WO2010092870A1 - 電圧制御方法及び電圧制御装置 - Google Patents

電圧制御方法及び電圧制御装置 Download PDF

Info

Publication number
WO2010092870A1
WO2010092870A1 PCT/JP2010/050988 JP2010050988W WO2010092870A1 WO 2010092870 A1 WO2010092870 A1 WO 2010092870A1 JP 2010050988 W JP2010050988 W JP 2010050988W WO 2010092870 A1 WO2010092870 A1 WO 2010092870A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
capacitor
inverter
sag
Prior art date
Application number
PCT/JP2010/050988
Other languages
English (en)
French (fr)
Inventor
正和 宗島
材津 寛
Original Assignee
株式会社 明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 明電舎 filed Critical 株式会社 明電舎
Publication of WO2010092870A1 publication Critical patent/WO2010092870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations

Definitions

  • the present invention relates to a voltage control method and a voltage control apparatus.
  • a parallel type voltage sag compensator is used to prevent equipment stoppage or malfunction due to instantaneous voltage drop (hereinafter referred to as sag) caused by sudden load change or lightning strike. It is used.
  • sag instantaneous voltage drop
  • Patent Document 1 An example of such a parallel type voltage sag compensator is disclosed in Patent Document 1 below.
  • FIG. 7 is a diagram illustrating a circuit configuration example of the parallel type voltage sag compensator.
  • C is a capacitor
  • L 1 and L 2 are coils
  • V S is a system voltage
  • I S is a system current
  • V L is a load voltage
  • I L is a load current
  • V dc is a DC voltage
  • V INV is an inverter voltage
  • I C is a filter capacitor (hereinafter referred to as capacitor) current
  • V C is a capacitor voltage
  • I OUT is an output current
  • gate SW is a gate of a high-speed switch 5 described later
  • gate INV is described later.
  • the parallel type voltage sag compensator includes an inverter 3, an LCL type or LC type AC filter 4, and a high speed switch 5.
  • the parallel type voltage sag compensator closes the high-speed switch 5 and waits in connection with the system 6 or charges the power storage unit 7 during normal times when no voltage sag occurs.
  • the parallel type voltage sag compensator detects the voltage sag when a voltage sag occurs, and opens the high-speed switch 5 to supply power from the inverter 3 to the load 8.
  • FIG. 8 is a diagram illustrating a control block of the parallel type voltage sag compensator.
  • the parallel type voltage sag compensator is normally linked to the grid 6, the detected value of the grid voltage V S is used as a phase synchronization circuit (hereinafter referred to as PLL (Phase-locked loop)) 12.
  • PLL Phase-locked loop
  • a three-phase reference voltage V BASE synchronized with the system voltage V S corresponding to the rated voltage is created from the phase obtained by the sine wave generator 13 via
  • a voltage sag detection signal dipdet output from the voltage sag detection block 14 when a voltage sag is detected in the system voltage V S is created.
  • the AVR block Based on the output of the instantaneous drop detection signal dipdet, the AVR block includes the gate signal gate SW of the high-speed switch 5 and the current control gain g ACR of the automatic current regulator (hereinafter referred to as ACR (Automatic Current Regulator)) 10 in the ACR block 15. 16 is switched to a voltage control gain g AVR of an automatic voltage regulator (hereinafter referred to as an AVR (Automatic Voltage Regulator)) 11.
  • ACR Automatic Current Regulator
  • FIG. 9 is a diagram showing a timing chart of the parallel type voltage sag compensator.
  • the system voltage V S is expressed by a unit method with a rated value of 1.
  • a voltage sag is detected at time t 2 and at the same time gate SW is set to zero to shut off the high speed switch 5, g ACR is set to zero, and g AVR is set to zero.
  • the operation to switch to 1 is performed.
  • a time lag is provided between occurrence of a sag and detection of a sag. This time lag is set, for example, as determining that a voltage drop is detected when a voltage drop is detected a predetermined N times.
  • the gate gate INV of the inverter 3 is created by adding a reference voltage V BASE to the output of the ACR 10 or AVR 11 and applying a pulse width modulation (hereinafter referred to as PWM) 18 to the voltage command V * created by applying the limiter 17.
  • PWM pulse width modulation
  • the conventional parallel type voltage sag compensator after detecting the voltage sag, the high speed switch 5 is cut off, and the current adjustment by the ACR 10 is switched to the voltage adjustment by the AVR 11.
  • the conventional parallel type voltage sag compensator considering the operation from when the voltage sag occurs to when the voltage sag is detected, the conventional parallel type voltage sag compensator is connected to the system 6. Or charging the power storage unit 7.
  • FIG. 10 is a diagram showing a current waveform and a voltage waveform of each part when a sag occurs in the conventional parallel sag compensator.
  • a voltage sag occurs at time t 1 and the system voltage V S and the system current I S decrease.
  • the capacitor current I C has a waveform that oscillates after discharging in a direction to mitigate the effect of the instantaneous drop.
  • the conventional parallel type voltage sag compensator detects the voltage sag at time t 2 and then shuts off the high-speed switch 5 and switches from current adjustment by the ACR 10 to voltage adjustment by the AVR 11, so that the inverter current I INV rises.
  • the current obtained by adding the capacitor current I C and the inverter current I INV is output as the output current I OUT .
  • the load current I L and the load voltage V L have waveforms as shown in FIG.
  • the distortion of the load current I L and the load voltage V L detects that the capacitor current I C is oscillating, that there is a delay in the time from the occurrence of a sag to the detection of the sag, and the sag. Otherwise, the inverter current I INV does not rise.
  • the present invention has an object to provide a voltage control method and a voltage control device capable of suppressing distortion of the load current I L and the load voltage V L from the time of occurrence of a sag to the time of detection of a sag.
  • a voltage control method for solving the above-described problem is as follows.
  • Control which suppresses the oscillation of the current of the capacitor is always performed by the inverter.
  • a voltage control method for solving the above problem is the voltage control method according to the first invention, Furthermore, it is characterized in that control is performed to detect discharge of the capacitor when a voltage sag occurs and output a current in the same direction as the current of the capacitor from the inverter.
  • a voltage control device for solving the above problem is In the voltage control device in which the inverter is connected to the load side through an AC filter configured by LC or LCL using a coil and a capacitor, It is characterized by comprising first control means for performing control to constantly suppress oscillation of the current of the capacitor by the inverter.
  • a voltage control device for solving the above problem is the voltage control device according to the third aspect of the present invention. Further, the present invention is characterized by further comprising second control means for detecting discharge of the capacitor at the time of occurrence of a sag and outputting the current in the same direction as the current of the capacitor from the inverter.
  • the present invention it is possible to provide a voltage control method and a voltage control device which can suppress the distortion of the load current I L and the load voltage V L from the voltage sag occurs until sag detection time.
  • the voltage control method and the voltage control apparatus according to the present invention are such that, in the conventional parallel type voltage sag compensator, the distortion of the load current I L and the load voltage V L when the voltage sag occurs has a vibration in the capacitor current I C. Solves the problems caused by the delay in the time from the occurrence of a sag to the detection of the sag, and the fact that the inverter current I INV does not rise until the sag is detected The purpose is to do. And the following two means are proposed as a means for solving a subject.
  • the capacitor discharges in a direction to mitigate the effect of the sag, and then the capacitor current I C oscillates.
  • This vibration causes distortion in the load current I L and the load voltage V L.
  • a control is performed to constantly suppress the oscillation of the capacitor current I C using an inverter.
