WO2010087633A2 - 싸이클릭다이암모늄을 이용한 메조기공 및 마크로기공을 추가적으로 포함하는 bea, mtw, mfi 구조의 제올라이트의 제조과정 - Google Patents

싸이클릭다이암모늄을 이용한 메조기공 및 마크로기공을 추가적으로 포함하는 bea, mtw, mfi 구조의 제올라이트의 제조과정 Download PDF

Info

Publication number
WO2010087633A2
WO2010087633A2 PCT/KR2010/000529 KR2010000529W WO2010087633A2 WO 2010087633 A2 WO2010087633 A2 WO 2010087633A2 KR 2010000529 W KR2010000529 W KR 2010000529W WO 2010087633 A2 WO2010087633 A2 WO 2010087633A2
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
molecular sieve
mesopores
present
gel
Prior art date
Application number
PCT/KR2010/000529
Other languages
English (en)
French (fr)
Other versions
WO2010087633A3 (ko
Inventor
유룡
최민기
나경수
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2010087633A2 publication Critical patent/WO2010087633A2/ko
Publication of WO2010087633A3 publication Critical patent/WO2010087633A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • Zeolites are defined as crystalline aluminosilicate materials in which uniform micropores (0.3 ⁇ diameter ⁇ 2 nm) in the molecular size region are regularly arranged. Since zeolite micropores have a diameter in the molecular size region, they have a molecular sieve function to selectively adsorb and diffuse molecules. This molecular sieve effect has enabled molecular selective adsorption, ion exchange and catalytic processes (Cundy, C. S. et al., Chem. Rev., 2003, 103, 663). However, slow molecular diffusion into very small diameter zeolite micropores has caused reaction rate constraints in many applications.
  • the materials synthesized by this strategy have improved hydrothermal stability compared to amorphous aluminosilicates with similar mesopores and improved molecular diffusion compared to common crystalline zeolites without mesopores.
  • the manufacturing process of zeolite using pre-formed seed crystals has a problem of increasing the production cost of zeolite by complicating the entire synthesis process.
  • the present inventors have diligently researched to synthesize zeolite materials containing mesopores or macropores through a more economical and simple process.
  • cyclic diammonium is added to the zeolite synthesis mixture, the mesopores and It was confirmed that a zeolite having a BEA, MTW, and MFI structure containing macropores (based on the 3-letter code of the International Zeolite Association) was obtained, thereby completing the present invention. Since these materials contain very strong acid points, they have been studied as very important catalysts in organic reforming, alkylation and acylation processes.
  • the main object of the present invention is to provide a method for producing a zeolite material of novel BEA, MTW and MFI structure comprising meso or macropores interconnected three-dimensionally inside the zeolite particles.
  • the production method of the present invention comprises (A) adding an organo-functionalized cyclic diammonium to a zeolite synthetic gel (gel), (B) hydrothermal reaction of the material obtained in the step (A), Crystallization through microwave reaction, dry-gel synthesis, and the like, (C) selectively removing organic matter through calcination or other chemical treatment from the material obtained in step (B). do.
  • the inventors added cyclic diammonium to the synthetic gel of zeolite and then crystallized in acidic or basic conditions. Finally, the mesoporous zeolite material was synthesized by removing organic matter.
  • the zeolite production method of the present invention will be described in more detail by dividing the process.
  • Cyclic diammonium is polymerized with an inorganic gel shearer such as silica or alumina to form an organic-inorganic composite gel.
  • an inorganic gel shearer such as silica or alumina
  • a hydrophobic organic domain is formed by self-assembly between inorganic domains by non-covalent bonds between organic materials, that is, van der Waals forces, dipole-dipole interactions, and ionic interactions. This self-assembly produces a gel containing mesopores and macropores.
  • Second process The nanometer-thick inorganic gel region stabilized by the organic region is then converted into individual fine zeolites through the crystallization process. At this time, the growth of zeolite is suppressed due to the stabilizing effect of the organic material surrounding each zeolite, and the crystal size is adjusted to nanometer size. At this time, the crystallization process can be performed by hydrothermal synthesis, dry-gel synthesis and microwave synthesis.
  • the crystallized zeolite can be obtained by filtration or centrifugation.
  • the material thus obtained can be selectively or completely removed only organics through calcining or other chemical reactions.
  • Cyclic diammonium shearing body used in the present invention can be expressed by generalizing the following chemical structure.
  • X is a halogen (Cl, Br, etc.) or hydroxyl (OH) group and R 1 , R 2 are each independently substituted or unsubstituted alkoxy, alkyl, alkenyl, allyl .
  • X is a halogen (Cl, Br, etc.) or hydroxyl (OH) group and R 1 , R 2 are each independently substituted or unsubstituted alkoxy, alkyl, alkenyl, allyl .
  • X is a halogen (Cl, Br, etc.) or hydroxyl (OH) group
  • R 1 , R 2 are each independently substituted or unsubstituted alkoxy, alkyl, alkenyl, allyl .
  • the mesoporous zeolites synthesized in the present invention exhibited characteristic X-ray diffraction and electron diffraction patterns corresponding to microporous structures of BEA, MTW and MFI zeolites.
  • the present inventors have confirmed that the material of the present invention contains a large volume of mesopores and macropores in addition to the zeolite natural micropores by using nitrogen adsorption method, the amorphous phase is separated separately using a scanning electron microscope (SEM) It was confirmed that it is not generated.
  • SEM scanning electron microscope
  • Example 1 is a post-firing X-ray diffraction (XRD) result of mesoporous BEA type aluminosilicate made according to Example 1 of the present invention.
  • XRD X-ray diffraction
  • SEM 2 is a scanning electron microscope (SEM) image after firing of mesoporous BEA type aluminosilicate made according to Example 1 of the present invention.
  • TEM 3 is a transmission electron microscope (TEM) image after firing of a mesoporous BEA type aluminosilicate made according to Example 1 of the present invention.
  • Figure 4 shows the nitrogen adsorption isotherm after firing the mesoporous BEA type aluminosilicate made according to Example 1 of the present invention.
  • Example 5 is an X-ray diffraction (XRD) result after firing of a mesoporous BEA type aluminosilicate made according to Example 2 of the present invention.
  • XRD X-ray diffraction
  • SEM 6 is a scanning electron microscope (SEM) image after firing of mesoporous BEA type aluminosilicate made according to Example 2 of the present invention.
  • Example 7 is an X-ray diffraction (XRD) result after firing of a mesoporous MTW type silicate made according to Example 3 of the present invention.
  • XRD X-ray diffraction
  • SEM 8 is a scanning electron microscope (SEM) image after firing of a mesoporous MTW type silicate made according to Example 3 of the present invention.
  • Figure 9 shows the nitrogen adsorption isotherm after firing of the mesoporous MTW type silicate made according to Example 3 of the present invention.
  • Example 10 is a post-firing X-ray diffraction (XRD) result of mesoporous MFI type aluminosilicate made according to Example 4 of the present invention.
