WO2010093123A4 - 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로 - Google Patents

고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로 Download PDF

Info

Publication number
WO2010093123A4
WO2010093123A4 PCT/KR2010/000224 KR2010000224W WO2010093123A4 WO 2010093123 A4 WO2010093123 A4 WO 2010093123A4 KR 2010000224 W KR2010000224 W KR 2010000224W WO 2010093123 A4 WO2010093123 A4 WO 2010093123A4
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
ground
power supply
low
integrated circuit
Prior art date
Application number
PCT/KR2010/000224
Other languages
English (en)
French (fr)
Other versions
WO2010093123A3 (ko
WO2010093123A2 (ko
Inventor
홍주표
김언영
나준호
김대성
Original Assignee
(주)실리콘웍스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)실리콘웍스 filed Critical (주)실리콘웍스
Publication of WO2010093123A2 publication Critical patent/WO2010093123A2/ko
Publication of WO2010093123A3 publication Critical patent/WO2010093123A3/ko
Publication of WO2010093123A4 publication Critical patent/WO2010093123A4/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation

Definitions

  • the present invention relates to a technique for separating the ground of a source driver integrated circuit in a liquid crystal display device and more particularly to a technique of separating a ground of a high voltage power source from a liquid crystal display device of a chip- To a source driver integrated circuit in which the ground of the low voltage power source is separated.
  • a liquid crystal display is a device in which image data is displayed by passing light through a liquid crystal using a characteristic that the arrangement state of liquid crystal molecules is changed according to an applied voltage.
  • TFT thin film transistor
  • LCD liquid crystal display
  • a thin film transistor (TFT) type liquid crystal display includes a thin film transistor array substrate and a color filter substrate which are opposite to each other and are adhered to each other with a predetermined gap therebetween, And a driving circuit for driving the driving circuit.
  • the driving circuit includes a gate driver integrated circuit (40) for sequentially applying a scanning signal to gate lines at every frame, a source driver integrated circuit (20) for driving a source line in response to a scanning signal of the gate driver integrated circuit
  • a timing controller 10 for controlling the gate driver integrated circuit 40 and the source driver integrated circuit 20 and outputting pixel data
  • a power supply unit (not shown) for supplying various driving voltages used in the liquid crystal display .
  • COG Chip On Glass
  • FIG. 2 is a view schematically showing a conventional chip-on-glass (COG) type liquid crystal display device.
  • COG chip-on-glass
  • the source driver integrated circuit chips 221 to 224 and the gate driver integrated circuit chips 231 to 233 are directly mounted on the glass substrate 240 of the liquid crystal display panel.
  • the source driver integrated circuit chip and the gate driver integrated circuit chips mounted on the liquid crystal display panel in the COG method are referred to as a line-on-glass (LOG) in which signal lines are directly mounted on a substrate of a liquid crystal panel .), And receives a control signal and driving power from the timing control unit and the power supply unit.
  • LOG line-on-glass
  • the various data and control signals output from the timing controller and the power supplied from the power supply unit are applied to the first source driver integrated circuit and the remaining source driver integrated circuits sequentially receive the data and the control signal and the power from the first source driver integrated circuit Is called a serial cascade method.
  • FIG 3 is a view showing a method of supplying power in a conventional COG cascade structure.
  • the line connecting the first power supply voltage VDD and the second power supply voltage VSS2 is a high voltage power supply line for supplying power to a circuit operating at a high voltage inside the source driver integrated circuit
  • the line to which the third power supply voltage (VCC) is connected and the fourth power supply voltage (VSS1) are connected is a low voltage power supply line that supplies power to a circuit operating at a low voltage inside the source driver integrated circuit.
  • the liquid crystal display of the COG cascade structure is configured such that the power supplied from the power supply is applied to the first source driver integrated circuit and the second source driver integrated circuit is applied to the first source driver integrated circuit Power is supplied via the power supply line.
  • the second source driver integrated circuit is very large in the ground (GND) due to the current of the first source driver integrated circuit and the resistance value of the power supply line due to the supply of power from the first source driver integrated circuit
  • Level ground bouncing (GND-Bouncing) occurs. This level of ground bouncing (GND-Bouncing) becomes higher when the output of the source driver integrated circuit is driven.
  • FIG. 4 is a diagram showing a short circuit of ground voltage in a source driver integrated circuit in a conventional liquid crystal display of a COG cascade structure.
  • the ground GND of the high voltage power supply line that is, the second power voltage VSS2 and the ground of the low voltage power supply line, as shown in FIG. 4,
  • the third power supply voltage GND or the fourth power supply voltage VSS1 is shorted to each other by the well or shorted to each other within the integrated circuit by the metal wiring.
  • the level of the ground bouncing becomes very high in the period in which all the outputs of the source driver integrated circuit supplied with the high voltage power supply are operated, and the operation of the digital logic circuit using the low- And the like.
  • FIG 5 is another diagram showing a short circuit of the ground voltage in the source driver integrated circuit in the liquid crystal display of the conventional COG cascade structure.
  • FIG. 6 is a diagram showing a result of measuring a ground level of a source driver integrated circuit in a conventional COG cascade structure liquid crystal display device.
  • the ground level is twice or more the ground level of the first source driver integrated circuit, and the period during which the ground level is bouncing is the output operation of the source driver integrated circuit Section.
  • a source driver integrated circuit in which a ground of a high voltage power source and a ground of a low voltage power source are separated from each other.
