WO2011068076A1 - リパーゼ粉末製剤及びその使用 - Google Patents

リパーゼ粉末製剤及びその使用 Download PDF

Info

Publication number
WO2011068076A1
WO2011068076A1 PCT/JP2010/071095 JP2010071095W WO2011068076A1 WO 2011068076 A1 WO2011068076 A1 WO 2011068076A1 JP 2010071095 W JP2010071095 W JP 2010071095W WO 2011068076 A1 WO2011068076 A1 WO 2011068076A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipase
powder
powder preparation
lipase powder
transesterification
Prior art date
Application number
PCT/JP2010/071095
Other languages
English (en)
French (fr)
Inventor
聡 根岸
良枝 山内
洋介 中村
裕子 外山
Original Assignee
日清オイリオグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清オイリオグループ株式会社 filed Critical 日清オイリオグループ株式会社
Priority to EP10834526.5A priority Critical patent/EP2508598A4/en
Priority to CN201080040680XA priority patent/CN102575238A/zh
Priority to US13/395,607 priority patent/US20120171736A1/en
Publication of WO2011068076A1 publication Critical patent/WO2011068076A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6454Glycerides by esterification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6458Glycerides by transesterification, e.g. interesterification, ester interchange, alcoholysis or acidolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a lipase powder preparation that can be suitably used for various esterification reactions, transesterification reactions, and the like, and a transesterification method using these lipase powder preparations.
  • Lipases are widely used in esterification reactions of various carboxylic acids such as fatty acids with alcohols such as monoalcohols and polyhydric alcohols, and transesterification reactions between a plurality of carboxylic acid esters.
  • the transesterification reaction is an important technique as a method for producing various fatty acid esters, sugar esters and sterol esters, including the modification of animal and vegetable fats and oils.
  • lipase which is an oil and fat hydrolase
  • a transesterification reaction can be carried out under mild conditions of room temperature to about 70 ° C., which suppresses side reactions compared to conventional chemical reactions.
  • the lipase as a catalyst is a natural product, so safety is high. Moreover, the target product can be produced efficiently due to its substrate specificity and position specificity. However, even if the powder lipase is used as it is in the transesterification reaction, the activity is not sufficiently exhibited, and it is difficult to uniformly disperse the originally water-soluble lipase in the oily raw material, and the recovery thereof is also difficult. .
  • lipase is used as some kind of carrier, for example, anion exchange resin (Patent Document 1), phenol adsorption resin (Patent Document 2), hydrophobic carrier (Patent Document 3), cation exchange resin (Patent Document 4), chelate. It is common to fix to resin (patent document 5) etc. and to use for esterification or transesterification. Further, an emulsion in which an aqueous phase in which a lipase and a substance acting as a carrier for lipase are dissolved is dispersed in a hydrophobic phase is produced, and water is removed from the emulsion, whereby the aqueous phase is coated with a lipase. A method for producing immobilized lipase particles to be changed into particles has been proposed (Patent Document 6).
  • lipase was immobilized and used for transesterification, but such immobilized lipase is not only accompanied by a loss of the original lipase activity due to the immobilization treatment, but also when a porous support is used. The pores were clogged with raw materials and products, resulting in a decrease in the transesterification rate. Furthermore, in the transesterification reaction using the conventional immobilized lipase, since the water held by the carrier is brought into the reaction system, it is not possible to avoid side reactions such as the formation of diglycerides and monoglycerides in the transesterification reaction of fats and oils. It was difficult. In view of such a situation, various techniques using powder lipase have been developed.
  • the powder lipase is dispersed in the raw material containing the ester so that 90% or more of the dispersed lipase powder particles are maintained at a particle size in the range of 1 to 100 ⁇ m during the transesterification reaction.
  • Patent Document 7 a method for carrying out transesterification has been proposed. It has also been proposed to use an enzyme powder obtained by drying an enzyme solution containing phospholipids and fat-soluble vitamins (Patent Document 8).
  • Patent Document 8 an enzyme powder obtained by drying an enzyme solution containing phospholipids and fat-soluble vitamins
  • Patent Document 9 a method for producing an enzyme-fixed preparation characterized in that cereal flour is added to an enzyme-containing solution, or cereal flour and saccharide are added to dry the enzyme-containing solution.
  • lipase, cellulase, protease, amylase, and pectinase are listed as enzymes that can be used, and the enzyme-fixed preparation obtained by this production method can suppress the inactivation of the enzyme in the presence of the enzyme activity-reducing substance.
  • the enzyme activity is improved.
  • An object of the present invention is to provide a lipase powder formulation having improved lipase activity. Another object of the present invention is to provide a transesterification method and an esterification method using these lipase powder formulations.
  • the present invention has intensively studied the relationship between the physical properties of the particles constituting the lipase powder formulation and the lipase activity, and found that the number of pores existing on the surface of the particles is greatly related to the lipase activity.
  • the present invention has been completed based on knowledge. That is, the present invention provides a lipase powder formulation characterized in that the particles constituting the lipase powder formulation have 3,000-40,000 pores / mm 2 having a diameter of 0.5 ⁇ m to 6 ⁇ m on the surface thereof.
  • the present invention also provides a method for producing the above lipase powder preparation, characterized in that the lipase-containing aqueous liquid is produced by spray-drying under conditions where the spray drying air temperature is 40 ° C. or higher and lower than 70 ° C. .
  • the present invention also provides a method for producing an ester compound characterized by transesterification or esterification using the lipase powder formulation.
  • the lipase powder formulation in which the enzyme activity which can perform transesterification reaction or esterification reaction efficiently was improved significantly can be provided.
