WO2010089967A1 - 乳化粉末リパーゼ製剤の製造方法 - Google Patents

乳化粉末リパーゼ製剤の製造方法 Download PDF

Info

Publication number
WO2010089967A1
WO2010089967A1 PCT/JP2010/000408 JP2010000408W WO2010089967A1 WO 2010089967 A1 WO2010089967 A1 WO 2010089967A1 JP 2010000408 W JP2010000408 W JP 2010000408W WO 2010089967 A1 WO2010089967 A1 WO 2010089967A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipase
preparation
emulsion
oil
activity
Prior art date
Application number
PCT/JP2010/000408
Other languages
English (en)
French (fr)
Inventor
岩岡栄治
Original Assignee
不二製油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二製油株式会社 filed Critical 不二製油株式会社
Priority to JP2010549376A priority Critical patent/JP5585454B2/ja
Publication of WO2010089967A1 publication Critical patent/WO2010089967A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase

Definitions

  • the present invention relates to a method for producing a highly active emulsified powder lipase preparation that can be suitably used for various esterification reactions, transesterification reactions, and the like.
  • Patent Document 2 A method for producing powdered lipase that mixes animal milk with kabilipase to improve the substrate specificity of lipase (Patent Document 2), and a method for mixing enzyme protein of powder lipase by mixing other protein materials such as soybean (Patent Document) 3) has also been proposed, but is still not sufficient as transesterification activity.
  • An object of the present invention is to provide an emulsified powder lipase preparation that does not require a conventional immobilization carrier and exhibits a highly active transesterification activity in a powder state.
  • the present inventors obtained an oil-in-water emulsion prepared with polysaccharides and fats and oils having an emulsifying function and an enzyme having lipase activity and then dried.
  • the emulsified powder lipase preparation has been found to exhibit good transesterification activity without performing a conventional immobilization operation, and has completed the present invention. That is, the present invention (1) A method for producing an emulsified powder lipase preparation comprising drying an oil-in-water emulsion containing an emulsifiable polysaccharide, an oil and fat, and an enzyme having lipase activity.
  • an enzyme having lipase activity is mixed with an oil-in-water emulsion containing an emulsifying polysaccharide and dried without using a conventional immobilizing carrier, and good transesterification activity is achieved. Therefore, a complicated operation of conventional immobilization is not required. Further, since no immobilization carrier is required, the volume of the enzyme preparation for the enzyme activity can be greatly reduced, and the reaction equipment can be made compact. Furthermore, compared to various low molecular emulsifiers and high molecular emulsifiers that are proteins derived from animals and plants, the method using the emulsifiable polysaccharide according to the present invention can exhibit transesterification activity more efficiently than the conventional methods. It becomes possible and can be used suitably for transesterification and ester synthesis reaction.
  • the emulsifiable polysaccharide used in the present invention is a polysaccharide having emulsifiability capable of forming an oil-in-water emulsion alone, and preferably one or more selected from water-soluble soybean polysaccharide, gum arabic, and octenyl succinate starch. It is.
  • the water-soluble soybean polysaccharide is preferably weakly acidic and extracted at a temperature exceeding 100 ° C from soybean or a processed soybean product, and the transesterification activity is strongly maintained, and the extraction pH is pH 2.4 to 4.0. It is more preferable to use a highly emulsified water-soluble polysaccharide.
  • a plurality of these emulsifying polysaccharides can be used simultaneously.
  • the emulsifiability of the polysaccharide here is measured with a laser particle size distribution meter when, for example, purified palm oil corresponding to 4% by weight is added to a 1% by weight polysaccharide aqueous solution and emulsified with a homomixer and a high-pressure homogenizer. It can also be confirmed that an oil-in-water emulsion having an average particle size of 5 ⁇ m or less can be prepared.
  • oils and oils used in the preparation of the oil-in-water emulsion of the present invention include soybean oil, coconut oil, palm oil, palm kernel oil, rapeseed oil, sunflower oil, peanut oil, olive oil, rice oil, shea fat, monkey fat, Animal oil such as cottonseed oil, cacao butter, olive oil, sesame oil, wheat germ oil, iripe oil, safflower oil, corn oil, milk fat, sheep fat, goat fat, horse fat, egg yolk fat, sardine oil, whale oil, etc. Sorted products, hydrogenated products, transesterified products, etc. can be used.
  • low molecular weight emulsifiers such as various sucrose fatty acid esters or protein-based high molecular weight emulsifiers derived from soybeans, milk, etc.
  • Use in combination within the range is preferable because it can improve the stability of emulsification and contribute to stable expression of powder activity.
  • enzyme having lipase activity As the enzyme having lipase activity used in the present invention, those derived from fungi such as yeast and filamentous fungi, bacteria, actinomycetes, animals and plants, and the like can be used, but those derived from fungi, particularly yeasts and molds, can be used. It can be particularly effectively applied to powder activation of enzymes. Specifically, Rhizopus sp., Aspergillus sp., Candida sp., Mucor sp., Penicillium sp., Etc. are preferred, and Pseudomonas sp.
  • lipase enzymes act specifically at positions 1 and 3 of triglyceride as a substrate, and others act without positional specificity. However, in this method, the specificity is not changed.
  • the use of a lipase that specifically acts on positions 1 and 3 of triglyceride is preferred because the present invention is effectively expressed. In the present invention, it is common to use a lipase preparation obtained by formulating these enzymes having lipase activity, but it is also possible to use lipase proteins of various purity that are not formulated.
  • a lipase preparation may be added and emulsified during the emulsification step, or an emulsion having no lipase activity may be prepared, You may mix with the solution. It is preferable to add a lipase preparation to an emulsion containing no lipase because the enzyme molecules having the lipase are not subjected to an emulsification treatment, so that the activity is easily maintained.
