WO2010082502A1 - 電池の内部短絡評価装置 - Google Patents

電池の内部短絡評価装置 Download PDF

Info

Publication number
WO2010082502A1
WO2010082502A1 PCT/JP2010/000231 JP2010000231W WO2010082502A1 WO 2010082502 A1 WO2010082502 A1 WO 2010082502A1 JP 2010000231 W JP2010000231 W JP 2010000231W WO 2010082502 A1 WO2010082502 A1 WO 2010082502A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode group
circuit
short
pressurizer
battery
Prior art date
Application number
PCT/JP2010/000231
Other languages
English (en)
French (fr)
Inventor
西野肇
藤川万郷
嶋田幹也
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010546602A priority Critical patent/JP5060623B2/ja
Priority to KR1020107029245A priority patent/KR101179347B1/ko
Priority to US12/992,011 priority patent/US8471566B2/en
Priority to CN2010800019277A priority patent/CN102077107B/zh
Publication of WO2010082502A1 publication Critical patent/WO2010082502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus for evaluating an internal short circuit of a battery.
  • Patent Document 1 discloses that the battery manufacturing process is improved in order to obtain a high-capacity battery having good high output characteristics and cycle characteristics and high safety.
  • Patent Document 2 describes the thickness of the porous heat-resistant layer disposed between the positive electrode and the negative electrode and the thickness of the side wall of the battery can in order to achieve both high safety and high battery characteristics in the lithium secondary battery. It has been proposed that the ratio be in a predetermined range.
  • the nail penetration test is a test for examining an internal short circuit when a nail is penetrated or pierced from the battery side surface. By piercing the nail, a short-circuit portion between the positive electrode and the negative electrode due to the nail is generated inside the battery, so that a short-circuit current flows through the short-circuit portion and Joule heat is generated.
  • the internal short circuit test changes in battery temperature or battery voltage based on these phenomena are measured.
  • the crushing test is a test for examining an internal short circuit caused by physically deforming the battery using a round bar, a square bar, a flat plate or the like. Specifically, in the crush test, an internal short circuit is generated between the positive electrode and the negative electrode due to physical deformation, and a change in battery temperature or battery voltage is measured.
  • a foreign matter indentation test in which an electrode group is taken out from the battery and a foreign matter is pushed inward from the outside to the inside of the electrode group is also performed as an internal short circuit test of the battery.
  • the pressure applied to the electrode group included in the battery or battery pack varies greatly.
  • the taken-out electrode group is constrained unlike when it is in the battery or the battery pack. There is no state.
  • the taken-out electrode group is pierced with a nail, deform
  • an object of the present invention is to provide an apparatus that can evaluate whether or not an internal short circuit has occurred in an electrode group (that is, a battery) in consideration of the pressure applied to the electrode group.
  • an internal short circuit evaluation apparatus for a battery including an electrode group including a positive electrode, a negative electrode, and a separator disposed therebetween, an electrolyte, and a battery case containing the electrode group and the electrolyte, (1) a pressurizer that pressurizes at least a predetermined position on the surface of the electrode group; (2) a short-circuiting element pressed against the predetermined position; (3) a battery information measuring unit that measures battery information that changes when a short circuit occurs in the electrode group due to the short circuit; (4) A short circuit detection unit that detects a change in battery information measured by the battery information measurement unit, and compares the battery information with a predetermined reference value to determine an internal short circuit; (5) a pressure measurement unit that measures the pressure applied to the pressurizer; (6) A pressurizer control unit that controls the pressurizer based on signals from the short circuit detection unit and the pressurization force measurement unit, and (7) based on signals from the short circuit detection unit and the pressurization force measurement unit.
  • an internal short circuit evaluation apparatus for a battery including an electrode group including a positive electrode, a negative electrode, and a separator disposed therebetween, an electrolyte, and a battery case containing the electrode group and the electrolyte, (I) A pressurizer including an integrated short circuit, wherein the pressurizer is pushed into the predetermined position while pressing at least a predetermined position on the surface of the electrode group.
  • a battery information measuring unit that measures battery information that changes when a short circuit is caused by the short circuit in the electrode group;
  • a short-circuit detection unit that detects a change in battery information measured by the battery information measurement unit and compares the battery information with a predetermined reference value to determine an internal short circuit;
  • a pressurizing force measuring unit that measures a pressurizing force applied to the pressurizer; and
  • a pressurizer control unit that controls the pressurizer based on signals from the short-circuit detecting unit and the pressurizing force measuring unit.
  • the present invention it is possible to apply a pressure corresponding to the difference in the structure of the battery or the battery pack to the electrode group. Therefore, by using the internal short-circuit evaluation apparatus of the present invention, the electrode group taken out from the battery or battery pack is brought into the same state as the state assembled in the battery or battery pack, and then the internal short-circuit test of the electrode group is performed. It can be carried out. Therefore, the internal short circuit test of various batteries or battery packs can be accurately performed by using the internal short circuit evaluation apparatus of the present invention.
  • FIG. 1 It is a block diagram of the internal short circuit evaluation apparatus which concerns on preferable embodiment of this invention. It is a figure which shows typically an example of a structure of the internal short circuit evaluation apparatus of FIG. It is a block diagram of the internal short circuit evaluation apparatus which concerns on another preferable embodiment of this invention. It is a longitudinal cross-sectional view which shows an example of the pressurizer with which the short circuit element was integrated included in the internal short circuit evaluation apparatus of FIG. It is a bottom view of the pressurizer of FIG.
  • the internal short-circuit evaluation device is (1) a pressurizer that pressurizes at least a predetermined position on the surface of the electrode group; (2) a short-circuiting element pressed against the predetermined position; (3) a battery information measuring unit that measures battery information that changes when a short circuit occurs in the electrode group due to the short circuit; (4) A short circuit detection unit that detects a change in battery information measured by the battery information measurement unit, and compares the battery information with a predetermined reference value to determine an internal short circuit; (5) a pressure measurement unit that measures the pressure applied to the pressurizer; (6) A pressurizer control unit that controls the pressurizer based on signals from the short circuit detection unit and the pressurization force measurement unit, and (7) based on signals from the short circuit detection unit and the pressurization force measurement unit.
  • the electrode group taken out by disassembling the battery without exposing the surfaces of the positive electrode plate and the negative electrode plate to be short-circuited during the pretreatment of the test is used for the evaluation of the internal short circuit. Can be used.
  • the evaluation of the internal short circuit of a conventional battery for example, in order to insert a foreign substance at a predetermined short circuit point, it is necessary to expand the electrode group to the position of the short circuit point. When the electrode group is developed in this way, there is a concern that the electrode mixture may fall off, the electrolyte may evaporate, or the like.
  • the positive electrode, the negative electrode, and the separator are integrated. For this reason, the electrode group contained in the polymer battery cannot be developed. Therefore, the polymer battery itself cannot be subjected to the conventional internal short circuit evaluation test.
  • FIG. 1 shows a block diagram of an internal short-circuit evaluation apparatus according to an embodiment of the present invention.
  • An internal short-circuit evaluation apparatus 10 in FIG. 1 includes a pressurizer 11, a pressurizer control unit 12, a pressure measurement unit 13, a short circuit 14, a short circuit control unit 15, a battery information measurement unit 16, a short circuit detection unit 17, and a charge / discharge.
  • a control unit 18 is provided.
  • the internal short-circuit evaluation apparatus in FIG. 2 includes a base 21 on which the electrode group 20 used for the internal short-circuit test is placed.
  • the pressurizer 11 pressurizes a predetermined region of the electrode group 20 by the pressurizer pressing device 22.
  • the pressurizer pressure device 22 is supported by a predetermined support (not shown). For example, when the pressurizer pressure device 22 moves toward the electrode group 20 (in the direction of arrow A), The pressurizer 11 can pressurize the electrode group 20.
  • a pressurizing force measurement unit 13 is disposed between the pressurizer 11 and the pressurizing device 22.
  • the short-circuit element 14 is pushed into the electrode group 20 by the short-circuit pressurizing device 23.
  • the short circuit pressurizing device 23 is supported by a predetermined support (not shown). For example, when the short circuit pressurizing device 23 moves toward the electrode group 20, the short circuit 14 is connected to the electrode group. 20 is pushed.
  • the computer (PC) 24 is provided with a pressurizer control unit, a short circuit control unit, and a short circuit detection unit. In the internal short circuit evaluation apparatus of FIG.
  • the electrode group 20 is provided with a charge / discharge control unit 18 and a battery information measurement unit 16 that measures battery information of the electrode group 20.
  • the charge / discharge control unit 18 is provided with two terminals, and the two terminals are respectively connected to the positive electrode and the negative electrode of the electrode group 20 so that the charge / discharge of the electrode group 22 can be controlled.
  • the battery information measurement unit 16 and the charge / discharge control unit 18 are connected to the PC 24.
  • the electrode group 20 shows only the outermost periphery of a plane perpendicular to the winding axis.
  • a predetermined region including a predetermined position of the electrode group 20 is pressed by the pressurizer 11.
  • the pressure applied by the pressurizer 11 is measured by the pressure measurement unit 13.
  • the pressurizer controller 12 stops the movement of the pressurizer 11, and the pressurizing force is maintained at the predetermined value.
  • the electrode group 20 used for the internal short circuit test may be a wound type or a laminated type.
  • the wound-type electrode group may be a cylindrical type or a columnar body having a substantially elliptical cross section (a wound type and a square type as included in a prismatic battery).
  • the predetermined position can be a predetermined position on a plane parallel to the winding axis, for example.
  • the predetermined position can be, for example, a predetermined position on a plane perpendicular to the stacking direction.
  • the predetermined position is, for example, a predetermined position on the surface of the electrode group substantially parallel to the major axis direction in the substantially elliptical cross section of the electrode group perpendicular to the winding axis. It can be a position.
  • the applied pressure applied to the electrode group 20 may be 1000 N or less, for example, in the range of 0 to 1000 N, and is appropriately adjusted according to the structure of the electrode group 20 and the like.
  • the pressure applied to the cylindrical electrode group included in the cylindrical battery can be 800 N or less, specifically 0 to 800 N.
  • the applied pressure applied to the electrode group included in the prismatic battery can be, for example, 400 N or less, specifically 0 to 400 N.
  • the cylindrical electrode group has high pressure resistance and can withstand even high pressures.
  • the electrode group included in the prismatic battery is somewhat inferior in pressure resistance compared to the cylindrical electrode group. For this reason, the applied pressure applied to the electrode group included in the prismatic battery is set lower than the applied pressure applied to the cylindrical electrode group.
  • the electrode group included in the prismatic battery may be a wound type or a laminated type.
  • the contact portion of the pressurizer 11 with the electrode group 20 preferably includes a rubber material, and more preferably includes only a rubber material. Since the contact portion has rubber elasticity, the contact portion can be deformed in accordance with the surface shape of the electrode group 20 when the electrode group 20 is pressurized. For this reason, the electrode group 20 can be pressurized by the pressurizer 11 in a state where the pressurizer 11 is in close contact with the electrode group 20, that is, with a large contact area.
  • the rubber material is not particularly limited as long as it has rubber elasticity.
  • examples of the rubber material include nitrile rubber, styrene butadiene rubber, natural rubber, ethylene propylene rubber, chloroprene rubber, silicon rubber, urethane rubber, fluorine rubber, and hypalon.
  • the pressurizer 11 can include the pressurizer pressure device 22, and the pressurizer 11 pressurizes a predetermined region including a predetermined position of the electrode group 20 by the pressurizer 22.
  • the pressurizer include a screw type using a servo motor, a post guide screw type, a frico type, a lever type, a crank type, a mechanical press type, a hydraulic press type, and an air press type.
  • a pressure sensor can be used as the applied pressure measuring unit 13, for example.
  • FIG. 2 also shows a state in which the electrode group 20 is pressed by the pressurizer 11 and the short-circuit element 14 is pressed against a predetermined position of the electrode group 20.
  • the pressurizer 11 shown in FIG. 2 has a base material part 11a and a contact part 11b provided on the electrode group 20 side of the base material part 11a.
  • the contact portion 11b is made of a rubber material.
  • the pressurizer 11 is provided with a through hole 11 c, and the short circuit element 14 is inserted into a predetermined position of the electrode group 20 through the through hole 11 c.
  • the material which comprises the base-material part 11a will not be specifically limited if the applied pressure of 1000 N or less can be applied to the electrode group 20.
  • FIG. An example of such a material is stainless steel.
  • the shape of the contact portion 11b in a cross section (cross section perpendicular to the thickness direction) perpendicular to the direction in which the applied pressure is applied (direction of arrow A) is not particularly limited.
  • the shape of the cross section of the contact portion 11b may be a circle, an ellipse, or a rectangle.
  • the through hole 11c is preferably provided so as to pass through the central axis of the contact portion 11b.
  • the pressurizer 11 is preferably brought into contact with the electrode group 20 so that the through hole 11 c is parallel to the diameter direction perpendicular to the winding axis of the electrode group 20.
  • the electrode group 20 is a stacked or wound electrode group included in a prismatic battery
  • the pressurizer 11 is brought into contact with the electrode group 20 so that the through holes 11c are parallel to the stacking direction of the electrode plates. It is preferable. Thereby, it is possible to apply a uniform pressure to a region including a predetermined position of the electrode group 20.
  • the central axis of the contact portion 11b refers to an axis that passes through the central point of the shape of the cross section perpendicular to the thickness direction and is parallel to the direction in which the applied pressure is applied.
  • the portion of the short-circuit 14 that contacts the electrode group 20 has a sharp protrusion shape or a sharp blade shape.
  • the short-circuiting element 14 for example, a metal such as iron, nickel, and stainless steel, an insulating ceramic, a nonconductor such as a resin, and a high resistance material such as a semiconductor and a conductive agent-containing resin can be used. Moreover, a short circuit in which a predetermined material (for example, the metal and the nonconductor) is coated with the high resistance material can be used. When the material of the short circuit 14 is a metal, the lifetime of the short circuit 14 can be extended. By using the short-circuit 14 made of a high-resistance material or the short-circuit 14 whose surface portion is made of a high-resistance material, the resistance of the short-circuit point can be controlled. For example, as the short-circuit element 14, a nail having a sharp protrusion or a sharp cutting edge at a portion that contacts the electrode group 20 can be used.
  • the speed at which the short-circuit 14 is pushed into the electrode group 20 is preferably 0.1 mm / s to 180 mm / s.
  • the pressure applied when the short circuit element 14 is pushed into the electrode group 20 is preferably 50 N or less.
  • the short-circuit 14 may include the short-circuit pressurizing device 23 as described above.
  • the pressurizing device 23 for a short circuit a device similar to the pressurizing device for a pressurizer can be used.
  • the battery information of the electrode group 20 is measured by the battery information measuring unit 16.
  • the short circuit detection unit 17 receives battery information measured by the battery information measurement unit 16.
  • the battery information measured by the battery information measurement unit 16 changes, the battery information after the change is compared with a predetermined reference value to determine whether or not an internal short circuit has occurred. The When it is determined that an internal short circuit has occurred, a signal is sent from the short circuit detection unit 17 to the pressurizer control unit 12 and the short circuit control unit 15.
  • the pressurizer control unit 12 and the short-circuit control unit 15 control the pressurizer pressurization device 22 and the short-circuit pressurization device 23 based on the signal from the short-circuit detection unit 17, and the pressurizer 11 and the short-circuiting unit. Return 14 to the original position. Thus, the pressurization and internal short circuit of the electrode group 20 are stopped.
  • the short-circuit detecting unit 17 detects a change in battery information of the electrode group 20 and compares the changed battery information with a predetermined reference value to determine that an internal short-circuit has occurred and When it is determined that the occurrence has occurred, a predetermined circuit that can transmit a signal to the pressurizer control unit 12 and the short-circuit control unit 15 can be used.
  • Examples of the battery information measured by the battery information measuring unit 16 include a battery voltage and a temperature of the electrode group. Especially, since it depends sensitively to an internal short circuit, it is preferable to measure a battery voltage as battery information. For example, when the short circuit 14 is pushed into the electrode group 20, the battery voltage is measured, and when the internal short circuit occurs when the battery voltage decreases by a predetermined value or more, the short circuit detection unit 17 You may make it judge.
  • a voltmeter can be used as the battery information measuring unit 16.
  • the internal short-circuit evaluation apparatus in FIG. 2 shows a case where the battery voltage is measured, and the battery information measurement unit 16 is connected to the battery information measurement unit 16 and the electrode group 20 in parallel, for example, The electrode group 20 is connected to a positive terminal (not shown) and a negative terminal (not shown).
  • thermocouple When measuring the temperature of the electrode group 20 as battery information, for example, a thermocouple, a thermoviewer, or the like can be used as the battery information measurement unit 16. Or you may measure the calorie
  • the reference value provided in the short-circuit detection unit 17 is appropriately selected according to the required battery safety level.
  • the signal transmission from the short-circuit detection unit 17 to the pressurizer control unit 12 and the short-circuit control unit 15 when it is determined that an internal short circuit has occurred may be performed when it is determined that an internal short circuit has occurred. Good. Alternatively, the transmission may be performed by delaying the predetermined time by using a timer or the like.
  • the internal short-circuit evaluation apparatus 10 of the present embodiment further includes a charge / discharge control unit 18 that controls charging / discharging of the electrode group 20 based on a signal from the short-circuit detection unit 17.
  • a charge / discharge control unit 18 that controls charging / discharging of the electrode group 20 based on a signal from the short-circuit detection unit 17.
  • the electrode group 20 is short-circuited under pressure, current is input / output to / from the electrode group 20 using the charge / discharge control unit 18 and changes in battery information at that time are measured.
  • a test assuming a battery pack connected in parallel, or a test assuming a battery having a larger output or a smaller output than the test cell used can be performed. it can.
  • control units described above can include, for example, a reception unit that receives a command from another component and a transmission unit that can transmit a further command based on the command.
  • the short-circuit 14 can be pushed into the electrode group 20 in a state where a pressure corresponding to the difference in the structure of the battery or the battery pack is applied to the electrode group 20.
  • a short circuit between the positive electrode and the negative electrode can be generated under a controlled pressure.
  • the internal short-circuit evaluation apparatus of this embodiment is (I) A pressurizer including an integrated short circuit, wherein the pressurizer is pushed into the predetermined position while pressing at least a predetermined position on the surface of the electrode group.
  • a battery information measuring unit that measures battery information that changes when a short circuit occurs in the short circuit in the electrode group;
  • a short-circuit detection unit that detects a change in battery information measured by the battery information measurement unit and compares the battery information with a predetermined reference value to determine an internal short circuit;
  • a pressurizing force measuring unit that measures a pressurizing force applied to the pressurizer; and
  • a pressurizer control unit that controls the pressurizer based on signals from the short-circuit detecting unit and the pressurizing force measuring unit.
  • FIG. 3 the block diagram of an example of the internal short circuit evaluation apparatus which concerns on this embodiment is shown.
  • the internal short-circuit evaluation apparatus 30 in FIG. 3 includes a pressurizer 31, a pressurizer control unit 32, a pressurization measurement unit 33, a battery information measurement unit 36, a short-circuit detection unit 37, and a short circuit (not shown) integrated.
  • a charge / discharge control unit 38 is included.
  • a predetermined region including a predetermined position of the electrode group 40 is pressurized at a constant speed by the pressurizer 31 until a predetermined pressure is reached.
  • the pressure applied by the pressurizer 31 is measured by the pressure measurement unit 33.
  • the pressurizer control unit 32 moves the pressurizer 31 at a constant speed until a predetermined position of the electrode group 40 is pressed with a predetermined pressure based on a signal from the pressure measurement unit 33.
  • the predetermined position is pressed by the short circuit, and a short circuit can be caused by the short circuit at the position.
  • the pressurizer 31 when the electrode group 40 is cylindrical, the pressurizer 31 is configured so that the protruding direction of the short circuit is parallel to the diameter direction perpendicular to the winding axis of the electrode group 40.
  • the electrode group 40 is preferably contacted.
  • the pressurizer 31 is configured such that the protruding direction of the short circuit is parallel to the stacking direction of the electrode plates. It is preferable to make it contact.
  • the pressure applied to the electrode group 40 may be in the range of 0 to 1000 N, as in the first embodiment.
  • the applied pressure applied to the cylindrical electrode group is preferably in the range of 0 to 800N.
  • the pressure applied to the stacked or wound electrode group included in the prismatic battery is preferably in the range of 0 to 400N.
  • the moving speed of the pressurizer 31 is preferably 0.1 to 5 mm / s.
  • the internal short circuit is considered to be caused by expansion / contraction of the positive electrode and / or the negative electrode due to charge / discharge. For this reason, when performing an internal short circuit test, it is desirable to short-circuit a positive electrode and a negative electrode at the slowest possible speed.
  • the battery information measurement unit 36 measures battery information that changes when a short circuit occurs due to the short circuit.
  • the battery information measured by the battery information measurement unit 36 is sent to the short circuit detection unit 37.
  • the short circuit detection unit 37 when the battery information measured by the battery information measurement unit 36 changes, the battery information after the change is compared with a predetermined reference value to determine whether or not an internal short circuit has occurred.
  • a signal is sent from the short circuit detector 37 to the pressurizer controller 32.
  • the pressurizer 31 includes a pressurizer
  • the pressurizer controller 32 controls the pressurizer based on a signal from the short circuit detector 37 to return the pressurizer 31 to its original position.
  • the pressurization and internal short circuit of the electrode group 40 are stopped.
  • FIG. 4 and 5 show an example of the pressurizer 31 used in this embodiment.
  • FIG. 4 is a longitudinal sectional view showing an example of the pressurizer
  • FIG. 5 is a bottom view of the pressurizer of FIG.
  • the pressurizer 31 of FIG. 4 includes a base material portion 31a and a contact portion 31b and a short circuit 31c provided on the side of the base material portion 31a that are in contact with the electrode group 40.
  • the contact portion 31b preferably includes a rubber material, and more preferably includes only a rubber material.
  • the material of the short-circuiting element 31c may be the same as that in the first embodiment. Further, the portion of the short-circuiting element 31c that contacts the electrode group 40 may have a sharp protrusion shape or a sharp cutting edge shape. Also in the present embodiment, as the short-circuiting element 31c, for example, a protrusion having a sharp contact with the electrode group 40 or a sharp blade-shaped nail can be used.
  • the material constituting the base portion 31a is not particularly limited as long as the pressurizer 31 can apply a pressure of 0 to 1000 N to the electrode group 40.
  • stainless steel can be used as the material.
  • the pressurizer 31 the arrangement of the contact portion 31b including the rubber material and the short-circuiting element 31c is not particularly limited.
  • the pressurizer may include a contact portion 31 b having a donut-shaped cross section, and a short-circuiting element 31 c disposed at the center portion (gap portion) of the contact portion 31 b.
  • the pressurizer may include two contact portions and a short-circuit arranged therebetween.
  • the pressurizer may include a short circuit and three or more contact parts arranged at equal intervals on a circle centered on a point on the base material part on which the short circuit element is arranged.
  • the elastic modulus of the rubber material included in the contact portion 31b and the ratio between the height H of the contact portion 31b and the height h of the short-circuiting element 31c are appropriately selected according to the applied pressure applied to the electrode group 40. .
  • the ratio (H / h) of the height H of the contact portion 31b to the height h of the short-circuiting element 31c is increased.
  • the ratio (H / h) is made smaller than when the applied pressure applied to the electrode group 40 is high.
  • the elastic modulus of the rubber material contained in the contact portion 31b is preferably 0.1 to 10 GPa.
  • the range of the ratio (H / h) is preferably 1-20.
  • the pressurizer 31 may include a pressurizing device.
  • the pressurizer can be controlled by the pressurizer control unit 32 to control the pressurizing force and moving speed of the pressurizer.
  • the internal short-circuit evaluation apparatus 30 further includes a charge / discharge control unit 38. This is for the same reason as described above.
  • the applied pressure measurement unit 33 As the applied pressure measurement unit 33, the battery information measurement unit 36, the short circuit detection unit 37, various control units, and the like, the same ones as in the first embodiment can be used.
  • the pressurizer control unit and the short circuit detection unit may be provided in one PC.
  • the battery information measured by the battery information measuring unit 36 includes the battery voltage, the temperature of the electrode group, and the like. Especially, since it depends sensitively to an internal short circuit, it is preferable to measure a battery voltage as battery information.
  • the reference value provided in the short-circuit detection unit 37 is appropriately selected according to the required level of battery safety.
  • the transmission of the signal from the short-circuit detection unit 37 to the pressurizer control unit 32 when it is determined that an internal short circuit has occurred is performed when it is determined that the internal short circuit has occurred. It is also possible to use a timer or the like to delay the transmission for a predetermined time.
  • the internal short circuit evaluation apparatus 30 of this embodiment includes a pressurizer 31 with which a short circuit is integrated. Therefore, by using the internal short-circuit evaluation apparatus 30 of the present embodiment, for example, a foreign matter indentation test can be performed in which foreign matter is pushed into the electrode group 40 while the electrode group 40 is pressurized to a predetermined applied pressure at a constant speed. . Furthermore, in the internal short circuit evaluation apparatus 10 of the first embodiment, in order to perform pressurization by the pressurizer 11 and pressurization by the shortcircuit 14, for example, two pressurization apparatuses for the pressurizer and for the shortcircuit need to be provided. There is.
  • the internal short circuit evaluation apparatus 30 of the present embodiment if the H / h ratio is adjusted, pressurization by the pressurizer 31 is performed with one pressurizing device, and the applied pressure applied to the electrode group 40 at the time of short-circuit Can be controlled. Therefore, the internal short circuit evaluation apparatus 30 of this embodiment can be simplified compared with the internal short circuit evaluation apparatus 10 of Embodiment 1.
  • the internal short circuit evaluation apparatus of the said Embodiment 1 and 2 has a thermostat which accommodates at least the electrode group evaluated, a pressurizer, and a short circuit, respectively.
  • the internal short circuit evaluation apparatus 10 of Embodiment 1 includes a thermostatic chamber that accommodates at least the electrode group to be evaluated, the pressurizer, and the short circuit.
  • the internal short circuit evaluation apparatus 30 of Embodiment 2 is equipped with the thermostat which accommodates at least the pressurizer provided with the electrode group and short circuit to be evaluated.
  • Battery safety depends on Joule heat at the short circuit point. The Joule heat depends on the output of the battery, and the output depends on the battery temperature. That is, the battery temperature affects the result of the internal short circuit test. Therefore, the internal short circuit evaluation of the battery can be performed more accurately by providing a thermostatic chamber that accommodates at least the electrode group, the pressurizer, and the short circuit.
  • the type of battery evaluated using the internal short circuit evaluation device of the present invention is not particularly limited.
  • an electrode group including a positive electrode, a negative electrode, and a separator disposed therebetween, an electrolyte, and a battery including a battery case that houses the electrode group and the electrolyte are evaluated.
  • Examples of such batteries include primary batteries such as manganese dry batteries, alkaline dry batteries, and lithium primary batteries, and secondary batteries such as lead storage batteries, nickel / cadmium storage batteries, nickel-hydrogen batteries, and lithium secondary batteries.
  • the battery case may be a metal case or a case made of a laminate film, for example.
  • the battery or battery pack which has the same safety level can be produced using the production method of the battery in which the safety level is specified by the internal short circuit evaluation apparatus of the present invention. Specifically, a battery is produced by a predetermined production method, and the obtained battery is evaluated by the internal short-circuit evaluation apparatus of the present invention. If it is found that the battery has a desired level of safety, a battery having the same safety level or a battery pack including the battery can be manufactured using the battery manufacturing method. In this way, by using the same manufacturing method as that of the battery whose safety level is specified, the safety level against an internal short circuit of the battery or the battery pack can be guaranteed. Furthermore, according to the present invention, since the safety level of a battery can be specified, it becomes possible to easily select an optimum use of the battery, design an application device, and the like.
  • a polymer battery (nonaqueous electrolyte secondary battery) was produced as follows.
  • Lithium cobaltate was used as the positive electrode active material.
  • 85 parts by weight of the positive electrode active material 5 parts by weight of polyvinylidene fluoride (PVDF) as a binder, 10 parts by weight of acetylene black as a conductive agent, and an appropriate amount of N-methyl-2-pyrrolidone (NMP)
  • NMP N-methyl-2-pyrrolidone
  • a negative electrode mixture paste was prepared by mixing 95 parts by weight of the negative electrode active material, 5 parts by weight of PVDF as a binder, and an appropriate amount of NMP. The obtained negative electrode mixture paste was applied to both sides of a copper negative electrode current collector (thickness: 10 ⁇ m), dried and rolled to obtain a negative electrode having a thickness of 165 ⁇ m.
  • the positive electrode, separator, and negative electrode obtained as described above were thermally welded to obtain a stacked electrode group.
  • One end of an aluminum positive electrode lead was connected to the positive electrode current collector, and one end of a copper negative electrode lead was connected to the negative electrode current collector.
  • a bag-shaped battery case made of an aluminum laminate film was prepared.
  • This laminate film is composed of an Al foil, a film made of polypropylene arranged on the inner side of the Al foil, and a film made of polyethylene terephthalate and nylon arranged on the outer side of the Al foil.
  • An electrode group was housed inside the battery case. The other end of the positive electrode lead and the other end of the negative electrode lead were drawn out from the opening of the battery case.
  • the non-aqueous electrolyte is prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a concentration of 1.0 mol / L in a non-aqueous solvent containing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3. did. Subsequently, while ensuring electrical insulation between the positive electrode lead and the negative electrode lead and airtightness of the battery case, the opening of the battery case was sealed to obtain a polymer battery. The obtained battery was designated as battery A.
  • LiPF 6 lithium hexafluorophosphate
  • a wound non-aqueous electrolyte secondary battery in which the amount of the binder contained in the electrode was smaller than usual was produced as follows.
  • Lithium cobaltate was used as the positive electrode active material.
  • a positive electrode mixture paste was prepared by mixing 88 parts by weight of the positive electrode active material, 2 parts by weight of PVDF as a binder, 10 parts by weight of acetylene black as a conductive agent, and an appropriate amount of NMP.
  • the obtained positive electrode mixture paste was applied to both surfaces of an aluminum positive electrode current collector (thickness: 15 ⁇ m), dried and rolled to obtain a positive electrode having a thickness of 156 ⁇ m.
  • a positive electrode, a polyethylene separator, and a negative electrode were laminated.
  • the obtained laminate was wound in a spiral shape to obtain a cylindrical electrode group.
  • the obtained electrode group was housed in a nickel-plated iron cylindrical battery case.
  • One end of the aluminum positive electrode lead was connected to the positive electrode current collector, and the other end of the positive electrode lead was connected to the sealing plate.
  • One end of the copper negative electrode lead was connected to the negative electrode current collector, and the other end of the negative electrode lead was connected to the inner bottom surface of the battery case.
  • Example 2 a nonaqueous electrolyte was injected into the battery case.
  • the same nonaqueous electrolyte as in Example 1 was used.
  • the opening of the battery case was sealed with a sealing plate to obtain a nonaqueous electrolyte secondary battery.
  • the obtained battery was designated as battery B.
  • a wound nonaqueous electrolyte secondary battery having a thicker active material layer than usual was produced as follows.
  • a positive electrode mixture paste was prepared by mixing 85 parts by weight of the positive electrode active material, 5 parts by weight of PVDF as a binder, 10 parts by weight of acetylene black as a conductive agent, and an appropriate amount of NMP.
  • the obtained positive electrode mixture paste was applied to both surfaces of an aluminum positive electrode current collector (thickness: 15 ⁇ m), dried and rolled to obtain a positive electrode having a thickness of 200 ⁇ m.
  • a negative electrode mixture paste was prepared by mixing 95 parts by weight of the negative electrode active material, 5 parts by weight of PVDF as a binder, and an appropriate amount of NMP. The obtained negative electrode mixture paste was applied to both sides of a copper negative electrode current collector (thickness: 10 ⁇ m), dried, and rolled to obtain a negative electrode having a thickness of 208 ⁇ m.
  • a positive electrode, a polyethylene separator, and a negative electrode were laminated.
  • the obtained laminate was wound in a spiral shape to obtain a cylindrical electrode group.
  • the obtained electrode group was housed in a nickel-plated iron cylindrical battery case.
  • One end of the aluminum positive electrode lead was connected to the positive electrode current collector, and the other end of the positive electrode lead was connected to the sealing plate.
  • One end of the copper negative electrode lead was connected to the negative electrode current collector, and the other end of the negative electrode lead was connected to the inner bottom surface of the battery case.
  • Example 2 a nonaqueous electrolyte was injected into the battery case.
  • the same nonaqueous electrolyte as in Example 1 was used.
  • the opening of the battery case was sealed with a sealing plate to obtain a nonaqueous electrolyte secondary battery.
  • the resulting battery was designated as Battery C.
  • Lithium cobaltate was used as the positive electrode active material.
  • a positive electrode mixture paste was prepared by mixing 85 parts by weight of the positive electrode active material, 5 parts by weight of PVDF as a binder, 10 parts by weight of acetylene black as a conductive agent, and an appropriate amount of NMP.
  • the obtained positive electrode mixture paste was applied to both surfaces of an aluminum positive electrode current collector (thickness: 15 ⁇ m), dried and rolled to obtain a positive electrode having a thickness of 160 ⁇ m.
  • a negative electrode mixture paste was prepared by mixing 95 parts by weight of the negative electrode active material, 5 parts by weight of PVDF as a binder, and an appropriate amount of NMP. The obtained negative electrode mixture paste was applied to both sides of a copper negative electrode current collector (thickness: 10 ⁇ m), dried and rolled to obtain a negative electrode having a thickness of 165 ⁇ m.
  • a positive electrode, a polyethylene separator, and a negative electrode were laminated.
  • the obtained laminate was wound in a spiral shape to obtain a cylindrical electrode group.
  • the obtained electrode group was housed in a nickel-plated iron cylindrical battery case.
  • One end of the aluminum positive electrode lead was connected to the positive electrode current collector, and the other end of the positive electrode lead was connected to the sealing plate.
  • One end of the copper negative electrode lead was connected to the negative electrode current collector, and the other end of the negative electrode lead was connected to the inner bottom surface of the battery case.
  • a nonaqueous electrolyte was injected into the battery case.
  • the same nonaqueous electrolyte as in Example 1 was used.
  • the opening of the battery case was sealed with a sealing plate to obtain a nonaqueous electrolyte secondary battery.
  • the obtained battery was designated as battery D.
  • the design capacities of batteries A to D were 2400 mAh, respectively.
  • the electrode groups A to D were taken out from the batteries A to D after charging, and the internal short circuits were evaluated for these electrode groups A to D using the following evaluation apparatus.
  • Example 1 an internal short-circuit evaluation apparatus as shown in the block diagram of FIG. 1 was used. Further, a pressurizer and a short circuit as shown in FIG. 2 were used. Specifically, a pressurizer in which the base part is made of SUS304 and the contact part is made of nitrile rubber was used. The contact portion was a columnar shape having a diameter of 10 mm and a height of 50 mm. As the short-circuit element, a nail having a diameter of 1.0 mm and processed into a sharp protrusion at a contact portion with the electrode group was used.
  • the base material portion and the contact portion constituting the pressurizer are provided with through holes that communicate with each other, and the short circuit can press a predetermined position of the electrode group through the through holes.
  • the through hole was provided so as to pass through the central axis of the contact portion.
  • a pressurizer was brought into contact with the electrode group A so that the contact portion was in contact with a predetermined region including a predetermined position on a surface perpendicular to the stacking direction of the electrode plates. At this time, the electrode group A and the pressurizer were brought into contact so that the stacking direction of the electrode plates and the central axis of the contact portion were parallel.
  • a pressurizer was brought into contact with the electrode group so that the contact portion was in contact with a predetermined region including a predetermined position on the surface parallel to the winding axis of the electrode group. . At this time, the electrode group and the pressurizer were brought into contact so that the winding axis of the electrode group and the central axis of the contact portion were orthogonal to each other.
  • the pressurizing force when pressurizing the electrode groups A to D was 50N, 400N, and 800N.
  • the moving speed of the short circuit was 0.1 mm / s, and the applied pressure of the short circuit was 50 N at maximum.
  • the battery voltage of the electrode group was measured. It was determined that an internal short circuit occurred when the battery voltage dropped by 50 mV or more when the short-circuiting element was pushed into the electrode group.
  • Each of the electrode groups A to D was evaluated two by two. The results are shown in Table 1.
  • Example 2 an internal short-circuit evaluation apparatus as shown in the block diagram of FIG. 3 was used.
  • the longitudinal section and bottom view of the pressurizer used are shown in FIGS. 4 and 5, respectively.
  • the base material portion was made of SUS304, and the contact portion was made of nitrile rubber (elastic modulus: 0.1 to 10 GPa).
  • a cylindrical space having a diameter of 2 mm was provided in the contact portion along the central axis.
  • a nail having a diameter of 1.0 mm and processed into a sharp protrusion at a contact portion with the electrode group was used.
  • the height ratio (H / h) of the contact portion with respect to the height h of the short-circuit was 10/2.
  • a pressurizer was brought into contact with the electrode group A so that the contact portion was in contact with a predetermined region including a predetermined position on a surface perpendicular to the stacking direction of the electrode plates. At this time, the electrode group A and the pressurizer were brought into contact with each other so that the stacking direction of the electrode plates and the protruding direction of the short circuit were parallel.
  • a pressurizer was brought into contact with the electrode group so that the contact portion was in contact with a predetermined region including a predetermined position on the surface parallel to the winding axis of the electrode group. . At this time, the electrode group and the pressurizer were brought into contact with each other so that the winding axis of the electrode group and the protruding direction of the short circuit were orthogonal to each other.
  • the shorting element provided on the pressurizer was pressed at a predetermined position of the electrode groups A to D at a speed of 0.1 mm / s, with the upper limit of the pressure applied to the electrode groups A to D being 1000 N.
  • Example 1 As battery information, the battery voltage of the electrode group was measured. When the battery voltage dropped by 50 mV or more when the short-circuiting element was pushed into the electrode group, it was determined that an internal short circuit had occurred, and pressurization was stopped.
  • the evaluation of the internal short circuit of the electrode group taken out from various batteries or various battery packs can be performed in the same state as that in which the battery or battery pack is incorporated. Therefore, the internal short circuit test of various batteries or battery packs can be accurately performed by using the internal short circuit evaluation apparatus of the present invention.

Abstract

 本発明は、電池の内部短絡を評価するための装置に関する。本発明は、電極群にかかる圧力を考慮した上で、電極群において内部短絡が生じたか否かを評価することができる装置を提供することを目的とする。 本発明の一実施形態に係る内部短絡評価装置は、独立して作動することができる、電極群の表面の少なくとも所定の位置を加圧する加圧子および前記所定の位置に押し当てられる短絡子を少なくとも備える。本発明の別の実施形態に係る内部短絡評価装置は、短絡子が一体化された加圧子を備える。

Description

電池の内部短絡評価装置
 本発明は、電池の内部短絡を評価するための装置に関する。
 リチウムイオン二次電池などの電池の安全性を評価する項目としては、例えば、内部短絡時の発熱挙動の評価が挙げられる。このような電池の評価試験としては、例えばリチウム電池のためのUL規格(UL1642)、電池工業会からの指針(SBA G1101-1997リチウム二次電地安全性評価基準ガイドライン)などが挙げられる。このような評価試験が活用され、その結果が、各種電池の開発に反映されている。例えば、特許文献1には、高出力特性およびサイクル特性が良好で、かつ安全性の高い高容量の電池を得るために、電池の製造工程に改良を加えることが開示されている。特許文献2には、リチウム二次電池における高い安全性と高い電池特性とを両立させるために、正極と負極との間に配置された多孔質耐熱層の厚みと電池缶の側壁の厚みとの比を所定の範囲とすることが提案されている。
 上記評価試験の中でも、例えば釘刺し試験は、電池側面より釘を貫通または突き刺したときの内部短絡を調べる試験である。釘を突き刺すことにより、電池内部において、釘による正極と負極との短絡部が発生し、そのために短絡部に短絡電流が流れ、ジュール熱が発生する。内部短絡試験においては、これらの現象に基づく電池温度または電池電圧の変化が測定される。
 また、圧壊試験は、丸棒、角棒、平板などを用いて電池を物理的に変形させることにより生じる内部短絡を調べる試験である。具体的には、圧壊試験では、物理的な変形により正極と負極との間に内部短絡を発生させて、電池温度または電池電圧の変化が測定される。
 さらに、上記釘刺し試験および圧壊試験以外にも、電池から電極群を取り出し、前記電極群の外側から内側に向かって異物を押し込む異物押し込み試験も、電池の内部短絡試験として行われている。
特開平11-102729号公報 特開2006-313739号公報
 電池または電池パックの構造の違いによって、電池または電池パックに含まれる電極群にかかる圧力が大きく異なる。しかしながら、上記のような釘刺し試験等において、例えば、電池または電池パックから取り出された電極群が用いられる場合、取り出された電極群は、電池内または電池パック内にあるときとは異なり束縛された状態にはない。さらには、取り出された電極群は、電池または電池パックの構造にかかわりなく、一定の力で、釘が刺されたり、変形されたり、異物が押し込まれたりしている。つまり、従来の短絡試験は、電極群にかかる加圧力を考慮して行われているわけではない。
 そこで、本発明は、電極群にかかる加圧力を考慮した上で、電極群(つまり電池)において内部短絡が生じたか否かを評価することができる装置を提供することを目的とする。
 本発明の1つの観点において、正極と、負極と、それらの間に配置されたセパレータとを含む電極群、電解質、ならびに電極群および電解質を収容する電池ケースを備える電池の内部短絡評価装置は、
 (1)前記電極群の表面の少なくとも所定の位置を加圧する加圧子、
 (2)前記所定の位置に押し当てられる短絡子、
 (3)前記電極群において前記短絡子により短絡が生じたときに変化する電池情報を測定する電池情報測定部、
 (4)前記電池情報測定部によって測定された電池情報の変化を検知し、かつ前記電池情報を所定の基準値と比較して内部短絡を判断する短絡検知部、
 (5)前記加圧子に加えられる加圧力を測定する加圧力測定部、
 (6)前記短絡検知部および前記加圧力測定部からの信号に基づいて、前記加圧子を制御する加圧子制御部、および
 (7)前記短絡検知部および前記加圧力測定部からの信号に基づいて、前記短絡子を制御する短絡子制御部
を有する。
 本発明の別の観点において、正極と、負極と、それらの間に配置されたセパレータとを含む電極群、電解質、ならびに電極群および電解質を収容する電池ケースを備える電池の内部短絡評価装置は、
 (i)一体化された短絡子を備える加圧子であって、前記電極群の表面の少なくとも所定の位置を加圧しながら、前記所定の位置に前記短絡子を押し込む、加圧子、
 (ii)前記電極群において前記短絡子により短絡が生じたときに変化する電池情報を測定する電池情報測定部、
 (iii)前記電池情報測定部によって測定された電池情報の変化を検知し、かつ前記電池情報を所定の基準値と比較して内部短絡を判断する短絡検知部、
 (iv)前記加圧子に加えられる加圧力を測定する加圧力測定部、および
 (v)前記短絡検知部および前記加圧力測定部からの信号に基づいて、前記加圧子を制御する加圧子制御部
を有する。
 本発明によれば、電池または電池パックの構造の違いに応じた圧力を電極群にかけることができる。よって、本発明の内部短絡評価装置を用いることにより、電池または電池パックから取り出された電極群を、電池または電池パックに組み込まれた状態と同じ状態とした上で、電極群の内部短絡試験を行うことができる。よって、本発明の内部短絡評価装置を用いることにより、各種の電池または電池パックの内部短絡試験を正確に行うことができる。
本発明の好ましい実施形態に係る内部短絡評価装置のブロック図である。 図1の内部短絡評価装置の構成の一例を模式的に示す図である。 本発明の別の好ましい実施形態に係る内部短絡評価装置のブロック図である。 図3の内部短絡評価装置に含まれる、短絡子が一体化された加圧子の一例を示す縦断面図である。 図4の加圧子の底面図である。
(実施の形態1)
 以下、本実施形態に係る、電極群、電解質およびこれらを収容する電池ケースを含む電池の内部短絡評価装置について説明する。前記内部短絡評価装置は、
 (1)前記電極群の表面の少なくとも所定の位置を加圧する加圧子、
 (2)前記所定の位置に押し当てられる短絡子、
 (3)前記電極群において前記短絡子により短絡が生じたときに変化する電池情報を測定する電池情報測定部、
 (4)前記電池情報測定部によって測定された電池情報の変化を検知し、かつ前記電池情報を所定の基準値と比較して内部短絡を判断する短絡検知部、
 (5)前記加圧子に加えられる加圧力を測定する加圧力測定部、
 (6)前記短絡検知部および前記加圧力測定部からの信号に基づいて、前記加圧子を制御する加圧子制御部、および
 (7)前記短絡検知部および前記加圧力測定部からの信号に基づいて、前記短絡子を制御する短絡子制御部
を備える。
 なお、本実施形態の内部短絡評価装置では、試験の前処理時に、短絡させる正極板と負極板の表面を露出させることなく、電池を分解して取り出された電極群をそのまま内部短絡の評価に用いることができる。一方で、従来の電池の内部短絡の評価においては、例えば所定の短絡点に異物を挿入するために、前記短絡点の位置まで電極群を展開する必要がある。このように電極群を展開した場合、電極合剤の脱落、電解質の蒸発等が懸念される。さらに、ポリマー電池に含まれる電極群においては、正極と負極とセパレータとが一体化されている。このため、ポリマー電池に含まれる電極群の展開を行うことができない。よって、ポリマー電池は、従来の内部短絡評価試験に供すること自体が不可能である。
 図1に、本発明の一実施形態に係る内部短絡評価装置のブロック図を示す。
 図1の内部短絡評価装置10は、加圧子11、加圧子制御部12、加圧力測定部13、短絡子14、短絡子制御部15、電池情報測定部16、短絡検出部17、および充放電制御部18を備える。
 図1の内部短絡評価装置の構成の一例を、図2を参照しながら説明する。図2の内部短絡評価装置は、内部短絡試験に用いられる電極群20を乗せるための台21を備える。加圧子11は、加圧子用加圧装置22により電極群20の所定の領域を加圧する。加圧子用加圧装置22は、所定の支持体(図示せず)により支持されており、例えば加圧子用加圧装置22が電極群20の方(矢印Aの方向)へ移動することにより、加圧子11が電極群20を加圧することができる。加圧子11と加圧装置22との間には、加圧力測定部13が配置されている。なお、加圧装置22が加圧力測定部を備える場合には、加圧力測定部を別に設ける必要はない。短絡子14は、短絡子用加圧装置23により、電極群20に押し込まれる。短絡子用加圧装置23は、所定の支持体(図示せず)に支持されており、例えば短絡子用加圧装置23が電極群20の方へ移動することにより、短絡子14が電極群20に押し込まれる。コンピュータ(PC)24には、加圧子制御部、短絡子制御部および短絡検出部が設けられている。図2の内部短絡評価装置において、電極群20には、充放電制御部18が接続されるとともに、電極群20の電池情報を測定する電池情報測定部16が設けられている。充放電制御部18には2つの端子が設けられており、前記2つの端子は、電極群22の充放電を制御できるように、電極群20の正極および負極にそれぞれ接続される。また、電池情報測定部16および充放電制御部18は、PC24に接続されている。なお、図2において、電極群20は、捲回軸に対して垂直な面の最外周のみを示している。
 本実施形態の内部短絡評価装置10においては、まず、加圧子11により、電極群20の所定の位置を含む所定の領域が押圧される。加圧子11による加圧力は、加圧力測定部13により測定されている。前記加圧力が所定の値にまで達すると、加圧子制御部12により、加圧子11の移動が停止され、加圧力が前記所定の値に維持される。
 内部短絡試験に用いられる電極群20は、捲回型であってもよいし、積層型であってもよい。捲回型の電極群の場合、捲回型の電極群は、円筒型であってもよいし、角型電池に含まれるような断面が略楕円形の柱状体(捲回型かつ角型の電極群)であってもよい。円筒型の電極群において、前記所定の位置は、例えば、捲回軸に平行な面上の所定の位置とすることができる。積層型の電極群において、前記所定の位置は、例えば、積層方向に垂直な面上の所定の位置とすることができる。捲回型かつ角型の電極群において、前記所定の位置は、例えば、捲回軸に垂直な電極群の略楕円形の横断面における長軸方向にほぼ平行な電極群の面上の所定の位置とすることができる。
 電極群20に印加される加圧力は、1000N以下、例えば0~1000Nの範囲にあればよく、電極群20の構造等に応じて、適宜調節される。例えば、円筒型電池に含まれる円筒型電極群に印加される加圧力は、800N以下、具体的には0~800Nとすることができる。角型電池に含まれる電極群に印加される加圧力は、例えば、400N以下、具体的には0~400Nとすることができる。
 なお、円筒型電極群は、耐圧性が高く、高い圧力にまで耐えることができる。一方、角型電池に含まれる電極群は、円筒型電極群と比較して、耐圧性が多少劣る。このため、角型電池に含まれる電極群に印加される加圧力は、円筒型電極群に印加される加圧力と比較して低く設定される。ここで、角型電池に含まれる電極群は、捲回型であってもよいし、積層型であってもよい。
 加圧子11の電極群20との接触部は、ゴム材料を含むことが好ましく、ゴム材料のみからなることがさらに好ましい。前記接触部はゴム弾性を有することから、前記接触部は、電極群20を加圧する際に、電極群20の表面形状にあわせて変形することができる。このため、電極群20に加圧子11が密着した状態で、つまり大きな接触面積で、加圧子11により電極群20を加圧することができる。
 前記ゴム材料は、ゴム弾性を有する限り、特に限定されない。例えば、前記ゴム材料としては、ニトリルゴム、スチレンブタジエンゴム、天然ゴム、エチレンプロピレンゴム、クロロプレンゴム、シリコンゴム、ウレタンゴム、フッ素ゴム、ハイパロンなどが挙げられる。
 加圧子11は、上記のように、加圧子用加圧装置22を含むことができ、前記加圧装置22により、加圧子11は電極群20の所定の位置を含む所定の領域を加圧することができる。加圧装置の形式としては、例えば、サーボモータを用いるスクリュー式、ポストガイドスクリュー式、フリコ式、テコ式、クランク式、メカニカルプレス式、油圧プレス式、エアープレス式などが挙げられる。
 加圧力測定部13としては、例えば、圧力センサを用いることができる。
 次に、加圧力測定部13からの信号に基づいて、短絡子制御部15により、短絡子14が、電極群20の所定の位置に、電極群20の外側から内側に向かって押し当てられる。
 図2には、電極群20が加圧子11により加圧されるとともに、電極群20の所定の位置に短絡子14が押し当てられている様子も示されている。図2に示される加圧子11は、基材部11aと、基材部11aの電極群20側に設けられた接触部11bとを有する。接触部11bは、ゴム材料からなる。加圧子11には、貫通孔11cが設けられており、貫通孔11cを通して、短絡子14が、電極群20の所定の位置に刺し込まれている。
 基材部11aを構成する材料は、電極群20に1000N以下の加圧力をかけることができれば、特に限定されない。このような材料としては、例えば、ステンレス鋼が挙げられる。
 加圧力を印加する方向(矢印Aの方向)に垂直な断面(厚さ方向に垂直な断面)における接触部11bの形状は、特に限定されない。例えば、接触部11bの前記断面の形状は、円形であってもよいし、楕円形であってもよいし、矩形であってもよい。
 貫通孔11cは、接触部11bの中心軸を通るように設けることが好ましい。電極群20が円筒型である場合、加圧子11は、貫通孔11cが、電極群20の捲回軸に対して垂直な直径方向に平行となるように、電極群20に接触させることが好ましい。電極群20が、角型電池に含まれる積層型または捲回型の電極群である場合、貫通孔11cが電極板の積層方向と平行となるように、電極群20に加圧子11を接触させることが好ましい。これにより、電極群20の所定の位置を含む領域に、均一に加圧力をかけることができる。ここで、接触部11bの中心軸とは、その厚さ方向に垂直な断面の形状の中心点を通り、加圧力を印加する方向に平行な軸のことをいう。
 短絡子14の電極群20に接触する部分は、鋭利な突起状または鋭利な刃先状であることが好ましい。このような短絡子14を、電極群20の所定の位置に押し込むことにより、加圧子11の先端近傍に存在する正極と負極とを確実に短絡させることができる。このとき、正極と負極とが直接接触して短絡が生じてもよいし、短絡子14を介して、正極と負極とが短絡してもよい。
 短絡子14の材質としては、例えば、鉄、ニッケル、ステンレス鋼のような金属、絶縁性セラミック、樹脂のような不導体、および半導体、導電剤含有樹脂のような高抵抗材料を用いることができる。また、所定の材料(例えば、前記金属および不導体)を前記高抵抗材料で被覆した短絡子を用いることもできる。
 短絡子14の材質が金属である場合、短絡子14の寿命を長くすることができる。高抵抗材料からなる短絡子14または表面部が高抵抗材料からなる短絡子14を用いることにより、短絡点の抵抗を制御することができる。
 例えば、短絡子14としては、電極群20に接触する部分が鋭利な突起状または鋭利な刃先状の釘を用いることができる。
 短絡子14を電極群20に押し込むときの速度は0.1mm/s~180mm/sであることが好ましい。短絡子14を電極群20に押し込むときの加圧力は50N以下であることが好ましい。このような条件で短絡子14を電極群20に押し込むことにより、電極群20の所定の位置において、短絡を有効に発生させることが可能となる。
 なお、短絡子14は、上記のように、短絡子用加圧装置23を含んでいてもよい。短絡子用加圧装置23としては、加圧子用加圧装置と同様な装置を用いることができる。
 本実施形態の内部短絡評価装置10においては、電極群20において短絡子14により短絡を生じさせるとき、電極群20の電池情報が、電池情報測定部16により測定される。短絡検出部17は、電池情報測定部16で測定された電池情報を受ける。短絡検出部17においては、電池情報測定部16で測定された電池情報が変化した際に、変化後の電池情報を所定の基準値と比較して、内部短絡が発生したか否かが判断される。内部短絡が発生したと判断された場合には、短絡検出部17から、加圧子制御部12および短絡子制御部15に信号が送られる。加圧子制御部12および短絡子制御部15は、短絡検出部17からの信号に基づいて、加圧子用加圧装置22および短絡子用加圧装置23を制御して、加圧子11および短絡子14を元に位置に戻す。こうして、電極群20の加圧および内部短絡を停止させる。
 短絡検出部17としては、例えば、電極群20の電池情報の変化を検知し、変化後の電池情報と所定の基準値とを比較して、内部短絡が生じたことを判断するとともに、内部短絡が生じたと判断された場合には、加圧子制御部12および短絡子制御部15へ信号を発信することができる所定の回路を用いることができる。
 電池情報測定部16によって測定される電池情報としては、例えば、電池電圧、電極群の温度などが挙げられる。なかでも、内部短絡に敏感に依存するため、電池電圧を、電池情報として測定することが好ましい。例えば、電極群20に短絡子14を押し込む際に、電池電圧を測定しておき、内部短絡に伴い、電池電圧が所定の値以上低下したときに、内部短絡が生じたと、短絡検出部17に判断させてもよい。
 電池情報として電池電圧を測定する場合、電池情報測定部16としては、例えば、電圧計を用いることができる。なお、図2の内部短絡評価装置では、電池電圧を測定する場合を示しており、電池情報測定部16と電極群20とが並列に接続されるように、電池情報測定部16が、例えば、電極群20に設けられた正極端子(図示せず)および負極端子(図示せず)に接続される。
 電池情報として、電極群20の温度を測定する場合には、例えば、電池情報測定部16としては、熱電対、サーモビュアーなどを用いることができる。あるいは、電池情報として、短絡により発生する熱量を測定してもよい。この場合、電池情報測定部16としては、熱量計等を用いることができる。
 短絡検出部17に設けられる前記基準値は、求める電池の安全性のレベルによって、適宜選択される。
 なお、内部短絡が生じたと判断されたときの短絡検出部17から加圧子制御部12および短絡子制御部15への信号の発信は、内部短絡が発生したと判断された時点で行われてもよい。または、タイマー等を用いて、所定の時間、時間を遅らせて、発信させてもよい。
 本実施形態の内部短絡評価装置10は、図1に示されるように、短絡検出部17からの信号に基づいて、電極群20の充放電を制御する充放電制御部18をさらに備えていることが好ましい。圧力をかけた状態で電極群20に短絡を生じさせると同時に、充放電制御部18を用いて電極群20に電流の入出力を行い、そのときの電池情報の変化を測定する。これにより、1つの電極群(試験セル)を用いて、並列接続された電池パックを想定した試験、あるいは用いた試験セルよりも出力の大きな電池または出力の小さい電池を想定した試験を行うことができる。
 なお、前記で説明した種々の制御部は、例えば、別の構成要素からの命令を受ける受信部と、前記命令に基づくさらなる命令を発信することができる発信部とを備えることができる。
 上記で説明したような内部短絡評価装置10を用いることにより、電池または電池パックの構造の違いに応じた圧力を電極群20にかけた状態で、電極群20に短絡子14を押し込むことができる。例えば、本実施形態の内部短絡評価装置10を用いることにより、制御された圧力下で、正極と負極との短絡を発生させることができる。
(実施の形態2)
 別の実施形態に係る、電極群、電解質およびこれらを収容する電池ケースを含む電池の内部短絡評価装置について説明する。本実施形態の内部短絡評価装置は、
 (i)一体化された短絡子を備える加圧子であって、前記電極群の表面の少なくとも所定の位置を加圧しながら、前記所定の位置に前記短絡子を押し込む、加圧子、
 (ii)前記電極群において前記短絡子に短絡が生じたときに変化する電池情報を測定する電池情報測定部、
 (iii)前記電池情報測定部によって測定された電池情報の変化を検知し、かつ前記電池情報を所定の基準値と比較して内部短絡を判断する短絡検知部、
 (iv)前記加圧子に加えられる加圧力を測定する加圧力測定部、および
 (v)前記短絡検知部および前記加圧力測定部からの信号に基づいて、前記加圧子を制御する加圧子制御部
を備える。
 図3に、本実施形態に係る内部短絡評価装置の一例のブロック図を示す。
 図3の内部短絡評価装置30は、短絡子(図示せず)が一体化された加圧子31、加圧子制御部32、加圧力測定部33、電池情報測定部36、短絡検出部37、および充放電制御部38を含む。
 図3の内部短絡評価装置30においては、加圧子31により、電極群40の所定の位置を含む所定の領域が、所定の圧力となるまで、一定の速度で加圧される。具体的には、加圧子31による加圧力は、加圧力測定部33により測定されている。加圧子制御部32は、加圧力測定部33からの信号に基づいて、加圧子31を、電極群40の所定の位置が所定の加圧力で押圧されるまで、一定の速度で移動させる。このとき、前記所定の位置が短絡子により押圧され、前記位置において短絡子により短絡を生じさせることができる。
 実施の形態1と同様に、電極群40が円筒型である場合、加圧子31は、短絡子の突出方向が、電極群40の捲回軸に対して垂直な直径方向に平行となるように、電極群40に接触させることが好ましい。電極群40が、角型電池に含まれる積層型または捲回型の電極群である場合、加圧子31は、短絡子の突出方向が電極板の積層方向と平行となるように、電極群40に接触させることが好ましい。
 本実施形態においても、実施の形態1と同様に、電極群40にかけられる加圧力は、0~1000Nの範囲にあればよい。例えば、円筒型電極群に印加される加圧力は、0~800Nの範囲にあることが好ましい。角型電池に含まれる積層型または捲回型の電極群に印加される加圧力は、0~400Nの範囲にあることが好ましい。
 加圧子31の移動速度は、0.1~5mm/sであることが好ましい。内部短絡は、充放電による正極および/または負極の膨張・収縮によって引き起こされると考えられる。このため、内部短絡試験を実施する際には、可能な範囲内のできるだけ遅い速度で、正極と負極とを短絡させることが望ましい。
 本実施形態においても、実施の形態1と同様に、短絡子により短絡が生じたときに変化する電池情報が電池情報測定部36により測定されている。電池情報測定部36により測定された電池情報は、短絡検出部37に送られる。短絡検出部37においては、電池情報測定部36で測定された電池情報が変化した際に、変化後の電池情報を所定の基準値と比較して、内部短絡が発生したか否かが判断される。内部短絡が発生したと判断された場合には、短絡検出部37から、加圧子制御部32に信号が送られる。加圧子31が加圧装置を備える場合、加圧子制御部32は、短絡検出部37からの信号に基づいて、前記加圧装置を制御して、加圧子31を元に位置に戻す。こうして、電極群40の加圧および内部短絡を停止させる。
 図4および5に、本実施形態で用いられる加圧子31の一例を示す。図4は、加圧子の一例を示す縦断面図であり、図5は、図4の加圧子の底面図である。
 図4の加圧子31は、基材部31aと、基材部31aの電極群40と接触する側に設けられた、接触部31bおよび短絡子31cとを備える。接触部31bは、実施の形態1と同様に、ゴム材料を含むことが好ましく、ゴム材料のみからなることがさらに好ましい。
 短絡子31cの材質は、実施の形態1と同様であってもよい。さらに、短絡子31cの電極群40と接触する部分は、鋭利な突起状であってもよいし、鋭利な刃先状であってもよい。
 本実施形態においても、短絡子31cとしては、例えば、電極群40に接触する部分が鋭利な突起状または鋭利な刃先状の釘を用いることができる。
 基材部31aを構成する材料は、加圧子31が電極群40に0~1000Nの加圧力をかけることができれば、特に限定されない。例えば、前記材料として、ステンレス鋼を用いることができる。
 加圧子31において、ゴム材料を含む接触部31bと短絡子31cとの配置は、特に限定されない。例えば、加圧子は、図5に示されるように、断面がドーナツ状の接触部31bと、接触部31bの中心部(空隙部分)に配置された短絡子31cとを含んでもよい。あるいは、加圧子は、2つの接触部と、その間に配置された短絡子とを含んでもよい。あるいは、加圧子は、短絡子と、短絡子が配置された基材部上の点を中心とした円上に等間隔で並んだ3つ以上の接触部とを含んでもよい。
 接触部31bに含まれるゴム材料の弾性率、ならびに接触部31bの高さHと短絡子31cの高さhとの比は、電極群40に印加される加圧力に応じて、適宜選択される。
 例えば、電極群40に印加される加圧力を高くする場合には、短絡子31cの高さhに対する接触部31bの高さHとの比(H/h)が大きくされる。電極群40に印加される加圧力が低い場合には、比(H/h)は、電極群40に印加される加圧力が高い場合と比較して、小さくされる。
 具体的には、接触部31bに含まれるゴム材料の弾性率は、0.1~10GPaであることが好ましい。比(H/h)の範囲は、1~20であることが好ましい。
 実施の形態1と同様に、加圧子31は、加圧装置を備えていてもよい。前記加圧装置を加圧子制御部32により制御して、加圧子の加圧力および移動速度を制御することができる。
 本実施形態においても、内部短絡評価装置30は、充放電制御部38をさらに備えることが好ましい。これは、上記と同様の理由による。
 加圧力測定部33、電池情報測定部36、短絡検出部37、各種制御部等には、実施の形態1と同様のものを用いることができる。なお、本実施形態において、加圧子制御部および短絡検出部は、1つのPC内に設けてもよい。
 本実施形態においても、電池情報測定部36によって測定される電池情報としては、電池電圧、電極群の温度などが挙げられる。なかでも、内部短絡に敏感に依存するため、電池電圧を、電池情報として測定することが好ましい。
 また、短絡検出部37に設けられる前記基準値は、求める電池の安全性のレベルによって、適宜選択される。
 さらには、実施の形態1と同様に、内部短絡が生じたと判断されたときの短絡検出部37から加圧子制御部32への信号の発信は、内部短絡が発生したと判断された時点で行われてもよいし、タイマー等を用いて、所定の時間、時間を遅らせて、発信させてもよい。
 本実施形態の内部短絡評価装置30は、短絡子が一体化された加圧子31を備える。よって、本実施形態の内部短絡評価装置30を用いることにより、例えば、電極群40を所定の加圧力まで一定速度で加圧しながら、電極群40に異物を押し込む、異物押し込み試験を行うことができる。
 さらに、実施の形態1の内部短絡評価装置10では、加圧子11による加圧および短絡子14による加圧の行うために、例えば加圧子用および短絡子用の2台の加圧装置が設ける必要がある。一方で、本実施形態の内部短絡評価装置30では、H/h比を調節すれば、1台の加圧装置で加圧子31による加圧を行い、短絡時に電極群40に印加される加圧力を制御することができる。よって、本実施形態の内部短絡評価装置30は、実施形態1の内部短絡評価装置10と比較して、簡略化することができる。
 上記実施の形態1および2の内部短絡評価装置は、それぞれ、評価される電極群、加圧子および短絡子を少なくとも収容する恒温槽を有することが好ましい。具体的には、実施の形態1の内部短絡評価装置10は、評価される電極群、加圧子および短絡子を少なくとも収容する恒温槽を備えることが好ましい。実施の形態2の内部短絡評価装置30は、評価される電極群および短絡子を備える加圧子を少なくとも収容する恒温槽を備えることが好ましい。
 電池の安全性は、短絡点でのジュール熱に依存する。前記ジュール熱は電池の出力に依存し、前記出力は電池温度に依存する。つまり、電池温度は、内部短絡試験の結果に影響を及ぼす。よって、電極群、加圧子および短絡子を少なくとも収容する恒温槽を設けることにより、電池の内部短絡評価をさらに正確に行うことができる。
 本発明の内部短絡評価装置を用いて評価される電池の種類は、特に限定されない。本発明の内部短絡評価装置により、例えば、正極と、負極と、それらの間に配置されたセパレータとを含む電極群、電解質、ならびに電極群および電解質を収容する電池ケースを備える電池を評価することができる。このような電池としては、マンガン乾電池、アルカリ乾電池、リチウム一次電池のような一次電池、ならびに鉛蓄電池、ニッケル・カドミウム蓄電池、ニッケル-水素電池、リチウム二次電池などの二次電池が挙げられる。また、前記電池ケースは、例えば、金属製のケースであってもよいし、ラミネートフィルムからなるケースであってもよい。
 なお、本発明の内部短絡評価装置により安全性のレベルが特定された電池の作製方法を用いて、それと同じ安全性のレベルを有する電池または電池パックを作製することができる。具体的に、所定の作製方法で電池を作製し、得られた電池を本発明の内部短絡評価装置で評価する。前記電池が所望する安全性のレベルを有することがわかれば、前記電池の作製方法を用いて、それと同じ安全性のレベルを有する電池または前記電池を含む電池パックを作製することができる。
 このように、安全性のレベルが特定された電池の作製方法と同じ作製方法を用いることにより、電池または電池パックの内部短絡に対する安全性レベルを保証することができる。
 さらには、本発明により、電池の安全性レベルを特定することができるため、その電池の最適な使用用途の選定、アプリケーション機器の設計等を容易に行うことが可能となる。
 以下、本発明を、実施例を参照しながら、詳細に説明する。
《電池Aの作製》
 以下のようにして、ポリマー電池(非水電解質二次電池)を作製した。
(正極の作製)
 正極活物質として、コバルト酸リチウムを用いた。正極活物質を85重量部と、結着剤であるポリフッ化ビニリデン(PVDF)を5重量部と、導電剤であるアセチレンブラックを10重量部と、適量のN-メチル-2-ピロリドン(NMP)とを混合して、正極合剤ペーストを調製した。
 得られた正極合剤ペーストを、アルミニウム製の正極集電体(厚さ:15μm)の両面に塗布し、乾燥し、圧延して、厚さ160μmの正極を得た。
(負極の作製)
 負極活物質として、人造黒鉛を用いた。負極活物質を95重量部と、結着剤であるPVDFを5重量部と、適量のNMPとを混合して、負極合剤ペーストを調製した。
 得られた負極合剤ペーストを、銅製の負極集電体(厚さ:10μm)の両面に塗布し、乾燥し、圧延して、厚さ165μmの負極を得た。
(セパレータの作製)
 フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(P(VDF-HFP))を100重量部と、ジブチルフタレート(DBP)を100重量部と、所定量のN-メチル-2-ピロリドン(NMP)とを混合して、ペーストを得た。得られたペーストを膜状に成形し、NMPを蒸発させた。次に、得られた膜をジエチルエーテル中に浸漬し、DBPを抽出させて、P(VDF-HFP)からなる微多孔性フィルムを得た。得られた微多孔性フィルムを、セパレータとして用いた。
(電池の組立)
 上記のようにして得られた正極とセパレータと負極とを、熱溶着して、積層型の電極群を得た。正極集電体には、アルミニウム製正極リードの一端を接続し、負極集電体には、銅製負極リードの一端を接続しておいた。
 アルミニウムラミネートフィルムからなる袋状の電池ケースを準備した。このラミネートフィルムは、Al箔と、Al箔の内側に配されたポリプロピレンからなるフィルムと、Al箔の外側に配されたポリエチレンテレフタレートとナイロンとからなるフィルムとから構成される。
 電池ケースの内部に電極群を収容した。電池ケースの開口部から、外部に、正極リードの他端および負極リードの他端を引き出した。
 次に、電池ケース内に、非水電解質を注液し、非水電解質を電極群に含浸させた。こうして、セパレータに、非水電解質を保持させた。非水電解質は、エチレンカーボネートとエチルメチルカーボネートを1:3の体積比で含む非水溶媒に、6フッ化リン酸リチウム(LiPF)を1.0mol/Lの濃度で溶解することにより、調製した。
 次いで、正極リードと負極リードとの電気的絶縁および電池ケースの気密性を確保しながら、電池ケースの開口部を封口して、ポリマー電池を得た。得られた電池を電池Aとした。
《電池Bの作製》
 以下のようにして、電極に含まれる結着剤の量が通常よりも少ない捲回型非水電解質二次電池を作製した。
(正極の作製)
 正極活物質として、コバルト酸リチウムを用いた。正極活物質を88重量部と、結着剤であるPVDFを2重量部と、導電剤であるアセチレンブラックを10重量部と、適量のNMPとを混合して、正極合剤ペーストを調製した。
 得られた正極合剤ペーストを、アルミニウム製の正極集電体(厚さ:15μm)の両面に塗布し、乾燥し、圧延して、厚さ156μmの正極を得た。
(負極の作製)
 負極活物質として、人造黒鉛を用いた。負極活物質を98重量部と、結着剤であるPVDFを2重量部と、適量のNMPとを混合して、負極合剤ペーストを調製した。
 得られた負極合剤ペーストを、銅製の負極集電体(厚さ:10μm)の両面に塗布し、乾燥し、圧延して、厚さ161μmの負極を得た。
(電池の組立)
 正極と、ポリエチレン製のセパレータと、負極とを積層した。得られた積層体を渦巻状に捲回して、円筒型の電極群を得た。
 得られた電極群を、ニッケルメッキした鉄製の円筒型電池ケースに収容した。アルミニウム製正極リードの一端を、正極集電体に接続し、正極リードの他端を、封口板に接続した。銅製負極リードの一端を負極集電体に接続し、負極リードの他端は、電池ケースの内底面に接続した。
 次いで、電池ケース内に、非水電解質を注液した。非水電解質には、実施例1と同じものを用いた。
 次に、電池ケースの開口部を、封口板で封口して、非水電解質二次電池を得た。得られた電池を、電池Bとした。
《電池Cの作製》
 以下のようにして、活物質層の厚さが通常よりも厚い捲回型非水電解質二次電池を作製した。
(正極の作製)
 正極活物質として、コバルト酸リチウムを用いた。正極活物質を85重量部と、結着剤であるPVDFを5重量部と、導電剤であるアセチレンブラックを10重量部と、適量のNMPとを混合して、正極合剤ペーストを調製した。
 得られた正極合剤ペーストを、アルミニウム製の正極集電体(厚さ:15μm)の両面に塗布し、乾燥し、圧延して、厚さ200μmの正極を得た。
(負極の作製)
 負極活物質として、人造黒鉛を用いた。負極活物質を95重量部と、結着剤であるPVDFを5重量部と、適量のNMPとを混合して、負極合剤ペーストを調製した。
 得られた負極合剤ペーストを、銅製の負極集電体(厚さ:10μm)の両面に塗布し、乾燥し、圧延して、厚さ208μmの負極を得た。
(電池の組立)
 正極と、ポリエチレン製のセパレータと、負極とを積層した。得られた積層体を渦巻状に捲回して、円筒型の電極群を得た。
 得られた電極群を、ニッケルメッキした鉄製の円筒型電池ケースに収容した。アルミニウム製正極リードの一端を、正極集電体に接続し、正極リードの他端を、封口板に接続した。銅製負極リードの一端を負極集電体に接続し、負極リードの他端は、電池ケースの内底面に接続した。
 次いで、電池ケース内に、非水電解質を注液した。非水電解質には、実施例1と同じものを用いた。
 次に、電池ケースの開口部を、封口板で封口して、非水電解質二次電池を得た。得られた電池を、電池Cとした。
《電池Dの作製》
 以下では、一般的な捲回型非水電解質二次電池を作製した。
(正極の作製)
 正極活物質として、コバルト酸リチウムを用いた。正極活物質を85重量部と、結着剤であるPVDFを5重量部と、導電剤であるアセチレンブラックを10重量部と、適量のNMPとを混合して、正極合剤ペーストを調製した。
 得られた正極合剤ペーストを、アルミニウム製の正極集電体(厚さ:15μm)の両面に塗布し、乾燥し、圧延して、厚さ160μmの正極を得た。
(負極の作製)
 負極活物質として、人造黒鉛を用いた。負極活物質を95重量部と、結着剤であるPVDFを5重量部と、適量のNMPとを混合して、負極合剤ペーストを調製した。
 得られた負極合剤ペーストを、銅製の負極集電体(厚さ:10μm)の両面に塗布し、乾燥し、圧延して、厚さ165μmの負極を得た。
(電池の組立)
 正極と、ポリエチレン製のセパレータと、負極とを積層した。得られた積層体を渦巻状に捲回して、円筒型の電極群を得た。
 得られた電極群を、ニッケルメッキした鉄製の円筒型電池ケースに収容した。アルミニウム製正極リードの一端を、正極集電体に接続し、正極リードの他端を、封口板に接続した。銅製負極リードの一端を負極集電体に接続し、負極リードの他端は、電池ケースの内底面に接続した。
 次いで、電池ケース内に、非水電解質を注液した。非水電解質には、実施例1と同じものを用いた。
 次に、電池ケースの開口部を、封口板で封口して、非水電解質二次電池を得た。得られた電池を、電池Dとした。
 電池A~Dの設計容量は、それぞれ2400mAhとした。
[評価]
 電池A~Dを慣らし充放電に二度供した。次いで、これらの電池を400mAの電流で、電池電圧が4.1Vに達するまで充電し、充電後の電池を45℃環境下で7日間保存した。
 次いで、保存後の電池A~Dを放電し、次いで、以下の条件で充電した。
  定電流充電:電流値1500mA/充電終止電圧4.45V
  定電圧充電:充電電圧4.45V/充電終止電流100mA
 充電後の電池A~Dから、それぞれ電極群A~Dを取り出し、これらの電極群A~Dについて、以下のような評価装置を用いて、内部短絡の評価を行った。
《実施例1》
 本実施例では、図1のブロック図に示されるような内部短絡評価装置を用いた。また、図2に示されるような加圧子および短絡子を用いた。具体的には、基材部がSUS304製であり、接触部がニトリルゴムからなる加圧子を用いた。接触部は、直径10mm、高さ50mmの円柱状とした。
 短絡子としては、直径が1.0mmであり、電極群との接触部が鋭利な突起状に加工された釘を用いた。
 加圧子を構成する基材部および接触部には、連通する貫通孔を設けておき、その貫通孔を通して、短絡子が電極群の所定の位置を押圧できるようにした。前記貫通孔は、接触部の中心軸を通るように設けた。
 積層型の電極群Aについては、電極板の積層方向に垂直な面上の所定の位置を含む所定の領域に接触部が接触するように、電極群Aに加圧子を接触させた。このとき、電極群Aと加圧子とは、電極板の積層方向と前記接触部の中心軸とが平行となるように接触させた。
 捲回型の電極群B~Dについては、電極群の捲回軸に平行な表面上の所定の位置を含む所定の領域に接触部が接触するように、電極群に加圧子を接触させた。このとき、電極群と加圧子とは、電極群の捲回軸と前記接触部の中心軸とが直交するように接触させた。
 電極群A~Dを加圧するときの加圧力は、50N、400N、および800Nとした。短絡子の移動速度は、0.1mm/sとし、短絡子の加圧力は、最大50Nとした。
 電池情報としては、電極群の電池電圧を測定した。電極群に短絡子を押し込んだ際に、電池電圧が50mV以上低下した場合に、内部短絡が生じたと判断した。
 電極群A~Dについて、それぞれ2つずつ評価を行った。結果を表1に示す。
《実施例2》
 本実施例では、図3のブロック図に示されるような内部短絡評価装置を用いた。用いた加圧子の縦断面図および底面図を、それぞれは図4および5に示す。
 具体的には、加圧子において、基材部はSUS304製とし、接触部は、ニトリルゴム(弾性率:0.1~10GPa)製とした。さらに、接触部には、中心軸に沿って直径2mmの円柱状の空隙部を設けておいた。
 短絡子としては、直径が1.0mmであり、電極群との接触部が鋭利な突起状に加工された釘を用いた。
 短絡子の高さhに対する接触部の高さ比(H/h)は、10/2とした。
 積層型の電極群Aについては、電極板の積層方向に垂直な面上の所定の位置を含む所定の領域に接触部が接触するように、電極群Aに加圧子を接触させた。このとき、電極群Aと加圧子とは、電極板の積層方向と短絡子の突出方向とが平行となるように接触させた。
 捲回型の電極群B~Dについては、電極群の捲回軸に平行な表面上の所定の位置を含む所定の領域に接触部が接触するように、電極群に加圧子を接触させた。このとき、電極群と加圧子とは、電極群の捲回軸と短絡子の突出方向とが直交するように接触させた。
 加圧子に設けられた短絡子を、電極群A~Dの所定の位置に、電極群A~Dを加圧する加圧力の上限を1000Nとし、0.1mm/sの速度で、押し当てた。
 実施例1と同様に、電池情報としては、電極群の電池電圧を測定した。電極群に短絡子を押し込んだ際に、電池電圧が50mV以上低下した場合に、内部短絡が生じたと判断して加圧を停止した。
 電極群A~Dについて、それぞれ3つずつ評価を行った。結果を表1に示す。
 表1において、内部短絡が検出できた電極群を○で示し、内部短絡を確認できなかった電極群を△、電極群の温度の急激な上昇が確認された電極群を×で示している。
Figure JPOXMLDOC01-appb-T000001
 
 従来の内部短絡試験では、短絡点に異物を挿入することが必要となる。しかしながら、ポリマー電池(電池A)の場合には、電極板とセパレータとが接着されているため、内部短絡試験を行うこと自体が不可能である。また、結着剤の量が少ないために活物質が脱落しやすい電池(電池B)の場合も、従来の内部短絡試験の実施は困難である。さらに、従来の内部短絡試験では、短絡させるときの電極板への加圧力を制御することができないため、特に合剤の厚みが厚い設計の電池(電池C)では、短絡が起こりにくく、短絡するときの圧力がばらつく。その結果、同じ圧力で内部短絡試験を行ったとしても、電池の発火が生じたり、生じなかったりする。
 一方で、本発明の内部短絡評価装置を用いた場合には、表1に示されるように、いずれの設計の電池に於いても安定した試験結果を得ることができる。
 本発明によれば、各種電池または各種電池パックから取り出された電極群の内部短絡の評価を、電池または電池パックに組み込まれた状態と同じ状態で行うことができる。よって、本発明の内部短絡評価装置を用いることにより、各種の電池または電池パックの内部短絡試験を正確に行うことができる。
 10 内部短絡評価装置
 11 加圧子
 11a 基材部
 11b 接触部
 11c 貫通孔
 12、32 加圧子制御部
 13、33 加圧力測定部
 14 短絡子
 15 短絡子制御部
 16、36 電池情報測定部
 17、37 短絡検出部
 18、38 充放電制御部
 20、40 電極群
 21 台
 22 加圧子用加圧装置
 23 短絡子用加圧装置
 24 コンピュータ
 31 短絡子が一体化された加圧子
 31a 基材部
 31b 接触部
 31c 短絡子

Claims (11)

  1.  正極と、負極と、前記正極と前記負極との間に配置されたセパレータとを含む電極群、電解質、ならびに前記電極群および前記電解質を収容する電池ケースを備える電池の内部短絡評価装置であって、
     (1)前記電極群の表面の少なくとも所定の位置を加圧する加圧子、
     (2)前記所定の位置に押し当てられる短絡子、
     (3)前記電極群において前記短絡子によって短絡が生じたときに変化する電池情報を測定する電池情報測定部、
     (4)前記電池情報測定部によって測定された電池情報の変化を検知し、かつ前記電池情報を所定の基準値と比較して内部短絡を判断する短絡検知部、
     (5)前記加圧子に加えられる加圧力を測定する加圧力測定部、
     (6)前記短絡検知部および前記加圧力測定部からの信号に基づいて、前記加圧子を制御する加圧子制御部、および
     (7)前記短絡検知部および前記加圧力測定部からの信号に基づいて、前記短絡子を制御する短絡子制御部
    を有する、内部短絡評価装置。
  2.  前記加圧子に貫通孔が設けられており、前記貫通孔を通して、前記短絡子が、前記所定の位置に押し当てられる、請求項1記載の内部短絡評価装置。
  3.  前記加圧子の前記電極群との接触部が、ゴム材料を含む、請求項1記載の内部短絡評価装置。
  4.  前記短絡子の前記電極群に接触する部分が、鋭利な突起状または鋭利な刃先状である、請求項1記載の内部短絡評価装置。
  5.  正極と、負極と、前記正極と前記負極との間に配置されたセパレータとを含む電極群、電解質、ならびに前記電極群および前記電解質を収容する電池ケースを備える電池の内部短絡評価装置であって、
     (i)一体化された短絡子を備える加圧子であって、前記電極群の表面の少なくとも所定の位置を加圧しながら、前記所定の位置に前記短絡子を押し込む、加圧子、
     (ii)前記電極群において前記短絡子によって短絡が生じたときに変化する電池情報を測定する電池情報測定部、
     (iii)前記電池情報測定部によって測定された電池情報の変化を検知し、かつ前記電池情報を所定の基準値と比較して内部短絡を判断する短絡検知部、
     (iv)前記加圧子に加えられる加圧力を測定する加圧力測定部、および
     (v)前記短絡検知部および前記加圧力測定部からの信号に基づいて、前記加圧子を制御する加圧子制御部
    を有する、内部短絡評価装置。
  6.  前記加圧子の前記電極群との接触部が、ゴム材料を含む、請求項5記載の内部短絡評価装置。
  7.  前記短絡子の前記電極群に接触する部分が、鋭利な突起状または鋭利な刃先状である、請求項5記載の内部短絡評価装置。
  8.  前記短絡検知部からの信号に基づいて、前記電極群の充放電を制御する充放電制御部をさらに備える、請求項1記載の内部短絡評価装置。
  9.  前記電極群、前記加圧子および前記短絡子を少なくとも収容する恒温槽をさらに備える、請求項1記載の内部短絡評価装置。
  10.  前記短絡検知部からの信号に基づいて、前記電極群の充放電を制御する充放電制御部をさらに備える、請求項5記載の内部短絡評価装置。
  11.  前記電極群、前記加圧子および前記短絡子を少なくとも収容する恒温槽をさらに備える、請求項5記載の内部短絡評価装置。
     
PCT/JP2010/000231 2009-01-19 2010-01-18 電池の内部短絡評価装置 WO2010082502A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010546602A JP5060623B2 (ja) 2009-01-19 2010-01-18 電池の内部短絡評価装置
KR1020107029245A KR101179347B1 (ko) 2009-01-19 2010-01-18 전지의 내부 단락 평가 장치
US12/992,011 US8471566B2 (en) 2009-01-19 2010-01-18 Internal short circuit evaluation apparatus for battery
CN2010800019277A CN102077107B (zh) 2009-01-19 2010-01-18 电池的内部短路评价装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-009220 2009-01-19
JP2009009220 2009-01-19

Publications (1)

Publication Number Publication Date
WO2010082502A1 true WO2010082502A1 (ja) 2010-07-22

Family

ID=42339754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000231 WO2010082502A1 (ja) 2009-01-19 2010-01-18 電池の内部短絡評価装置

Country Status (5)

Country Link
US (1) US8471566B2 (ja)
JP (1) JP5060623B2 (ja)
KR (1) KR101179347B1 (ja)
CN (1) CN102077107B (ja)
WO (1) WO2010082502A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049933A1 (ja) * 2012-09-26 2014-04-03 トヨタ自動車株式会社 密閉型電池の製造方法、及び検査装置
JP2015095312A (ja) * 2013-11-11 2015-05-18 株式会社豊田自動織機 蓄電装置の検査方法
JP2015158442A (ja) * 2014-02-25 2015-09-03 エスペック株式会社 電池試験装置
JP2018006217A (ja) * 2016-07-05 2018-01-11 日産自動車株式会社 電極タブとバスバとの接合状態の検査方法
JP2018113230A (ja) * 2017-01-13 2018-07-19 日本電気株式会社 電池の内部短絡試験法と内部短絡試験装置
JP2018523273A (ja) * 2015-09-09 2018-08-16 エルジー・ケム・リミテッド 二次電池の釘貫通試験装置及び方法
JP2019114506A (ja) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 蓄電デバイスの評価方法、評価治具および蓄電デバイスの製造方法
JP2019132849A (ja) * 2013-03-14 2019-08-08 カリフォルニア インスティチュート オブ テクノロジー 電気及び電気化学エネルギーユニットの異常検出
US11073564B2 (en) 2015-10-01 2021-07-27 California Institute Of Technology Systems and methods for monitoring characteristics of energy units

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766117B2 (ja) * 2009-07-10 2015-08-19 本田技研工業株式会社 温度測定機能を持つリチウムイオン電池の釘刺し試験具
JP6272031B2 (ja) 2011-01-18 2018-01-31 ティアックス エルエルシーTiax Llc 並列接続バッテリのための差動電流モニタリング
JP5747895B2 (ja) * 2012-11-06 2015-07-15 トヨタ自動車株式会社 組電池の製造方法
JP5818030B2 (ja) * 2013-01-10 2015-11-18 横河電機株式会社 電池の応答特性の測定方法
CN103149538B (zh) * 2013-02-19 2016-05-11 合肥国轩高科动力能源有限公司 一种模拟电池组中单体电池内部短路的方法
KR101558250B1 (ko) 2013-05-23 2015-10-07 주식회사 엘지화학 전극조립체의 불량 유무 선별용 고정장치 및 불량 유무 선별방법
CN104062598B (zh) * 2014-06-30 2017-03-01 上海德朗能动力电池有限公司 一种锂离子电池强制内部短路安全性评估方法
KR101790118B1 (ko) 2014-12-05 2017-10-25 주식회사 엘지화학 전극조립체의 불량 유무 선별용 가압장치 및 불량 유무 선별방법
CN105954641A (zh) * 2016-05-18 2016-09-21 合肥国轩高科动力能源有限公司 一种锂离子电池短路测试装置夹具及其检测方法
JP6791104B2 (ja) * 2017-11-29 2020-11-25 トヨタ自動車株式会社 蓄電デバイスの評価方法、蓄電デバイスの製造方法、および試験システム
CN108120937A (zh) * 2017-12-06 2018-06-05 浙江衡远新能源科技有限公司 一种动力电池内短路测试方法及装置
CN108227991B (zh) * 2018-01-03 2021-06-01 厦门天马微电子有限公司 一种显示面板、显示装置和检测方法
KR102204699B1 (ko) * 2018-01-31 2021-01-18 주식회사 엘지화학 이차전지 안전성 평가 방법 및 장치
US20210208208A1 (en) * 2018-05-28 2021-07-08 Yazami Ip Pte. Ltd. Method and system for detecting internal short-circuit (isc) in batteries and battery cells implementing such isc detection method
KR102395248B1 (ko) * 2018-08-09 2022-05-04 주식회사 엘지에너지솔루션 배터리 분리막 손상 검출장치 및 검출방법
CN109839594A (zh) * 2019-01-28 2019-06-04 西安交通大学 一种电极片充放电压力控制装置、控制系统及其使用方法
KR102509603B1 (ko) 2019-09-18 2023-03-10 주식회사 엘지에너지솔루션 저전압 불량 파우치형 이차전지 셀을 검출하기 위한 가압 단락 검사장치
KR20210048224A (ko) 2019-10-23 2021-05-03 주식회사 엘지화학 가압식 분리막 저항 측정 장치 및 측정 방법
CN111007426A (zh) * 2019-11-07 2020-04-14 荆门亿纬创能锂电池有限公司 电池扩孔检测设备
KR102556005B1 (ko) * 2021-04-05 2023-07-14 비나텍주식회사 파우치형 전지셀 충방전용 가압장치
US20230100761A1 (en) * 2021-09-27 2023-03-30 Lenovo (United States) Inc. Thermal runaway pin-point heating test
DE102022114024A1 (de) 2022-06-02 2023-12-07 Bayerische Motoren Werke Aktiengesellschaft Versuchsvorrichtung und Verfahren zum Erfassen einer Messgröße einer Batteriezelle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072456A1 (ja) * 2006-12-15 2008-06-19 Panasonic Corporation 電池の内部短絡評価方法および電池内部短絡評価装置並びに電池および電池パックおよびそれらの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102729A (ja) 1997-09-26 1999-04-13 Toray Ind Inc 非水溶媒系二次電池の製造方法
JP4666712B2 (ja) * 2000-02-22 2011-04-06 パナソニック株式会社 電池の短絡検査方法
JP4408058B2 (ja) * 2004-05-14 2010-02-03 パナソニック株式会社 電池評価装置
CN100502139C (zh) * 2005-04-04 2009-06-17 松下电器产业株式会社 圆柱形锂二次电池
JP4839117B2 (ja) 2005-04-04 2011-12-21 パナソニック株式会社 円筒型リチウム二次電池
JP2008192496A (ja) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd 電池の内部短絡評価方法並びに電池及び電池パック及びそれらの製造法
JP2008192497A (ja) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd 内部短絡安全性評価方法及び内部短絡安全性評価装置並びに電池及び電池パック

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072456A1 (ja) * 2006-12-15 2008-06-19 Panasonic Corporation 電池の内部短絡評価方法および電池内部短絡評価装置並びに電池および電池パックおよびそれらの製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067614A (ja) * 2012-09-26 2014-04-17 Toyota Motor Corp 密閉型電池の製造方法、検査装置、及び検査プログラム
US9372239B2 (en) 2012-09-26 2016-06-21 Toyota Jidosha Kabushiki Kaisha Sealed battery manufacturing method and inspection device
WO2014049933A1 (ja) * 2012-09-26 2014-04-03 トヨタ自動車株式会社 密閉型電池の製造方法、及び検査装置
JP2021103176A (ja) * 2013-03-14 2021-07-15 カリフォルニア インスティチュート オブ テクノロジー 電気及び電気化学エネルギーユニットの異常検出
US11879946B2 (en) 2013-03-14 2024-01-23 California Institute Of Technology Systems and methods for detecting abnormalities in electrical and electrochemical energy units
US11549993B2 (en) 2013-03-14 2023-01-10 California Institute Of Technology Systems and methods for detecting abnormalities in electrical and electrochemical energy units
JP2019132849A (ja) * 2013-03-14 2019-08-08 カリフォルニア インスティチュート オブ テクノロジー 電気及び電気化学エネルギーユニットの異常検出
US10955483B2 (en) 2013-03-14 2021-03-23 California Institute Of Technology Systems and methods for detecting abnormalities in electrical and electrochemical energy units
JP2015095312A (ja) * 2013-11-11 2015-05-18 株式会社豊田自動織機 蓄電装置の検査方法
JP2015158442A (ja) * 2014-02-25 2015-09-03 エスペック株式会社 電池試験装置
JP2018523273A (ja) * 2015-09-09 2018-08-16 エルジー・ケム・リミテッド 二次電池の釘貫通試験装置及び方法
US11073564B2 (en) 2015-10-01 2021-07-27 California Institute Of Technology Systems and methods for monitoring characteristics of energy units
US11567134B2 (en) 2015-10-01 2023-01-31 California Institute Of Technology Systems and methods for monitoring characteristics of energy units
JP2018006217A (ja) * 2016-07-05 2018-01-11 日産自動車株式会社 電極タブとバスバとの接合状態の検査方法
JP2018113230A (ja) * 2017-01-13 2018-07-19 日本電気株式会社 電池の内部短絡試験法と内部短絡試験装置
JP2019114506A (ja) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 蓄電デバイスの評価方法、評価治具および蓄電デバイスの製造方法

Also Published As

Publication number Publication date
KR20110021970A (ko) 2011-03-04
JPWO2010082502A1 (ja) 2012-07-05
US8471566B2 (en) 2013-06-25
JP5060623B2 (ja) 2012-10-31
CN102077107A (zh) 2011-05-25
US20110068800A1 (en) 2011-03-24
KR101179347B1 (ko) 2012-09-04
CN102077107B (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5060623B2 (ja) 電池の内部短絡評価装置
US8163409B2 (en) Evaluation method for safety upon battery internal short circuit, evaluation device for safety upon battery internal short circuit, battery, battery pack, and manufacturing method for battery and battery pack
US8444717B2 (en) Method for evaluating battery safety under internal short-circuit condition, battery and battery pack whose safety is identified by internal short-circuit safety evaluation method, and method for producing the same
JP7111235B2 (ja) リチウムイオン電池の評価方法、リチウムイオン電池の製造方法、および試験システム
JP5132206B2 (ja) 非水電解質電池用セパレータの評価方法
CN110168390B (zh) 用于检查二次电池缺陷的设备和方法
JP2018085245A (ja) 電池用短絡試験装置及び電池の短絡試験方法
JP2007018962A (ja) 密閉型二次電池
KR20080073661A (ko) 전지의 내부 단락시의 안전성 평가방법, 전지, 전지 팩,전지의 제조방법, 및 전지 팩의 제조방법
JP2009054300A (ja) 電池の内部短絡評価方法
JP2012084332A (ja) リチウムイオン二次電池の製造方法
Tagawa et al. Production processes for fabrication of lithium-ion batteries
CN109959875B (zh) 蓄电设备的评价方法、评价工具及蓄电设备的制造方法
JP6531388B2 (ja) 非水系電解質二次電池と、該電池を用いた電池内部ガス発生量の評価方法。
JP7011782B2 (ja) 二次電池の検査方法
KR20220118250A (ko) 모노셀 형태의 분리막 손상 검출 장치 및 방법
JP7147684B2 (ja) 蓄電デバイスの評価方法、金属片、および蓄電デバイスの製造方法
EP4243193A1 (en) Device and method for inducing internal short circuit in battery
JP2008066207A (ja) 電池
CN115810807A (zh) 非水电解液二次电池和非水电解液二次电池的制造方法
CN115336082A (zh) 二次电池系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001927.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731171

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010546602

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12992011

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107029245

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10731171

Country of ref document: EP

Kind code of ref document: A1