WO2010090120A2 - マイクロ波加熱装置 - Google Patents

マイクロ波加熱装置 Download PDF

Info

Publication number
WO2010090120A2
WO2010090120A2 PCT/JP2010/051108 JP2010051108W WO2010090120A2 WO 2010090120 A2 WO2010090120 A2 WO 2010090120A2 JP 2010051108 W JP2010051108 W JP 2010051108W WO 2010090120 A2 WO2010090120 A2 WO 2010090120A2
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
waveguide
heated
sub
magnetron
Prior art date
Application number
PCT/JP2010/051108
Other languages
English (en)
French (fr)
Other versions
WO2010090120A9 (ja
WO2010090120A3 (ja
Inventor
慎一郎 古屋
裕文 天野
久我 真澄
利夫 小倉
Original Assignee
株式会社サタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009027847A external-priority patent/JP5102792B2/ja
Priority claimed from JP2009027846A external-priority patent/JP5102791B2/ja
Application filed by 株式会社サタケ filed Critical 株式会社サタケ
Priority to EP10738454.7A priority Critical patent/EP2395814A4/en
Priority to CN2010800070362A priority patent/CN102308668B/zh
Priority to US13/138,328 priority patent/US20110315678A1/en
Publication of WO2010090120A2 publication Critical patent/WO2010090120A2/ja
Publication of WO2010090120A3 publication Critical patent/WO2010090120A3/ja
Publication of WO2010090120A9 publication Critical patent/WO2010090120A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/701Feed lines using microwave applicators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas

Definitions

  • the present invention relates to a microwave heating apparatus that irradiates an object to be heated with microwave power, and more particularly to a microwave heating apparatus that performs heating processing or sterilization of individual foods stored in a food pack or the like.
  • a microwave oven or the like is widely known as an applicator for heating an object to be heated such as food using microwave power. It is also widely practiced to reheat individual foods stored in food packs using such a microwave oven.
  • the shape of the microwave oven serving as the microwave irradiation chamber is a cube, and the volume of the microwave oven is considerably larger than that of the individual food. For this reason, the individual foods to be irradiated are not uniformly irradiated with microwaves, and so-called heating unevenness occurs. Therefore, in the microwave oven, the microwave irradiation is made uniform by a stirrer (metal rotating blade) that disturbs microwaves, a turntable that rotates a tray (a tray: a table), or the like.
  • the microwave oven has a large microwave loss due to the large size of the microwave oven.
  • the heating efficiency (the microwave power absorbed by the food for the microwave power supplied to the microwave oven) is reduced. Ratio) is poor. Therefore, the microwave oven is uniformly irradiated using a plurality of microwave generators to reduce the uneven heating of the object to be heated and improve the heating efficiency.
  • a technique for improving the heating efficiency by concentrating microwaves in the vicinity of an object to be heated using a rectangular waveguide and a circular waveguide see, for example, Patent Document 1.
  • a magnetron is attached to a rectangular waveguide, and microwave power is applied to an object to be heated contained in the circular waveguide by microwave power transmitted from the rectangular waveguide to the circular waveguide. Therefore, the object to be heated can be efficiently heated.
  • the heating efficiency can be increased without using a rotation mechanism of a stirrer or a turntable, but if the object to be heated is not similar in shape to a circular waveguide, In some cases, microwaves cannot be concentrated on the object to be heated. In such a case, the heating efficiency cannot be improved. This problem is the same in microwave heaters (microwave ovens) for home use and business use.
  • the present invention has been made in view of such problems, and it is possible to uniformly and efficiently irradiate microwaves to an object to be heated without using a rotating mechanism, and to output microwave power to be radiated with high output.
  • An object of the present invention is to provide a microwave heating apparatus.
  • a microwave heating apparatus of the present invention has a waveguide for transmitting microwave power and a shape for uniformly dispersing the microwave transmitted from the waveguide to an object to be heated. And a dielectric plate having a relative dielectric constant greater than 1, and an applicator for irradiating the object to be heated with the microwave power irradiated from the waveguide through the dielectric plate, and In order to increase the microwave power to be irradiated, a T-type waveguide connected so that the electric field directions are orthogonal to each other is adopted.
  • the microwave passes through the fluororesin plate by optimizing the shape of the dielectric plate (for example, fluororesin plate such as polytetrafluoroethylene) having a relative dielectric constant greater than 1 and low dielectric loss.
  • the microwave can be refracted by the wavelength shortening effect and the microwave can be uniformly irradiated to the object to be heated.
  • the object to be heated can be efficiently and uniformly irradiated with microwaves without providing a stirrer that scatters microwaves or a turntable that rotates the object to be heated in the applicator (microwave irradiation chamber). .
  • the T-type waveguide adopted by the present invention does not interfere with each other even if two magnetrons are operated simultaneously, and can supply the applicator with the sum of the microwave powers from the respective magnetrons. As a result, it is possible to stably supply high-power microwave power to a narrow space where the number of microwaves applied to the applicator is limited, and to reduce the number of waveguides relative to the number of magnetrons. It becomes possible.
  • FIG. 2 is a perspective view showing an opening of a launcher at a portion connected to the WRJ-2 waveguide of the power monitor waveguide shown in FIG.
  • FIG. 2 is a side view showing the T-type microwave synthesis waveguide 6 shown in FIG. 1 in cross section.
  • the dimensions are filled in. It is the figure which showed the C surface in FIG. 4a.
  • the dimensions are filled in. It is the figure which showed the B surface in FIG. 4a.
  • the dimensions are filled in.
  • FIG. 5 is a diagram showing the electric field direction of the C plane in the T-type microwave synthesis waveguide 6 of FIG. 4. It is the temperature distribution figure which measured the effect of the microwave heating device of the embodiment by the present invention compared with a comparative example, and is a figure showing the measurement result of a comparative example. It is the temperature distribution figure which measured the effect of the microwave heating device of the embodiment by the present invention compared with the comparative example, and is the figure showing the measurement result of the embodiment by the present invention.
  • FIG. 1 is a configuration diagram of a microwave heating apparatus according to an embodiment of the present invention using a T-type waveguide that performs microwave synthesis.
  • the microwave heating apparatus 10 includes magnetrons 1a and 1b, magnetron-dedicated launchers (magnetron couplers) 2a and 2b, tapered portions 3a and 3b, power monitor waveguides 4a and 4b, and tapered waveguides. It comprises tubes 5a and 5b, a T-type microwave synthesis waveguide 6 comprising a main waveguide 6a and a sub-waveguide 6b, and an applicator 8 which is a heating container.
  • the magnetron 1a is a first magnetron
  • the magnetron 1b is a second magnetron, both of which generate microwaves having a frequency of 2.45 GHz.
  • the main waveguide is composed of a launcher 2a connected to the magnetron 1a (first magnetron), a tapered portion 3a, a power monitor waveguide 4a, a tapered waveguide 5a, and a main waveguide 6a.
  • the tube has a configuration of a launcher 2b, a tapered portion 3b, a power monitor waveguide 4b, a tapered waveguide 5b, and a sub-waveguide 6b connected to the magnetron 1b (second magnetron).
  • Magnetrons 1a and 1b which are types of bipolar vacuum tubes, are attached to launchers 2a and 2b having an opening width of 95.3 mm and a height of 54.6 mm, respectively.
  • the width of the opening is the length in the X-axis direction perpendicular to the traveling direction of the microwaves generated by the magnetrons 1a and 1b, and the height of the opening is the Y-axis perpendicular to the traveling direction of the microwave. The length of the direction.
  • the launchers 2a and 2b are integrated with a tapered portion having tapered portions 3a and 3b for joining to a 2.45 GHz standard waveguide: WRJ-2 (width size 109.2 mm, height size 54.6 mm). . Therefore, the launchers 2a and 2b are connected to one ends of the power monitor waveguides 4a and 4b configured by the WRJ-2 waveguide via the tapered portions 3a and 3b.
  • the power monitor waveguides 4a and 4b are devices for measuring the traveling wave power and the reflected wave power passing through the WRJ-2 waveguide formed inside the power monitor waveguides 4a and 4b themselves. .
  • the traveling wave power is the microwave power transmitted from the magnetron 1a, 1b to the applicator 8, and the reflected wave power is reflected by the applicator 8 and transmitted to the magnetron 1a, 1b. Microwave power.
  • the other ends of the power monitor waveguides 4a and 4b are connected to one ends of the tapered waveguides 5a and 5b, and the other ends of the tapered waveguides 5a and 5b are connected to the main waveguide 6a and the sub waveguide 6b. It is connected to the constructed T-type microwave synthesis waveguide 6. And it is comprised so that the to-be-heated object (not shown) inside the applicator 8 may be irradiated with the microwave electric power of magnetron 1a, 1b synthesize
  • both microwave electric fields that is, the electric field direction 10a of the main microwave and the electric field direction 10b of the sub-microwave
  • the power supplied to the applicator 8 is the sum of the microwave power transmitted through the main waveguide 6a and the microwave power transmitted through the sub waveguide 6b. In this way, it is possible to supply the applicator 8 with the microwave power of the cylinder output in which the two microwave powers are combined.
  • FIG. 2 is a sectional view of the configuration of the applicator 8 of the present invention.
  • the applicator 8 has a cylindrical shape and is configured with a minimum volume from the viewpoint of maximizing the heating efficiency.
  • the inner diameter of the volume is ⁇ 150 mm, and the height is 75 mm.
  • an object to be heated 12 such as food is placed on the upper surface of the metal stand 11.
  • a fluororesin spacer 13 cut out in a conical shape is disposed on the top of the article 12 to be heated.
  • the fluororesin spacer 13 has an outer diameter of ⁇ 150 mm and a thickness of 30 mm, and a conical cutout is formed on the surface facing the object to be heated 12.
  • This notch has a conical shape with a bottom diameter of 150 mm, a height from the bottom to the top surface of 20 mm, and a top diameter of 20 mm.
  • the microwave power synthesized in the T-shaped waveguide 1 is irradiated to the object to be heated 12 through the fluororesin spacer 13 cut out in a conical shape.
  • the T-shaped waveguide 7 is positioned on the upper surface side of the cylindrical applicator 8, and a fluororesin spacer 13 having a conical cut shape is attached to the inner surface of the cylindrical applicator 8 just below it. It has been.
  • the synthesized microwave power transmitted from the T-shaped waveguide 7 and having a difference in electric field direction of 90 degrees is irradiated to the food that is the object to be heated 12 through the fluororesin spacer 13.
  • Fluororesin generally has a relative dielectric constant ⁇ of about 2 (at 2.45 GHz) and has a low microwave loss (tan ⁇ ). Therefore, it is generally used as a microwave transmission material for partition plates and the like. Yes. That is, the fluororesin is used as a thin partition plate so that water vapor or oil vapor generated from the object to be heated 12 does not flow into the waveguide.
  • the speed of the microwave passing through the fluororesin is 1 / ⁇ in vacuum, and the wavelength is also 1 / ⁇ times the wavelength ⁇ o in vacuum.
  • the wavelength of the microwave is shortened. Therefore, by optimizing the fluororesin spacer 13 by cutting it into a conical shape, the microwave is refracted. Since the object to be heated 12 can be dispersed and uniformly irradiated, the object to be heated 12 can be efficiently irradiated with microwaves.
  • the fluororesin spacer 13 having a conical cut shape exhibits a refraction action similar to that of the concave lens of the optical system, and therefore, the synthetic micro-fiber introduced into the applicator 8 from the T-type waveguide 7.
  • the wave is refracted by the fluororesin spacer 13 and dispersed throughout the object to be heated 12.
  • the synthetic microwave can be irradiated in a concentrated manner on the area of the object 12 to be heated.
  • the microwave is concentrated on the object to be heated 12.
  • the object to be heated 12 can be uniformly irradiated, the object to be heated 12 can be efficiently heated.
  • a drain receiving tray 14 for receiving a drain and a drain pit 15 for discharging the drain are provided at a lower portion of a metal stand 11 made of a metal plate or a punching metal. If the cradle is made of a microwave permeable material instead of the metal cradle 11 and the drain tray 14 is made of a metal material, the microwave irradiated from above is reflected by the drain pan 14 and heated. The object 12 can be irradiated. Thereby, the article to be heated 12 can be heated more efficiently.
  • the microwave heating apparatus of the present invention by optimizing the shape of the fluororesin plate such as polytetrafluoroethylene, the microwave is refracted when entering and exiting the fluororesin plate. Utilizing this phenomenon, the object 12 can be uniformly irradiated with microwaves. That is, even if there is no stirrer that scatters microwaves in the applicator 8 or a turntable nore that rotates the object to be irradiated, the microwaves can be uniformly irradiated to the object 12 to be heated.
  • the object to be heated 12 can be selectively irradiated with microwaves, and the object to be heated 12 selectively irradiated with microwaves can be heated uniformly.
  • FIG. 4 is a diagram showing detailed dimensions of the T-type microwave synthesis waveguide 6 shown in FIG. 1, FIG. 4a is a cross-sectional view of the T-type microwave synthesis waveguide 6, and FIG. 4c shows the B side of FIG. 4a.
  • the T-type microwave synthesis waveguide 6 is configured such that a main waveguide 6a and a sub-waveguide 6b are orthogonal to each other.
  • the size of the opening (A surface) of the main waveguide 6a to which the microwave power from the magnetron 1a (first magnetron) is transmitted is 80 mm ⁇ 80 mm (80 mm square) as shown in FIG. ). That is, the microwave power from the magnetron 1a is one end of the main waveguide 6a of the T-type microwave synthesis waveguide 6 through the launcher 2a, the power monitor waveguide 4a, and the tapered waveguide 5a. It is transmitted to the opening of the 80mm mouth on the surface side.
  • the microwave power from the other magnetron 1 b (second magnetron) is transmitted to the sub-waveguide 6 b constituting the T-type microwave synthesis waveguide 6.
  • the sub-waveguide 6b is disposed perpendicular to the side surface of the main waveguide, and the size of the coupling opening (B surface) with the main waveguide 6a is 80 mm ⁇ 40 mm as shown in FIG. 4c. Yes. That is, the dimension in the X-axis direction (width a) orthogonal to the traveling direction (tube axis direction) of the microwave generated by the magnetron 1b is 80 mm, and the traveling direction (tube axis direction) of the microwave generated by the magnetron 1b. ) In the Y-axis direction (height b) orthogonal to 40 mm.
  • the rectangular waveguide has a rectangular inner cross section perpendicular to the tube axis direction (Z-axis direction).
  • the dimension of one side of the rectangle is referred to as a width a
  • the dimension of the other side perpendicular thereto Is referred to as height b. That is, the width (a) and height (b) are independent of the direction in which the waveguide is actually arranged.
  • the size of the opening (A surface) with the main waveguide 6a in the T-type microwave synthesis waveguide 6 is 80 mm ⁇ 80 mm, and the opening (B surface) of the sub-waveguide 6b.
  • the dimension is 80 mm ⁇ 40 mm
  • the direction of the electric field formed by the microwave power transmitted from the magnetron 1a to the main waveguide 6a and the microwave transmitted from the magnetron 1b to the sub-waveguide 6b are transmitted.
  • the directions of the electric field formed by the wave power are orthogonal to each other.
  • FIG. 5 is a diagram showing the electric field direction of the C plane in the T-type microwave synthesis waveguide 6 of FIG. That is, FIG. 5 shows the direction of the electric field of the microwave transmitted from the magnetron 1a to the main waveguide 6b when viewed from the C-plane side of the main waveguide 6a (that is, the surface side irradiated to the applicator 8 in FIG. 1).
  • a main microwave electric field direction 10a referred to as a main microwave electric field direction 10a
  • a sub microwave electric field direction 10b transmitted from the magnetron 1b through the sub waveguide 6b.
  • the electric field direction 10a of the main microwave and the electric field direction 10b of the sub microwave are orthogonal with a direction difference of 90 degrees.
  • both microwave electric fields having a direction difference of 90 degrees are supplied to the applicator (microwave irradiation chamber) 8 of FIG. 1 from the C-plane side of the main waveguide 6a, and the supplied power is the magnetron 1a.
  • the microwave power and the microwave power of the magnetron 1b are supplied to the applicator 8 with the high-power microwave power obtained by synthesizing the microwave power of the magnetrons 1a and 1b.
  • the microwave power of the magnetron 1a and the microwave power of the magnetron 1b are synthesized and do not cause microwave interference with each other.
  • the reason why the microwave power of the magnetron 1a and the microwave power of the magnetron 1b do not cause microwave interference is that the direction of the electric field formed by the magnetrons 1a and 1b is 90 degrees and the direction of the electric field is This is because the size of a part of the waveguide is limited so that the microwave from the opposite magnetron having the direction difference of 90 degrees is not transmitted.
  • the reason why microwave interference does not occur will be described in detail.
  • the in-tube wavelength ⁇ g of the microwave transmitted through the main waveguide 6a can be expressed by the following equation (1).
  • ⁇ g ⁇ / [1 ⁇ ( ⁇ / 2a) 2 ] 1/2 (1)
  • the width (a) is the width dimension of the main waveguide 6a and the sub-waveguide 6b (vertical surface width dimension with respect to the microwave electric field direction). From FIG. 3 and FIG. The vertical plane width dimension with respect to is 8 cm for each component. That is, the width (a) is 8 cm.
  • the guide wavelength ⁇ g is 18.9 cm.
  • the wavelength becomes as long as 18.9 cm, and microwaves having electric field components in two orthogonal directions can be transmitted as they are.
  • the microwave from the magnetron 1a is transmitted to the sub-waveguide 6b side to cause microwave interference.
  • the direction of the microphone mouth electric field formed by the magnetron 1a is parallel to the microwave traveling direction of the sub-waveguide 6b, and the microwave is not transmitted to the sub-waveguide 6b. In other words, since the microwave electric field is not formed in the microwave traveling direction, the microwave from the magnetron 1a is not transmitted to the magnetron 1b and does not cause microwave interference.
  • the two magnetrons are operated alternately so that the two magnetrons do not receive microwave interference with each other, so the microwave power that can be supplied to the applicator is increased. I could't.
  • the microwave heating device 10 of the embodiment of the present invention even if the two magnetrons 1a and 1b are operated simultaneously, the microwaves do not cause mutual mutual interference, and the high output microwaves are supplied to the applicator 7. Electric power can be supplied.
  • the invention described in Japanese Patent No. 38881244 discloses a technique of combining microwave power generated from a plurality of magnetrons in one waveguide and supplying the combined microwave power to an applicator.
  • two magnetrons are attached to one surface side of one waveguide in order to supply high-power microwave power to a narrow space where an electrodeless lamp is a load.
  • the drive power supply is alternately switched to operate the two magnetrons alternately.
  • the two magnetrons are duty controlled. It is what.
  • FIG. 6 is a temperature distribution diagram in which the effect of the microwave heating apparatus according to the embodiment of the present invention is measured in comparison with the comparative example.
  • FIG. 6a shows the measured result of the comparative example
  • FIG. 6b shows the measured result of the present embodiment. Show. That is, in this figure, the temperature distribution when the food stored in the round pack is microwave-heated with an infrared radiation thermometer is measured depending on the presence or absence of the fluororesin spacer 13 notched in a conical shape shown in FIG. It is. 6A shows the temperature distribution when the fluororesin spacer 13 is not provided, and FIG. 6B shows the temperature distribution when the fluororesin spacer 13 is provided.
  • FIGS. 6a and 6b it can be seen that when the fluororesin spacer 13 is present (FIG. 6b), the object to be heated 12 is evenly irradiated with microwaves and the heating temperature is higher. That is, by using the microwave heating apparatus according to the present invention, the heating efficiency of the article to be heated 12 is increased, and the microwave can be uniformly irradiated to the article to be heated 12.
  • this invention was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the summary.
  • it is not limited to polytetrafluoroethylene or the like (fluororesin), and the object to be heated 12 can be uniformly irradiated with microwaves even if a silicone resin spacer notched in a conical shape is interposed.
  • the surrounding area is irradiated with microwaves rather than intensively irradiating the center with microwaves.
  • Better heating can be achieved.
  • the shape of the spacer is appropriately changed so that the microwave is irradiated more to the periphery than the center of the article to be heated 12. Or about the food in which the center part rose, heating of the center part is overdue.
  • the shape of the spacer is revised as appropriate so that a large amount of microwaves is irradiated on the central portion of the article to be heated 12.
  • the inside of the applicator 8 hermetically pressurized using a spacer 13 or the like, moisture loss from food can be prevented and the heated object 12 can be made uniform by steam filled in the applicator 8. Can be heated.
  • the heating characteristics of the microwave heating device can be completely changed by simply replacing the spacer 13. By such measures, heating according to the shape and purpose of the food can be performed.
  • the heating efficiency of the object to be heated is high, and the object to be heated can be uniformly irradiated, it can be effectively used for a microwave heating apparatus that performs heating processing and sterilization of individual foods. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

課題 回転機構を用いないで、被加熱物へ均一かつ効率よくマイクロ波を照射させることができるマイクロ波加熱装置を提供する。 解決手段 アプリケータ8は、最小限の容積の中で金属置き台11の上面に食品などの被加熱物12が載置されている。また、被加熱物12の上部には、円錐状に切り欠いたフッ素樹脂スペーサ13が配置されている。そして、T型導波管7で合成されたマイクロ波が、円錐状に切欠いたフッ素樹脂スペーサ13を介して被加熱物12に照射されるように構成されている。これにより、T型導波管7から伝送された90度の電界方向差を持つ合成マイクロ波は、フッ素樹脂スペーサ13の波長短縮作用によって屈折し、被加熱物12のエリアに集中して均一に照射される。したがって、ターンテーブルなどを設けなくても被加熱物12を均一に効率よく加熱することができる。

Description

マイクロ波加熱装置
 本発明は、マイクロ波電力を被加熱物へ照射するマイクロ波加熱装置に関し、特に、食品用パック等に収納された個食食品の加熱加工や殺菌などを行うマイクロ波加熱装置に関する。
 従来、マイクロ波電力を利用して食品などの被加熱物を加熱するアプリケータとして電子レンジなどが広く知られている。このような電子レンジを用いて食品用パックに収納されている個食食品を再加熱することも広く行われている。この場合、マイクロ波照射室となる電子レンジ庫内の形状が立方体であり、且つ、電子レンジ庫内容積が個食食品のそれに対しかなり大きくなっているのが一般的である。そのため、被照射物となる個食食品は、均一にマイクロ波が照射されず、所謂、加熱ムラの問題を生じる。したがって、電子レンジでは、マイクロ波を撹乱させるスターラ(金属製回転羽根)や、トレイ(受け皿:置き台)が回転するターンテーブルなどでマイクロ波照射の均一化を図っている。
 また、電子レンジ庫内が大きい分、庫内壁面でのマイクロ波損失が大きくなり、結果的には、加熱効率(電子レンジ庫内へ供給したマイクロ波電カに対する食品が吸収したマイクロ波電力の比)が悪いものとなる。したがって、複数のマイクロ波発生器を用いて電子レンジ庫内を均一に照射するなどして、被加熱物の加熱ムラを少なくしたり加熱効率を向上させたりする工夫がなされている。
 また、矩形導波管と円形導波管とを用いて被加熱物付近にマイクロ波を集中させ、加熱効率を向上させる技術も開示されている(例えば、特許文献1参照)。この技術によれば、矩形導波管にマグネトロンを取り付け、矩形導波管から円形導波管へ伝送されたマイクロ波電力により、その円形導波管に収納された被加熱物にマイクロ波電カを集中させているので、その被加熱物を効率的に加熱することができる。
特開昭63-299084号公報
 ところが、工業用で個食食品の加熱加工や殺菌を行う場合において、マイクロ波電力を均一に照射することは当然であるが、加熱効率を最大限に向上させて被加熱物に照射することができる個食食品専用のマイクロ波加熱装置の要求が高まっている。また、マイクロ波加熱装置の信頼性の面から、マイクロ波照射室であるアプリケータ内にスターラやターンテーブルの回転機構などを不要とするマイクロ波加熱装置が要求されている。また、特許文献1に開示された技術においては、スターラやターンテーブルの回転機構を用いないで加熱効率を上げることができるが、円形導波管と相似な形状の被加熱物でない場合は、その被加熱物にマイクロ波を集中させることができない場合がある。そのような場合は加熱効率を向上させることができない。この課題は、家庭用や業務用のマイクロ波加熱装置(電子レンジ)においても同じである。
 本発明はこのような問題点に鑑みてなされたものであり、回転機構を用いないで、被加熱物へ均一かつ効率よくマイクロ波を照射させることができること、及び照射させるマイクロ波電力を高出力なものとしたマイクロ波加熱装置の提供を目的とする。
 上記目的を達成するために、本発明のマイクロ波加熱装置は、マイクロ波電力を伝送する導波管と、この導波管から伝送されたマイクロ波を被加熱物へ均一分散させる形状であって、かつ比誘電率が1より大きい誘電体板を有し、導波管から照射されたマイクロ波電力を、誘電体板を介して被加熱物へ照射させるアプリケータとを備える構成とし、また、照射させるマイクロ波電力を高出力なものとするため、電界方向が直交するように接続されたT型導波管を採用している。
 本発明によれば、比誘電率が1より大きく誘電損失が小さい誘電体板(例えば、ポリテトラフルオロエチレンなどのフッ素樹脂板)の形状を最適化することにより、マイクロ波がフッ素樹脂板を通過するときの波長短縮効果によってマイクロ波を屈折させて、被加熱物ヘマイクロ波を均一に照射させることができる。その結果、アプリケータ(マイクロ波照射室)内にマイクロ波を散乱させるスターラや被加熱物を回転させるターンテーブルなどを設けなくても、被加熱物ヘマイクロ波を効率よく均一に照射させることができる。
 本発明が採用するT型導波管は、2個のマグネトロンを同時に動作させても相互のマイクロ波干渉がなく、かつ、それぞれのマグネトロンからのマイクロ波電力の和をアプリケータに供給することができるので、アプリケータヘのマイクロ波照射口数が制約される狭小空間へ高出力なマイクロ波電力を安定して供給することができると共に、マグネトロンの個数に対して導波管の個数を削減することが可能となる。
マイクロ波合成を行うT型導波管を用いた本発明の実施形態に係るマイクロ波加熱装置の構成図である。 本発明の実施形態に係るアプリケータの構成断面図である。 図1に示すパワーモニタ導波管のWRJ-2導波管に接続される部位のランチャの開口部を示す斜視図である。 図1に示すT型マイクロ波合成導波管6を断面で示した側面図である。寸法を記入している。 図4aにおけるC面を示した図である。寸法を記入している。 図4aにおけるB面を示した図である。寸法を記入している。 図4のT型マイクロ波合成導波管6におけるC面の電界方向を示す図である。 本発明による実施形態のマイクロ波加熱装置の効果を比較例と対比して実測した温度分布図であり、比較例の実測結果を示した図である。 本発明による実施形態のマイクロ波加熱装置の効果を比較例と対比して実測した温度分布図であり、本発明による実施形態の実測結果を示した図である。
 図1は、マイクロ波合成を行うT型導波管を用いた本発明の実施形態に係るマイクロ波加熱装置の構成図である。図1に示すように、マイクロ波加熱装置10は、マグネトロン1a,1b、マグネトロン専用のランチャ(マグネトロン結合器)2a,2b、テーパ部3a,3b、パワーモニタ導波管4a,4b、テーパ導波管5a,5b、及び主導波管6aと副導波管6bからなるT型マイクロ波合成導波管6と加熱容器であるアプリケータ8とを備えて構成されている。なお、マグネトロン1aは第1のマグネトロンであり、マグネトロン1bは第2のマグネトロンであって、いずれも、2.45GHzの周波数のマイクロ波を発生する。
 主導波管は、マグネトロン1a(第1のマグネトロン)に接続されるランチャ2a、テーパ部3a、パワーモニタ導波管4a、テーパ導波管5a、及び主導波管6aの構成であり、副導波管は、マグネトロン1b(第2のマグネトロン)に接続されるランチャ2b、テーパ部3b、パワーモニタ導波管4b、テーパ導波管5b、及び副導波管6bの構成である。
 2極真空管の一種であるマグネトロン1a, 1bは、それぞれ、開口部の幅95.3mm、高さ54.6mmのランチャ2a,2bに取り付けられている。なお、開口部の幅とは、マグネトロン1a, 1bが発生させたマイクロ波の進行方向に直交するX軸方向の長さであり、開口部の高さとはマイクロ波の進行方向に直交するY軸方向の長さである。
 ランチャ2a,2bは、2.45GHz用標準導波管:WRJ-2(幅寸法109.2mm、高さ寸法54.6mm)に接合するためのテーパ部3a,3bを有したテーパ部一体型となっている。したがって、ランチャ2a,2bは、このテーパ部3a,3bを介し、WRJ-2の導波管で構成されるパワーモニタ導波管4a,4bの一端に接続されている。また、パワーモニタ導波管4a,4bは、パワーモニタ導波管4a,4b自身の内部に構成されているWRJ-2導波管内を通過する進行波電力及び反射波電力を測定する装置である。なお、進行波電力とは、マグネトロン1a, 1bからアプリケータ8へ向かって伝送されるマイクロ波電力であり、反射波電力とは、アプリケータ8などで反射してマグネトロン1a, 1bへ向かって伝送されるマイクロ波電力である。
 また、パワーモニタ導波管4a,4bの他端は、テーパ導波管5a,5bの一端に接続され、テーパ導波管5a,5bの他端が主導波管6a及び副導波管6bから構成されるT型マイクロ波合成導波管6に接続されている。そして、T型マイクロ波合成導波管6で合成されたマグネトロン1a,1bのマイクロ波電力がアプリケータ8の内部の被加熱物(図示せず)に照射されるように構成されている。
 このようにして、90度の方向差を持つ両者のマイクロ波電界(つまり、主マイクロ波の電界方向10aと副マイクロ波の電界方向10b)は、主導波管6aのC面側から図1,2に示すアプリケータ(マイクロ波照射室)8内に供給される。したがって、アプリケータ8への供給電力は、主導波管6aを伝送したマイクロ波電力と副導波管6bを伝送したマイクロ波電力との和となる。このようにして、2つのマイクロ波電力が合成された筒出力のマイクロ波電力をアプリケータ8へ供給することができる。
 図2は、本発明のアプリケータ8の構成断面図である。図2に示すように、アプリケータ8は円筒型であって、加熱効率を最大化する観点から最小限の容積で構成され、その容積の内径はΦ150mm、高さは75mmである。このような容積の中で、金属製置き台11の上面に食品などの被加熱物12が載置されている。
 また、被加熱物12の上部には、円錐状に切り欠いたフッ素樹脂スペーサ13が配置されている。このフッ素樹脂スペーサ13は、外径がΦ150mm、厚みが30mmであり、被加熱物12に対向する面に円錐状の切り欠きが形成されている。この切り欠きの形状は、底面の直径がΦ150mm、底面から頂面までの高さが20mmで頂部の直径がΦ20mmの円錐形状となっている。そして、T型導波管1で合成されたマイクロ波電力が、円錐状に切欠いたフッ素樹脂スペーサ13を介して被加熱物12に照射されるようになっている。
 すなわち、T型導波管7は、円筒状のアプリケータ8の上面側に位置し、その真下に、円錐状に切り欠いた形状のフッ素樹脂スペーサ13が円筒状のアプリケータ8の内面に取付けられている。
 したがって、T型導波管7から伝送された90度の電界方向差を持つ合成マイクロ波電力は、フッ素樹脂スペーサ13を介し被加熱物12である食品に照射される。フッ素樹脂は一般的に比誘電率εが2程度(2.45GHz時)であり、マイクロ波損失(tanδ)が少ないことから、マイクロ波透過材として仕切り板等の目的で一般的に使用されている。つまり、被加熱物12から発生した水蒸気や油の蒸気が導波管内に流れ込まないように、薄い仕切り板としてフッ素樹脂が用いられている。
 フッ素樹脂を通過するマイクロ波の速さは真空中の1/√εとなり、波長も真空中の波長λoの1/√ε倍となる。つまり、マイクロ波がフッ素樹脂スペーサ13を通過する間は、マイクロ波の波長が短縮化することから、フッ素樹脂スペーサ13の形状を円錐状に切り欠いて最適化することにより、マイクロ波を屈折させて被加熱物12全体へ分散させて均一に照射させることができるので、被加熱物12に効率よくマイクロ波を照射させることが可能となる。
 さらに詳しく説明すると、円錐状に切り欠いた形状のフッ素樹脂スペーサ13は、光学系の凹レンズと同様の屈折作用を呈するので、T型導波管7からアプリケータ8の内部へ導入された合成マイクロ波は、フッ素樹脂スペーサ13によって屈折し、被加熱物12全体に分散される。しかも、フッ素樹脂スペーサ13は、被加熱物12に近接しているので、合成マイクロ波は分散された状態で被加熱物12のエリアヘ集中して照射させることができる。したがって、被加熟物12に比べてアプリケータ8の容積が大きくても、フッ素樹脂スペーサ13の形状を被加熱物12の形状に合わせて最適化すれば、マイクロ波を被加熱物12へ集中させ、かつ被加熱物12に均一に照射させることができるので、被加熱物12を効率的に加熱することができる。
 なお、金属板やパンチングメタルからなる金属製置き台11の下部には、ドレインを受けるためのドレイン受け皿14及びドレインを排出するためのドレインピット15が設けられている。金属製置き台11の代わりにマイクロ波透過性の材質で置き台を構成し、このドレイン受け皿14を金属材料で構成すれば、上部から照射されたマイクロ波をドレイン受け皿14で反射させて被加熱物12を照射させることができる。これによって、被加熱物12をさらに効率よく加熱することができる。
 以上述べたように、本発明のマイクロ波加熱装置によれば、ポリテトラフルオロエチレンなどのフッ素樹脂板の形状を最適化することにより、マイクロ波がフッ素樹脂板を出入りするときマイクロ波を屈折させる現象を利用して、被加熱物12ヘマイクロ波を均一に照射させることができる。すなわち、アプリケータ8内にマイクロ波を散乱させるスターラや被照射物を回転させるターンテーブノレなどがなくても、被加熱物12ヘマイクロ波を均一に照射させることができる。補足すると、マイクロ波を被加熱物12に選択的に照射でき、かつ、選択的にマイクロ波が照射された被加熱物12においては、均一な加熱ができる。
 T型導波管について、主要点を具体的に述べる。
 図3は、図1に示すパワーモニタ導波管4a,4bのWRJ-2導波管に接続される部位のランチャ2a,2bの開口部を示す斜視図である。具体的には、ランチャ2a,2bがテーパ一体型となっているテーパ部3a,3bとパワーモニタ導波管4a,4bとが接続される部位の開口部を示している。図3に示すように、ランチャ2a,2bがパワーモニタ導波管4a,4bに接続される部位の開口部の寸法は、幅寸法がa=109.2mm、高さ寸法がb=54.6mmとなっている。
 図4は、図1に示すT型マイクロ波合成導波管6の詳細な寸法を示す図であり、図4aはT型マイクロ波合成導波管6の断面図、図4bは図4aのC面を示し、図4cは図4aのB面を示している。図4aに示すように、このT型マイクロ波合成導波管6は、主導波管6aと副導波管6bが直交して構成されている。
 また、マグネトロン1a(第1のマグネトロン)からのマイクロ波電力が伝送される主導波管6aの開口部(A面)の寸法は、図3(b)に示すように、80mm×80mm(80mm平方)である。つまり、マグネトロン1aからのマイクロ波電力は、ランチャ2a、パワーモニタ導波管4a、及びテーパ導波管5aを介して、T型マイクロ波合成導波管6の主導波管6aの一端であるA面側の80mm口の開口部に信送される。
 もう一方のマグネトロン1b(第2のマグネトロン)からのマイクロ波電力はT型マイクロ波合成導波管6を構成する副導波管6bに伝送される。この副導波管6bは、主導波管の側面に直交して配置され、主導波管6aとの結合開口部(B面)の寸法は、図4cに示すように、80mm×40mmとなっている。つまり、マグネトロン1bが発生させたマイクロ波の進行方向(管軸方向)に直交するX軸方向(幅a)の寸法が80mmであり、マグネトロン1bが発生させたマイクロ波の進行方向(管軸方向)に直交するY軸方向(高さb)の寸法が40mmである。
 なお、方形導波管の管軸方向(Z軸方向)に垂直な内断面は長方形であり、説明の便宜上、その長方形の一辺の寸法を幅aと呼び、これと直角な他の一辺の寸法を高さbと呼ぶこととする。つまり、幅(a)及び高さ(b)は、導波管が実際に配置される向きとは無関係である。
 このような寸法構成(つまり、T型マイクロ波合成導波管6における主導波管6aとの開口部(A面)の寸法が80mm×80mm、副導波管6bの開口部(B面)の寸法が80mm×40mm)の場合は、マグネトロン1aが発振して主導波管6aへ伝送されたマイクロ波電力が形成する電界方向と、マグネトロン1bが発振して副導波管6bへ伝送されたマイクロ波電力が形成する電界方向とは、互いに直交することになる。
 図5は、図4のT型マイクロ波合成導波管6におけるC面の電界方向を示す図である。すなわち、図5は、主導波管6aのC面側(つまり、図1のアプリケータ8に照射する面側)から見たときの、マグネトロン1aから主導波管6bを伝送したマイクロ波の電界方向(以下、主マイクロ波の電界方向10aという)と、マグネトロン1bから副導波管6bを伝送したマイクロ波の電界方向(以下、副マイクロ波の電界方向10bという)とを示している。図5に示すように、主マイクロ波の電界方向10aと、副マイクロ波の電界方向10bは90度の方向差をもって直交している。
 このようにして90度の方向差を持つ両者のマイクロ波電界は、主導波管6aのC面側から図1のアプリケータ(マイクロ波照射室)8に供給され、その供給電力は、マグネトロン1aのマイクロ波電力と、マグネトロン1bのマイクロ波電カの和となる。したがって、マグネトロン1a, 1bのマイクロ波電カが合成された高出力のマイクロ波電力をアプリケータ8の被加熱物へ照射することができる。
 このとき、T型マイクロ波合成導波管6では、マグネトロン1aのマイクロ波電カとマグネトロン1bのマイクロ波電カは合成され、かつ、相互にマイクロ波干渉を起こさないようになっている。マグネトロン1aのマイクロ波電力とマグネトロン1bのマイクロ波電力とがマイクロ波干渉を起こさない理由は、相互のマグネトロン1a, 1bが形成する電界方向が90度の方向差とっていることと、電界方向が90度の方向差をもつ相手側のマグネトロンからのマイクロ波が伝送されないように、導波管の一部の寸法を制限したからである。以下、相互にマイクロ波干渉を起こさない理由について詳細に説明する。
 主導波管6a内を伝送するマイクロ波の管内波長λgは、次の式(1)で表わすことができる。
λg=λ/[1-(λ/2a)21/2(1)
 ここで、λは、電波の自由空間波長(光速/マイクロ波の周波数)(m)であり、マイクロ波の周波数が2.45GHzの場合は、λ=30万km/2.45GHz=12.2cmである。つまり、自由空間波長λは12.2cmである。また、幅(a)は、主導波管6a及び副導波管6bの幅寸法(マイクロ波電界方向に対し垂直面幅寸法)であり、図3及び図4から、直交する2方向の電界成分に対する垂直面幅寸法は、各成分ともに8cmである。つまり、つまり、幅(a)は8cmである。
 したがって、式(1)にλ=12.2cm,a=8cmを代入すると、管内波長λgは18.9cmとなる。つまり、2.45GHzの自由空間波長12.2cmがa=b=8cmの導波管内では、波長が18.9cmと長くなり、直交する2方向の電界成分を持つマイクロ波をそのまま伝送できることになる。
 一方、図3に示すように、マグネトロン1aが結合されているランチャ2a、及びパワーモニタ導波管4aの高さ寸法は、(b)=5.46cmである。高さb面間に生じるマイクロ波電界の遮断波長λc=10.9cmとなり、2.45GHzの自由空間波長12.2.mよりも短くなるので、高さb面間のマイクロ波電界はランチャ2aを伝送できないことになる。つまり、マグネトロン1bから伝送されたマイクロ波電界は、主導波管には伝送されるが、高さ寸法(b)=5.46cmであるパワーモニタ導波菅4a、ランチャ2aには伝送されない。したがって、マグネトロン1bからのマイクロ波は、T型マイ口波合成導波管6のC面でマグネトロン1aからのマイクロ波と合成されて電界強度を局出カ化することができるが、マグネトロン1aに対してマイクロ波干渉を起こさない。
 次に、マグネトロン1aからのマイクロ波が副導波管6b側へ伝送されてマイクロ波干渉を起こさないか否かを考察する。マグネトロン1aが形成するマイク口波電界の向きは、副導波管6bのマイクロ波進行方向に平行であり、マイクロ波は、副導波管6bに伝送されない。っまり、マイクロ波進行方向に対しては、マイクロ波電界は形成されないので、マグネトロン1aからのマイクロ波はマグネトロン1bへ伝送されず、マイクロ波干渉を起こさない。
 以上説明したように、従来のマイクロ波加熱装置では、2個のマグネトロンが相互にマイクロ波干渉を受けないようにマグネトロンを交互に動作させていたために、アプリケータヘ供給できるマイクロ波電力を高出力化することができなかった。しかし、本発明による実施形態のマイクロ波加熱装置10によれば、2個のマグネトロン1a, 1bを同時動作させても、相互にマイクロ波干渉を起こさないで、アプリケータ7へ高出力なマイクロ波電力を供給することができる。
 複数のマグネトロンのマイクロ波電カを合成して高出力にしようとする試みは、例えば特許第2525506号公報、特開昭61-181093号公報、特許第38881244号公報に見られる。
 特許第2525506号公報記載の発明では、マイクロ波干渉を防止するため、マイクロ波照射口となる2個の導波管軸がなす角度を鋭角交差θとしている。この場合は、比較的大きいアプリケータであって、そのスペース的な余裕から2個の導波管を鋭角交差θで設け、これらの2個の導波管からマイクロ波を供給するマイクロ波加熱装置として構成されている。しかし、被加熱物が小さい場合は、スペース的な余裕がないので複数台のマイクロ波電力供給用の導波管を所定の角度に取り付けることができない。
 
 特開昭61-181093号公報記載の発明では、2個のマグネトロンが同時に動作しないようにデューティコントロールを行いながら、それぞれのマイクロ波供給導波管からアプリケータ(電子レンジ庫内)の被加熱物へ均一にマイクロ波を照射する技術を開示している。この技術によれば、2個のマグネトロンが同時には動作しないため、前記したマイクロ波干渉を防止することができる。
 また、特許第38881244号公報記載の発明では、複数のマグネトロンから発生したマイクロ波電力を一つの導波管で合成し、合成したマイクロ波電力をアプリケータに供給する技術を開示している。この技術によれば、無電極ランプが負荷となる狭小空間に高出力のマイクロ波電カを供給するため、一つの導波管の一面側に2個のマグネトロンが取り付けられている。この場合も、2個のマグネトロン相互のマイクロ波干渉を防ぐために、駆動電源の供給を交互に切り替えて2個のマグネトロンを交互に動作させる、実質的には、2個のマグネトロンをデューティコントロールしているものである。
 図6は、本発明による実施形態のマイクロ波加熱装置の効果を比較例と対比して実測した温度分布図であり、図6aは比較例の実測結果、図6bは本実施形態の実測結果を示している。すなわち、この図は、図2に示す円錐状に切り欠いたフッ素樹脂スペーサ13の有無によって、丸型パックに収納された食品をマイクロ波加熱した場合の温度分布を赤外線放射温度計で実測したものである。図6aはフッ素樹脂スペーサ13がない場合、図6bはフッ素樹脂スペーサ13がある場合の温度分布を示したものである。
 図6a,図6bから明らかなように、フッ素樹脂スペーサ13がある場合(図6b)の方が被加熱物12に均一にマイクロ波が照射され、かつ加熱温度も高くなっていることがわかる。つまり、本発明によるマイクロ波加熱装置を用いることにより、被加熱物12の加熱効率が高くなり、かつ、マイクロ波を被加熱物12へ均一に照射させることができる。
 すなわち、比誘電率が1より大きく、誘電損失(tanδ)が小さい、誘電体に最適化した切り欠きを設けたスペーサを用いれば、上記実施形態と同様の作用効果を呈することができる。このようにして、マイクロ波を被加熱物12へ均一に照射すれば、マイクロ波撹乱用の金属製回転羽(スターラ)や被照射物を回転させるターンテーブルを用いる必要はなくなるので、回転機構が不要になってマイクロ波加熱装置の信頼性を一段と高めることができる。
 以上、本発明を実施形態に基づいて具体的に説明したが、本発明は前記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、ポリテトラフルオロエチレンなど(フッ素樹脂)に限ることはなく、円錐状に切り欠いたシリコーン樹脂製スペーサを介在させても、被加熱物12にマイクロ波を均一に照射させることができる。
 なお、外環形状がリング状を呈する食品や、トレイに盛られた状態で中央部が窪んだ食品の場合は、中央部にマイクロ波を集中的に照射するよりも、周囲にマイクロ波を照射した方が良好な加熱(加熱に要する時間の短縮)ができる。そのような場合は、スペーサの形状を適宜改定して、マイクロ波が被加熱物12の中央よりも周囲に多く照射されるようにする。
あるいは、中央部が盛り上がった食品については、中央部の加熱が遅れる。そのような場合には、スペーサの形状を適宜改定して、マイクロ波が被加熱物12の中央部に多く照射されるようにする。
 また、アプリケータ8内を、スペーサ13などを用いて密閉加圧可能にすることで、食品からの水分の損失防止と、アプリケータ8の内部に充満させたスチームによる被加熱物12の均一な加熱とができる。
 また、スペーサ13を取り替え可能にしておくことで、単にスペーサ13を取り替えるだけで、マイクロ波加熱装置の加熱特性を一変させることができる。
 このような対処で、食品の形状や目的に応じた加熱ができる。
 本発明によれば、被加熱物の加熱効率が高く、かつ、被加熱物への均一照射ができるので、個食食品の加熱加工や殺菌などを行うマイクロ波加熱装置などに有効に利用することできる。
1a マグネトロン(第1のマグネトロン)
1b マグネトロン(第2のマグネトロン)
2a,2b ランチャ
3a,3b テーパ部
4a,4b パワーモニタ導波管(WRJ-2導波管)
5a,5b テーパ導波管
6 T型マイクロ波合成導波管
6a 主導波管
6b 副導波管
7 T型導波管
8 アプリケータ
10 マイクロ波加熱装置
10a 主マイクロ波の電界方向
10b 副マイクロ波の電界方向
11 金属製置き台
12 被加熱物
13 誘電体板(フッ素樹脂スペーサ)
14 ドレイン受皿
15 ドレインピット

Claims (9)

  1.  マイクロ波電力を伝送する導波管と、
     前記導波管から伝送されたマイクロ波を被加熱物へ均一分散させる形状であって、かつ比伝導率が1より大きい誘電体板を有し、前記導波管から照射されたマイクロ波電力を、該誘電体板を介して被加熱物へ照射させるアプリケータと、
     を備えることを特徴とするマイクロ波加熱装置。
  2.  前記アプリケータは円筒形であって、前記誘電体板は円板状のフッ素樹脂スペーサであることを特徴とする請求項1に記載のマイクロ波加熱装置。
  3.  前記フッ素樹脂スペーサは、前記導波管から照射されたマイクロ波電力が前記被加熱物へ均一分散するように円錐形の切り欠きが設けられていることを特徴とする請求項2に記載のマイクロ波加熱装置。
  4.  前記アプリケータは円筒形であって、前記誘電体板は円板状のシリコーン樹脂製スペーサであることを特徴とする請求項1に記載のマイクロ波加熱装置。
  5.  前記シリコーン樹脂製スペーサは、前記導波管から照射されたマイクロ波電力が前記被加熱物へ均一分散するように円錐形の切り欠きが設けられていることを特徴とする請求項4に記載のマイクロ波加熱装置。
  6.  前記導波管は、第1のマイクロ波電力を伝送する主導波管と第2のマイクロ波電力を伝送する副導波管とが、それぞれのマイクロ波によって発生する電界方向が直交するように接続されたT型導波管であることを特徴とする請求項1に記載のマイクロ波加熱装置。
  7.  前記主導波管に形成されたランチャの開口部の寸法に基づいて決定される遮断波長が、前記副導波管から前記前記主導波管へ伝送されるマイクロ波の自由空間波長より短くなるように、前記ランチャの開口部の寸法が決定されていることを特徴とする請求項6に記載のマイクロ波加熱装置。
  8.  前記副導波管の開口部の寸法に基づいて決定された遮断波長が、前記主導波ら前記前記副導波管へ伝送されるマイクロ波の自由空間波長より短くなるように、前記副導波管の開口部の寸法が決定されていることを特徴とする請求項6又は請求項に7に記載のマイクロ波加熟装置。
  9.  前記第1のマグネトロン及び前記第2のマグネトロンが発生するマイクロ波の周波数は2.45GHzであって、
     前記主導波管の開口部の寸法は幅80mm×高さ80mm、前記副導波管の開口部の寸法は幅80mm×高さ40mmであり、
     前記ランチャの開口部の寸法は、幅109.2mm×高さ54.6mmであることを特徴とする請求項7又は請求項8に記載のマイクロ波加熱装置。
PCT/JP2010/051108 2009-02-09 2010-01-28 マイクロ波加熱装置 WO2010090120A2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10738454.7A EP2395814A4 (en) 2009-02-09 2010-01-28 microwave heating
CN2010800070362A CN102308668B (zh) 2009-02-09 2010-01-28 微波加热装置
US13/138,328 US20110315678A1 (en) 2009-02-09 2010-01-28 Microwave heating device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009027847A JP5102792B2 (ja) 2009-02-09 2009-02-09 マイクロ波加熱装置
JP2009-027847 2009-02-09
JP2009027846A JP5102791B2 (ja) 2009-02-09 2009-02-09 マイクロ波加熱装置、及びt型導波管
JP2009-027846 2009-02-09

Publications (3)

Publication Number Publication Date
WO2010090120A2 true WO2010090120A2 (ja) 2010-08-12
WO2010090120A3 WO2010090120A3 (ja) 2010-09-30
WO2010090120A9 WO2010090120A9 (ja) 2010-11-18

Family

ID=42542471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051108 WO2010090120A2 (ja) 2009-02-09 2010-01-28 マイクロ波加熱装置

Country Status (6)

Country Link
US (1) US20110315678A1 (ja)
EP (1) EP2395814A4 (ja)
KR (1) KR101616151B1 (ja)
CN (1) CN102308668B (ja)
TW (1) TWI454647B (ja)
WO (1) WO2010090120A2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9301344B2 (en) * 2012-05-24 2016-03-29 Goji Limited RF energy application based on absorption peaks
CN104470020B (zh) * 2013-09-22 2016-03-16 宏硕系统股份有限公司 微波加热暨干燥装置
CN103920809B (zh) * 2014-04-15 2016-12-07 重庆市科学技术研究院 利用微波能量均匀制热生产弧形部件的装置
WO2016172647A1 (en) 2015-04-22 2016-10-27 Sercel Joel C Optics and structure for space applications
CN106358330A (zh) * 2016-08-25 2017-01-25 郑州峰泰纳米材料有限公司 冷冻食品的微波解冻装置
JP6915785B2 (ja) * 2018-03-30 2021-08-04 森永乳業株式会社 マイクロ波加熱装置、マイクロ波加熱方法、及び包装食品の製造方法
US11143026B2 (en) 2018-08-07 2021-10-12 Trans Astronautica Corporation Systems and methods for radiant gas dynamic mining of permafrost for propellant extraction
US11608196B2 (en) 2020-07-22 2023-03-21 Trans Astronautica Corporation Directing light for thermal and power applications in space
US11566521B2 (en) 2020-09-22 2023-01-31 Trans Astronautica Corporation Systems and methods for radiant gas dynamic mining of permafrost
US11598581B2 (en) * 2021-02-12 2023-03-07 Trans Astronautica Corporation Fabrication of ceramics from celestial materials using microwave sintering and mechanical compression
US11748897B1 (en) 2022-06-24 2023-09-05 Trans Astronautica Corporation Optimized matched filter tracking of space objects
CN115942529B (zh) * 2022-12-22 2023-12-12 四川大学 一种连续流微波加热装置及加热方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181093A (ja) 1985-02-05 1986-08-13 三洋電機株式会社 電子レンジ
JPS63299084A (ja) 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd マイクロ波加熱装置
JP2525506B2 (ja) 1990-08-10 1996-08-21 奈良精機株式会社 高温発熱体を用いる電子焼却炉
JP3888124B2 (ja) 2001-10-26 2007-02-28 松下電工株式会社 マイクロ波無電極放電ランプ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1582832A (en) * 1976-04-08 1981-01-14 Unilever Ltd Methods and apparatus for the microwave heating of foods
JPS56109490A (en) * 1980-01-22 1981-08-29 Andeyusutori Mikurooondo Inter Microwave heater
JPS58175285A (ja) * 1982-04-06 1983-10-14 株式会社日立ホームテック 高周波加熱装置
GB2187618B (en) * 1986-03-06 1989-11-15 Quindicum Ltd Microwave oven
US5234526A (en) * 1991-05-24 1993-08-10 Lam Research Corporation Window for microwave plasma processing device
JPH0521420A (ja) * 1991-07-12 1993-01-29 Fujitsu Ltd ウエハー加熱装置
JPH0572092U (ja) * 1992-03-02 1993-09-28 株式会社神戸製鋼所 高圧容器への電磁波供給装置
JPH07202506A (ja) * 1993-12-28 1995-08-04 Nec Corp 送受信分波器
US5632921A (en) * 1995-06-05 1997-05-27 The Rubbright Group, Inc. Cylindrical microwave heating applicator with only two modes
US5998774A (en) * 1997-03-07 1999-12-07 Industrial Microwave Systems, Inc. Electromagnetic exposure chamber for improved heating
JPH1116675A (ja) * 1997-06-24 1999-01-22 Hitachi Home Tec Ltd 高周波加熱装置
JP2002164161A (ja) * 2000-11-27 2002-06-07 Hitachi Ltd マイクロ波加熱装置
JP2004327293A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2008004331A (ja) * 2006-06-21 2008-01-10 Serutekku Project Management Kk マイクロ波放射装置
JP4572213B2 (ja) * 2007-04-25 2010-11-04 株式会社日立製作所 マイクロ波照射装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181093A (ja) 1985-02-05 1986-08-13 三洋電機株式会社 電子レンジ
JPS63299084A (ja) 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd マイクロ波加熱装置
JP2525506B2 (ja) 1990-08-10 1996-08-21 奈良精機株式会社 高温発熱体を用いる電子焼却炉
JP3888124B2 (ja) 2001-10-26 2007-02-28 松下電工株式会社 マイクロ波無電極放電ランプ装置

Also Published As

Publication number Publication date
WO2010090120A9 (ja) 2010-11-18
EP2395814A4 (en) 2014-12-31
EP2395814A2 (en) 2011-12-14
US20110315678A1 (en) 2011-12-29
KR101616151B1 (ko) 2016-04-27
CN102308668B (zh) 2013-10-09
TWI454647B (zh) 2014-10-01
TW201037238A (en) 2010-10-16
KR20110113643A (ko) 2011-10-17
WO2010090120A3 (ja) 2010-09-30
CN102308668A (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2010090120A2 (ja) マイクロ波加熱装置
US5990466A (en) Apparatus for supplying microwave energy to a cavity
US4354083A (en) Microwave oven with novel energy distribution arrangement
US6008483A (en) Apparatus for supplying microwave energy to a cavity
US8383999B2 (en) Device for heating a sample by microwave radiation
JP2011034795A (ja) マイクロ波電磁界照射装置
JP2000048946A (ja) 電子レンジ
JP2011249106A (ja) マイクロ波加熱装置
WO2013005438A1 (ja) マイクロ波加熱装置
TW201922050A (zh) 用於以微波處理產品的裝置
JP2018534729A (ja) マイクロ波透過領域を有するマイクロ波モードスターラ装置
KR100208693B1 (ko) 개선된 구조를 갖는 전자렌지용 도파관
KR102348260B1 (ko) 화합물의 합성을 위한 마이크로파 가열 장치
JP5102792B2 (ja) マイクロ波加熱装置
JP5653397B2 (ja) マイクロ波加熱装置
JP4955405B2 (ja) 円筒状マイクロ波チャンバー
JP2009100675A (ja) 円偏波による食品の連続均一加熱装置
RU2085057C1 (ru) Сверхвысокочастотная печь
JP2015162321A (ja) 高周波加熱装置
JPH01213982A (ja) 高周波加熱装置
JPH01213983A (ja) 高周波加熱装置
JP3966110B2 (ja) マイクロ波加熱装置
JPWO2019087418A1 (ja) 加熱調理器
JPH0218889A (ja) 高周波加熱装置
JPH01279591A (ja) 高周波加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007036.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738454

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117020025

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13138328

Country of ref document: US

Ref document number: 3643/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010738454

Country of ref document: EP