  • the transient vibration of the capacitor current I C is suppressed, and the distortion of the load current I L and the load voltage V L from the time when the voltage sag occurs to the time when the voltage sag is detected is suppressed.
  • the control of constantly suppressing the oscillation of the capacitor current I C , detecting the discharge of the capacitor when the instantaneous drop occurs, and outputting the current in the same direction as the capacitor current from the inverter By performing the control, the distortion of the load current I L and the load voltage V L from the time when the voltage sag occurs to the time when the voltage sag is detected is suppressed by performing the control that reduces the effect of the voltage sag.
  • FIG. 1 is a diagram illustrating a control block of a voltage control apparatus according to an embodiment of the present invention.
  • a voltage control apparatus includes a first control block 1 that performs control to suppress vibration of a capacitor current I C , and discharge by a capacitor when an instantaneous drop occurs. And a second control block 2 for performing control for discharging the inverter 3 in the same direction as the capacitor is added.
  • the inverter 3 When the inverter 3 is adjusting the current by the ACR 10, the inverter 3 generates a voltage because the current is controlled from the system voltage V S and the inverter voltage V INV . Therefore, in order to consider the relationship between the voltage generated by the inverter 3 and the capacitor voltage V C , the transfer function when the load 8 shown in FIG. 7 is open, the input is the inverter voltage, and the output is the capacitor voltage V C is obtained. And the following formula (1). Further, this resonance frequency can be expressed by the following equation (2).
  • Equation (1) can be expressed in a block diagram as shown in FIG.
  • n is a non-zero positive real number (n> 0, n ⁇ 0).
  • the first control block 1 is a control for differentiating the inverter current detection value I INV as shown in the following formula (5) and applying a second-order delay (temporary delay twice) and feeding back to the voltage command V * .
  • L 1 means the inductance design value of the reactor.
  • T 0 may basically be used as T 1 and T 2 .
  • measures such as lowering the gain of Equation (5) are required.
  • Equation (5) improves the gain peak and the sudden change in the vicinity of the resonance frequency compared to the equation (1).
  • Equation (5) is a bandpass filter as shown in FIG.
  • the vibration of the capacitor current I C can be suppressed by suppressing the vibration of the capacitor voltage V C. From the above principle, by adding the first control block 1 shown in FIG. 1, the inverter 3 can always perform an operation of suppressing the vibration of the capacitor current I C.
  • FIG. 5 is a diagram showing a current waveform and a voltage waveform of each part when the instantaneous drop occurs.
  • attention is focused on the waveform of the capacitor voltage V C , the capacitor current I C, and the inverter current I INV .
  • the capacitor has a waveform that vibrates after a sharp discharge. At this time, since the capacitor releases energy by a sharp discharge, the capacitor voltage V C decreases.
  • the ACR 10 is switched to the AVR 11, and the inverter current I INV rises.
  • the load current I L and the load voltage V L are distorted.
  • a second control block 2 shown in FIG. 1 A second control block 2 shown in FIG.
  • the second control block 2 calculates a current command value I C assist obtained by multiplying the capacitor current I C , the fluctuation amount ⁇ V C RMS of the capacitor instantaneous voltage execution value, and the gain Kp as shown in the following equation (8). By adding this to the current command value I REF , a current in the same direction as the capacitor discharge is output from the inverter 3. If I C assist is amplified by the gain Kp, a current larger than the discharge amount of the capacitor can be output from the inverter.
  • the instantaneous voltage execution value of the capacitor is not generated. If ⁇ V C RMS does not fluctuate, the current command value I C assist in equation (8) becomes zero. That is, in such a case, no current is output from the inverter 3. However, when the instantaneous drop actually occurs, the instantaneous voltage execution value ⁇ V C RMS of the capacitor fluctuates, so that a value appears in the current command value I C assist.
  • a current corresponding to the current command value I C assist can be output from the inverter 3 only when an instantaneous drop actually occurs.
  • the original current command value I REF is added to the current command value I C assist, and a limiter 19 is applied to the current command value I REF in order to prevent overcurrent, and then input to the ACR 10.
  • the capacitor voltage V C is estimated from the capacitor current I C according to the relational expression between the capacitor voltage V C and the capacitor current I C shown in the following formula (10).
  • the fluctuation amount ⁇ V C RMS of the instantaneous voltage effective value used in Expression (8) is calculated from the capacitor voltage V C estimated in Expression (10).
  • the estimated capacitor voltage V C is dq converted to calculate the square root of the square sum of the d-axis and q-axis voltages, and the fluctuation ⁇ V C RMS of the instantaneous voltage execution value is calculated. be able to.
  • FIG. 6 is a diagram showing a current waveform and a voltage waveform of each part when an instantaneous drop occurs when the first control block 1 and the second control block 2 are used.
  • FIG. 6 shows a simple waveform when proportional integration (PI) control is used for the ACR 10.
  • PI proportional integration
  • the capacitor As shown in FIG. 6, and the instantaneous drop has occurred at time t 1, at the same time the capacitor is discharged in a direction to relax the voltage sag. Furthermore, the second control block 2 shown in FIG. 1 raises the inverter current I INV in the same direction as the discharge of the capacitor. At this time, the vibration generated in the capacitor current I C is suppressed by the first control block 1 shown in FIG. Then, the instantaneous drop is detected, the high-speed switch 5 is shut off, and the ACR 10 is switched to the AVR 11.
  • the capacitor discharges in a direction to mitigate the effect of the voltage sag, and then the capacitor current I C oscillates. Control to suppress I C vibration is performed. Thereby, the transient vibration of the capacitor current I C can be constantly suppressed.
  • the voltage control method and the voltage control device always suppresses the oscillation of the capacitor current I C and detects the discharge of the capacitor at the time of the occurrence of the sag.
  • the inverter 3 can output a current in the same direction as the capacitor discharge.
  • the current command value I C assist created by multiplying the capacitor current I C , the fluctuation amount ⁇ V C RMS of the capacitor voltage effective value and the gain Kp as shown in the equation (8) is used as the current command value.
  • a control to add is added.
  • the variation ⁇ V C RMS of the effective voltage value of the capacitor is created as shown in Equation (11).
  • the voltage control method according to the present invention uses the inverter 3 in the voltage control apparatus in which the inverter 3 is connected to the load 8 side through the AC filter 4 configured by LC or LCL using a coil and a capacitor. by performing control to suppress vibration of constant capacitor current I C, it is possible to suppress the vibration of constant capacitor current I C.
  • the inverter 3 can output a current in the same direction as the discharge of the capacitor.
  • the voltage control device is a voltage control device in which the inverter 3 is connected to the load 8 side via the AC filter 4 constituted by LC or LCL using a coil and a capacitor.
  • the first control block 1 as a first control means for performing control to suppress vibration of the I C, it is possible to suppress the vibration of constant capacitor current I C.
  • the second control block 2 is provided as the second control means for detecting the discharge of the capacitor at the time of the occurrence of a sag and outputting the current in the same direction as the capacitor current I C from the inverter 3.
  • the distortion of the load current I L and the load voltage I V due to low can be suppressed. Further, even before the voltage sag is detected, if the voltage sag actually occurs, the inverter 3 can output a current in the same direction as the discharge of the capacitor.
  • the present invention can be used, for example, in a parallel type voltage sag compensator and its control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