  • XRD X-ray diffraction
  • FIG. 11 is a scanning electron microscope (SEM) image after firing of a mesoporous MFI type aluminosilicate made according to Example 4 of the present invention.
  • Figure 12 shows the nitrogen adsorption isotherm after firing of the mesoporous MFI type aluminosilicate made according to Example 4 of the present invention.
  • FIG. 13 is a post-firing X-ray diffraction (XRD) result of mesoporous BEA type titanosilicate made according to Example 5 of the present invention.
  • SEM 14 is a scanning electron microscope (SEM) image after firing of a mesoporous BEA type titanosilicate made according to Example 5 of the present invention.
  • Figure 15 shows the nitrogen adsorption isotherm after firing the mesoporous BEA type titanosilicate made according to Example 5 of the present invention.
  • CD-1 or CD-2 was mixed with sodium hydroxide, sodium aluminate (53 mass% Al 2 O 3 , 43 mass% Na 2 O), sulfuric acid, and distilled water to prepare a mixed gel.
  • the molar composition of the synthetic gel is as follows.
  • the final mixture was placed in a stainless autoclave and then placed at 170 ° C. for one day. After cooling the autoclave to room temperature, the product was filtered and washed several times with distilled water. The product obtained was dried at 110 ° C., and then the organics were removed by firing at 550 ° C. for 4 hours.
  • the XRD type (FIG. 1) of the product was consistent with the structure of the BEA molecular sieve with high crystallinity.
  • SEM photographs were measured under low acceleration voltage (1-5 kV) without gold plating to observe the surface of the product more accurately (FIG. 2).
  • SEM images show that the molecular sieve backbone and mesopores in nanoscale (10-20 nm) are alternately arranged.
  • the transmission electron microscope (TEM) image (FIG. 3) shows mesopores in which all zeolite particles are uniformly distributed, and each skeleton consists of crystalline zeolite.
  • CD-1 or CD-2 was mixed with sodium hydroxide, sodium aluminate (53 mass% Al 2 O 3 , 43 mass% Na 2 O), diatomaceous earth, sulfuric acid, distilled water to prepare a mixed gel.
  • the molar composition of the synthetic gel is as follows.
  • the final mixture was placed in a stainless autoclave and then placed at 130 ° C. for 3 days. After cooling the autoclave to room temperature, the product was filtered and washed several times with distilled water. The obtained product was dried at 110 ° C., and then treated with 1 M hydrochloric acid solution at room temperature for one hour, and then the organics were removed by firing at 550 ° C. for 4 hours.
  • the XRD type (FIG. 5) of the product was consistent with the structure of the BEA molecular sieve with high crystallinity.
  • SEM photographs were measured under low acceleration voltage (1-5 kV) without gold plating to observe the surface of the product more accurately (FIG. 6).
  • SEM images show that even after zeolite crystallization, the original macropores of diatomaceous earth are retained. When the skeleton is enlarged, it can be seen that zeolite crystals corresponding to 10-20 nm are covalently connected and mesopores exist between the crystals.
  • the material thus contains micropores inside the zeolite crystals, mesopores present between the zeolite crystals, and the macropore structure resulting from the shape of the original diatomaceous earth.
  • CD-1, CD-2 or CD-3 was mixed with sodium hydroxide, sulfuric acid and distilled water to prepare a mixed gel.
  • the molar composition of the synthetic gel is as follows.
  • the final mixture was placed in a stainless autoclave and then placed at 170 ° C. for 3 days. After cooling the autoclave to room temperature, the product was filtered and washed several times with distilled water. The product obtained was dried at 110 ° C., and then the organics were removed by firing at 550 ° C. for 4 hours.
  • the XRD type of product (FIG. 7) was consistent with the structure of the MTW molecular sieve with high crystallinity.
  • SEM photographs were measured under low acceleration voltage (1-5 kV) without gold plating to observe the surface of the product more accurately (FIG. 8).
  • SEM images show that the molecular sieve backbone and mesopores in nanoscale (15-40 nm) are alternately arranged.
  • Fig. 9 As a result of analyzing the pore structure of the product calcined through nitrogen adsorption isotherm (Fig. 9), it was confirmed that the mesopores having a diameter of 10-40 nm and a pore volume of 0.4 mL g -1 were included.
  • CD-3 was mixed with sodium hydroxide, sulfuric acid and distilled water to prepare a mixed gel.
  • the molar composition of the synthetic gel is as follows.
  • the final mixture was placed in a stainless autoclave and then placed at 150 ° C. for 3 days. After cooling the autoclave to room temperature, the product was filtered and washed several times with distilled water. The product obtained was dried at 110 ° C., and then the organics were removed by firing at 550 ° C. for 4 hours.
  • the XRD type (FIG. 10) of the product was consistent with the structure of the MFI molecular sieve with high crystallinity.
  • SEM photographs were measured under low acceleration voltage (1-5 kV) without gold plating to observe the surface of the product more accurately (FIG. 11).
  • SEM images show the shape of the zeolite crystals consisting of a skeleton of nanoscale thickness (15-40 nm).
  • Fig. 12 As a result of analyzing the pore structure of the product calcined through the nitrogen adsorption isotherm (Fig. 12), it was confirmed that the mesopores having a diameter of 10-40 nm and a pore volume of 0.6 mL g -1 were included.
  • CD-4 was mixed with distilled water and titanium butoxide (titanium butoxide) to prepare a mixed gel.
  • the molar composition of the synthetic gel is as follows.
  • the mesoporous BEA zeolite synthesized in Example 1 was repeatedly ion-exchanged using an excess of 1M ammonium nitrate solution and calcined at 550 ° C. to prepare a catalyst.
  • 0.1 g of the catalyst was deposited in a vertical reactor and then activated at 300 ° C. with nitrogen. After the reactor was cooled to 200 ° C., the reaction solution was poured and the product was collected by ice water and analyzed by gas chromatography.
  • the reaction results of the catalysts are shown in Table 1 in comparison with commercially available BEA zeolites.
  • IPN monoisopropylnaphthalene
  • DIPN diisopropylnaphthalene
  • PIPN polyisopropyl-naphthalene
  • the present invention provides a method for preparing microporous BEA, MTW, MFI zeolite including mesopores or macropores through an economical and simple process.
  • Mesoporous zeolite prepared according to the present invention shows excellent molecular diffusion and shows significantly enhanced catalytic activity compared to conventional zeolitic materials.
  • the mesopores contained in the zeolite are expected to exhibit very high activity in the adsorption, separation and catalytic reaction of macroorganic molecules, and the reforming reaction of petroleum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 제올라이트의 합성 조성에 싸이클릭다이암모늄을 첨가하여 5-50 nm 크기의 매우 작은 결정 크기를 갖는 제올라이트 및 유사 분자체의 합성에 관한 것이다. 덧붙여 본 발명은 탈알루미늄화, 이온 교환, 그리고 그 외의 다른 후처리에 의해 활성화되거나 관능화 된 마이크로-메조다공성 분자체 물질 및 그 촉매 활용을 포함하고 있다. 본 발명에 의해 합성된 나노결정성 분자체는 마이크로기공 (직경 < 1nm) 을 포함하는 분자체 결정 사이사이에 메조기공 (2<직경<50 nm) 및 마크로기공 (50 nm<직경) 이 존재하기 때문에 분자확산이 증진되며, 기존의 제올라이트에서 보였던 촉매 및 이온교환 수지의 기능에서 활성이 크게 증진되었다. 또한 거대분자의 확산 및 흡착이 용이하여 대형 유기 분자의 알킬레이션, 아실레이션 반응 등에서 매우 높은 반응성을 보인다.

Description

싸이클릭다이암모늄을 이용한 메조기공 및 마크로기공을 추가적으로 포함하는 BEA, MTW, MFI 구조의 제올라이트의 제조과정
제올라이트는 분자 크기 영역의 균일한 마이크로기공 (0.3 < 직경 < 2 nm)이 규칙적으로 배열된 결정성 알루미노실리케이트 (aluminosilicate) 물질로 정의된다. 제올라이트의 마이크로기공은 분자 크기 영역의 직경을 가지고 있기 때문에 분자를 선택적으로 흡착, 확산시킬 수 있는 분자체 (molecular sieve) 기능이 있다. 이러한 분자체 효과는 분자선택적 흡착, 이온교환 및 촉매 공정을 가능하게 하였다 (Cundy, C. S. 외, Chem. Rev., 2003, 103, 663). 하지만 매우 작은 직경을 갖는 제올라이트 마이크로기공으로의 느린 분자 확산은 여러 응용에 있어 반응 속도의 제약을 불러 일으켜 왔다. 때문에 이 문제를 해결하기 위해 넓은 외표면적을 갖는 제올라이트를 합성하여 제올라이트 마이크로 기공 내로의 분자확산을 증진시키려는 시도들이 과거에 있었다. 가장 중요한 예로 분자의 확산을 증진시키기 위해 결정 내부에 추가적인 메조기공 (2 < 직경 < 50 nm) 또는 마크로기공 (50 nm < 직경)을 갖는 마이크로다공성 제올라이트를 합성하려는 시도들이 보고되었다. 마이크로기공과 메조기공을 한 입자 안에 동시에 포함하는 제올라이트 물질은 복합적인 장점을 가지고 있다. 제올라이트 골격 안의 마이크로기공은 분자 선택성 및 활성점 (active site)을 제공하며, 메조기공은 마이크로기공 안으로의 분자확산을 증진시켜 보다 큰 분자의 확산 및 흡착을 가능하게 한다.
이러한 마이크로-메조다공성 분자체를 합성하기 위해 Anderson과 그의 동료들은 제올라이트 씨앗 결정 (seed crystal) 을 처리한 규조토를 이용하여 메조기공을 갖는 제올라이트의 합성 하였다 (Anderson, M. W. 외, Angew. Chem. Int. Ed., 2000, 39, 2707). 또한 Pinnavaia는 미리 합성한 제올라이트 씨앗 결정을 계면활성제 존재 하에서 자가조립 (self-assembly) 하여 메조다공성 물질을 합성하였으며 (미합중국 특허 제6770258, B2호), Kaliaguine은 메조다공성 실리카의 메조기공의 벽을 제올라이트 씨앗 결정으로 코팅하였다. (미합중국 특허 제 6669924, B1호). 이러한 전략에 의해서 합성된 물질들은 비슷한 메조기공을 갖는 무정형 알루미노실리케이트와 비교하여 수열 안정성이 향상되는 동시에 메조기공이 없는 일반 결정성 제올라이트와 비교해 분자확산이 증진되었다. 하지만 미리 형성된 씨앗결정을 사용하는 제올라이트의 제조 공정은 전체 합성 과정을 복잡하게 하여 제올라이트 생산 단가를 올리는 문제점을 갖고 있었다.
최근에는 탄소나노입자 및 나노섬유, 구형 고분자와 같은 다양한 고체 주형 존재 하에서 제올라이트를 합성한 후 주형 입자를 태워 제올라이트 결정 안에 메조기공을 형성시키는 제조방법이 발표되었다. Stein과 그의 동료들은 100 마이크론 정도의 균일한 크기를 가지는 구형 폴리스티렌를 이용하여 메조다공성 분자체를 합성하는 기술을 발표하였고 (미합중국 특허 제 6680013, B1호), Jacobson은 탄소를 주형으로 하여 10 - 100 nm의 넓은 기공 분포를 보이는 메조다공성 제올라이트를 합성하였다 (미합중국 특허 제 6620402, B2호). 이와 같이 고체주형법을 사용하여 제조된 물질들은 메조기공을 통한 용이한 분자 확산 때문에 향상된 촉매 활성을 나타낸다고 보고되었다 (Christensen, C. H. 외, J. Am. Chem. Soc., 2003, 125, 13370). 하지만 이러한 고체주형법에서는 많은 양의 주형 물질 합성이 필요하고, 주형 안에서 선택적으로 제올라이트의 결정화가 일어나도록 정밀한 화학적 제어가 요구된다. 이러한 점들은 제올라이트의 제조 과정을 복잡하게 하고, 생산 단가를 올리는 요인으로 작용한다. 가장 최근에는 유기실란을 제올라이트의 합성 조성에 첨가함으로써 메조기공을 제올라이트 결정 내에 생성시키는 전략이 발표되었다 (한국 특허, 10-0727288). 이러한 합성 전략은 비표면적이 매우 높고 기공구조를 조절할 수 있는 매우 큰 장점이 있는 반면 유기실란의 가격이 비싸 제올라이트의 제조비용이 올라간다는 단점이 있었다.
따라서 현재, 보다 경제적이고 간단한 공정을 통해 메조다공성 제올라이트 물질을 합성할 수 있는 제조 방법의 개발 필요성이 끊임 없이 대두되고 있다.
이에 본 발명자들은 보다 경제적이고 간단한 공정을 통해 메조기공 또는 마크로 기공이 포함된 제올라이트 물질을 합성하기 위해 예의 연구 노력한 결과, 제올라이트 합성 혼합물에 싸이클릭다이암모늄 (cyclic diammonium) 을 첨가하면 결정화 이후 메조기공 및 마크로기공이 포함된 BEA, MTW, MFI 구조 (국제제올라이트협회의 3-letter code에 의거) 를 갖는 제올라이트가 얻어짐을 확인하고, 본 발명을 완성하게 되었다. 이들 물질은 매우 강한 산점을 포함하기 때문에 유기물의 개질화공정 (reforming), 알킬레이션 (alkylation) 및 아실레이션 (acylation) 공정 등에서 매우 중요한 촉매로 연구되어 왔다.
결국 본 발명의 주된 목적은 제올라이트 입자 내부에 삼차원적으로 상호 연결된 메조 또는 마크로기공을 포함하는 신규 BEA, MTW 및 MFI 구조의 제올라이트 물질의 제조방법을 제공하는 것이다. 상기 목적을 달성하기 위해 본 발명의 제조 방법은 (A) 제올라이트 합성 겔 (gel) 에 유기-관능화 싸이클릭다이암모늄을 첨가하는 단계, (B) 상기 (A) 단계에서 얻어진 물질을 수열반응, 마이크로파 반응, 건식-겔 (dry-gel) 합성법 등을 통해 결정화 시키는 공정, (C) 상기 (B) 공정에서 얻어진 물질에서 소성 (calcination) 또는 다른 화학적 처리를 통해 유기물을 선택적으로 제거하는 공정을 포함한다.
본 발명자들은 싸이클릭다이암모늄 (cyclic diammonium) 을 제올라이트의 합성 겔에 첨가한 후에 산성 또는 염기 조건에서 결정화 시켰으며, 마지막으로 유기물을 제거함으로써 메조다공성 제올라이트 물질을 합성하였다. 이하, 본 발명의 제올라이트 제조 방법을 공정별로 나누어 보다 구체적으로 설명하기로 한다.
제 1 공정: 싸이클릭다이암모늄을 실리카나 알루미나와 같은 무기겔 전단체와 같이 중합하여 유기-무기 복합 겔을 형성한다. 이 때 소수성 유기물 영역 (domain) 이 유기물질 간의 비공유결합, 즉, 반데르발스 힘, 쌍극자-쌍극자 상호작용, 이온 상호작용 등에 의해 무기물 영역 사이에서 자가조립 되어 형성된다. 이러한 자가조립에 의하여 메조기공 및 마크로 기공을 포함하는 겔이 만들어 진다.
제 2 공정: 이후 유기물 영역에 의해 안정화된 나노미터 두께의 무기 겔 영역은 결정화 과정을 통해서 각각의 미세 제올라이트로 변환된다. 이 때 각 제올라이트를 둘러싸고 있는 유기물의 안정화 효과 때문에 제올라이트의 성장이 억제되며, 결정크기가 나노 미터 크기로 조절되게 된다. 이 때 결정화 과정은 수열합성 (hydrothermal synthesis), 건식-겔 합성 (dry-gel), 마이크로파 합성에 의해 모두 가능하다.
제 3 공정: 결정화가 끝난 제올라이트는 여과법이나 원심분리를 통해 수득할 수 있다. 이렇게 얻어진 물질은 소성 또는 다른 화학적 반응을 통해 유기물만을 선택적으로 완전 또는 부분적으로 제거할 수 있다.
본 발명에서 이용된 싸이클릭다이암모늄 전단체는 다음과 같은 화학구조로 일반화하여 표현할 수 있다.
Figure PCTKR2010000529-appb-I000001
여기서 X는 할로겐 (Cl, Br 등) 이나 하이드록실 (OH) 기이고 R1, R2 는 각각 독립적으로 치환되거나 치환되지 않은 알콕시, 알킬 (alkyl), 알케닐 (alkenyl), 알릴 (aryl)이다. 개념적으로 보다 다양한 구조의 물질로 확장 이용될 수 있다.
본 발명에서 합성된 메조 다공성 제올라이트는 BEA, MTW, MFI 제올라이트의 마이크로기공구조에 해당하는 특징적인 X-선 회절 및 전자회절양식을 나타냈다. 또한 본 발명자들은 질소흡착법을 이용하여 본 발명의 물질이 제올라이트 본연의 마이크로기공과 더불어 큰 부피의 메조기공 및 마크로 기공을 포함하고 있음을 확인하였으며, 주사전자현미경 (SEM) 을 이용해 비결정상이 따로 분리되어 생성되지 않음을 확인하였다.
도 1은 본 발명의 실시예 1에 따라 만들어진 메조다공성 BEA형 알루미노실리케이트의 소성 후 X-선 회절 (XRD) 결과이다.
도 2는 본 발명의 실시예 1에 따라 만들어진 메조다공성 BEA형 알루미노실리케이트의 소성 후 주사전자현미경 (SEM) 이미지이다.
도 3은 본 발명의 실시예 1에 따라 만들어진 메조다공성 BEA형 알루미노실리케이트의 소성 후 투과전자현미경 (TEM) 이미지이다
도 4는 본 발명의 실시예 1에 따라 만들어진 메조다공성 BEA형 알루미노실리케이트의 소성 후 질소흡착등온선을 나타낸 것이다.
도 5는 본 발명의 실시예 2에 따라 만들어진 메조다공성 BEA형 알루미노실리케이트의 소성 후 X-선 회절 (XRD) 결과이다.
도 6은 본 발명의 실시예 2에 따라 만들어진 메조다공성 BEA형 알루미노실리케이트의 소성 후 주사전자현미경 (SEM) 이미지이다.
도 7은 본 발명의 실시예 3에 따라 만들어진 메조다공성 MTW형 실리케이트의 소성 후 X-선 회절 (XRD) 결과이다.
도 8은 본 발명의 실시예 3에 따라 만들어진 메조다공성 MTW형 실리케이트의 소성 후 주사전자현미경 (SEM) 이미지이다.
도 9는 본 발명의 실시예 3에 따라 만들어진 메조다공성 MTW형 실리케이트의 소성 후 질소흡착등온선을 나타낸 것이다.
도 10은 본 발명의 실시예 4에 따라 만들어진 메조다공성 MFI형 알루미노실리케이트의 소성 후 X-선 회절 (XRD) 결과이다.
도 11은 본 발명의 실시예 4에 따라 만들어진 메조다공성 MFI형 알루미노실리케이트의 소성 후 주사전자현미경 (SEM) 이미지이다.
도 12는 본 발명의 실시예 4에 따라 만들어진 메조다공성 MFI형 알루미노실리케이트의 소성 후 질소흡착등온선을 나타낸 것이다.
도 13은 본 발명의 실시예 5에 따라 만들어진 메조다공성 BEA형 티타노실리케이트의 소성 후 X-선 회절 (XRD) 결과이다.
도 14는 본 발명의 실시예 5에 따라 만들어진 메조다공성 BEA형 티타노실리케이트의 소성 후 주사전자현미경 (SEM) 이미지이다.
도 15는 본 발명의 실시예 5에 따라 만들어진 메조다공성 BEA형 티타노실리케이트의 소성 후 질소흡착등온선을 나타낸 것이다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명한 것이다. 본 실시예에서 사용한 싸이클릭다이암모늄의 분자 구조 및 약어를 하기에 명시하였다.
Figure PCTKR2010000529-appb-I000002
: CD-1
Figure PCTKR2010000529-appb-I000003
: CD-2
Figure PCTKR2010000529-appb-I000004
: CD-3
Figure PCTKR2010000529-appb-I000005
: CD-4
실시예 1: 메조다공성 BEA 제올라이트의 합성
CD-1 또는 CD-2 를 수산화나트륨, 소디움알루미네이트 (53질량% Al2O3, 43질량% Na2O), 황산, 증류수와 혼합하여 혼합 겔을 제조하였다. 합성 겔의 몰 조성은 다음과 같다.
2.5 Al2O3: 30 Na2O : 100 SiO2: 6000 H2O : 15 H2SO4 : 10 CD-1 또는 10 CD-2
상기 혼합 겔을 실온에서 3시간 동안 교반 후, 최종 혼합물을 스테인리스 오토클레이브 (autoclave) 에 넣은 후, 170 ℃에 하루간 두었다. 오토클레이브를 상온으로 냉각시킨 후, 생성물을 여과하고 증류수로 여러 번 세척하였다. 수득한 생성물을 110 ℃에서 건조 시킨 다음, 유기물을 550 ℃에서 4시간 동안 소성 과정을 통해 제거하였다.
생성물의 XRD 유형 (도 1) 은 높은 결정성을 가진 BEA 분자체의 구조와 일치하였다. SEM 사진은 생성물의 표면을 보다 정확히 관찰하기 위하여 금 도금을 하지 않은 채 낮은 가속전압 (1-5 kV) 하에서 측정하였다 (도 2). SEM 이미지들은 나노 단위 (10-20 nm) 의 분자체 골격과 메조기공이 서로 번갈아가며 배열되어 있음을 보여준다. 투과전자현미경 (TEM) 이미지 (도 3) 는 모든 제올라이트 입자가 균일하게 분포된 메조기공을 포함하고 있으며, 각각의 골격들이 결정성 제올라이트로 이루어져 있음을 나타낸다. 질소흡착등온선 (도 4) 을 통해 소성 처리한 생성물의 기공 구조를 분석한 결과, 직경이 10-20 nm이고 기공부피가 1.1 mL g-1인 메조기공을 포함하고 있음을 확인할 수 있었다. 유도결합플라즈마 분석법 (inductive coupled plasma, 약어로 ICP) 을 사용하여 생성물의 Si/Al 비율이 15 임을 확인하였다.
실시예 2: 마크로기공과 메조기공을 동시에 포함하는 BEA 제올라이트의 합성
CD-1 또는 CD-2를 수산화나트륨, 소디움알루미네이트 (53질량% Al2O3, 43질량% Na2O), 규조토, 황산, 증류수와 혼합하여 혼합 겔을 제조하였다. 합성 겔의 몰 조성은 다음과 같다.
2.5 Al2O3: 30 Na2O: 100 SiO2 (규조토): 3000 H2O: 10 H2SO4: 10 CD-1 또는 10 CD-2
상기 혼합 겔을 실온에서 3시간 동안 교반 후, 최종 혼합물을 스테인리스 오토클레이브 (autoclave) 에 넣은 후, 130 ℃에 삼일간 두었다. 오토클레이브를 상온으로 냉각시킨 후, 생성물을 여과하고 증류수로 여러 번 세척하였다. 수득한 생성물을 110 ℃에서 건조 시킨 다음, 1 M 염산용액으로 실온에서 한 시간 처리한 후, 유기물을 550 ℃에서 4시간 동안 소성 과정을 통해 제거하였다.
생성물의 XRD 유형 (도 5) 은 높은 결정성을 가진 BEA 분자체의 구조와 일치하였다. SEM 사진은 생성물의 표면을 보다 정확히 관찰하기 위하여 금 도금을 하지 않은 채 낮은 가속전압 (1-5 kV) 하에서 측정하였다 (도 6). SEM 이미지들은 제올라이트 결정화가 끝난 후에도 본래에 존재하던 규조토의 마크로기공을 그대로 유지하고 있음을 보여준다. 골격을 확대해보면 10-20 nm에 해당하는 제올라이트 결정들이 성기게 연결되어 결정 사이사이에 메조기공이 함께 존재함을 알 수 있다. 따라서 이 물질은 제올라이트 결정 내부의 마이크로기공, 제올라이트 결정 사이에 존재하는 메조기공, 그리고 본래의 규조토의 형체에서 발생한 마크로 기공 구조를 포함하고 있다.
실시예 3: 메조다공성 MTW 제올라이트의 합성
CD-1, CD-2 또는 CD-3 를 수산화나트륨, 황산, 증류수와 혼합하여 혼합 겔을 제조하였다. 합성 겔의 몰 조성은 다음과 같다.
30 Na2O: 100 SiO2: 6000 H2O: 25 H2SO4: 10 CD-1 또는 10 CD-2 또는 10 CD-3
상기 혼합 겔을 실온에서 3시간 동안 교반 후, 최종 혼합물을 스테인리스 오토클레이브 (autoclave) 에 넣은 후, 170 ℃에 삼일간 두었다. 오토클레이브를 상온으로 냉각시킨 후, 생성물을 여과하고 증류수로 여러 번 세척하였다. 수득한 생성물을 110 ℃에서 건조 시킨 다음, 유기물을 550 ℃에서 4 시간 동안 소성 과정을 통해 제거하였다.
생성물의 XRD 유형 (도 7)은 높은 결정성을 가진 MTW 분자체의 구조와 일치하였다. SEM 사진은 생성물의 표면을 보다 정확히 관찰하기 위하여 금 도금을 하지 않은 채 낮은 가속전압 (1-5 kV) 하에서 측정하였다 (도 8). SEM 이미지들은 나노 단위 (15-40 nm) 의 분자체 골격과 메조기공이 서로 번갈아가며 배열되어 있음을 보여준다. 질소흡착등온선 (도 9) 을 통해 소성 처리한 생성물의 기공 구조를 분석한 결과, 직경이 10-40 nm이고 기공부피가 0.4 mL g-1인 메조기공을 포함하고 있음을 확인할 수 있었다.
실시예 4: 메조다공성 MFI 제올라이트의 합성
CD-3 를 수산화나트륨, 황산, 증류수와 혼합하여 혼합 겔을 제조하였다. 합성 겔의 몰 조성은 다음과 같다.
0.5 Al2O3: 30 Na2O: 100 SiO2: 6000 H2O: 10 H2SO4: 10 CD-3
상기 혼합 겔을 실온에서 3시간 동안 교반 후, 최종 혼합물을 스테인리스 오토클레이브 (autoclave) 에 넣은 후, 150 ℃에 삼일간 두었다. 오토클레이브를 상온으로 냉각시킨 후, 생성물을 여과하고 증류수로 여러 번 세척하였다. 수득한 생성물을 110 ℃에서 건조 시킨 다음, 유기물을 550 ℃에서 4시간 동안 소성 과정을 통해 제거하였다.
생성물의 XRD 유형 (도 10) 은 높은 결정성을 가진 MFI 분자체의 구조와 일치하였다. SEM 사진은 생성물의 표면을 보다 정확히 관찰하기 위하여 금 도금을 하지 않은 채 낮은 가속전압 (1-5 kV) 하에서 측정하였다 (도 11). SEM 이미지들은 나노 단위 (15-40 nm) 의 두께의 골격으로 이루어진 제올라이트 결정의 모양을 보여준다. 질소흡착등온선 (도 12) 을 통해 소성 처리한 생성물의 기공 구조를 분석한 결과, 직경이 10-40 nm이고 기공부피가 0.6 mL g-1인 메조기공을 포함하고 있음을 확인할 수 있었다.
실시예 5: 티타늄 (Ti) 이 치환된 메조다공성 BEA 제올라이트의 합성
CD-4 를 증류수, 티타늄뷰톡사이트 (titanium butoxide) 를 혼합하여 혼합 겔을 제조하였다. 합성 겔의 몰 조성은 다음과 같다.
2 TiO2: 100 SiO2: 3000 H2O: 20 CD-4
상기 혼합 겔을 실온에서 3시간 동안 교반 후, 최종 혼합물을 스테인리스 오토클레이브 (autoclave) 에 넣은 후, 170 ℃에 하루간 두었다. 오토클레이브를 상온으로 냉각시킨 후, 생성물을 여과하고 증류수로 여러 번 세척하였다. 수득한 생성물을 110 ℃에서 건조 시킨 다음, 유기물을 550 ℃에서 4시간 동안 소성 과정을 통해 제거하였다. 생성물의 XRD 유형 (도 13) 은 높은 결정성을 가진 BEA 분자체의 구조와 일치하였다. SEM 사진은 생성물의 표면을 보다 정확히 관찰하기 위하여 금 도금을 하지 않은 채 낮은 가속전압 (1-5 kV) 하에서 측정하였다 (도 14). SEM 이미지들은 나노 단위 (15-40 nm) 의 두께의 골격으로 이루어진 제올라이트 결정의 모양을 보여준다. 질소흡착등온선 (도 15) 을 통해 소성 처리한 생성물의 기공 구조를 분석한 결과, 직경이 10-20 nm이고 기공부피가 0.9 mL g-1인 메조기공을 포함하고 있음을 확인할 수 있었다. 유도결합플라즈마 분석법 (inductive coupled plasma, 약어로 ICP) 을 사용하여 생성물의 Si/Ti 비율이 42임을 확인하였다.
실시예 6: 메조다공성 BEA 제올라이트를 이용한 나프탈렌의 아이소프로필레이션 (isopropisopropylation) 반응
실시예 1에서 합성한 메조다공성 BEA 제올라이트를 과량의 1M 암모늄나이트레이트 용액을 이용하여 이온교환을 반복한 후 550 ℃에서 소성하여 촉매를 준비하였다. 촉매 0.1 g 을 수직형 반응기에 증착시킨 후 300℃에서 질소를 흘리며 촉매를 활성화하였다. 반응기의 온도를 200℃로 식힌 후에 반응용액을 흘리며 생성물을 얼음물로 포집하여 가스크로마토그래피를 이용하여 분석하였다. 반응용액의 조성은 몰비로 나프탈렌/아이소프로필 알코올 (isopropyl alcohol) /싸이클로헥산 (cyclohexane) = 1: 2: 10이며, WHSV는 5.4 h-1이었다. 촉매의 반응 결과를 상용 BEA제올라이트와 비교하여 표 1 에 명시하였다.
표 1
메조다공성 BEA 제올라이트 상용 BEA 제올라이트
스트림(stream) 상에서의 시간 전환율(%) 선택성* 전환율(%) 선택성*
IPN 2,6-DIPN 2,7-DIPN PIPN IPN 2,6-DIPN 2,7-DIPN PIPN
1 42 45 24 16 15 41 43 21 16 20
3 33 55 19 14 12 18 61 15 15 9
5 31 59 17 14 10 << 1 - - - -
*IPN: 모노이소프로필나프탈렌 (monoisopropylnaphthalene), DIPN: 디이소프로필나프탈렌 (diisopropylnaphthalene), PIPN: 폴리이소프로필-나프탈렌(polyisopropyl-naphthalene)
상기에서 설명하고 입증한 바와 같이 본 발명은 경제적이고 단순한 공정을 통해 메조기공또는 마크로기공을 포함하는 마이크로다공성 BEA, MTW, MFI 제올라이트의 제조방법을 제시하였다. 본 발명에 의거하여 제조한 메조다공성 제올라이트는 우수한 분자확산을 보이며 기존의 제올라이트 물질에 비해 월등히 증진된 촉매 활성을 나타낸다. 또한 제올라이트 내에 포함된 메조기공은 거대유기분자의 흡착, 분리 및 촉매 반응, 석유의 개질 반응 시 매우 높은 활성을 나타낼 것으로 기대된다.

Claims (12)

  1. A) 싸이클릭다이암모늄을 실리카나 알루미나와 같은 다른 겔 전단체와 함께 중합하여 유기-무기 복합 겔을 형성하는 단계; B) 유기물에 의해 안정화된 나노미터 크기의 무기 겔 영역을 결정화 과정을 통해서 제올라이트로 변환하는 단계 및 C) 상기 B 단계에서 얻어진 물질에서 유기물을 선택적으로 제거하는 단계를 포함하는 것을 특징으로 하는 결정성 분자체의 제조방법.
  2. 제 1 항에 있어서, 2-50 nm 의 직경과, 0.05-2 mL g-1 의 기공부피에 해당하는 메조기공을 포함하는 결정성 분자체를 합성하는 제조방법.
  3. 제 1 항에 있어서, 싸이클릭다이암모늄이 다음과 같은 화학구조를 포함하는, 결정성 분자체를 합성하는 제조방법:
    Figure PCTKR2010000529-appb-I000006
    여기서, X 는 할로겐 또는 하이드록실 (OH) 기 이고, R1, R2 는 각각 독립적으로 치환되거나 치환되지 않은 알콕시, 알킬 (alkyl), 알케닐 (alkenyl) 또는 알릴 (aryl) 임.
  4. 제 1 항에 있어서, 싸이클릭다이암모늄과 함께 계면활성제, 고분자, 무기염 및 다른 유기첨가제를 합성 겔에 첨가하여 결정성 분자체를 합성하는 것을 특징으로 하는 제조방법.
  5. 제 1 항에 있어서, 수열합성법, 마이크로파 가열, 건식-겔 합성법을 이용하여 제올라이트 결정화를 시키는 것을 특징으로 하는 결정성 분자체의 제조방법.
  6. 제 1 항 내지 제 5 항 중 어느 한 항의 제조방법에 의거하여 얻어진 물질을 소성이나 화학적 처리를 거쳐 유기 관능기를 완전 또는 부분적으로 제거하여 메조기공을 발생시킨 결정성 분자체 물질.
  7. 제 6 항에 있어서, 마이크로다공성 골격이 알루미노실리케이트 (aluminosilicate), 실리케이트 (silicate), 티타노실리케이트 (titanosilicate), 알루미노포스페이트 (aluminophosphate), 실리코알루미노포스페이트 (silicoaluminophosphate), 보로실리케이트 (boronsilicate) 등의 화학적 조성을 갖는 것을 특징으로 하는 결정성 분자체 물질.
  8. 제 1 항에 의거하여 제조한 물질을 염기 수용액 처리, 이온교환, 탈알루미늄화, 금속 담지, 유기 관능화 등의 후처리 반응을 이용하여 활성화 또는 개질화시킨 물질.
  9. 제 1 항 내지 제 5 항 중 어느 한 항에 의거하여 제조한 물질을 촉매로 이용하여 탄화수소나 그 치환형태를 개질화하는 것을 특징으로 하는 촉매 공정.
  10. 제 6 항의 물질을 촉매로 이용하여 탄화수소나 그 치환형태를 개질화하는 것을 특징으로 하는 촉매 공정.
  11. 제 9 항에 있어서, 탄화수소가 기체, 액체, 고체 혹은 그 혼합상의 상태인 것을 특징으로 하는 촉매 공정.
  12. 제 10 항에 있어서, 탄화수소가 기체, 액체, 고체 혹은 그 혼합상의 상태인 것을 특징으로 하는 촉매 공정.
PCT/KR2010/000529 2009-02-02 2010-01-29 싸이클릭다이암모늄을 이용한 메조기공 및 마크로기공을 추가적으로 포함하는 bea, mtw, mfi 구조의 제올라이트의 제조과정 WO2010087633A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090007925A KR101147007B1 (ko) 2009-02-02 2009-02-02 싸이클릭다이암모늄을 이용한 메조기공 및 마크로기공을 추가적으로 포함하는 bea, mtw, mfi 구조의 제올라이트의 제조과정
KR10-2009-0007925 2009-02-02

Publications (2)

Publication Number Publication Date
WO2010087633A2 true WO2010087633A2 (ko) 2010-08-05
WO2010087633A3 WO2010087633A3 (ko) 2010-11-25

Family

ID=42396192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000529 WO2010087633A2 (ko) 2009-02-02 2010-01-29 싸이클릭다이암모늄을 이용한 메조기공 및 마크로기공을 추가적으로 포함하는 bea, mtw, mfi 구조의 제올라이트의 제조과정

Country Status (2)

Country Link
KR (1) KR101147007B1 (ko)
WO (1) WO2010087633A2 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099262A1 (en) * 2012-12-21 2014-06-26 Exxonmobil Chemical Patents Inc. Small crystal zsm-5, its synthesis and use
CN104891518A (zh) * 2015-05-08 2015-09-09 大连理工大学 一种用于吸附的新型沸石分子筛的制备方法
CN108238611A (zh) * 2016-12-23 2018-07-03 中国石油化工股份有限公司 一种分子筛的制造方法及其产品和产品的应用
CN109384637A (zh) * 2017-08-04 2019-02-26 中国石油化工股份有限公司 苯和乙烯液相烷基化制乙苯的方法
EP3450396A4 (en) * 2016-04-27 2019-12-04 China Petroleum & Chemical Corporation MOLECULAR SIEVE, METHOD FOR THE PRODUCTION THEREOF AND APPLICATION THEREOF
CN111217378A (zh) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 一种多级孔mtw型分子筛的合成方法
RU2735849C1 (ru) * 2019-05-27 2020-11-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения алюмосиликатного цеолита со структурой mtw (типа zsm-12)
RU2745824C1 (ru) * 2020-06-28 2021-04-01 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» (МГУ) Способ получения цеолита типа zsm-12 со структурой mtw
RU2753263C1 (ru) * 2020-09-17 2021-08-12 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения цеолита типа hzsm (варианты) и способ получения ароматических углеводородов фракции с6-с11

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101365460B1 (ko) * 2012-02-01 2014-02-19 한국과학기술원 라멜라 구조로 배열된 메조기공을 포함하는 알루미노포스페이트의 제조 방법
CN103964458B (zh) * 2013-01-29 2015-09-16 中国石油大学(北京) 一种高硅铝比多级孔道的beta沸石及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271921A (en) * 1992-10-09 1993-12-21 Chevron Research And Technology Company Process for preparing molecular sieves using 3,7-diazabicyclo[3.3.1]
US5271922A (en) * 1992-10-09 1993-12-21 Chevron Research And Technology Company Process for preparing molecular sieves using a sparteine template
US5273736A (en) * 1992-10-09 1993-12-28 Chevron Research And Technology Company Process for preparing molecular sieves using 9-azabicyclo [3.3.1] nonane templates
US5501848A (en) * 1994-02-08 1996-03-26 Chevron U.S.A. Inc. Method for preparing crystalline aluminophosphate materials using azapolycyclic templating agents