  • the amount of lipase powder preparation used for transesterification or esterification reaction can be reduced, or the reaction time can be greatly shortened.
  • the food or food additive can be produced safely and inexpensively.
  • grains which comprise the lipase powder formulation obtained by spray-drying at the ventilation temperature of 50 degreeC is shown.
  • grains which comprise the lipase powder formulation obtained by spray-drying at the ventilation temperature of 110 degreeC is shown.
  • various lipases can be used, but Rhizopus delemar and Rhizopus oryzae are preferable, and 1,3-specific lipase is particularly preferable. Of these, Rhizopus oryzae is particularly preferred. Examples of these lipases include Robin's product: Picantase R8000, Amano Enzyme's product: Lipase F-AP15, and the most suitable lipase is derived from Rhizopus oryzae, Amano Enzyme's product: Lipase DF “ Amano “15-K (also referred to as lipase D) and lipase D“ Amano ”conch. This is a powder lipase.
  • the lipase DF “Amano” 15-K has been conventionally derived from Rhizopus delemar.
  • the lipase used in the present invention may be obtained by drying a lipase-containing aqueous solution containing a lipase medium component or the like, but does not contain these, that is, substantially composed of the lipase itself. Those are preferred.
  • the lipase powder formulation of the present invention is preferably produced by spray drying a lipase-containing aqueous liquid in which lipase is dissolved and / or dispersed together with cereal powder and / or sugar powder.
  • the amount of water in the lipase-containing aqueous liquid adjusts the mass of water relative to the mass of lipase.
  • the mass of water relative to the mass of lipase is preferably 2.0 to 1,000 times, more preferably 2.0 to 500 times, and most preferably 3.0 to 100 times. .
  • the lipase-containing aqueous liquid used here includes a lipase culture solution from which bacterial cells have been removed, a purified culture solution, a lipase obtained by dissolving and dispersing the lipase in water again, and a commercially available powder lipase dissolved and dispersed again in water. And a commercially available liquid lipase. Further, those obtained by removing low molecular components such as salts in order to further increase the lipase activity are more preferable, and those obtained by removing low molecular components such as sugars in order to further improve the powder properties.
  • lipase culture for example, an aqueous solution containing soy flour, peptone, corn staple tape liquor, K 2 HPO 4 , (NH 4 ) 2 SO 4 , MgSO 4 .7H 2 O, etc. is used as the lipase culture solution.
  • concentrations include soybean powder 0.1-20% by weight, preferably 1.0-10% by weight, peptone 0.1-30% by weight, preferably 0.5-10% by weight, corn staple liquor 0.1 to 30% by mass, preferably 0.5 to 10% by mass, K 2 HPO 4 0.01 to 20% by mass, preferably 0.1 to 5% by mass.
  • (NH 4 ) 2 SO 4 is 0.01 to 20% by mass, preferably 0.05 to 5% by mass
  • MgSO 4 ⁇ 7H 2 O is 0.01 to 20% by mass, preferably 0.05 to 5%. % By mass.
  • the culture conditions are a culture temperature of 10 to 40 ° C., preferably 20 to 35 ° C., an aeration rate of 0.1 to 2.0 VVM, preferably 0.1 to 1.5 VVM, and a stirring speed of 100 to 800 rpm, preferably
  • the pH is controlled to 200 to 400 rpm and the pH is 3.0 to 10.0, preferably 4.0 to 9.5.
  • Separation of cells after lipase culture is preferably performed by centrifugation, membrane filtration, or the like.
  • removal of low molecular components such as salts and sugars can be performed by UF membrane treatment.
  • UF membrane treatment Specifically, by performing a UF membrane treatment, concentrating an aqueous solution containing lipase to a volume of 1 ⁇ 2 volume, and then adding the same amount of phosphate buffer as the concentrated solution 1 to 5 times, A lipase-containing aqueous solution from which low molecular components have been removed can be obtained.
  • Centrifugation is preferably performed at 200 to 20,000 ⁇ g
  • membrane filtration is preferably performed at a pressure of 3.0 kg / m 2 or less with an MF membrane, a filter press or the like.
  • the cells In the case of intracellular enzymes, it is preferable to crush the cells with a homogenizer, Waring blender, ultrasonic crushing, French press, ball mill or the like, and remove cell residues by centrifugation, membrane filtration or the like.
  • the stirring rotation speed of the homogenizer is 500 to 30,000 rpm, preferably 1,000 to 15,000 rpm
  • the rotation speed of the Waring blender is 500 to 10,000 rpm, preferably 1,000 to 5,000 rpm.
  • the stirring time is 0.5 to 10 minutes, preferably 1 to 5 minutes.
  • the ultrasonic crushing is performed under the condition of 1 to 50 kHz, preferably 10 to 20 kHz.
  • the ball mill preferably uses glass spheres having a diameter of about 0.1 to 0.5 mm.
  • the lipase-containing aqueous solution may be concentrated.
  • concentration method is not particularly limited, but evaporator, flash evaporator, UF membrane concentration, MF membrane concentration, salting out with inorganic salts, precipitation method with solvent, adsorption method with ion-exchange cellulose, water absorption with water-absorbing gel Law.
  • UF membrane concentration and an evaporator are used.
  • the module for concentrating the UF membrane is preferably a flat membrane or hollow fiber membrane having a molecular weight cut-off of 3,000 to 100,000, preferably 6,000 to 50,000, and the material is preferably polyacrylonitrile or polysulfone.
  • the lipase used in the present invention is preferably obtained by removing the components contained in the cells and the lipase culture solution.
  • a mixture of this lipase and cereal powder and / or sugar powder in water is dried by spray drying.
  • the order of mixing is not particularly limited, but it is preferable to disperse the cereal powder and / or the sugar powder in an aqueous solution in which lipase is dissolved in water.
  • soybean powder such as full fat soybean powder and defatted soybean powder, wheat flour, rice flour, dextrin, etc. are preferable.
  • Examples of the method for drying the lipase-containing aqueous liquid by spray drying include a method using a spray dryer such as a nozzle countercurrent type, a disk countercurrent type, a nozzle cocurrent type, and a disk cocurrent type.
  • a spray dryer such as a nozzle countercurrent type, a disk countercurrent type, a nozzle cocurrent type, and a disk cocurrent type.
  • the temperature of the lipase-containing aqueous liquid containing lipase and soybean powder is preferably adjusted to 20 to 40 ° C., and then spray-dried (sprayed in a dry atmosphere).
  • the temperature of the blowing (drying atmosphere) is preferably 40 ° C. or more and less than 70 ° C. to ° C., preferably 40 ° C. to 65 ° C., more preferably 40 ° C. to 60 ° C.