 瞬低発生時から瞬低検出時までの負荷電流ILと負荷電圧VLのひずみを抑制することができる電圧制御方法及び電圧制御装置を提供するため、コイル及びコンデンサを用いLC又はLCLにより構成されるACフィルタ(4)を介してインバータ(3)が負荷(8)側に接続される電圧制御装置において、インバータ(3)により常時コンデンサ電流ICの振動を抑制する制御を行う。

Description

電圧制御方法及び電圧制御装置
 本発明は、電圧制御方法及び電圧制御装置に関する。
 一般に、電力系統(以下、系統という)においては、負荷急変や落雷等が原因の瞬時電圧低下(以下、瞬低という)による機器の停止や誤動作などを防止する目的で並列型瞬低補償装置が用いられている。このような並列型瞬低補償装置の一例が下記特許文献1に開示されている。
 図7は、並列型瞬低補償装置の回路構成例を示した図である。なお、図7中、Cはコンデンサ、L1,L2はコイル、VSは系統電圧、ISは系統電流、VLは負荷電圧、ILは負荷電流、Vdcは直流電圧、IINVはインバータ電流、VINVはインバータ電圧、ICはフィルタコンデンサ(以下、コンデンサという)電流、VCはコンデンサ電圧、IOUTは出力電流、gateSWは後述する高速スイッチ5のゲート、gateINVは後述するインバータ3のゲートを意味する。
 図7に示すように、並列型瞬低補償装置は、インバータ3と、LCL型又はLC型のACフィルタ4と、高速スイッチ5とにより構成されている。
 ここで、並列型瞬低補償装置の動作について説明する。
 並列型瞬低補償装置は、瞬低が発生していない平常時は、高速スイッチ5を閉じて系統6と連系して待機するか、蓄電部7を充電する。そして、並列型瞬低補償装置は、瞬低が発生すると瞬低を検出し、高速スイッチ5を開放してインバータ3から負荷8へ電力を供給する。
 図8は、並列型瞬低補償装置の制御ブロックを示した図である。
 図8に示すように、並列型瞬低補償装置は、平常時は系統6と連系するため、系統電圧VSの検出値に位相同期回路(以下、PLL(Phese-locked loop)という)12を介し正弦波発生器13により得られた位相から、定格電圧に相当する系統電圧VSに同期した三相の基準電圧VBASEを作成する。また、系統電圧VSにおける瞬低検出時に瞬低検出ブロック14から出力される瞬低検出信号dipdetを作成する。
 瞬低検出信号dipdetの出力に基づき高速スイッチ5のゲート信号gateSWと、ACRブロック15における自動電流調整器(以下、ACR(Automatic current Regulater)という)10の電流制御のゲインgACRから、AVRブロック16における自動電圧調整器(以下、AVR(Automatic voltage Regulater)という)11の電圧制御のゲインgAVRに切り換える。
 図9は、並列型瞬低補償装置のタイミングチャートを示した図である。なお、図9においては、系統電圧VSは定格値を1とした単位法で表す。
 図9に示すように、t1において瞬低が発生した後、t2の時間で瞬低を検出すると同時にgateSWをゼロにして高速スイッチ5を遮断し、gACRをゼロに、gAVRを1に切り換える動作を行う。なお、瞬低の誤検出を防止するために、瞬低発生と瞬低検出にはタイムラグを設ける。このタイムラグは、例えば、瞬低を所定のN回検出したときに瞬低検出と判定するなどとして設定する。
 インバータ3のゲートgateINVは、ACR10又はAVR11の出力に基準電圧VBASEを加算し、リミッタ17を施して作成した電圧指令V*にパルス幅変調(以下、PWMという)18を施して作成する。系統6との連系時には、電圧指令値VREFと負荷電圧VLとの偏差がゼロになるようにAVR11を動作させる。
特開平9-182316号公報
 しかしながら、従来の並列型瞬低補償装置は、瞬低を検出してから高速スイッチ5を遮断して、ACR10による電流調整からAVR11による電圧調整に切り換えている。ここで、従来の並列型瞬低補償装置において、瞬低が発生してから瞬低を検出するまでの間の動作を考えると、従来の並列型瞬低補償装置は、系統6と連系して待機しているか、蓄電部7を充電する動作を行っている。
 そして、従来の並列型瞬低補償装置は、瞬低発生と瞬低検出との間にタイムラグがあるため、瞬低発生時から瞬低検出時までの時間は、負荷8に電力を供給することができない。このため、負荷電流IL及び負荷電圧VLに瞬断やひずみが生ずるという問題がある。
 図10は、従来の並列型瞬低補償装置における瞬低発生時の各部の電流波形及び電圧波形を示した図である。
 図10に示すように、時間t1で瞬低が発生し、系統電圧VSと系統電流ISが低下する。このとき、コンデンサ電流ICは、瞬低の影響を緩和する方向に放電した後、振動する波形になる。
 次に、従来の並列型瞬低補償装置は、時間t2で瞬低を検出してから高速スイッチ5を遮断し、ACR10による電流調整からAVR11による電圧調整に切り換えるので、インバータ電流IINVが立ち上がり、コンデンサ電流ICとインバータ電流IINVとを加算した電流が出力電流IOUTとなり出力される。
 この結果、負荷電流ILと負荷電圧VLは図10に示すような波形となる。図10より時間t1から時間t2の間と時間t2付近において、負荷電流ILと負荷電圧VLに歪が生じていることが分かる。そして、負荷電流ILと負荷電圧VLのひずみは、コンデンサ電流ICに振動があること、瞬低が発生してから瞬低を検出するまでの時間に遅れがあること、瞬低を検出してからでないとインバータ電流IINVが立ち上がらないことことに起因して生じている。