  • the oil-in-water emulsion includes the above-described emulsifiable polysaccharides, fats and oils, enzyme preparations, etc., and the total solid content of these dry weights is 2% by weight or more and 60% by weight as the concentration in the lipase emulsion. % Or less is preferable, and 3 to 25% by weight is more preferable. If the solid content in the lipase emulsion is large, the emulsification is difficult to stabilize, and if it is small, the drying efficiency of the lipase emulsion is difficult to increase.
  • the amount of the fats and oils in the lipase emulsion is preferably 1% by weight or more, more preferably 6% by weight or more, based on the lipase preparation in the lipase emulsion. Moreover, it is desirable that it is 200 weight% or less. When the amount of fats and oils for the lipase preparation is small, the effect of the present invention is weak, and when it is large, the enzyme activity with respect to the weight of the powder is lowered.
  • the mixing amount of the emulsifiable polysaccharide is not particularly limited as long as the prepared oil-in-water emulsion maintains stability, but it is 0.5% to 50% by weight with respect to the fats and oils in the lipase emulsion.
  • it is 5 to 40% by weight. If there are few emulsifiable polysaccharides with respect to fats and oils, emulsification will be stable, and if there are many, the enzyme activity with respect to a powder weight will fall.
  • the mixed solution containing the emulsifiable polysaccharide and the fat is subjected to an appropriate emulsification treatment to obtain an oil-in-water emulsion.
  • Emulsification can be performed by setting an appropriate pressure using an emulsifier such as a homomixer or homogenizer, or an ultrafine atomizer such as “Nanomizer” (manufactured by Nanomizer Co., Ltd.). And can be emulsified.
  • the oil-in-water emulsion to be used preferably has an average particle size of 20 ⁇ m or less, and more preferably 5 ⁇ m or less in terms of increasing the surface area on which lipase molecules can effectively act.
  • Oil-in-water having lipase activity by adding lipase preparation before emulsification treatment of oil and fat and emulsifiable polymer solution, or adding lipase preparation to oil-in-water emulsion of oil and emulsification polymer solution after emulsification treatment Let it be a lipase emulsion which is a type emulsion.
  • the oil-in-water emulsion containing the enzyme having the lipase activity described above, that is, the lipase emulsion dried is the emulsified powder lipase preparation of the present invention. Higher activity can be obtained by holding the lipase emulsion for about 30 minutes to 12 hours in a temperature range where the lipase can exhibit activity before drying.
  • a drying method a spray dryer, a freeze dryer, a vacuum dryer or the like is preferably used. Spray drying is preferably performed using, for example, a spray dryer such as a nozzle countercurrent type, a nozzle cocurrent type, or a disk cocurrent type.
  • the hot air temperature can be 100 ° C.
  • the exhaust air temperature can be 40 ° C. to 100 ° C.
  • a shelf type freeze dryer may be used.
  • vacuum drying it is preferable to precipitate the lipase emulsion with an organic solvent and perform shelf-type or drum-type vacuum drying together with the organic solvent.
  • the water content of the obtained emulsified powder lipase preparation is preferably suppressed to 10% by weight or less, and when used in a system with low water content, it is preferable to further dry to a low water content such as 5% by weight or less.
  • the emulsified powder lipase preparation prepared in this way maintains high transesterification activity, it can be used for fat and oil modification, etc. by performing transesterification and transesterification reactions.
  • the form can be used for various methods such as a batch method and a continuous method using a column.
  • a batch system for example, there is a method in which the emulsified powder lipase preparation of the present invention is added to the target substrate fat in a tank equipped with a stirrer, and the reaction solution reaching a predetermined reaction rate is separated by a centrifuge or a filter. good.
  • As a continuous type it is preferable to perform a single column reaction or a multistage column reaction by combining a reaction column or reaction vessel filled with an emulsified powder lipase preparation with a filter or a continuous centrifuge.
  • Example 1 Preparation of 1,3-position specific enzyme powder using water-soluble soybean polysaccharide
  • the separated precipitate is further washed with an equal weight of water, centrifuged, and the supernatant is combined with the previous supernatant, followed by desalting by electrodialysis, followed by drying to remove water-soluble soybean rich Saccharide ⁇ was obtained.
  • Dissolve 1g of water-soluble soybean polysaccharide ⁇ in 95g of water add 4g of refined palm oil, pre-emulsify with homomixer (made by Tokushu Kika Kogyo Co., Ltd.), and then use high-pressure homogenizer (made by APV) at 150psi
  • the mixture was passed through and emulsified to prepare an oil-in-water emulsion A.
  • the particle size of the emulsion was measured using a laser diffraction particle size distribution analyzer (SALD2200, manufactured by Shimadzu Corporation), and the average particle size was 1.8 ⁇ m.
  • SALD2200 laser diffraction particle size distribution analyzer
  • 5 g of Amano Pharmaceutical's commercially available powder lipase preparation (Rhizopus origin, hydrolysis activity 10,000 unit / g, specific for position 1 and 3) was dispersed and dissolved in 95 g of ice-cooled ion-exchanged water. 100 g of this enzyme solution and 2 g of Emulsion A were mixed to obtain an emulsion mixed enzyme solution (lipase emulsion). This mixture is spray dried with a spray dryer SD1000 manufactured by Tokyo Rika Kikai Co., Ltd.
  • An emulsified powder lipase preparation having a water content of 5% by weight was obtained.
  • the emulsified powder lipase preparation thus obtained was evaluated for 1,3-position specific transesterification activity by the following method.
  • reaction substrate a mixture of a palm melting point fraction and ethyl stearate 1: 1 was used (substrate moisture ⁇ 0.1%). 1 g of each powdered lipase preparation was added to 100 g of this substrate and reacted at 40 ° C. The reaction product was sampled 24 hours later, and diluted with hexane to analyze the amount of C16 ethyl ester in the total fatty acid ethyl ester using GC (gas chromatography), and the transesterification activity was determined by the following formula. . 1.
  • Reaction rate (C16: 0Et content of the reaction product-C16: 0Et content of the reaction substrate) / (C16: 0Et content of the reaction equilibrium product-C16: 0Et content of the reaction substrate) (Et: ethyl ester) 2.
  • Initial reaction rate constant k ln [1 / (1-reaction rate after 24 hours of reaction)]
  • Transesterification activity value k ⁇ (Substance oil / fat / powder lipase preparation) ⁇ 100
