による健常群・見掛け肥満群と隠れ肥満群・肥満群の2群判別のカットオフ値について、隠れ肥満・肥満の有症率を60%として最適なカットオフ値を求めると、カットオフ値が1.207となり、感度70.24%、特異度70.10%、陽性適中率77.90%、陰性適中率61.10%、正診率70.19%が得られた。これにより、指標式39が診断性能の高い有用な指標であることが判明した。
 以上のように、本発明にかかる肥満の評価方法は、産業上の多くの分野、特に医薬品や食品、医療などの分野で広く実施することができ、特に、BMIおよびVFAで定義される見掛け肥満や隠れ肥満、肥満の状態の進行予測や疾病リスク予測やプロテオームやメタボローム解析などを行うバイオインフォマティクス分野において極めて有用である。
 100 肥満評価装置
  102 制御部
   102a 要求解釈部
   102b 閲覧処理部
   102c 認証処理部
   102d 電子メール生成部
   102e Webページ生成部
   102f 受信部
   102g 肥満状態情報指定部
   102h 多変量判別式作成部
    102h1 候補多変量判別式作成部
    102h2 候補多変量判別式検証部
    102h3 変数選択部
   102i 判別値算出部
   102j 判別値基準評価部
    102j1 判別値基準判別部
   102k 結果出力部
   102m 送信部
  104 通信インターフェース部
  106 記憶部
   106a 利用者情報ファイル
   106b アミノ酸濃度データファイル
   106c 肥満状態情報ファイル
   106d 指定肥満状態情報ファイル
   106e 多変量判別式関連情報データベース
    106e1 候補多変量判別式ファイル
    106e2 検証結果ファイル
    106e3 選択肥満状態情報ファイル
    106e4 多変量判別式ファイル
   106f 判別値ファイル
   106g 評価結果ファイル
  108 入出力インターフェース部
  112 入力装置
  114 出力装置
 200 クライアント装置(情報通信端末装置)
 300 ネットワーク
 400 データベース装置

Claims (12)

  1.  評価対象から採取した血液からアミノ酸の濃度値に関するアミノ酸濃度データを測定する測定ステップと、
     前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、BMI(Body Mass Index)およびVFA(Visceral Fat Area)で定義される見掛け肥満、隠れ肥満および肥満のうち少なくとも1つの状態を評価する濃度値基準評価ステップと
     を含むことを特徴とする肥満の評価方法。
  2.  前記濃度値基準評価ステップは、
     前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記BMIおよび前記VFAで定義される健常または前記見掛け肥満、前記健常または前記隠れ肥満、前記健常または前記肥満、前記見掛け肥満または前記隠れ肥満、前記見掛け肥満または前記肥満、前記隠れ肥満または前記肥満、または、前記健常もしくは前記見掛け肥満または前記隠れ肥満もしくは前記肥満であるか否かを判別する濃度値基準判別ステップ
     をさらに含むことを特徴とする請求項1に記載の肥満の評価方法。
  3.  前記濃度値基準評価ステップは、
     前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるGlu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つの前記濃度値、および前記アミノ酸の濃度を変数とする予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、
     前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記見掛け肥満、前記隠れ肥満および前記肥満のうち少なくとも1つの状態を評価する判別値基準評価ステップと
     をさらに含み、
     前記多変量判別式は、Glu,Ser,Pro,Gly,Ala,Cys2,Tyr,Val,Orn,Met,Lys,Ile,Leu,Phe,Trpのうち少なくとも1つを前記変数として含むこと
     を特徴とする請求項1に記載の肥満の評価方法。
  4.  前記判別値基準評価ステップは、
     前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記BMIおよび前記VFAで定義される健常または前記見掛け肥満、前記健常または前記隠れ肥満、前記健常または前記肥満、前記見掛け肥満または前記隠れ肥満、前記見掛け肥満または前記肥満、前記隠れ肥満または前記肥満、または、前記健常もしくは前記見掛け肥満または前記隠れ肥満もしくは前記肥満であるか否かを判別する判別値基準判別ステップ
     をさらに含むことを特徴とする請求項3に記載の肥満の評価方法。
  5.  前記多変量判別式は、1つの分数式または複数の前記分数式の和、もしくはロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであること
     を特徴とする請求項4に記載の肥満の評価方法。
  6.  前記判別値基準判別ステップにて前記健常または前記見掛け肥満であるか否かを判別する場合、前記多変量判別式は、数式1、数式2、Glu,Thr,Pheを前記変数とする前記ロジスティック回帰式、Pro,Asn,Thr,Arg,Tyr,Ornを前記変数とする前記ロジスティック回帰式、His,Thr,Val,Orn,Trpを前記変数とする前記線形判別式、またはSer,Pro,Asn,Orn,Phe,Val,Leu,Ileを前記変数とする前記線形判別式であること
    (Glu/Gly)+b(His/Ile)+c(Thr/Phe)+d
                           ・・・(数式1)
    (Pro/Ser)+b(Thr/Asn)+c(Arg/Tyr)+d(Orn/Gln)+e
                           ・・・(数式2)
    (数式1においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式2においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
     を特徴とする請求項5に記載の肥満の評価方法。
  7.  前記判別値基準判別ステップにて前記健常または前記隠れ肥満であるか否かを判別する場合、前記多変量判別式は、数式3、数式4、Glu,Ser,Ala,Orn,Leu,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ser,Gly,Cit,Ala,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Ser,His,Thr,Lys,Pheを前記変数とする前記線形判別式、またはGlu,His,ABA,Tyr,Met,Lysを前記変数とする前記線形判別式であること
    (Ser/Ala)+b(Gly/Tyr)+c(Trp/Glu)+d
                           ・・・(数式3)
    (Ser/Cit)+b(Gly/(Val+Leu+Ile))+c(Gln/Ala)+d(Thr/Glu)+e
                           ・・・(数式4)

