WO2010091664A1 - Dispositif et procédé pour relier un dispositif de mesure optique à un volume de mesure - Google Patents

Dispositif et procédé pour relier un dispositif de mesure optique à un volume de mesure Download PDF

Info

Publication number
WO2010091664A1
WO2010091664A1 PCT/DE2010/000149 DE2010000149W WO2010091664A1 WO 2010091664 A1 WO2010091664 A1 WO 2010091664A1 DE 2010000149 W DE2010000149 W DE 2010000149W WO 2010091664 A1 WO2010091664 A1 WO 2010091664A1
Authority
WO
WIPO (PCT)
Prior art keywords
attachment
optical element
optical
measuring volume
measuring
Prior art date
Application number
PCT/DE2010/000149
Other languages
German (de)
English (en)
Inventor
Marina Gaastra
Thomas Bartnitzki
Karl Nienhaus
Tobias Kuhlen
Peter Jander
Original Assignee
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) filed Critical Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Priority to EP10711991A priority Critical patent/EP2396643A1/fr
Publication of WO2010091664A1 publication Critical patent/WO2010091664A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N15/1436Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/151Gas blown

Definitions

  • the present invention relates to a device and a method for connecting an optical measuring device to a measuring volume in which a medium to be measured flows, with a partition wall for separating the optical measuring device from the measuring volume, an optical element for the passage of optical radiation, the closing an opening formed in the partition wall, and a tubular header disposed on one side of the partition wall in front of the optical element so that a laser or light beam can pass from an opposite side of the partition wall through the optical element and the header into the measuring volume.
  • Optical measuring devices are used in many technical fields, for example to measure the material composition or other properties of a medium in a measuring volume. This can be done for example with spectroscopic measurement techniques.
  • An exemplary application deals with the online analysis of dust particles in drilling technology and the underground material extraction by means of shearers. During the drilling / extraction process, dust particles are analyzed with LIBS (laser-induced breakdown spectroscopy) and the content of the elements in a sucked-in dust sample is determined in real time.
  • LIBS laser-induced breakdown spectroscopy
  • the interface between the optical Measuring device and the medium to be analyzed should ensure an air- and water-tight separation and at the same time allow the optical passage of the laser and plasma radiation.
  • the optical measuring device is separated from the measuring volume via a dividing wall with a quartz glass pane arranged therein.
  • Coatings can be easily removed, do not always work reliably and can affect the optical properties of the material of the optical component.
  • the attachment is tubular, enclosing the lens on one side and has an inner wall with a tooth-shaped profile on an opening opposite the lens.
  • the sample material evaporating on impact of a laser beam forms a rapidly expanding microplasma, of which a part passes into the interior of the attachment.
  • the air in the interior is compressed and inhibited the spread of the plasma.
  • Due to the special shape of the opening is achieved that it comes at the onset of microplasma in the intent to vortex formation with simultaneous plasma cooling, so that only a small proportion of the evaporated material can reach the lens.
  • a header is not suitable for holding dust particles in the above-mentioned exemplary application.
  • the object of the present invention is to provide a device for connecting an optical measuring device to a measuring volume and an associated method with which also prevents the deposition of dust particles on an optical element of the device without additional effort and the distance between the optical element and the location of the measurement or analysis can be kept substantially free of dust. Presentation of the invention
  • the proposed device has a partition wall for separating the optical measuring device from the measuring volume, in or on which an optical element for the passage of optical radiation is arranged through the dividing wall, which closes an opening in the dividing wall.
  • a tubular attachment is arranged in such a way on one side of the partition in front of the optical element and possibly connected to this, that a light beam, in particular a laser beam, can pass from an opposite side of the partition through the optical element and the tubular attachment into the measuring volume
  • the partition can form, for example, a closed housing for the measuring device. It can also be formed by a boundary wall at least partially enclosing the measuring volume, for example a chamber or tube wall.
  • the optical element can be a pane, for example a quartz glass pane, or else an element required for the measurement, for example a lens for focusing a laser beam.
  • the optical element can in this case be introduced into the opening of the dividing wall or applied over the opening of the dividing wall.
  • the tubular attachment is a Double-sided component, which in the present application may have different cross-sectional shapes and sizes.
  • the tubular attachment may have a circular cross-section like a conventional tube or other cross-sectional shapes, for example a rectangular cross-sectional shape.
  • the tubular attachment can also taper in cross section from the optical element to the opposite opening.
  • the special feature of the proposed device is that in the tubular attachment and / or between the tubular attachment and the partition one or more air access openings are formed, can flow over the ambient air from outside the measuring volume in the tubular attachment.
  • the proposed device may be formed without a partition.
  • the device has only one optical element for the passage of optical radiation and a tubular attachment, which is arranged in front of the optical element and optionally connected to this, that a light beam, in particular a laser beam, through the optical element and the tubular intent can get into the measuring volume.
  • the optical element can in this case close an open end of the attachment, for example, be glued to this end or clamped to this end.
  • the tubular attachment and the optical element can in this case be designed in the same way as in the above-described embodiment with partition.