 以上のことから、本発明は、瞬低発生時から瞬低検出時までの負荷電流ILと負荷電圧VLのひずみを抑制することができる電圧制御方法及び電圧制御装置を提供することを目的とする。
 上記の課題を解決する第1の発明に係る電圧制御方法は、
 コイル及びコンデンサを用いLC又はLCLにより構成されるACフィルタを介してインバータが負荷側に接続される電圧制御装置において、
 前記インバータにより常時前記コンデンサの電流の振動を抑制する制御を行う
ことを特徴とする。
 上記の課題を解決する第2の発明に係る電圧制御方法は、第1の発明に係る電圧制御方法において、
 さらに、瞬低発生時の前記コンデンサの放電を検出し、前記インバータから前記コンデンサの電流と同じ方向の電流を出力する制御を行う
ことを特徴とする。
 上記の課題を解決する第3の発明に係る電圧制御装置は、
 コイル及びコンデンサを用いLC又はLCLにより構成されるACフィルタを介してインバータが負荷側に接続される電圧制御装置において、
 前記インバータにより常時前記コンデンサの電流の振動を抑制する制御を行う第1の制御手段を備える
ことを特徴とする。
 上記の課題を解決する第4の発明に係る電圧制御装置は、第3の発明に係る電圧制御装置において、
 さらに、瞬低発生時の前記コンデンサの放電を検出し、前記インバータから前記コンデンサの電流と同じ方向の電流を出力する制御を行う第2の制御手段を備える
ことを特徴とする。
 本発明によれば、瞬低発生時から瞬低検出時までの負荷電流ILと負荷電圧VLのひずみを抑制することができる電圧制御方法及び電圧制御装置を提供することができる。
本発明の実施例に係る電圧制御装置の制御ブロックを示した図である。 INVからVCまでの伝達関数を示した図である。 第1の制御ブロックを追加したVINVからVCまでの伝達関数を示した図である。 式(1)と、第1の制御ブロックを追加して改善した式(6)の伝達関数、及び、式(5)の伝達関数のボード線図である。 瞬低発生時の各部の電流波形及び電圧波形を示した図である。 第1の制御ブロックと第2の制御ブロックを用いたときの瞬低発生時の各部の電流波形及び電圧波形を示した図である。 並列型瞬低補償装置の回路構成例を示した図である。 並列型瞬低補償装置の制御ブロックを示した図である。 並列型瞬低補償装置のタイミングチャートを示した図である。 従来の並列型瞬低補償装置における瞬低発生時の各部の電流波形及び電圧波形を示した図である。
 以下、本発明に係る電圧制御方法及び電圧制御装置について、図面を参照しながら説明する。
 本発明に係る電圧制御方法及び電圧制御装置は、従来の並列型瞬低補償装置において、瞬低発生時の負荷電流ILと負荷電圧VLのひずみは、コンデンサ電流ICに振動があること、瞬低が発生してから瞬低を検出するまでの時間に遅れがあること、瞬低を検出してからでないとインバータ電流IINVが立ち上がらないことことに起因して生じている問題を解決することを目的としている。そして、課題を解決するための手段として、以下の2つの手段を提案する。
 瞬低が発生するとコンデンサは瞬低の影響を緩和する方向に放電し、その後コンデンサ電流ICは振動する。この振動が原因で負荷電流ILと負荷電圧VLにひずみが生じる。このため、第1の解決手段として、インバータにより常時コンデンサ電流ICの振動を抑制する制御を行う。これにより、コンデンサ電流ICの過渡的な振動を抑制し、瞬低発生時から瞬低検出時までの負荷電流ILと負荷電圧VLのひずみを抑制する。
 また、第2の解決手段として、コンデンサ電流ICの振動を常時抑制しておき、さらに、瞬低発生時のコンデンサの放電を検出し、インバータからコンデンサの電流と同じ方向の電流を出力する制御を行うことで、瞬低の影響を緩和する制御を行うことで、瞬低発生時から瞬低検出時までの負荷電流ILと負荷電圧VLのひずみを抑制する。
 以下、本発明に係る電圧制御方法及び電圧制御装置の実施例について説明する。
 図1は、本発明の実施例に係る電圧制御装置の制御ブロックを示した図である。
 図1に示すように、本発明の実施例に係る電圧制御装置は、コンデンサ電流ICの振動を抑制する制御を行う第1の制御ブロック1、及び、瞬低が発生したときのコンデンサによる放電を検出して、インバータ3からコンデンサと同じ方向に放電させる制御を行う第2の制御ブロック2を追加した構成となっている。
 はじめに、第1の制御ブロック1の原理について説明する。
 インバータ3がACR10による電流調整を行っているとき、系統電圧VSとインバータ電圧VINVから電流を制御しているため、インバータ3は電圧を発生させている。そこで、インバータ3が発生させている電圧とコンデンサ電圧VCの関係を考えるため、図7に示す負荷8をオープンとし、入力をインバータ電圧、出力をコンデンサ電圧VCとしたときの伝達関数を求めると下記式(1)となる。また、この共振周波数は下記式(2)により表すことができる。
Figure JPOXMLDOC01-appb-M000001
 これにより、インバータ3から発生させた電圧によって、コンデンサの電圧が式(2)の共振周波数で振動しやすいということが分かる。インバータ電圧VINVは、電圧指令V*をPWM18を介して得られたgateINVによりインバータ3に発生させたパルス電圧であり、電圧指令V*とインバータ電圧VINVの平均電圧は一致するものとする。なお、式(1)は図2に示すようなブロック図に表すことができる。
 次に、図1に示す第1の制御ブロック1を追加した場合を考える。まず、式(2)の共振周波数から時定数T0を下記式(3)のように求める。