    (数式3においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式4においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
     を特徴とする請求項5に記載の肥満の評価方法。
  8.  前記判別値基準判別ステップにて前記健常または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式5、数式6、Glu,Ser,Cit,Ala,Tyr,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ser,Ala,Tyr,Trp,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Thr,Ala,Tyr,Orn,Lysを前記変数とする前記線形判別式、またはGlu,Pro,His,Cit,Orn,Lysを前記変数とする前記線形判別式であること
    (Glu/Ser)+b(Cit/Ala)+c(Trp/Tyr)+d
                           ・・・(数式5)
    (Glu/Gly)+b(Ser/Ala)+c(Trp/Tyr)+d((Val+Leu+Ile)/Asn)+e
                           ・・・(数式6)
    (数式5においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式6においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
     を特徴とする請求項5に記載の肥満の評価方法。
  9.  前記判別値基準判別ステップにて前記見掛け肥満または前記隠れ肥満であるか否かを判別する場合、前記多変量判別式は、数式7、数式8、Glu,Thr,Ala,Arg,Tyr,Lysを前記変数とする前記ロジスティック回帰式、Pro,Gly,Gln,Ala,Orn,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、His,Thr,Ala,Tyr,Orn,Pheを前記変数とする前記線形判別式、またはSer,Pro,Gly,Cit,Lys,Pheを前記変数とする前記線形判別式であること
    (Thr/Tyr)+b(Ala/Ile)+c(Arg/Gln)+d
                           ・・・(数式7)
    (Pro/(Val+Leu+Ile))+b(Gly/Orn)+c(Gln/Ala)+d(ABA/Thr)+e
                           ・・・(数式8)
    (数式7においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式8においてa,b,c,dはゼロでない任意の実数、eは任意の実数である。)
     を特徴とする請求項5に記載の肥満の評価方法。
  10.  前記判別値基準判別ステップにて前記見掛け肥満または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式9、数式10、Glu,Asn,Gly,His,Leu,Trpを前記変数とする前記ロジスティック回帰式、Glu,Ala,ABA,Met,Lys,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、Glu,Gly,His,Ala,Lysを前記変数とする前記線形判別式、またはGlu,Thr,Ala,ABA,Lys,Val,Leu,Ileを前記変数とする前記線形判別式であること
    (Gly/Glu)+b(His/Trp)+c(Leu/Gln)+d
                           ・・・(数式9)
    10(Glu/Asn)+b10(ABA/Ser)+c10(Lys/Gln)+d10((Val+Leu+Ile)/Trp)+e10
                          ・・・(数式10)
    (数式9においてa,b,cはゼロでない任意の実数、dは任意の実数である。数式10においてa10,b10,c10,d10はゼロでない任意の実数、e10は任意の実数である。)
     を特徴とする請求項5に記載の肥満の評価方法。
  11.  前記判別値基準判別ステップにて前記隠れ肥満または前記肥満であるか否かを判別する場合、前記多変量判別式は、数式11、数式12、Glu,Gly,Cit,Tyr,Val,Pheを前記変数とする前記ロジスティック回帰式、Glu,Pro,Cit,Tyr,Phe,Trpを前記変数とする前記ロジスティック回帰式、Glu,Cit,Tyr,Orn,Met,Trpを前記変数とする前記線形判別式、またはGlu,Pro,His,Met,Pheを前記変数とする前記線形判別式であること
    11(Glu/Gln)+b11(Tyr/Gly)+c11(Lys/Trp)+d11
                          ・・・(数式11)
    12(Glu/Asn)+b12(His/Thr)+c12(Phe/Cit)+d12(Trp/Tyr)+e12
                          ・・・(数式12)
    (数式11においてa11,b11,c11はゼロでない任意の実数、d11は任意の実数である。数式12においてa12,b12,c12,d12はゼロでない任意の実数、e12は任意の実数である。)
     を特徴とする請求項5に記載の肥満の評価方法。
  12.  前記判別値基準判別ステップにて前記健常もしくは前記見掛け肥満または前記隠れ肥満もしくは前記肥満であるか否かを判別する場合、前記多変量判別式は、数式13、Glu,Gly,Ala,Tyr,Trp,Val,Leu,Ileを前記変数とする前記ロジスティック回帰式、またはGlu,Ala,Arg,Tyr,Orn,Val,Leu,Ileを前記変数とする前記線形判別式であること
    13(Glu/Asn)+b13(Ser/Ala)+c13(Cit/Phe)+d13(Tyr/Trp)+e13
                          ・・・(数式13)
    (数式13においてa13,b13,c13,d13はゼロでない任意の実数、e13は任意の実数である。)
     を特徴とする請求項5に記載の肥満の評価方法。
PCT/JP2010/052443 2009-02-19 2010-02-18 肥満の評価方法 WO2010095682A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011500646A JP5817527B2 (ja) 2009-02-19 2010-02-18 肥満の評価方法、肥満評価装置、肥満評価方法、肥満評価システム、肥満評価プログラム、記録媒体、および情報通信端末装置
CN2010800088563A CN102326084A (zh) 2009-02-19 2010-02-18 肥胖的评价方法
US13/137,373 US20120041684A1 (en) 2009-02-19 2011-08-09 Method of evaluating obesity, obesity-evaluating apparatus, obesity-evaluating method, obesity-evaluating system, obesity-evaluating program product, recording medium, and information communication terminal apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009037116 2009-02-19
JP2009-037116 2009-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/137,373 Continuation US20120041684A1 (en) 2009-02-19 2011-08-09 Method of evaluating obesity, obesity-evaluating apparatus, obesity-evaluating method, obesity-evaluating system, obesity-evaluating program product, recording medium, and information communication terminal apparatus