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0909216B1 (en) * 1996-05-29 2004-07-07 ExxonMobil Chemical Patents Inc. Zeolite catalyst and its use in hydrocarbon conversion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271921A (en) * 1992-10-09 1993-12-21 Chevron Research And Technology Company Process for preparing molecular sieves using 3,7-diazabicyclo[3.3.1]
US5271922A (en) * 1992-10-09 1993-12-21 Chevron Research And Technology Company Process for preparing molecular sieves using a sparteine template
US5273736A (en) * 1992-10-09 1993-12-28 Chevron Research And Technology Company Process for preparing molecular sieves using 9-azabicyclo [3.3.1] nonane templates
US5501848A (en) * 1994-02-08 1996-03-26 Chevron U.S.A. Inc. Method for preparing crystalline aluminophosphate materials using azapolycyclic templating agents

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10662068B2 (en) 2012-12-21 2020-05-26 Exxonmobil Research & Engineering Company Small crystal ZSM-5, its synthesis and use
CN104870367A (zh) * 2012-12-21 2015-08-26 埃克森美孚化学专利公司 小晶体zsm-5,其合成和用途
JP2016505498A (ja) * 2012-12-21 2016-02-25 エクソンモービル ケミカル パテンツ インコーポレイテッド 小さな結晶zsm−5、その合成および使用
EP3056470A1 (en) * 2012-12-21 2016-08-17 ExxonMobil Chemical Patents Inc. Small crystal zsm-5 and its use
RU2640759C2 (ru) * 2012-12-21 2018-01-11 Эксонмобил Кемикэл Пейтентс Инк. Мелкокристаллический zsm-5, его синтез и применение
WO2014099262A1 (en) * 2012-12-21 2014-06-26 Exxonmobil Chemical Patents Inc. Small crystal zsm-5, its synthesis and use
US10081552B2 (en) 2012-12-21 2018-09-25 Exxonmobil Research And Engineering Company Small crystal ZSM-5, its synthesis and use
CN104891518A (zh) * 2015-05-08 2015-09-09 大连理工大学 一种用于吸附的新型沸石分子筛的制备方法
US10737945B2 (en) 2016-04-27 2020-08-11 China Petroleum & Chemical Corporation Molecular sieve, its preparation and application thereof
EP3450396A4 (en) * 2016-04-27 2019-12-04 China Petroleum & Chemical Corporation MOLECULAR SIEVE, METHOD FOR THE PRODUCTION THEREOF AND APPLICATION THEREOF
US11091372B2 (en) 2016-04-27 2021-08-17 China Petroleum & Chemical Corporation Molecular sieve, its preparation and application thereof
CN108238611A (zh) * 2016-12-23 2018-07-03 中国石油化工股份有限公司 一种分子筛的制造方法及其产品和产品的应用
CN109384637A (zh) * 2017-08-04 2019-02-26 中国石油化工股份有限公司 苯和乙烯液相烷基化制乙苯的方法
CN109384637B (zh) * 2017-08-04 2021-06-11 中国石油化工股份有限公司 苯和乙烯液相烷基化制乙苯的方法
CN111217378A (zh) * 2018-11-26 2020-06-02 中国科学院大连化学物理研究所 一种多级孔mtw型分子筛的合成方法
CN111217378B (zh) * 2018-11-26 2023-01-17 中国石油天然气股份有限公司 一种多级孔mtw型分子筛的合成方法
RU2735849C1 (ru) * 2019-05-27 2020-11-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения алюмосиликатного цеолита со структурой mtw (типа zsm-12)
RU2745824C1 (ru) * 2020-06-28 2021-04-01 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» (МГУ) Способ получения цеолита типа zsm-12 со структурой mtw
RU2753263C1 (ru) * 2020-09-17 2021-08-12 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения цеолита типа hzsm (варианты) и способ получения ароматических углеводородов фракции с6-с11

Also Published As

Publication number Publication date
WO2010087633A3 (ko) 2010-11-25
KR101147007B1 (ko) 2012-05-22
KR20100088813A (ko) 2010-08-11

Similar Documents

Publication Publication Date Title
WO2010087633A2 (ko) 싸이클릭다이암모늄을 이용한 메조기공 및 마크로기공을 추가적으로 포함하는 bea, mtw, mfi 구조의 제올라이트의 제조과정
WO2010150996A2 (en) Regularly stacked multilamellar and randomly aligned unilamellar zeolite nanosheets, and their analogue materials whose framework thickness were corresponding to one unit cell size or less than 10 unit cell size
KR100727288B1 (ko) 메조다공성 골격을 갖는 미세다공성 결정성 분자체의제조방법
US5795559A (en) Porous inorganic oxide materials prepared by non-ionic surfactant templating route
WO2011049333A2 (en) Method of preparing zsm-5 zeolite using nanocrystalline zsm-5 seeds
US6569400B1 (en) Process for production of macrostructures of a microporous material
JP4355478B2 (ja) Ddr型ゼオライトの製造方法
US6908604B2 (en) Macrostructures of porous inorganic material and process for their preparation
KR960002621B1 (ko) Zsm-5 및 그의 제조방법
KR0158759B1 (ko) 중기공성 구조를 갖는 결정화합물의 제조방법
CN109205636B (zh) Y/sapo-34/zsm-11/asa多级孔材料的制备方法
KR20140067323A (ko) 메조기공을 갖는 mre 구조의 제올라이트 또는 유사 mre 제올라이트 물질 및 그의 제조 방법
WO2020060274A1 (ko) 계층화된 제올라이트 및 이의 제조방법
US10899627B2 (en) Process for making molecular sieves
KR101147015B1 (ko) 단일 단위 결정 격자 한 개 또는 10개 이하가 연결되어 규칙적이거나 불규칙적이게 배열된, 다중 또는 단일 판상구조의 제올라이트 및 유사 제올라이트 물질
KR101189757B1 (ko) 물 유리를 실리카 원료로 이용하여 단일 단위 결정 격자 두께의 결정성 골격이 불규칙적으로 정렬되어 메조기공과 마이크로기공이 위계적으로 공존하는 mfi제올라이트 분자체 물질의 제조방법
KR0170600B1 (ko) 친수 및 친유성 흡착특성을 지닌 복합분자체 제조방법
CN115448324B (zh) 一种mfi结构分子筛多级孔材料及其制备方法
CN116119681B (zh) 一种诱导剂快速合成zsm-5分子筛的制备方法
RU2739350C1 (ru) Гранулированный цеолит zsm-5 без связующего и способ его получения
KR101167531B1 (ko) Mel 유형 제올라이트, 그의 제조방법 및 용도
JP2504068B2 (ja) 結晶性ボロアルミノシリケ―ト及びその製造方法
KR101493401B1 (ko) 메조기공을 갖는 제올라이트 또는 유사 제올라이트 물질을 제조하기 위한 고분자 유기계면활성제
CN116354359A (zh) 纯硅mfi结构分子筛及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10736024

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10736024

Country of ref document: EP

Kind code of ref document: A2