  • the pH of the lipase-containing aqueous liquid is preferably adjusted to 7.5 to 8.5 before drying.
  • Lipase is weak in temperature, and the decrease in enzyme activity can be suppressed by lowering the temperature.
  • the range of the blast temperature of 40 ° C. or more and less than 70 ° C. is preferable because the lipase activity is higher than the low temperature region where the blast temperature is 16 to 30 ° C.
  • a lipase powder formulation composed of particles having 3,000-40,000 pores / mm 2 having a diameter of 0.5 ⁇ m to 6 ⁇ m on the surface is thus obtained.
  • a lipase powder preparation having a water content of preferably 10% by mass or less, particularly preferably 1 to 8% by mass.
  • the particle size of the lipase powder formulation of the present invention can be set arbitrarily, but 90% by mass or more of the lipase powder formulation preferably has a particle size of 1 to 150 ⁇ m.
  • the average particle size is preferably 10 to 80 ⁇ m.
  • the shape of the lipase powder preparation is preferably spherical.
  • the particle size of the lipase powder preparation can be measured, for example, using a particle size distribution measuring apparatus (LA-500) manufactured by HORIBA.
  • the transesterification reaction performed using the lipase powder preparation of the present invention is an ester exchange reaction between one or more selected from fatty acid esters, fatty acids, and alcohols and fatty acid esters. Examples include transesterification, transesterification of fats and oils and fatty acid esters, and transesterification of alcoholysis and acidolysis.
  • the esterification reaction performed using the lipase powder preparation of the present invention is an esterification reaction between a fatty acid partial ester and a fatty acid, or an esterification reaction between a monohydric or polyhydric alcohol and a fatty acid.
  • glycerin And esterification reaction of fatty acid with fatty acid is an esterification reaction between a fatty acid partial ester and a fatty acid, or an esterification reaction between a monohydric or polyhydric alcohol and a fatty acid.
  • transesterification reaction between fats and oils, for example, rapeseed oil, which is a triglyceride of a long-chain fatty acid, and trioctanoic acid glyceride, which is a triglyceride of a plant-derived medium chain fatty acid, can be transesterified, A triglyceride mixed with a long chain and a medium chain can be produced.
  • rapeseed oil which is a triglyceride of a long-chain fatty acid
  • trioctanoic acid glyceride which is a triglyceride of a plant-derived medium chain fatty acid
  • a specific fatty acid is left at the second position of the glycerin skeleton, and the fatty acid at the first and third positions is replaced with the target fatty acid.
  • the obtained product can be used for fats and oils used for chocolate and the like, and can also be used for fats and oils having a specific nutritional effect.
  • the conditions for the transesterification reaction and esterification reaction using the lipase powder preparation of the present invention are not particularly limited, and can be carried out by a conventional method. Generally, it is carried out under normal pressure or reduced pressure while avoiding the mixing of water that causes hydrolysis.
  • the reaction temperature is preferably about 20 to 80 ° C., although it depends on the raw materials such as fats and oils to be used and the freezing point of the raw material mixture, and more preferably 40 to 60 ° C. if not limited by the freezing point.
  • the addition amount of the lipase powder preparation to the reaction raw material is preferably 0.05 to 10% by mass, and more preferably 0.05 to 5% by mass.
  • the optimum amount is determined by the reaction temperature, the set reaction time, the activity of the resulting lipase powder formulation, and the like. After completion of the reaction, the lipase powder preparation is removed by filtration, centrifugation, etc., and can be used repeatedly (evaluation of stability) until the activity is reduced to an impossible production. Therefore, it is generally desirable for expensive lipase to impart high activity and high stability to a lipase powder formulation at the same time in as little amount as possible, and this can be achieved by using the lipase powder formulation of the present invention.
  • the transesterified product or esterified product thus obtained is not particularly limited, but is useful as a transesterified fat or esterified fat used in the food field.
  • Example 1 Amano Enzyme Co., Ltd .: A commercial product “Lipase D“ Amano ”Conk Lot. No LDD0252201” was dissolved in water to make an enzyme solution of 336,00 U / mL, and this was deodorized whole fat soybean powder (fat content 23 Mass%, trade name: Alpha Plus HS-600, manufactured by Nisshin Oilio Group Co., Ltd.) Add 10% suspension while stirring, add 3 volumes, adjust pH to 7.8 using 0.5N NaOH solution, A lipase-containing aqueous liquid was obtained. This lipase-containing aqueous liquid was introduced into a low-temperature spray drying apparatus, and spray-dried under various conditions of changing the blowing temperature.
  • the activity of the obtained lipase powder preparation was measured by the following method.
  • Method for measuring lipase activity Lipase powder preparation is added to oil mixed with 1,2,3-trioleoylglycerin and 1,2,3-trioctanoglycerin at a ratio of 1: 1 (w) and reacted at 60 ° C. I let you. 10 ⁇ l was sampled over time, diluted with 1.5 ml of hexane, and the solution obtained by filtering the lipase powder preparation was used as a sample for gas chromatography (GC). Analyzed by GC (column: DB-1ht), the reaction rate was calculated from the following formula.
  • GC conditions are: column temperature; 150 ° C., temperature rise; 15 ° C./min, final temperature 370 ° C.
  • Reaction rate (%) ⁇ C34area / (C24area + C34area) ⁇ x 100
  • C24 indicates 1,2,3-trioctanoglycerin
  • C34 indicates that one fatty acid of 1,2,3-trioctanoglycerin is replaced by oleic acid
  • area is the area of those areas .
  • the reaction rate constant k value was determined by analysis software (origin ver. 6.1).
  • the activity of the lipase powder formulation was expressed as relative activity, with the activity of the lipase powder formulation produced by setting the blast temperature at 110 ° C. as 100.
  • Table 1 Air blowing temperature and lipase relative activity in spray drying From this result, it is understood that a lipase powder having a high relative activity can be obtained when the blowing temperature in spray drying is set to 40 ° C. or higher and lower than 70 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