  • the source driver integrated circuit includes a source driver integrated circuit having a chip-on-glass (COG) cascade structure, A second power supply voltage supply line for supplying a second power supply voltage (VSS2) to the high voltage operation circuit section using a high voltage, a second power supply voltage supply line for supplying a second power supply voltage A third power supply voltage supply line for supplying the third power supply voltage VCC to the low voltage operation circuit section to be used and a fourth power supply voltage supply line for supplying the fourth power supply voltage VSS1 to the low voltage operation circuit section using the low voltage And the second power supply voltage supply line and the fourth power supply voltage supply line are separated from each other.
  • COG chip-on-glass
  • the ground of the high voltage power source and the ground of the low voltage power source are separated from each other according to the present invention, the ground of the high voltage power source and the ground of the low voltage power source are separated, whereby ground bouncing, So that the power noise due to the ground bouncing of the high voltage power source does not interfere with the logic circuit using the low voltage power source, thereby improving the frequency margin and the voltage margin of the low voltage power source.
  • Fig. 1 is a cross- Fig.
  • FIG. 2 is a view schematically showing a conventional chip-on-glass (COG) type liquid crystal display device.
  • COG chip-on-glass
  • FIG 3 is a view showing a method of supplying power in a conventional COG cascade structure.
  • FIG. 4 is a diagram showing a short circuit of ground voltage in a source driver integrated circuit in a conventional liquid crystal display of a COG cascade structure.
  • FIG 5 is another diagram showing a short circuit of the ground voltage in the source driver integrated circuit in the liquid crystal display of the conventional COG cascade structure.
  • FIG. 6 is a diagram showing a result of measuring a ground level of a source driver integrated circuit in a conventional COG cascade structure liquid crystal display device.
  • Figure 7 is a graph In which the ground of the high-voltage power source and the ground of the low-voltage power source are separated from each other in the source driver integrated circuit.
  • Fig. 8 is a flowchart And the ground of the high voltage power source and the ground of the low voltage power source are separated by the well in the source driver integrated circuit.
  • FIG. 9 is a diagram showing the result of measuring the ground level of the source driver integrated circuit according to the present invention.
  • the key idea of the present invention is to isolate the ground of the high voltage power supply in the source driver integrated circuit from the ground of the low voltage power source so that the influence of the noise of the ground of the high voltage power source on the logic circuit using the low voltage power source can be eliminated. Circuit.
  • Figure 7 is a graph In which the ground of the high-voltage power source and the ground of the low-voltage power source are separated from each other in the source driver integrated circuit.
  • the driver integrated circuit includes a first power supply voltage supply line 610, a second power supply voltage supply line 620, a third power supply voltage supply line 630, and a fourth power supply voltage supply line 640.
  • the first power source voltage supply line 610 supplies a first power source voltage VDD to the high voltage operation circuit unit 650 using a high voltage and the second power source voltage supply line 620 supplies a high voltage operation using a high voltage And supplies the second power supply voltage VSS2 to the circuit portion 650.
  • the third power voltage supply line 630 supplies a third power voltage VCC to the low voltage operation circuit portion 660 using a low voltage and the fourth power voltage supply line 640 is a low voltage operation using a low voltage And supplies the fourth power supply voltage VSS1 to the circuit portion 660.
  • a driver integrated circuit of a liquid crystal display panel is provided with a low voltage operation circuit portion requiring a low voltage such as a high voltage operation circuit portion requiring high voltage such as analog signal processing and a digital logic circuit processing.
  • the high voltage operation circuit portion 650 operates between the first power supply voltage VDD and the second power supply voltage VSS2, and the low voltage operation circuit portion 660 operates between the third power supply voltage VCC and the fourth power supply voltage VSS2. (VSS1).
  • the second power supply voltage VSS2 corresponds to the ground voltage HV-GND of the high voltage operation circuit unit 650 using the high voltage and the fourth power voltage VSS1 corresponds to the low voltage operation circuit unit (LV-GND).
  • the metal line between the ground voltage (HV-GND) of the high-voltage operation circuit portion 650 and the ground voltage (LV-GND) of the low-voltage operation circuit portion 660 is removed, And the ground voltage (HV-GND) of the circuit part is separated from the ground voltage (LV-GND) of the low-voltage operation circuit part.
  • the separation of the metal wiring can be realized by carefully designing in the layout process and checking whether the ground of the high voltage operation circuit unit 650 and the ground of the low voltage operation circuit unit 660 are completely separated through the verification tool.
  • ground voltage (HV-GND) of the high-voltage operation circuit In order to separate the ground voltage (HV-GND) of the high-voltage operation circuit from the ground voltage (LV-GND) of the low-voltage operation circuit, a well in the lower portion of the low- .
  • the well is a deep N well deeply formed in a lower portion of the low-voltage operation circuit portion so as to surround the low-voltage operation circuit portion.
  • Fig. 8 is a flowchart And the ground of the high voltage power source and the ground of the low voltage power source are separated by the well in the source driver integrated circuit.
  • the source driver integrated circuit includes a Deep N well DNW at the lower portion of the low voltage operation circuit portion LVNMOS and LVPMOS so that the ground voltage HV-GND of the high voltage operation circuit portion HVNMOS, HVPMOS, It can be seen that the ground voltage (LV-GND) of the low voltage (LVNMOS, LVPMOS) is isolated so as not to be shorted.
  • the ground of the high voltage power source and the ground of the low voltage power source can be completely separated through the well formed on the substrate, and the process of forming the well is well known in the art, and thus a detailed description thereof will be omitted.
  • FIG. 9 is a diagram showing the result of measuring the ground level of the source driver integrated circuit according to the present invention.
  • the ground voltage HV-GND of the high voltage operation circuit portion and the ground voltage LV-GND of the low voltage operation circuit portion are separated from each other, The noise does not affect the low-voltage operation circuit portion, so that the bouncing of the ground voltage (LV-GND) of the low-voltage operation circuit portion becomes very small.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

