WO2010084817A1 - 保護素子 - Google Patents

保護素子 Download PDF

Info

Publication number
WO2010084817A1
WO2010084817A1 PCT/JP2010/050334 JP2010050334W WO2010084817A1 WO 2010084817 A1 WO2010084817 A1 WO 2010084817A1 JP 2010050334 W JP2010050334 W JP 2010050334W WO 2010084817 A1 WO2010084817 A1 WO 2010084817A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
soluble conductor
soluble
electrode
protective element
Prior art date
Application number
PCT/JP2010/050334
Other languages
English (en)
French (fr)
Inventor
裕二 木村
陽三 大橋
隆広 浅田
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to KR1020117019244A priority Critical patent/KR101688671B1/ko
Priority to CN201080012979.4A priority patent/CN102362328B/zh
Priority to US13/145,611 priority patent/US9153401B2/en
Priority to EP20100733424 priority patent/EP2390894A4/en
Publication of WO2010084817A1 publication Critical patent/WO2010084817A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/58Electric connections to or between contacts; Terminals
    • H01H1/5805Connections to printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/0411Miniature fuses
    • H01H2085/0414Surface mounted fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • H01H2085/466Circuit arrangements not adapted to a particular application of the protective device with remote controlled forced fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/02Electrothermal relays wherein the thermally-sensitive member is heated indirectly, e.g. resistively, inductively

Definitions

  • the present invention relates to a protective element that cuts off a current by melting a soluble conductor by heat when an excessive current or voltage is applied to an electronic device or the like.
  • protective elements mounted on secondary battery devices and the like have not only an overcurrent but also an overvoltage prevention function.
  • This protective element is formed such that a heat generating element is provided on a substrate, a soluble conductor made of a low melting point metal piece is laminated with an insulating layer interposed therebetween, and the soluble conductor is blown by overcurrent. Further, when an overvoltage occurs, the heating element in the protection element is energized, and the soluble conductor is melted by the heat of the heating element. The melting of the fusible conductor is caused by good wettability with respect to the surface of the connected conductor layer when the fusible conductor, which is a low melting point metal, is melted. The molten low melting point metal is attracted onto a conductor layer such as an electrode, and as a result, the soluble conductor is divided and the current is interrupted.
  • this type of protective element is also required to be smaller and thinner, and more stable and faster in operation. Therefore, as a means therefor, there is one in which a low-melting point metal soluble conductor is disposed on an insulating substrate, which is sealed with an insulating cover, and a flux is applied to the soluble conductor. This flux is provided so as to prevent the surface of the soluble conductor from being oxidized and to melt the soluble conductor quickly and stably when the soluble conductor is heated.
  • FIGS. there is a structure shown in FIGS.
  • a heating element 2 made of a resistor is provided between a pair of electrodes 5 a formed on both ends of the base substrate 1.
  • a conductor layer 4 connected to one electrode 5 a is laminated on the heating element 2 via an insulating layer 3.
  • Another pair of electrodes 5 b is also provided at the other end of the base substrate 1, and a soluble conductor 6 made of a low melting point metal piece is connected between the electrodes 5 b by a solder paste 7.
  • the soluble conductor 6 is also connected to the underlying conductor layer 4 by solder paste 7.
  • a flux 8 is applied to the soluble conductor 6 on the base substrate 1, and an insulating cover 9 that covers the base substrate 1 is attached to form a protective element.
  • the melting of the soluble conductor 6 of the low melting point metal due to overcurrent or the like is caused by the wettability of the soluble conductor 6 to the surface of the connected conductor layer 4 or electrode 5b when the soluble conductor 6 is melted.
  • it is drawn on the conductor layer 4 and the electrode 5b the soluble conductor 6 between the electrodes 5b is divided, and the current is cut off. Therefore, this wettability greatly affects the current interruption characteristics.
  • a protective element having a configuration disclosed in Patent Document 1 as a protective element with improved fusing characteristics.
  • the protection element is attached to the insulating substrate, a pair of electrodes formed on the surface of the insulating substrate, a fusible alloy connected between the pair of electrodes, and the fusible alloy.
  • It is a protective element comprising a flux and an insulating sealing material that covers the flux. Then, an underlayer having a lower wettability with respect to the soluble alloy melted than the insulating substrate is formed at the position where the soluble alloy is formed.
  • Patent Document 2 as a technique for shortening the circuit interruption time due to aggregation at the time of melting of the low melting point metal body, two or more strips are provided between a pair of electrodes that pass current through the low melting point metal body By providing a low-melting-point metal body and dividing each low-melting-point metal body between the electrodes into independent states, the fusing start point in the low-melting-point metal body is increased, the operation time is shortened and the protection element stabilized Proposed.
  • JP 2000-285777 A Japanese Patent Laid-Open No. 2004-214032
  • the fusible conductor 6 aggregates on the conductor layer 4 as shown in FIGS.
  • the heat escaped and the fusing time was prolonged, preventing stable melting.
  • the protective element is reduced in size and thickness and the height of the insulating cover 9 is reduced, and the melting space between the base substrate 1 and the molten space is narrowed, the molten metal can easily come into contact with the inner surface of the insulating cover 9 to protect it.
  • the reduction in thickness of the element and the speeding up and stabilization of the fusing time have conflicted with each other.
  • the flux 8 for preventing oxidation is applied to the soluble conductor 6, but the flux 8 is not applied to the both ends of the electrode 5 b side where the soluble conductor 6 melts and spreads wet, and the surface is not coated.
  • the wettability decreased due to oxidation.
  • the soluble conductor 6 wets and spreads after fusing, so that the surface of the electrode 5b cannot be fully utilized, and the molten soluble conductor 6 is part of the surface of the connected conductor layer 4 It was only wet and spread. It is ideal that the melted soluble conductor 6 spreads over the entire surfaces of the connected conductor layer 4 and the electrode 5b.
  • FIGS there is a problem that the conductor 6 swells without spreading, contacts the inner surface of the insulating cover 9, releases heat, and extends the fusing operation time.
  • the above-described problems have relatively few adverse effects on fusing when a flux with high activity is used.
  • it becomes a big problem in promoting the halogen-free flux.
  • the halogen-free flux has low activity, so that only the flux 8 applied to the soluble conductor 6 does not allow the molten soluble conductor 6 to wet and spread on the conductor layer 4 and the electrode 5b. This causes a problem that it is difficult to blow out quickly and stably.
  • the present invention has been made in view of the above-described background art, and an object thereof is to provide a protection element that enables a soluble conductor to be melted stably and quickly during a protection operation due to overcurrent or the like.
  • the present invention includes a fusible conductor disposed on an insulating base substrate and connected to a power supply path of a device to be protected and fused by a predetermined abnormal power, covering the fusible conductor via a predetermined space, and An insulating cover attached to a base substrate; and a flux that is applied to the surface of the fusible conductor and located in the space.
  • the fusible conductor A protective element that melts and cuts off the current path, wherein the soluble conductor is formed on the base substrate via a conductive paste containing a metal component having good wettability with respect to the melted soluble conductor.
  • the conductive paste is a protective element provided on the conductor layer so as to spread outward from the peripheral edge of the soluble conductor.
  • the metal component in the conductive paste has a melting point lower than the melting point of the soluble conductor.
  • the conductive paste is a solder paste that fixes the soluble conductor to the conductor layer and the electrode. Further, the conductive paste is provided on the electrode so as to spread outward from the peripheral edge of the soluble conductor. The solder paste spreads with the flux component remaining after the soluble conductor is fixed to the electrode surface.
  • the conductive paste spreads radially from the periphery of the soluble conductor on the surface of the conductor layer. Furthermore, the said electrically conductive paste spreads radially from the peripheral part of the said soluble conductor on the said electrode surface.
  • the conductive paste spreads from the periphery of the soluble conductor to the edge of the conductor layer on the surface of the conductor layer. Further, the conductive paste spreads from the periphery of the soluble conductor to the edge of the electrode on the electrode surface.
  • the insulating cover has a protrusion for holding the flux at the center of the inner surface.
  • the protection element of the present invention when the fusible conductor is melted, the molten metal is surely widely spread on the surface of the electrode and the conductor layer, and a stable and quick fusing operation is possible. Furthermore, since the fusible conductor does not come into contact with the insulating cover, there is no delay in the fusing operation, and a more stable and reliable operation is possible, contributing to a reduction in the thickness of the protective element.
  • the conductive paste can be a solder paste for fixing a soluble conductor, and can be implemented simply by changing the solder paste forming pattern used for fixing a soluble conductor. There is no increase in costs. Furthermore, since the oxidation of the electrode provided with the solder paste and the surface of the conductor layer is suppressed and deterioration of the wettability of the surface with respect to the molten metal is prevented, this also stabilizes the fusing characteristics of the soluble conductor.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. 1 with an insulating cover attached. It is a top view of the state before attaching the soluble conductor of the protection element of 1st Embodiment of this invention. It is a circuit diagram which shows the usage example of the protection element of 1st Embodiment of this invention. It is a longitudinal cross-sectional view which shows the state which the protection element of 1st Embodiment of this invention act
  • a pair of electrodes 12 is provided at both ends of the upper surface of the insulating base substrate 11, and another pair of electrodes 21 is provided at opposite edges orthogonal to the pair of electrodes 12.
  • a heating element 15 made of a resistor is connected to the pair of electrodes 21, and a conductor layer 17 connected to one electrode 21 via an insulating layer 16 is laminated on the heating element 15.
  • a solder paste 20 is applied to the conductor layer 17 and the pair of electrodes 12, and a soluble conductor 13, which is a fuse made of a low melting point metal, is connected and fixed between the pair of electrodes 12 via the solder paste 20.
  • an insulating cover 14 is attached to the base substrate 11 so as to face the fusible conductor 13.
  • the material of the base substrate 11 may be any material as long as it has an insulating property.
  • an insulating substrate used for a printed wiring board such as a ceramic substrate or a glass epoxy substrate is preferable.
  • a glass substrate, a resin substrate, an insulated metal substrate, or the like can be used as appropriate according to the intended use, but a ceramic substrate having excellent heat resistance and good thermal conductivity is more preferable.
  • the electrodes 12 and 21 and the conductor layer 17 a metal foil such as copper or a conductor material whose surface is plated with Ag—Pt, Au or the like can be used. Further, the conductor layer 17 and the electrodes 12 and 21 may be formed by applying a conductive paste such as an Ag paste and firing, or may be a metal thin film structure by vapor deposition or the like.
  • the low melting point metal foil of the fusible conductor 13 is not particularly limited as long as it melts at a predetermined power, and various known low melting point metals can be used as the fuse material.
  • various known low melting point metals can be used as the fuse material.
  • a BiSnPb alloy, BiPbSn alloy, BiPb alloy, BiSn alloy, SnPb alloy, SnAg alloy, PbIn alloy, ZnAl alloy, InSn alloy, PbAgSn alloy, or the like can be used.
  • the resistor forming the heating element 15 is, for example, a conductive paste such as ruthenium oxide or carbon black, and an inorganic binder such as glass or an organic binder such as a thermosetting resin applied and fired. It is. Also, a thin film such as ruthenium oxide or carbon black may be printed and baked, or may be formed by plating, vapor deposition or sputtering, or may be formed by pasting, laminating, or the like, a film of these resistor materials. .
  • the insulating cover 14 attached to the base substrate 11 is formed in a box shape with one side opened, and is covered with the base substrate 11 by forming a predetermined space 18 with respect to the soluble conductor 13.
  • the insulating cover 14 may be made of an insulating material having heat resistance that can withstand the heat generated when the fusible conductor 13 is melted and mechanical strength as the protective element 10.
  • various materials such as a substrate material used for a printed wiring board such as glass, ceramics, plastic, and glass epoxy resin can be applied.
  • an insulating layer such as an insulating resin may be formed on the surface facing the base substrate 11 using a metal plate.
  • a material having a high mechanical strength and insulating properties such as ceramics is preferable because it contributes to a reduction in the thickness of the entire protective element.
  • a flux 19 is provided on the entire surface of the soluble conductor 13 in order to prevent oxidation of the surface.
  • the flux 19 is preferably a halogen-free flux that does not contain a halogen element such as bromine.
  • the flux 19 is held by the surface tension on the fusible conductor 13 and is accommodated in the space 18 and adheres to the inner surface of the insulating cover plate 14 and is held by the surface tension as shown in FIG. .
  • the solder paste 20 contains a metal component having good wettability with respect to the melted soluble conductor 13 and is preferably lead-free, for example, tin (Sn) silver (Ag) copper (Cu) solder.
  • a paste can be used.
  • the solder paste 20 contains metal particles of an alloy such as Sn in the flux component, and the flux used here is preferably halogen-free.
  • the melting temperature of the metal particles in the solder paste 20 is preferably equal to or lower than the melting temperature of the soluble conductor 13, more preferably as close as possible, for example, at a temperature difference within 10 ° C. As shown in FIG.
  • the application pattern of the solder paste 20 is formed so as to protrude from the portion where the soluble conductor 13 is laminated on the surface of the conductor layer 17 and extend to the edge of the conductor layer 17. Moreover, on the electrode 12, it has apply
  • the soluble conductor 13 is placed on the electrode 12 and the conductor layer 17 on which the solder paste 20 is printed and formed in the predetermined pattern, and is fixed through a reflow furnace. At this time, it is processed at a temperature at which the soluble conductor 13 does not melt, and the metal particles in the solder paste 20 are not completely melted, and the soluble conductor 13 is fixed in a state where the flux component remains.
  • the overcurrent / overvoltage protection circuit 24 of the secondary battery device will be described with reference to FIG. 4 as an example in which the protection element 10 of this embodiment is used in an electronic device.
  • this overcurrent / overvoltage protection circuit 24 a pair of electrodes 12 of the protection element 10 are connected in series between an output terminal A1 and an input terminal B1, and one terminal of the pair of electrodes 12 of the protection element 10 is input.
  • the other electrode 12 is connected to the terminal B1 and the other electrode 12 is connected to the output terminal A1.
  • the midpoint of the fusible conductor 13 is connected to one end of the heating element 15, and one terminal of the electrode 21 is connected to the other terminal of the heating element 15.
  • the other terminal of the heating element 15 is connected to the collector of the transistor Tr, and the emitter of the transistor Tr is connected between the other input terminal A2 and the output terminal B2. Furthermore, the anode of the Zener diode ZD is connected to the base of the transistor Tr via the resistor R, and the cathode of the Zener diode ZD is connected to the output terminal A1.
  • the resistor R is set to such a value that a voltage equal to or higher than the breakdown voltage is applied to the Zener diode ZD when a predetermined voltage set as abnormal is applied between the output terminals A1 and A2.
  • an electrode terminal of a secondary battery 23 which is a protected device such as a lithium ion battery is connected, and the input terminals B1 and B2 are used by being connected to the secondary battery 23.
  • An electrode terminal of a device such as a charger (not shown) is connected.
  • the protection element 10 of this embodiment In a secondary battery device such as a lithium ion battery to which the overcurrent / overvoltage protection circuit 24 of this embodiment is attached, when an abnormal voltage is applied to the output terminals A1 and A2 at the time of charging, the predetermined predetermined set as abnormal With this voltage, a reverse voltage equal to or higher than the breakdown voltage is applied to the Zener diode ZD, and the Zener diode ZD becomes conductive. Due to the conduction of the Zener diode ZD, the base current ib flows through the base of the transistor TR, whereby the transistor Tr is turned on, the collector current ic flows through the heating element 15, and the heating element 15 generates heat.
  • the Zener diode ZD Due to the conduction of the Zener diode ZD, the base current ib flows through the base of the transistor TR, whereby the transistor Tr is turned on, the collector current ic flows through the heating element 15, and the heating element 15 generates heat.
  • the metal particles of the solder paste 20 are first melted and spread on the electrode 12 and the conductor layer 17. Then, the fusible conductor 13 is melted almost at the same time with almost no gap, and is melted as shown in FIG. At this time, when the fusible conductor 13 is melted, as shown in FIG. 6, the fusible conductor 13 also spreads widely on the electrode 12 and the conductor layer 17 where the solder paste 20 is melted and spreads.
  • Reference numeral 13 denotes a space 18 in the insulating cover 14 which does not rise high and does not contact the inner surface of the insulating cover 14.
  • the solder paste 20 when the fusible conductor 13 is melted, first, the solder paste 20 is wide and spreads on the surfaces of the electrode 12 and the conductor layer 17, so that a stable and quick fusing operation is possible. Furthermore, since the fusible conductor 13 does not come into contact with the insulating cover 14, there is no delay in the fusing operation, a stable and reliable protection operation is possible, and a thinner protection element 10 can be formed. Furthermore, the solder paste 20 also serves as a solder for fixing the soluble conductor 13, and can be implemented simply by changing the formation pattern of the conventional solder paste 20 for fixing. There is no increase.
  • the low-power heat generation operation characteristics can be made extremely smaller than the conventional operation variation, and the high-performance protection element 10 can be provided with a low environmental load.
  • the protection element 10 of this embodiment is obtained by changing the printing pattern of the solder paste 20 to which the soluble conductor 13 is fixed. As shown in FIG. 7, the solder paste 20 is radially formed from the mounting position of the soluble conductor 13. The printing line is extended.
  • the metal particles of the solder paste 20 are first melted and spread on the electrode 12 and the conductor layer 17 as shown in FIG. Then, the fusible conductor 13 melts and blows out almost at the same time with almost no gap. At this time, the soluble conductor 13 spreads widely over the molten pattern of the solder paste 20 as shown in FIG. Therefore, compared with the said embodiment, the rise of the molten metal of the soluble conductor 13 is lower, and it can utilize for a thinner protective element.
  • the protection element 10 of this embodiment is obtained by further changing the printing pattern of the solder paste 20 to which the soluble conductor 13 is fixed. As shown in FIG. 9, the electrode 12 and the conductor layer at the mounting position of the soluble conductor 13 The solder paste 20 is printed or applied to most of the surface of 17.
  • the metal particles of the solder paste 20 are more widely melted and spread widely and wet as shown in FIG. Then, the soluble conductor 13 is melted and melted almost simultaneously and spreads widely on the molten pattern of the solder paste 20. Therefore, the rise of the molten metal of the fusible conductor 13 is lower than that in the above embodiment, and can be used for a thinner protective element.
  • the same members as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the printed pattern of the solder paste 20 to which the fusible conductor 13 is fixed is the same as that of each of the above-described embodiments.
  • FIG. 19 holding protrusions 22 are formed.
  • the protrusion 22 is formed integrally with the insulating cover 14.
  • the flux 19 is securely held by the protrusion 22 formed on the inner surface of the insulating cover 14 so that the position is stably maintained without being displaced at the center of the fusible conductor 13. It is a thing. Thereby, stable fusing operation can be maintained. As shown in FIG. 12, the fusible conductor 13 does not rise high when fusing, so that it does not come into contact with the ridge 22, and the ridge 22 does not adversely affect the fusing operation such as a delay.
  • the protective element of this invention is not limited to the said embodiment,
  • the material and pattern of a solder paste can be set suitably.
  • flux and other materials are not ask

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fuses (AREA)

Abstract

 過電流等による保護動作時に可溶導体が安定に且つ迅速に溶断可能とした保護素子である。絶縁性のベース基板11上に配置され保護対象機器の電力供給経路に接続されて所定の異常電力により溶断する可溶導体13と、可溶導体13を覆ってベース基板11に取り付けられた絶縁カバー14を備える。可溶導体13に塗布され絶縁カバー14内に設けられたフラックス19を有する。可溶導体13は、溶融した可溶導体13に対して濡れ性の良い金属成分を含有したソルダペースト20を介して、ベース基板11上の導体層17及び電極12に固定されている。ソルダペースト20は、電極12及び導体層17上で可溶導体13の周縁部よりも外側に広がっている。

Description

保護素子
 この発明は、電子機器等に過大な電流または電圧が印加された場合に、その熱により可溶導体が溶断し、電流を遮断する保護素子に関する。
 従来、二次電池装置等に搭載される保護素子は、過電流だけでなく過電圧防止機能も有するものが用いられている。この保護素子は、基板上に発熱体が設けられさらに絶縁層を挟んで低融点金属片から成る可溶導体が積層され、過電流により可溶導体が溶断されるように形成されている。さらに、過電圧が生じた場合は、保護素子内の発熱体に通電され、発熱体の熱により可溶導体が溶断する。可溶導体の溶断は、低融点金属である可溶導体の溶融時に、接続した導体層の表面に対する濡れ性の良さに起因して生じる。溶融した低融点金属は、電極等の導体層上に引き寄せられ、その結果、可溶導体が分断されて電流が遮断されるものである。
 一方、近年の携帯機器等の電子機器の小型化に伴い、この種の保護素子にも小型化・薄型化が要求され、さらに動作の安定性と高速化が求められている。そこで、その手段として絶縁基板上に低融点金属体の可溶導体を配置するとともに、これを絶縁カバーで封止し、可溶導体にはフラックスを塗布して形成されたものがある。このフラックスは、可溶導体の表面の酸化防止を図るとともに、可溶導体の加熱時に迅速且つ安定に可溶導体が溶断するように設けられている。
 そのような保護素子として、図13、図14に示す構造のものがある。この保護素子は、ベース基板1の両端上に形成された一対の電極5a間に抵抗体からなる発熱体2が設けられている。発熱体2には、絶縁層3を介して、一方の電極5aに接続した導体層4が積層されている。ベース基板1の他方の両端にも他の一対の電極5bが設けられ、この電極5b間に低融点金属片から成る可溶導体6がソルダペースト7により接続されている。可溶導体6は、その下層の導体層4にも、ソルダペースト7により接続されている。ベース基板1上の可溶導体6には、フラックス8が塗布され、ベース基板1を覆う絶縁カバー9が取り付けられて、保護素子が形成されている。
 過電流等による低融点金属の可溶導体6の溶断は、可溶導体6の溶融時に、接続した導体層4や電極5bの表面に対する可溶導体6の濡れ性により、溶融した可溶導体6が、導体層4及び電極5b上に引き寄せられ、電極5b間の可溶導体6が分断されて電流が遮断される。従って、この濡れ性が電流の遮断特性に大きく影響する。
 可溶導体の溶断時の凝集動作や濡れ性に鑑みて、溶断特性を改善した保護素子として、特許文献1に開示された構成の保護素子がある。この保護素子は、絶縁基板と、この絶縁基板の表面に離隔して形成された一対の電極と、この一対の電極間に跨って接続された可溶合金と、可溶合金に被着されたフラックスと、フラックスを覆う絶縁封止材とから成る保護素子である。そして、可溶合金の形成位置に、前記絶縁基板よりも溶融した可溶合金に対する濡れ性の小さい下地層を形成したものである。これにより、可溶合金の溶融時に、溶融した可溶合金が下地層によってはじかれて、迅速に溶断する。さらに、溶断時にスパークが発生することがなく、溶融した可溶合金がその表面張力で電極に凝集しやすくなり、確実に溶断するものである。
 その他、特許文献2に開示されているように、低融点金属体の溶断時の凝集による回路遮断時間を短くする技術として、低融点金属体に電流を通す一対の電極間に、2条以上の低融点金属体を設け、その電極間の各低融点金属体を独立した状態に区分することにより、低融点金属体における溶断開始点を増やし、動作時間を短縮するとともに安定化させた保護素子が提案されている。
特開2000-285777号公報 特開2004-214032号公報
 上述の図13に示す構造の保護素子の場合、溶断時に図14,図15に示すように、可溶導体6が導体層4上で凝集し、丸く盛り上がって絶縁カバー9の内面に接触し、熱が逃げて溶断時間が延び、安定な溶融の妨げとなっていた。特に、保護素子の小型化・薄型化により、絶縁カバー9の高さが低くなり、ベース基板1との間の溶融空間が狭くなると、溶融金属が絶縁カバー9の内面に接触しやすくなり、保護素子の薄型化と溶断時間の迅速化、安定化とは互いに相反する問題となっていた。
 また、可溶導体6には、酸化防止の為のフラックス8を塗布しているが、可溶導体6が溶融して濡れ広がる両端の電極5b側については、フラックス8は塗布されず、表面が酸化して濡れ性が低下する問題があった。そして、電極5b表面の酸化により、溶断後に可溶導体6が濡れ広がる為に電極5bの表面を充分に利用できず、溶融した可溶導体6が、接続された導体層4の表面の一部でしか濡れ広がらないものであった。溶融した可溶導体6は、接続された導体層4及び電極5bの表面全体に濡れ広がる事が理想的であるが、従来の構造では、図14、図15に示すように、溶融した可溶導体6が広がらずに盛り上がり、絶縁カバー9の内面に接触して熱が逃げ、溶断の動作時間が長くなると言う問題が発生していた。
 また、上述の問題は、活性度が高いフラックスを用いた場合には、溶断に悪影響を及ぼす事は比較的少ないものであった。しかし、使用する材料について環境負荷を軽減するために、フラックスのハロゲンフリー化を進めていく上では大きな問題となる。一般的にハロゲンフリーフラックスは、活性度が低いため、可溶導体6に塗布したフラックス8だけでは、溶融した可溶導体6が導体層4及び電極5b上に濡れ広がらないため、可溶導体6を迅速に且つ安定に溶断する事が難しいと言う問題が生じるものであった。
 また、特許文献1に開示された保護素子の場合、溶融した可溶合金に対して絶縁基板よりも濡れ性の小さい下地層を形成し、溶融した可溶合金が下地層によってはじかれるようにしているので、溶融した可溶合金は、より高く盛り上がる形状になる。従って、溶融合金は、絶縁カバーの薄型化により内面に接触する可能性がより高くなるものであり、上述の問題点がさらに大きくなる。
 特許文献2に開示された保護素子の場合も、同様に保護素子の薄型化により、溶融金属が絶縁カバーに接触しやすいという問題がある。さらに、2条以上の低融点金属体を設け、それらを独立的に区分することは、保護素子の製造上、特殊金型を必要とし製造コストが高くなると言う問題がある。
 この発明は、上記背景技術に鑑みて成されたもので、過電流等による保護動作時に可溶導体が安定に且つ迅速に溶断可能とした保護素子を提供することを目的とする。
 この発明は、絶縁性のベース基板上に配置され保護対象機器の電力供給経路に接続されて所定の異常電力により溶断する可溶導体と、前記可溶導体を所定の空間を介して覆って前記ベース基板に取り付けられた絶縁カバーと、前記可溶導体表面に塗布され前記空間内に位置したフラックスとを有し、前記保護対象機器に前記異常電力が供給された場合に、前記可溶導体が溶断してその電流経路を遮断する保護素子であって、前記可溶導体は、溶融した前記可溶導体に対して濡れ性の良い金属成分を含有した導電性ペーストを介して、前記ベース基板上の導体層及び電極に固定され、前記導電性ペーストは、前記導体層上で前記可溶導体の周縁部よりも外側に広がって設けられている保護素子である。
 前記導電性ペースト中の金属成分は、前記可溶導体の融点よりも低い融点のものである。特に、前記導電性ペーストは、前記可溶導体を前記導体層及び前記電極に固定するソルダペーストである。さらに、前記導電性ペーストは、前記電極上で前記可溶導体の周縁部よりも外側に広がって設けられているものである。前記ソルダペーストは、前記電極表面に前記可溶導体を固定した後も、フラックス成分が残った状態で広がっているものである。
 前記導電性ペーストは、前記導体層表面で前記可溶導体の周縁部から放射状に広がっているものである。さらに、前記導電性ペーストは、前記電極表面で前記可溶導体の周縁部から放射状に広がっているものである。
 また、前記導電性ペーストは、前記導体層表面で前記可溶導体の周縁部から前記導体層の端縁部に広がっているものである。さらに、前記導電性ペーストは、前記電極表面で前記可溶導体の周縁部から前記電極の端縁部に広がっているものである。
 前記絶縁カバーは、その内面中央部に、前記フラックスの保持用の突条部を備えたものである。
 この発明の保護素子によれば、可溶導体が溶断した際に、溶融金属が確実に広く電極や導体層の表面に濡れ広がり、安定で迅速な溶断動作が可能になる。さらに、可溶導体が絶縁カバーに接触することがないので、溶断動作に遅れが生じることが無く、より安定して確実な動作が可能となり、保護素子の薄型化に貢献するものである。
 また、導電性ペーストは、可溶導体の固定用のソルダペーストを用いることが出来、従来可溶導体の固定用に用いていたソルダペーストの形成パターンを変えるだけで実施することが出来、何ら工数やコストの増加がないものである。さらに、ソルダペーストが設けられた電極や導体層表面の酸化が抑えられ、溶融金属に対する表面の濡れ性の劣化が防止されるので、これによっても可溶導体の溶断特性を安定なものにする。
この発明の第1実施形態の保護素子の絶縁カバーを外した状態の平面図である。 絶縁カバーを取り付けた状態の図1のA-A断面図である。 この発明の第1実施形態の保護素子の可溶導体を取り付ける前の状態の平面図である。 この発明の第1実施形態の保護素子の使用例を示す回路図である。 この発明の第1実施形態の保護素子が作動して、可溶導体が溶断した状態を示す縦断面図である。 この発明の第1実施形態の保護素子が作動して、可溶導体が溶断した状態を示す平面図である。 この発明の第2実施形態のソルダペーストの塗布パターンを示す平面図である。 この発明の第2実施形態の保護素子が作動して、可溶導体が溶断した状態を示す平面図である。 この発明の第3実施形態のソルダペーストの塗布パターンを示す平面図である。 この発明の第3実施形態の保護素子が作動して、可溶導体が溶断した状態を示す平面図である。 この発明の第4実施形態の保護素子の縦断面図である。 この発明の第4実施形態の保護素子が作動して、可溶導体が溶断した状態を示す縦断面図である。 従来の保護素子の縦断面図である。 従来の保護素子が作動して、可溶導体が溶断した状態を示す平面図である。 従来の保護素子が作動して、可溶導体が溶断した状態を示す縦断面図である。
 以下、この発明の保護素子の第1実施形態について、図1~図6を基にして説明する。この実施形態の保護素子10は、絶縁性のベース基板11の上面両端に一対の電極12が設けられ、一対の電極12と直交する対向縁部にも、他の一対の電極21が設けられている。一対の電極21には、抵抗体から成る発熱体15が接続され、発熱体15上には、絶縁層16を介して一方の電極21に接続された導体層17が積層されている。そして、導体層17と一対の電極12にはソルダペースト20が塗布され、ソルダペースト20を介して、低融点金属から成るヒューズである可溶導体13が一対の電極12間に接続固定されている。さらに、ベース基板11には、可溶導体13と対面して、絶縁体の絶縁カバー14が取り付けられている。
 ここで、ベース基板11の材質としては、絶縁性を有するものであれば良く、例えば、セラミック基板、ガラスエポキシ基板のようなプリント配線基板に用いられる絶縁基板が好ましい。その他、適宜用途に合わせて、ガラス基板、樹脂基板、絶縁処理金属基板等を用いることができるが、耐熱性に優れ、熱伝導性の良いセラミック基板が、より好ましい。
 電極12,21及び導体層17としては、銅等の金属箔、あるいは表面がAg-Pt、Au等でメッキされている導体材料を使用することができる。また、Agペースト等の導電性ペーストを塗布して焼成した導体層17及び電極12,21でも良く、蒸着等による金属薄膜構造でも良い。
 可溶導体13の低融点金属箔としては、所定の電力で溶融するものであれば良く、ヒューズ材料として公知の種々の低融点金属を使用することができる。例えば、BiSnPb合金、BiPbSn合金、BiPb合金、BiSn合金、SnPb合金、SnAg合金、PbIn合金、ZnAl合金、InSn合金、PbAgSn合金等を用いることができる。
 発熱体15を形成する抵抗体は、例えば、酸化ルテニウム、カーボンブラック等の導電材料と、ガラス等の無機系バインダあるいは熱硬化性樹脂等の有機系バインダからなる抵抗ペーストを塗布し、焼成したものである。また、酸化ルテニウム、カーボンブラック等の薄膜を印刷し、焼き付けたものや、メッキ、蒸着、スパッタリングにより形成してもよく、これらの抵抗体材料のフィルムを貼付、積層等して形成したものでもよい。
 ベース基板11に取り付けられた絶縁カバー14は、一側面が開口した箱状に形成され、可溶導体13に対して所定の空間18を形成してベース基板11に被せられている。絶縁カバー14の材質は、可溶導体13の溶断時の熱に耐え得る耐熱性と、保護素子10としての機械的な強度を有する絶縁材料であればよい。例えば、ガラス、セラミックス、プラスチック、ガラスエポキシ樹脂のようなプリント配線基板に用いられる基板材料等、様々な材料を適用することができる。さらに、金属板を用いてベース基板11との対向面に絶縁性樹脂等の絶縁層を形成したものでも良い。好ましくは、セラミックスのような機械的強度及び絶縁性の高い材料であれば、保護素子全体の薄型化にも寄与し、好ましい。
 可溶導体13の表面全面には、その表面の酸化を防止するために、フラックス19が設けられている。フラックス19は、臭素等のハロゲン元素を有しない、ハロゲンフリーのフラックスが好ましい。フラックス19は、可溶導体13上で表面張力により保持され、且つ空間18内に収容されて、図2に示すように、絶縁カバー板14の内面にも付着し、その表面張力により保持される。
 ソルダペースト20としては、溶融した可溶導体13に対して濡れ性の良い金属成分を含有したもので、鉛フリーのものが好ましく、例えば錫(Sn)銀(Ag)銅(Cu)系のソルダペーストを用いることが出来る。ソルダペースト20は、フラックス成分中にSn等の合金の金属粒子を含有するもので、ここで用いられるフラックスもハロゲンフリーのものが好ましい。ソルダペースト20中の金属粒子の溶融温度は、可溶導体13の溶融温度以下であることが好ましく、より好ましくは出来るだけ近い温度、例えば10℃以内の温度差で溶融するものであると良い。ソルダペースト20の塗布パターンは、図3に示すように、導体層17表面で、可溶導体13が積層される部分からはみ出して、導体層17の端縁部に延びて形成されている。また、電極12上では、可溶導体13が載せられる部分のほぼ全面に塗布されている。
 ここで、可溶導体13は、ソルダペースト20が上記所定パターンで印刷形成された電極12及び導体層17上に載せられ、リフロー炉を通して固定される。このとき、可溶導体13が溶融しない温度で処理されるもので、ソルダペースト20中の金属粒子は、完全に溶融せず、フラックス成分も残った状態で可溶導体13が固定される。
 次に、この実施形態の保護素子10を電子機器に用いた例として、二次電池装置の過電流・過電圧保護回路24について、図4を基にして説明する。この過電流・過電圧保護回路24は、保護素子10の一対の電極12が出力端子A1と入力端子B1との間に直列に接続され、保護素子10の一対の電極12の一方の端子が、入力端子B1に接続され、他方の電極12が出力端子A1に接続されている。そして、可溶導体13の中点が発熱体15の一端に接続され、電極21の一方の端子が、発熱体15の他方の端子に接続されている。発熱体15の他方の端子は、トランジスタTrのコレクタに接続され、トランジスタTrのエミッタが、他方の入力端子A2と出力端子B2との間に接続されている。さらに、トランジスタTrのベースには、抵抗Rを介してツェナダイオードZDのアノードが接続され、ツェナダイオードZDのカソードが出力端子A1に接続されている。抵抗Rは、出力端子A1,A2間に、異常と設定された所定の電圧が印加されたときに、ツェナダイオードZDに降伏電圧以上の電圧が印加されるような値に設定されている。
 出力端子A1,A2間には、例えばリチウムイオン電池等の被保護装置である二次電池23の電極端子が接続され、入力端子B1,B2には、二次電池23に接続して使用される図示しない充電器等の装置の電極端子が接続される。
 次に、この実施形態の保護素子10の動作について説明する。この実施形態の過電流・過電圧保護回路24が取り付けられたリチウムイオン電池等の二次電池装置において、その充電時に異常な電圧が出力端子A1,A2に印加されると、異常と設定された所定の電圧でツェナダイオードZDに降伏電圧以上の逆電圧が印加され、ツェナダイオードZDが導通する。ツェナダイオードZDの導通により、トランジスタTRのベースにベース電流ibが流れ、それによりトランジスタTrがオンし、コレクタ電流icが発熱体15に流れ、発熱体15が発熱する。この熱が、発熱体15上の低融点金属の可溶導体13に伝達し、可溶導体13が溶断し、入力端子B1と出力端子A1間の導通が遮断され、出力端子A1,A2に過電圧が印加されることを防止する。また、異常電流が出力端子A1に向けて流れた場合も、可溶導体13がその電流により発熱し溶断するように設定されている。
 保護素子10の保護動作時には、先ずソルダペースト20の金属粒子が溶融し、電極12及び導体層17上に広がる。そして、ほとんど間を置かずほぼ同時に可溶導体13が溶融し、図5に示すように溶断する。このとき可溶導体13が溶断する際、図6に示すように、ソルダペースト20が溶融して濡れ広がった電極12上及び導体層17上で、可溶導体13も広く濡れ広がり、可溶導体13が絶縁カバー14内の空間18で、高く盛り上がらず絶縁カバー14の内面に接触することがない。
 この実施形態の保護素子10によれば、可溶導体13が溶断する際に、先ずソルダペースト20が広く電極12及び導体層17の表面に濡れ広がり、安定で迅速な溶断動作が可能になる。さらに、可溶導体13が絶縁カバー14に接触しないので、溶断動作の遅れが生じることが無く、安定して確実な保護動作が可能となり、より薄型の保護素子10を形成することが出来る。さらに、ソルダペースト20は、可溶導体13の固定用のハンダを兼用しているものであり、従来の固定用のソルダペースト20の形成パターンを変えるだけで実施することが出来、何ら工数やコストの増加がないものである。さらに、ソルダペースト20が設けられた電極12や導体層17の表面の酸化が抑えられ、これによっても可溶導体13の溶断特性を安定なものにする。特に、低電力の発熱動作特性において、従来の動作バラツキよりも極めて小さくする事ができ、しかも環境負荷が小さく高性能の保護素子10を提供することが出来る。
 次に、この発明の保護素子の第2実施形態について図7、図8を基にして説明する。ここで、上述の実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態の保護素子10は、可溶導体13を固定したソルダペースト20の印刷パターンを変えたもので、図7に示すように、可溶導体13の載置位置から放射状にソルダペースト20の印刷ラインが伸びているものである。
 保護素子10の保護動作時も、先ずソルダペースト20の金属粒子が溶融し、電極12及び導体層17上に図8に示すように広がる。そして、ほとんど間を置かずほぼ同時に可溶導体13が溶融し溶断する。このとき可溶導体13は、図8に示すように、ソルダペースト20の溶融パターン上に広く濡れ広がる。従って、上記実施形態と比較して、可溶導体13の溶融金属の盛り上がりはより低いものであり、より薄型の保護素子に利用することが出来る。
 次に、この発明の保護素子の第3実施形態について図9、図10を基にして説明する。ここで、上述の実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態の保護素子10は、可溶導体13を固定したソルダペースト20の印刷パターンをさらに変えたもので、図9に示すように、可溶導体13の載置位置の電極12及び導体層17の表面の大部分にソルダペースト20を印刷又は塗布したものである。
 これにより、保護素子10の保護動作時において、より広くソルダペースト20の金属粒子が溶融し、図10に示すように広く濡れ広がる。そして、ほぼ同時に可溶導体13が溶融し溶断し、ソルダペースト20の溶融パターン上に広く濡れ広がる。従って、上記実施形態と比較して、可溶導体13の溶融金属の盛り上がりはさらに低いものであり、より薄型の保護素子に利用することが出来る。
 次に、この発明の保護素子の第4実施形態について図11、図12を基にして説明する。ここで、上述の実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態の保護素子10は、可溶導体13を固定したソルダペースト20の印刷パターンは上述の各実施形態と同様であり、図11に示すように、絶縁カバー14の内面中央部に、フラックス19の保持用の突条部22を形成したものである。突条部22は絶縁カバー14と一体に形成されている。
 この実施形態は、絶縁カバー14の内面に形成された突条部22にフラックス19が確実に保持され、可溶導体13の中央部で位置ずれすることなく、安定にその位置が維持されるようにしたものである。これにより、安定した溶断動作を維持することができる。そして、図12に示すように、溶断時に可溶導体13が高く盛り上がらないので、突条部22に接触することが無く、突条部22により溶断動作に遅れ等の悪影響が及ぶことがない。
 なお、この発明の保護素子は、上記実施形態に限定されるものではなく、ソルダペーストの材料やパターンは適宜設定可能なものである。また、フラックスやその他の材料は問わないものであり、適宜適切な材料を選択し得るものである。
10 保護素子
11 ベース基板
12,21 電極
13 可溶導体
14 絶縁カバー
15 発熱体
16 絶縁層
17 導体層
19 フラックス
20 ソルダペースト
 

Claims (10)

  1.  絶縁性のベース基板上に配置され保護対象機器の電力供給経路に接続されて所定の異常電力により溶断する可溶導体と、前記可溶導体を所定の空間を介して覆って前記ベース基板に取り付けられた絶縁カバーと、前記可溶導体表面に塗布され前記空間内に位置したフラックスとを有し、前記保護対象機器に前記異常電力が供給された場合に、前記可溶導体が溶断してその電流経路を遮断する保護素子において、
     前記可溶導体は、溶融した前記可溶導体に対して濡れ性の良い金属成分を含有した導電性ペーストを介して、前記ベース基板上の導体層及び電極に固定され、
     前記導電性ペーストは、前記導体層上で前記可溶導体の周縁部よりも外側に広がって設けられていることを特徴とする保護素子。
  2.  前記導電性ペースト中の金属成分は、前記可溶導体の融点よりも低い融点である請求項1記載の保護素子。
  3.  前記導電性ペーストは、前記可溶導体を前記導体層及び前記電極に固定するソルダペーストである請求項2記載の保護素子。
  4.  前記導電性ペーストは、前記電極上で前記可溶導体の周縁部よりも外側に広がって設けられている請求項2記載の保護素子。
  5.  前記ソルダペーストは、前記電極表面に前記可溶導体を固定した後も、フラックス成分が残った状態で広がっている請求項3記載の保護素子。
  6.  前記導電性ペーストは、前記導体層表面で前記可溶導体の周縁部から放射状に広がっている請求項2記載の保護素子。
  7.  前記導電性ペーストは、前記電極表面で前記可溶導体の周縁部から放射状に広がっている請求項4記載の保護素子。
  8.  前記導電性ペーストは、前記導体層表面で前記可溶導体の周縁部から前記導体層の端縁部に広がっている請求項2記載の保護素子。
  9.  前記導電性ペーストは、前記電極表面で前記可溶導体の周縁部から前記電極の端縁部に広がっている請求項4記載の保護素子。
  10.  前記絶縁カバーは、その内面中央部に、前記フラックスの保持用の突条部を備えたものである請求項3記載の保護素子。
     
PCT/JP2010/050334 2009-01-21 2010-01-14 保護素子 WO2010084817A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117019244A KR101688671B1 (ko) 2009-01-21 2010-01-14 보호 소자
CN201080012979.4A CN102362328B (zh) 2009-01-21 2010-01-14 保护元件
US13/145,611 US9153401B2 (en) 2009-01-21 2010-01-14 Protective device
EP20100733424 EP2390894A4 (en) 2009-01-21 2010-01-14 ELEMENT OF PROTECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-011196 2009-01-21
JP2009011196A JP5301298B2 (ja) 2009-01-21 2009-01-21 保護素子

Publications (1)

Publication Number Publication Date
WO2010084817A1 true WO2010084817A1 (ja) 2010-07-29

Family

ID=42355871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050334 WO2010084817A1 (ja) 2009-01-21 2010-01-14 保護素子

Country Status (7)

Country Link
US (1) US9153401B2 (ja)
EP (1) EP2390894A4 (ja)
JP (1) JP5301298B2 (ja)
KR (1) KR101688671B1 (ja)
CN (1) CN102362328B (ja)
TW (1) TWI398894B (ja)
WO (1) WO2010084817A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468645A (zh) * 2010-11-09 2012-05-23 乾坤科技股份有限公司 保护组件
WO2014021156A1 (ja) * 2012-08-01 2014-02-06 デクセリアルズ株式会社 保護素子及びバッテリパック
WO2014021155A1 (ja) * 2012-08-01 2014-02-06 デクセリアルズ株式会社 保護素子及びバッテリパック
WO2014021157A1 (ja) * 2012-08-01 2014-02-06 デクセリアルズ株式会社 保護素子及びバッテリパック
US8976001B2 (en) 2010-11-08 2015-03-10 Cyntec Co., Ltd. Protective device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130232B2 (ja) * 2009-01-21 2013-01-30 デクセリアルズ株式会社 保護素子
JP5260592B2 (ja) * 2010-04-08 2013-08-14 デクセリアルズ株式会社 保護素子、バッテリ制御装置、及びバッテリパック
JP5876346B2 (ja) * 2012-03-26 2016-03-02 デクセリアルズ株式会社 保護素子
JP5844669B2 (ja) * 2012-03-26 2016-01-20 デクセリアルズ株式会社 保護素子
JP6249600B2 (ja) 2012-03-29 2017-12-20 デクセリアルズ株式会社 保護素子
WO2013146889A1 (ja) * 2012-03-29 2013-10-03 デクセリアルズ株式会社 保護素子
JP5807969B2 (ja) * 2012-11-07 2015-11-10 エヌイーシー ショット コンポーネンツ株式会社 保護素子用フラックス組成物およびそれを利用した回路保護素子
KR101388354B1 (ko) * 2012-11-26 2014-04-24 스마트전자 주식회사 비정상상태의 전류 및 전압을 차단하는 복합보호소자
KR101401141B1 (ko) 2012-11-26 2014-05-30 스마트전자 주식회사 비정상상태의 전류 및 전압을 차단하는 복합보호소자
JP6078332B2 (ja) * 2012-12-25 2017-02-08 デクセリアルズ株式会社 保護素子、バッテリモジュール
JP6420053B2 (ja) * 2013-03-28 2018-11-07 デクセリアルズ株式会社 ヒューズエレメント、及びヒューズ素子
JP6364243B2 (ja) * 2013-08-07 2018-07-25 デクセリアルズ株式会社 保護素子及びバッテリパック
JP6184805B2 (ja) * 2013-08-28 2017-08-23 デクセリアルズ株式会社 遮断素子、及び遮断素子回路
JP6223142B2 (ja) * 2013-11-20 2017-11-01 デクセリアルズ株式会社 短絡素子
JP6254859B2 (ja) * 2014-01-24 2017-12-27 デクセリアルズ株式会社 遮断素子、遮断素子回路、
TWI588857B (zh) * 2014-02-10 2017-06-21 陳莎莉 複合式保護元件與保護電路
CN104835702B (zh) * 2014-02-10 2017-05-24 陈莎莉 复合式保护元件
KR101504133B1 (ko) 2014-02-28 2015-03-19 스마트전자 주식회사 복합보호소자
KR101504132B1 (ko) * 2014-02-28 2015-03-19 스마트전자 주식회사 복합보호소자
JP6343201B2 (ja) * 2014-08-04 2018-06-13 デクセリアルズ株式会社 短絡素子
JP6622960B2 (ja) * 2014-12-18 2019-12-18 デクセリアルズ株式会社 スイッチ素子
TWM512203U (zh) * 2015-02-16 2015-11-11 Sha-Li Chen 複合式保護元件、保護電路、可充放電電池包
JP6659239B2 (ja) * 2015-05-28 2020-03-04 デクセリアルズ株式会社 保護素子、ヒューズ素子
JP6797565B2 (ja) * 2015-12-18 2020-12-09 デクセリアルズ株式会社 ヒューズ素子
JP7040886B2 (ja) * 2016-07-26 2022-03-23 ショット日本株式会社 保護素子
US10181715B2 (en) * 2016-10-05 2019-01-15 Polytronics Technology Corp. Protection device and circuit protection apparatus containing the same
EP3336925A1 (en) * 2016-12-14 2018-06-20 Lithium Energy and Power GmbH & Co. KG Cell connecting element
TW201740417A (zh) * 2017-07-07 2017-11-16 Pao-Hsuan Chen 開關元件
TWI699026B (zh) * 2019-06-10 2020-07-11 聚鼎科技股份有限公司 二次電池及其保護元件
CN110491609A (zh) * 2019-09-09 2019-11-22 东莞令特电子有限公司 过热保护装置、压敏电阻
EP4029044A4 (en) * 2019-09-09 2022-11-09 Dongguan Littelfuse Electronics, Co., Ltd OVERHEATING AND VARISTANCE PROTECTION DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285777A (ja) 1999-03-31 2000-10-13 Nec Kansai Ltd 保護素子
JP2004214032A (ja) 2002-12-27 2004-07-29 Sony Chem Corp 保護素子
JP2004265617A (ja) * 2003-02-05 2004-09-24 Sony Chem Corp 保護素子
JP2004363630A (ja) * 2004-08-30 2004-12-24 Sony Chem Corp 保護素子の実装方法
JP2008302407A (ja) * 2007-06-08 2008-12-18 Arakawa Chem Ind Co Ltd ハンダ付け用フラックス組成物及びクリームハンダ組成物

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354282A (en) * 1966-05-25 1967-11-21 Gen Electric Canada Thermal fuse with capillary action
JPS5443554A (en) * 1977-09-12 1979-04-06 Nifco Inc Temperature fuse
US5097247A (en) * 1991-06-03 1992-03-17 North American Philips Corporation Heat actuated fuse apparatus with solder link
SE514819C2 (sv) * 1994-02-24 2001-04-30 Ericsson Telefon Ab L M Elektrisk skyddskrets
JPH07335408A (ja) * 1994-06-10 1995-12-22 Murata Mfg Co Ltd 発熱電子部品
US5712610C1 (en) * 1994-08-19 2002-06-25 Sony Chemicals Corp Protective device
CN1131334A (zh) * 1994-12-22 1996-09-18 中岛卓夫 温度保险丝
JPH1125829A (ja) * 1997-07-04 1999-01-29 Yazaki Corp 温度ヒューズ及び車両用ワイヤハーネスの異常検出装置
US5939969A (en) * 1997-08-29 1999-08-17 Microelectronic Modules Corporation Preformed thermal fuse
US6373371B1 (en) * 1997-08-29 2002-04-16 Microelectronic Modules Corp. Preformed thermal fuse
US5982268A (en) * 1998-03-31 1999-11-09 Uchihashi Estec Co., Ltd Thin type fuses
JP4396787B2 (ja) * 1998-06-11 2010-01-13 内橋エステック株式会社 薄型温度ヒュ−ズ及び薄型温度ヒュ−ズの製造方法
JP3812865B2 (ja) * 1998-09-21 2006-08-23 矢崎総業株式会社 電気回路の安全装置
JP2000306477A (ja) * 1999-04-16 2000-11-02 Sony Chem Corp 保護素子
US6300859B1 (en) * 1999-08-24 2001-10-09 Tyco Electronics Corporation Circuit protection devices
JP2001325869A (ja) * 2000-05-17 2001-11-22 Sony Chem Corp 保護素子
JP3478785B2 (ja) * 2000-07-21 2003-12-15 松下電器産業株式会社 温度ヒューズ及びパック電池
JP4290426B2 (ja) * 2001-02-20 2009-07-08 パナソニック株式会社 温度ヒューズ
US6636409B2 (en) * 2001-04-16 2003-10-21 Eaton Corporation Surge protection device including a thermal fuse spring, a fuse trace and a voltage clamping device
JP4103594B2 (ja) * 2001-05-21 2008-06-18 松下電器産業株式会社 温度ヒューズの検査方法
JP4001757B2 (ja) * 2002-03-06 2007-10-31 内橋エステック株式会社 合金型温度ヒュ−ズ
JP4230194B2 (ja) * 2002-10-30 2009-02-25 内橋エステック株式会社 合金型温度ヒューズ及び温度ヒューズエレメント用線材
JP4064217B2 (ja) * 2002-11-26 2008-03-19 内橋エステック株式会社 合金型温度ヒューズ及び温度ヒューズエレメント用材料
JP4204852B2 (ja) 2002-11-26 2009-01-07 内橋エステック株式会社 合金型温度ヒューズ及び温度ヒューズエレメント用材料
JP2004265618A (ja) * 2003-02-05 2004-09-24 Sony Chem Corp 保護素子
JP4230251B2 (ja) * 2003-03-04 2009-02-25 内橋エステック株式会社 合金型温度ヒューズ及び温度ヒューズエレメント用材料
JP4223316B2 (ja) * 2003-04-03 2009-02-12 内橋エステック株式会社 二次電池用ヒューズ
US20070024407A1 (en) * 2003-05-29 2007-02-01 Kenji Senda Temperature fuse element, temperature fuse and battery using the same
JP4207686B2 (ja) * 2003-07-01 2009-01-14 パナソニック株式会社 ヒューズ、それを用いたパック電池およびヒューズ製造方法
JP2005197005A (ja) * 2003-12-26 2005-07-21 Fuji Xerox Co Ltd 可動体表面の温度過昇防止素子、並びに、これを用いた温度過昇防止装置および温度制御素子
DE102008003659A1 (de) * 2007-03-26 2008-10-02 Robert Bosch Gmbh Schmelzsicherung zur Unterbrechung eines spannungs- und/oder stromführenden Leiters im thermischen Fehlerfall und Verfahren zur Herstellung der Schmelzsicherung
DE102007014338A1 (de) * 2007-03-26 2008-10-02 Robert Bosch Gmbh Thermosicherung
DE102008040345A1 (de) * 2008-07-11 2010-01-14 Robert Bosch Gmbh Thermosicherung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285777A (ja) 1999-03-31 2000-10-13 Nec Kansai Ltd 保護素子
JP2004214032A (ja) 2002-12-27 2004-07-29 Sony Chem Corp 保護素子
JP2004265617A (ja) * 2003-02-05 2004-09-24 Sony Chem Corp 保護素子
JP2004363630A (ja) * 2004-08-30 2004-12-24 Sony Chem Corp 保護素子の実装方法
JP2008302407A (ja) * 2007-06-08 2008-12-18 Arakawa Chem Ind Co Ltd ハンダ付け用フラックス組成物及びクリームハンダ組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2390894A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8976001B2 (en) 2010-11-08 2015-03-10 Cyntec Co., Ltd. Protective device
CN102468645A (zh) * 2010-11-09 2012-05-23 乾坤科技股份有限公司 保护组件
WO2014021156A1 (ja) * 2012-08-01 2014-02-06 デクセリアルズ株式会社 保護素子及びバッテリパック
WO2014021155A1 (ja) * 2012-08-01 2014-02-06 デクセリアルズ株式会社 保護素子及びバッテリパック
WO2014021157A1 (ja) * 2012-08-01 2014-02-06 デクセリアルズ株式会社 保護素子及びバッテリパック
JP2014032770A (ja) * 2012-08-01 2014-02-20 Dexerials Corp 保護素子及びバッテリパック
JP2014032768A (ja) * 2012-08-01 2014-02-20 Dexerials Corp 保護素子及びバッテリパック
JP2014032769A (ja) * 2012-08-01 2014-02-20 Dexerials Corp 保護素子及びバッテリパック
CN104508789A (zh) * 2012-08-01 2015-04-08 迪睿合电子材料有限公司 保护元件及电池组
TWI585801B (zh) * 2012-08-01 2017-06-01 Dexerials Corp Protective components and battery pack

Also Published As

Publication number Publication date
JP2010170801A (ja) 2010-08-05
EP2390894A4 (en) 2014-04-30
JP5301298B2 (ja) 2013-09-25
CN102362328B (zh) 2015-02-18
CN102362328A (zh) 2012-02-22
EP2390894A1 (en) 2011-11-30
US20120001720A1 (en) 2012-01-05
KR20110117179A (ko) 2011-10-26
KR101688671B1 (ko) 2016-12-21
TWI398894B (zh) 2013-06-11
US9153401B2 (en) 2015-10-06
TW201030791A (en) 2010-08-16

Similar Documents

Publication Publication Date Title
JP5301298B2 (ja) 保護素子
JP5130232B2 (ja) 保護素子
JP5130233B2 (ja) 保護素子
JP5072796B2 (ja) 保護素子及び二次電池装置
US8767368B2 (en) Protective element and method for producing the same
US6344633B1 (en) Stacked protective device lacking an insulating layer between the heating element and the low-melting element
US10008356B2 (en) Protection element
JP6437253B2 (ja) 保護素子及び実装体
WO2004070758A1 (ja) 保護素子
JPH08161990A (ja) 保護素子及びその製造方法
US20040166405A1 (en) Temperature fuse, and battery using the same
CN109074988B (zh) 保护元件
US20220199346A1 (en) Protective element
WO2017163766A1 (ja) 保護素子
TW202046362A (zh) 保護元件及電池組
TW201802853A (zh) 熔絲元件
WO2019026904A1 (ja) 保護素子
WO2024080051A1 (ja) 保護素子及び保護素子の製造方法
WO2020166445A1 (ja) 回路モジュール
TW202303649A (zh) 保護元件及電池組

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012979.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010733424

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010733424

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117019244

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13145611

Country of ref document: US