WO2014021155A1 - 保護素子及びバッテリパック - Google Patents

保護素子及びバッテリパック Download PDF

Info

Publication number
WO2014021155A1
WO2014021155A1 PCT/JP2013/069994 JP2013069994W WO2014021155A1 WO 2014021155 A1 WO2014021155 A1 WO 2014021155A1 JP 2013069994 W JP2013069994 W JP 2013069994W WO 2014021155 A1 WO2014021155 A1 WO 2014021155A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
electrode
insulating substrate
thin
electrodes
Prior art date
Application number
PCT/JP2013/069994
Other languages
English (en)
French (fr)
Inventor
武雄 木村
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020157004829A priority Critical patent/KR101946105B1/ko
Priority to CN201380040791.4A priority patent/CN104508784B/zh
Publication of WO2014021155A1 publication Critical patent/WO2014021155A1/ja
Priority to HK15109301.8A priority patent/HK1208758A1/xx

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protective element that protects a circuit connected on a current path by fusing the current path.
  • an overcharge protection or an overdischarge protection operation of the battery pack is performed by turning on / off the output using an FET switch built in the battery pack.
  • FET switch When the FET switch is short-circuited for some reason, a lightning surge or the like is applied, and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell.
  • the battery pack and the electronic device must be protected from accidents such as ignition even when the is output. Accordingly, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used.
  • a heating element is provided inside the protection element.
  • a structure that melts a molten conductor is generally used.
  • the fusible conductor has a current capacity of about 15 A at the maximum because it is used for applications having a relatively low current capacity such as a mobile phone or a notebook computer. is doing.
  • Applications of lithium ion secondary batteries have been expanding in recent years, and their use in higher current applications such as electric tools such as electric drivers, transportation equipment such as hybrid cars, electric vehicles, and electric power assisted bicycles has been studied. Part recruitment has begun. In these applications, a large current exceeding several tens of A to 100 A may flow particularly during startup. The realization of a protective element corresponding to such a large current capacity is desired.
  • the cross-sectional area of the soluble conductor may be increased.
  • a current capacity of about 50 A can be obtained.
  • the protective element detects an overvoltage state of the battery cell in addition to the case where the battery is blown by an overcurrent state, and causes a current to flow through the heating element formed of the resistor, thereby cutting the soluble conductor by the heat generation.
  • the heating element formed of the resistor
  • an object is to obtain a protective element that can be stably melted by heat generated by a heating element while securing a current capacity during overcurrent protection.
  • a protection element includes an insulating substrate, a heating element stacked on the insulating substrate, and an insulating member stacked on the insulating substrate so as to cover at least the heating element.
  • the first and second electrodes are stacked on the insulating member so as to overlap the heating element, and are electrically connected to the current path between the first and second electrodes and one terminal of the heating element.
  • a soluble conductor that is laminated from the heating element extraction electrode to the first and second electrodes and that melts the current path between the first electrode and the second electrode by heating.
  • the fusible conductor is a thin-walled portion with a thin portion in which the portion superimposed on the heating element has a concave shape, the other portion is thicker than the thin-walled portion, and has the same current capacity as the thin-walled portion.
  • the thin-walled portion can be easily melted by the heat generated by the heating element.
  • the protective element according to the present invention further includes a support member having a metal layer on at least a surface, which is disposed so as to support at least a part of the thick part adjacent to the thin part with respect to the insulating substrate.
  • the support member is thermally insulated from the insulating substrate.
  • the protective element according to the present invention is in contact with the thin portion of the soluble conductor, passes through the insulating member, reaches the insulating substrate, and is formed on the insulating substrate, and is connected to the molten solder discharging electrode.
  • a storage electrode is further provided.
  • the battery pack according to the present invention includes one or more battery cells, a protection element connected to cut off a current flowing through the battery cell, and a current for detecting the voltage value of each battery cell and heating the protection element.
  • the protective element includes an insulating substrate, a heating element stacked on the insulating substrate, an insulating member stacked on the insulating substrate so as to cover at least the heating element, first and second electrodes, and a heating element.
  • a heating element extraction electrode that is stacked on the insulating member so as to overlap and is electrically connected to one terminal of the heating element and the current path between the first and second electrodes, and the heating element extraction electrode from the heating element extraction electrode
  • the soluble conductor is laminated over the first and second electrodes, and has a soluble conductor that blows off a current path between the first electrode and the second electrode by heating.
  • a portion positioned overlapping the body is formed of a thin portion formed in a concave shape with a thin thickness and a flat shape.
  • the fusible conductor is a thin-walled portion with a thickness where the portion positioned overlapping the heating element has a concave shape, and the other portion is thicker than the thin-walled portion and is substantially the same as the thin-walled portion. Since the thick portion has a current capacity, the soluble conductor can be easily blown by the heat generated by the heating element without reducing the current capacity of the soluble conductor.
  • the surface has a metal layer and further includes a support member that is thermally insulated from the insulating substrate, the heat generated by the heating element is concentrated on the thin portion of the soluble conductor, The fusing of the fusible conductor is promoted, and further, the solder melted by the heat generated by the heating element is guided and accommodated by the wettability of the support member, so that stable fusing characteristics can be realized.
  • the solder melted by the heat generated by the heating element can be guided by the wettability of the molten solder discharge electrode and can be accommodated in the accommodating electrode, stable fusing characteristics can be realized.
  • FIG. 1A is a plan view of a protection element to which the present invention is applied.
  • FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 1C is a cross-sectional view showing a state where the soluble conductor is melted.
  • FIG. 2 is a block diagram showing an application example of a protection element to which the present invention is applied.
  • FIG. 3 is a diagram showing a circuit configuration example of a protection element to which the present invention is applied.
  • FIG. 4A is a plan view of a protective element according to another embodiment of the present invention.
  • FIG. 4B is a cross-sectional view taken along line AA ′ of FIG. FIG.
  • FIG. 4C is a cross-sectional view showing a state where the soluble conductor is melted.
  • 5A to 5C are plan views for explaining a manufacturing process of the protective element according to another embodiment of the present invention.