  • Example 2 A powder enzyme was prepared in the same manner as in Example 1 except that the amount of Emulsion A mixed in Example 1 was changed to 5 g to obtain an emulsified powder lipase preparation having a water content of 5% by weight. The obtained emulsified powder lipase preparation was evaluated for 1,3-position specific transesterification activity in the same manner as in Example 1.
  • Example 3 A powder enzyme was prepared in the same manner as in Example 1 except that the amount of Emulsion A in Example 1 was changed to 10 g to obtain an emulsified powder lipase preparation having a water content of 4.6% by weight. The obtained emulsified powder lipase preparation was evaluated for 1,3-position specific transesterification activity in the same manner as in Example 1.
  • Example 4 A powder enzyme was prepared in the same manner as in Example 1 except that the amount of Emulsion A in Example 1 was changed to 50 g to obtain an emulsified powder lipase preparation having a water content of 3.0% by weight. The obtained emulsified powder lipase was evaluated for the 1,3-position specific transesterification activity in the same manner as in Example 1.
  • Example 5 A powder enzyme was prepared in the same manner as in Example 1 except that the amount of Emulsion A mixed in Example 1 was 100 g to obtain an emulsified powder lipase preparation having a water content of 3.0% by weight. The obtained emulsified powder lipase was evaluated for the 1,3-position specific transesterification activity in the same manner as in Example 1.
  • Table 1 shows the transesterification activity of each powder lipase preparation prepared in Examples 1 to 5 and Comparative Example 1. Compared with the comparative example, the transesterification activity is increased in all of the examples. In particular, when oils and fats were added to the enzyme preparation in an amount of 8% by weight or more, it was found that the effect was high.
  • Example 6 Preparation with octenyl succinate starch
  • 1 g of octenyl succinic acid starch (Emulstar, manufactured by Matsutani Chemical Industry) was dispersed in 95 g of water, 4 g of purified palm oil was added, and an emulsion was prepared in the same manner as in Example 1. The average particle size of the obtained emulsion was 2.0 ⁇ m.
  • 100 g of the enzyme solution prepared in the same manner as in Example 1 was mixed with 100 g of this emulsion to obtain a lipase emulsion.
  • An emulsified powder lipase preparation was prepared in the same manner as in Example 1, and the 1,3-position specific transesterification activity was evaluated.
  • Example 7 Preparation with gum arabic
  • gum arabic a reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • octenyl succinate starch a reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • the average particle size of the obtained emulsion was 1.7 ⁇ m.
  • an emulsified powder lipase preparation was prepared in the same manner as in Example 6 and evaluated in the same manner.
  • Example 2 Preparation with isolated soy protein
  • preparation was carried out in the same manner as in Example 6 using separated soybean protein (Fujipro R: manufactured by Fuji Oil Co., Ltd.) instead of octenyl succinate starch.
  • the average particle diameter of the obtained emulsion was 2.3 ⁇ m.
  • an emulsified powder lipase preparation was prepared in the same manner as in Example 6 and evaluated in the same manner.
  • Table 2 shows the transesterification activity of each powder lipase preparation prepared in Examples 5 to 7 and Comparative Examples 2 to 4. Compared with the comparative example whose emulsification raw material is a low molecular emulsifier or protein, all the examples which are emulsifiable polysaccharides had increased transesterification activity.
  • Example 8 (Preparation of non-specific enzyme powder using water-soluble soybean polysaccharide) Disperse 1 g of water-soluble soybean polysaccharide ⁇ in 95 g of water, add 4 g of refined palm oil, pre-emulsify it with a homomixer (made by Tokushu Kika Kogyo Co., Ltd.), and then adjust to 150 psi with a high-pressure homogenizer (made by APV) And then emulsified to prepare an oil-in-water emulsion B. The average particle size of the obtained emulsion was 1.9 ⁇ m.
  • Non-specific enzyme activity measurement method As a reaction substrate, a 6: 4 mixture of a palm melting point fraction and a palm low melting point fraction was used (substrate moisture ⁇ 0.1%). To 100 g of this substrate, 1 g of each powder lipase preparation was added and reacted at 60 ° C. The reaction product was sampled 24 hours later, diluted with hexane, and analyzed using triglyceride analysis GC (gas chromatography) to analyze the C48 triglycerides with a total of 48 constituent fatty acids. The transesterification activity was determined from the content according to the following formula. 1.
  • Reaction rate (C48 content of reactant-C48 content of reaction substrate) / (C48 content of reaction equilibrium-C48 content of reaction substrate) 2.
  • Initial reaction rate constant k ln [1 / (1-reaction rate after 24 hours of reaction)] 3.
  • Transesterification activity value k ⁇ (Substance oil / fat / powder lipase preparation) ⁇ 10
  • Example 9 preparation with gum arabic
  • gum arabic Wired Chemicals Reagent
  • water-soluble soybean polysaccharide ⁇ water-soluble soybean polysaccharide ⁇
  • the average particle size of the obtained emulsion was 2.0 ⁇ m.
  • an emulsified powder lipase preparation was prepared in the same manner as in Example 8, and evaluated in the same manner.
  • Example 6 (Comparative Example 6) (Preparation using milk) As the emulsion in Example 8, commercially available milk (total solid content 12.7% by weight, oil content 3.0% by weight) was used. That is, 100 g of the enzyme solution of Example 8, 39.4 g of commercial milk, and 60.6 g of water were mixed to obtain a mixed emulsion enzyme solution. The obtained emulsion mixed enzyme was dried in the same manner as in Example 8 to prepare an emulsified powder lipase preparation, and evaluated in the same manner.
  • Table 3 shows the transesterification activity of each powder lipase preparation prepared in Examples 8 to 9 and Comparative Examples 5 to 7.
  • the transesterification activity was higher in the example of the emulsifying polysaccharide than in the comparative example of the low molecular weight emulsifier and the protein.
  • the activity compared to the low molecular emulsifier was slightly less than that of the 1,3-specific enzyme.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 従来のような固定化担体を必要とせず、粉末状態にて高活性なエステル交換活性を発揮する粉末リパーゼ製剤を提供することを目的とした。  乳化機能のある多糖類および油脂で調製した水中油型乳化物と、リパーゼ活性を有する酵素を混合後に乾燥して得られる乳化粉末リパーゼ製剤は、従来のような固定化操作を行わずとも良好なエステル交換活性を発揮する。好ましくは、乳化機能のある多糖類は水溶性大豆多糖類であり、リパーゼ活性がトリグリセリドの1,3位に特異的に作用するものである。