 粉末リパーゼを構成するリパーゼ粒子が、その表面に直径0.5μm~6μmの細孔を3,000-40,000個/mm2有するものであるリパーゼ粉末製剤。このリパーゼ粉末製剤は、大豆粉末を用いなくてもリパーゼ活性を向上できた。

Description

リパーゼ粉末製剤及びその使用
 本発明は、各種エステル化反応、エステル交換反応などに好適に使用することができるリパーゼ粉末製剤、及びこれらのリパーゼ粉末製剤を用いるエステル交換方法などに関するものである。
 リパーゼは、脂肪酸などの各種カルボン酸とモノアルコールや多価アルコールなどのアルコール類とのエステル化反応、複数のカルボン酸エステル間のエステル交換反応などに幅広く使用されている。このうち、エステル交換反応は動植物油脂類の改質をはじめ、各種脂肪酸のエステル、糖エステルやステロールエステルの製造法として重要な技術である。これらの反応の触媒として、油脂加水分解酵素であるリパーゼを用いると、室温ないし約70℃程度の温和な条件下でエステル交換反応を行うことができ、従来の化学反応に比べ、副反応の抑制やエネルギーコストが低減化されるだけでなく、触媒としてのリパーゼが天然物であることから安全性も高い。また、その基質特異性や位置特異性により目的物を効率良く生産することができる。ところが、粉末リパーゼをそのままエステル交換反応に用いても活性が十分に発現しないばかりか、元来が水溶性のリパーゼを油性原料中に均一に分散させることは困難であり、その回収も困難である。
 このため、従来はリパーゼを何らかの担体、たとえば陰イオン交換樹脂(特許文献1)、フェノール吸着樹脂(特許文献2)、疎水性担体(特許文献3)、陽イオン交換樹脂(特許文献4)、キレート樹脂(特許文献5)等に固定化してエステル化やエステル交換反応などに用いることが一般的である。さらに、リパーゼとリパーゼの担体として作用する物質とを溶解している水相が疎水相に分散しているエマルジョンを製造し、そのエマルジョンから水を除去することにより、水相をリパーゼで被覆した固体粒子へ変化させる固定化リパーゼ粒子の製造方法が提案されている(特許文献6)。
 このように、従来はリパーゼを固定化してエステル交換反応に用いていたが、かかる固定化リパーゼは固定化処理による本来のリパーゼ活性の損失を伴うだけでなく、多孔性担体を用いた場合は細孔に原料や生成物が詰まり、結果としてエステル交換率の低下を招いていた。さらに、従来の固定化リパーゼを用いたエステル交換反応においては、担体が保持する水分が反応系に持ち込まれるため、副反応、たとえば油脂類のエステル交換反応におけるジグリセリドやモノグリセリドの生成等を避けることは困難であった。
 このような状況に鑑み、粉末リパーゼを用いる各種技術が開発されている。例えば、不活性有機溶媒の存在下または非存在下、エステル交換反応時に分散リパーゼ粉末粒子の90%以上を1~100μmの範囲の粒径に保つように、エステルを含有する原料に粉末リパーゼを分散させてエステル交換反応を行う方法が提案されている(特許文献7)。又、リン脂質および脂溶性ビタミンを含む酵素溶液を乾燥して得た酵素粉末を用いることが提案されている(特許文献8)。
 しかしながら、さらにリパーゼ活性が向上した粉末リパーゼが求められている。
 一方、酵素含有溶液に穀物粉を、又は穀物粉及び糖類を添加して該酵素含有溶液を乾燥させることを特徴とする酵素固定製剤の製造方法が提案されている(特許文献9)。ここでは、使用できる酵素として、リパーゼ、セルラーゼ、プロテアーゼ、アミラーゼ及びペクチナーゼがあげられており、この製造方法により得られた酵素固定製剤は、酵素活性低下物質存在下における酵素の失活が抑制できるとしているが、酵素活性が向上することについては記載されていない。又、ここで、実際に製造されているのは、セルラーゼ又はプロテアーゼに脂肪含量の少ない脱脂大豆粉を適用した例のみであり、リパーゼを用いた例は具体的に記載されていない。
 このような状況下において、Rhizopus oryzae由来及び/又はRhizopus delemar由来のリパーゼと、脂肪含有量が5質量%以上である大豆粉末とを含有する造粒物であることを特徴とするリパーゼ粉末製剤及び噴霧乾燥を用いた製造方法が提案されており(特許文献10)、リパーゼ活性が格段に向上したリパーゼ粉末製剤が得られることが開示されている。
特開昭60-98984号公報 特開昭61-202688号公報 特開平2-138986号公報 特開平3-61485号公報 特開平1-262795号公報 特許第3403202号公報 特許第2668187号公報 特開2000-106873号公報 特開平11-246893号公報 特開2008-54448号公報
 本発明は、リパーゼ活性が向上したリパーゼ粉末製剤を提供することを目的とする。
 本発明は、又、これらのリパーゼ粉末製剤を用いるエステル交換方法及びエステル化方法を提供することを目的とする。
 本発明は、リパーゼ粉末製剤を構成する粒子の物理的特性とそのリパーゼ活性との関係について鋭意検討したところ、粒子の表面に存在する細孔の数がリパーゼ活性に大きく関係することを見いだし、該知見により本発明を完成したものである。
 すなわち、本発明は、リパーゼ粉末製剤を構成する粒子が、その表面に直径0.5μm~6μmの細孔を3,000-40,000個/mm2有するものであることを特徴とするリパーゼ粉末製剤を提供する。
 本発明は、又、リパーゼ含有水性液体を、スプレードライの送風温度が40℃以上、70℃未満の条件下でスプレードライして製造することを特徴とする上記リパーゼ粉末製剤の製造方法を提供する。
 本発明は、又、上記リパーゼ粉末製剤を用いてエステル交換又はエステル化することを特徴とするエステル合成物の製造方法を提供する。
 本発明によれば、エステル交換反応又はエステル化反応を効率的に行うことができる酵素活性が格段に向上したリパーゼ粉末製剤を提供することができる。
 特に、本発明によれば、リパーゼ自体から酵素活性が格段に向上したリパーゼ粉末製剤を提供できるので、エステル交換反応又はエステル化反応のリパーゼ粉末製剤の使用量の削減、又は反応時間が大幅に短縮でき、安全に且つ廉価で食品又は食品添加剤を製造することができる。