본 발명은 액정표시장치에서 소스 드라이버 집적회로의 그라운드를 분리하는 기술에 관한 것으로, 특히, 칩-온-글래스(Chip On Glass:COG) 캐스케이드(cascade) 구조의 액정표시장치에서 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로에 관한 것이다.

Description

고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로
본 발명은 액정표시장치에서 소스 드라이버 집적회로의 그라운드를 분리하는 기술에 관한 것으로, 특히, 칩-온-글래스(Chip On Glass:COG) 캐스케이드(cascade) 구조의 액정표시장치에서 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로에 관한 것이다.
액정디스플레이(Liquid Crystal Display, LCD)는 인가전압에 따라 액정분자들의 배열 상태가 달라지는 특징을 이용하여 액정으로 빛을 통과시킴에 의해 영상 데이터가 디스플레이되는 소자를 의미한다. 이 가운데서 최근 가장 활발하게 사용되고 있는 소자는 실리콘 집적회로의 제조기술을 이용하여 만드는 박막 트랜지스터(Thin Film Transistor, TFT)형 액정디스플레이(LCD)이다.
도 1은 일반적인 액정디스플레이의 구조를 개략적으로 나타내는 도면이다.
박막 트랜지스터(Thin Film Transistor, TFT)형 액정디스플레이(LCD)는 서로 대향하는 박막트랜지스터 어레이 기판과 컬러필터 기판이 일정한 간격을 두고 합착되고, 그 일정한 이격공간에 액정층이 주입된 액정표시패널(30)과 이를 구동하기 위한 구동회로로 구성된다.
상기 구동회로는 매 프레임마다 게이트라인들에 주사신호를 순차적으로 인가하는 게이트 드라이버 집적회로(40)와, 게이트 드라이버 집적회로의 주사신호에 대응하여 소스 라인을 구동하는 소스 드라이버 집적회로(20)와, 게이트 드라이버 집적회로(40) 및 소스 드라이버 집적회로(20)를 제어하고 픽셀 데이터를 출력하는 타이밍 제어부(10) 및 액정표시장치에서 사용되는 여러 가지 구동 전압들을 공급하는 전원공급부(미도시)로 구성된다.
종래로부터 상기 드라이버 집적회로를 액정표시패널과 연결하기 위해 여러 방법이 사용되었으며, 최근 들어 미세실장기술의 발전에 따라 상기 드라이버 집적회로를 액정표시패널의 유리기판 위에 직접 실장하여 연결하는 칩-온-글래스(Chip On Glass:이하 'COG'라 한다.)방식이 주로 사용되고 있다.
도 2는 종래의 칩-온-글래스(COG) 방식의 액정표시장치를 간략하게 나타내는 도면이다.
도 2를 참고하면 상기 소스 드라이버 집적회로 칩(221~224) 및 게이트 드라이버 집적회로 칩(231~233)들이 액정표시패널의 유리기판(240) 위에 직접 실장되어 있음을 알 수 있다.
또한 상기 COG 방식에서 액정표시패널에 실장되는 소스 드라이버 집적회로 칩 및 게이트 드라이버 집적회로 칩들은 신호라인들이 액정패널의 기판 상에 직접 실장되는 라인-온-글래스(Line On Glass:이하 LOG'라 한다.) 방식으로 상호 접속되고, 타이밍제어부 및 전원공급부로부터 제어신호 및 구동 전원을 공급받게 된다.
상기와 같이 COG방식으로 칩이 실장된 경우 데이터와 제어신호 및 전원을 공급받는 방법에는 여러 가지가 있다. 그 중에서 타이밍컨트롤러로부터 출력되는 각종 데이터와 제어신호 그리고 전원공급부에서 공급되는 전원이 제1 소스 드라이버 집적회로로 인가되고 나머지 소스 드라이버 집적회로는 제1 소스 드라이버 집적회로로부터 데이터와 제어신호 및 전원을 순차적으로 수신 받는 방식을 직렬 캐스케이드(serial cascade) 방식이라고 한다.
도 3은 종래의 COG 캐스케이드 구조에서 전원을 공급하는 방식을 나타내는 도면이다.
도 3을 참고하면 제1전원전압(VDD)이 연결되는 라인과 제2전원전압(VSS2)이 연결되는 라인은 소스 드라이버 집적회로 내부의 고전압에서 동작하는 회로에 전원을 공급하는 고전압 전원 공급라인이고, 제3전원전압(VCC)이 연결되는 라인과 제4전원전압(VSS1)이 연결되는 라인은 소스 드라이버 집적회로 내부의 저전압에서 동작하는 회로에 전원을 공급하는 저전압 전원공급라인이다.
도 3에 도시된 바와 같이 COG 캐스케이드 구조의 액정표시장치는 전원공급원(Power Supply)으로부터 공급된 전원이 제1 소스 드라이버 집적회로로 인가되고 제2 소스 드라이버 집적회로는 제1 소스 드라이버 집적회로 내부의 전원공급라인을 거쳐 전원이 공급된다.
이와 같이 제2 소스 드라이버 집적회로는 제1 소스 드라이버 집적회로로부터 전원을 공급받음으로 인해 제1 소스 드라이버 집적회로의 전류와 전원공급라인의 저항(R) 값에 의해 그라운드(GND)의 경우 매우 큰 레벨의 그라운드 바운싱(GND-Bouncing)이 일어나게 된다. 이러한 그라운드 바운싱(GND-Bouncing)은 소스 드라이버 집적회로의 출력이 구동되는 경우에 그 레벨이 더욱 커지게 된다.
도 4는 종래의 COG 캐스케이드 구조의 액정표시장치에서 소스 드라이버 집적회로 내부에서 그라운드 전압의 쇼트를 나타내는 도면이다.
반도체 공정상 그라운드(GND)는 별도의 공정을 추가 하지 않으면, 도 4에 도시된 바와 같이, 고전압 전원 공급라인의 그라운드(GND), 즉, 제2전원전압(VSS2)과 저전압 전원공급라인의 그라운드(GND), 즉, 제4전원전압(VSS1)은 웰(Well)에 의해 서로 쇼트(short)되어 있거나, 금속배선(metal)에 의해 집적회로 내부에서 서로 쇼트(short)되어 있다.
따라서 이러한 COG 캐스케이드 구조를 사용하는 경우 고전압 전원을 공급받는 소스 드라이버 집적회로의 모든 출력이 동작하는 구간에서는 그라운드 바운싱(GND-Bouncing)의 레벨이 매우 커져서 저전압 전원을 사용하는 디지털 로직 회로의 동작에 장애를 발생시키는 문제가 있다.
도 5는 종래의 COG 캐스케이드 구조의 액정표시장치에서 소스 드라이버 집적회로 내부에서 그라운드 전압의 쇼트를 나타내는 또 다른 도면이다.
도 5를 참고하면 고전압 전원을 사용하는 회로 블록의 Pwell(HV-PW)과 저전압 전원을 사용하는 회로블록의 Pwell(LV-PW)이 기판(Substrate) 상에서 서로 쇼트(short)되어 있음을 알 수 있다.
도 6은 종래의 COG 캐스케이드 구조의 액정표시장치에서 소스 드라이버 집적회로의 그라운드 레벨을 측정한 결과를 나타내는 도면이다.
도 6에 도시된 바와 같이 제2 소스드라이버 집적회로의 경우 그라운드 레벨이 제1 소스 드라이버 집적회로의 그라운드 레벨의 2배 이상이며, 그라운드 레벨이 바운싱(Bouncing)되는 구간은 소스 드라이버 집적회로의 출력 동작 구간이다.
본 발명이 해결하고자 하는 기술적 과제는, COG 캐스케이드 구조의 소스 드라이버 집적회로에서 고전압 전원의 그라운드와 저전압 전원의 그라운드를 분리함으로써 소스 드라이버 집적회로 구동 시 고전압 전원의 그라운드의 노이즈가 저전압 전원을 사용하는 로직 회로에 미치는 영향을 제거할 수 있는 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로를 제공하는데 있다.
상기 기술적 과제를 해결하기 위한 본 발명에 따른 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로는, 칩-온-글래스(COG) 캐스케이드 구조의 소스 드라이버 집적회로에 있어서, 고전압을 사용하는 고전압 동작회로부에 제1전원전압(VDD)을 공급하는 제1전원전압공급라인, 고전압을 사용하는 상기 고전압 동작회로부에 제2전원전압(VSS2)을 공급하는 제2전원전압공급라인, 저전압을 사용하는 저전압 동작회로부에 제3전원전압(VCC)을 공급하는 제3전원전압공급라인 및 저전압을 사용하는 상기 저전압 동작회로부에 제4전원전압(VSS1)을 공급하는 제4전원전압공급라인을 구비하고, 상기 제2전원전압공급라인과 상기 제4전원전압공급라인이 서로 분리되어 있는 것을 특징으로 한다.
본 발명에 따른 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로에 의하면 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리됨으로써 소스 드라이버 집적회로의 출력 구동 동작 시 발생하는 그라운드 바운싱(bouncing)을 감소시키고, 이로 인해 고전압 전원의 그라운드 바운싱에 의한 전원 노이즈가 저전압 전원을 사용하는 로직 회로에 간섭을 일으키지 않아 주파수 마진과 저전압 전원의 전압 마진이 향상되는 효과가 있다.
도 1은 일반적인 액정디스플레이의 구조를 개략적으로 나타내는 도면이다.
도 2는 종래의 칩-온-글래스(COG) 방식의 액정표시장치를 간략하게 나타내는 도면이다.
도 3은 종래의 COG 캐스케이드 구조에서 전원을 공급하는 방식을 나타내는 도면이다.
도 4는 종래의 COG 캐스케이드 구조의 액정표시장치에서 소스 드라이버 집적회로 내부에서 그라운드 전압의 쇼트를 나타내는 도면이다.
도 5는 종래의 COG 캐스케이드 구조의 액정표시장치에서 소스 드라이버 집적회로 내부에서 그라운드 전압의 쇼트를 나타내는 또 다른 도면이다.
도 6은 종래의 COG 캐스케이드 구조의 액정표시장치에서 소스 드라이버 집적회로의 그라운드 레벨을 측정한 결과를 나타내는 도면이다.
도 7은 본 발명에 따른 소스 드라이버 집적회로에서 고전압 전원의 그라운드와 저전압 전원의 그라운드의 금속 배선이 분리된 모습을 나타내는 도면이다.
도 8은 본 발명에 따른 소스 드라이버 집적회로에서 고전압 전원의 그라운드와 저전압 전원의 그라운드가 웰에 의해 분리된 모습을 나타내는 도면이다.
도 9는 본 발명에 따른 소스 드라이버 집적회로의 그라운드 레벨을 측정한 결과를 나타내는 도면이다.
본 발명의 핵심적인 아이디어는 소스 드라이버 집적회로 내부의 고전압 전원의 그라운드와 저전압 전원의 그라운드를 분리함으로써 고전압 전원의 그라운드의 노이즈가 저전압 전원을 사용하는 로직 회로에 미치는 영향을 제거할 수 있는 소스 드라이버 집적회로를 제공하는 것이다.
이하에서는 본 발명의 구체적인 실시 예를 도면을 참조하여 상세히 설명하도록 한다.
도 7은 본 발명에 따른 소스 드라이버 집적회로에서 고전압 전원의 그라운드와 저전압 전원의 그라운드의 금속 배선이 분리된 모습을 나타내는 도면이다.
도 7을 참고하면 본 발명에 따른 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로는 제1전원전압공급라인(610), 제2전원전압공급라인(620), 제3전원전압공급라인(630) 및 제4전원전압공급라인(640)을 구비한다.
상기 제1전원전압공급라인(610)은 고전압을 사용하는 고전압 동작회로부(650)에 제1전원전압(VDD)을 공급하고, 상기 제2전원전압공급라인(620)은 고전압을 사용하는 고전압 동작회로부(650)에 제2전원전압(VSS2)을 공급한다.
상기 제3전원전압공급라인(630)은 저전압을 사용하는 저전압 동작회로부(660)에 제3전원전압(VCC)을 공급하고, 상기 제4전원전압공급라인(640)은 저전압을 사용하는 저전압 동작회로부(660)에 제4전원전압(VSS1)을 공급한다.
일반적으로 액정표시패널의 드라이버 집적회로는 아날로그 신호 처리와 같이 고전압을 필요로 하는 고전압 동작회로부와 디지털 로직 회로의 처리와 같이 저전압을 필요로 하는 저전압 동작회로부를 구비한다.
본 발명에서, 고전압 동작회로부(650)는 제1전원전압(VDD)과 제2전원전압(VSS2) 사이에서 동작하고, 저전압 동작회로부(660)는 제3전원전압(VCC)과 제4전원전압(VSS1) 사이에서 동작한다.
이때, 상기 제2전원전압(VSS2)은 고전압을 사용하는 고전압 동작회로부(650)의 그라운드전압(HV-GND)에 해당되고, 상기 제4전원전압(VSS1)은 저전압을 사용하는 저전압 동작회로부(660)의 그라운드전압(LV-GND)에 해당된다.
본 발명에서는, 상기 고전압 동작회로부(650)의 그라운드전압(HV-GND)과 상기 저전압 동작회로부(660)의 그라운드전압(LV-GND) 사이의 금속배선(metal line)을 제거함으로써, 상기 고전압 동작회로부의 그라운드전압(HV-GND)과 상기 저전압 동작회로부의 그라운드전압(LV-GND)이 분리되는 것을 특징으로 한다.
금속배선의 분리는 레이아웃 과정에서 주의 깊게 디자인하고, 검증 도구를 통해 고전압 동작회로부(650)의 그라운드와 상기 저전압 동작회로부(660)의 그라운드가 완전히 분리되었는지 체크하는 과정을 통해 구현 가능하다.
한편, 상기 고전압 동작회로부의 그라운드전압(HV-GND)과 상기 저전압 동작회로부의 그라운드전압(LV-GND)을 분리시키기 위해 상기 저전압 동작회로부의 하부에 상기 저전압 동작회로부를 에워싸는 형태의 웰(well)을 구비하는 것이 바람직하다.
이때 상기 웰은 상기 저전압 동작회로부를 에워쌀 수 있도록 상기 저전압 동작회로부의 하부의 깊은 곳에 형성된 N형 웰(deep N well)인 것이 더 바람직하다.
도 8은 본 발명에 따른 소스 드라이버 집적회로에서 고전압 전원의 그라운드와 저전압 전원의 그라운드가 웰에 의해 분리된 모습을 나타내는 도면이다.
도 8을 참고하면 본 발명에 따른 소스 드라이버 집적회로는 저전압 동작회로부(LV NMOS, LV PMOS)의 하부에 Deep N웰(DNW)을 구비하여 고전압 동작회로부(HV NMOS, HV PMOS)의 그라운드전압(HV-GND)과 상기 저전압 동작회로부(LV NMOS, LV PMOS)의 그라운드전압(LV-GND)이 쇼트(short)되지 않도록 분리되어 있음을 알 수 있다.
즉, 기판상에 형성된 웰을 통해 고전압 전원의 그라운드와 저전압 전원의 그라운드가 완전히 분리될 수 있으며 상기한 웰을 형성하는 공정은 당업계에서 공지의 것이므로 상세한 설명은 생략하기로 한다.
도 9는 본 발명에 따른 소스 드라이버 집적회로의 그라운드 레벨을 측정한 결과를 나타내는 도면이다.
도 9에 도시된 바와 같이, 고전압 동작회로부의 그라운드전압(HV-GND)과 상기 저전압 동작회로부의 그라운드전압(LV-GND)이 분리됨으로써 고전압 동작회로부의 그라운드전압(HV-GND)의 바운싱의 전원 노이즈가 저전압 동작회로부에 영향을 주지 않게 되므로 저전압 동작회로부의 그라운드전압(LV-GND)의 바운싱(bouncing)이 매우 작아지게 된다.
이상에서는 본 발명에 대한 기술사상을 첨부 도면과 함께 서술하였지만 이는 본 발명의 바람직한 실시 예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 이라면 누구나 본 발명의 기술적 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.

Claims (6)

  1. 칩-온-글래스(COG) 캐스케이드 구조의 소스 드라이버 집적회로에 있어서,
    고전압을 사용하는 고전압 동작회로부에 제1전원전압(VDD)을 공급하는 제1전원전압공급라인;
    고전압을 사용하는 상기 고전압 동작회로부에 제2전원전압(VSS2)을 공급하는 제2전원전압공급라인;
    저전압을 사용하는 저전압 동작회로부에 제3전원전압(VCC)을 공급하는 제3전원전압공급라인; 및
    저전압을 사용하는 상기 저전압 동작회로부에 제4전원전압(VSS1)을 공급하는 제4전원전압공급라인;을 구비하고
    상기 제2전원전압공급라인과 상기 제4전원전압공급라인이 서로 분리되어 있는 것을 특징으로 하는 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로.
  2. 제1항에 있어서,
    상기 제2전원전압(VSS2)은 고전압을 사용하는 상기 고전압 동작회로부의 그라운드전압(HV-GND)이고, 상기 제4전원전압(VSS1)은 저전압을 사용하는 상기 저전압 동작회로부의 그라운드전압(LV-GND)인 것을 특징으로 하는 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로.
  3. 제2항에 있어서,
    상기 고전압 동작회로부의 그라운드전압(HV-GND)과 상기 저전압 동작회로부의 그라운드전압(LV-GND)이 금속배선(metal line)에 의해 연결되지 않도록 함으로써, 상기 고전압 동작회로부의 그라운드전압(HV-GND)과 상기 저전압 동작회로부의 그라운드전압(LV-GND)이 분리되는 것을 특징으로 하는 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로.
  4. 제2항에 있어서,
    상기 저전압 동작회로부를 에워싸는 형태의 웰(well)을 구비함으로써 상기 고전압 동작회로부의 그라운드전압(HV-GND)과 상기 저전압 동작회로부의 그라운드전압(LV-GND)이 분리되는 것을 특징으로 하는 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로.
  5. 제4항에 있어서, 상기 웰(well)은
    상기 저전압 동작회로부를 에워쌀 수 있도록 상기 저전압 동작회로부의 하부에 형성된 N형 웰(deep N well)인 것을 특징으로 하는 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로.
  6. 제3항 내지 제5항 중 어느 하나의 항에 있어서,
    상기 제1전원전압공급라인 내지 상기 제4전원전압공급라인은 자체 저항을 더 구비하는 것을 특징으로 하는 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로.
PCT/KR2010/000224 2009-02-10 2010-01-14 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로 WO2010093123A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0010383 2009-02-10
KR1020090010383A KR101037560B1 (ko) 2009-02-10 2009-02-10 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로

Publications (3)

Publication Number Publication Date
WO2010093123A2 WO2010093123A2 (ko) 2010-08-19
WO2010093123A3 WO2010093123A3 (ko) 2010-10-28
WO2010093123A4 true WO2010093123A4 (ko) 2010-12-16

Family

ID=42562148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000224 WO2010093123A2 (ko) 2009-02-10 2010-01-14 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로

Country Status (2)

Country Link
KR (1) KR101037560B1 (ko)
WO (1) WO2010093123A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102004400B1 (ko) * 2013-05-30 2019-07-29 삼성디스플레이 주식회사 표시 장치
KR102450995B1 (ko) 2017-11-13 2022-10-05 삼성전자 주식회사 디스플레이장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100257067B1 (ko) * 1997-08-30 2000-05-15 김영환 액정표시장치의데이터구동회로
KR101022655B1 (ko) * 2004-04-29 2011-03-22 삼성에스디아이 주식회사 접지 분리형 전계 방출 디스플레이 장치
KR20060013727A (ko) * 2004-08-09 2006-02-14 삼성전자주식회사 표시장치

Also Published As

Publication number Publication date
WO2010093123A3 (ko) 2010-10-28
KR20100091273A (ko) 2010-08-19
KR101037560B1 (ko) 2011-05-27
WO2010093123A2 (ko) 2010-08-19

Similar Documents

Publication Publication Date Title
US11296125B2 (en) Array substrate and display panel
KR100234940B1 (ko) 정전기 방지용 액정 표시 패널의 구조 및 그 운영 방법
US20060002045A1 (en) Semiconductor device, display device, and electronic apparatus
WO2016018105A1 (ko) 표시장치
US20140333571A1 (en) Pixel matrix, touch display device and drving method thereof
KR20180049375A (ko) 게이트 구동 회로와 이를 이용한 표시장치
KR20100073441A (ko) 액정표시장치
KR101340670B1 (ko) 액정표시장치
US20060119998A1 (en) Electrostatic discharge protection circuit, display panel, and electronic system utilizing the same
CN107978286B (zh) 显示面板和监测选通驱动电路的特性的方法
WO2017008346A1 (zh) 显示面板及薄膜晶体管阵列基板
US7327343B2 (en) Display driving circuit
WO2010093123A4 (ko) 고전압 전원의 그라운드와 저전압 전원의 그라운드가 분리된 소스 드라이버 집적회로
KR101604492B1 (ko) 액정표시장치
US11205366B2 (en) Drive circuit and display panel
US8471839B2 (en) Signal control circuit and method thereof, liquid crystal display and timing controller thereof
US20210183282A1 (en) Display substrate and manufacturing method thereof, display panel, display motherboard and testing method thereof, and display device
US8508451B2 (en) Display apparatus and method for driving display panel thereof
US8754877B2 (en) Liquid crystal panel unit, display device, and method of manufacturing the same
KR101043678B1 (ko) 액정표시장치
KR101600392B1 (ko) 액정표시패널의 검사장치 및 검사방법
KR20170002755A (ko) 게이트 드라이버 및 이를 포함하는 디스플레이 장치
WO2020054921A1 (ko) 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법
KR101140166B1 (ko) 구동 드라이버와 이를 포함하는 액정표시장치
WO2013187558A1 (ko) 발광 다이오드 구동 장치, 발광 장치 및 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741341

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741341

Country of ref document: EP

Kind code of ref document: A2