Publications (1)

Publication Number Publication Date
WO2010095682A1 true WO2010095682A1 (ja) 2010-08-26

Family

ID=42633962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052443 WO2010095682A1 (ja) 2009-02-19 2010-02-18 肥満の評価方法

Country Status (4)

Country Link
US (1) US20120041684A1 (ja)
JP (1) JP5817527B2 (ja)
CN (1) CN102326084A (ja)
WO (1) WO2010095682A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9182407B2 (en) 2007-06-25 2015-11-10 Ajinomoto Co., Inc. Method of evaluating visceral fat accumulation, visceral fat accumulation-evaluating apparatus, visceral fat accumulation-evaluating method, visceral fat accumulation-evaluating system, visceral fat accumulation-evaluating program, recording medium, and method of searching for prophylactic/ameliorating substance for visceral fat accumulation
KR20150140363A (ko) 2013-04-09 2015-12-15 아지노모토 가부시키가이샤 생활습관병 지표의 평가 방법, 생활습관병 지표 평가 장치, 생활습관병 지표 평가 방법, 생활습관병 지표 평가 프로그램 제품, 생활습관병 지표 평가 시스템, 및 정보통신 단말장치
KR20170066409A (ko) 2014-10-08 2017-06-14 아지노모토 가부시키가이샤 평가 방법, 평가 장치, 평가 프로그램, 평가 시스템, 및 단말 장치
US9971866B2 (en) 2011-06-30 2018-05-15 Ajinomoto Co., Inc. Method of evaluating fatty liver related disease, fatty liver related disease-evaluating apparatus, fatty liver related disease-evaluating method, fatty liver related disease-evaluating program product, fatty liver related disease-evaluating system, information communication terminal apparatus, and method of searching for prophylactic/ameliorating substance for fatty liver related disease