  • FIG. 6A is a plan view of a protection element obtained by combining the two embodiments of the present invention.
  • FIG. 6B is a cross-sectional view taken along the line AA ′ in FIG.
  • FIG. 7A is a plan view of a protection element according to a modification of the present invention.
  • FIG. 7B is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 8 is a cross-sectional view conceptually showing a state where a soluble conductor of a protection element according to a modification of the present invention is melted.
  • FIGS. 9A to 9C are cross-sectional views for explaining a procedure for producing a soluble conductor used in the protection element of the modification of the present invention.
  • the protection element 10 includes an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. Electrodes 12 (A1) and 12 (A2) formed on the heating member 14 and the heating element lead electrode 16 laminated on the insulating member 15 so as to overlap the heating element 14, and both ends of the electrodes 12 (A1) and 12 (A2). ) And a soluble conductor 13 having a central portion connected to the heating element extraction electrode 16. At both ends of the heating element 14, heating element electrodes 18 (P1) and 18 (P2) are connected to which a power source is connected in order to cause the heating element to generate current and generate heat.
  • the fusible conductor 13 is thick so that the thickness thereof is substantially uniform at the position where the portion facing the heating element 14 overlaps the heating element 14 with a 1.6 mm ⁇ round wire-like thick part 13a, for example. It consists of a thin portion 13b which is thinner and flatter than the portion 13a. The thickness of the thin portion 13b is, for example, 1/2 of the thickness (thickness) of the thick portion 13a. In addition, it is preferable that the cross-sectional area of the thick part 13a and the thin part 13b is substantially the same.
  • the thin portion 13 b of the soluble conductor 13 is electrically connected to the heating element extraction electrode 16.
  • the heat conduction in the thickness direction in the thinned part 13b is improved.
  • the soluble conductor 13 can be easily blown out.
  • the contact area with the overlapping portion of the heating element 14 can be increased, heat from the heating element 14 can be efficiently transmitted, and stable fusing The characteristics can be realized.
  • the current capacity of the soluble conductor 13 does not change, the cross-sectional area in the energizing direction of the soluble conductor 13 and the material of the soluble conductor 13 ( It is possible to pass a current corresponding to the specific resistance.
  • the insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like.
  • an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like.
  • the material used for printed wiring boards such as a glass epoxy board
  • the two electrodes 12 (A1) and 12 (A2) connect the fusible conductor 13 inside the protective element 10, and are connected to an external circuit through the two electrodes 12 (A1) and 12 (A2). To do.
  • the two electrodes 12 (A 1) and 12 (A 2) may be formed on the insulating substrate 11, or may be formed on an insulating material made of an epoxy resin or the like integrated with the insulating substrate 11.
  • the heating element 14 has a relatively high resistance value and is a conductive member that generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
  • An insulating member 15 is disposed so as to cover the heating element 14, and a heating element extraction electrode 16 is disposed so as to face the heating element 14 through the insulating member 15.
  • the insulating member 15 may be a laminated substrate in which the heating elements 14 are integrally laminated.
  • One end of the heating element extraction electrode 16 is connected to one end of the heating element electrode 18 (P1) and the heating element 14.
  • the other end of the heating element 14 is connected to the other heating element electrode 18 (P2).
  • the fusible conductor 13 may be any conductive material that melts and melts due to the overcurrent state and the heat generated by the heating element 14.
  • conductive material that melts and melts due to the overcurrent state and the heat generated by the heating element 14.
  • SnAgCu-based Pb-free solder BiPbSn alloy, BiPb alloy, BiSn An alloy, SnPb alloy, PbIn alloy, ZnAl alloy, InSn alloy, PbAgSn alloy, or the like can be used.
  • the soluble conductor 13 may be a laminate of a high melting point metal made of a metal mainly composed of Ag or Cu or Ag or Cu and a low melting point metal such as Pb-free solder mainly composed of Sn. Good.
  • a soluble conductor having a large cross-sectional area is used in order to cope with a large current capacity.
  • the fusible conductor is melted, the amount of solder to be melted is large, so that it is difficult to reliably shut off the circuit. Therefore, it is necessary to guide to a space that can accommodate the melted solder.
  • the thin conductor 13b is provided in the soluble conductor 13, there is a problem that stress is easily concentrated on the boundary position between the thick portion 13a and the thin portion 13b, and mechanical damage is likely to occur.
  • a metal support member 3 is formed on the independent electrode 2 insulated from the other portions of the insulating substrate 11 in a thermal circuit manner.
  • the support member 3 is connected so as to support the soluble conductor 13 in the vicinity of the connection portion between the thick portion 13a and the thin portion 13b of the soluble conductor 13.
  • the strength of the conductor 13 is improved. In particular, it is possible to prevent the fusible conductor 13 from being damaged at the time of manufacturing the protective element 10, thereby contributing to an improvement in manufacturing yield of the protective element 10.
  • the independent electrode 2 is formed, for example, by patterning with Cu or Ag paste, but the independent electrode 2 is not connected to other circuits so that the support member 3 is insulated from other parts in terms of thermal circuit. Moreover, since the support member 3 and the accommodation electrode 4 have a fixed heat capacity, a heat storage effect can be expected. When the fusible conductor 13 is melted, the heat generated by the heating element 14 reaches the thin portion 13 b of the fusible conductor 13 via the insulating member 15.
  • the generated heat flows into the support member 3 side and prevents the heat from flowing out to the thick portion 13a connected to the thin portion 13b. Therefore, the heat generated by the heating element 14 can be concentrated on the thin portion 13 b of the soluble conductor 13, and can contribute to stabilization of the melting of the soluble conductor 13.
  • the metal support member 3 may be any metal that easily wets solder, and may be formed integrally with the independent electrode 2 using Cu, Ag, Ni, or the like.
  • the support member 3 can be easily manufactured by using solder having a melting point lower than that of the soluble conductor 13. That is, the independent electrode 2 is patterned on the insulating substrate 11 with Ag paste simultaneously with other electrodes using a normal alignment process, and the insulating member 15 is arranged and connected. Thereafter, the support member 3 made of low melting point solder is formed on the independent electrode 2 and can be easily connected to the soluble conductor 13 by passing through a reflow process. [How to use protection elements]
  • the protective element 10 described above is used in a circuit in a battery pack of a lithium ion secondary battery.
  • the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
  • the battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charge / discharge of the battery stack 25, a protection element 10 to which the present invention that protects the battery stack 25 and the charge / discharge control circuit 30 is applied, A detection circuit 26 that detects the voltages of the battery cells 21 to 24 and a current control element 27 that controls the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