Description

乳化粉末リパーゼ製剤の製造方法
 本発明は、各種エステル化反応、エステル交換反応等に好適に使用できる、高活性な乳化粉末リパーゼ製剤の製造方法に関する。
 リパーゼを触媒として使用した油脂のエステル交換反応による改質が広く行われている。これら油脂のエステル交換反応には、従来から何らかの担体に固定化した、固定化リパーゼが用いられることが多かった。しかし、固定化酵素を実用スケールで用いると、その担体に由来する水分などの反応系内への持込みによる、副反応が十分に抑制できず、反応物の品質を低下させてしまうという問題は、現在でも解消しきれていない。また、カラムを用いる装置が大掛かりとなり、少量多品種の生産には向いていない。
 最近は担体への固定化を行わず、リパーゼ製剤を粉末で利用する方法が提案されている。しかし、一般にカビ,酵母等の真菌に由来する市販の粉末リパーゼ製剤は、そのエステル交換活性は、非常に低い。一方、特許文献1などの細菌由来のものでは、比較的活性を発揮するものもあるが、まだ十分ではなく、安全性の観点からも、食品用途に広く使用できるものは少ない。
 カビリパーゼに獣乳を混合し、リパーゼの基質特異性を向上させる粉末リパーゼの製造方法(特許文献2)、大豆など他種の蛋白素材を混合して粉末リパーゼの酵素活性を発揮させる方法(特許文献3)も提案されているが、エステル交換活性としてはまだ十分ではない。
特開平07-79786号公報 WO2005/097984パンフレット 特開2007-68426号公報
 本発明の目的は、従来のような固定化担体を必要とせず、粉末状態にて高活性なエステル交換活性を発揮する乳化粉末リパーゼ製剤を提供することである。
 本発明者らは、上記の課題に対して鋭意研究を重ねた結果、乳化機能のある多糖類および油脂で調製した水中油型乳化物と、リパーゼ活性を有する酵素を混合後に乾燥して得られる乳化粉末リパーゼ製剤は、従来のような固定化操作を行わずとも良好なエステル交換活性を発揮することを見出し、本発明を完成させた。
 すなわち、本発明は、
(1)乳化性多糖類,油脂及びリパーゼ活性を有する酵素を含む、水中油型乳化物を乾燥させてなる、乳化粉末リパーゼ製剤の製造方法。
(2)乳化性多糖類が水溶性大豆多糖類,アラビアガム,オクテニルコハク酸澱粉から選ばれる1種以上である、(1)記載の乳化粉末リパーゼ製剤の製造方法。
(3)リパーゼ活性が、トリグリセリドの1,3位に特異的に作用するものである、(1)記載の乳化粉末リパーゼ製剤の製造方法。
(4)乳化粉末リパーゼ製剤がエステル交換反応またはエステル合成反応用である、請求項1に記載の乳化粉末リパーゼ製剤の製造方法。
 である。
 本発明によれば、従来のような固定化担体を使用することなく、リパーゼ活性を有する酵素を、乳化性多糖類を含む水中油型乳化物と混合し、乾燥することで良好なエステル交換活性を発揮するリパーゼ製剤を得ることができるため、従来の固定化という煩雑な操作を必要としない。また、固定化担体が必要ないため、酵素活性に対する酵素製剤の体積を大幅に減少させることができ、反応設備をコンパクトにできる。更に、種々の低分子乳化剤や動植物由来の蛋白質である高分子乳化剤に比べ、本発明による乳化性多糖類を使用した方法では、エステル交換活性を従来の方法よりもさらに効率的に発揮させることが可能となり、エステル交換反応やエステル合成反応に好適に使用できる。
(乳化性多糖類)
 以下、本発明を具体的に説明する。本発明で用いる乳化性多糖類とは、単独で水中油型乳化物を形成できる乳化性をもつ多糖類であり、好ましくは水溶性大豆多糖類,アラビアガム,オクテニルコハク酸澱粉から選ばれる1種以上である。水溶性大豆多糖類とは、大豆若しくは大豆処理物から弱酸性で100℃を超える温度で抽出されたものを使用すると、エステル交換活性が強く維持され好ましく、抽出pHがpH2.4~4.0である高乳化型の水溶性多糖類を使用すると更に好ましい。これら乳化性多糖類は、複数のものを同時に使用することもできる。ここでいう多糖類の乳化性は、例えば、1重量%の多糖類水溶液に4重量%に相当する精製パーム油を加え、ホモミキサーおよび高圧ホモゲナイザーで乳化した際に、レーザー粒度分布計で測定する平均粒径5μm以下の水中油型乳化物が調製できることでも確認を行える。
(油脂)
 本発明の水中油型乳化物の調製に用いる油脂としては、例えば、大豆油,ヤシ油,パーム油,パーム核油,なたね油,ひまわり油,ピーナッツ油,オリーブ油,コメ油,シア脂,サル脂,綿実油,カカオ脂,オリーブ油,ゴマ油,コムギ胚芽油,イリッペ脂,ベニバナ油,トウモロコシ油,乳脂,羊脂,山羊脂,馬脂,卵黄脂,イワシ油,鯨油等の動植物油脂、またはこれら油脂類の分別品,水素添加品やエステル交換品等を使用することができる。また、前述した乳化性高分子および油脂に、各種ショ糖脂肪酸エステルに代表されるような低分子乳化剤、または大豆や乳等に由来する蛋白質系の高分子乳化剤を、リパーゼの活性に影響のない範囲で併用すると、乳化の安定性を向上させ、粉末活性の安定的発現に寄与させることができ、好ましい。
(リパーゼ活性を有する酵素)