送風温度50℃にスプレードライして得たリパーゼ粉末製剤を構成するリパーゼ粒子の2000倍の電子顕微鏡写真を示す。 送風温度110℃でスプレードライして得たリパーゼ粉末製剤を構成するリパーゼ粒子の2000倍の電子顕微鏡写真を示す。
 本発明では、種々のリパーゼを用いることができるが、リゾプス属のリゾプス デレマー(Rhizopus delemar)及びリゾプス オリザエ(Rhizopus oryzae)が好ましく、特に1,3-特異性リパーゼであるのが好ましい。これらのうち、リゾプス オリザエ(Rhizopus oryzae)が特に好ましい。
 これらのリパーゼとしては、ロビン社の商品:ピカンターゼR8000や、天野エンザイム社の商品:リパーゼF-AP15等が挙げられるが、最も適したリパーゼとしてはRhizopus oryzae由来、天野エンザイム社の商品:リパーゼDF“Amano”15-K(リパーゼDともいう)やリパーゼD “アマノ”コンクが挙げられる。このものは粉末リパーゼである。なお、このリパーゼDF“Amano”15-Kについては従来はRhizopus delemar由来の表記であった。
 本発明で使用するリパーゼとしては、リパーゼの培地成分等を含有したリパーゼ含有水溶液を乾燥して得られたものでもよいが、これらを含有していないもの、つまり実質的にリパーゼ自体から構成されるものが好ましい。
 本発明のリパーゼ粉末製剤は、リパーゼを、穀物粉末及び/又は糖類粉末とともに溶解及び/又は分散させたリパーゼ含有水性液体を、スプレードライにより製造するのが好ましい。
 リパーゼ含有水性液体中の水の量は、リパーゼの質量に対して水の質量を調整する。具体的には、リパーゼの質量に対する水の質量が、2.0~1,000倍であるのが好ましく、2.0~500倍であるのがより好ましく、3.0~100倍が最も好ましい。
 ここで用いるリパーゼ含有水性液体としては、菌体を除去したリパーゼ培養液、精製培養液、これらから得たリパーゼを再度水に溶解・分散させたもの、市販の粉末リパーゼを再度水に溶解・分散させたもの、市販の液状リパーゼ等が挙げられる。さらに、リパーゼ活性をより高めるために塩類等の低分子成分を除去したものがより好ましく、また、粉末性状をより高めるために糖等の低分子成分を除去したものがより好ましい。
 リパーゼの培養において、リパーゼ培養液として、例えば、大豆粉、ペプトン、コーン・ステープ・リカー、K2HPO4、(NH42SO4、MgSO4・7H2O等含有する水溶液を用い培養する。これらの濃度としては、大豆粉0.1~20質量%、好ましくは1.0~10質量%、ペプトン0.1~30質量%、好ましくは0.5~10質量%、コーン・ステープ・リカー0.1~30質量%、好ましくは0.5~10質量%、K2HPO4 0.01~20質量%、好ましくは0.1~5質量%である。又、(NH42SO4は0.01~20質量%、好ましくは0.05~5質量%、MgSO4・7H2Oは0.01~20質量%、好ましくは0.05~5質量%である。培養条件は、培養温度は10~40℃、好ましくは20~35℃、通気量は0.1~2.0VVM、好ましくは0.1~1.5VVM、攪拌回転数は100~800rpm、好ましくは200~400rpm、pHは3.0~10.0、好ましくは4.0~9.5に制御するのがよい。
 リパーゼ培養後の菌体の分離は、遠心分離、膜濾過などで行うのが好ましい。また、塩類や糖等の低分子成分の除去は、UF膜処理により行うことができる。具体的には、UF膜処理を行い、リパーゼを含有する水溶液を1/2量の体積に濃縮後、濃縮液と同量のリン酸バッファーを添加するという操作を1~5回繰り返すことにより、低分子成分を除去したリパーゼ含有水溶液を得ることができる。
 遠心分離は200~20,000×g、膜濾過はMF膜、フィルタープレスなどで圧力を3.0kg/m2以下にコントロールするのが好ましい。菌体内酵素の場合は、ホモジナイザー、ワーリングブレンダー、超音波破砕、フレンチプレス、ボールミル等で細胞破砕し、遠心分離、膜濾過などで細胞残さを除去することが好ましい。ホモジナイザーの攪拌回転数は500~30,000rpm、好ましくは1,000~15,000rpm、ワーリングブレンダーの回転数は500~10,000rpm、好ましくは1,000~5,000rpmである。攪拌時間は0.5~10分、好ましくは1~5分がよい。超音波破砕は1~50kHz、好ましくは10~20kHzの条件で行うのが良い。ボールミルは直径0.1~0.5mm程度のガラス製小球を用いるのがよい。
 乾燥工程前の途中の工程において、リパーゼ含有水溶液を濃縮してもよい。濃縮方法は、特に限定されるものではないが、エバポレーター、フラッシュエバポレーター、UF膜濃縮、MF膜濃縮、無機塩類による塩析、溶剤による沈殿法、イオン交換セルロース等による吸着法、吸水性ゲルによる吸水法等があげられる。好ましくはUF膜濃縮、エバポレーターがよい。UF膜濃縮用モジュールとしては、分画分子量3,000~100,000、好ましくは6,000~50,000の平膜または中空糸膜、材質はポリアクリルニトリル系、ポリスルフォン系などが好ましい。
 本発明で用いるリパーゼは、前述のとおり菌体及びリパーゼ培養液に含まれる成分を除去したものが好ましい。このリパーゼと穀物粉末及び/又は糖類粉末とともに水に混合したものをスプレードライにより乾燥する。混合する順序は特に限定するものではないが、リパーゼが水に溶解している水溶液に、穀物粉末及び/又は糖類粉末を分散させることが好ましい。また、穀物粉末、糖類粉末としては、全脂大豆粉末、脱脂大豆粉末などの大豆粉末、小麦粉、米粉、デキストリンなどが好ましい。
 リパーゼ含有水性液体をスプレードライにより乾燥する方法としては、例えば、ノズル向流式、ディスク向流式、ノズル並流式、ディスク並流式等の噴霧乾燥機を用いる方法があげられる。この際、リパーゼと大豆粉末を含有するリパーゼ含有水性液体の温度を20~40℃に調整し、次いでスプレードライ処理(乾燥雰囲気内に噴霧)するのが好ましい。送風(乾燥雰囲気)の温度は40℃以上、70℃未満~℃、好ましくは40℃~65℃、より好ましくは40℃~60℃の送風温度で噴霧するのが好ましい。又、乾燥前にリパーゼ含有水性液体のpHを7.5~8.5に調整しておくのが好ましい。