  • the battery stack 25 includes battery cells 21 to 24 that need to be controlled to protect overcharge and overdischarge states.
  • the battery stack 25 is detachable via the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto.
  • the electronic device can be operated by connecting the battery pack 20 charged by the charging device 35 to the positive terminal 20a and the negative terminal 20b to the electronic device that is operated by the battery.
  • the charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided.
  • the current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. .
  • FETs field effect transistors
  • the control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
  • Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
  • the detection circuit 26 is connected to each of the battery cells 21 to 24, detects the voltage value of each of the battery cells 21 to 24, and supplies the voltage value to the control unit 33 of the charge / discharge control circuit 30.
  • the detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
  • the current control element 27 operates the protection element 10 when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by the detection signal output from the detection circuit 26, Control is performed so that the charging / discharging current path of the battery stack 25 is cut off regardless of the switching operation of the current control elements 31 and 32.
  • the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. 3, for example. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat.
  • This is a circuit configuration comprising the body 14.
  • the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating element 14 is connected to the current control element 27.
  • the two electrodes 12 and 12 of the protective element 10 one is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
  • the protective element 10 having such a circuit configuration can surely melt the soluble conductor 13 on the current path by the heat generation of the heating element 14 while realizing a low profile.
  • the protection element 10 of the present invention includes a molten solder discharge electrode 5 formed on the insulating member 15 so as to be close to the thin portion 13b, and an insulating substrate.
  • a housing electrode 4 that houses the molten solder induced by the molten solder discharge electrode 5 may be provided on the electrode 11.
  • the molten solder discharge electrode 5 is formed on the same surface as the heating element extraction electrode 16 formed on the insulating member 15.
  • the molten solder discharge electrode 5 is disposed along the longitudinal direction of the fusible conductor 13, is connected to the thin portion 13 b on the insulating member 15, passes through the side surface (side electrode) of the insulating member 15, and then the insulating substrate 11. It is connected to the accommodation electrode 4 formed on the top.
  • the molten solder discharge electrode 5 may be formed by forming a through-hole electrode from the upper surface of the insulating member 15 toward the back surface side.
  • the lower surface and the side surface of the side electrode of the insulating member 15 and the accommodating electrode 4 are connected by solder. If it does so, the surface of the fusion
  • the path for accommodating the molten solder in this embodiment can be easily formed by performing metal patterning using a printing technique, for example.
  • heating element electrodes 18 (P1) and 18 (P2) for supplying power to the heating element 14 are formed on the insulating substrate 11, and the accommodating electrode 4 is formed at the same time. These electrodes may form a Cu pattern or an Ag paste.
  • an insulating member (laminated substrate) 15 having a heating element 14 laminated thereon is soldered to the electrode pattern formed on the insulating substrate 11.
  • Electrodes 18a (P1) and 18a (P2) for supplying power to the heating element 14 are formed on a pair of opposing sides of the insulating member 15 formed in a square shape. Molten solder discharge electrodes 5 and 5 are formed.
  • the fusible conductor 13 is placed on the mounted insulating member 15. When the fusible conductor 13 is placed, it is arranged so that the heating element extraction electrode 16 and the molten solder discharge electrode 5 are connected to the thin portion 13b.
  • a protective element can also be configured by combining this embodiment with the embodiment described in FIG. That is, as shown in FIGS. 6A and 6B, the supporting member 3 is formed on the independent electrode 2 formed on the insulating substrate 11, and the molten solder discharge electrode 5 is provided on the insulating member 15. Then, connection is made on the accommodation electrode 4 formed on the insulating substrate 11.
  • the accommodating electrode 4 is formed in a ring shape and is patterned so that the independent electrode 2 is disposed at the center of the ring, the limited area on the insulating substrate 11 can be effectively utilized. Needless to say, the patterning of the electrodes is not limited to this and can be arbitrarily set. [Modification]
  • the thin portion 13b of the fusible conductor 13 has a space (concave portion) in which the insulating member 15 mounted on the insulating substrate 11 is accommodated.
  • the shape of the thin portion 13b of the fusible conductor 13 is drawn from the central portion 13d, which is substantially the same distance from the boundary position 13c between the thin portion 13b and the thick portion 13a. It is bent so as to be connected to the electrode 16. Then, the distance in the vertical direction between the boundary position 13c and the insulating member 15 can be increased by bending upward from the central portion 13d toward the boundary position 13c.
  • the heating element 14 when the heating element 14 is energized, the thin portion 13b of the soluble conductor 13 is melted, and the melted solder is a space in which the distance between the boundary position 13c and the insulating member 15 is large. Is guided toward the support member 3 having high solder wettability. As shown in FIG. 8B, the melted solder is also accommodated on the heating element extraction electrode 16 while being drawn and accommodated toward the support members 3 on both sides.
  • the soluble conductor 13 having the thin portion 13b whose cross section is formed in an “M” shape can be manufactured as follows.
  • the pressing pin 40 is disposed at a predetermined position where the thin portion 13b of the fusible conductor 13 is to be formed, and is moved in the direction of the arrow.
  • FIG. 9B when the pressing pin 40 is pressed against the fusible conductor 13 with a predetermined pressure, the thin portion 13b is linear when the pressing pin 40 is removed due to the ductility and rigidity of the metal. Even if it exists, the both ends of the soluble conductor 13 will bend to the side which received the pressure. As shown in FIG.
  • the shape of the thin portion 13b is substantially “ It becomes “M” shape.
  • the longitudinal direction cross-sectional shape of the soluble conductor 13 of the thin-walled portion 13b is not limited to the above-mentioned “M” shape, and the purpose is to expand the space for accommodating molten solder in the direction of the thick-walled portion 13a of the soluble conductor 13. Needless to say, any similar shape may be used.
  • This modification may of course be used in combination with the support member 3 and / or the molten solder discharge electrode 5 described above, and a further molten solder discharge mechanism is ensured and stable fusing characteristics can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fuses (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Protection Of Static Devices (AREA)
  • Secondary Cells (AREA)