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054350A1 (ja) * 2007-10-25 2009-04-30 Ajinomoto Co., Inc. 耐糖能異常の評価方法
ES2567580T3 (es) * 2012-06-12 2016-04-25 Nestec S.A. PC-O 44:4 - Un biomarcador para la adiposidad visceral
JP7153881B2 (ja) * 2017-07-07 2022-10-17 パナソニックIpマネジメント株式会社 情報提供方法、情報処理システム、及び情報処理方法
WO2019008977A1 (ja) * 2017-07-07 2019-01-10 パナソニックIpマネジメント株式会社 情報提供方法、情報処理システム、情報端末、及び情報処理方法
CN111798992A (zh) * 2020-07-11 2020-10-20 许昌学院 一种肥胖与非慢性传染病发病风险的分析方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001862A1 (ja) * 2007-06-25 2008-12-31 Ajinomoto Co., Inc. 内臓脂肪蓄積の評価方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103941A4 (en) * 2006-12-21 2010-10-20 Ajinomoto Kk METHOD FOR EVALUATING CANCER, CANCER EVALUATION DEVICE, METHOD, SYSTEM, PROGRAM AND RECORDING MEDIUM

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001862A1 (ja) * 2007-06-25 2008-12-31 Ajinomoto Co., Inc. 内臓脂肪蓄積の評価方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AMAMIYA, Y. ET AL.: "Negative correlations between free histidine content in plasma and BMI or area of visceral fat", JPFNI, vol. 18, no. 2, 2008, pages 87 - 91 *
HORIE, N. ET AL.: "New Body Mass Index Criteria of Central Obesity for Male Japanese", TOHOKU J.EXP.MED., 2006, pages 83 - 86 *
MATSUZAWA, Y. ET AL.: "New Criteria for 'Obesity Disease' in Japan.", CIRC.J., vol. 66, no. 11, 2002, pages 987 - 992 *
MINORU YAMAKADO ET AL.: "Kenjo, Mikake Himan, Kakure Koe, Himan ni Okeru Kesshochu Amino-san Nodo no Hikaku Kento", THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE, vol. 98, 20 February 2009 (2009-02-20), pages 233 *
NOZOMI SAKURAI ET AL.: "Himansha ni Okeru Kecchu Amino-san Nodo no Bunseki", NIPPON JUNKANKIBYO YOBO GAKKAISHI, vol. 44, no. 2, 30 April 2009 (2009-04-30), pages 109 *
PROENZA, A.M. ET AL.: "Blood amino acid compartmentation in men and women with different degrees of obesity.", J.NUTR.BIOCHEM., vol. 9, no. 12, 1998, pages 697 - 704 *
ROCA, P. ET AL.: "Sex Differences in the Effect of Obesity on Human Plasma Tryptophan/Large Neutral Amino Acid Ratio.", ANN NUTR METAB, vol. 43, no. 3, 1999, pages 145 - 151 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9182407B2 (en) 2007-06-25 2015-11-10 Ajinomoto Co., Inc. Method of evaluating visceral fat accumulation, visceral fat accumulation-evaluating apparatus, visceral fat accumulation-evaluating method, visceral fat accumulation-evaluating system, visceral fat accumulation-evaluating program, recording medium, and method of searching for prophylactic/ameliorating substance for visceral fat accumulation
US9971866B2 (en) 2011-06-30 2018-05-15 Ajinomoto Co., Inc. Method of evaluating fatty liver related disease, fatty liver related disease-evaluating apparatus, fatty liver related disease-evaluating method, fatty liver related disease-evaluating program product, fatty liver related disease-evaluating system, information communication terminal apparatus, and method of searching for prophylactic/ameliorating substance for fatty liver related disease
KR20150140363A (ko) 2013-04-09 2015-12-15 아지노모토 가부시키가이샤 생활습관병 지표의 평가 방법, 생활습관병 지표 평가 장치, 생활습관병 지표 평가 방법, 생활습관병 지표 평가 프로그램 제품, 생활습관병 지표 평가 시스템, 및 정보통신 단말장치
KR20210007053A (ko) 2013-04-09 2021-01-19 아지노모토 가부시키가이샤 생활습관병 지표의 평가 방법, 생활습관병 지표 평가 장치, 생활습관병 지표 평가 방법, 생활습관병 지표 평가 프로그램, 생활습관병 지표 평가 시스템, 및 정보통신 단말장치
KR20170066409A (ko) 2014-10-08 2017-06-14 아지노모토 가부시키가이샤 평가 방법, 평가 장치, 평가 프로그램, 평가 시스템, 및 단말 장치
KR20230028566A (ko) 2014-10-08 2023-02-28 아지노모토 가부시키가이샤 평가 방법, 평가 장치, 평가 프로그램, 평가 시스템, 및 단말 장치