  • the special feature of the proposed device is that in the tubular attachment and / or between the tubular attachment and optical element one or more Beerzugangs- openings are formed, via the ambient air, if necessary, filtered from outside of the measuring volume in the tubular intent nachströmen can.
  • one or more filters may be arranged on or in the air access openings.
  • ambient air is understood as meaning the air which is present outside the measuring volume in the vicinity of the optical element.
  • This can also be clean air, with which the environment of the optical element, in particular in the region of the air access openings, is filled.
  • Essential here is only that this air is sucked alone by the intentional caused by the flow of the medium to be measured negative pressure in the intent, so that neither compressed air nor other aids must be used for this purpose.
  • the proposed device is used to be measured media that flow past the device in the measurement volume.
  • the medium for example an air flow with dust particles
  • the place of measurement is usually the Focus of the directed through the optical element and the tubular attachment in the measuring volume light or laser beam, which lies in front of the optical element opposite the opening of the intent.
  • a negative pressure within the tubular attachment is generated by the medium flowing past this opening, through which ambient air is sucked in via the one or more air access openings.
  • the medium to be measured for example a gas-dust mixture
  • the medium to be measured flows past the opening of the tubular attachment remote from the optical element in order to increase the negative pressure in the attachment produce.
  • This is usually the case anyway in the application of the online analysis of dust particles in the drilling technique mentioned in the introduction, since the gas-dust mixture is extracted there via corresponding pipes or hoses.
  • this flow is generated by additional means in the measuring volume, for example by a pump or a fan.
  • the tubular attachment can be placed on the outside of the partition or integrated into the partition.
  • the optical element can, for example, be inserted into the corresponding open end of the attachment or applied to this end.
  • the tubular attachment can be introduced with its opening facing away from the optical element through an opening in the wall of the tube or the chamber.
  • the tubular attachment is preferably connected over its circumference dust or airtight with the chamber or tube wall, wherein the air access openings outside the chamber or the
  • a chamber or a pipe section as part of the present device, which determines the measurement volume. The medium to be measured is then introduced into this chamber or pipe section.
  • the tubular attachment is preferably formed cone-shaped, whereby it differs from the optical Element starting tapers to the opposite opening.
  • the opening diameters of both sides of the tubular attachment are preferably adapted to the beam dimensions of the light or laser beam, which is focused, for example, to a location at a distance of up to 50 mm in front of the opening of the tubular attachment in the measurement volume.
  • a similar effect can be achieved with a tubular attachment, which does not taper, but is closed on the opposite side of the optical element to a correspondingly small opening for the passage of the light or laser beam.
  • the proposed device and the associated method are suitable, for example, for the online analysis of dust particles in the drilling technique and the underground material extraction by means of shearer loaders, wherein the measuring device is preferably designed for the implementation of LIBS.
  • the measuring device is preferably designed for the implementation of LIBS.
  • This then includes, inter alia, a laser, arranged in front of the laser optics for focusing the laser beam to a location in front of the outlet opening of the tubular intent and a spectrometer as an analysis unit for determining the spectral lines emitted by the plasma and thus the elements contained in the medium.
  • FIG. 1 is a schematic representation of the operation of the proposed device
  • FIG. 2 is an illustration of an embodiment of the device in cross section.
  • FIG. 1 shows a highly schematic representation of the mode of operation of the proposed device and of the associated method.
  • a dust-air mixture 2 flowing through a pipe 1 is to be measured in order to determine the material composition of the dust.
  • the dust-air mixture 2 is in this case sucked or blown through a pipe, not shown in the arrow direction through the tube 1.
  • the measurement is carried out with a laser beam 3, which is in the
  • Measuring volume is focused on a location 4.
  • an opening is provided in the side wall of the tube 1, through which the proposed device with the optical window 5 and the attached, in this case conical attachment 6 is partially inserted.
  • the laser beam 3 By focusing the laser beam 3, a plasma is generated at the measuring location 4, the emitted radiation in turn can pass through the cone-shaped intent 6 and the optical window 5 and can reach for analysis in a not shown spectrometer.
  • Figure 2 shows a possible embodiment of the proposed device in cross-section perpendicular to the flow of the dust-air mixture.
  • the tube 1 can be seen, through which the dust-air Gernisch flows.
  • the present device has a dividing wall 8, in which air inlet channels 9 are formed for the entry of ambient air into the conical attachment 6.
  • an optical window 5 is inserted in a corresponding opening. This can be done, as in the present example, via corresponding sealing rings 10 and a retaining ring 11, which is screwed onto the inside of the partition 8.
  • the cone-shaped attachment 6 may, for example, have an opening directed to the optical element 5 with a diameter of 25 to 30 mm and an opening facing away from it and of 1 to 3 mm facing away from the measurement volume.
  • the focus of the laser beam is in this example about 1 to 3 mm outside this Opening.
  • the length of the attachment 6 is in this example about 2 to 3 cm.
  • the tube 1 which may for example also be a flexible tube, is clamped in the device over a portion of its length in which the measurement is to take place.
  • a clamping device 13 is provided, which is connected via corresponding clamping means 12 with the partition wall 8, as can be seen from Figure 2. It goes without saying that the outer periphery of the conical attachment 6 is inserted in the opening of the tube 1, that a preferably dust-tight connection is ensured.

Abstract

La présente invention concerne un dispositif et un procédé pour relier un dispositif de mesure optique à un volume de mesure dans lequel un fluide (2) à mesurer circule. Le dispositif comporte une cloison (8) pour séparer le dispositif de mesure optique du volume de mesure et un élément optique (5) pour le passage d'un rayonnement optique, lequel élément ferme une ouverture formée dans la cloison (8). Sur un côté de la cloison (8), un adaptateur tubulaire (6) est appliqué sur l'élément optique (5) de telle manière qu'un faisceau lumineux ou laser (3) puisse parvenir dans le volume de mesure en provenance d'un côté opposé de la cloison (8) à travers l'élément optique (5) et l'adaptateur tubulaire (6). Dans l'adaptateur tubulaire (6) et/ou dans un élément de liaison entre l'adaptateur tubulaire (6) et la cloison (8) sont formées une ou plusieurs ouvertures d'entrée d'air (9) par lesquelles l'air ambiant (7) peut s'écouler de l'extérieur du volume de mesure dans l'adaptateur tubulaire (6). Le dispositif et le procédé permettent de manière simple et peu onéreuse une mesure avec un dispositif de mesure optique qui empêche un encrassement de l'élément optique par le fluide à mesurer.
PCT/DE2010/000149 2009-02-10 2010-02-09 Dispositif et procédé pour relier un dispositif de mesure optique à un volume de mesure WO2010091664A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10711991A EP2396643A1 (fr) 2009-02-10 2010-02-09 Dispositif et procédé pour relier un dispositif de mesure optique à un volume de mesure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009008232.8 2009-02-10
DE102009008232A DE102009008232A1 (de) 2009-02-10 2009-02-10 Einrichtung und Verfahren zur Anbindung einer optischen Messeinrichtung an ein Messvolumen

Publications (1)

Publication Number Publication Date
WO2010091664A1 true WO2010091664A1 (fr) 2010-08-19

Family

ID=42144733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/000149 WO2010091664A1 (fr) 2009-02-10 2010-02-09 Dispositif et procédé pour relier un dispositif de mesure optique à un volume de mesure

Country Status (3)

Country Link
EP (1) EP2396643A1 (fr)
DE (1) DE102009008232A1 (fr)
WO (1) WO2010091664A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115468948A (zh) * 2022-11-15 2022-12-13 中国科学院沈阳自动化研究所 高低起伏运动物料激光诱导击穿光谱在线检测装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201763A1 (de) * 2014-01-31 2015-08-06 Siemens Aktiengesellschaft Probenaufnahme für eine Messeinrichtung zum Messen einer Staubprobe
FR3020462B1 (fr) * 2014-04-25 2016-05-06 Ifp Energies Now Systeme de mesure de la composition d'un liquide par spectroscopie sur plasma induit par laser
DE202022104717U1 (de) 2022-08-19 2023-11-22 Hydro Aluminium Recycling Deutschland Gmbh System zum Analysieren und Sortieren eines Materialteils

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321265A (en) * 1962-06-27 1967-05-23 Clave Serge Optical viewing device protected against heat and impact of moving particles
US3569660A (en) * 1968-07-29 1971-03-09 Nat Res Dev Laser cutting apparatus
US3696230A (en) * 1970-01-19 1972-10-03 Hughes Aircraft Co Laser lens cooling and cleaning system
DE2650123A1 (de) 1976-04-29 1977-11-17 Jenoptik Jena Gmbh Vorsatz zur verminderung der verschmutzung eines objektives zur strahlfokussierung durch materialdaempfe, insbesondere fuer zwecke der laser-mikrospektralanalyse und der laserstrahl-materialbearbeitung
US5360980A (en) * 1993-02-26 1994-11-01 High Yield Technology Structure and method for providing a gas purge for a vacuum particle sensor installed in a corrosive or coating environment
US20030132210A1 (en) * 2000-11-07 2003-07-17 Koji Fujii Optical machining device
WO2004031742A1 (fr) * 2002-10-05 2004-04-15 Oxford Lasers Limited Systeme d'imagerie de particules

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE661589C (de) * 1930-11-19 1938-06-22 Siemens & Halske Akt Ges Rauchdichtemesser
US2812686A (en) * 1953-12-22 1957-11-12 Johns Manville Smoke photometer
DE1220632B (de) * 1962-06-27 1966-07-07 Serge Clave Periskop mit Vorderpupille und auf die Kuehlumhuellung aufgesetztem optischem Element
DE1286085C2 (de) * 1967-01-03 1974-03-28 Siemens Ag Schutzgehaeuse fuer Industriefernsehkameras zur Beobachtung von Feuerraeumen od. dgl.
DD219059A3 (de) * 1982-09-14 1985-02-20 Freiberg Brennstoffinst Periskop fuer hochtemperatur-reaktoren
DE3638472A1 (de) * 1985-11-22 1987-05-27 Volkswagen Ag Einrichtung zur optischen vermessung oder beobachtung von abgasen einer dieselbrennkraftmaschine
DE19815975A1 (de) * 1998-04-09 1999-10-21 Babcock Anlagen Gmbh Schutzgehäuse für Beobachtungsgeräte
DE10309604A1 (de) * 2003-03-05 2004-09-23 Siemens Ag Absorptionsgas-Sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321265A (en) * 1962-06-27 1967-05-23 Clave Serge Optical viewing device protected against heat and impact of moving particles
US3569660A (en) * 1968-07-29 1971-03-09 Nat Res Dev Laser cutting apparatus
US3696230A (en) * 1970-01-19 1972-10-03 Hughes Aircraft Co Laser lens cooling and cleaning system
DE2650123A1 (de) 1976-04-29 1977-11-17 Jenoptik Jena Gmbh Vorsatz zur verminderung der verschmutzung eines objektives zur strahlfokussierung durch materialdaempfe, insbesondere fuer zwecke der laser-mikrospektralanalyse und der laserstrahl-materialbearbeitung
US5360980A (en) * 1993-02-26 1994-11-01 High Yield Technology Structure and method for providing a gas purge for a vacuum particle sensor installed in a corrosive or coating environment
US20030132210A1 (en) * 2000-11-07 2003-07-17 Koji Fujii Optical machining device
WO2004031742A1 (fr) * 2002-10-05 2004-04-15 Oxford Lasers Limited Systeme d'imagerie de particules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2396643A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115468948A (zh) * 2022-11-15 2022-12-13 中国科学院沈阳自动化研究所 高低起伏运动物料激光诱导击穿光谱在线检测装置及方法

Also Published As

Publication number Publication date
EP2396643A1 (fr) 2011-12-21
DE102009008232A1 (de) 2010-08-19

Similar Documents

Publication Publication Date Title
WO2010091664A1 (fr) Dispositif et procédé pour relier un dispositif de mesure optique à un volume de mesure
EP2428793B1 (fr) Dispositif de rinçage de gaz d'une surface limite optique et dispositif d'analyse optique
AT517948B1 (de) Kondensationspartikelzähler mit Flutungsschutz
DE10110066C1 (de) Meßsonde zur in-line-Bestimmung der Größe von bewegten Partikeln in transparenten Medien
DE102010010112B4 (de) Vorrichtung zur selektiven Bestimmung der Menge von Ölnebel oder Aerosolen
DE102013213730B4 (de) Prozess-Schnittstelle eines nach dem Durchlichtverfahren arbeitenden Prozess-Gasanalysators
DE102014104849A1 (de) Venturiverdünner
DE202016106825U1 (de) Vorrichtung zur Teilung von Proben
AT512728B1 (de) Verfahren zur Kalibrierung eines Streulichtmessgerätes
DE102005035932A1 (de) Optischer Sensor für in-situ Messungen
DE102016122111A1 (de) Kondensationspartikelzähler mit Sättigungsabschnitt
EP3460452B1 (fr) Analyseur de gaz destiné à l'analyse optique de gaz
DE10337242B4 (de) Schmutzabschirmung an einem optischen Gerät
DE202018107324U1 (de) Spektrometer mit Prozessanschluss
DE10111833C1 (de) Messsonde zur Bestimmung der Grösse von bewegten Partikeln in transparenten Medien
DE102022119186B3 (de) Gasanalysator zur optischen Gasanalyse
DE102018133122B4 (de) Spektrometer mit Prozessanschluss
WO2013013882A1 (fr) Dispositif et procédé de mesure d'une concentration en particules d'un aérosol
DE10234590C1 (de) Vorrichtung zum Detektieren von Unregelmäßigkeiten in der Topographie von Oberflächen an Gegenständen
DE10132445A1 (de) Vorrichtung zur Gesamtstaubmessung vor allem in ex-geschützten Bereichen und im untertägigen Bergbau
DE60311179T2 (de) Anschlageinrichtung für einen Plasmabrenner
AT510630B1 (de) Spektrometer
DE102013102499A1 (de) Dispergierendes Zusatzgerät für eine Messsonde zur Bestimmung der Größe von bewegten Partikeln in Partikelströmungen
AT517849B1 (de) Kondensationspartikelzähler mit Sättigungsabschnitt
DE202022104346U1 (de) Gasanalysator zur optischen Gasanalyse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10711991

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010711991

Country of ref document: EP