Abstract

 過電流保護時の電流容量を確保しつつ、容易に溶断させることができる保護素子を得るために、保護素子(10)は、絶縁基板(11)と、絶縁基板(11)に積層され、絶縁部材(15)に覆われた発熱体(14)と、絶縁基板(11)の両端に形成された電極(12)(A1),(12)(A2)と、絶縁部材(15)上に発熱体(14)と重畳するように積層された発熱体引出電極(16)と、両端が電極(12)(A1),(12)(A2)に接続され、中央部が発熱体引出電極(16)に接続された可溶導体(13)とを備える。可溶導体(13)は、たとえば1.6mmφの丸線状の厚肉部(13a)と、発熱体(14)に対向する部分が発熱体(14)に重畳する位置において、厚さをほぼ均一になるように厚肉部(13a)よりも薄く成型された薄肉部(13b)とからなる。薄肉部(13b)の厚さは、厚肉部(13)aの厚さ(太さ)のたとえば1/2である。

Description

保護素子及びバッテリパック
 本発明は、電流経路を溶断することにより、電流経路上に接続された回路を保護する保護素子に関する。本出願は、日本国において2012年8月1日に出願された日本特許出願番号特願2012-171332を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギ密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。
 多くのリチウムイオン二次電池を用いた電子装置においては、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行う。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加され、瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大異常電圧を出力した場合であってもバッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態において、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられる。
 このようなリチウムイオン二次電池等向けの保護回路の保護素子として、特許文献1に記載されているように、保護素子内部に発熱体を有し、この発熱体の発熱によって電流経路上の可溶導体を溶断する構造が一般的に用いられている。
特開2010-3665号公報
 特許文献1に記載されている保護素子においては、携帯電話やノートパソコンのような電流容量が比較的低い用途に用いるために、可溶導体(ヒューズ)は、最大でも15A程度の電流容量を有している。リチウムイオン二次電池の用途は、近年拡大しており、より大電流の用途、たとえば電動ドライバ等の電動工具や、ハイブリッドカー、電気自動車、電動アシスト自転車等の輸送機器に採用が検討され、一部採用が開始されている。これらの用途においては、特に起動時等には、数10A~100Aを超えるような大電流が流れる場合がある。このような大電流容量に対応した保護素子の実現が望まれている。
 大電流に対応する保護素子を実現するためには、可溶導体の断面積を増大させればよい。1.6mmφの線状に成型したSn/Ag/Cu系ハンダを用いると、50A程度の電流容量を得ることができる。しかしながら、保護素子は、過電流状態により溶断させる場合以外にも、電池セルの過電圧状態を検出して、抵抗体で形成された発熱体に電流を流して、その発熱によって可溶導体を切断する必要がある。しかしながら、「太い」可溶導体の場合には、発熱体からの熱伝導が低下し、可溶導体を安定に溶断させることが困難になるとの問題がある。
 そこで、過電流保護時の電流容量を確保しつつ、発熱体による発熱によっても安定して溶断させることができる保護素子を得ることを目的とする。
 上述した課題を解決するための手段として、本発明に係る保護素子は、絶縁基板と、絶縁基板に積層された発熱体と、少なくとも発熱体を覆うように、絶縁基板に積層された絶縁部材と、第1及び第2の電極と、発熱体と重畳するように絶縁部材の上に積層され、第1及び第2の電極の間の電流経路及び発熱体の一方の端子とに電気的に接続された発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって積層され、加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを備える。そして、可溶導体は、発熱体に重畳して位置する部分が凹状を呈する厚さの薄い薄肉部であり、他の部分が薄肉部よりも厚さが厚く、薄肉部とほぼ同一の電流容量を有する厚肉部であり、薄肉部は、発熱体の発熱によって容易に溶断できる。
 好ましくは、本発明に係る保護素子は、薄肉部に近接する厚肉部の少なくとも一部を絶縁基板に対して支持するように配設された、少なくとも表面に金属層を有する支持部材を更に備えており、支持部材は、絶縁基板に対して熱的に絶縁されている。
 好ましくは、本発明に係る保護素子は、可溶導体の薄肉部に接し、絶縁部材を通り、絶縁基板に達する溶融ハンダ排出電極と、絶縁基板上に形成され、溶融ハンダ排出電極が接続される収容電極を更に備える。
 本発明に係るバッテリパックは、1つ以上のバッテリセルと、バッテリセルに流れる電流を遮断するように接続された保護素子と、バッテリセルそれぞれの電圧値を検出して保護素子を加熱する電流を制御する電流制御素子とを備える。そして、保護素子は、絶縁基板と、絶縁基板に積層された発熱体と、少なくとも発熱体を覆うように、絶縁基板に積層された絶縁部材と、第1及び第2の電極と、発熱体と重畳するように絶縁部材の上に積層され、第1及び第2の電極の間の電流経路及び発熱体の一方の端子に電気的に接続された発熱体引出電極と、発熱体引出電極から第1及び第2の電極にわたって積層され、加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを有し、可溶導体は、厚肉部と、発熱体に重畳して位置する部分を凹状に厚さを薄く扁平に成型された薄肉部とからなる。
 本発明は、可溶導体が、発熱体に重畳して位置する部分が凹状を呈する厚さの薄い薄肉部であり、他の部分が薄肉部よりも厚さが厚く、薄肉部とほぼ同一の電流容量を有する厚肉部であるから、可溶導体の電流容量を低下させることなく、発熱体の発熱によって容易に可溶導体を溶断することができる。
 また、少なくとも表面に金属層を有し、絶縁基板に対して熱的に絶縁された支持部材を更に備えているので、発熱体が発生する熱を、可溶導体の薄肉部に集中させて、可溶導体の溶断を促進し、さらに、発熱体の発熱によって溶融したハンダを、支持部材のぬれ性によって誘導し、収容するので、安定した溶断特性を実現することができる。
 また、発熱体の発熱によって溶融したハンダを、溶融ハンダ排出電極のぬれ性によって誘導し、収容電極に収容することができるので、安定した溶断特性を実現することができる。
図1(A)は、本発明が適用された保護素子の平面図である。図1(B)は、図1(A)のAA’線における断面図である。図1(C)は、可溶導体が溶断した状態を示す断面図である。 図2は、本発明が適用された保護素子の応用例を示すブロック図である。 図3は、本発明が適用された保護素子の回路構成例を示す図である。 図4(A)は、本発明の他の実施の形態の保護素子の平面図である。図4(B)は、図4(A)のAA’線における断面図である。図4(C)は、可溶導体が溶融している状態を示す断面図である。 図5(A)~(C)は、本発明の他の実施の形態の保護素子の製造プロセスを説明するための平面図である。 図6(A)は、本発明の2つの実施の形態を組み合わせた保護素子の平面図である。図6(B)は、図6(A)AA’線における断面図である。 図7(A)は、本発明の変形例の保護素子の平面図である。図7(B)は、図7(A)のAA’線における断面図である。 図8は、本発明の変形例の保護素子の可溶導体が溶断する様子を概念的に示す断面図である。図8(A)は、可溶導体の薄肉部が溶融し始めた状態を示し、溶融したハンダが矢印の方向へ流れる様子を示す図であり、図8(B)は、薄肉部が溶断した状態を示す図である。 図9(A)~(C)は、本発明の変形例の保護素子に用いる可溶導体を作成する手順を説明するための断面図である。
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることはもちろんである。