 本発明で用いられるリパーゼ活性を有する酵素としては、酵母,糸状菌等の真菌類,細菌,放線菌,動植物等に由来する、広い起源のものが使用できるが、真菌類特に酵母,カビ由来の酵素の粉末活性化には、特に有効に適用できる。具体的には、リゾプス属(Rhizopus sp.),アスペルギルス属(Aspergillus sp.),キャンディダ属(Candida sp.),ムコール属(Mucor sp.),ペニシリウム属(Penicillum sp.)等が好ましく、シュードモナス属(Psudomonas sp.),アルカリゲネス属(Alcaligenes sp.),アスロバクター属(Arthrobacter sp.),スタフィロコッカス属(Staphylococcus sp.),ジオトリカム属(Geotrichum sp.)に加え、膵臓リパーゼや米糠リパーゼ等動植物由来のものも使用することができる。これらのリパーゼ酵素には、基質となるトリグリセライドの1,3位に特異的に作用するもの、位置特異性なく作用するものがあるが、本方法においてはそれら特異性に変化を与えることはないが、トリグリセライドの1,3位に特異的に作用するリパーゼを用いると、本発明が効果的に発現され好ましい。
 本発明に於いては、これらリパーゼ活性を有する酵素を製剤化したものであるリパーゼ製剤を用いる場合が一般的であるが、製剤化していない各種の純度のリパーゼ蛋白質を用いることも可能である。
(水中油型乳化物)
 リパーゼ活性を有する酵素を含む水中油型乳化物(リパーゼ乳化物)の調製において、乳化工程時にリパーゼ製剤を添加し乳化させても良いし、リパーゼ活性を有しない乳化物を調製し、リパーゼ製剤またはその溶液と混合しても良い。リパーゼを含まない乳化物にリパーゼ製剤を添加する方が、リパーゼを有する酵素分子が乳化処理を受けないために、活性を維持し易く好ましい。水中油型乳化物は、先に説明した乳化性多糖類,油脂,酵素製剤等を含むが、これらの乾燥重量を合計した固形分は、リパーゼ乳化物中の濃度として2重量%以上且つ60重量%以下に調製するのが好ましく、3重量%~25重量%とするのが更に好ましい。リパーゼ乳化物中の固形分が多いと乳化が安定しにくく、少ないとリパーゼ乳化物の乾燥効率が上がりにくい。
 またリパーゼ乳化物中の油脂の混合量は、リパーゼ乳化物中のリパーゼ製剤に対し、その1重量%以上混合することが好ましく、6重量%以上混合することがさらに好ましい。また200重量%以下であることが望ましい。リパーゼ製剤に対する油脂量が少ないと本発明の効果が弱く、多いと粉体重量に対する酵素活性が低下する。乳化性多糖類の混合量としては、調製される水中油型乳化物が安定性を保つ範囲であれば特に制限はないが、リパーゼ乳化物中の油脂に対して0.5重量%~50重量%であると好ましく、5重量%~40重量%であると更に好ましい。油脂に対する乳化性多糖類が少ないと乳化が安定しくく、多いと粉体重量に対する酵素活性が低下する。
 乳化性多糖類と油脂を含む混合液は、適当な乳化処理を施して水中油型乳化物とする。乳化にはホモミキサー,ホモゲナイザーなどの乳化装置や、「ナノマイザー」(ナノマイザー株式会社製)等の超微粒化装置を用いて適切な圧力を設定して行うことができるし、膜乳化や超音波を用いて乳化することもできる。使用する水中油型乳化物は、その平均粒子径を20μm以下にすることが好ましく、5μm以下にすることが、リパーゼ分子が有効に作用することのできる表面積を広げる意味で更に好ましい。また、平均粒子径0.5μm未満への調製は効率が悪く、これ以上の粒子径での使用が一般的である。油脂と乳化性高分子溶液の乳化処理前にリパーゼ製剤を添加するか、乳化処理後の油脂と乳化性高分子溶液の水中油型乳化物にリパーゼ製剤を添加して、リパーゼ活性を有する水中油型乳化物である、リパーゼ乳化物とする。
(乾燥)
 上記に記載したリパーゼ活性を有する酵素を含む水中油型乳化物、すなわちリパーゼ乳化物を乾燥させたものが、本発明である乳化粉末リパーゼ製剤である。乾燥前に、リパーゼ乳化物を、リパーゼが活性を発揮できる温度域で、30分から12時間ほど保持することで、より高い活性を得ることができる。乾燥方法としては、スプレードライヤーや凍結乾燥機,真空乾燥機などを用いるのが良い。スプレードライは、例えば、ノズル向流式,ノズル 並流式,ディスク並流式等の噴霧乾燥機を用いて行うのがよい。噴霧乾燥の乾燥条件としては、例えば熱風温度100℃~185℃、排風温度40℃~100℃にて行うことができる。凍結乾燥機は、例えば棚段式凍結乾燥機を使用するのが良い。また、真空乾燥においては、リパーゼ乳化物を有機溶剤にて沈殿させ、有機溶剤と共に棚式もしくはドラム式の真空乾燥を行うのが良い。得られる乳化粉末リパーゼ製剤の水分含量は、10重量%以下に抑えるのが好ましく、特に水分の低い系で使用する場合には水分5重量%以下等、さらに低水分まで乾燥させることが好ましい。
 この様に調製された乳化粉末リパーゼ製剤は、高いエステル交換活性を維持しているために、エステル交換反応やエステル合成反応を行う事で、油脂の改質等に用いることができる。その形態は、バッチ方式やカラムを用いた連続方式等、種々の方法に用いることができる。バッチ方式としては、例えば攪拌機付きのタンクにて目的の基質油脂に本発明の乳化粉末リパーゼ製剤を添加し、所定の反応率に達した反応液を遠心分離機や濾過機などで分離する方法が良い。連続式としては、乳化粉末リパーゼ製剤を充填した反応カラムや反応容器に、濾過機や連続式の遠心分離機を組み合わせることで、単カラム反応や多段カラム反応をするのが良い。