Figure JPOXMLDOC01-appb-M000002
 そして、T0から第1の制御ブロック1の時定数T1とT2を下記式(4)のように求める。
Figure JPOXMLDOC01-appb-M000003
 ここで、nは非ゼロの正の実数(n>0,n≠0)である。
 第1の制御ブロック1は、インバータ電流検出値IINVに下記式(5)のように微分、二次遅れ(一時遅れを2回)を施して電圧指令V*にフィードバックする制御である。
Figure JPOXMLDOC01-appb-M000004
 ここで、L1はリアクトルのインダクタンス設計値を意味する。
 リアクトルのインダクタンス設計値L1と、実際のインダクタンス値に誤差が無い理想的な条件においては、T1とT2は基本的にはT0を用いればよい。しかし、インダクタンス設計値L1に誤差がある場合、式(5)のゲインを下げるなどの対策が必要となる。このように、式(5)のゲインを変えたい場合は、T1を1/n倍、T2をn倍した時定数を用いることで、遮断周波数と通過周波数の帯域幅を変えることなく、容易にゲインを変えることができる。なお、n=1のとき、式(5)のゲインが最大でn=1を中心にn>1,n<1で対称にゲインを下げることができる。
 図2において、インバータ電流検出値IINVに式(5)のフィルタを施して電圧指令V*にフィードバックするループを追加すると図3に示すようなブロック図に表すことができる。これを伝達関数で表すと下記式(6)のようになる。なお、下記式(6)は理想的な条件、すなわちn=1として計算した。
Figure JPOXMLDOC01-appb-M000005
 式(1)と式(6)の伝達関数をボード線図にすると図4に示すようになる。なお、図4は、リアクトルのインダクタンス設計値L1を装置容量の6%、コンデンサを装置容量の5%、T1=T2=174μsとしたときのボード線図である。
 図4に示すように、式(1)と比較して式(5)は、共振周波数付近のゲインのピーク及び位相の急変が改善されることが分かる。なお、式(5)は、図4に示すようなバンドパスフィルタである。
 そして、コンデンサ電圧VCとコンデンサ電流ICとの関係は下記式(7)により示されるから、コンデンサ電圧VCの振動を抑制すればコンデンサ電流ICの振動も抑制することができる。
Figure JPOXMLDOC01-appb-M000006
 以上の原理から、図1に示す第1の制御ブロック1を追加することで、インバータ3が常時コンデンサ電流ICの振動を抑制する動作を行うことができる。
 次に、第2の制御ブロック2の原理について説明する。
 図5は、瞬低発生時の各部の電流波形及び電圧波形を示した図である。
 図5に示す瞬低発生時の各部の電流波形及び電圧波形において、コンデンサ電圧VC、コンデンサ電流IC及びインバータ電流IINVの波形に着目する。瞬低が発生すると、コンデンサは急峻な放電をした後に振動する波形になる。このとき、コンデンサは、急峻な放電によってエネルギーを放出するのでコンデンサ電圧VCが低下する。
 その後、瞬低を検出してACR10からAVR11に切り換えてインバータ電流IINVが立ち上がる。しかし、瞬低を検出する前にインバータ電流IINVが立ち上がらないので負荷電流ILと負荷電圧VLにひずみが生じている。
 そこで、瞬低を検出してからではなく、瞬低が発生したときに放電するコンデンサに合わせてインバータ3からコンデンサと同方向の電流を出力し、瞬低による負荷電流ILと負荷電圧VLのひずみを抑制する図1に示す第2の制御ブロック2を追加する。
 第2の制御ブロック2は、下記式(8)に示すようにコンデンサの電流IC、コンデンサの瞬時電圧実行値の変動分ΔVCRMS及びゲインKpを乗算した電流指令値ICassistを演算しこれを電流指令値IREFに加算することでインバータ3からコンデンサの放電と同方向の電流を出力させる。ゲインKpによりICassistを増幅すればコンデンサの放電量よりも大きい電流をインバータから出力することができる。
Figure JPOXMLDOC01-appb-M000007
 式(8)のように、コンデンサ電流ICとコンデンサの瞬時電圧実行値ΔVCRMSから電流指令値ICassistを作成することで、瞬低が発生していないときにコンデンサの瞬時電圧実行値ΔVCRMSに変動がなければ式(8)の電流指令値ICassistはゼロとなる。つまり、このような場合はインバータ3から電流を出力しない。しかし、実際に瞬低が発生したときにはコンデンサの瞬時電圧実行値ΔVCRMSが変動するため電流指令値ICassistに値が出る。
 したがって、実際に瞬低が発生したときのみ、電流指令値ICassistに応じた電流をインバータ3から出力させることができる。なお、図1においては、電流指令値ICassistに元の電流指令値IREFを加算し、過電流を防止するため電流指令値IREFにリミッタ19を施してからACR10に入力している。
 また、下記式(9)のように、コンデンサ電圧VCをdq変換して求めた有効分(d軸)の変動分の絶対値|ΔVCd|を用いても、瞬低が発生してコンデンサから有効電力が放電されたときにのみ、コンデンサの放電と同じ方向の電流をインバータ3から出力させることができる。
Figure JPOXMLDOC01-appb-M000008
 ここで、式(8)の電流指令値ICassistを実現する一例を述べる。
 図1に示す第2の制御ブロック2では、下記式(10)に示すコンデンサ電圧VCとコンデンサ電流ICとの関係式にしたがって、コンデンサの電流ICからコンデンサ電圧VCを推定する。