 [保護素子の構成]
 図1(A)及び図1(B)に示すように、保護素子10は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。発熱体14の両端には、発熱体に電流を流して発熱させるために電源を接続する発熱体電極18(P1),18(P2)が接続される。可溶導体13は、たとえば1.6mmφの丸線状の厚肉部13aと、発熱体14に対向する部分が、発熱体14に重畳する位置において、厚さがほぼ均一になるように厚肉部13aよりも薄く扁平に成型された薄肉部13bとからなる。薄肉部13bの厚さは、厚肉部13aの厚さ(太さ)のたとえば1/2である。なお、厚肉部13a及び薄肉部13bの断面積はほぼ同一であることが好ましい。可溶導体13の薄肉部13bは、発熱体引出電極16と電気的に接続される。
 このように、可溶導体13の、発熱体14に重畳する位置を薄肉化した薄肉部13bとすることによって、薄肉部13bにおける厚さ方向の熱伝導が向上するので、発熱体14の発熱によって、可溶導体13を容易に溶断させることができる。また、薄肉部13bを、扁平に成型することによって、発熱体14の重畳部分との接触面積を増大させることができ、発熱体14からの熱を効率的に伝達させることができ、安定した溶断特性を実現できる。なお、厚肉部13a及び薄肉部13bの断面積はほぼ同一の場合には、可溶導体13の電流容量は変わらず、可溶導体13の通電方向の断面積及び可溶導体13の材質(比抵抗)に応じた電流を流すことができる。
 絶縁基板11は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって形成される。その他、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。
 2つの電極12(A1),12(A2)は、可溶導体13を、保護素子10の内部で接続し、この2つの電極12(A1),12(A2)を介して、外部回路に接続する。2つの電極12(A1),12(A2)は、絶縁基板11上に形成してもよく、あるいは絶縁基板11と一体となったエポキシ樹脂等からなる絶縁素材に形成するようにしてもよい。
 発熱体14は、比較的抵抗値が高く、通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板11上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。
 発熱体14を覆うように絶縁部材15が配置され、この絶縁部材15を介して発熱体14に対向するように発熱体引出電極16が配置される。この絶縁部材15は、発熱体14が内部に一体的に積層された積層基板であってもよいのはもちろんである。
 発熱体引出電極16の一端は、発熱体電極18(P1)及び発熱体14の一端に接続される。また、発熱体14の他端は、他方の発熱体電極18(P2)に接続される。
 可溶導体13は、過電流状態によって、及び発熱体14の発熱によって溶融し、溶断する導電性の材料であればよく、たとえば、SnAgCu系のPbフリーハンダのほか、BiPbSn合金、BiPb合金、BiSn合金、SnPb合金、PbIn合金、ZnAl合金、InSn合金、PbAgSn合金等を用いることができる。
 また、可溶導体13は、Ag若しくはCu又はAg若しくはCuを主成分とする金属からなる高融点金属と、Snを主成分とするPbフリーハンダ等の低融点金属との積層体であってもよい。
 本発明に係る保護素子では、大きな電流容量に対応するため、断面積の大きな可溶導体を用いる。可溶導体が溶断する場合に、溶融するハンダの量が多いために、確実に回路を遮断することが困難となるので、溶融ハンダを収容することが可能なスペースに誘導する必要がある。また、可溶導体13に薄肉部13bを設けたことによって、厚肉部13aと薄肉部13bの境界位置に応力が集中しやすく、機械的な損傷を生じやすいとの問題もある。
 そこで、図1(A)~(C)に示すように、金属製の支持部材3を、熱回路的に絶縁基板11の他の部分と絶縁させた独立電極2上に形成する。支持部材3によって、可溶導体13の厚肉部13aと薄肉部13bとの接続部付近で可溶導体13を支持するように接続する。
 図1(C)に示すように、可溶導体13の溶融時には、支持部材3のハンダぬれ性が絶縁部材15や絶縁基板11よりも大きいために、溶融したハンダは、図1(C)の矢印の方向へ引き込まれる。可溶導体13下部と、絶縁部材15及び絶縁基板11との間には、スペース8があるので、このスペース8に支持部材3及び独立電極2を配置することによって、大量の溶融ハンダを収容することを可能にする。さらに、支持部材3を、応力が集中しやすい、可溶導体13の薄肉部13bと厚肉部13aとの境界箇所の近傍に配置することによって、機械的強度の弱い部分を支持して可溶導体13の強度を向上させる。特に、保護素子10の製造時に可溶導体13の損傷を防止することができ、保護素子10の製造歩留りの向上に寄与することができる。独立電極2は、たとえばCuやAgペーストによるパターニングで形成されるが、支持部材3が熱回路的に他の部分とは絶縁されるように独立電極2は他の回路と接続されない。また、支持部材3及び収容電極4は、一定の熱容量を有しているので蓄熱効果を期待することができる。可溶導体13の溶融時には、発熱体14が発生した熱は、絶縁部材15を介して可溶導体13の薄肉部13bに到達する。支持部材3及び独立電極2の蓄熱効果によって、発生した熱は、支持部材3側に流れ込み、薄肉部13bに接続されている厚肉部13aへの熱の流出を防止する。したがって、発熱体14が発生した熱を、可溶導体13の薄肉部13bに集中させることができ、可溶導体13の溶断の安定化に寄与させることができる。
 金属製の支持部材3は、ハンダのぬれやすい金属であればよく、Cu、Ag、Ni等を用いて独立電極2と一体に形成してもよい。支持部材3には、可溶導体13よりも低融点のハンダを用いることによって、容易に製造することができる。すなわち、絶縁基板11上に独立電極2を通常のアラインメントプロセスを用いて他の電極と同時にAgペーストでパターニングし、絶縁部材15を配置、接続する。その後、独立電極2上に低融点ハンダからなる支持部材3を形成し、リフロー工程を通すことによって、可溶導体13に容易に接続させることができる。
 [保護素子の使用方法]
 図2に示すように、上述した保護素子10は、リチウムイオン二次電池のバッテリパック内の回路に用いられる。
 たとえば、保護素子10は、合計4個のリチウムイオン二次電池のバッテリセル21~24からなるバッテリスタック25を有するバッテリパック20に組み込まれて使用される。
 バッテリパック20は、バッテリスタック25と、バッテリスタック25の充放電を制御する充放電制御回路30と、バッテリスタック25と充放電制御回路30とを保護する本発明が適用された保護素子10と、各バッテリセル21~24の電圧を検出する検出回路26と、検出回路26の検出結果に応じて保護素子10の動作を制御する電流制御素子27とを備える。
 バッテリスタック25は、過充電及び過放電状態を保護するための制御を要するバッテリセル21~24が直列接続されたものであり、バッテリパック20の正極端子20a、負極端子20bを介して、着脱可能に充電装置35に接続され、充電装置35からの充電電圧が印加される。充電装置35により充電されたバッテリパック20を正極端子20a、負極端子20bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。
 充放電制御回路30は、バッテリスタック25から充電装置35に流れる電流経路に直列接続された2つの電流制御素子31、32と、これらの電流制御素子31、32の動作を制御する制御部33とを備える。電流制御素子31、32は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、制御部33によりゲート電圧を制御することによって、バッテリスタック25の電流経路の導通と遮断とを制御する。制御部33は、充電装置35から電力供給を受けて動作し、検出回路26による検出結果に応じて、バッテリスタック25が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子31、32の動作を制御する。
 保護素子10は、たとえば、バッテリスタック25と充放電制御回路30との間の充放電電流経路上に接続され、その動作が電流制御素子27によって制御される。
 検出回路26は、各バッテリセル21~24と接続され、各バッテリセル21~24の電圧値を検出して、各電圧値を充放電制御回路30の制御部33に供給する。また、検出回路26は、いずれか1つのバッテリセル21~24が過充電電圧又は過放電電圧になったときに電流制御素子27を制御する制御信号を出力する。
 電流制御素子27は、検出回路26から出力される検出信号によって、バッテリセル21~24の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子10を動作させて、バッテリスタック25の充放電電流経路を電流制御素子31、32のスイッチ動作によらず遮断するように制御する。
 以上のような構成からなるバッテリパック20において、保護素子10の構成について具体的に説明する。
 まず、本発明が適用された保護素子10は、たとえば図3に示すような回路構成を有する。すなわち、保護素子10は、発熱体引出電極16を介して直列接続された可溶導体13と、可溶導体13の接続点を介して通電して発熱させることによって可溶導体13を溶融する発熱体14とからなる回路構成である。また、保護素子10では、たとえば、可溶導体13が充放電電流経路上に直列接続され、発熱体14が電流制御素子27と接続される。保護素子10の2個の電極12,12のうち、一方は、A1に接続され、他方は、A2に接続される。また、発熱体引出電極16とこれに接続された発熱体電極18は、P1に接続され、他方の発熱体電極18は、P2に接続される。
 このような回路構成からなる保護素子10は、低背化を実現しつつ、発熱体14の発熱により、電流経路上の可溶導体13を確実に溶断することができる。
 [他の実施の形態]
 図4(A)及び図4(B)に示すように、本発明の保護素子10は、薄肉部13bに近接するように、絶縁部材15上に形成される溶融ハンダ排出電極5と、絶縁基板11上に、溶融ハンダ排出電極5によって誘導された溶融ハンダを収容する収容電極4とを設けてもよい。溶融ハンダ排出電極5及び収容電極4を設けることによって、大電流に対応するための「太い」ハンダを用いた可溶導体の大量の溶融ハンダを誘導して、可溶導体13の確実な分断に寄与せしめることができる。
 溶融ハンダ排出電極5は、絶縁部材15上に形成される発熱体引出電極16と同一の面に形成される。溶融ハンダ排出電極5は、可溶導体13の長手方向に沿って配置されており、絶縁部材15上において薄肉部13bに接続され、絶縁部材15の側面(側面電極)を通って、絶縁基板11上に形成される収容電極4に接続される。溶融ハンダ排出電極5は、絶縁部材15の上面から裏面側に向かうようにスルーホール電極を形成することによって構成してもよい。絶縁部材15の側面電極の下面及び側面と収容電極4とをハンダにより接続する。そうすると、溶融ハンダ排出電極5及び収容電極4の表面はハンダ処理されて、ハンダフィレットが形成される。
 図4(C)に示すように、可溶導体13の薄肉部13bが溶融すると、可溶導体13の薄肉部13bと絶縁部材15とのすき間に毛管流入が起こり、ハンダフィレットが形成された溶融ハンダ排出電極5に沿って溶融ハンダは移動し、収容電極4の方向に誘導される。収容電極4を配設する面積をある程度大きくとっておけば、収容電極4のぬれ性にしたがって溶融ハンダが収容電極4上に収容される。このように、溶融したハンダが誘導される経路と収容箇所とを配設することによって、大量のハンダを用いる大電流用の可溶導体13の場合であっても、溶融ハンダを分断し、確実に回路遮断をすることができる。
 図5(A)~(C)に示すように、この実施の形態における溶融ハンダを収容する経路は、たとえば印刷技術を用いて金属のパターニングを行うことによって容易に形成することができる。
 図5(A)に示すように、絶縁基板11上に発熱体14への電力供給のための発熱体電極18(P1),18(P2)を形成し、同時に収容電極4を形成する。これらの電極はCuパターンを形成してもよく、Agペーストによって形成してもよい。図5(B)に示すように、絶縁基板11上に形成した電極パターンに、発熱体14を積層した絶縁部材(積層基板)15をハンダ接続する。方形状に形成された絶縁部材15の一対の対向辺には、発熱体14の電力供給のための電極18a(P1),18a(P2)が形成されており、他の一対の対向辺には、溶融ハンダ排出電極5,5が形成されている。図5(C)に示すように、実装された絶縁部材15上に、可溶導体13を載置する。可溶導体13を載置する際には、薄肉部13bに発熱体引出電極16と溶融ハンダ排出電極5とが接続されるように配置する。
 この実施の形態に、図1において説明した実施の形態を組み合わせて、保護素子を構成することもできる。すなわち、図6(A)及び図6(B)に示すように、絶縁基板11上に形成された独立電極2上に支持部材3を形成し、さらに絶縁部材15に溶融ハンダ排出電極5を設けて、絶縁基板11上に形成された収容電極4上に接続する。ここで、収容電極4を環状に形成し、その環の中心部に独立電極2を配置するようにパターニングすれば、絶縁基板11上の限られた面積を有効に活用することができる。なお、電極のパターニングは、これに限らず任意に設定することが可能であることは言うまでもない。
 [変形例]
 大電流対応の保護素子の場合には、大量の溶融ハンダを収容するためのスペースを確保することが最大の問題であるが、そのための変形例について説明する。
 図7(A)及び図7(B)に示すように、可溶導体13の薄肉部13bには、絶縁基板11に搭載された絶縁部材15が収容される空間(凹部)が存在するが、この空間を絶縁部材15側から見て拡大することによって、より容易に溶融ハンダを収容することが可能になる。すなわち、図7(B)に示すように、可溶導体13の薄肉部13bの形状を、薄肉部13bと厚肉部13aとの境界位置13cからほぼ同じ距離となる中央部13dを発熱体引出電極16に接続するように屈曲させる。そして、中央部13dから境界位置13cに向かって上方に屈曲させるようにして、境界位置13cと絶縁部材15との垂直方向の距離を大きくとるようにすることができる。
 図8(A)に示すように、発熱体14に通電することによって可溶導体13の薄肉部13bは溶融し、溶融したハンダは、境界位置13cと絶縁部材15との距離があいている空間を利用しつつ、ハンダぬれ性の大きい支持部材3の方へと誘導される。図8(B)に示すように、溶融したハンダは、両側の支持部材3の方へ引き込まれ収容されつつ、発熱体引出電極16上にも収容される。
 このように断面が「M」字型に成型された薄肉部13bを有する可溶導体13は、たとえば、以下のようにして製造することができる。
 図9(A)に示すように、可溶導体13の薄肉部13bを形成すべき所定の位置に押圧ピン40を配置して、矢印の方向へ移動させる。図9(B)に示すように、押圧ピン40を可溶導体13に対して所定の圧力で押し付けると、金属の延性及び剛性により、押圧ピン40を除去したときには、薄肉部13bは直線状であっても、可溶導体13の両端は、圧力を受けた側に屈曲する。図9(C)に示すように、屈曲した可溶導体13の両端を、両側の厚肉部13aが直線状になるように矢印の方向に圧力を加えると、薄肉部13bの形状はほぼ「M」字状になる。なお、薄肉部13bの可溶導体13の長手方向断面形状は、上述の「M」字状に限らず、可溶導体13の厚肉部13a方向への溶融ハンダの収容スペースを拡大するという趣旨に沿えば、類似のいかなる形状であってもよいのは言うまでもない。
 この変形例は、上述した支持部材3及び/又は溶融ハンダ排出電極5と併用してももちろんよく、さらなる溶融ハンダの排出機構が確保され、安定した溶断特性を実現することが可能となる。
 2 独立電極、3 支持部材、4 収容電極、5 溶融ハンダ排出電極、8 スペース、10 保護素子、11 絶縁基板、12(A1),12(A2) 電極、13 可溶導体、13a 厚肉部、13b 薄肉部、13c 境界位置、13d 中央部、14 発熱体、15 絶縁部材、16 発熱体引出電極、17 フラックス、18(P1),18(P2) 発熱体電極、18a(P1),18a(P2) 電極、20 バッテリパック、20a 正極端子、20b 負極端子、21~24 バッテリセル、25 バッテリスタック、26 検出回路、27、31,32 電流制御素子、30 充放電制御回路、33 制御部、35 充電装置、40 押圧ピン

Claims (11)

  1.  絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     第1及び第2の電極と、
     上記発熱体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路及び該発熱体の一方の端子に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記可溶導体は、厚肉部と、上記発熱体に重畳して位置する部分を凹状に厚さを薄く扁平に成型された薄肉部とからなることを特徴とする保護素子。
  2.  上記薄肉部に近接する上記厚肉部の少なくとも一部には、上記絶縁基板に対して支持され、溶融した該可溶導体を収容するスペースを上記可溶導体と該絶縁基板の間に形成するように配設された、少なくとも表面に金属層を有する支持部材を更に備える請求項1記載の保護素子。
  3.  上記支持部材は、上記絶縁基板に対して熱的に絶縁されていることを特徴とする請求項2記載の保護素子。
  4.  上記可溶導体の薄肉部に近接し、上記絶縁部材を通り、上記絶縁基板に達する溶融ハンダ排出電極を更に備える請求項1記載の保護素子。
  5.  上記絶縁基板上に形成され、上記溶融ハンダ排出電極が接続される収容電極を更に備えることを特徴とする請求項4記載の保護素子。
  6.  上記可溶導体は、上記薄肉部の中間部分で上記発熱体引出電極と接続されており、該接続された部分から、上記薄肉部及び上記厚肉部の境界位置に向かって、溶融したハンダが流れる経路が形成されることを特徴とする請求項1記載の保護素子。
  7.  上記薄肉部は、可溶導体の長手方向かつ積層方向の断面の形状がM字状に成型されていることを特徴とする請求項6記載の保護素子。
  8.  上記支持部材は、上記可溶導体よりも低融点の金属材料を少なくとも表面に有することを特徴とする請求項2又は3記載の保護素子。
  9.  上記低融点の金属材料は、低融点ハンダであることを特徴とする請求項8記載の保護素子。
  10.  上記薄肉部及び上記厚肉部の断面積は、ほぼ同一であることを特徴とする請求項1記載の保護素子。
  11.  1つ以上のバッテリセルと、
     上記バッテリセルに流れる電流を遮断するように接続された保護素子と、
     上記バッテリセルそれぞれの電圧値を検出して上記保護素子を加熱する電流を制御する電流制御素子とを備え、
     上記保護素子は、
     絶縁基板と、
     上記絶縁基板に積層された発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     第1及び第2の電極と、
     上記発熱体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路及び該発熱体の一方の端子に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを有し、
     上記可溶導体は、厚肉部と、上記発熱体に重畳して位置する部分を凹状に厚さを薄く扁平に成型された薄肉部とからなることを特徴とするバッテリパック。
PCT/JP2013/069994 2012-08-01 2013-07-24 保護素子及びバッテリパック WO2014021155A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157004829A KR101946105B1 (ko) 2012-08-01 2013-07-24 보호 소자 및 배터리 팩
CN201380040791.4A CN104508784B (zh) 2012-08-01 2013-07-24 保护元件及电池组
HK15109301.8A HK1208758A1 (en) 2012-08-01 2015-09-23 Protective element and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-171332 2012-08-01
JP2012171332A JP5952673B2 (ja) 2012-08-01 2012-08-01 保護素子及びバッテリパック