 リパーゼは温度に弱く、低温にすることで酵素活性の低下を抑えられる。しかし、本発明では、送風温度が16~30℃の低温領域より、送風温度40℃以上、70℃未満の範囲の方が、リパーゼ活性が高く好ましい。
 本発明では、このようにして、その表面に直径0.5μm~6μmの細孔を3,000-40,000個/mm2有する粒子で構成されるリパーゼ粉末製剤を得る。このうち、表面に直径0.5μm~6μmの細孔を3,000-20,000個/mm2有するのが好ましく、さらに好ましくは、3,000-10,000個/mm2有するものである。粒子表面の細孔の数は、電子顕微鏡を用いて容易に測定することができる。
 この際、好ましくは水分含量が10質量%以下、特に好ましくは1~8質量%のリパーゼ粉末製剤を得るのがよい。
 本発明のリパーゼ粉末製剤の粒径は任意とすることができるが、リパーゼ粉末製剤の90質量%以上が粒径1~150μmであるのが好ましい。平均粒径は10~80μmが好ましい。又、リパーゼ粉末製剤の形状は球状であるのが好ましい。
 リパーゼ粉末製剤の粒径は、例えば、HORIBA社の粒度分布測定装置(LA-500)を用いて測定することができる。
 次に、本発明のリパーゼ粉末製剤を用いてエステル交換反応又はエステル化反応することにより得られるエステル交換物又はエステル化物の製造方法について説明する。
 本発明のリパーゼ粉末製剤を使用して行うエステル交換反応は、脂肪酸エステル、脂肪酸、及びアルコールから選ばれる1種以上と、脂肪酸エステルとのエステル交換反応であり、例えば、常法による油脂と油脂のエステル交換反応、油脂と脂肪酸エステルとのエステル交換反応、アルコリシスやアシドリシスのエステル交換反応が挙げられる。
 また、本発明のリパーゼ粉末製剤を使用して行うエステル化反応は、脂肪酸の部分エステルと脂肪酸とのエステル化反応、又は一価又は多価アルコールと脂肪酸とのエステル化反応であり、例えば、グリセリンと脂肪酸とのエステル化反応等が挙げられる。
 さらに詳細には、油脂と油脂とのエステル交換反応として、例えば、長鎖脂肪酸のトリグリセリドである菜種油と植物由来の中鎖脂肪酸のトリグリセリドであるトリオクタン酸グリセリドをエステル交換させる反応を行うことができ、長鎖と中鎖の混合したトリグリセリドを製造することができる。
 また、油脂と脂肪酸によるアシドリシスを使ったエステル交換反応としては、リパーゼの持つ1,3-特異性リパーゼを大いに利用した構造油脂の製造をすることができる。グリセリン骨格の2位に特定の脂肪酸を残して1,3位の脂肪酸を目的の脂肪酸に置き換えるものである。得られたものはチョコレート等に使用する油脂へ利用でき、また特定の栄養効果を持つ油脂へ利用できる。
 本発明のリパーゼ粉末製剤を用いたエステル交換反応やエステル化反応の条件については、特に限定するものではなく、常法により行うことができる。
 一般的には、加水分解の原因となる水分の混入を避けながら、常圧又は減圧下にて行なわれる。反応温度としては、使用する油脂などの原料及び原料混合物の凝固点にもよるが、20~80℃程度で行うことが好ましく、凝固点により限定されなければ、40~60℃で行うことがより好ましい。
 また、リパーゼ粉末製剤の反応原料への添加量としては、0.05~10質量%が好ましく、0.05~5質量%がより好ましい。最適な量は、反応温度、設定する反応時間、得られたリパーゼ粉末製剤の活性等により決定される。反応終了後、リパーゼ粉末製剤は濾過・遠心分離等により除かれ、製造が不可能な活性に低下するまで繰り返し使用(安定性の評価)できる。
 したがって、通常、高価であるリパーゼは、できるだけ少量で高い活性と高い安定性とを同時にリパーゼ粉末製剤に付与できることが望ましく、本発明のリパーゼ粉末製剤を使用することで達成できる。
 このようにして得られたエステル交換物又はエステル化物は、特に限定されないが、食品分野に使用されるエステル交換油脂又はエステル化油脂として有用である。
 次に本発明を製造例及び実施例により詳細に説明する。
実施例1
 天野エンザイム社の商品:市販品「リパーゼD “アマノ”コンク Lot. No LDD0252201」を336,00U/mLの酵素溶液となるよう水に溶解し、これに脱臭全脂大豆粉末(脂肪含有量が23質量%、商品名:アルファプラスHS-600、日清オイリオグループ(株)製)10%懸濁液を攪拌しながら3倍量加え、0.5NのNaOH溶液を用いてpHを7.8に調整後、リパーゼ含有水性液体を得た。このリパーゼ含有水性液体を低温スプレードライ装置に導入し、送風温度を種々変えた条件下で、スプレードライした。
 得られたリパーゼ粉末製剤の活性を以下の方法で測定した。
リパーゼ活性の測定方法
 1,2,3-トリオレオイルグリセリンと1,2,3-トリオクタノグリセリンを1:1(w)の割合で混合した油に、リパーゼ粉末製剤を添加し60℃で反応させた。経時的に10μlサンプリングし、ヘキサン1.5mlで希釈後、リパーゼ粉末製剤をろ過した溶液をガスクロマトグラフィー(GC)用サンプルとした。GC(カラム:DB-1ht)で分析し下式より反応率を求めた。GC条件は、カラム温度;150℃、昇温;15℃/分、最終温度370℃である。
     反応率(%)={C34area/(C24area+C34area)}×100
 式中、C24は1,2,3-トリオクタノグリセリン、C34は1,2,3-トリオクタノグリセリンの一つの脂肪酸がオレイン酸に置き換わったものを示し、areaはそれらのエリア面積である。各時間における反応率に基づき、解析ソフト(origin ver.6.1)により反応速度定数k値を求めた。
 リパーゼ粉末製剤の活性は、送風温度を110℃に設定して製造したリパーゼ粉末製剤の活性を100として各温度を相対活性で表した。
 結果をまとめて表1に示す。
表1 スプレードライにおける送風温度とリパーゼ相対活性

Figure JPOXMLDOC01-appb-I000001

 この結果から、スプレードライにおける送風温度を40℃以上、70℃未満にすると、相対活性が高いリパーゼ粉末が得られることがわかる。
 次に、このような高い相対活性のリパーゼ粉末が得られる原因を調べるために、表1に記載のリパーゼ粉末を構成するリパーゼ粒子表面における細孔数を次の方法で調べた。
<分析方法詳細>
 粉末リパーゼを構成するリパーゼ粒子表面を電子顕微鏡で観察した。無作為に選んだ粉末リパーゼの一粒(リパーゼ粒子)が画面におさまるように倍率を1500倍、もしくは2000倍に設定した。観察表面の一部(粒子の中心付近)を切り出し(200~600μm2の面積となった)、その中に含まれる直径0.5μm~6μmの細孔数を目視でカウントし、表面細孔数 (個) /表面積 (mm2)を算出した。
 この操作を各グループ当たり5検体ずつ行い、その平均値を求めた。結果を表2に示す。
表2 送風温度と得られた粉末リパーゼの表面細孔数

Figure JPOXMLDOC01-appb-I000002

 この結果から、スプレードライにおける送風温度における差違というよりも、得られた粉末リパーゼの表面細孔数とリパーゼ相対活性との間には相関性があることがわかる。
 尚、送風温度50℃、110℃で製造したリパーゼ粉末の水分量は、それぞれ7.2質量%、及び2.9質量であった(カールフィッシャー法を用いて測定)。送風温度50℃で製造したリパーゼ粉末については乾燥して水分を低下させ、一方、送風温度110℃で製造したリパーゼ粉末について吸湿させて、それぞれ5.7質量%に調製してリパーゼ相対活性を調べたところ、水分含量の影響よりも粉末リパーゼの表面細孔数がリパーゼ相対活性に影響していることがわかった。

Claims (8)

  1.  リパーゼ粉末製剤を構成する粒子が、その表面に直径0.5μm~6μmの細孔を3,000-40,000個/mm2有するものであることを特徴とするリパーゼ粉末製剤。
  2.  粒子が、その表面に直径0.5μm~6μmの細孔を3,000-20,000個/mm2有するものである請求項1に記載のリパーゼ粉末製剤。
  3.  リパーゼが、リゾプス オリザエ(Rhizopus oryzae)由来のリパーゼである請求項1又は2記載のリパーゼ粉末製剤。
  4.  粒子の90質量%以上が粒径1~150μmである請求項1~3のいずれか1項記載のリパーゼ粉末製剤。
  5.  エステル交換用又はエステル化用である請求項1~4のいずれか1項記載のリパーゼ粉末製剤。
  6.  スプレードライの送風温度が40℃以上、70℃未満の条件下で、スプレードライして製造されたものである請求項1~5のいずれか1項記載のリパーゼ粉末製剤。
  7.  リパーゼ含有水性液体を、スプレードライの送風温度が40℃以上、70℃未満の条件下でスプレードライして製造することを特徴とする請求項1~5のいずれか1項記載のリパーゼ粉末製剤の製造方法。
  8.  請求項1~5のいずれか1項記載のリパーゼ粉末製剤を用いてエステル交換又はエステル化することを特徴とするエステル合成物の製造方法。
PCT/JP2010/071095 2009-12-01 2010-11-26 リパーゼ粉末製剤及びその使用 WO2011068076A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10834526.5A EP2508598A4 (en) 2009-12-01 2010-11-26 PREPARATION OF LIPASE POWDER AND USE THEREOF
CN201080040680XA CN102575238A (zh) 2009-12-01 2010-11-26 脂肪酶粉末制剂及其用途
US13/395,607 US20120171736A1 (en) 2009-12-01 2010-11-26 Powdery lipase preparation and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009273685A JP2011115065A (ja) 2009-12-01 2009-12-01 リパーゼ粉末製剤及びその使用
JP2009-273685 2009-12-01

Publications (1)

Publication Number Publication Date
WO2011068076A1 true WO2011068076A1 (ja) 2011-06-09

Family

ID=44114923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071095 WO2011068076A1 (ja) 2009-12-01 2010-11-26 リパーゼ粉末製剤及びその使用

Country Status (5)

Country Link
US (1) US20120171736A1 (ja)
EP (1) EP2508598A4 (ja)
JP (1) JP2011115065A (ja)
CN (1) CN102575238A (ja)
WO (1) WO2011068076A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107320451B (zh) * 2017-07-19 2020-10-20 黄河三角洲京博化工研究院有限公司 一种脂肪酶可湿性粉剂及其在蚕业养殖中的应用
WO2023114383A1 (en) * 2021-12-16 2023-06-22 First Wave BioPharma, Inc. Stable lipase formulations and methods thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097985A1 (ja) * 2004-04-08 2005-10-20 The Nisshin Oillio Group, Ltd. 1,3-特異性リパーゼ粉末、その製造方法及びその使用
WO2005097984A1 (ja) * 2004-04-08 2005-10-20 The Nisshin Oillio Group, Ltd. リパーゼ粉末、その製造方法及びその使用
JP2007068426A (ja) * 2005-09-05 2007-03-22 Nisshin Oillio Group Ltd リパーゼ粉末製剤、その製造方法及び使用
WO2008114656A1 (ja) * 2007-03-16 2008-09-25 The Nisshin Oillio Group, Ltd. リパーゼ粉末製剤、その製造方法及び使用
WO2010089967A1 (ja) * 2009-02-04 2010-08-12 不二製油株式会社 乳化粉末リパーゼ製剤の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746621A (en) * 1968-06-25 1973-07-17 Fuji Photo Film Co Ltd Preparation of enzyme containing microcapsule
JP2668187B2 (ja) * 1993-09-17 1997-10-27 日清製油株式会社 リパーゼ粉末を用いたエステル交換法
AU2007276093A1 (en) * 2006-07-19 2008-01-24 The Nisshin Oillio Group, Ltd. A process for preparing a hard butter suitable for chocolate products
TWI429400B (zh) * 2007-09-07 2014-03-11 Nisshin Oillio Group Ltd 硬奶油的製造方法
CN101724621A (zh) * 2009-12-17 2010-06-09 北京凯泰新世纪生物技术有限公司 一种微载体固定化脂肪酶及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097985A1 (ja) * 2004-04-08 2005-10-20 The Nisshin Oillio Group, Ltd. 1,3-特異性リパーゼ粉末、その製造方法及びその使用
WO2005097984A1 (ja) * 2004-04-08 2005-10-20 The Nisshin Oillio Group, Ltd. リパーゼ粉末、その製造方法及びその使用
JP2007068426A (ja) * 2005-09-05 2007-03-22 Nisshin Oillio Group Ltd リパーゼ粉末製剤、その製造方法及び使用
WO2008114656A1 (ja) * 2007-03-16 2008-09-25 The Nisshin Oillio Group, Ltd. リパーゼ粉末製剤、その製造方法及び使用
WO2010089967A1 (ja) * 2009-02-04 2010-08-12 不二製油株式会社 乳化粉末リパーゼ製剤の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ENGSTROM J.D. ET AL: "Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen", EUR. J. PHARM. BIOPHARM., vol. 65, no. 2, 2007, pages 163 - 174, XP005823139 *

Also Published As

Publication number Publication date
US20120171736A1 (en) 2012-07-05
CN102575238A (zh) 2012-07-11
EP2508598A1 (en) 2012-10-10
JP2011115065A (ja) 2011-06-16
EP2508598A4 (en) 2013-05-29

Similar Documents

Publication Publication Date Title
JP4828418B2 (ja) リパーゼ粉末、その製造方法及びその使用
US20150104839A1 (en) Powdery lipase preparation, method for producing the same and use thereof
JP4394598B2 (ja) リパーゼ粉末組成物及びそれを用いたエステル化物の製造方法
WO2011068076A1 (ja) リパーゼ粉末製剤及びその使用
JPWO2005097985A1 (ja) 1,3−特異性リパーゼ粉末、その製造方法及びその使用
JP2007068426A (ja) リパーゼ粉末製剤、その製造方法及び使用
JP5728335B2 (ja) エステル交換油脂の製造方法及びその装置
TWI403583B (zh) 脂肪酶粉末組成物、其製造方法及其使用
WO2013018859A1 (ja) エステル交換油の製造方法
JP5258941B2 (ja) リパーゼ活性の回復方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040680.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010834526

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13395607

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE