WO2010082490A1 - 真空処理装置、電子部品の製造方法及び真空処理プログラム - Google Patents

真空処理装置、電子部品の製造方法及び真空処理プログラム Download PDF

Info

Publication number
WO2010082490A1
WO2010082490A1 PCT/JP2010/000174 JP2010000174W WO2010082490A1 WO 2010082490 A1 WO2010082490 A1 WO 2010082490A1 JP 2010000174 W JP2010000174 W JP 2010000174W WO 2010082490 A1 WO2010082490 A1 WO 2010082490A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
finger
vacuum processing
displacement sensor
port
Prior art date
Application number
PCT/JP2010/000174
Other languages
English (en)
French (fr)
Inventor
白井泰幸
鈴木勝大
堀田和貴
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Publication of WO2010082490A1 publication Critical patent/WO2010082490A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • H01L21/67265Position monitoring, e.g. misposition detection or presence detection of substrates stored in a container, a magazine, a carrier, a boat or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67772Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving removal of lid, door, cover

Definitions

  • the present invention relates to a vacuum processing apparatus, a method for manufacturing an electronic component, and a vacuum processing program that can detect deformation of a finger of a substrate transfer robot quickly and accurately.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a vacuum processing technique capable of detecting finger deformation with high accuracy without breaking a vacuum during operation.
  • a vacuum processing apparatus includes a substrate transfer robot having fingers capable of holding a substrate, a transfer chamber having a substrate transfer port for loading and unloading a substrate by the robot, and the substrate transfer port.
  • a housing that is detachably connected to the transfer chamber and has an opening communicating with the inside of the transfer chamber and that forms a sealed internal space with respect to the outside, and detects deformation of the fingers inserted into the internal space
  • a sensing port provided with a displacement sensor, an exhaust means for exhausting the interior of the transport chamber and the housing through an exhaust port provided in the transport chamber, and the interior of the transport chamber and the housing by the exhaust means.
  • the present invention it is possible to prevent the substrate from being damaged by the deformation of the robot finger.
  • FIG. 5 is a sectional view of the sensing port (a sectional view taken along line AA in FIG. 4). It is a flowchart which shows the abnormality detection operation
  • FIG. 1 is a schematic plan view of a vacuum processing apparatus provided with a sensing port 150 according to the present embodiment, and FIG. 2 shows functional blocks of the vacuum processing apparatus.
  • the vacuum processing apparatus in FIG. 1 is a cluster-type vacuum processing apparatus, and includes a process module 200 for processing a substrate, a transport module 100 for transporting a substrate, and a vacuum processing apparatus control for controlling them. And a load lock / unload lock module LL / UL.
  • the vacuum processing apparatus control unit COM includes, for example, a computer, controls each process module 200 and the transfer module 100 in accordance with a predetermined substrate processing procedure (recipe), and a series of processes determined in the recipe for the substrate. Is executed. Note that the vacuum processing apparatus control unit COM is connected to an input device such as a keyboard and a mouse, and an output device such as a speaker and a display, so that a user can input recipes and other instructions. .
  • the load lock / unload lock module LL / UL is connected to the substrate supply device FE and introduces the substrate into the transport module 100.
  • the process module 200 is a module for performing processing on a substrate.
  • a film forming module capable of film formation by a sputtering method or a CVD (Chemical Vapor Deposition) method
  • an etching module capable of dry etching
  • a temperature adjustment module that can be heated and cooled is included.
  • the process module 200 includes a chamber as a substrate processing chamber, an exhaust pump that decompresses the interior of the chamber when the substrate is transported, and a control unit such as a PLC (programmable logic controller) that controls each component of the module. .
  • PLC programmable logic controller
  • the transfer module 100 includes a transfer chamber 110 as a substrate processing chamber, a transfer robot 120, a transfer module control unit 130 (not shown in FIG. 1), a sensing port 150, and an exhaust pump 192 (not shown in FIG. 1). .
  • a transfer chamber 110 In the transfer chamber 110, a plurality of substrate transfer openings are opened in the periphery, and the process module 200 can be connected to this through a gate valve GV.
  • the transfer chamber 110 has a regular octagonal prism shape, a substrate transfer port is formed on each side surface, and eight process modules 200 can be connected.
  • the shape of the transfer chamber 110 and the number of substrate transfer ports are not limited to this.
  • the exhaust pump 192 is a pump (such as a turbo molecular pump or a dry pump) for exhausting the inside of the chamber, and introduces the substrate in a state where the inside of the transfer chamber 110 and the sensing port 150 is decompressed by the exhaust pump 192.
  • a pump such as a turbo molecular pump or a dry pump
  • the transfer robot 120 is arranged in the transfer chamber 110 and transfers the substrate between the process module 200 connected to the periphery of the transfer chamber 110 and the transfer chamber 110.
  • the transfer robot 120 according to the present embodiment includes an arm 121 and a substrate mounting finger 122 attached to the tip of the arm 121.
  • the transfer robot 120 includes a rotation driving unit 127 that rotates the arm 121 around the arrangement center, a telescopic driving unit 126 that expands and contracts the arm 121 in the radial direction within the rotation plane, and the arm 121 in the height direction (described above).
  • a height driving unit 125 that is driven in a direction perpendicular to the rotation surface.
  • the process module 200 is determined as to which process module 200 is transported by the rotation operation of the rotation drive unit 127, and is moved by a predetermined transport distance according to the process module 200 by the extension operation of the expansion / contraction drive unit 126.
  • the substrate is transferred to a predetermined position.
  • movement is possible by the movement to a height direction.
  • the telescopic drive unit 126 and the rotation drive unit 127 are configured with, for example, a motor
  • the height drive unit 125 is configured with, for example, a ball screw.
  • FIG. 3 is a perspective view showing an outline of the sensing port 150
  • FIG. 4 is a front view of the sensing port 150 (viewed from the direction of arrow Y in FIG. 3)
  • FIG. 5 is a cross-sectional view of the sensing port 150 (A in FIG. 4). -A line sectional view).
  • the sensing port 150 is a device for detecting the deformation of the finger 122.
  • the sensing port 150 communicates with the substrate transfer port 111 of the transfer chamber 110 and forms a sealed internal space with respect to the outside.
  • the casing 152 is formed in a box shape having an opening 153, and the opening side end thereof is fixed to the outer wall surface of the transfer chamber 110 by bolts 152 bt (see FIG. 4).
  • the casing 152 is sized so that the tip of the finger 122 can be inserted, but the depth is such that not all of the substrate mounting portion is inserted, and this affects the tact time even if the exhaust system is shared. No rapid exhaust is possible.
  • casing 152 is not specifically limited, For example, the same material (for example, Al etc.) as the conveyance chamber 110 can be used.
  • an O-ring made of, for example, fluororubber is disposed on the connection end surface between the casing 152 and the transfer chamber 110 as a seal member 152s so as to surround the periphery of the opening 153. Sealed against.
  • the size of the opening 153 and the size of the housing 152 are not particularly limited, in this embodiment, the opening 153 is formed smaller than the substrate transfer port 111 of the transfer chamber 110 as shown in FIG.
  • a monitoring window 153g made of a transparent material such as quartz glass is provided on the front surface of the casing 152 so that the inside can be visually observed. Thereby, the deformation of the finger 122 can be actually confirmed.
  • the monitoring window 153g is fixed to the casing 152 by a bolt 153bt via an O-ring as a seal member 153s, as shown in FIG. 4 through the monitoring window 153g.
  • the displacement sensor 151 is provided outside the housing 152 and can measure the height of the finger 122 as a measurement target without contact.
  • a laser displacement sensor having a light emitting element that emits laser light to the finger 122 that has moved to the measurement position and a light receiving element that detects reflected light from the finger 122 is used as the displacement sensor 151. . By providing this at a position facing the finger 122 moved to the measurement position in the height direction, the height of the finger 122 can be detected based on the amount of reflected light received.
  • the housing 152 has a through hole 154 at a portion between the opening 153 and the light emitting element of the displacement sensor 151, and has a sensor window 154g that closes the end of the through hole 154, and transmits laser light. It is possible. As shown in FIG. 5, the sensor window 154g is also fixed by a bolt 154bt via a seal member 154s, and the inside of the housing 152 is sealed.
  • the displacement sensor 151 is connected to an amplifier (not shown) via a cable 151c, and further connected to the transport module control unit 130 via this, and outputs a measurement result to the transport module control unit 130.
  • two displacement sensors 122 are provided in order to measure the heights of both ends of the finger 122, but the location and number of sensors installed are not limited thereto. For example, three or more may be provided, or only one height at the end of the finger 122 may be detected.
  • the conveyance module control unit 130 includes a computer, a PLC, and the like, and has a function of controlling each component of the conveyance module 200 such as the exhaust pump 192.
  • achieved by execution of a program is provided.
  • the transfer control unit 131 has a function of controlling the transfer robot 120. Specifically, the transfer control unit 131 sends a transfer command specifying a transfer position to the transfer robot 120 based on a recipe (or data specifying a substrate transfer procedure) and teaching data acquired from the vacuum processing apparatus control unit COM. Output.
  • the transfer position is specified by, for example, an angle (rotation position of the rotation drive unit), a transfer distance (extension position of the arm 121), and a height (height of the arm 121).
  • the transfer position and the process module 200 are associated with each other. Further, it is held in the storage unit 133 as teaching data.
  • the abnormality determination unit 132 outputs a movement command to the sensing port 150 to the conveyance robot 120 via the conveyance control unit 131 when the abnormality detection timing of the finger 122 is reached. An abnormality is determined based on the input. If it is determined that the shape abnormality is within a correctable range, a correction process for correcting the teaching data is performed.
  • step S101 the inside of the transfer chamber 110 and the sensing port 150 connected thereto is exhausted by the exhaust pump 192, and the pressure is reduced to, for example, 1.0 ⁇ 10 ⁇ 3 Pa or less.
  • the transfer robot 120 transfers the substrate to each process module 200 according to the recipe (step S102).
  • the process module 200 that is the substrate transfer destination is evacuated and the inside is reduced to, for example, 1.0 ⁇ 10 ⁇ 3 Pa or less, and then the gate valve GV between the transfer chamber 110 is set.
  • the substrate is opened and the substrate is transferred from the transfer chamber 110 to the process module 200.
  • the transfer module control unit 130 determines whether it is the measurement timing between substrate transfers (step S103), and when the measurement timing comes (step S103: YES), moves the transfer robot 120 to the measurement position (step S103). S104).
  • the measurement timing may be determined in advance by a program, or measurement may be performed by inputting an instruction from the user via the user interface 300. At this time, the measurement is performed without placing the substrate on the arm 121, but the measurement may be performed with the substrate placed. However, when the substrate is placed, the deformation state varies depending on the placement position and weight of the substrate, and therefore, more accurate detection is possible if measurement is performed without placing the substrate. .
  • step S106 After the arm 121 stops at the measurement position, the heights of the finger ends 122a and 122a are calculated based on the input signals from the displacement sensor 151 (step S105), and it is determined whether or not there is an abnormality (step S106). The determination as to whether or not there is an abnormality is made, for example, by determining whether the heights of the finger ends 122a and 122a are within a predetermined range.
  • step S106 abnormality
  • a replacement notification is sent to the user. This is due to, for example, alarm notification, warning display output on the screen, or the like.
  • step S108 when the heights of the finger ends 122a and 122a deviate from the predetermined value but are within the correctable range (step S107: correctable range), correction processing is performed (step S108), and the process proceeds to step S110.
  • a replacement notice is given (step S109). This is a notification that the replacement time is near, for example, by displaying the amount of deformation or displaying the time when replacement is estimated to be necessary.
  • step S106 When it is determined that the heights of the finger ends 122a and 122a are within a normal range that does not require correction or replacement (step S106: normal), the process proceeds to step S110, and the heights of the finger ends 122a and 122a It is determined whether the difference is within a predetermined threshold. If it is determined that the predetermined threshold is exceeded (step S110: NO), a replacement notification is made (step S107). If it is normal (step S110: YES), the substrate transfer is executed again according to the recipe (step S102).
  • the sensing port 150 for detecting the deformation of the finger so that the transfer chamber and the exhaust pump can be used in common, without any loss such as exhaust processing for measurement, it is always possible.
  • the deformation of the finger can be detected with high accuracy. This can prevent the substrate from being damaged.
  • the substrate can be prevented from being displaced by performing correction automatically. Further, when the correction amount exceeds the specified amount, it is possible to detect the operation stop time of the apparatus and the replacement time of the robot, and preparation can be made in advance.
  • the end of the finger 122 in the width direction (the turning direction in the moving direction of the arm 121 of the r- ⁇ transfer robot 120) is detected by the displacement sensor 151, and based on this, the finger 122 is detected.
  • the position in the length direction (the direction of expansion and contraction in the movement direction of the arm 121) may be calculated to identify which length direction position has been detected. Specifically, even if the finger 122 is moved to a position that can be detected by the displacement sensor 151 based on the teaching data, a positional deviation may occur. Therefore, the end of the finger 122 in the width direction is detected by detecting the height at each position in the turning direction while moving the finger 122 in the turning direction.
  • the width is calculated by detecting the end of the finger 122 in the width direction (movement speed in the turning direction ⁇ detection interval of the displacement sensor ⁇ displacement sensor).
  • the position in the length direction can be specified from the calculated width.
  • the inclination of the finger 122 may be corrected based on the detection of the end portion in the width direction of the finger 122. For example, as shown in the figure, when two fingers 122 having a shape along the edge of the substrate are provided, the arm 121 is moved to a position where the two finger widths detected by the displacement sensor 151 are the same. To correct. Even when there is a single finger 122, the degree of inclination is detected from the change in width with respect to the expansion / contraction distance by detecting the height at each rotation direction position while moving the finger 122 in the rotation direction at a plurality of expansion / contraction direction positions. Is possible.
  • the second embodiment differs from the first embodiment in which two displacement sensors in the height direction are used as the displacement sensor 151, one using a displacement sensor in the height direction, and one in the expansion / contraction direction and the rotation direction.
  • a two-dimensional displacement sensor capable of detecting the position is used. Since other points are common to the first embodiment, detailed description thereof is omitted.
  • FIG. 7 is a plan view of the casing 152 for explaining the abnormality detection method according to the present embodiment.
  • a mark 122m for position detection is attached to one end of the finger 122, and a two-dimensional displacement sensor 151 acquires two-dimensional coordinates (x, y) in the rotation plane of the mark 122m.
  • a two-dimensional displacement sensor 151 for example, a CCD sensor is used, and the mark 122m is imaged.
  • the installation position of the displacement sensor 151 is the same as that in the first embodiment.
  • Steps S201 to S204 are the same as those in the first embodiment, and a description thereof will be omitted.
  • step S ⁇ b> 205 the tip height of the finger 122 is calculated by the transport module control unit 130 based on the input from the height direction displacement sensor 151.
  • step S ⁇ b> 205 the tip height of the finger 122 is calculated by the transport module control unit 130 based on the input from the height direction displacement sensor 151.
  • the two-dimensional coordinates (x, y) are acquired by the transport module control unit 130.
  • the rotation direction position and the expansion / contraction direction position are acquired (step S206).
  • step S207 abnormality determination is performed based on the detection results of the height direction position, the rotation direction position, and the expansion / contraction direction position of the tip of the finger 122 acquired in steps S205 and S206.
  • the abnormality determination is performed, for example, by determining whether the position in each direction is within a predetermined threshold. Of course, the determination may be made based on whether the combination of positions in each direction is within the combination range of the predetermined threshold.
  • step S207 when it is determined that the range is abnormal (step S207: abnormal), the user is notified of replacement (step S208).
  • step S207: normal when it determines with it being in a normal range (step S207: normal), it returns to step S202 and repeats the operation
  • the application of the present invention is not limited to that shown in the second embodiment.
  • only the detection result of the height direction position may be used, and the detection result of the expansion / contraction direction position or the rotation direction position may be used only for teaching correction.
  • position correction may be performed based on the output from the two-dimensional displacement sensor 151, and the height direction may be detected with the finger 122 moved to the target position. Thereby, the height of the target position can be obtained quickly, and an increase in tact time can be prevented.
  • the third embodiment is substantially the same as the second embodiment, but differs in that one displacement sensor 151 in the height direction and a temperature sensor are used instead of the two displacement sensors 151.
  • the installation position of the sensor in the sensing port is the same as in the other embodiments.
  • a radiation thermometer can be used as the temperature sensor.
  • Steps S301 to S305 are the same as in the second embodiment.
  • the temperature of the finger tip 122a is detected.
  • different threshold values are applied according to the temperature of the finger tip 122a. Specifically, for example, the higher the temperature, the larger the threshold range, so that it is not determined to be abnormal when the deformation has temporarily occurred due to the high temperature, and conversely, even if the temperature is low, the deformation When the amount is large and plastic deformation has occurred, it can be determined as abnormal.
  • step S308 a replacement notification is performed (step S308), if it is determined that it is within the correctable range, teaching correction is performed (step S309), and if normal, the processing from step S302 is repeated.
  • a temperature sensor may be used as the displacement sensor. That is, the deformation amount may be estimated based on the temperature measurement result, and the deformation amount may be used for abnormality determination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

 基板を保持可能なフィンガーを有した基板搬送用のロボット、及び、ロボットにより基板を搬出入させるための基板搬送口を備えた搬送チャンバと、基板搬送口に着脱可能に接続され、搬送チャンバ内部に連通する開口を有し、外部に対して密閉された内部空間を形成する筐体、及び、内部空間に挿入されるフィンガーの変形を検出するための変位センサを備えたセンシングポートと、搬送チャンバに設けられる排気口を介して、搬送チャンバ及び筐体内部を排気する排気ユニットと、排気ユニットにより搬送チャンバ及び筐体内部を減圧させた状態で、筐体の内部空間に挿入されたフィンガーの形状の変位センサによる検出結果を取得する制御ユニットと、を備える。

Description

真空処理装置、電子部品の製造方法及び真空処理プログラム
 本発明は、基板搬送ロボットのフィンガーの変形を迅速かつ精度良く検出可能な真空処理装置、電子部品の製造方法及び真空処理プログラムに関する。
 従来、半導体装置などの電子部品の製造装置としては、基板やトレイを搬送するロボットを搬送チャンバに配置し、その搬送チャンバの周囲に配された処理を行うプロセスチャンバに基板やトレイを搬送することで、処理を行う装置が知られている。このような装置では、例えば、特許文献1に示すように、基板やトレイをプロセスモジュールに適切に配置するために、基板やトレイの位置ずれを求めて補正する方法が知られている。
特開2002-261154号公報
 しかしながら、基板を搬送するロボットのアームやフィンガーの変形については測定することができなかった。この理由としては、各種のプロセスチャンバに対応して、搬送チャンバではアームの可動スペースを大きく確保しなければならないため、センサ類を配置するのが困難である点が挙げられる。これに対し、センサ類をプロセスチャンバに置くことも考えられるが、プロセスの合間に形状異常を検出するアームを導入するために、わざわざプロセスチャンバ内を真空排気したり、タクトタイム内で通常のプロセス時間に測定時間を付加したりすることは工程上大きなロスで、やはり実現できなかった。
 このため、アームやフィンガーの変形を発見できず、変形したアームやフィンガーが基板やステージを傷つけてしまうという問題があった。
 本発明は、上述の問題点に鑑みてなされたものであり、稼動中に真空を破ることなく精度よくフィンガーの変形を検出可能な真空処理技術を提供することをその目的とする。
 本発明にかかる真空処理装置は、基板を保持可能なフィンガーを有した基板搬送用のロボット、及び、前記ロボットにより基板を搬出入させるための基板搬送口を備えた搬送チャンバと、前記基板搬送口に着脱可能に接続され、前記搬送チャンバ内部に連通する開口を有し、外部に対して密閉された内部空間を形成する筐体、及び、前記内部空間に挿入される前記フィンガーの変形を検出するための変位センサを備えたセンシングポートと、前記搬送チャンバに設けられる排気口を介して、前記搬送チャンバ及び前記筐体内部を排気する排気手段と、前記排気手段により前記搬送チャンバ及び筐体内部を減圧させた状態で、前記筐体の内部空間に挿入されたフィンガーの形状の前記変位センサによる検出結果を取得する制御手段と、を備えることを特徴とする。
 本発明によれば、ロボットフィンガーの変形により基板を傷つけることを防止できる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
センシングポートを備えた真空処理装置の概略平面図である。 真空処理装置の機能ブロック図である。 センシングポートの概要を表す斜視図である。 センシングポートの正面図(図3の矢印Y方向から見た図)である。 センシングポートの断面図(図4のA-A線断面図)である。 第1実施形態に係る異常検出動作を示すフローチャートである。 第2実施形態による異常検出方法を説明するための筐体の平面図である。 第2実施形態に係る異常検出動作を示すフローチャートである。 第3実施形態に係る異常検出動作を示すフローチャートである。
[第1実施形態]
 図1に本実施形態に係るセンシングポート150を備えた真空処理装置の概略平面図、図2に真空処理装置の機能ブロックを示す。
 図1の真空処理装置は、クラスタ型の真空処理装置であり、基板に対して処理を行うためのプロセスモジュール200と、基板搬送を行うための搬送モジュール100と、これらを制御する真空処理装置制御部COMと、ロードロック/アンロードロックモジュールLL/ULと、を備える。真空処理装置制御部COMは、例えばコンピュータを備えて構成され、所定の基板の処理手順(レシピ)に従って、各プロセスモジュール200や搬送モジュール100を制御し、基板に対しレシピに定められた一連の処理を実行させる。なお、真空処理装置制御部COMは、キーボードやマウスなどの入力装置、スピーカやディスプレイなどの出力装置を備えたユーザインターフェース300が接続しており、ユーザによりレシピやその他の指示の入力が可能である。ロードロック/アンロードロックモジュールLL/ULは、基板供給装置FEに接続され、基板を搬送モジュール100に導入する。
 プロセスモジュール200は、基板に対して処理を施すためのモジュールであり、例えば、スパッタリング法、CVD(Chemical Vapor Deposition)法による成膜が可能な成膜モジュールや、ドライエッチングなどが可能なエッチングモジュール、加熱や冷却が可能な温度調整モジュールが挙げられる。また、プロセスモジュール200は、基板処理室としてのチャンバと、基板の搬送時にチャンバ内部を減圧する排気ポンプと、モジュールの各構成要素を制御するPLC(プログラマブルロジックコントローラ)などの制御部と、を備える。
 搬送モジュール100は、基板処理室としての搬送チャンバ110と、搬送ロボット120と、搬送モジュール制御部130(図1に不図示)と、センシングポート150と、排気ポンプ192(図1に不図示)と、を備える。搬送チャンバ110は、周囲に複数の基板搬送口が開口しており、これにゲートバルブGVを介してプロセスモジュール200を接続可能である。図1の例では、搬送チャンバ110は正八角柱状であり、各側面に基板搬送口が形成され、8個のプロセスモジュール200を接続可能になっている。なお、搬送チャンバ110の形状や基板搬送口の数はこれに限定されない。排気ポンプ192は、チャンバ内部を排気するためのポンプ(ターボ分子ポンプ、ドライポンプなど)であり、排気ポンプ192により搬送チャンバ110及びセンシングポート150内部を減圧した状態で基板を導入する。
 搬送ロボット120は、搬送チャンバ110内に配され、搬送チャンバ110周囲に接続されたプロセスモジュール200と搬送チャンバ110との間で基板を搬送する。具体的に、本実施形態に係る搬送ロボット120は、アーム121と、アーム121の先端に取り付けられた基板載置用のフィンガー122と、を備える。さらに、搬送ロボット120は、配置中心を軸にアーム121を回転させる回転駆動部127と、アーム121を上記回転面内で径方向に伸縮させる伸縮駆動部126と、アーム121を高さ方向(上記回転面に垂直な方向)に駆動させる高さ駆動部125と、を備える。つまり、回転駆動部127の回転動作によりいずれのプロセスモジュール200に搬送するか搬送方向を決定し、伸縮駆動部126の伸長動作によりプロセスモジュール200に応じた所定の搬送距離移動させ、プロセスモジュール200内の所定位置への基板搬送を行う。そして、高さ方向への移動により、基板の受け渡し動作が可能である。なお、伸縮駆動部126や回転駆動部127は、例えばモータを備えて構成され、高さ駆動部125は、例えばボールねじを備えて構成される。
 図3にセンシングポート150の概要を表す斜視図を、図4にセンシングポート150の正面図(図3の矢印Y方向から見た図)、図5にセンシングポート150の断面図(図4のA-A線断面図)を示す。
 センシングポート150は、フィンガー122の変形を検出するための装置であり、搬送チャンバ110の基板搬送口111に連通し、かつ、外部に対して密閉された内部空間を形成する筐体152と、フィンガー122の位置を検出する変位センサ151と、を備える。本実施形態では、筐体152は、開口153を有する箱状に形成され、その開口側端部が搬送チャンバ110の外壁面にボルト152bt(図4参照)によって固定されている。筐体152は、フィンガー122の先端を挿入できる大きさであるが、基板載置部分の全てが挿入されない程度の奥行きとなっており、これにより排気系を共用してもタクトタイムに影響を与えない迅速な排気が可能である。つまり、計測時は一部(先端部)を筐体152に挿入し、残りは搬送チャンバ側に残したままである。筐体152の材質は特に限定されないが、例えば、搬送チャンバ110と同じ材質(例えば、Alなど)を用いることができる。また、図5に示すように、筐体152と搬送チャンバ110との接続端面には、シール部材152sとして、例えばフッ素ゴムなどからなるOリングが開口153の周囲を囲むようにして介装され、外部に対して密閉される。開口153の大きさや筐体152の大きさは特に限定されないが、本実施形態では、図5に示すように、開口153が搬送チャンバ110の基板搬送口111よりも小さく形成されている。
 また、図3に示すように、筐体152の正面には、石英ガラスなどの透明材料で形成された監視用窓153gが設けられ、内部を目視可能になっている。これにより、フィンガー122の変形を実際に確認することができる。なお、監視用窓153gは、図4に監視用窓153gを透過して示すように、シール部材153sとしてのOリングを介しボルト153btによって筐体152に固定されている。
 また、変位センサ151は、本実施形態では、筐体152の外部に設けられ、測定対象となるフィンガー122に非接触でその高さを測定可能である。具体的には、変位センサ151として、測定位置に移動したフィンガー122に対しレーザ光を放射する発光素子と、フィンガー122からの反射光を検出する受光素子と、を有するレーザ式の変位センサを用いる。これを、測定位置に移動したフィンガー122と高さ方向で対向する位置に設けることで、反射光の受光量に基づきフィンガー122の高さを検出可能である。なお、筐体152は、開口153と変位センサ151の発光素子との間の部分に貫通孔154を有すると共に、当該貫通孔154の端部を塞ぐセンサ用窓154gを有し、レーザ光が透過可能になっている。なお、センサ用窓154gも図5に示すようにシール部材154sを介してボルト154btにより固定され、筐体152の内部が密閉される。
 なお、変位センサ151は、ケーブル151cにより増幅器(不図示)に接続され、これを介してさらに搬送モジュール制御部130に接続しており、搬送モジュール制御部130に測定結果を出力する。なお、本実施形態では、フィンガー122の両端の高さを夫々測定するために、変位センサ122を2つ設けているが、センサの設置箇所や設置個数はこれに限定されるものではない。例えば、3つ以上設けてもよいし、フィンガー122の端部の1箇所の高さのみを検出するようにしてもよい。
 搬送モジュール制御部130は、コンピュータやPLCなどを備えて構成され、排気ポンプ192などの搬送モジュール200の各構成要素を制御する機能を有する。本実施形態では、プログラムの実行により実現される、搬送制御部131及び異常判定部132の各機能部を備える。搬送制御部131は、搬送ロボット120を制御する機能を有する。具体的には、搬送制御部131は、真空処理装置制御部COMから取得するレシピ(あるいは基板搬送手順を指定するデータ)及びティーチングデータに基づいて、搬送ロボット120に搬送位置を指定した搬送指令を出力する。搬送位置は、例えば、角度(回転駆動部の回転位置)、搬送距離(アーム121の伸縮位置)及び高さ(アーム121の高さ)により指定され、例えば搬送位置とプロセスモジュール200とを対応させた、ティーチングデータとして記憶部133に保持される。異常判定部132は、詳細な動作は後述するが、フィンガー122の異常検出タイミングになると、搬送制御部131を介して搬送ロボット120にセンシングポート150への移動指令を出力し、変位センサ151からの入力に基づいて異常判定を行う。また、形状異常が補正可能な範囲であると判定した場合は、ティーチングデータを補正する補正処理を行う。
 次に、図6のフローチャートを用いて、変位センサ151による異常検出動作フローを説明する。
 まず、ステップS101において、搬送チャンバ110及びこれに接続するセンシングポート150内部を排気ポンプ192により排気し、例えば1.0×10-3Pa以下の減圧状態とする。その後、搬送ロボット120により、レシピに従い各プロセスモジュール200への基板搬送を行う(ステップS102)。なお、基板搬送前に基板の搬送先となるプロセスモジュール200で排気処理を行い、内部を例えば1.0×10-3Pa以下の減圧状態としてから、搬送チャンバ110との間のゲートバルブGVを開き、搬送チャンバ110からプロセスモジュール200に基板を搬送させる。
 そして、搬送モジュール制御部130は、基板搬送の合間に、測定タイミングであるかを判定し(ステップS103)、測定タイミングがきたら(ステップS103:YES)、搬送ロボット120を測定位置へ移動させる(ステップS104)。測定タイミングは、予めプログラムにより定めてもよいし、ユーザインターフェース300を介したユーザからの指示の入力によって測定を行わせるようにしてもよい。なお、このときアーム121には基板を載置しない状態で測定を行うが、基板を載置させた状態で測定を行ってもよい。但し、基板を載置させた状態だと、基板の載置位置や重みによって変形状態も異なってしまうことから、基板を載置させない状態で測定した方が、より精度の高い検出が可能である。
 アーム121が測定位置で停止後、変位センサ151からの入力信号に基づき、フィンガー両端122a、122aの高さを夫々演算し(ステップS105)、異常であるかを判定する(ステップS106)。異常であるかの判定は、例えば、フィンガー両端122a、122aの高さの夫々が所定範囲内にあるかを判定することにより行う。異常と判定された場合(ステップS106:異常)は、ユーザに交換通知を行う。これは、例えば、アラームによる報知、画面への警告表示の出力等による。
 一方、フィンガー両端122a、122aの高さが所定値とずれているが、補正可能な範囲にある場合(ステップS107:補正可能範囲)は、補正処理を行い(ステップS108)、ステップS110に移行する。補正処理は、例えば、高さ方向のティーチングデータを補正することにより行う。より具体的には、フィンガー122の先端が熱変形等により上側に反ってしまっている場合は、例えば、基板をプロセスモジュール200内に載置するときの高さ方向のティーチングデータの初期値h0を、沿った分Δhだけ低い値h0′(=h0-Δh)に修正する。補正処理の後、交換予告通知を行う(ステップS109)。これは交換時期が近いことの通知であり、例えば、変形量を表示させたり、交換が必要と推測される時期を表示したりすることにより行う。
 フィンガー両端122a、122aの高さが補正も交換も必要のない、正常な範囲にあると判定された場合(ステップS106:正常)は、ステップS110に移行し、フィンガー両端122a、122aの高さの差が所定閾値以内かを判定する。所定閾値を超えると判定した場合(ステップS110:NO)は、交換通知を行う(ステップS107)。正常である場合(ステップS110:YES)は、再びレシピに従って基板搬送を実行する(ステップS102)。
 以上のように、フィンガーの変形を検出するためのセンシングポート150を、搬送チャンバと排気ポンプを共用可能に設けることで、測定のために排気処理を行ったりする等のロスを伴うことなく、常時、精度良くフィンガーの変形を検出可能である。これにより、基板を傷つけたりするのを防止できる。
 さらに、変形量が大きい場合は、自動的に補正を行うことで、基板の位置ずれ等も防止できる。また、補正量が規定量を超えた場合、装置の稼働停止時期やロボットの交換の時期を察知でき、前もって準備を行うこともできる。
 また、高さを検出する際に、フィンガー122の幅方向端部(r‐θ系の搬送ロボット120のアーム121の移動方向では旋回方向)を変位センサ151で検出し、これに基づき、フィンガー122の長さ方向の位置(アーム121の移動方向では伸縮方向)を算出し、どの長さ方向位置の高さを検出したのかを特定してもよい。具体的には、ティーチングデータに基づきフィンガー122を変位センサ151により検出可能な位置に移動させたとしても、位置ずれが発生する場合がある。従って、フィンガー122を旋回方向へ移動させながら各旋回方向位置における高さの検出を行うことで、フィンガー122の幅方向端部を検出する。フィンガー122が長さ方向に沿って幅の変化するものであれば、フィンガー122の幅方向端部を検出することで幅を算出する(旋回方向への移動速度×変位センサの検出間隔×変位センサの検出回数)ことで、算出した幅から長さ方向位置を特定可能である。
 また、フィンガー122の幅方向端部の検出に基づき、フィンガー122の傾き(伸縮方向から見た幅方向の非対称性)を修正してもよい。例えば、図示するように基板の端部に沿う形状の2つのフィンガー122を有する場合には、変位センサ151より検出される部分のフィンガーの幅が2つで同一となる位置までアーム121を移動させて修正する。フィンガー122が単一の場合でも、複数の伸縮方向位置で、フィンガー122を旋回方向へ移動させながら各旋回方向位置における高さの検出を行うことで、伸縮距離に対する幅の変化から傾き具合を検出可能である。
 [第2実施形態]
 次に、本発明の第2実施形態について説明する。第2実施形態は、変位センサ151として、高さ方向の変位センサを2個用いた第1実施形態と異なり、1つは高さ方向の変位センサを用い、1つは伸縮方向及び回転方向の位置を検出可能な2次元の変位センサを用いている。その他の点では、第1実施形態と共通するので、詳細な説明は省略する。
 図7に、本実施形態による異常検出方法を説明するための筐体152の平面図を示す。
 フィンガー122の先端の一方に位置検出用のマーク122mを付し、2次元の変位センサ151によりこのマーク122mの回転平面内の2次元座標(x、y)を取得する。2次元の変位センサ151としては、例えばCCDセンサを用い、このマーク122mを撮像する。なお、変位センサ151の設置位置は、第1実施形態と同じである。
 次に、図8のフローチャートを用いて、第2実施形態に係る異常検出動作フローを説明する。
 ステップS201~S204は、第1実施形態と同様であるので説明を省略する。ステップS205において、高さ方向の変位センサ151からの入力に基づき、搬送モジュール制御部130でフィンガー122の先端高さを演算する。次に、2次元の変位センサ151からのマーク122mの撮像データの入力に基づき、搬送モジュール制御部130でその2次元座標(x、y)を取得する。そして、これを搬送ロボット120の配置中心を基準とした(r、θ)座標に変換することで、回転方向位置及び伸縮方向位置を取得する(ステップS206)。
 ステップS207では、ステップS205及びS206で取得したフィンガー122先端の高さ方向位置、回転方向位置、及び、伸縮方向位置の各検出結果に基づいて、異常判定を行う。異常判定は、例えば、各方向の位置が所定の閾値内にあるかを判定することにより行う。もちろん、各方向の位置の組み合わせが所定閾値の組み合わせ範囲にあるかにより判定してもよい。
 この結果、異常範囲と判定した場合(ステップS207:異常)は、ユーザに交換通知を行う(ステップS208)。一方、正常範囲内であると判定した場合(ステップS207:正常)は、ステップS202に戻り、それ以降の動作を繰り返す。正常範囲よりもずれているが、補正可能範囲にあると判定した場合(ステップS207:補正可能)は、ティーチングデータの補正処理を行い(ステップS209)、ステップS202に戻り、それ以降の動作を繰り返す。
 以上のように、高さ方向、回転方向及び伸縮方向の全てを検出し、異常判定に用いることで、種々の形状変化を検出でき、基板の位置ずれやフィンガー122の衝突などを防止できる。
 なお、本発明の適用は上記第2実施形態で示したものに限定されない。例えば、要交換と判定する場合は、高さ方向位置の検出結果だけを用い、伸縮方向位置や回転方向位置の検出結果は、ティーチング補正にのみ用いてもよい。
 また、2次元の変位センサ151からの出力に基づき、位置補正を行い、目的の位置にフィンガー122を移動させた状態で高さ方向の検出を行うようにしてもよい。これにより、迅速に目的の位置の高さを得ることができ、タクトタイムの増加等を防げる。
 [第3実施形態]
 次に、本発明の第3実施形態について説明する。第3実施形態は、第2実施形態と略同じであるが、2つの変位センサ151の代わりに、1つの高さ方向の変位センサ151と、温度センサを用いた点で異なっている。センシングポートにおけるセンサの設置位置は、他の実施形態と同様である。温度センサとしては、例えば、放射温度計を用いることができる。
 この場合の異常検出フローについて、図9を参照して説明する。ステップS301~S305は第2実施形態と同様である。次のステップS306において、フィンガー先端122aの温度を検出する。そして、続くS307の異常判定において、フィンガー先端122aの高さが所定閾値内にあるかを判定する。このとき、フィンガー先端122aの温度に応じて、異なる閾値を適用する。具体的には、例えば、温度が高いほど閾値の範囲を大きくし、高温になったことにより一時的に変形が発生している場合に異常と判定しないようにし、逆に温度が低くても変形量が大きく塑性変形が発生している場合は異常と判定できるようにする。その後、異常と判定した場合は交換通知を行い(ステップS308)、補正可能範囲であると判定した場合はティーチング補正を行い(ステップS309)、正常の場合はステップS302以降の処理を繰り返す。
 以上のように、変位センサと温度センサを組合せることで、任意のプロセスの合間に異常検出を行ったとしても、定常的な形状異常の発生を検出できる。なお、温度センサを変位センサとして用いてもよい。つまり、温度の測定結果に基づいて、変形量を推定し、この変形量を異常判定に用いてもよい。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2009年1月14日提出の日本国特許出願特願2009-005955を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (9)

  1.  基板を保持可能なフィンガーを有した基板搬送用のロボット、及び、前記ロボットにより基板を搬出入させるための基板搬送口を備えた搬送チャンバと、
     前記基板搬送口に着脱可能に接続され、前記搬送チャンバ内部に連通する開口を有し、外部に対して密閉された内部空間を形成する筐体、及び、前記内部空間に挿入される前記フィンガーの変形を検出するための変位センサを備えたセンシングポートと、
     前記搬送チャンバに設けられる排気口を介して、前記搬送チャンバ及び前記筐体内部を排気する排気手段と、
     前記排気手段により前記搬送チャンバ及び筐体内部を減圧させた状態で、前記筐体の内部空間に挿入されたフィンガーの形状の前記変位センサによる検出結果を取得する制御手段と、
     を備えることを特徴とする真空処理装置。
  2.  前記制御手段は、前記変位センサによる検出結果に基づいて、前記フィンガーの形状異常を通知する通知部を有することを特徴とする請求項1に記載の真空処理装置。
  3.  前記制御手段は、前記フィンガーの変形の度合いに応じて、基板搬送時における前記ロボットの移動量を補正する補正部を有することを特徴とする請求項1又は2に記載の真空処理装置。
  4.  前記制御手段は、基板搬送の合間に、基板を保持しない状態の前記フィンガーを前記筐体の内部空間まで移動させる移動制御部を有することを特徴とする請求項1乃至3のいずれか1項に記載の真空処理装置。
  5.  前記筐体は、前記搬送チャンバに支持固定されることを特徴とする請求項1乃至4のいずれか1項に記載の真空処理装置。
  6.  前記変位センサは、前記フィンガーの先端の変形を検出するものであることを特徴とする請求項1乃至5のいずれか1項に記載の真空処理装置。
  7.  前記変位センサは、前記筐体の外部に設けられていることを特徴とする請求項1乃至6のいずれか1項に記載の真空処理装置。
  8.  基板を保持可能なフィンガーを有した基板搬送用のロボットと、前記ロボットにより基板を搬出入させるための基板搬送口とを備えた搬送チャンバに、前記基板搬送口を介して、前記フィンガーの変形を検出するための変位センサを備えたセンシングポートを接続し、前記搬送チャンバ及びセンシングポート内部を共通に設けた排気手段により排気する排気ステップと、
     前記排気ステップにより減圧した前記センシングポート内部に、前記フィンガーを移動させ、前記変位センサによりその変形を検出する検出ステップと、
     を有することを特徴とする電子部品の製造方法。
  9.  基板を保持可能なフィンガーを有した基板搬送用のロボット、及び、前記ロボットにより基板を搬出入させるための基板搬送口を備えた搬送チャンバと、前記基板搬送口に着脱可能に接続され、前記搬送チャンバ内部に連通する開口を有し、外部に対して密閉された内部空間を形成する筐体、及び、前記内部空間に挿入される前記フィンガーの変形を検出するための変位センサを備えたセンシングポートと、前記搬送チャンバに設けられる排気口を介して、前記搬送チャンバ及び前記筐体内部を排気する排気手段と、前記ロボット及び排気手段を制御する制御装置と、を備えた真空処理装置の前記制御装置によって実行される真空処理プログラムであって、当該制御装置に、
     前記排気手段により前記搬送チャンバ及び筐体内部を減圧させる排気ステップと、
     前記排気ステップにより減圧した状態で、前記筐体の内部空間にフィンガーを移動させる移動ステップと、
     前記変位センサによる前記フィンガーの形状の検出結果を取得する取得ステップと、
     を実行させるための真空処理プログラム。
PCT/JP2010/000174 2009-01-14 2010-01-14 真空処理装置、電子部品の製造方法及び真空処理プログラム WO2010082490A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009005955A JP2012094554A (ja) 2009-01-14 2009-01-14 真空処理装置、電子部品の製造方法及び真空処理プログラム
JP2009-005955 2009-01-14

Publications (1)

Publication Number Publication Date
WO2010082490A1 true WO2010082490A1 (ja) 2010-07-22

Family

ID=42339742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000174 WO2010082490A1 (ja) 2009-01-14 2010-01-14 真空処理装置、電子部品の製造方法及び真空処理プログラム

Country Status (2)

Country Link
JP (1) JP2012094554A (ja)
WO (1) WO2010082490A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103292A1 (ja) * 2014-12-22 2016-06-30 川崎重工業株式会社 ロボットシステム及びエンドエフェクタの変形検出方法
JP2019153776A (ja) * 2018-03-05 2019-09-12 キヤノントッキ株式会社 ロボットシステム、デバイス製造装置、デバイス製造方法、ティーチング位置調整方法、プログラム、及び記憶媒体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101971824B1 (ko) * 2018-03-05 2019-04-23 캐논 톡키 가부시키가이샤 로봇, 로봇 시스템, 디바이스 제조 장치, 디바이스 제조 방법 및 티칭 위치 조정 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482691A (ja) * 1990-07-20 1992-03-16 Tokyo Electron Ltd アーム式搬送装置
JPH11179692A (ja) * 1997-12-16 1999-07-06 Shin Meiwa Ind Co Ltd 産業用ロボットのハンド異常検出装置及びハンド異常検出方法
JP2000009434A (ja) * 1998-06-24 2000-01-14 Matsushita Electric Ind Co Ltd 光学式リニアセンサによる計測方法
JP2001068530A (ja) * 1999-08-26 2001-03-16 Anelva Corp 基板処理装置
JP2002148011A (ja) * 2000-11-07 2002-05-22 Ulvac Japan Ltd 基板の処理装置及び基板の処理方法
JP2004039841A (ja) * 2002-07-03 2004-02-05 Nec Kyushu Ltd 半導体ウエハ搬送装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482691A (ja) * 1990-07-20 1992-03-16 Tokyo Electron Ltd アーム式搬送装置
JPH11179692A (ja) * 1997-12-16 1999-07-06 Shin Meiwa Ind Co Ltd 産業用ロボットのハンド異常検出装置及びハンド異常検出方法
JP2000009434A (ja) * 1998-06-24 2000-01-14 Matsushita Electric Ind Co Ltd 光学式リニアセンサによる計測方法
JP2001068530A (ja) * 1999-08-26 2001-03-16 Anelva Corp 基板処理装置
JP2002148011A (ja) * 2000-11-07 2002-05-22 Ulvac Japan Ltd 基板の処理装置及び基板の処理方法
JP2004039841A (ja) * 2002-07-03 2004-02-05 Nec Kyushu Ltd 半導体ウエハ搬送装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103292A1 (ja) * 2014-12-22 2016-06-30 川崎重工業株式会社 ロボットシステム及びエンドエフェクタの変形検出方法
JP2019153776A (ja) * 2018-03-05 2019-09-12 キヤノントッキ株式会社 ロボットシステム、デバイス製造装置、デバイス製造方法、ティーチング位置調整方法、プログラム、及び記憶媒体
CN110228063A (zh) * 2018-03-05 2019-09-13 佳能特机株式会社 机器人系统、设备制造装置、设备制造方法以及教学位置调整方法

Also Published As

Publication number Publication date
JP2012094554A (ja) 2012-05-17

Similar Documents

Publication Publication Date Title
KR101817395B1 (ko) 기판 반송 기구의 위치 검출 방법, 기억 매체 및 기판 반송 기구의 위치 검출 장치
KR101170356B1 (ko) 기판 처리 시스템 및 기판 반송 방법
US20100326637A1 (en) Load-lock apparatus and substrate cooling method
JP5036290B2 (ja) 基板処理装置および基板搬送方法、ならびにコンピュータプログラム
JP2002246447A (ja) 被処理体の位置ずれ検出装置、処理システム及び位置ずれ検出方法
JP6063716B2 (ja) 基板処理装置及び基板搬送方法
US20070100488A1 (en) Vacuum processing method and vacuum processing apparatus
JP2008173744A (ja) 搬送システムの搬送位置合わせ方法
KR20100016329A (ko) 처리 장치, 처리 방법, 피처리체의 인식 방법 및 기억 매체
JP5003315B2 (ja) 基板処理装置及び基板処理方法並びに記憶媒体
WO2005091355A1 (ja) 搬送機構の搬送ズレを割り出す方法及び半導体処理装置
JP2007251090A (ja) 真空処理装置の搬送位置合わせ方法、真空処理装置及びコンピュータ記憶媒体
JP2002043394A (ja) 位置ずれ検出装置及び処理システム
JP4534886B2 (ja) 処理システム
JP2010093169A (ja) 基板搬送方法、制御プログラム及び記憶媒体
WO2010082490A1 (ja) 真空処理装置、電子部品の製造方法及び真空処理プログラム
JP2011171337A (ja) 基板処理装置
KR20160066824A (ko) 기판 이송 방법
JP6063776B2 (ja) 基板搬送経路の決定方法、基板搬送装置、基板処理装置及びプログラム
JP5203102B2 (ja) 半導体処理装置の運転方法
JP2006185960A (ja) 基板処理装置及びその搬送位置合わせ方法
JP2010062215A5 (ja)
JP2005114083A (ja) 真空チャンバの除振システム
JP2007214218A (ja) 真空処理装置
CN114664692A (zh) 基片搬运装置、基片处理系统和基片处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10731159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP