WO2010084588A1 - 電源回路及びこの電源回路を備えたパワーアンプ、並びに放送設備 - Google Patents

電源回路及びこの電源回路を備えたパワーアンプ、並びに放送設備 Download PDF

Info

Publication number
WO2010084588A1
WO2010084588A1 PCT/JP2009/050895 JP2009050895W WO2010084588A1 WO 2010084588 A1 WO2010084588 A1 WO 2010084588A1 JP 2009050895 W JP2009050895 W JP 2009050895W WO 2010084588 A1 WO2010084588 A1 WO 2010084588A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
voltage
waveform
supply circuit
Prior art date
Application number
PCT/JP2009/050895
Other languages
English (en)
French (fr)
Inventor
祐馬 河合
Original Assignee
ティーオーエー 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーオーエー 株式会社 filed Critical ティーオーエー 株式会社
Priority to JP2010547346A priority Critical patent/JP5256306B2/ja
Priority to PCT/JP2009/050895 priority patent/WO2010084588A1/ja
Publication of WO2010084588A1 publication Critical patent/WO2010084588A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply circuit having a plurality of output systems, a power amplifier including the power supply circuit, and broadcasting equipment.
  • the present invention relates to a technique for preventing a start-up failure of a power supply circuit.
  • a rectifier circuit having a rectifying diode has been used to generate a direct current from the alternating current.
  • the rectifying diode generates a loss due to the product of the forward voltage and current of the rectifying diode itself.
  • the loss increases.
  • heat generation due to loss of the rectifier diode has been a problem.
  • a power supply circuit using a synchronous rectifier circuit that generates a direct current by switching a switch by a plurality of transistors instead of a rectifier circuit using a rectifier diode has become mainstream.
  • a synchronous rectification circuit using a plurality of transistors is limited to a switching loss and a loss due to the ON resistance of the transistor when the switch is opened and closed by the transistor.
  • the transistor itself has less loss compared to the rectifying diode. Therefore, since the loss of the synchronous rectification circuit is smaller than the loss of the rectification circuit having the rectification diode, the power consumption of the power supply circuit is reduced (see, for example, Patent Document 1). JP 2001-333578 A
  • a through current generated when a plurality of transistors having a relationship of short-circuiting the power supply are simultaneously turned on flows.
  • the circuit may break down. Therefore, in order to prevent the occurrence of a through current, a period (dead time) in which the transistors are simultaneously turned off is provided when switching between the plurality of transistors.
  • the switching timing of the plurality of transistors is set on the assumption that the voltage waveform of the AC power supply is stable.
  • a transformer is used as a means for insulation.
  • the smoothing capacitor of the synchronous rectifier circuit is charged at the time of starting the power supply circuit, an inrush current flows, the voltage waveform of the voltage applied to the transformer is not stable, and a plurality of voltages based on the voltage waveform applied to the transformer
  • the transistor switching timing and the current supply timing of the transformer may be different.
  • the current of the AC power supply is supplied even when the transistor is off, so that the transistor is turned on during the period when the transistor should be turned off, and an inrush current flows, which may cause a start-up failure of the power supply circuit. .
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power supply circuit that prevents a start-up failure of the power supply circuit in a power supply circuit having a synchronous rectifier circuit.
  • the power supply circuit includes a first transformer that transforms a DC voltage into a first transformer AC voltage, and a first rectifier circuit that generates a first DC voltage from the first transformer AC voltage.
  • a first output system a second transformer that transforms the DC voltage into a second transformer AC voltage; and a switching element that switches between open and close of the circuit, and the switching element switches the second transformer AC voltage to the second DC voltage.
  • a second output system having a second rectifier circuit for generating a waveform, a waveform generation circuit for generating a control waveform based on a voltage waveform of the first output system, and controlling the switching element based on the control waveform
  • a synchronous rectification control circuit having a switching element control circuit that performs synchronization with the first output system, and the synchronous rectification control circuit synchronizes with the first output system. And summarized in that to control the.
  • the waveform generation circuit generates, for example, a voltage waveform that controls switching of the switching element from the stable voltage waveform of the first output system when the switching element is not used. Switching control can be stabilized. Therefore, since the switching control of switching of the switching element is stabilized, the starting failure of the power supply circuit can be prevented at the time of starting the power supply circuit.
  • the “waveform of voltage of the first output system” is a waveform of voltage applied to the first transformer of the first output system.
  • the waveform generation circuit of the power supply circuit generates the control waveform based on the waveform of the first DC voltage.
  • a first DC voltage is directly supplied to the waveform generation circuit to detect a voltage waveform of the first output system, and a separate waveform for supplying the detected voltage waveform to the waveform generation circuit.
  • a circuit is not necessary, and the power supply circuit can have a simple circuit configuration. As a result, the cost of the power supply circuit can be reduced.
  • the power supply circuit further includes a transformer waveform detector that detects a waveform of the first transformer AC voltage, and the waveform of the first transformer AC voltage detected by the transformer waveform detector.
  • the waveform generation circuit generates the control waveform.
  • the waveform of the first output AC voltage is directly supplied to the waveform generation circuit by directly detecting the waveform of the first AC voltage detected by the transformer waveform detector that detects the waveform of the first AC voltage.
  • a separate circuit for supplying the waveform of the detected voltage to the waveform generation circuit becomes unnecessary, and the power supply circuit can be simplified. Therefore, the cost of the power supply circuit can be reduced.
  • the power supply circuit further includes a supply waveform detector that detects a waveform of the AC voltage supplied to the first transformer, and the waveform generation circuit includes the supply waveform detector.
  • the gist is to generate the control waveform based on the detected waveform.
  • the waveform of the supply waveform detector detects the waveform of the voltage supplied to the first transformer, the voltage waveform applied to the first transformer when starting the first output system when starting the power supply circuit.
  • the second output system After the period in which the power supply is disturbed, it is possible to prevent the power supply circuit from starting badly when starting the power supply circuit.
  • the supply waveform detector of the power supply circuit is a pulse transformer.
  • this power supply circuit it is possible to insulate the first output system and the second output system by using a pulse transformer for the supply waveform detector.
  • the control voltage of the switch that performs synchronous rectification can be optimally set regardless of the output voltage and power specifications of the first output system.
  • the supply waveform detector of the power supply circuit is a phototransistor.
  • the waveform generation circuit is stable regardless of the output voltage and power specifications of the first output system and the configuration of the first transformer. Voltage waveform can be supplied.
  • Another aspect of the present invention is that, in the power supply circuit, the first DC voltage is smaller than the second DC voltage.
  • the output power from the first output system is made smaller than the output power from the second output system, so that the combined loss of the first output system and the second output system can be reduced.
  • the power supply circuit further includes a power cut-off circuit that cuts off power supply to the second transformer in an operating state, and the power cut-off circuit is in an operating state when the power supply circuit is activated.
  • the power supply to the second transformer is cut off when the power supply circuit is started.
  • the second rectifier circuit prevents generation of the second DC voltage in an unstable state when the power supply circuit is activated. To do. Accordingly, since the waveform is not supplied from the second transformer to the second rectifier circuit at the time of starting the power supply circuit, the start-up failure of the power supply circuit can be reliably prevented.
  • the power supply circuit further includes a current detection circuit that detects that a current exceeding an upper limit value has flowed in the second output system, and the current detection circuit has an upper limit in the second output system.
  • the gist is to cut off the supply of power to the second transformer by setting the power cut-off circuit to an operating state when it is detected that a current exceeding the value flows.
  • the power cutoff circuit is set to the operating state, so that no power is supplied to the second rectifier circuit. Therefore, it is possible to prevent a failure due to a large current being supplied to the device connected to the second rectifier circuit.
  • the power supply circuit includes a voltage limiting circuit that limits a magnitude of an AC voltage that is an input source of the DC voltage when the power supply circuit is activated.
  • a power amplifier in another aspect of the present invention, includes the power supply circuit, an amplifier, and an electronic component other than the amplifier, and supplies power from the second output system to the amplifier.
  • the gist is to supply current to the parts.
  • this power amplifier in a single power source, power is supplied from the second output system for signal amplifiers that require high power in the power amplifier, and from the first output system to electronic components other than signal amplifiers that do not require high power.
  • the signal amplification and other functions can be controlled simultaneously.
  • a broadcasting facility in another aspect of the present invention, includes the power supply circuit, a power amplifier, and an electronic component other than the power amplifier, supplies power from the second output system to the power amplifier, and outputs the first output.
  • the gist is to supply power from the system to the electronic component.
  • power is supplied from the second output system to a power amplifier that requires a large amount of power in the broadcasting facility from one power source, and from the first output system to electronic components other than the power amplifier that does not require large power. It is possible to control the functions of the signal amplifier and other broadcasting equipment at the same time.
  • a power supply circuit having a synchronous rectification circuit it is possible to provide a power supply circuit that prevents a start-up failure of the power supply circuit.
  • 1 is a block diagram showing an overall configuration of a first embodiment according to a power supply circuit of the present invention.
  • 1 is a circuit diagram showing a first embodiment according to a power supply circuit of the present invention.
  • (A)-(h) The graph which shows the voltage waveform of the power supply circuit of FIG. 2, respectively.
  • (A)-(i) The graph which shows the voltage waveform of a part of power supply circuit of FIG. 2, respectively.
  • the circuit diagram which shows the synchronous rectification control circuit in the power supply circuit of FIG. (A)-(k) The graph which shows the voltage waveform in each point of the rectification waveform production
  • the circuit diagram which shows 2nd Embodiment which concerns on the power supply circuit of this invention (A) The graph which shows the voltage waveform of AC power supply. (B) The graph which shows the current waveform of AC power supply. (C) to (k) Graphs showing voltage waveforms of the power supply circuit of FIG.
  • the circuit diagram which shows the modification of 1st Embodiment which concerns on the power supply circuit of this invention The circuit diagram which shows the modification of 1st Embodiment which concerns on the power supply circuit of this invention.
  • the circuit diagram which shows the modification of 1st Embodiment which concerns on the power supply circuit of this invention The circuit diagram which shows the modification of 1st Embodiment which concerns on the power supply circuit of this invention.
  • FIG. 1 is a block diagram showing the overall configuration of the power supply circuit of the present invention.
  • FIG. 2 is a circuit diagram showing a first embodiment according to the power supply circuit of the present invention.
  • winding of the 1st transformer and the 2nd transformer in a figure shows the winding start side of a coil
  • the power supply circuit 1 includes a primary side rectifier circuit 3 that converts an AC voltage supplied from an AC power supply 2 into a DC voltage via a line filter 2a (see FIG. 1);
  • the first output system 4 that converts the DC voltage of the primary side rectifier circuit 3 and outputs the voltage, and the first output system 4 are separate output systems, and the DC voltage of the primary side rectifier circuit 3 is converted to a voltage.
  • a second output system 5 for outputting The first DC voltage that is the output voltage of the first output system 4 is smaller than the second DC voltage that is the output voltage of the second output system 5.
  • the HOT side 4a and the COM side 4b are connected to the first load RL1, and the first DC voltage is supplied from the first output system 4 to the first load RL1.
  • the HOT side 5a and the COM side 5b are connected to the second load RL2, and the second DC voltage is supplied from the second output system 5 to the second load RL2.
  • the COM side 4b of the first output system 4 and the COM side 5b of the second output system 5 are connected to each other by the wiring PL1.
  • the primary side rectifier circuit 3 includes a rectifier bridge 16 in which four diodes are combined, and two capacitors 17 and 18 connected in parallel to the rectifier bridge 16. More specifically, the full-wave rectifier circuit for adjusting the AC voltage of the AC power supply 2 in one direction is constituted by the rectifier bridge 16, and the smoothing circuit for smoothing the DC voltage including the pulsating flow from the rectifier bridge 16 is provided. Consists of capacitors 17 and 18. Therefore, the AC voltage supplied from the AC power supply 2 is converted into a DC voltage by the primary side rectifier circuit 3.
  • the first output system 4 includes a first switching circuit 6, a first transformer 7, a secondary rectifier circuit 8 serving as a first rectifier circuit, a switching control circuit 12, a starting circuit 13, a control power supply 14, and waveform generation.
  • the circuit includes a synchronous rectification control circuit 15 serving as a circuit.
  • the starter circuit 13 is connected in parallel with the capacitors 17 and 18 of the primary side rectifier circuit 3.
  • the starter circuit 13 includes a resistor 19, a constant voltage diode 20 connected in series with the resistor 19, and an NPN transistor (hereinafter referred to as a NPN transistor) whose base side is connected to a connection point CP4 between the resistor 19 and the constant voltage diode 20.
  • a transistor simply referred to as a “transistor” 21 and a resistor 22 connected to the collector side of the transistor 21.
  • the switching control circuit 12 is, for example, an oscillator, and supplies a voltage waveform of a predetermined rectangular wave that is a control waveform of the first switching circuit 6 to the first switching circuit 6.
  • the frequency of the voltage waveform by the switching control circuit 12 is constant. Further, when the AC power supply 2 is started, the switching control circuit 12 is started by the DC voltage generated by the start circuit 13.
  • the first switching circuit 6 is connected in series with the rectifier bridge 16 of the primary side rectifier circuit 3, two switching elements 23 and 24 connected in parallel with the capacitors 17 and 18, and the switching elements 23 and 24. And a drive circuit 25 that controls switching between opening and closing.
  • the switching elements 23 and 24 are, for example, field effect transistors, and are arranged with the winding start end of the winding 7a of the first transformer 7 interposed therebetween.
  • the drive circuit 25 generates a voltage waveform that controls switching of the switching elements 23 and 24 based on the rectangular wave voltage waveform generated by the switching control circuit 12.
  • the switching elements 23 and 24 switch between open and close based on the voltage waveform generated by the drive circuit 25.
  • a resonant parallel circuit is configured by the drain-source capacitance of the switching element 23 and the self-inductance of the winding 7 b of the first transformer 7.
  • the first transformer 7 is, for example, a transformer, and is disposed between two windings 7a and 7b on the primary side, one winding 7c on the secondary side, and between the winding 7a and the winding 7c. And an iron core 7d.
  • the voltage on the primary side of the first transformer 7 is transformed so that the voltage on the secondary side of the first transformer 7 becomes a predetermined voltage, and the first transformer AC voltage is Generated.
  • the end of the winding end of the conductive wire of the winding 7a is connected in series with the capacitor 7e.
  • a series resonance circuit is configured by the leakage inductance of the first transformer 7 and the capacitor 7e.
  • the capacitor 7e is a connection at the wiring PL2 that connects the connection point CP1 between the capacitors 17 and 18 of the primary side rectifier circuit 3 and the end of the winding end of the winding 10a of the second transformer 10 described later. Connected to point CP2. Further, the end of the winding 7b at the end of the winding is connected to a connection point CP3 on the minus side ( ⁇ side) of the rectifier bridge 16 of the primary side rectifier circuit 3.
  • the control power supply 14 includes a rectifying diode 27 connected in series to the winding start end of the conductive wire of the winding 7b, a smoothing capacitor 28 connected in parallel with the winding 7b, and the starter circuit 13. And a backflow prevention diode 29 for preventing the current from flowing through the winding 7b.
  • the control power supply 14 is connected to the emitter side of the transistor 21 of the starter circuit 13, and a backflow prevention diode 30 for preventing current from flowing from the control power supply 14 to the emitter side of the transistor 21; And a capacitor 31 that performs coupling on the power supply line of the circuit 13.
  • the control power supply 14 supplies a current to the switching control circuit 12.
  • the secondary-side rectifier circuit 8 includes rectifier diodes 32 and 33 connected to the winding start end and winding end of the winding 7c, and the intermediate tap 7f and diode 32 of the winding 7c, respectively. , 33 and a smoothing capacitor 34 connected between the cathode sides of the.
  • the DC voltage generated from the primary side rectifier circuit 3 is supplied to the starter circuit 13 and the first switching circuit 6. Then, the DC voltage of the starting circuit 13 is supplied to the switching control circuit 12.
  • the switching control circuit 12 When the switching control circuit 12 generates a voltage waveform, which is a control waveform, from the DC voltage, switching between opening and closing of the first switching circuit 6 is controlled based on this voltage waveform.
  • the control power supply 14 starts with the raise of the voltage accompanying the transformation to the 1st transformation AC voltage.
  • the control power supply 14 supplies a voltage to the switching control circuit 12 instead of the activation circuit 13.
  • the first transformer 7 transforms the alternating voltage generated from the first switching circuit 6 to generate the first transformed alternating voltage. Then, the first DC voltage is generated by the secondary side rectifier circuit 8 as the first transformer AC voltage. The first DC voltage is supplied to the first load RL1 connected to the first output system 4 and consumes power.
  • the second output system 5 is provided in the second switching circuit 9, the second transformer 10, the synchronous rectifier circuit 11 serving as the second rectifier circuit, and the synchronous rectifier circuit 11, and the current of the synchronous rectifier circuit 11 is large. And a current detection circuit 26 which is a cutoff control circuit for detecting the height.
  • a current detection circuit 26 which is a cutoff control circuit for detecting the height.
  • the second switching circuit 9 is connected to a connection point CP5 between the diode 29 and the diode 30 of the control power supply 14, and also cuts off power for controlling a signal supplied from the switching control circuit 12 to the drive circuit 38.
  • the circuit 35 and the rectifier bridge 16 of the primary side rectifier circuit 3 are connected in series, and the two switching elements 36 and 37 connected in parallel with the capacitors 17 and 18 and the switching elements 36 and 37 are opened and closed.
  • field effect transistors are used for the switching elements 36 and 37.
  • a rectangular wave voltage waveform that is a control waveform of the switching control circuit 12 is input to the power cutoff circuit 35.
  • the power cut-off circuit 35 outputs a control signal for turning off the switching elements 36 and 37 for a certain period from when the AC power supply 2 is activated. Then, after a predetermined time has elapsed, the drive circuit 38 is driven based on the voltage waveform of the switching control circuit 12.
  • the drive circuit 38 generates a voltage waveform that controls switching of the switching elements 36 and 37 based on the voltage waveform of the switching control circuit 12.
  • the switching elements 36 and 37 perform switching between opening and closing based on the voltage waveform generated by the drive circuit 38.
  • the second transformer 10 is, for example, a transformer, and includes a primary winding 10a, a secondary winding 10b, and an iron core 10c disposed between the winding 10a and the winding 10b. .
  • the winding start end of the winding 10 a is connected between the switching elements 36 and 37.
  • the end of winding end of the winding 10a is connected to a connection point CP1 between the capacitors 17 and 18 of the primary side rectifier circuit 3.
  • a capacitor 10e is connected in series to the end of the winding 10a at the end of winding.
  • the synchronous rectifier circuit 11 includes field effect transistors 39 and 40, which are switching elements connected in series to the winding start end and winding end of the winding 10b, respectively, the intermediate tap 10d of the winding 10b, and the electric field. And a smoothing capacitor 41 connected between the source side of the effect transistors 39 and 40.
  • power MOSFETs are used as the field effect transistors 39 and 40.
  • the field effect transistors 39 and 40 are referred to as “MOSFETs 39 and 40”.
  • the synchronous rectifier circuit 11 controls the switching of the MOSFETs 39 and 40 according to the control waveform generated by the synchronous rectification control circuit 15 of the first output system 4. More specifically, the synchronous rectification control circuit 15 of the first output system 4 includes a rectification waveform generation unit 42 connected to the anode side of the diode 32 of the secondary side rectification circuit 8 and the voltage generated by the rectification waveform generation unit 42. Drive circuits 43 and 44 which are switching element control circuits that control switching of the MOSFETs 39 and 40 of the synchronous rectifier circuit 11 based on the waveform.
  • the synchronous rectification control circuit 15 generates a voltage waveform that is a control waveform from the voltage waveform applied to the first transformer 7.
  • the switching control of the MOSFETs 39 and 40 is controlled based on the voltage waveform generated by the synchronous rectification control circuit 15.
  • the current detection circuit 26 is an ammeter, for example, and is connected to the HOT side 5 a of the second output system 5 in the synchronous rectification circuit 11.
  • the current detection circuit 26 switches to the power cut-off circuit 35 to the drive circuit 38 via the phototransistor 26a.
  • a voltage signal is input so that the elements 36 and 37 are turned off. As a result, no DC voltage is applied to the synchronous rectifier circuit 11, power is not supplied to the second load RL2 connected to the synchronous rectifier circuit 11, and the second load RL2 can be prevented from failing.
  • the DC voltage generated by the primary side rectifier circuit 3 is supplied to the second switching circuit 9.
  • a rectangular voltage waveform that is a control waveform of the switching control circuit 12 of the first output system 4 is supplied to the drive circuit 38 via the power cutoff circuit 35. Based on the voltage waveform generated by the drive circuit 38, switching of the opening and closing of the second switching circuit 9 is controlled.
  • the AC voltage generated by the second switching circuit 9 is transformed to a predetermined voltage by the second transformer 10. Then, the second transformer AC voltage generated from the second transformer 10 is supplied to the synchronous rectifier circuit 11. Then, the second DC voltage is generated by the synchronous rectifier circuit 11 as the first transformed AC voltage. This second DC voltage is supplied to the second load RL2 connected to the second output system 5, and consumes power.
  • FIG. 3 is a graph showing voltage waveforms of the power supply circuit of FIG.
  • the capacitors 17 and 18 of the primary side rectifier circuit 3 are charged according to the power supply voltage waveform of the AC power supply 2 as shown in FIG.
  • the voltage of the starting circuit 13 of the first output system 4 also increases.
  • the voltage of the startup circuit 13 increases, power is supplied from the startup circuit 13 to the switching control circuit 12 and the switching control circuit 12 is started.
  • the voltage waveform generated by the switching control circuit 12 is supplied to the drive circuit 25 of the first switching circuit 6 as shown in FIG.
  • the switching of the switching elements 23 and 24 is controlled.
  • the voltage waveform of the same frequency as the voltage waveform supplied to the drive circuit 25 is synchronously supplied to the 1st transformer 7 by the switching elements 23 and 24, as shown in FIG.3 (e).
  • the voltage of the control power supply 14 increases.
  • the switching control circuit 12 compares the voltage of the starting circuit 13 with the voltage of the control power supply 14 and is driven using a higher voltage.
  • the voltage of the control power supply 14 becomes higher than the voltage of the starting circuit 13 at time s1 in FIG. Therefore, the activation circuit 13 supplies power to the switching control circuit 12 only during a period from the time s0 to the time s1 when the supply of the AC power supply 2 is started. Thereafter, power is supplied to the switching control circuit 12 by the control power supply 14.
  • a first DC voltage having a voltage waveform having the same frequency as the voltage waveform supplied to the first transformer 7 is generated in synchronization. Then, by supplying the voltage waveform of the first direct current on the secondary side of the first transformer 7 to the synchronous rectification control circuit 15, the synchronous rectification control circuit 15 generates a voltage waveform that is a control waveform. Based on the voltage waveform of the synchronous rectification control circuit 15, the switching of the MOSFETs 39 and 40 of the synchronous rectification circuit 11 is switched.
  • the first DC current output from the first output system 4 is smaller than the second DC current output from the second output system 5, the current supplied to the secondary rectifier circuit 8 of the first output system 4.
  • the first output system 4 is activated before the second output system 5, and the second output system 5 is activated after the first output system 4 is stabilized, thereby ensuring stable activation. It can be operated by the motive rectification method with little loss.
  • the power cut-off circuit 35 of the second output system 5 sends a signal for turning off the switching elements 36 and 37 to the drive circuit 38 during the period Q2, which is a period longer than the period Q1. Supply. After the elapse of the period Q2, the power cut-off circuit 35 stops supplying a signal for turning off the switching elements 36 and 37 to the drive circuit 38 in a state where the voltage waveform of the rectangular wave of the synchronous rectification control circuit 15 is stable. Based on the voltage waveform generated by the switching control circuit 12, the switching of the switching elements 36 and 37 is switched. That is, as shown in FIG. 3H, a voltage waveform having the same frequency as that of the drive circuit 38 is supplied to the second transformer 10 in synchronization.
  • the time of starting the power supply circuit 1 means a period T5 from the time when the AC power supply 2 starts to supply power to the power supply circuit 1 until the voltages of the capacitors 17 and 18 become constant.
  • FIG. 4 is a graph showing voltage waveforms of a part of the power supply circuit of FIG.
  • both the switching elements 23 and 24 are in the OFF state at time s0 before the power supply circuit 1 is started and when the power supply circuit 1 is started.
  • FIG. 4A when the switching element 23 is turned on at time t1 (that is, the voltage waveform of the switching element 23 in FIG. 4A is H level), At time t1, as shown in FIG. 4B, the switching element 24 is still in an OFF state (that is, the voltage waveform of the switching element 24 in FIG. 4B is L level).
  • the switching element 24 When the switching element 23 is turned off at time t2 as shown in FIG. 4A, the switching element 24 is still in the off state at time t2 as shown in FIG. 4B. It is. As shown in FIG. 4B, when the switching element 24 is turned on at time t3 (that is, the voltage waveform of the switching element 24 in FIG. 4B is at the H level), this time At t3, as shown in FIG. 4A, the switching element 23 is turned off (that is, the voltage waveform of the switching element 23 in FIG. 4A is L level). As described above, the switching elements 23 and 24 are provided with a period (dead time) T1 from time t2 to time t3 when the switching elements 23 and 24 are simultaneously turned off. By providing this period T1, it is possible to prevent the switching elements 23 and 24 from being simultaneously turned on and to prevent the capacitors 17 and 18 from being damaged.
  • the period T1 due to parallel resonance due to the capacitance of the switching element 23 and the self-inductance of the winding 7a of the first transformer 7, as shown in FIG. 4C, on the primary side of the first transformer 7.
  • the voltage at a connection point 7h between a certain switching element 23 and the first transformer 7 drops with time.
  • the period T2 during which the voltage at the connection point 7h drops is set to be usually shorter than the period T1.
  • the voltage on the secondary side of the first transformer 7 is synchronized with the connection point 7h, the voltage on the secondary side of the first transformer 7 is connected during the period T2, as shown in FIG. 4 (d). As with point 7h, it descends over time.
  • the drive circuit 25 and the drive circuit 38 are controlled based on the voltage waveform of the common switching control circuit 12, the switching elements 23 and 24 of the first switching circuit 6 and the switching element 36 of the second switching circuit 9. , 37 are controlled to open and close at the same timing. Therefore, the voltage generated on the secondary side of the second transformer 10 is synchronized with the voltage generated on the secondary side of the first transformer 7. That is, the voltage waveform generated on the secondary side of the second transformer 10 is the same as the voltage waveform generated on the secondary side of the first transformer 7.
  • the drive circuits 43 and 44 In the synchronous rectification control circuit 15, the drive circuits 43 and 44 generate the drive waveforms of the MOSFETs 39 and 40 based on the voltage waveform of the secondary side of the first transformer 7. That is, the MOSFETs 39 and 40 are controlled based on the voltage waveform of the first transformer 7 via the synchronous rectification control circuit 15 and the drive circuits 43 and 44.
  • FIG. 4F when the switching element 23 is in an on state, the MOSFET 40 is in an on state (that is, the voltage of the MOSFET 40 is at an H level), and when the switching element 23 is in an off state, the MOSFET 40 is in an off state. (In other words, the voltage of the MOSFET 40 is L level). Further, as shown in FIG.
  • the MOSFET 39 when the switching element 24 is in the on state, the MOSFET 39 is in the on state (that is, the voltage of the MOSFET 39 is at the H level), and when the switching element 24 is in the off state, The MOSFET 39 is turned off (that is, the voltage of the MOSFET 39 is L level). Further, the on-period T3 of the MOSFETs 39 and 40 is shorter than the on-period T4 of the switching elements 23 and 24.
  • the power consumption of the power supply circuit 1 can be reduced as compared with a rectification circuit using a general diode. That is, the diode generates a loss during the ON period (that is, during the period T3), but most of the loss due to the MOSFETs 39 and 40 is opened and closed as shown in FIGS. 4 (h) and 4 (i).
  • the MOSFETs 39 and 40 can reduce the rectification loss as compared with the diode.
  • the control of the MOSFETs 39 and 40 of the synchronous rectifier circuit 11 is performed based on the voltage waveform of the first DC voltage on the secondary side of the first transformer 7 of the first output system 4 rectified by the diodes 32 and 33.
  • the power supply circuit 1 is started up, it is possible to prevent a start-up failure of the power supply circuit 1.
  • the MOSFETs 39 and 40 can be controlled with a simple circuit configuration. Therefore, the cost of the power supply circuit 1 can be reduced.
  • the power cutoff circuit 35 supplies a signal for turning off the switching elements 36 and 37 to the drive circuit 38 until the drive waveform which is a voltage waveform generated by the drive circuits 43 and 44 is stabilized, the drive circuit 38 After the control of the MOSFETs 39 and 40 is stabilized, a voltage waveform is supplied to the second transformer 10. Therefore, even when the power supply circuit 1 is started, it is possible to reliably prevent the start-up failure of the power supply circuit 1.
  • FIG. 5 shows a circuit diagram of the rectified waveform generation unit of the synchronous rectification control circuit in the power supply circuit of FIG. 2, and FIGS. 6A to 6K show voltage waveforms at the points P1 to P11 of the rectified waveform generation unit. It is the graph shown, respectively.
  • the rectified waveform generation unit 42 superimposes the first waveform generation unit 47, the second waveform generation unit 48, the waveform of the first waveform generation unit 47 and the waveform of the second waveform generation unit 48. And a third waveform generation unit 49 for generating a waveform.
  • the first waveform generation unit 47 includes an inverter 50 connected to the cathode side of the diode 32 (see FIG. 2), a resistor 51 connected in series with the inverter 50, a diode 52 connected in parallel with the resistor 51, A capacitor 53 connected to the anode side of the diode 52, an inverter 54 connected in series with the resistor 51, an inverter 55 connected in series to the inverter 54, and a diode 56 connected to the inverter 55 on the anode side. .
  • the second waveform generator 48 is connected in parallel with the first waveform generator 47 at the connection point 48a and the connection point 48b.
  • the second waveform generator 48 includes an inverter 57 and a diode 58 having an anode connected to the inverter 57 in series.
  • a resistor 59 is connected in parallel with the capacitor 53 to the connection point 48b.
  • the third waveform generation unit 49 is connected in series with the inverter 60 connected in series with the cathode side of the diode 56 of the first waveform generation unit 47, the resistor 61 connected in series with the inverter 60, and the resistor 61 in parallel.
  • a diode 62, a capacitor 63 connected to the anode side of the diode 62, an inverter 64 connected in series with the resistor 61, and an inverter 65 connected in series with the inverter 64 are provided.
  • the voltage waveform of the DC voltage at the point P1 is the same as the voltage waveform of the DC voltage including the pulsating current in the secondary side rectifier circuit 8.
  • This DC voltage is a trapezoidal wave with substantially the same period between the H level and the L level. Then, this DC voltage passes through the inverter 50, and as shown in FIG. 6 (b), at the point P2, a rectangular wave voltage in which the period of the H level and L level of the voltage waveform at the point P1 is substantially inverted. A waveform is generated.
  • the voltage waveform at the point P3 passes through the resistor 51 and the capacitor 53, so that a substantially triangular voltage waveform is generated.
  • the voltage waveform at the point P4 passes through the inverter 54, so that the voltage waveform of a rectangular wave having a significantly longer H level period than the L level period is obtained.
  • the inverter 54 passes through the inverter 54, so that the voltage waveform of a rectangular wave having a significantly longer H level period than the L level period is obtained.
  • FIG. 6 (e) at the point P5, passing through the inverter 55, a rectangular wave voltage waveform having a significantly longer L level period than the H level period is generated. .
  • the voltage waveform at the point P8 becomes a voltage waveform in which the H level and the L level at the point P7 are inverted by passing through the inverter 60 of the third waveform generating unit 49.
  • the voltage waveform at the point P9 passes through the resistor 61 and the capacitor 63, thereby generating a voltage waveform with a gentle rise in H level.
  • the waveform at the point P10 passes through the inverter 64 to become a rectangular wave voltage waveform in which the H level and the L level of the voltage waveform at the point P9 are substantially inverted.
  • the waveform at the point P11 passes through the inverter 65 and becomes a rectangular wave in which the H level and the L level at the point P10 are inverted.
  • the voltage waveform at the point P11 is supplied to one of the drive circuits 43 and 44, and the waveform generated by the same method as the voltage waveform generation at the point P11 is shifted to the other by 180 °. As a result, the switching of opening and closing of the MOSFETs 39 and 40 is controlled.
  • a waveform generation circuit that generates a voltage waveform for controlling switching of opening and closing of the MOSFETs 39 and 40 from the waveform of the voltage on the secondary side of the first transformer 7 of the first output system 4
  • the synchronous rectification control circuit 15 is provided. According to this configuration, after the waveform of the voltage on the secondary side of the first transformer 7 is stabilized, the voltage waveform for controlling the switching of the MOSFETs 39 and 40 is generated, so that the switching of the switching of the MOSFETs 39 and 40 is controlled. Can be stabilized. Therefore, since the control of the MOSFETs 39 and 40 is stabilized, the starting failure of the power supply circuit 1 can be prevented when the AC power supply 2 is started.
  • the synchronous rectification control circuit 15 is configured to generate a voltage waveform from the waveform of the voltage on the secondary side of the first transformer 7. Therefore, the voltage waveform of the first output system 4 is detected by supplying the voltage waveform of the secondary side of the first transformer 7 directly to the synchronous rectification control circuit 15, and the detected voltage waveform is controlled by the synchronous rectification control.
  • a separate circuit for supplying to the circuit 15 is not required, and the power supply circuit 1 can have a simple circuit configuration. As a result, the cost of the power supply circuit 1 can be reduced.
  • the output current of the first output system 4 is smaller than the output current of the second output system 5. According to this configuration, the loss of the first output system 4 is small because the output current is small, and the loss of the second output system 5 can be reduced by using the synchronous rectification method.
  • the power cut-off circuit 35 that supplies a signal for turning off the switching elements 36 and 37 is provided. According to this configuration, the power cut-off circuit 35 supplies a signal for turning off the switching elements 36 and 37 to the drive circuit 38 during the period T4.
  • the synchronous rectification control circuit 15 generates a signal for driving the MOSFETs 39 and 40 to turn on and off the MOSFETs 39 and 40 even in an unstable state when the power supply circuit 1 is activated. Since the switching elements 36 and 37 for supplying electric power to the second transformer 10 are off, no voltage is applied to the secondary side of the second transformer 10, so that the second drive 10 is free of any signal for driving the MOSFETs 39 and 40.
  • the output system 5 does not fail. Further, it is not necessary to provide a circuit for cutting off the signal in the rectification control circuit 15, and the cost can be reduced with a simple configuration.
  • the second output system 5 is provided with a current detection circuit 26 that detects a current greater than a predetermined value, and when the current detection circuit 26 detects a current greater than the predetermined value.
  • the power cut-off circuit 35 is configured to cut off the supply of power to the second transformer 10. According to this configuration, for example, when the current supplied to the current detection circuit 26 exceeds a predetermined value due to a short circuit, the power cutoff circuit 35 cuts off the supply of power to the second transformer 10, No direct current flows through the synchronous rectifier circuit 11. Therefore, it is possible to prevent a failure due to a large current being supplied to the second load RL2 connected to the synchronous rectifier circuit 11.
  • FIG. 7 is a circuit diagram showing a second embodiment according to the power supply circuit of the present invention. Note that in the second embodiment of the power supply circuit, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted. Hereinafter, a different part from 1st Embodiment is demonstrated.
  • a current limiting circuit 66 connected to the AC power supply 2 and a control circuit which is connected to the negative side of the rectifier bridge 16 and the power cut-off circuit 35 and is a time constant circuit for controlling the current limiting circuit 66.
  • the power supply circuit 1a is different from the power supply circuit 1 in the first embodiment.
  • the power supply circuit 1 a is connected to the AC power supply 2 and detects a AC waveform of the AC power supply 2, a relay switch 69 provided on the HOT side 4 a of the first output system 4, and a detection circuit 68.
  • a control circuit 70 that is a time constant circuit for controlling the relay switch 69.
  • the current limiting circuit 66 limits the current supplied from the AC power supply 2 to the power supply circuit 1a when the power supply circuit 1 is started.
  • the current limiting circuit 66 includes a resistor 71 connected in series with the AC power supply 2 and a relay switch 72 connected in parallel with the resistor 71.
  • the control circuit 67 controls switching between opening and closing of the relay switch 72.
  • FIGS. 8A and 8B show the voltage waveform and current waveform of the AC power supply 2, respectively.
  • FIGS. 8C to 8K are graphs showing the voltage waveforms of the power supply circuit of FIG. . Note that in the second embodiment of the power supply circuit, the description of the same operation as in the first embodiment is omitted.
  • the operation of the current limiting circuit 66 and the operation of the relay switch 69 will be mainly described.
  • the relay switch 72 of the current limiting circuit 66 is in an off state before the power supply circuit 1a is started.
  • the AC current of the AC power supply 2 passes through the resistor 71.
  • the AC current of the AC power supply 2 generates a current having a large amplitude (inrush current) when the power supply circuit 1a is activated.
  • the control circuit 67 turns on the relay switch 72.
  • the control circuit 67 sets a period during which the voltage of the control power supply 14 is stable. As shown in FIG. 8C, when the voltage of the capacitors 17 and 18 becomes constant due to the relationship between the AC current of the AC power source 2 and the charging of the capacitors 17 and 18, the amplitude of the AC current of the AC power source 2 is Substantially stable. Therefore, as shown in FIG. 8D, the control circuit 67 turns on the relay switch 72 at time t4 that is slightly longer than the period T6 in which the voltages of the capacitors 17 and 18 are constant. With this setting, it is possible to prevent the inrush current generated when the AC power supply 2 is started from being supplied to the primary side rectifier circuit 3 of the power supply circuit 1a.
  • the relay switch 69 is turned on as shown in FIG. With this setting, it is possible to reliably prevent the inrush current from being supplied to the first load RL1 connected to the first output system 4.
  • the control circuit 70 is set so that the relay switch 69 is turned on after the relay switch 72 is turned on based on a signal obtained by detecting the alternating current of the AC power supply 2 by the detection circuit 68.
  • the power cut-off circuit 35 As shown in FIG. 8 (i), the power cut-off circuit 35, after the period Q1 when the drive waveforms of the drive circuits 43 and 44 are stabilized, and after the relay switch 72 of the current limit circuit 66 is turned on, It is set so that the voltage waveform of the switching control circuit 12 is supplied to the drive circuit 38. That is, in the drive circuit 38, a period Q ⁇ b> 2 for supplying a signal for turning off the switching elements 36 and 37 is formed by the power cutoff circuit 35. With this setting, an inrush current can be prevented from being supplied, and a synchronous rectifier circuit can be configured in the second output system 5 to reduce rectification loss.
  • the power cut-off circuit 35 since it is possible to cut off the power supply to the second transformer 10 by the power cut-off circuit 35, a circuit for cutting off a separate current such as a relay having a large capacity in the second output system 5 is provided. There is no need to provide it, and the power supply circuit 1a can have a simple configuration. Therefore, it is possible to reduce the size of the power supply circuit 1a and reduce the cost of the power supply circuit 1a.
  • the power supply circuit 1 in addition to the effects obtained in the first embodiment of the power supply circuit 1, the following effects can be obtained.
  • the power supply circuit 1 includes a current limiting circuit 66 that limits the AC current supplied from the AC power supply 2 to the power supply circuit 1a when the power supply circuit 1a is activated. To do. According to this configuration, it is possible to prevent an inrush current that occurs when the power supply circuit 1a is activated.
  • FIG. 9 is a circuit diagram showing a third embodiment according to the power supply circuit of the present invention. Note that in the third embodiment of the power supply circuit, the same reference numerals are given to the same components as those in the first embodiment of the power supply circuit, and description thereof will be omitted. Hereinafter, a different part from the first embodiment of the power supply circuit will be described.
  • the power supply circuit 1b is provided with a photocoupler 45, which is a supply waveform detector that supplies the voltage waveform of the switching control circuit 12 to the synchronous rectification control circuit 15.
  • the photocoupler 45 includes a light emitting diode 45a and a phototransistor 45b.
  • the light emitting diode 45a is connected between the switching control circuit 12 and the current cutoff circuit 35 and to the minus side of the rectifier bridge 16 of the primary side rectifier circuit 3.
  • the phototransistor 45 b has the synchronous rectification control circuit 15 connected to the emitter side, and the collect side connected between the cathode side of the diode 32 and the capacitor 34 of the secondary side rectification circuit 8.
  • the power supply circuit 1b of the present embodiment in addition to obtaining the same effects as the effects (1) to (5) of the power supply circuit 1a of the first embodiment, the following effects can be obtained.
  • the voltage waveform of the switching control circuit 12 can be supplied to the synchronous rectification control circuit 15 by the photocoupler 45. Can be supplied to. Therefore, since the influence of the load current can be suppressed when the AC power supply 2 is started, it is possible to prevent the start-up failure of the power supply circuit 1b.
  • FIG. 10 is a circuit diagram showing a fourth embodiment according to the power supply circuit of the present invention. Note that, in the fourth embodiment of the power supply circuit, portions having the same configuration as in the first embodiment of the power supply circuit are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, a different part from the first embodiment of the power supply circuit will be described.
  • the first transformer 7 of the power supply circuit 1c is provided with a winding 7g serving as a transformed waveform detector in addition to the windings 7a to 7c.
  • the winding end of the winding 7g is connected to the COM side 4b of the first output system 4.
  • the winding start end of the winding 7g is connected to the synchronous rectification control circuit 15.
  • the voltage waveform of the winding 7g is supplied to the synchronous rectification control circuit 15, and the synchronous rectification control circuit 15 generates a voltage waveform for controlling the drive circuits 43 and 44 based on the voltage waveform of the winding 7g. . Accordingly, switching of the MOSFETs 39 and 40 of the synchronous rectifier circuit 11 is controlled based on the voltage waveform of the winding 7g.
  • the first transformer 7 is provided with a winding 7g that is a waveform generator that supplies a voltage waveform to the synchronous rectification control circuit 15 that is a waveform generation circuit. .
  • the power supply voltage is the operating voltage of the drive circuit.
  • the rectified waveform generation unit 42 and the drive circuits 43 and 44 can be operated with an appropriate power supply voltage, so that unnecessary loss can be eliminated.
  • a more stable voltage waveform can be supplied to the rectified waveform generator 42.
  • FIG. 11 is a circuit diagram showing a fifth embodiment according to the power supply circuit of the present invention. Note that in the fifth embodiment of the power supply circuit, portions having the same configurations as those in the first embodiment of the power supply circuit are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, a different part from the first embodiment of the power supply circuit will be described.
  • the power supply circuit 1 d is provided with a third transformer 73 serving as a pulse transformer of a supply waveform detector that supplies a voltage waveform to the synchronous rectification control circuit 15. Then, the synchronous rectification control circuit 15 generates a voltage waveform that controls switching of the MOSFETs 39 and 40 based on the voltage waveform of the third transformer 73.
  • the third transformer 73 includes a primary side winding 74, a secondary side winding 75, and an iron core 76 disposed between the winding 74 and the winding 75.
  • a winding start end of the winding 74 is connected between the switching control circuit 12 and the current interrupt circuit 35. Then, the end of winding end of the winding 74 is connected to the minus side of the rectifier bridge 16 of the primary side rectifier circuit 3. The winding start end of the winding 75 is connected to the synchronous rectification control circuit 15. The end of the winding end of the winding 75 is connected to the COM side 4 b of the first output system 4.
  • the third transformer 73 that is a waveform detector connected to the primary side rectifier circuit 3 is provided, and a voltage waveform is generated from the DC voltage of the third transformer 73.
  • the configuration According to this configuration, it is possible to suppress disturbance in the waveform of the voltage transmitted to the rectified waveform generation unit 42 due to the influence of the first transformer 7 when the power supply circuit 1d is activated. Accordingly, it is possible to prevent a start-up failure of the power supply circuit 1d when the power supply circuit 1d is started up. Also, with this configuration, the first output system 4 and the second output system 5 can be insulated.
  • the current detection circuit 26 is connected to the HOT side 5a of the second output system 5 in the synchronous rectification circuit 11, but this is changed as follows, for example. You can also. That is, like the power supply circuit 1e shown in FIG. 12, the current detection circuit 26 may be connected to the COM side 5b of the second output system 5 in the synchronous rectification circuit 11. Further, like the power supply circuit 1 f illustrated in FIG. 13, the current detection circuit 26 may be connected to the end of the winding end of the winding 10 a of the second transformer 10. In this case, since the current detection circuit 26 is disposed on the primary side of the second transformer 10, the photocoupler 26a is not necessary. Therefore, the circuit configuration of the power supply circuit 1 can be simplified. As a result, the cost of the power supply circuit 1 can be reduced.
  • the synchronous rectifier circuit 11 is configured such that the winding start end and winding end of the winding 10b of the second transformer 10 are at the COM side 5b of the second output system 5.
  • this can be changed as follows, for example. That is, like the power supply circuit 1g shown in FIG. 14, the winding start end and winding end of the winding 10b of the second transformer 10 are configured as the HOT side 5a of the second output system 5. Also good. In this case, the MOSFETs 39 and 40 are similarly connected to the winding start end and winding end of the winding 10b.
  • the relay switch 69 is provided in the first output system 4, but this can be changed as follows, for example. That is, when the current output from the first output system 4 is low, the relay switch 69 need not be provided in the first output system 4. Accordingly, the detection circuit 68 and the control circuit 70 may not be provided.
  • the power supply circuit 1a of the second embodiment only the relay switch 69 is provided on the HOT side 4a of the first output system 4.
  • the power supply circuit 1a can be changed as follows. That is, when the AC power supply 2 is started, when a current limit is applied to the HOT side 4a of the first output system 4, a resistor may be connected in parallel with the relay switch 69.
  • the time when the relay switch 69 is turned on is substantially the same as the period T4 of the current interrupt circuit 35, but may be changed as follows, for example. it can. That is, the time when the relay switch 69 is turned on may be before or after the period T4 of the current interrupt circuit 35.
  • the power supply circuits 1 to 1d of the first to fifth embodiments are composed of the two output systems of the first output system 4 and the second output system 5.
  • the power supply circuits 1 to 1d may be changed as follows. You can also. That is, the power supply circuit may include three or more output systems.
  • the power supply circuits 1 to 1d are preferably applied to a power supply circuit having a plurality of output systems.
  • the power supply circuits 1 to 1d are preferably used in a broadcasting facility including a power amplifier and a device requiring a large current such as a power amplifier.
  • a signal amplifier is connected to the second output system 5, and an internal electronic component that controls the power amplifier is connected to the first output system 4.
  • the signal amplifier of the power amplifier and the other functions can be driven simultaneously.
  • a device that requires a large current such as a power amplifier is connected to the second output system 5, and a device other than the power amplifier of the broadcasting facility (for example, control of the broadcasting facility) is connected to the first output system 4.
  • Devices the single AC power supply 2 can simultaneously drive the power amplifier and devices other than the power amplifier in the broadcasting facility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

 同期整流回路を有する電源回路において、電源回路の起動不良を防止した電源回路を提供する。電源回路(1)は、交流電圧を変圧する第1変圧器(7)及び第1変圧器(7)の交流電流から脈流を含む直流電圧を生成する2次側整流回路(8)を有する第1出力系統(4)と、交流電圧を変圧する第2変圧器(10)及びMOSFET(39,40)を有するとともに、MOSFET(39,40)の制御により、第2変圧器(10)の交流電圧から直流電圧を生成する同期整流回路(11)を有する第2出力系統(5)とを備える。そして、電源回路(1)は、第1出力系統(4)の直流電圧からMOSFET(39,40)の開閉の切り替えを制御する電圧波形を生成する同期整流制御回路(15)を備える。

Description

電源回路及びこの電源回路を備えたパワーアンプ、並びに放送設備
 本発明は、複数の出力系統を有する電源回路及び、この電源回路を備えたパワーアンプ、並びに放送設備に関する。特に、電源回路の起動不良を防止する技術に関する。
 従来、商用電源である交流電源の交流電流から直流電流を生成する電源回路では、交流電流から直流電流を生成するために整流用ダイオードを有した整流回路が用いられてきた。しかし、整流用ダイオードは、整流用ダイオード自体の順方向電圧と電流との積による損失を発生させていた。さらに、大電流を流すと損失が大きくなってしまう。その結果、整流回路を用いた電源回路では、整流用ダイオードの損失による発熱が問題となっていた。
 上記問題を解決するため、近年、整流用ダイオードを用いた整流回路に代えて、複数のトランジスタによるスイッチの開閉の切り替えにより、直流電流を生成する同期整流回路を用いた電源回路が主流となっている。複数のトランジスタを用いた同期整流回路は、トランジスタによるスイッチの開閉の切り替え時のスイッチング損失とトランジスタのON抵抗による損失に限られる。その上、トランジスタ自体が、整流用ダイオードと比較して、損失が少ない。したがって、整流用ダイオードを有した整流回路の損失と比較して、同期整流回路の損失が小さくなるため、電源回路の消費電力が低減される(例えば、特許文献1参照)。
特開2001-333578号公報
 ところで、電源回路に、交流電源の波形に基づいて制御される同期整流回路を用いる場合、電源を短絡する関係にある複数のトランジスタが同時にオンすることによって発生する貫通電流が流れてしまうため、電源回路が故障してしまう場合がある。そこで、貫通電流の発生を防止するため、複数のトランジスタの切り替え時において、同時にオフする期間(デッドタイム)を設けている。また、複数のトランジスタの切り替えのタイミングは、交流電源の電圧波形が安定した状態を想定して設定されている。
 ところで、絶縁型の電源回路を構成する場合、絶縁するための手段として、変圧器(トランス)が用いられる。この場合、電源回路の起動時には、同期整流回路の平滑用コンデンサが充電されるため、突入電流が流れ、変圧器に掛かる電圧の電圧波形が安定せず、変圧器に掛かる電圧波形に基づいた複数のトランジスタの切り替えのタイミングと変圧器の電流供給のタイミングとが異なる場合がある。その結果、トランジスタがオフの期間にも交流電源の電流が供給されることにより、トランジスタがオフとなるべき期間にオンとなり、突入電流が流れ、電源回路の起動不良を発生してしまう場合がある。
 本発明は、上記実情に鑑みてなされたものであり、その目的とすることころは、同期整流回路を有する電源回路において、電源回路の起動不良を防止した電源回路を提供することである。
 本発明の一つの側面では、電源回路は、直流電圧を第1変圧交流電圧に変圧する第1変圧器、及び前記第1変圧交流電圧から第1直流電圧を生成する第1整流回路を有する第1出力系統と、前記直流電圧を第2変圧交流電圧に変圧する第2変圧器、及び回路の開閉切り替えを行うスイッチング素子を有するとともに、該スイッチング素子により前記第2変圧交流電圧から第2直流電圧を生成する第2整流回路を有する第2出力系統と、前記第1出力系統の電圧の波形に基づいて制御用波形を生成する波形生成回路、及び該制御用波形に基づいて前記スイッチング素子を制御するスイッチング素子制御回路を有する同期整流制御回路とを備え、前記同期整流制御回路は、前記第1出力系統に同期させて前記第2出力系統の前記スイッチング素子を制御することを要旨とする。
 この電源回路では、例えば、第1出力系統にスイッチング素子を用いない場合、第1出力系統にスイッチング素子を用いた場合より、第1出力系統の電圧の波形が安定する。そこで、波形生成回路によって、例えば、スイッチング素子を用いない場合の第1出力系統の安定した電圧の波形からスイッチング素子の開閉の切り替えを制御する電圧の波形を生成することにより、スイッチング素子の開閉の切り替えの制御を安定させることができる。したがって、スイッチング素子の開閉の切り替えの制御が安定するため、電源回路の起動時において、電源回路の起動不良を防止することができる。ここで、「第1出力系統の電圧の波形」とは、第1出力系統の第1変圧器にかかる電圧の波形である。
 本発明の別の側面では、前記電源回路の前記波形生成回路は、前記第1直流電圧の波形に基づいて、前記制御用波形を生成することを要旨とする。
 この電源回路では、第1直流電圧を直接、波形生成回路に供給することにより、第1出力系統の電圧の波形を検出し、その検出した電圧の波形を波形生成回路に供給するための別個の回路が不要となり、電源回路を簡単な回路構成とすることができる。その結果、電源回路のコストダウンを図ることができる。
 本発明の別の側面では、前記電源回路は、前記第1変圧交流電圧の波形を検出する変圧波形検出器を更に備え、前記変圧波形検出器によって検出された前記第1変圧交流電圧の前記波形に基づいて、前記波形生成回路が前記制御用波形を生成することを要旨とする。
 この電源回路では、第1変圧交流電圧の波形を検出する変圧波形検出器によって検出された第1変圧交流電圧の波形を直接、波形生成回路に供給することにより、第1出力系統の電圧の波形を検出し、その検出した電圧の波形を波形生成回路に供給するための別個の回路が不要となり、電源回路を簡単にすることができる。したがって、電源回路のコストダウンを図ることができる。
 本発明の別の側面では、前記電源回路は、前記第1変圧器に供給される前記交流電圧の波形を検出する供給波形検出器を更に備え、前記波形生成回路は、前記供給波形検出器によって検出された前記波形に基づいて、前記制御用波形を生成することを要旨とする。
 この電源回路では、供給波形検出器の波形が第1変圧器に供給される電圧の波形を検出するため、電源回路の起動時において、第1出力系統の起動時に第1変圧器にかかる電圧波形が乱れる期間が過ぎた後、第2出力系統を起動することで、電源回路の起動時において、電源回路の起動不良を防止することができる。
 本発明の別の側面では、前記電源回路の前記供給波形検出器がパルストランスであることを要旨とする。
 この電源回路では、供給波形検出器にパルストランスを用いることにより、第1出力系統と第2出力系統とを絶縁することが可能となる。また、第1出力系統の出力電圧、電力の仕様に関わらず、同期整流を行うスイッチの制御電圧を最適に設定することができる。
 本発明の別の側面では、前記電源回路の前記供給波形検出器がフォトトランジスタであることを要旨とする。
 この電源回路では、供給波形検出器にフォトトランジスタを用いることにより、第1出力系統の出力電圧、電力の仕様に関わらず、また、第1変圧器の構成にも関わらず、波形生成回路に安定した電圧波形を供給することができる。
 本発明の別の側面では、前記電源回路において、第1直流電圧は、第2直流電圧より小さいことを要旨とする。
 この電源回路では、第1出力系統からの出力電力が、第2出力系統からの出力電力より小さくすることにより、第1出力系統と第2出力系統とを合わせた損失を少なくすることができる。
 本発明の別の側面では、前記電源回路は、作動状態において、前記第2変圧器への電力の供給を遮断する電力遮断回路を更に備え、該電源回路の起動時に前記電力遮断回路を作動状態にすることにより、第2変圧器への電力の供給を該電源回路の起動時に遮断することを要旨とする。
 この電源回路では、電源回路の起動時において、電力遮断回路を作動状態とするため、第2整流回路では、電源回路の起動時の不安定な状態において、第2直流電圧を生成することを防止する。したがって、電源回路の起動時において、第2変圧器から第2整流回路に波形が供給されることはないため、電源回路の起動不良を確実に防止することができる。
 本発明の別の側面では、前記電源回路は、前記第2出力系統に上限値を超える電流が流れたことを検知する電流検知回路を更に備え、前記電流検知回路が前記第2出力系統に上限値を超える電流が流れたことを検知したときに、前記電力遮断回路を作動状態にすることにより、前記第2変圧器への電力の供給を遮断することを要旨とする。
 この電源回路では、例えば、短絡により、電流検知回路へ供給される電流が、上限値以上となった場合、電力遮断回路を作動状態に設定するため、第2整流回路に電力が供給されなくなる。したがって、第2整流回路に接続された機器に大電流が供給されてしまうことによる故障を防ぐことができる。
 本発明の別の側面では、前記電源回路には、前記電源回路の起動時において、前記直流電圧の入力源である交流電圧の大きさを制限する電圧制限回路を備えることを要旨とする。
 この電源回路では、電源の起動時に発生する突入電流を第1整流回路、及びこの電源回路に接続された機器に供給されることを防ぐことができる。したがって、機器の起動時に起こる突入電流に起因する電圧降下によって他の周辺機器に影響を与えることを防ぐことができる。
 本発明の別の側面では、パワーアンプが前記電源回路と、増幅器と、当該増幅器以外の電子部品を備え、前記第2出力系統から前記増幅器へ電源供給を行い、前記第1出力系統から前記電子部品への電流供給を行うことを要旨とする。
 このパワーアンプでは、一つの電源において、パワーアンプ内の大電力が必要な信号増幅器には第2出力系統から、大電力が不要な信号増幅器以外の電子部品には第1出力系統からそれぞれ電力を供給でき、信号増幅とそれ以外の機能の制御を同時に行うことができる。
 本発明の別の側面では、放送設備が前記電源回路と、パワーアンプと、当該パワーアンプ以外の電子部品とを備え、前記第2出力系統から前記パワーアンプへ電源供給を行い、前記第1出力系統から前記電子部品へ電源供給を行うことを要旨とする。
 この放送設備では、一つの電源において、放送設備内の大電力が必要なパワーアンプには第2出力系統から、大電力が不要なパワーアンプ以外の電子部品には第1出力系統からそれぞれ電力供給でき、信号増幅器とそれ以外の放送設備の機能の制御を同時に行うことができる。
 本発明によれば、同期整流回路を有する電源回路において、電源回路の起動不良を防止した電源回路を提供することができる。
本発明の電源回路に係る第1の実施形態の全体構成を示すブロック図。 本発明の電源回路に係る第1の実施形態を示す回路図。 (a)~(h)図2の電源回路の電圧波形をそれぞれ示すグラフ。 (a)~(i)図2の電源回路の一部の電圧波形をそれぞれ示すグラフ。 図2の電源回路における同期整流制御回路を示す回路図。 (a)~(k)図2の電源回路における同期整流制御回路の整流波形生成部の各地点における電圧波形をそれぞれ示すグラフ。 本発明の電源回路に係る第2の実施形態を示す回路図。 (a)交流電源の電圧波形を示すグラフ。(b)交流電源の電流波形を示すグラフ。(c)~(k)図7の電源回路の電圧波形をそれぞれ示すグラフ。 本発明の電源回路に係る第3の実施形態を示す回路図。 本発明の電源回路に係る第4の実施形態を示す回路図。 本発明の電源回路に係る第5の実施形態を示す回路図。 本発明の電源回路に係る第1の実施形態の変形例を示す回路図。 本発明の電源回路に係る第1の実施形態の変形例を示す回路図。 本発明の電源回路に係る第1の実施形態の変形例を示す回路図。
(第1の実施形態)
図1及び図2を参照して、本発明の電源回路として具体化した第1の実施形態について説明する。なお、図1は、本発明の電源回路の全体構成を示したブロック図である。図2は、本発明の電源回路に係る第1の実施形態を示した回路図である。なお、図中の第1変圧器及び第2変圧器の巻線に付されている黒点は、巻線の巻き始め側を示す。
 図1及び図2に示すように、電源回路1は、交流電源2より供給された交流電圧を、ラインフィルタ2a(図1参照)を介して直流電圧に変換する1次側整流回路3と、1次側整流回路3の直流電圧を電圧変換して出力する第1出力系統4と、第1出力系統4とは別出力系統となるとともに、1次側整流回路3の直流電圧を電圧変換して出力する第2出力系統5とを有する。なお、第1出力系統4の出力電圧である第1直流電圧は、第2出力系統5の出力電圧である第2直流電圧より小さい。第1出力系統4は、HOT側4aとCOM側4bとが第1負荷RL1に接続されるとともに、第1出力系統4から第1負荷RL1に第1直流電圧が供給される。また、第2出力系統5は、HOT側5aとCOM側5bとが第2負荷RL2に接続されるとともに、第2出力系統5から第2負荷RL2に第2直流電圧が供給される。また、第1出力系統4のCOM側4bと第2出力系統5のCOM側5bとは、配線PL1によって、互いに接続される。
 1次側整流回路3は、ダイオードを4つ組み合わせた整流ブリッジ16と、整流ブリッジ16に並列に接続された2つのコンデンサ17,18とから構成される。より具体的には、交流電源2の交流電圧を一方向に整える全波整流回路が整流ブリッジ16により構成されるとともに、整流ブリッジ16からの脈流を含んだ直流電圧を平滑にする平滑回路がコンデンサ17,18により構成されている。従って、1次側整流回路3によって、交流電源2より供給された交流電圧が直流電圧に変換される。
 第1出力系統4は、第1スイッチング回路6、第1変圧器7、第1整流回路となる2次側整流回路8、スイッチング制御用回路12、起動回路13、制御用電源14、及び波形生成回路となる同期整流制御回路15から構成される。以下、第1出力系統4の各構成、及び動作の概要について説明する。
 まず、第1出力系統4の各構成について説明する。
 起動回路13は、1次側整流回路3のコンデンサ17,18と並列に接続される。そして、起動回路13は、抵抗19と、抵抗19と直列に接続される定電圧ダイオード20と、抵抗19と定電圧ダイオード20との間である接続点CP4にベース側が接続されるNPNトランジスタ(以下、単に「トランジスタ」という。)21と、トランジスタ21のコレクタ側に接続される抵抗22とを備える。
 スイッチング制御用回路12は、例えば、発振子であり、第1スイッチング回路6の制御用波形である所定の矩形波の電圧波形を第1スイッチング回路6に供給する。このスイッチング制御用回路12による電圧波形の周波数は、一定である。また、交流電源2の起動時において、起動回路13より生成される直流電圧により、スイッチング制御用回路12は起動する。
 第1スイッチング回路6は、1次側整流回路3の整流ブリッジ16と直列に接続されるとともに、コンデンサ17,18と並列に接続された2つのスイッチング素子23,24と、これらスイッチング素子23,24の開閉の切り替えを制御する駆動回路25とを備える。スイッチング素子23,24は、例えば、電界効果型トランジスタであり、第1変圧器7の巻線7aの導電線の巻き始めの端部を挟んで配置される。
 駆動回路25は、スイッチング制御用回路12が生成する矩形波の電圧波形に基づいて、スイッチング素子23,24の開閉の切り替えを制御する電圧波形を生成する。スイッチング素子23,24は、駆動回路25より生成された電圧波形に基づいて、開閉の切り替えを行う。また、スイッチング素子23のドレイン・ソース間の容量と第1変圧器7の巻線7bの自己インダクタンスとによって共振並列回路が構成される。
 第1変圧器7は、例えば、トランスであり、1次側に2つの巻線7a,7bと、2次側に1つの巻線7cと、巻線7aと巻線7cとの間に配置された鉄心7dとから構成される。この第1変圧器7は、第1変圧器7の2次側の電圧が所定の電圧となるように、第1変圧器7の1次側の電圧が変圧されて、第1変圧交流電圧が生成される。また、巻線7aの導電線の巻き終わりの端部は、コンデンサ7eと直列に接続される。第1変圧器7の漏れインダクタンスとコンデンサ7eとにより、直列共振回路が構成される。そして、コンデンサ7eは、1次側整流回路3のコンデンサ17,18の間である接続点CP1と後述する第2変圧器10の巻線10aの巻き終わりの端部とを接続する配線PL2における接続点CP2に接続される。また、巻線7bの巻き終わりの端部は、1次側整流回路3の整流ブリッジ16のマイナス側(-側)の接続点CP3に接続される。
 制御用電源14は、巻線7bの導電線の巻き始めの端部に直列に接続された整流用のダイオード27と、巻線7bと並列に接続された平滑用のコンデンサ28と、起動回路13からの電流が、巻線7bに流れるのを防止する逆流防止用のダイオード29とを有する。また、制御用電源14は、起動回路13のトランジスタ21のエミッタ側に接続されるとともに、制御用電源14からトランジスタ21のエミッタ側に電流が流れるのを防止する逆流防止用のダイオード30と、起動回路13の電源ラインでのカップリングを行うコンデンサ31とを備える。そして、制御用電源14は、スイッチング制御用回路12に電流を供給する。
 2次側整流回路8は、巻線7cの導電線の巻き始めの端部及び巻き終わりの端部にそれぞれ接続される整流用のダイオード32,33と、巻線7cの中間タップ7fとダイオード32,33のカソード側との間に接続される平滑用のコンデンサ34とを有する。この構成により、第1変圧器7の巻線7cより生成された第1変圧交流電圧から、平滑化された第1直流電圧が、第1出力系統4の出力電圧として、第1出力系統4に接続された第1負荷RL1に供給される。
 次に、第1出力系統4の動作の概要について説明する。
 第1出力系統4の交流電源2の供給開始時において、1次側整流回路3から生成される直流電圧は、起動回路13及び第1スイッチング回路6に供給される。そして、起動回路13の直流電圧は、スイッチング制御用回路12に供給される。スイッチング制御用回路12が直流電圧から制御用波形である電圧波形を生成することにより、この電圧波形に基づいて、第1スイッチング回路6の開閉の切り替えが制御される。
 第1スイッチング回路6では、直流電圧から交流電圧が生成される。そして、第1スイッチング回路6から第1変圧器7に供給される交流電圧は、第1変圧交流電圧に変圧される。そして、第1変圧交流電圧への変圧に伴う電圧の上昇に伴い、制御用電源14が起動する。そして、制御用電源14は、起動回路13に代わり、スイッチング制御用回路12に電圧を供給する。
 第1変圧器7が第1スイッチング回路6から生成される交流電圧を変圧することによって第1変圧交流電圧が生成される。そして、第1変圧交流電圧は、2次側整流回路8によって、第1直流電圧が生成される。この第1直流電圧は、第1出力系統4に接続された第1負荷RL1に供給され、電力を消費する。
 第2出力系統5は、第2スイッチング回路9と、第2変圧器10と、第2整流回路となる同期整流回路11と、同期整流回路11に設けられるとともに、同期整流回路11の電流の大きさを検知する遮断制御回路である電流検知回路26とを有する。以下、第2出力系統5の各構成、及び動作の概要について説明する。
 まず、第2出力系統5の各構成について説明する。
 第2スイッチング回路9は、制御用電源14のダイオード29とダイオード30との間である接続点CP5に接続されるとともに、スイッチング制御回路12から駆動回路38に供給される信号の制御を行う電力遮断回路35と、1次側整流回路3の整流ブリッジ16と直列に接続されるとともに、コンデンサ17,18と並列に接続された2つのスイッチング素子36,37と、これらスイッチング素子36,37の開閉を制御する駆動回路38とを有する。ここで、スイッチング素子36,37には、例えば、電界効果型トランジスタが用いられる。
 電力遮断回路35には、スイッチング制御用回路12の制御用波形である矩形波の電圧波形が入力される。この電力遮断回路35は、交流電源2の起動時から一定期間、スイッチング素子36,37をオフさせる制御信号を出力する。そして、一定時間経過後、スイッチング制御用回路12の電圧波形に基づいて、駆動回路38は駆動される。
 駆動回路38は、スイッチング制御用回路12の電圧波形に基づいて、スイッチング素子36,37の開閉の切り替えを制御する電圧波形を生成する。スイッチング素子36,37は、駆動回路38より生成された電圧波形に基づいて、開閉の切り替えを行う。
 第2変圧器10は、例えば、トランスであり、1次側の巻線10aと、2次側の巻線10bと、巻線10aと巻線10bとの間に配置された鉄心10cとを備える。巻線10aの巻き始めの端部は、スイッチング素子36,37の間に接続される。そして、巻線10aの巻き終わりの端部は、1次側整流回路3のコンデンサ17,18の間の接続点CP1に接続される。また、巻線10aの巻き終わりの端部には、コンデンサ10eが直列に接続される。
 同期整流回路11は、巻線10bの巻き始めの端部及び巻き終わりの端部にそれぞれ直列に接続されたスイッチング素子である電界効果型トランジスタ39,40と、巻線10bの中間タップ10dと電界効果型トランジスタ39,40のソース側との間に接続された平滑用のコンデンサ41とを備える。本実施形態では、電界効果型トランジスタ39,40として、パワーMOSFETを用いる。以下、電界効果型トランジスタ39,40を「MOSFET39,40」とする。
 ここで、同期整流回路11の制御について説明する。
 同期整流回路11は、第1出力系統4の同期整流制御回路15より生成された制御用波形により、MOSFET39,40の開閉の切り替えを制御する。より詳細には、第1出力系統4の同期整流制御回路15は、2次側整流回路8のダイオード32のアノード側に接続される整流波形生成部42と、整流波形生成部42が生成した電圧波形に基づいて、同期整流回路11のMOSFET39,40の開閉の切り替えを制御するスイッチング素子制御回路である駆動回路43,44とを有する。そして、同期整流制御回路15は、第1変圧器7に掛かる電圧波形から制御用波形である電圧波形を生成する。このMOSFET39,40の開閉の切り替えの制御は、同期整流制御回路15が生成する電圧波形に基づいて制御される。
 電流検知回路26は、例えば、電流計であり、同期整流回路11において、第2出力系統5のHOT側5aに接続される。そして、電流検知回路26は、同期整流回路11の直流電流が、例えば、短絡により、予め設定された上限値より大きくなると、電力遮断回路35に、フォトトランジスタ26aを介して、駆動回路38へスイッチング素子36,37がオフするように電圧信号を入力する。その結果、同期整流回路11に直流電圧が掛からず、同期整流回路11に接続された第2負荷RL2に電力が供給されなくなり、第2負荷RL2が故障することを防ぐことができる。
 次に、第2出力系統5の動作の概要について説明する。
 1次側整流回路3より生成された直流電圧は、第2スイッチング回路9に供給される。また、第1出力系統4のスイッチング制御用回路12の制御用波形である矩形波の電圧波形は、電力遮断回路35を介して、駆動回路38に供給される。この駆動回路38が生成する電圧波形に基づいて、第2スイッチング回路9は開閉の切り替えが制御される。
 第2スイッチング回路9により生成された交流電圧は、第2変圧器10によって所定の電圧に変圧される。そして、第2変圧器10より生成された第2変圧交流電圧は、同期整流回路11に供給される。そして、第1変圧交流電圧は、同期整流回路11によって、第2直流電圧が生成される。この第2直流電圧は、第2出力系統5に接続された第2負荷RL2に供給され、電力を消費する。
 次に、電源回路の動作の詳細について、図2及び図3(a)~(h)を用いて説明する。図3は、図2の電源回路の電圧波形を示したグラフである。
 交流電源2から電源回路1に電流供給を開始した際、図3(a)に示すように、交流電源2の電源電圧波形に応じて、1次側整流回路3のコンデンサ17,18が充電される。そして、図3(b)に示すように、コンデンサ17,18の充電に伴い、図3(c)に示すように、第1出力系統4の起動回路13の電圧も上昇する。この起動回路13の電圧の上昇に伴い、起動回路13からスイッチング制御用回路12に電力が供給されて、スイッチング制御用回路12が起動する。そして、スイッチング制御用回路12が生成する電圧波形が、図3(d)に示すように、第1スイッチング回路6の駆動回路25に供給される。そして、駆動回路25の電圧波形に基づいて、スイッチング素子23,24の開閉の切り替えの制御を行う。そして、スイッチング素子23,24によって、図3(e)に示すように、第1変圧器7に駆動回路25に供給された電圧波形と同じ周波数の電圧波形が同期して供給される。
 また、第1変圧器7の巻線7aの電圧の上昇に伴い、巻線7bの電圧が上昇する。この巻線7bの電圧の上昇により、制御用電源14の電圧が上昇する。スイッチング制御用回路12は、起動回路13の電圧と制御用電源14の電圧とを比較し、より高い電圧を用いて、駆動される。制御用電源14の電圧は、図3(c)中の時刻s1において、起動回路13の電圧より高くなる。したがって、起動回路13は、交流電源2の供給開始の時刻s0から時刻s1までの期間のみ、スイッチング制御用回路12に電力を供給する。その後は、制御用電源14により、スイッチング制御用回路12に電力が供給される。
 第1変圧器7の2次側には、第1変圧器7に供給された電圧波形と同じ周波数の電圧波形の第1直流電圧が同期して生成される。そして、第1変圧器7の2次側の第1直流電流の電圧波形を同期整流制御回路15に供給することにより、同期整流制御回路15は、制御用波形である電圧波形を生成する。そして、この同期整流制御回路15の電圧波形に基づいて、同期整流回路11のMOSFET39,40の開閉の切り替えが行われる。ここで、第1出力系統4が出力する第1直流電流は、第2出力系統5が出力する第2直流電流より小さいため、第1出力系統4の2次側整流回路8に供給される電流は、同期整流回路11に供給される電流よりも小さい。したがって、第1出力系統4は、第2出力系統5よりも先に起動し、第2出力系統5は、第1出力系統4が安定した後に起動することで、安定した起動を確保しつつ、損失が少ない動機整流方式で作動させることができる。
 ところで、電源回路1の起動時において、コンデンサ17,18に充電されることにより、図3(e)に示すように、第1変圧器7の1次側の電圧波形が不安定となるため、2次側整流回路8の電圧波形も不安定となる。したがって、図3(f)に示すように、2次側整流回路8の電圧波形から電圧波形を生成する駆動回路43にも電圧波形が不安定な期間Q1が生じる。
 そのため、第2出力系統5の電力遮断回路35は、図3(g)に示すように、期間Q1より長い期間である期間Q2の間、駆動回路38にスイッチング素子36,37をオフする信号を供給する。期間Q2の経過後、同期整流制御回路15の矩形波の電圧波形が安定している状態において、電力遮断回路35は、駆動回路38にスイッチング素子36,37をオフする信号を供給することをやめ、スイッチング制御回路12が生成する電圧波形に基づいて、スイッチング素子36,37の開閉の切り替えが行われる。即ち、図3(h)に示すように、第2変圧器10に駆動回路38と同じ周波数の電圧波形が同期して供給される。また、同期整流回路11には、既に同期整流制御回路15により、MOSFET39,40の開閉の切り替えが行われているため、第2変圧器10の2次側に電圧が生成され次第、同期整流が行われる。ここで、電源回路1の起動時とは、交流電源2が電源回路1に電力供給を開始した時刻からコンデンサ17,18の電圧が一定となるまでの期間T5をいう。
 次に、駆動回路25から同期整流回路11までの詳細な動作について、図2及び図4を用いて、説明する。図4は、図2の電源回路の一部の電圧波形を示したグラフである。
 図4(a)及び図4(b)に示すように、電源回路1の起動前及び起動開始時である時刻s0には、スイッチング素子23,24は、ともにオフ状態となっている。次に、図4(a)に示すように、スイッチング素子23が、時刻t1にオン状態(即ち、図4(a)中のスイッチング素子23の電圧波形が、Hレベル。)とした場合、この時刻t1において、図4(b)に示すように、スイッチング素子24は未だオフ状態(即ち、図4(b)中のスイッチング素子24の電圧波形が、Lレベル。)である。そして、時刻t2において、図4(a)に示すように、スイッチング素子23は、オフ状態とした場合、この時刻t2において、図4(b)に示すように、スイッチング素子24は、未だオフ状態である。そして、図4(b)に示すように、時刻t3において、スイッチング素子24がオン状態(即ち、図4(b)中のスイッチング素子24の電圧波形が、Hレベル。)とした場合、この時刻t3において、図4(a)に示すように、スイッチング素子23はオフ状態(即ち、図4(a)中のスイッチング素子23の電圧波形が、Lレベル。)となる。このように、スイッチング素子23,24には、スイッチング素子23,24が同時にオフとなる時刻t2から時刻t3までの期間(デッドタイム)T1が設けられる。この期間T1を設けることにより、スイッチング素子23,24が同時にオンとなる場合を防ぐとともに、コンデンサ17,18の破損を防止することができる。
 また、期間T1において、スイッチング素子23の容量と第1変圧器7の巻線7aの自己インダクタンスとによる並列共振により、図4(c)に示すように、第1変圧器7の1次側であるスイッチング素子23と第1変圧器7との接続点7hの電圧が、時間の経過に伴い降下する。この接続点7hの電圧の降下する期間T2は、期間T1より通常短く設定する。
 また、第1変圧器7の2次側の電圧は接続点7hと同期するため、図4(d)に示すように、第1変圧器7の2次側の電圧は、期間T2において、接続点7hと同じく、時間の経過に伴い降下する。
 駆動回路25及び駆動回路38は、共通のスイッチング制御用回路12の電圧波形に基づいて、制御されるため、第1スイッチング回路6のスイッチング素子23,24、及び第2スイッチング回路9のスイッチング素子36,37は、同じタイミングによって開閉の制御が行われる。したがって、第2変圧器10の2次側に生成される電圧は、第1変圧器7の2次側に生成される電圧と同期する。即ち、第2変圧器10の2次側に生成される電圧波形は、第1変圧器7の2次側に生成される電圧波形と同様である。
 同期整流制御回路15において、第1変圧器7の2次側の電圧の波形に基づいて、駆動回路43,44が、MOSFET39,40のそれぞれの駆動波形を生成する。即ち、MOSFET39,40は、同期整流制御回路15及び駆動回路43,44を介して、第1変圧器7の電圧波形に基づいて制御される。図4(f)に示すように、スイッチング素子23がオン状態のときに、オン状態(即ち、MOSFET40の電圧が、Hレベル。)となり、スイッチング素子23がオフ状態のときに、MOSFET40がオフ状態(即ち、MOSFET40の電圧が、Lレベル。)となる。また、図4(e)に示すように、スイッチング素子24がオン状態のときに、MOSFET39がオン状態(即ち、MOSFET39の電圧が、Hレベル。)となり、スイッチング素子24がオフ状態のときに、MOSFET39がオフ状態(即ち、MOSFET39の電圧が、Lレベル。)となる。また、MOSFET39,40のオン状態の期間T3は、スイッチング素子23,24のオン状態の期間T4より短い。
 ここで、同期整流回路11が、電源回路1に用いられることにより、一般的なダイオードを使用した整流回路と比較して、電源回路1の消費電力を低減することができる。即ち、ダイオードは、オンの期間(即ち、期間T3の間)において、損失を発生させるが、図4(h)及び図4(i)に示すように、MOSFET39,40による損失の大部分は開閉の切り替え前後に発生するため、大電流を整流する場合、MOSFET39,40は、ダイオードと比較して、整流損失を低減することができる。
 また、同期整流回路11のMOSFET39,40の制御を、ダイオード32,33によって整流している第1出力系統4の第1変圧器7の2次側の第1直流電圧の電圧波形に基づいて行われることにより、電源回路1の起動時において、電源回路1の起動不良を防止することができる。特に、第1変圧器7の2次側の第1変圧交流電圧の電圧波形に基づいて行われるため、MOSFET39,40の制御用波形の電圧波形の生成のための別個の回路を追加することなく、簡単な回路構成にて、MOSFET39,40の制御を行うことができる。したがって、電源回路1のコストダウンを図ることができる。
 また、電力遮断回路35によって、駆動回路43,44が生成する電圧波形である駆動波形が安定するまで、駆動回路38にスイッチング素子36,37をオフする信号を供給するため、駆動回路38は、MOSFET39,40の制御が安定した後に、第2変圧器10に電圧波形を供給する。したがって、電源回路1の起動時においても、確実に、電源回路1の起動不良を防止することができる。
 次に、同期整流制御回路の構成について、図5及び図6を用いて説明する。図5は、図2の電源回路における同期整流制御回路の整流波形生成部の回路図を示し、図6(a)~(k)は、整流波形生成部の各地点P1~P11における電圧波形をそれぞれ示したグラフである。
 図5に示すように、整流波形生成部42は、第1波形生成部47と、第2波形生成部48と、第1波形生成部47の波形及び第2波形生成部48の波形を重ね合わせた波形を生成する第3波形生成部49とを備える。
 第1波形生成部47は、ダイオード32(図2参照)のカソード側に接続されるインバータ50と、インバータ50と直列に接続される抵抗51と、抵抗51と並列に接続されるダイオード52と、ダイオード52のアノード側に接続されるコンデンサ53と、抵抗51と直列に接続されるインバータ54と、インバータ54に直列に接続されるインバータ55と、インバータ55にアノード側が接続されるダイオード56とを備える。
 第2波形生成部48は、第1波形生成部47と接続点48a及び接続点48bにおいて並列に接続される。そして、第2波形生成部48は、インバータ57と、インバータ57にアノード側が直列に接続されるダイオード58とを備える。また、接続点48bには、抵抗59がコンデンサ53と並列に接続される。
 第3波形生成部49は、第1波形生成部47のダイオード56のカソード側と直列に接続されるインバータ60と、インバータ60と直列に接続される抵抗61と、抵抗61と並列に接続されるダイオード62と、ダイオード62のアノード側に接続されるコンデンサ63と、抵抗61と直列に接続されるインバータ64と、インバータ64と直列に接続されるインバータ65とを備える。
 図6(a)に示すように、地点P1における直流電圧の電圧波形は、2次側整流回路8における脈流を含んだ直流電圧の電圧波形と同一である。この直流電圧は、HレベルとLレベルとの期間が略同一の台形波である。そして、この直流電圧は、インバータ50を通過することによって、図6(b)に示すように、地点P2において、地点P1の電圧波形のHレベルとLレベルの期間が略反転した矩形波の電圧波形が生成される。
 図6(c)に示すように、地点P3の電圧波形は、抵抗51及びコンデンサ53を通過することにより、略三角形状の電圧波形が生成される。そして、図6(d)に示すように、地点P4の電圧波形は、インバータ54を通過することによって、Lレベルの期間と比較して、Hレベルの期間が大幅に長い矩形波の電圧波形が生成される。そして、図6(e)に示すように、地点P5では、インバータ55を通過することにより、Hレベルの期間と比較して、Lレベルの期間が大幅に長い矩形波の電圧波形が生成される。
 図6(f)に示すように、第2波形生成部48の地点P6では、インバータ57を通過することよって、地点P2における電圧波形のHレベルとLレベルとが反転した電圧波形が生成される。そして、図6(g)に示すように、地点P7において、地点P5の電圧波形及び地点P6の電圧波形の重ね合わせにより、地点P6のHレベルの期間と比較して、長いHレベルの期間を有する電圧波形が生成される。
 図6(h)に示すように、地点P8の電圧波形は、第3波形生成部49のインバータ60を通過することによって、地点P7のHレベルとLレベルとが反転した電圧波形となる。そして、図6(i)に示すように、地点P9の電圧波形は、抵抗61及びコンデンサ63を通過することによって、Hレベルの立ち上がりがなだらかな電圧波形を生成する。そして、図6(j)に示すように、地点P10の波形は、インバータ64を通過することによって、地点P9の電圧波形のHレベルとLレベルとが略反転した矩形波の電圧波形となる。最後に、図6(k)に示すように、地点P11の波形は、インバータ65を通過することによって、地点P10のHレベルとLレベルとが反転した矩形波となる。
 同期整流制御回路15では、地点P11の電圧波形を駆動回路43,44の一方にそれぞれ供給し、地点P11の電圧波形生成と同様の方法で生成した位相が180°ずれた波形をもう一方に供給することで、MOSFET39,40の開閉の切り替えの制御を行う。
 本実施形態の電源回路1では、以下の効果を得ることができる。
 (1)本実施形態の電源回路1では、第1出力系統4の第1変圧器7の2次側の電圧の波形からMOSFET39,40の開閉の切り替えの制御する電圧波形を生成する波形生成回路である同期整流制御回路15を備える構成とする。この構成によれば、第1変圧器7の2次側の電圧の波形が安定した後、MOSFET39,40の開閉の切り替えを制御する電圧波形を生成するため、MOSFET39,40の開閉の切り替えの制御を安定させることができる。したがって、MOSFET39,40の制御が安定するため、交流電源2の起動時において、電源回路1の起動不良を防止することができる。
 (2)本実施形態の電源回路1では、同期整流制御回路15は、第1変圧器7の2次側の電圧の波形から電圧波形を生成する構成とする。したがって、第1変圧器7の2次側の電圧の波形を直接、同期整流制御回路15に供給することにより、第1出力系統4の電圧波形を検出し、その検出した電圧波形を同期整流制御回路15に供給するための別個の回路が不要となり、電源回路1を簡単な回路構成とすることができる。その結果、電源回路1のコストダウンを図ることができる。
 (3)本実施形態の電源回路1では、第1出力系統4の出力電流は、第2出力系統5の出力電流よりも小さい構成とする。この構成によれば、第1出力系統4の損失は、出力電流が少ないため小さく、第2出力系統5の損失は、同期整流方式を用いることで小さくすることができる。
 (4)本実施形態の電源回路1では、電源回路1の起動時において、同期整流回路11の電圧波形が安定する期間T4(即ち、駆動回路43,44の駆動波形が安定する期間T3より長い期間)まで、第2変圧器10への電力の供給を遮断するためにスイッチング素子36,37をオフする信号を供給する電力遮断回路35を備える構成とする。この構成によれば、電力遮断回路35が、期間T4の間、駆動回路38にスイッチング素子36,37をオフする信号を供給する。同期整流制御回路15では、電源回路1の起動時の不安定な状態においても、MOSFET39,40を駆動する信号を生成して、MOSFET39,40をオン/オフさせているが、第2変圧器10に電力を供給するスイッチング素子36,37がオフしているため、第2変圧器10の2次側には、電圧は掛かっておらず、MOSFET39,40を駆動する信号が如何なる状態でも、第2出力系統5は、故障することはない。また、整流制御回路15に信号を遮断するような回路を設ける必要はなく、簡単な構成でコストを抑えることができる。
 (5)本実施形態の電源回路1では、第2出力系統5には、所定値以上の電流を検知する電流検知回路26が設けられ、電流検知回路26が所定値以上の電流を検知した際、電力遮断回路35が第2変圧器10への電力の供給を遮断する構成とする。この構成によれば、例えば、短絡により、電流検知回路26へ供給される電流が、所定値以上となった場合、電力遮断回路35が第2変圧器10への電力の供給を遮断するため、同期整流回路11に直流電流が流れなくなる。したがって、同期整流回路11に接続された第2負荷RL2に大電流が供給されてしまうことによる故障を防ぐことができる。
 (第2の実施形態)
 本発明の電源回路に係る第2の実施形態について、図7を用いて説明する。図7は、本発明の電源回路に係る第2の実施形態を示した回路図である。なお、電源回路の第2の実施形態においては、第1の実施形態と同じ構成の部分には、同一符号を付し、その説明を省略する。以下、第1の実施形態と異なる部分について、説明する。
 図7に示すように、交流電源2に接続される電流制限回路66と、整流ブリッジ16のマイナス側及び電力遮断回路35に接続され、電流制限回路66の制御を行う時定数回路である制御回路67とを備える点において、電源回路1aは第1の実施形態における電源回路1と異なっている。また、電源回路1aは、交流電源2に接続されるとともに交流電源2の交流波形を検知する検知回路68と、第1出力系統4のHOT側4aに設けられたリレースイッチ69と、検知回路68に基づき、リレースイッチ69を制御する時定数回路である制御回路70とを備える。
 電流制限回路66は、電源回路1の起動時において、交流電源2から電源回路1aに供給される電流を制限する。そして、電流制限回路66は、交流電源2と直列に接続された抵抗71と、抵抗71と並列に接続されたリレースイッチ72とを備える。制御回路67は、リレースイッチ72の開閉の切り替えの制御を行う。
 次に、電源回路の第2の実施形態の動作について、図8(a)~(k)を用いて説明する。図8(a)、(b)は交流電源2の電圧波形、及び電流波形をそれぞれ示し、図8(c)~(k)は、図7の電源回路の電圧波形をそれぞれ示したグラフである。なお、電源回路の第2の実施形態においては、第1の実施形態と同じ動作の部分については、その説明を省略する。また、以下、電流制限回路66の動作及びリレースイッチ69の動作を主に説明する。
 図8(h)において、電源回路1aの起動前において、電流制限回路66のリレースイッチ72は、オフ状態である。そして、交流電源2が電源回路1aに電流を供給開始したとき、交流電源2の交流電流は、抵抗71を通過する。また、交流電源2の交流電流は、図8(a)及び図8(b)に示すように、電源回路1aの起動時において、振幅が大きい電流(突入電流)を発生させてしまう。しかしながら、図8(b)に示すように、交流電流は、抵抗71を通過するため、整流ブリッジ16に供給される電流は、小さくなる。そして、交流電源2の交流電流の振幅が安定した後に、制御回路67により、リレースイッチ72をオン状態とする。より詳細には、この制御回路67は、制御用電源14の電圧が安定する期間を設定する。図8(c)に示すように、交流電源2の交流電流とコンデンサ17,18の充電との関係により、コンデンサ17、18の電圧が一定となったとき、交流電源2の交流電流の振幅は略安定する。したがって、制御回路67は、図8(d)に示すように、コンデンサ17,18の電圧が一定となる期間T6より、少し長い時刻t4において、リレースイッチ72をオン状態とする。この設定により、交流電源2の起動時に発生する突入電流を電源回路1aの1次側整流回路3に供給されることを防ぐことができる。
 電流制限回路66のリレースイッチ72がオン状態にした後、図8(h)に示すように、リレースイッチ69をオン状態とする。この設定により、第1出力系統4に接続された第1負荷RL1に突入電流が供給されるのを確実に防止することができる。制御回路70は、検知回路68によって、交流電源2の交流電流を検知した信号に基づいて、リレースイッチ72がオン状態となった後に、リレースイッチ69がオン状態となるように設定される。
 電力遮断回路35は、図8(i)に示すように、駆動回路43,44の駆動波形が安定する期間Q1を経過後、及び電流制限回路66のリレースイッチ72がオン状態になった後に、駆動回路38にスイッチング制御用回路12の電圧波形を供給するように設定される。即ち、駆動回路38は、電力遮断回路35により、スイッチング素子36,37をオフする信号を供給する期間Q2が形成されている。この設定により、突入電流が供給されることを防ぐことができ、且つ、第2出力系統5に同期整流回路を構成し、整流損失を低減することができる。
 また、電力遮断回路35によって、第2変圧器10への電力供給を遮断することが可能であるため、第2出力系統5に大容量を有するリレー等の別個の電流を遮断するための回路を設ける必要がなく、電源回路1aを簡単な構成とすることができる。したがって、電源回路1aの小型化を図るとともに、電源回路1aのコストダウンを図ることができる。
 本実施形態の電源回路1aでは、電源回路1の第1の実施形態にて得られた効果に加え、以下の効果を得ることができる。
 (6)本実施形態の電源回路1aでは、電源回路1には、電源回路1aの起動時において、交流電源2から電源回路1aに供給される交流電流を制限する電流制限回路66を備える構成とする。この構成によれば、電源回路1aの起動時に発生する突入電流を防ぐことができる。
 (第3の実施形態)
 本発明の電源回路に係る第3の実施形態について、図9を用いて説明する。図9は、本発明の電源回路に係る第3の実施形態を示した回路図である。なお、電源回路の第3の実施形態において、電源回路の第1の実施形態と同じ構成の部分には、同じ符号を付し、その説明を省略する。以下、電源回路の第1の実施形態と異なる部分について説明する。
 図9に示すように、電源回路1bには、スイッチング制御用回路12の電圧波形を同期整流制御回路15に供給する供給波形検出器であるフォトカプラ45が設けられる。フォトカプラ45は、発光ダイオード45aと、フォトトランジスタ45bとから構成される。
 発光ダイオード45aは、スイッチング制御用回路12と電流遮断回路35との間、及び1次側整流回路3の整流ブリッジ16のマイナス側にそれぞれ接続される。また、フォトトランジスタ45bは、エミッタ側に同期整流制御回路15が接続されるとともに、2次側整流回路8のダイオード32のカソード側とコンデンサ34との間にコレクト側がそれぞれ接続される。
 本実施形態の電源回路1bによれば、第1の実施形態の電源回路1aの効果(1)~(5)と同様の効果を得ることに加え、以下の効果を得ることができる。
 (7)本実施形態の電源回路1bでは、フォトカプラ45によって、スイッチング制御用回路12の電圧波形を同期整流制御回路15に供給することができるため、高精度の電圧波形を同期整流制御回路15に供給することができる。したがって、交流電源2の起動時において、負荷電流の影響を抑制することができるため、電源回路1bの起動不良を防止することができる。
 (第4の実施形態)
 本発明の電源回路に係る第4の実施形態について、図10を用いて説明する。図10は、本発明の電源回路に係る第4の実施形態を示した回路図である。なお、電源回路の第4の実施形態において、電源回路の第1の実施形態と同じ構成の部分には、同じ符号を付し、その説明を省略する。以下、電源回路の第1の実施形態と異なる部分について説明する。
 図10に示すように、電源回路1cの第1変圧器7には、巻線7a~7cに加え、変圧波形検出器となる巻線7gが設けられる。この巻線7gの巻き終わりの端部は、第1出力系統4のCOM側4bに接続される。そして、巻線7gの巻き始めの端部は、同期整流制御回路15に接続される。この巻線7gの電圧波形は、同期整流制御回路15に供給されるとともに、巻線7gの電圧波形に基づいて、同期整流制御回路15は、駆動回路43,44を制御する電圧波形を生成する。したがって、同期整流回路11のMOSFET39,40は、巻線7gの電圧波形に基づいて、開閉の切り替えが制御される。
 本実施形態の電源回路1cによれば、第1の実施形態の電源回路1aの効果(1)~(5)と同様の効果を得ることに加え、以下の効果を得ることができる。
 (8)本実施形態の電源回路1cでは、第1変圧器7には、波形生成回路である同期整流制御回路15に電圧波形を供給する波形生成器である巻線7gが設けられる構成とする。この構成によれば、巻線7gから同期整流制御回路15へ波形情報を供給し、また、整流波形生成部42、駆動回路43,44の電源も供給できるため、電源電圧が駆動回路の動作電圧に比べ、十分に高い場合、適切な電源電圧で、整流波形生成部42、駆動回路43,44を動作させることができるため、不要な損失をなくすことができる。また、第1出力系統4の負荷電流の影響を受けないため、より安定した電圧波形を整流波形生成部42に供給することができる。
 (第5の実施形態)
 本発明の電源回路に係る第5の実施形態について、図11を用いて説明する。図11は、本発明の電源回路に係る第5の実施形態を示した回路図である。なお、電源回路の第5の実施形態において、電源回路の第1の実施形態と同じ構成の部分には、同じ符号を付し、その説明を省略する。以下、電源回路の第1の実施形態と異なる部分について説明する。
 図11に示すように、電源回路1dには、同期整流制御回路15に電圧波形を供給する供給波形検出器のパルストランスとなる第3変圧器73が設けられる。そして、同期整流制御回路15は、第3変圧器73の電圧波形に基づいて、MOSFET39,40の開閉の切り替えを制御する電圧波形を生成する。第3変圧器73は、1次側の巻線74と、2次側の巻線75と、巻線74及び巻線75の間に配置された鉄心76とを備える。
 巻線74の巻き始めの端部は、スイッチング制御用回路12と電流遮断回路35との間に接続される。そして、巻線74の巻き終わりの端部は、1次側整流回路3の整流ブリッジ16のマイナス側と接続される。また、巻線75の巻き始めの端部は、同期整流制御回路15に接続される。そして、巻線75の巻き終わりの端部は、第1出力系統4のCOM側4bに接続される。
 本実施形態の電源回路1dによれば、第1の実施形態の電源回路1aの効果(1)~(5)と同様の効果を得ることに加え、以下の効果を得ることができる。
 (9)本実施形態の電源回路1dでは、1次側整流回路3に接続された波形検出器である第3変圧器73が設けられ、第3変圧器73の直流電圧から電圧波形を生成する構成とする。この構成によれば、電源回路1dの起動時において、第1変圧器7の影響による整流波形生成部42へ伝達する電圧の波形の乱れを抑制することができる。したがって、電源回路1dの起動時において、電源回路1dの起動不良を防止することができる。また、この構成により、第1出力系統4と第2出力系統5とを絶縁することも可能になる。
 (その他の実施形態)
 ・本発明の実施態様は、上記実施形態にて例示した態様に限られるものではない。例えば、上記実施形態を以下のように変更して本発明を実施することができる。
 ・第1の実施形態の電源回路1では、電流検知回路26は、同期整流回路11における、第2出力系統5のHOT側5aに接続されたが、これを例えば、次のように変更することもできる。即ち、図12に示す電源回路1eのように、電流検知回路26は、同期整流回路11における、第2出力系統5のCOM側5bに接続されてもよい。また、図13に示す電源回路1fのように、電流検知回路26は、第2変圧器10の巻線10aの巻き終わりの端部側に接続されてもよい。この場合、電流検知回路26が、第2変圧器10の1次側に配置されるため、フォトカプラ26aが不要となる。したがって、電源回路1の回路構成が簡単にすることができる。その結果、電源回路1のコストダウンを図ることができる。
 ・第1の実施形態の電源回路1では、同期整流回路11は、第2変圧器10の巻線10bの巻き始めの端部及び巻き終わりの端部が、第2出力系統5のCOM側5bとして、構成されたが、これを例えば、次のように変更することもできる。即ち、図14に示す電源回路1gのように、第2変圧器10の巻線10bの巻き始めの端部及び巻き終わりの端部が、第2出力系統5のHOT側5aとして、構成されてもよい。この場合、MOSFET39,40は、同様に、巻線10bの巻き始めの端部及び巻き終わりの端部に接続される。
 ・第2の実施形態の電源回路1aは、第1出力系統4にリレースイッチ69を設けたが、これを例えば、次のように変更することもできる。即ち、第1出力系統4の出力する電流が低い場合、第1出力系統4にリレースイッチ69を設けなくともよい。それに伴い、検知回路68及び制御回路70も設けなくともよい。
 ・第2の実施形態の電源回路1aは、第1出力系統4のHOT側4aにリレースイッチ69のみが設けられたが、例えば、次のように変更することもできる。即ち、交流電源2の起動時において、第1出力系統4のHOT側4aに電流制限を加える場合、抵抗をリレースイッチ69と並列に接続してもよい。
 ・第2の実施形態の電源回路1aは、リレースイッチ69のオン状態となる時刻が、電流遮断回路35の期間T4と、略同等程度であったが、例えば、次のように変更することもできる。即ち、リレースイッチ69のオン状態となる時刻は、電流遮断回路35の期間T4に対して前後してもよい。
 ・第1~第5の実施形態の電源回路1~1dは、第1出力系統4及び第2出力系統5の2つの出力系統から構成されたが、これを例えば、次のように変更することもできる。即ち、電源回路は、3以上の出力系統を備えてもよい。
 電源回路1~1dは、複数の出力系統を有する電源回路に適用されることが望ましい。特に、電源回路1~1dは、パワーアンプ、及びパワーアンプ等の大電流を要する機器を含んだ放送設備に用いられることが好ましい。より具体的には、パワーアンプにおいて、第2出力系統5には、信号増幅器を接続し、第1出力系統4には、パワーアンプの制御を行う内部電子部品を接続する。これにより、一つの交流電源2において、パワーアンプの信号増幅器とそれ以外の機能の駆動を同時に行うことができる。
 また、放送設備において、第2出力系統5には、パワーアンプ等の大電流を要する機器を接続し、第1出力系統4には、放送設備のパワーアンプ以外の機器(例えば、放送設備の制御機器等)を接続する。これにより、一つの交流電源2において、放送設備内の、パワーアンプとパワーアンプ以外の機器の駆動を同時に行うことができる。

Claims (12)

  1.  直流電圧を第1変圧交流電圧に変圧する第1変圧器、及び前記第1変圧交流電圧から第1直流電圧を生成する第1整流回路を有する第1出力系統と、
     前記直流電圧を第2変圧交流電圧に変圧する第2変圧器、及び回路の開閉切り替えを行うスイッチング素子を有するとともに、該スイッチング素子により前記第2変圧交流電圧から第2直流電圧を生成する第2整流回路を有する第2出力系統と、
     前記第1出力系統の電圧の波形に基づいて制御用波形を生成する波形生成回路、及び該制御用波形に基づいて前記スイッチング素子を制御するスイッチング素子制御回路を有する同期整流制御回路とを備え、
     前記同期整流制御回路は、前記第1出力系統に同期させて前記第2出力系統の前記スイッチング素子を制御すること
     を特徴とする電源回路。
  2.  請求項1に記載の電源回路において、
     前記波形生成回路は、前記第1直流電圧の波形に基づいて、前記制御用波形を生成すること
     を特徴とする電源回路。
  3.  請求項2に記載の電源回路は更に、
     前記第1変圧交流電圧の波形を検出する変圧波形検出器を備え、
     前記変圧波形検出器によって検出された前記第1変圧交流電圧の前記波形に基づいて、前記波形生成回路が前記制御用波形を生成すること
     を特徴とする電源回路。
  4.  請求項1に記載の電源回路は更に、
     前記第1変圧器に供給される前記交流電圧の波形を検出する供給波形検出器を備え、
     前記波形生成回路は、前記供給波形検出器によって検出された前記波形に基づいて、前記制御用波形を生成すること
     を特徴とする電源回路。
  5.  請求項4に記載の電源回路において、
     前記供給波形検出器がパルストランスであること
    を特徴とする電源回路。
  6.  請求項4に記載の電源回路において、
     前記供給波形検出器がフォトトランジスタであること
    を特徴とする電源回路。
  7.  請求項1乃至請求項6のいずれか一項に記載の電源回路において、
     第1直流電圧は、第2直流電圧より小さいこと
     を特徴とする電源回路。
  8.  請求項1乃至請求項7のいずれか一項に記載の電源回路は更に、
     作動状態において、前記第2変圧器への電力の供給を遮断する電力遮断回路を備え、
     該電源回路の起動時に前記電力遮断回路を作動状態にすることにより、第2変圧器への電力の供給を該電源回路の起動時に遮断すること
     を特徴とする電源回路。
  9.  請求項8に記載の電源回路は更に、
     前記第2出力系統に上限値を超える電流が流れたことを検知する電流検知回路を備え、
     前記電流検知回路が前記第2出力系統に上限値を超える電流が流れたことを検知したときに、前記電力遮断回路を作動状態にすることにより、前記第2変圧器への電力の供給を遮断すること
     を特徴とする電源回路。
  10.  請求項1乃至請求項9のいずれか一項に記載の電源回路は更に、
     前記電源回路の起動時において、前記直流電圧の入力源である交流電圧の大きさを制限する電圧制限回路を備えること
     を特徴とする電源回路。
  11.  請求項1乃至請求項10のいずれか一項に記載の電源回路と、増幅器と、当該増幅器以外の電子部品とを備え、
     前記第2出力系統から前記増幅器へ電源供給を行い、前記第1出力系統から前記電子部品へ電源供給を行うことを特徴とするパワーアンプ。
  12.  請求項1乃至請求項10のいずれか一項に記載の電源回路と、パワーアンプと、当該パワーアンプ以外の電子部品とを備え、
     前記第2出力系統から前記第2出力系統から前記パワーアンプへ電源供給を行い、前記第1出力系統から前記電子部品へ電源供給を行うことを特徴とする非常用放送設備。
PCT/JP2009/050895 2009-01-21 2009-01-21 電源回路及びこの電源回路を備えたパワーアンプ、並びに放送設備 WO2010084588A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010547346A JP5256306B2 (ja) 2009-01-21 2009-01-21 電源回路及びこの電源回路を備えたパワーアンプ、並びに放送設備
PCT/JP2009/050895 WO2010084588A1 (ja) 2009-01-21 2009-01-21 電源回路及びこの電源回路を備えたパワーアンプ、並びに放送設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050895 WO2010084588A1 (ja) 2009-01-21 2009-01-21 電源回路及びこの電源回路を備えたパワーアンプ、並びに放送設備

Publications (1)

Publication Number Publication Date
WO2010084588A1 true WO2010084588A1 (ja) 2010-07-29

Family

ID=42355662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050895 WO2010084588A1 (ja) 2009-01-21 2009-01-21 電源回路及びこの電源回路を備えたパワーアンプ、並びに放送設備

Country Status (2)

Country Link
JP (1) JP5256306B2 (ja)
WO (1) WO2010084588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022297A (ja) * 2018-08-02 2020-02-06 新電元工業株式会社 スイッチング電源回路及び半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370142A (zh) * 2017-07-11 2017-11-21 宁波公牛电器有限公司 一种取电控制电路、智能控制开关及智能照明系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340757A (ja) * 1989-07-05 1991-02-21 Matsushita Electric Ind Co Ltd スイッチング電源装置
JP2001333578A (ja) * 2000-05-19 2001-11-30 Nec Miyagi Ltd 多出力スイッチング電源回路
JP2003153537A (ja) * 2001-10-31 2003-05-23 Innoveta Technologies Inc 後調節電源装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409076B2 (ja) * 2000-10-05 2010-02-03 Tdkラムダ株式会社 多出力同期整流式スイッチング電源装置
JP4270820B2 (ja) * 2002-08-19 2009-06-03 富士通テレコムネットワークス株式会社 多出力dc−dcコンバータ
JP4535853B2 (ja) * 2004-11-25 2010-09-01 日本電気通信システム株式会社 定電圧電源回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340757A (ja) * 1989-07-05 1991-02-21 Matsushita Electric Ind Co Ltd スイッチング電源装置
JP2001333578A (ja) * 2000-05-19 2001-11-30 Nec Miyagi Ltd 多出力スイッチング電源回路
JP2003153537A (ja) * 2001-10-31 2003-05-23 Innoveta Technologies Inc 後調節電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020022297A (ja) * 2018-08-02 2020-02-06 新電元工業株式会社 スイッチング電源回路及び半導体装置
JP7158202B2 (ja) 2018-08-02 2022-10-21 新電元工業株式会社 スイッチング電源回路及び半導体装置

Also Published As

Publication number Publication date
JP5256306B2 (ja) 2013-08-07
JPWO2010084588A1 (ja) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5928865B2 (ja) 非接触給電装置の制御方法
JP5481939B2 (ja) 電源装置
US7778048B2 (en) Switching power supply apparatus
US20200007044A1 (en) Llc resonant converter
JP2000116027A (ja) 電源装置
US20070217236A1 (en) Apparatus and method for supplying dc power source
JP5528858B2 (ja) 電力変換装置
WO2003067744A1 (fr) Procede de demarrage d'un bloc d'alimentation, circuit de demarrage d'un bloc d'alimentation, bloc d'alimentation
JPWO2009025157A1 (ja) スイッチング電源装置
US20130010501A1 (en) Bisynchronous resonant switching-type direct current power supply
JP2005287261A (ja) スイッチング電源制御用半導体装置
CN110879319A (zh) 利用次级侧整流电压感测的电压和电流保护
JP5328483B2 (ja) 非常用電源装置
JP2009247132A (ja) スナバ回路
JP4359026B2 (ja) 交流電圧から低電力整流低電圧を発生させる電気回路装置
JP5565186B2 (ja) 電力変換装置
JP5256306B2 (ja) 電源回路及びこの電源回路を備えたパワーアンプ、並びに放送設備
JP5516055B2 (ja) 電力変換装置
JP2006101680A (ja) 入出力絶縁分離型dc−dcコンバータ装置
JP5769886B2 (ja) 電力変換器
JP2012019583A (ja) スイッチング電源装置
JP2008259378A (ja) 電圧共振フライバックコンバータ
JP2002044946A (ja) スイッチング電源装置
JP7185676B2 (ja) 半導体リレー装置
EP2544348A2 (en) Bisynchronous resonant switching-type direct current power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010547346

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838779

Country of ref document: EP

Kind code of ref document: A1