 以下に実施例を記載することで本発明を説明する。
(実施例1)
(水溶性大豆多糖類を用いた1,3位特異的酵素粉末の調製)
 分離大豆蛋白製造工程において得られた生オカラに2倍量の水を加え、塩酸にてpHを3.0に調整し、120℃ で1.5時間加熱抽出した。冷却後の加熱抽出スラリーpHは2.98であった。回収したスラリーのpHを5.0に調整した後に遠心分離し(10,000×g, 30分)、上澄と沈澱部に分離した。こうして分離した沈澱部を更に等重量の水で水洗し、遠心分離し、この上澄を先の上澄と一緒にしてから電気透析による脱塩処理を行い、その後に乾燥して水溶性大豆多糖類αを得た。水95gに水溶性大豆多糖類α1gを分散させ、これに精製パーム油4gを加え、ホモミキサー(特殊機化工業社製)で予備乳化し、その後高圧ホモゲナイザー(APV社製)にて150psiにて通液し乳化させ、水中油型乳化物Aを調製した。乳化物の粒子径は、レーザー回折式粒度分布計(島津製作所製SALD2200)を用いて測定し、平均粒子径は1.8μmであった。天野製薬製市販粉末リパーゼ製剤(リゾプス起源、加水分解活性10,000unit/g、1,3位特異的)5gを氷冷したイオン交換水95gに分散,溶解させた。この酵素溶液100gと乳化物A 2gを混合し、乳化物混合酵素液(リパーゼ乳化物)を得た。この混合液を、東京理化器械製スプレードライヤーSD1000にて、熱風温度90~100℃、排風温度60~80℃、排気流量0.77~0.88m3/hr,噴霧圧力11kpaにて、噴霧乾燥し、水分5重量%の乳化粉末リパーゼ製剤を得た。得られた乳化粉末リパーゼ製剤を、以下の方法にて、1,3位特異的エステル交換活性を評価した。
(1,3位特異的エステル交換活性測定方法)
 反応基質として、パーム中融点画分とステアリン酸エチルを1:1に配合したものを用いた(基質水分<0.1%)。本基質100gに1gの各粉末リパーゼ製剤を加え、40℃にて反応した。反応物を24時間後にサンプリングし、ヘキサンにて希釈したものをGC(ガスクロマトグラフィー)を用い、全脂肪酸エチルエステル中のC16エチルエステルの量を分析し、以下の式によりエステル交換活性を求めた。
 1.反応率=(反応物のC16:0Et含量-反応基質のC16:0Et含量)/(反応平衡物のC16:0Et含量-反応基質のC16:0Et含量)(Et:エチルエステル)
 2.初期反応速度定数k=ln[1/(1-反応24時間後の反応率)]
 3.エステル交換活性値=k×(基質油脂量/粉末リパーゼ製剤)×100
(実施例2)
 実施例1において乳化物Aの混合量を5gとした以外は、実施例1と同様に粉末酵素を調製し、水分5重量%の乳化粉末リパーゼ製剤を得た。得られた乳化粉末リパーゼ製剤は、実施例1と同様に1,3位特異的エステル交換活性を評価した。
(実施例3)
 実施例1において乳化物Aの混合量を10gとした以外は、実施例1と同様に粉末酵素を調製し、水分4.6重量%の乳化粉末リパーゼ製剤を得た。得られた乳化粉末リパーゼ製剤は、実施例1と同様に1,3位特異的エステル交換活性を評価した。
(実施例4)
 実施例1において乳化物Aの混合量を50gとした以外は、実施例1と同様に粉末酵素を調製し、水分3.0重量%の乳化粉末リパーゼ製剤を得た。得られた乳化粉末リパーゼは、実施例1と同様に1,3位特異的エステル交換活性を評価した。
(実施例5)
 実施例1において乳化物Aの混合量を100gとした以外は、実施例1と同様に粉末酵素を調製し、水分3.0重量%の乳化粉末リパーゼ製剤を得た。得られた乳化粉末リパーゼは、実施例1と同様に1,3位特異的エステル交換活性を評価した。
(比較例1)
(油脂無添加)
 天野製薬製市販粉末リパーゼ製剤(リゾプス起源、加水分解活性10,000unit/g、1,3位特異的)5gを氷冷したイオン交換水95gに分散,溶解させた。この溶液を凍結乾燥し、粉末リパーゼ製剤を得た。得られた粉末リパーゼ製剤は実施例1と同様に1,3位特異的エステル交換活性を評価した。
(表1)各粉末リパーゼ製剤のエステル交換活性(1,3位特異的)
Figure JPOXMLDOC01-appb-I000001
 実施例1~5および比較例1で調製した各粉末リパーゼ製剤のエステル交換活性を表1に示した。比較例に比べ、実施例は全てでエステル交換活性が上昇している。特に酵素製剤に対して油脂を8重量%以上加えた場合に於いて、その効果は高いことが判った。
(実施例6)
(オクテニルコハク酸澱粉による調製)
 水95gにオクテニルコハク酸澱粉(エマルスター、松谷化学工業製)1gを分散させ、精製パーム油4gを加え実施例1と同様の方法で乳化物を調製した。得られた乳化物の平均粒子径は2.0μmであった。その後この乳化物100gに、実施例1と同様に調製した酵素溶液100gを混合し、リパーゼ乳化物を得た。実施例1同様に乳化粉末リパーゼ製剤を調製し、1,3位特異的エステル交換活性を評価した。
(実施例7)
(アラビアガムによる調製)
 乳化物の調製において、オクテニルコハク酸澱粉の代わりにアラビアガム(ワコー純薬製試薬)を使用し、実施例6と同様に調製を行った。得られた乳化物の平均粒子径は1.7μmであった。この乳化物を使用して、実施例6と同様の方法で乳化粉末リパーゼ製剤を調製し、同様に評価を行った。
(比較例2)
(分離大豆蛋白質による調製)
 乳化物の調製において、オクテニルコハク酸澱粉の代わりに分離大豆蛋白質(フジプロR:不二製油製)を使用し、実施例6と同様に調製を行った。得られた乳化物の平均粒子径は2.3μmであった。この乳化物を使用して、実施例6と同様の方法で乳化粉末リパーゼ製剤を調製し、同様に評価を行った。
(比較例3)
(ショ糖脂肪酸エステルによる調製1)
 乳化物の調製において、オクテニルコハク酸澱粉の代わりに市販ショ糖脂肪酸エステル(F110 :第一工業製薬製)を使用し、実施例6と同様に行った。得られた乳化物の平均粒子径は1.8μmであった。この乳化物を使用して、実施例6と同様の方法で乳化粉末リパーゼ製剤を調製し、同様に評価を行った。
(比較例4)
(ショ糖脂肪酸エステルによる調製2)
 乳化物の調製において、オクテニルコハク酸澱粉の代わりに市販ショ糖脂肪酸エステル(F160 :第一工業製薬製)を使用し、実施例6と同様に行った。得られた乳化物の平均粒子径は1.9μmであった。この乳化物を使用して、実施例6と同様の方法で乳化粉末リパーゼ製剤を調製し、同様に評価を行った。
(表2)各粉末リパーゼ製剤のエステル交換活性(1,3位特異的)
Figure JPOXMLDOC01-appb-I000002
 実施例5~7および比較例2~4で調製した各粉末リパーゼ製剤のエステル交換活性を表2に示した。乳化素材が低分子乳化剤または蛋白質である比較例に比べ、乳化性多糖類である実施例は全てでエステル交換活性が上昇していた。
(実施例8)
(水溶性大豆多糖類を用いた非特異的酵素粉末の調製)
 水95gに水溶性大豆多糖類α 1gを分散させ、これに精製パーム油4gを加え、ホモミキサー(特殊機化工業社製)で予備乳化し、その後高圧ホモゲナイザー(APV社製)にて150psiにて通液し乳化させ、水中油型乳化物Bを調製した。得られた乳化物の平均粒子径は1.9μmであった。天野製薬製市販粉末リパーゼ製剤(ペニシリウム起源、加水分解活性1,000unit/g、非選択的分解特性)5gを氷冷したイオン交換水95gに分散、溶解させた。この酵素溶液100gと乳化物B100gを混合し、乳化物混合酵素液(リパーゼ乳化物)を得た。この混合液を凍結乾燥し水分2重量%の乳化粉末リパーゼ製剤を得た。
(非特異的酵素の活性測定方法)
 反応基質として、パーム中融点画分とパーム低融点画分を6:4に配合したものを用いた(基質水分<0.1%)。本基質100gに、1gの各粉末リパーゼ製剤を加え、60℃にて反応した。反応物を24時間後にサンプリングし、ヘキサンにて希釈したものをトリグリセリド分析用GC(ガスクロマトグラフィー)を用い、構成脂肪酸の合計が48である、C48のトリグリセリドを分析し、全トリグリセリド中のC48相対含量から、以下の式によりエステル交換活性を求めた。
 1.反応率=(反応物のC48含量‐反応基質のC48含量)/(反応平衡物のC48含量‐反応基質のC48含量)
 2.初期反応速度定数k=ln[1/(1-反応24時間後の反応率)]
 3.エステル交換活性値=k×(基質油脂量/粉末リパーゼ製剤)×10
(実施例9)
(アラビアガムによる調製)
 乳化物の調製において、水溶性大豆多糖類αの代わりにアラビアガム(ワコー純薬製試薬)を使用し、実施例8と同様に調製を行った。得られた乳化物の平均粒子径は2.0μmであった。この乳化物を使用して、実施例8と同様の方法で乳化粉末リパーゼ製剤を調製し、同様に評価を行った。
(比較例5)
(ショ糖脂肪酸エステルによる調製)
 乳化物の調製において、水溶性大豆多糖類αの代わりに市販ショ糖脂肪酸エステル(F160:第一工業製薬製)を使用し、実施例8と同様に調製を行った。得られた乳化物の平均粒子径は2.4μmであったこの乳化物を使用して、実施例8と同様の方法で乳化粉末リパーゼ製剤を調製し、同様に評価を行った。
(比較例6)
(牛乳を用いた調製)
 実施例8における乳化物として、市販牛乳(総固形分12.7重量%,油分3.0重量%)を用いた。すなわち、実施例8の酵素溶液100g,市販牛乳39.4gおよび水60.6gを混合し、混合乳化物酵素液を得た。得られた乳化物混合酵素を実施例8と同様の方法で乾燥して乳化粉末リパーゼ製剤を調製し、同様に評価を行った。
(比較例10)
(油脂無添加)
 天野製薬製市販粉末リパーゼ製剤(ペニシリウム起源、加水分解活性1,000unit/g、非特異的)5gを氷冷したイオン交換水95gに分散、溶解させた。この溶液を凍結乾燥し、実施例8と同様に活性評価を行った。
(表3)各粉末リパーゼ製剤のエステル交換活性(非特異的)
Figure JPOXMLDOC01-appb-I000003
 実施例8~9および比較例5~7で調製した各粉末リパーゼ製剤のエステル交換活性を表3に示した。非特異的リパーゼについても、低分子乳化剤および蛋白質である比較例に比べ、乳化性多糖類である実施例はエステル交換活性が上昇していた。また、低分子乳化剤に比較した活性は、1,3特異的酵素の場合より若干少ないものだった。