Also Published As

Publication number Publication date
US20120041684A1 (en) 2012-02-16
JP5817527B2 (ja) 2015-11-18
JPWO2010095682A1 (ja) 2012-08-30
CN102326084A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
JP5817527B2 (ja) 肥満の評価方法、肥満評価装置、肥満評価方法、肥満評価システム、肥満評価プログラム、記録媒体、および情報通信端末装置
JP5746811B2 (ja) 大腸癌の評価方法、ならびに大腸癌評価装置、大腸癌評価方法、大腸癌評価システム、大腸癌評価プログラムおよび記録媒体
JP5856364B2 (ja) 抑うつ病の評価方法、抑うつ病評価装置、抑うつ病評価方法、抑うつ病評価システム、抑うつ病評価プログラム、記録媒体および端末装置
JP5976987B2 (ja) 胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラム、記録媒体および情報通信端末装置
US9182407B2 (en) Method of evaluating visceral fat accumulation, visceral fat accumulation-evaluating apparatus, visceral fat accumulation-evaluating method, visceral fat accumulation-evaluating system, visceral fat accumulation-evaluating program, recording medium, and method of searching for prophylactic/ameliorating substance for visceral fat accumulation
JP2014025946A (ja) 癌の評価方法、ならびに癌評価装置、癌評価方法、癌評価システム、癌評価プログラムおよび記録媒体
WO2016056631A1 (ja) 評価方法、評価装置、評価プログラム、評価システム、及び端末装置
JPWO2008015929A1 (ja) メタボリック・シンドロームの評価方法、メタボリック・シンドローム評価装置、メタボリック・シンドローム評価方法、メタボリック・シンドローム評価システム、メタボリック・シンドローム評価プログラムおよび記録媒体、ならびにメタボリック・シンドロームの予防・改善物質の探索方法
US20210287802A1 (en) Method for evaluating pancreatic cancer, pancreatic cancer evaluating apparatus, pancreatic cancer evaluating method, pancreatic cancer evaluating program product, pancreatic cancer evaluating system and information communication terminal apparatus
JPWO2009054351A1 (ja) 生体状態評価装置、生体状態評価方法、生体状態評価システム、生体状態評価プログラムおよび記録媒体
WO2013011919A1 (ja) Nashの評価方法、nash評価装置、nash評価方法、nash評価プログラム、nash評価システム、情報通信端末装置、およびnashの予防・改善物質の探索方法
WO2014168125A1 (ja) 生活習慣病指標の評価方法、生活習慣病指標評価装置、生活習慣病指標評価方法、生活習慣病指標評価プログラム、生活習慣病指標評価システム、および情報通信端末装置
JP6002117B2 (ja) 取得方法、評価装置、評価プログラム、記録媒体および評価システム
US9971866B2 (en) Method of evaluating fatty liver related disease, fatty liver related disease-evaluating apparatus, fatty liver related disease-evaluating method, fatty liver related disease-evaluating program product, fatty liver related disease-evaluating system, information communication terminal apparatus, and method of searching for prophylactic/ameliorating substance for fatty liver related disease
WO2013115283A1 (ja) 早期腎症の評価方法、早期腎症評価装置、早期腎症評価方法、早期腎症評価プログラム、早期腎症評価システムおよび情報通信端末装置
JPWO2009054350A1 (ja) 耐糖能異常の評価方法、耐糖能異常評価装置、耐糖能異常評価方法、耐糖能異常評価システム、耐糖能異常評価プログラムおよび記録媒体、ならびに耐糖能異常の予防・改善物質の探索方法
JP6270257B2 (ja) 取得方法、心血管イベント評価装置、心血管イベント評価プログラム、心血管イベント評価システムおよび端末装置
JP2011080957A (ja) 線維筋痛症とうつ病の評価方法、線維筋痛症・うつ病評価装置および線維筋痛症・うつ病評価方法
JP2017122655A (ja) 骨格筋面積の評価方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008856.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011500646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743808

Country of ref document: EP

Kind code of ref document: A1