Figure JPOXMLDOC01-appb-M000009
 次に、式(10)で推定したコンデンサ電圧VCから、式(8)で用いる瞬時電圧実効値の変動分ΔVCRMSを演算する。下記式(11)に示すように、推定したコンデンサ電圧VCをdq変換してd軸とq軸の電圧の二乗和の平方根を演算し、瞬時電圧実行値の変動分ΔVCRMSを演算することができる。
Figure JPOXMLDOC01-appb-M000010
 同様に、式(9)の|ΔVCd|は下記式(12)のように演算する。
Figure JPOXMLDOC01-appb-M000011
 図6は、第1の制御ブロック1と第2の制御ブロック2を用いたときの瞬低発生時の各部の電流波形及び電圧波形を示した図である。図6においては、ACR10に比例積分(PI)制御を用いたときの簡易的な波形を示している。
 図6に示すように、時間t1で瞬低が発生し、これと同時にコンデンサは瞬低を緩和する方向に放電する。さらに、図1に示す第2の制御ブロック2によってコンデンサの放電と同じ方向にインバータ電流IINVが立ち上がる。このとき、図1に示す第1の制御ブロック1により、コンデンサ電流ICに生じる振動は抑制されている。そして、瞬低を検出して高速スイッチ5を遮断し、ACR10からAVR11に切り換わる。
 図6に示した本発明に係る第1の制御ブロック1と第2の制御ブロック2を用いたときの瞬低発生時の各部の電流波形及び電圧波形と、図10に示した従来の技術を用いたときの瞬低発生時の各部の電流波形及び電圧波形とを比較すると、本発明に係る第1の制御ブロック1と第2の制御ブロック2を用いた場合、瞬低発生時から瞬低検出時、及び、瞬低検出後の負荷電流ILと負荷電圧VLのひずみ又は瞬断を抑制することができていることが分かる。
 本実施例に係る電圧制御方法及び電圧制御装置は、瞬低が発生すると、コンデンサは瞬低の影響を緩和する方向に放電し、その後コンデンサ電流ICは振動するので、常時インバータにより、コンデンサ電流ICの振動を抑制する制御を行っておく。これにより、コンデンサ電流ICの過渡的な振動を常時抑制できる。
 これを実現するために、インバータ電流IINV検出値に微分、二次遅れ(一次遅れを2回)を施して電圧指令V*にフィードバックする制御を追加している。この制御を追加しない場合と比較して、入力をインバータ電圧VINV、出力をコンデンサ電圧VCとしたときの伝達関数において共振周波数付近のゲインのピーク及びゲインの位相の急変を改善することができる。
 さらに、本実施例に係る電圧制御方法及び電圧制御装置は、常時、コンデンサ電流ICの振動を抑制しておいて、瞬低発生時のコンデンサの放電を検出して並列型瞬低補償装置が同じ方向の電流を出力することで、瞬低による負荷電流ILと負荷電圧IVのひずみを抑制することができる。瞬低検出前でも瞬低が発生していればインバータ3からコンデンサの放電と同方向の電流を出力させることができる。
 これを実現するため,式(8)に示すようにコンデンサ電流IC、コンデンサの電圧実効値の変動分ΔVCRMS及びゲインKpを乗算して作成した電流指令値ICassistを電流指令値に加算する制御を追加している。コンデンサの電圧実効値の変動分ΔVCRMSは式(11)のように作成する。
 また、式(8)のように、コンデンサ電圧VCをdq変換して求めた有効分(d軸)の変動分の絶対値|ΔVCd|を用いても、瞬低が発生してコンデンサから有効電力が放電されたときにのみ、コンデンサの放電と同じ方向の電流をインバータ3から出力させることができる。なお、|ΔVCd|は式(12)から演算することができる。
 以上説明したように本発明に係る電圧制御方法は、コイル及びコンデンサを用いLC又はLCLにより構成されるACフィルタ4を介してインバータ3が負荷8側に接続される電圧制御装置において、インバータ3により常時コンデンサ電流ICの振動を抑制する制御を行うことにより、常時コンデンサ電流ICの振動を抑制することができる。
 さらに、瞬低発生時のコンデンサの放電を検出し、インバータ3からコンデンサ電流ICと同じ方向の電流を出力する制御を行うことにより、瞬低による負荷電流ILと負荷電圧IVのひずみを抑制することができる。また、瞬低検出前であっても、実際に瞬低が発生していればインバータ3からコンデンサの放電と同方向の電流を出力させることができる。
 また、本発明に係る電圧制御装置は、コイル及びコンデンサを用いLC又はLCLにより構成されるACフィルタ4を介してインバータ3が負荷8側に接続される電圧制御装置において、インバータ3により常時コンデンサ電流ICの振動を抑制する制御を行う第1の制御手段として第1の制御ブロック1を備えることにより、常時コンデンサ電流ICの振動を抑制することができる。
 さらに、瞬低発生時のコンデンサの放電を検出し、インバータ3からコンデンサ電流ICと同じ方向の電流を出力する制御を行う第2の制御手段として第2の制御ブロック2を備えることにより、瞬低による負荷電流ILと負荷電圧IVのひずみを抑制することができる。また、瞬低検出前であっても、実際に瞬低が発生していればインバータ3からコンデンサの放電と同方向の電流を出力させることができる。
 本発明は、例えば、並列型瞬低補償装置とその制御方法に利用することが可能である。
1 第1の制御ブロック
2 第2の制御ブロック
3 インバータ
4 ACフィルタ
5 高速スイッチ
6 系統
7 蓄電部
8 負荷
10 ACR
11 AVR
12 PLL
13 正弦波発生器
14 瞬低検出ブロック
15 ACRブロック
16 AVRブロック
17 リミッタ
18 PWM
19 リミッタ

Claims (4)

  1.  コイル及びコンデンサを用いLC又はLCLにより構成されるACフィルタを介してインバータが負荷側に接続される電圧制御装置において、
     前記インバータにより常時前記コンデンサの電流の振動を抑制する制御を行う
    ことを特徴とする電圧制御方法。
  2.  さらに、瞬低発生時の前記コンデンサの放電を検出し、前記インバータから前記コンデンサの電流と同じ方向の電流を出力する制御を行う
    ことを特徴とする請求項1に記載の電圧制御方法。
  3.  コイル及びコンデンサを用いLC又はLCLにより構成されるACフィルタを介してインバータが負荷側に接続される電圧制御装置において、
     前記インバータにより常時前記コンデンサの電流の振動を抑制する制御を行う第1の制御手段を備える
    ことを特徴とする電圧制御装置。
  4.  さらに、瞬低発生時の前記コンデンサの放電を検出し、前記インバータから前記コンデンサの電流と同じ方向の電流を出力する制御を行う第2の制御手段を備える
    ことを特徴とする請求項3に記載の電圧制御装置。
PCT/JP2010/050988 2009-02-12 2010-01-26 電圧制御方法及び電圧制御装置 WO2010092870A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009029334A JP5338353B2 (ja) 2009-02-12 2009-02-12 並列型瞬低補償装置の電圧制御方法及び並列型瞬低補償装置
JP2009-029334 2009-02-12