Claims (4)

  1. 乳化性多糖類,油脂及びリパーゼ活性を有する酵素を含む、水中油型乳化物を乾燥させてなる、乳化粉末リパーゼ製剤の製造方法。
  2. 乳化性多糖類が水溶性大豆多糖類,アラビアガム,オクテニルコハク酸澱粉から選ばれる1種以上である、請求項1記載の乳化粉末リパーゼ製剤の製造方法。
  3. リパーゼ活性が、トリグリセリドの1,3位に特異的に作用するものである、請求項1記載の乳化粉末リパーゼ製剤の製造方法。
  4. 乳化粉末リパーゼ製剤がエステル交換反応またはエステル合成反応用である、請求項1に記載の乳化粉末リパーゼ製剤の製造方法。
PCT/JP2010/000408 2009-02-04 2010-01-26 乳化粉末リパーゼ製剤の製造方法 WO2010089967A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010549376A JP5585454B2 (ja) 2009-02-04 2010-01-26 乳化粉末リパーゼ製剤の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009023163 2009-02-04
JP2009-023163 2009-02-04

Publications (1)

Publication Number Publication Date
WO2010089967A1 true WO2010089967A1 (ja) 2010-08-12

Family

ID=42541880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000408 WO2010089967A1 (ja) 2009-02-04 2010-01-26 乳化粉末リパーゼ製剤の製造方法

Country Status (3)

Country Link
JP (1) JP5585454B2 (ja)
MY (1) MY157775A (ja)
WO (1) WO2010089967A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068076A1 (ja) * 2009-12-01 2011-06-09 日清オイリオグループ株式会社 リパーゼ粉末製剤及びその使用
JP2012017284A (ja) * 2010-07-07 2012-01-26 Adeka Corp リパーゼ製剤及びその製造方法
WO2016024694A1 (ko) * 2014-08-11 2016-02-18 고려대학교 산학협력단 미강을 이용한 바이오디젤의 생산 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322770A (ja) * 1996-05-31 1997-12-16 Ichibiki Kk 油中に安定分散した酵素剤組成物及びその製造法と利用方法
JP2000106873A (ja) * 1998-10-06 2000-04-18 Nisshin Oil Mills Ltd:The 熱安定性酵素およびその製造法
JP2007068426A (ja) * 2005-09-05 2007-03-22 Nisshin Oillio Group Ltd リパーゼ粉末製剤、その製造方法及び使用
WO2008114656A1 (ja) * 2007-03-16 2008-09-25 The Nisshin Oillio Group, Ltd. リパーゼ粉末製剤、その製造方法及び使用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914316B (zh) * 2004-01-28 2012-08-29 Csir公司 酶的稳定化
EP2177608B1 (en) * 2007-07-31 2015-10-14 Fuji Oil Company, Limited Immobilized lipase and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322770A (ja) * 1996-05-31 1997-12-16 Ichibiki Kk 油中に安定分散した酵素剤組成物及びその製造法と利用方法
JP2000106873A (ja) * 1998-10-06 2000-04-18 Nisshin Oil Mills Ltd:The 熱安定性酵素およびその製造法
JP2007068426A (ja) * 2005-09-05 2007-03-22 Nisshin Oillio Group Ltd リパーゼ粉末製剤、その製造方法及び使用
WO2008114656A1 (ja) * 2007-03-16 2008-09-25 The Nisshin Oillio Group, Ltd. リパーゼ粉末製剤、その製造方法及び使用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068076A1 (ja) * 2009-12-01 2011-06-09 日清オイリオグループ株式会社 リパーゼ粉末製剤及びその使用
JP2012017284A (ja) * 2010-07-07 2012-01-26 Adeka Corp リパーゼ製剤及びその製造方法
WO2016024694A1 (ko) * 2014-08-11 2016-02-18 고려대학교 산학협력단 미강을 이용한 바이오디젤의 생산 방법

Also Published As

Publication number Publication date
JP5585454B2 (ja) 2014-09-10
JPWO2010089967A1 (ja) 2012-08-09
MY157775A (en) 2016-07-29

Similar Documents

Publication Publication Date Title
CN1981046B (zh) 水解卵磷脂产物的酶促生产
TW200920263A (en) Method of producing hard butter
US20150104839A1 (en) Powdery lipase preparation, method for producing the same and use thereof
JP5585454B2 (ja) 乳化粉末リパーゼ製剤の製造方法
JP5177143B2 (ja) 固定化リパーゼおよびその製造方法
JP2007068426A (ja) リパーゼ粉末製剤、その製造方法及び使用
JP5728335B2 (ja) エステル交換油脂の製造方法及びその装置
JP4938450B2 (ja) モノアシルグリセリド及びジアシルグリセリド含有乳化剤の、酵素による製造方法
WO2011068076A1 (ja) リパーゼ粉末製剤及びその使用
WO2013018859A1 (ja) エステル交換油の製造方法
JP2017184675A (ja) 油脂類を低水分状態でリパーゼに作用させ、起泡性および/または乳化性をもつ素材を製造する方法とその製品
JP6069722B2 (ja) エステル交換油脂の製造方法
WO2023106224A1 (ja) 風味改良用酵素剤及びその応用
JP2016067267A (ja) 擬似粉末状態でリパーゼを逆反応させて油脂類−メントール、コレステロールまたはポリフェノール類複合体組成物を製造する方法およびその複合体組成物からなる食品素材
Anand Enhanced Lipase–Catalyzed Triglyceride Hydrolysis
JP2016067264A (ja) 擬似粉末状態でリパーゼを逆反応させて油脂類−アルコール類複合体組成物を製造する方法およびその複合体組成物からなる食品素材
JP2013039109A (ja) リパーゼ活性の回復方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549376

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738311

Country of ref document: EP

Kind code of ref document: A1