Publications (1)

Publication Number Publication Date
WO2014021155A1 true WO2014021155A1 (ja) 2014-02-06

Family

ID=50027834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069994 WO2014021155A1 (ja) 2012-08-01 2013-07-24 保護素子及びバッテリパック

Country Status (6)

Country Link
JP (1) JP5952673B2 (ja)
KR (1) KR101946105B1 (ja)
CN (1) CN104508784B (ja)
HK (1) HK1208758A1 (ja)
TW (1) TWI585800B (ja)
WO (1) WO2014021155A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117912915A (zh) * 2024-03-15 2024-04-19 嘉兴模度新能源有限公司 复合熔断电连接结构及电池组

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6576618B2 (ja) * 2014-05-28 2019-09-18 デクセリアルズ株式会社 保護素子
JP6371118B2 (ja) * 2014-05-30 2018-08-08 デクセリアルズ株式会社 保護素子、及びバッテリパック
JP6622960B2 (ja) * 2014-12-18 2019-12-18 デクセリアルズ株式会社 スイッチ素子
TWI657472B (zh) * 2015-02-16 2019-04-21 陳莎莉 複合式保護元件、保護電路、可充放電電池包
CN106410762A (zh) * 2015-07-28 2017-02-15 有量科技股份有限公司 电池充电保护系统及其主动熔断式保护装置
JP6739922B2 (ja) * 2015-10-27 2020-08-12 デクセリアルズ株式会社 ヒューズ素子
CN106960772B (zh) * 2016-01-11 2019-05-21 陈葆萱 保护元件与可充放电电池包
CN114520400A (zh) * 2020-11-20 2022-05-20 比亚迪股份有限公司 智能连接片、电池包及车辆

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126903A (ja) * 1995-02-28 2001-05-11 Sony Chem Corp 保護素子
WO2010084817A1 (ja) * 2009-01-21 2010-07-29 ソニーケミカル&インフォメーションデバイス株式会社 保護素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034655B (zh) * 2009-09-25 2014-02-12 乾坤科技股份有限公司 保护元件
JP5260592B2 (ja) * 2010-04-08 2013-08-14 デクセリアルズ株式会社 保護素子、バッテリ制御装置、及びバッテリパック

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126903A (ja) * 1995-02-28 2001-05-11 Sony Chem Corp 保護素子
WO2010084817A1 (ja) * 2009-01-21 2010-07-29 ソニーケミカル&インフォメーションデバイス株式会社 保護素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117912915A (zh) * 2024-03-15 2024-04-19 嘉兴模度新能源有限公司 复合熔断电连接结构及电池组

Also Published As

Publication number Publication date
CN104508784B (zh) 2017-06-09
KR20150040953A (ko) 2015-04-15
HK1208758A1 (en) 2016-03-11
JP5952673B2 (ja) 2016-07-13
KR101946105B1 (ko) 2019-02-08
TWI585800B (zh) 2017-06-01
JP2014032768A (ja) 2014-02-20
CN104508784A (zh) 2015-04-08
TW201419349A (zh) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5952673B2 (ja) 保護素子及びバッテリパック
JP5952674B2 (ja) 保護素子及びバッテリパック
JP6081096B2 (ja) 保護素子及びバッテリパック
KR20170055447A (ko) 보호 소자 및 실장체
JP6151550B2 (ja) 保護素子
WO2015182355A1 (ja) 保護素子及びバッテリパック
JP6957246B2 (ja) 保護素子
WO2016017567A1 (ja) 保護素子及び保護回路
WO2015107631A1 (ja) 保護素子
WO2015159570A1 (ja) 保護素子
JP6030431B2 (ja) 保護素子
WO2020209071A1 (ja) 保護素子及びバッテリパック
JP2016018683A (ja) 保護素子
KR20220034232A (ko) 보호 소자, 배터리 팩
JP6058476B2 (ja) 保護素子、及び保護素子が実装された実装体
JP6078332B2 (ja) 保護素子、バッテリモジュール
WO2021210634A1 (ja) 保護素子及びバッテリパック
JP7390825B2 (ja) 保護素子、バッテリパック
JP2015041546A (ja) 保護素子
JP6231323B2 (ja) 保護素子、及びこれを用いた保護回路基板
WO2022181652A1 (ja) 保護素子及びバッテリパック
WO2023140066A1 (ja) 保護素子、及びバッテリパック
WO2022196594A1 (ja) 保護素子及びバッテリパック
WO2015107632A1 (ja) 保護素子
JP2014127270A (ja) 保護素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157004829

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13826134

Country of ref document: EP

Kind code of ref document: A1