Publications (1)

Publication Number Publication Date
WO2010092870A1 true WO2010092870A1 (ja) 2010-08-19

Family

ID=42561715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050988 WO2010092870A1 (ja) 2009-02-12 2010-01-26 電圧制御方法及び電圧制御装置

Country Status (2)

Country Link
JP (1) JP5338353B2 (ja)
WO (1) WO2010092870A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475033A (zh) * 2013-09-27 2013-12-25 重庆大学 无锁相环节三相lcl型并网逆变器电流控制方法及系统
CN106053986A (zh) * 2016-06-13 2016-10-26 南方电网科学研究院有限责任公司 一种交流滤波器投切策略的测试方法
WO2021040197A1 (ko) * 2019-08-29 2021-03-04 효성중공업 주식회사 독립 마이크로그리드 시스템 및 인버터 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736997B2 (ja) * 2011-06-17 2015-06-17 株式会社明電舎 交流電源の瞬低補償装置
CN103746587A (zh) * 2014-01-22 2014-04-23 开封光利高科实业有限责任公司 应用于llcl单相并网逆变器谐振抑制的控制阻尼法
KR101793416B1 (ko) * 2016-03-18 2017-11-03 주식회사 동아일렉콤 전원 인버터의 제어 장치, 시스템 및 그 방법
KR101760247B1 (ko) * 2016-03-18 2017-07-21 주식회사 동아일렉콤 전원 인버터의 병렬 제어 장치, 시스템 및 그 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067728A (ja) * 2004-08-27 2006-03-09 Fuji Electric Systems Co Ltd 無停電電源装置
JP2008131735A (ja) * 2006-11-21 2008-06-05 Meidensha Corp インバータの出力電圧制御装置
JP2008154408A (ja) * 2006-11-21 2008-07-03 Meidensha Corp Pwmインバータの出力電圧制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067728A (ja) * 2004-08-27 2006-03-09 Fuji Electric Systems Co Ltd 無停電電源装置
JP2008131735A (ja) * 2006-11-21 2008-06-05 Meidensha Corp インバータの出力電圧制御装置
JP2008154408A (ja) * 2006-11-21 2008-07-03 Meidensha Corp Pwmインバータの出力電圧制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475033A (zh) * 2013-09-27 2013-12-25 重庆大学 无锁相环节三相lcl型并网逆变器电流控制方法及系统
CN106053986A (zh) * 2016-06-13 2016-10-26 南方电网科学研究院有限责任公司 一种交流滤波器投切策略的测试方法
WO2021040197A1 (ko) * 2019-08-29 2021-03-04 효성중공업 주식회사 독립 마이크로그리드 시스템 및 인버터 장치

Also Published As

Publication number Publication date
JP2010187459A (ja) 2010-08-26
JP5338353B2 (ja) 2013-11-13

Similar Documents

Publication Publication Date Title
WO2010092870A1 (ja) 電圧制御方法及び電圧制御装置
JP5542609B2 (ja) 無効電力補償装置
CN104335469B (zh) 以最大化功率效率来控制开关模式电源
CN109962638B (zh) 电力转换装置
US8970159B2 (en) Method for compensating instantaneous power failure in medium voltage inverter and medium voltage inverter system by using the same
JP2012513187A (ja) 電力インバータのグリッド接続遷移制御
JP6374213B2 (ja) 電力変換装置
WO2013142553A2 (en) System and method for islanding detection and protection
JP5134691B2 (ja) 自励式無効電力補償装置
JP5398233B2 (ja) インバータの単独運転検出装置および単独運転検出方法
JP2012161163A (ja) 直流送電システム
KR101951117B1 (ko) 풍력 발전용 제어 시스템
JP5783694B2 (ja) 単独運転検出装置および単独運転検出方法
JP2010187459A5 (ja) 並列型瞬低補償装置の電圧制御方法及び並列型瞬低補償装置
JP2019003454A (ja) 交直変換器制御装置
US8237426B2 (en) Flux linkage compensator for uninterruptible power supply
JP2011188690A (ja) インバータの単独運転検出装置および単独運転検出方法
JP5760860B2 (ja) 無効電力補償装置
JP5776308B2 (ja) 系統連系電力変換装置
JP2018121379A (ja) 周波数変換システムの制御装置
JP2008048520A (ja) アクティブフィルタ及び電圧フリッカ抑制方法
JP2013212021A (ja) 無効電力補償装置
JP5491075B2 (ja) 電力変換装置
CN104485687B (zh) 基于电流连续模式和电流断续模式切换的光伏并网逆变器pi谐振控制方法
JP5678844B2 (ja) 電力変換器の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741150

Country of ref document: EP

Kind code of ref document: A1