WO2010082356A1 - 測定装置および測定方法 - Google Patents

測定装置および測定方法 Download PDF

Info

Publication number
WO2010082356A1
WO2010082356A1 PCT/JP2009/050695 JP2009050695W WO2010082356A1 WO 2010082356 A1 WO2010082356 A1 WO 2010082356A1 JP 2009050695 W JP2009050695 W JP 2009050695W WO 2010082356 A1 WO2010082356 A1 WO 2010082356A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
measuring
measurement
contact member
output voltage
Prior art date
Application number
PCT/JP2009/050695
Other languages
English (en)
French (fr)
Inventor
充 高島
Original Assignee
株式会社エム・アイ・ラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エム・アイ・ラボ filed Critical 株式会社エム・アイ・ラボ
Priority to PCT/JP2009/050695 priority Critical patent/WO2010082356A1/ja
Priority to JP2010546533A priority patent/JP5314052B2/ja
Publication of WO2010082356A1 publication Critical patent/WO2010082356A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/442Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0051Detecting, measuring or recording by applying mechanical forces or stimuli by applying vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/405Investigating hardness or rebound hardness by determining the vibration frequency of a sensing element in contact with the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • G01N2203/0051Piezoelectric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • G01N2203/0623Electrical or magnetic indicating, recording or sensing means using piezoelectric gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0688Time or frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food

Definitions

  • the present invention relates to a measuring apparatus and a measuring method for measuring viscoelasticity of a measuring object.
  • the above-described conventional technology has a problem that the measurement result changes depending on the angle at which the tip of the piezoelectric element or the like is pressed against the measurement target. For example, when the user holds the measuring device and presses the tip of a piezoelectric element or the like to the measurement target, there is muscle vibration such as body movement or hand shake accompanying breathing, so the tip is always perpendicular to the measurement target. Difficult to press against.
  • the disclosed measuring apparatus and measuring method are intended to solve the above-described problems, and are intended to easily and accurately measure the viscoelasticity of a measurement target.
  • a measuring apparatus includes a contact member having a contact portion for contacting a measurement target, a drive unit that projects the contact member in a predetermined direction, and the contact A piezoelectric element provided on the member, a measuring unit that measures an output voltage of the piezoelectric element, and an output unit that outputs a measurement result by the measuring unit.
  • a reaction according to the viscoelasticity of the measurement object is transmitted to the piezoelectric element through the contact member, and a voltage according to the magnitude of the reaction is output from the piezoelectric element.
  • the measuring apparatus includes a contact electrode that detects contact with the measurement target, and the drive unit that protrudes the contact member when contact with the measurement target is detected by the contact electrode.
  • Drive control means for controlling.
  • the contact member since the distance between the contact member immediately before the contact member protrudes and the measurement target is constant, the contact member can be measured without being aware of the magnitude of the force pressing the measurement device against the measurement target. It can project to the target with a certain force.
  • the measuring apparatus is characterized in that the height of the contact electrode in the predetermined direction is lower than that of the contact portion after protruding by the driving means.
  • the contact member when the contact electrode comes into contact with the measurement object, the contact member can be reliably pushed into the measurement object.
  • the measuring device is characterized in that the height of the contact electrode in the predetermined direction is equal to or higher than the height of the contact portion before protruding by the driving means.
  • the contact member can be prevented from being pushed into the measurement object before the contact electrode contacts the measurement object, the viscoelasticity of the measurement object can be accurately reflected in the reaction from the measurement object.
  • the contact electrodes are provided on a plane orthogonal to the predetermined direction, and the drive control means is in contact with the measurement object by two or more of the contact electrodes. When the two are detected simultaneously, the driving means is controlled.
  • the user can protrude the contact member at a right angle with respect to the surface of the measurement target by bringing two or more contact electrodes into contact with the measurement target while paying attention to an angle in at least one direction.
  • the drive control means is in contact with the measurement object by three or more of the contact electrodes.
  • the driving means is controlled.
  • the contact member can be protruded at a right angle with respect to the surface of the measuring object by bringing three or more contact electrodes into contact with the measuring object. it can.
  • the measuring apparatus is characterized in that the contact electrode is provided so as to surround a passage region of the contact member due to protrusion of the driving means.
  • the contact member can be protruded at a right angle to a position surrounded by a portion where three or more contact electrodes are in contact with the measurement object.
  • the driving unit projects the contact member with a force corresponding to the input driving current, and the driving control unit inputs a square wave as the driving current to the driving unit.
  • the driving means is controlled.
  • the contact member can be ejected instantaneously with respect to the measurement object.
  • the measuring means includes the output voltage before the contact member protrudes by the driving means, and the peak of the output voltage when the contact member protrudes by the driving means, The difference is measured.
  • the measuring device is characterized in that the measuring means acquires the output voltage and the peak before the protrusion within a period of 10 msec or less from the protrusion of the contact member by the driving means. .
  • the present invention it is possible to measure the viscoelasticity of the measurement object without being affected by the respiratory body movement or muscle vibration of the user.
  • the present invention it is possible to measure the viscoelasticity of the measurement object by compensating for variations in the output voltage of the piezoelectric element before the contact member is projected to the measurement object.
  • the measuring device is characterized in that the measuring means acquires the output voltage after the contact means protrudes by the driving means a plurality of times, and measures the attenuation amount of each acquired output voltage. To do.
  • the measuring unit acquires the amplitude of the output voltage after the contact unit is protruded by the driving unit a plurality of times, and measures the attenuation amount of each acquired amplitude.
  • the measuring apparatus is characterized in that it can be displaced by a user's gripping operation.
  • a measurement device that can be displaced by a user's gripping operation can accurately measure the viscoelasticity of the measurement object regardless of the user's technique and muscle vibration.
  • the disclosed measuring apparatus and measuring method it is possible to easily and accurately measure the viscoelasticity of the measurement target.
  • FIG. 1 is a front sectional view showing a measuring apparatus according to an embodiment.
  • FIG. 2 is a top view showing the measuring apparatus 100 as seen from the predetermined direction 101 side.
  • FIG. 3 is a bottom view showing the piezoelectric element 155 as viewed from the opposite side of the predetermined direction 101.
  • FIG. 4 is a diagram (part 1) illustrating an operation example of the measurement apparatus 100.
  • FIG. 5 is a diagram (part 2) illustrating an operation example of the measurement apparatus 100.
  • FIG. 6 is a block diagram illustrating an example of a functional configuration of the circuit board 130.
  • FIG. 7 is a flowchart showing an example of the operation of the circuit board 130.
  • FIG. 8 is a flowchart showing another example of the operation of the circuit board 130.
  • FIG. 1 is a front sectional view showing a measuring apparatus according to an embodiment.
  • FIG. 2 is a top view showing the measuring apparatus 100 as seen from the predetermined direction 101 side.
  • FIG. 3 is a bottom view showing the
  • FIG. 10 is a graph illustrating an example of measurement of the filter sponge by the measuring device 100.
  • FIG. 11 is a graph showing an example of measurement of cushion sponge by the measuring apparatus 100.
  • FIG. 12 is a graph showing an example of soot measurement by the measuring apparatus 100.
  • FIG. 13 is a graph showing an example of cushion sponge measurement by the measuring apparatus 100.
  • FIG. 14 is a graph showing an example of forearm skin measurement by the measurement apparatus 100.
  • FIG. 15 is a graph showing an example of cheek skin measurement by the measurement apparatus 100.
  • FIG. 16 is a graph showing changes with time of wrinkles measured by the measuring apparatus 100.
  • FIG. 17 is a graph for explaining a method for measuring the damping performance by the half-width method.
  • FIG. 18 is a graph for explaining a method of measuring the damping performance by the attenuation rate method.
  • FIG. 1 is a front sectional view showing a measuring apparatus according to an embodiment.
  • a measuring apparatus according to an embodiment is a measuring apparatus that measures viscoelasticity (stiffness, viscous resistance, and the like) of a measurement target.
  • a measuring apparatus 100 according to an embodiment includes a case 110, a battery 121, a circuit board 130, a drive unit 140, a contact member 150, and contact electrodes 161, 162, and 201 (contact electrodes). 201, see FIG. 2).
  • the measuring device 100 is a measuring device that can be displaced by a user's gripping operation. That is, the measuring device 100 is a small measuring device that can be moved by a user. The user can measure the viscoelasticity or the like of the measurement object by holding the measurement apparatus 100 in his / her hand and applying the tip of the measurement apparatus 100 on the predetermined direction 101 side to the measurement object.
  • the case 110 houses a battery 121, a circuit board 130, a drive unit 140, and a contact member 150.
  • the battery 121 is a power source that supplies power to the circuit board 130 and the drive unit 140 via the electrodes 122 and 123. Further, the battery 121 can be replaced by removing the battery cover 111 provided on the case 110.
  • the power source that supplies power to the circuit board 130 and the drive unit 140 is not limited to the battery 121.
  • the power source that supplies power to the circuit board 130 may be an external power source connected to the circuit board 130 via an electric cable.
  • the circuit board 130 is drive control means for controlling the drive unit 140. Specifically, the circuit board 130 controls the drive unit 140 to protrude the contact member 150 by inputting a drive current to the drive unit 140 in accordance with the output from the contact electrodes 161, 162, and 201.
  • the circuit board 130 is a measuring unit that measures the output voltage of the piezoelectric element 155.
  • the circuit board 130 displays the measurement result of the output voltage of the piezoelectric element 155 on the display unit 170.
  • the driving unit 140 is a driving unit that projects the contact member 150 in the predetermined direction 101.
  • the drive unit 140 includes a yoke 141, a magnet 142, a plate 143, a damper 144, and a voice coil 154 provided on the contact member 150.
  • the yoke 141 is fixed to the inner wall of the case 110.
  • a magnet 142 is provided at the center of the bottom surface inside the yoke 141.
  • the plate 143 is provided on the magnet 142.
  • the damper 144 is provided on the yoke 141.
  • the damper 144 supports the contact member 150 so that the contact member 150 is not excessively displaced in the direction opposite to the predetermined direction 101.
  • the drive current input from the circuit board 130 to the drive unit 140 flows to the voice coil 154 via a lead wire (not shown).
  • the drive unit 140 protrudes the contact member 150 with a force corresponding to the drive current input from the circuit board 130. For example, when a square wave is input as a drive current from the circuit board 130 to the drive unit 140, a sudden current flows through the voice coil 154, and the contact member 150 protrudes instantaneously.
  • the contact member 150 has a contact portion 151 for making contact with the measurement target.
  • the contact portion 151 is formed in a spherical shape on the predetermined direction 101 side of the contact member 150.
  • a substrate 152 is attached to the surface of the contact member 150 opposite to the contact portion 151.
  • the area of the substrate 152 is larger than the area of the surface of the contact member 150 on the side opposite to the contact portion 151. Therefore, the substrate 152 protrudes from the surface of the contact member 150 opposite to the contact portion 151.
  • the substrate 152 is, for example, an aluminum substrate having a thickness of about 0.3 [mm].
  • a support member 153 extending in the direction opposite to the contact member 150 is provided on the outer peripheral portion of the surface of the substrate 152 opposite to the contact member 150.
  • the tip of the support member 153 in the direction opposite to the contact member 150 is formed in a cylindrical shape surrounding the magnet 142 so as not to contact the magnet 142.
  • a voice coil 154 is wound around the tip of the support member 153 in the direction opposite to the contact member 150.
  • a piezoelectric element 155 is attached to the surface of the substrate 152 opposite to the contact member 150. Therefore, the piezoelectric element 155 is distorted according to the distortion of the substrate 152.
  • the piezoelectric element 155 outputs a voltage corresponding to the distortion of the piezoelectric element 155 to the amplifier 157 through the conducting wire 156.
  • the piezoelectric element 155 is, for example, a unimorph piezoelectric element.
  • the amplifier 157 is provided on a substrate 158 fixed to the support member 153.
  • the amplifier 157 amplifies the output voltage of the piezoelectric element 155. Then, the amplifier 157 outputs the amplified output voltage to the circuit board 130 via a lead wire (not shown).
  • the amplifier 157 is an impedance converter that performs impedance conversion of the output voltage of the piezoelectric element 155, for example.
  • the impedance converter for example, an FET (Field effect transistor) can be used.
  • An opening plate 160 is provided at the tip of the case 110 on the predetermined direction 101 side.
  • the opening plate 160 is provided with an opening, and the contact member 150 protrudes outside through the opening of the opening plate 160.
  • Contact electrodes 161, 162, and 201 are provided on the aperture plate 160. Each of the contact electrodes 161, 162, and 201 detects contact with the measurement target, and outputs a detection result to the circuit board 130 through a lead wire (not shown).
  • Each of the contact electrodes 161, 162, and 201 has a height in the predetermined direction 101 that is substantially the same as the height of the contact portion 151 before the drive member 140 projects the contact member 150. Therefore, each of the contact electrodes 161, 162, and 201 has a height in the predetermined direction 101 that is lower than the height of the contact portion 151 after the drive member 140 projects the contact member 150.
  • the display unit 170 is an output unit that outputs the measurement result of the output voltage of the piezoelectric element 155.
  • the display unit 170 displays the measurement result of the output voltage of the piezoelectric element 155 measured by the circuit board 130 to the user according to the control of the circuit board 130.
  • FIG. 2 is a top view showing the measuring apparatus 100 as seen from the predetermined direction 101 side.
  • the contact electrodes 161, 162, and 201 are provided on a plane (paper surface in FIG. 2) orthogonal to the predetermined direction 101. For this reason, when all of the contact electrodes 161, 162, and 201 are brought into contact with the measurement object, the protruding direction (predetermined direction 101) of the contact member 150 is perpendicular to the surface of the measurement object.
  • the contact member 150 can be protruded at a right angle with respect to the surface of the measurement object. Accordingly, the user can accurately measure the viscoelasticity of the measurement target by bringing the contact electrodes 161, 162, and 201 into contact with the measurement target at the same time without paying particular attention to the angle of the measurement apparatus 100.
  • the contact member 150 when all of the contact electrodes 161, 162, and 201 detect contact with the measurement object, the contact member 150 is protruded, so that the distance between the contact portion 151 and the measurement object immediately before the contact member 150 is protruded is always constant. can do. Thereby, the contact part 151 is always pushed into the measurement object with a constant force, and a reaction according to the viscoelasticity of the measurement object can be obtained. Therefore, the viscoelasticity of the measurement target can be easily and accurately measured without the user being aware of the force with which the measurement device 100 is pressed against the measurement target.
  • the contact electrodes 161, 162, and 201 are provided on a circle centering on the passing region of the contact portion 151. As described above, by providing the contact electrodes 161, 162, and 201 so as to surround the passage region of the contact member 150, the contact member 150 is protruded to a position surrounded by each portion of the measurement target that is in contact with the contact electrodes 161, 162, and 201. be able to.
  • the protruding direction of the contact member 150 with respect to the surface to be measured can be more reliably set at a right angle. For this reason, the user can measure the viscoelasticity of the measuring object more easily and accurately by bringing the contact electrodes 161, 162, 201 into contact with the measuring object at the same time.
  • contact electrodes 161, 162, 201 a configuration in which three contact electrodes (contact electrodes 161, 162, 201) are provided has been described, but a configuration in which two contact electrodes are provided is also possible.
  • the contact electrode 201 may be omitted. In this configuration, when both the contact electrodes 161 and 162 detect contact with the measurement object, the contact member 150 is protruded.
  • the user can easily and accurately measure the viscoelasticity of the measurement target by simultaneously bringing the contact electrodes 161 and 162 into contact with the measurement target while paying attention to only the angle in one direction.
  • the angle in one direction that the user is aware of is the angle of the measuring apparatus 100 that changes with the straight line connecting the contact electrodes 161 and 162 as the rotation axis.
  • a configuration with one contact electrode is possible.
  • the contact electrodes 162 and 201 may be omitted.
  • the contact member 150 protrudes when the contact electrode 161 detects contact with the measurement object.
  • the distance between the contact portion 151 and the measurement object immediately before the contact member 150 protrudes can be made constant.
  • the contact portion 151 against the measurement object with a constant force and obtain a reaction according to the viscoelasticity of the measurement object. Therefore, the viscoelasticity of the measurement target can be easily and accurately measured without the user being aware of the force with which the measurement device 100 is pressed against the measurement target.
  • it is also possible to set it as the structure which provides the contact electrode 161 on the surface of the contact part 151, for example.
  • a configuration with four or more contact electrodes is possible. For example, you may make it the structure which further adds a contact electrode on the circle centering on the passage area
  • the contact member 150 protrudes when all of the contact electrodes 161, 162, 201 and the added contact electrode detect contact with the measurement object.
  • a power switch may be provided in the measuring apparatus 100, and the contact member 150 may be protruded when the contact electrodes 161, 162, and 201 are brought into contact with the measurement object when the power switch is ON.
  • the contact member 150 may be protruded when the contact electrodes 161, 162, and 201 are brought into contact with the measurement object when the power switch is ON.
  • FIG. 3 is a bottom view showing the piezoelectric element 155 viewed from the opposite side of the predetermined direction 101.
  • the piezoelectric element 155 has a smaller area than the substrate 152, and the entire surface of the piezoelectric element 155 is attached to a part of the substrate 152.
  • Each of the substrate 152 and the piezoelectric element 155 is formed in a circular shape. Therefore, the piezoelectric element 155 can be distorted according to the distortion of the substrate 152 regardless of the mounting direction of the substrate 152 and the piezoelectric element 155.
  • FIG. 4 is a diagram (part 1) illustrating an operation example of the measurement apparatus 100.
  • FIG. 5 is a diagram (part 2) illustrating an operation example of the measurement apparatus 100.
  • each of the contact electrodes 161, 162, and 201 has a height in the predetermined direction 101 that is equal to or higher than the height of the contact portion 151 before the contact member 150 is projected by the drive portion 140 (same in the drawing).
  • each of the contact electrodes 161, 162, and 201 is formed such that the height in the predetermined direction 101 is lower than the height of the contact portion 151 after the contact member 150 is projected by the drive portion 140.
  • the contact portion 151 after the protrusion is displaced to the predetermined direction 101 side with respect to the contact electrodes 161, 162, and 201 that are in contact with the measurement object 400, and thus is pushed into the measurement object 400.
  • the contact portion 151 pushed into the measurement object 400 receives a reaction according to the viscoelasticity of the measurement object 400 from the measurement object 400 in a direction opposite to the predetermined direction 101.
  • the reaction which the contact part 151 received is transmitted to the board
  • FIG. The substrate 152 has a larger area than the contact surface with the contact member 150. For this reason, when the substrate 152 receives a reaction from the contact member 150 in a direction opposite to the predetermined direction 101, the portion of the substrate 152 that protrudes from the contact member 150 is slightly displaced in the predetermined direction 101. Is distorted.
  • the piezoelectric element 155 attached to the opposite side of the substrate 152 to the contact member 150 is also distorted according to the distortion of the entire substrate 152, and a voltage corresponding to the distortion of the piezoelectric element 155 is output to the circuit board 130. Therefore, the output voltage of the piezoelectric element 155 output to the circuit board 130 changes according to the viscoelasticity of the measurement object 400. For this reason, the viscoelasticity of the measuring object 400 can be measured by acquiring the output voltage of the piezoelectric element 155.
  • FIG. 6 is a block diagram illustrating an example of a functional configuration of the circuit board 130.
  • the circuit board 130 of the measuring apparatus 100 includes a guidance ham detection unit 611, a square wave generation unit 612, and a waveform measurement unit 613.
  • the induction ham detection unit 611 detects each induction ham of the contact electrodes 161, 162, 201.
  • the induction ham is generated in the contact electrodes 161, 162, 201 when the contact electrodes 161, 162, 201 come into contact with the measurement object.
  • the induction hum detection unit 611 detects the induction hum from all of the contact electrodes 161, 162, and 201 simultaneously, it outputs a detection signal to each of the square wave generation unit 612 and the waveform measurement unit 613.
  • the square wave generation unit 612 generates a square wave when the detection signal is output from the induction hum detection unit 611. Then, the square wave generation unit 612 inputs the generated square wave to the drive unit 140 as a drive current. By inputting a square wave from the square wave generation unit 612 to the drive unit 140, an abrupt current flows through the voice coil 154, and the drive unit 140 can eject the contact member 150 instantaneously (step function).
  • the waveform measurement unit 613 measures the waveform of the output voltage of the piezoelectric element 155 and causes the display unit 170 to display the waveform measurement result.
  • a user's respiratory body movement and muscle vibration are usually 20 Hz or less. Therefore, it is desirable that the waveform measuring unit 613 acquires the output voltage of the piezoelectric element 155 within a period of 10 msec or less after the driving unit 140 protrudes the contact member 150. Thereby, the elasticity of a measuring object can be measured, without being influenced by a user's respiratory body movement and muscle vibration.
  • the waveform measuring unit 613 includes, for example, an output voltage of the piezoelectric element 155 before the driving member 140 projects the contact member 150 and a peak of the output voltage of the piezoelectric element 155 when the driving unit 140 projects the contact member 150. The difference is measured (see, for example, FIG. 7).
  • the waveform measurement unit 613 may acquire the output voltage of the piezoelectric element 155 after the protrusion of the contact member 150 by the drive unit 140 a plurality of times, and measure the attenuation amount of each acquired output voltage (for example, (See FIG. 8).
  • the waveform measurement unit 613 may acquire the amplitude of the output voltage of the piezoelectric element 155 after the protrusion of the contact member 150 by the driving unit 140 a plurality of times, and measure the attenuation amount of each acquired amplitude ( For example, see FIG.
  • FIG. 7 is a flowchart showing an example of the operation of the circuit board 130.
  • the induction ham detection unit 611 determines whether or not induction hum is detected from all of the contact electrodes 161, 162, and 201 (step S701), and the induction ham is detected from all of the contact electrodes 161, 162, and 201. Is detected (step S701: No loop).
  • step S701 when the induction hum is detected from all of the contact electrodes 161, 162, and 201 (step S701: Yes), the waveform measuring unit 613 acquires the output voltage of the piezoelectric element 155 (step S702). Further, the square wave generation unit 612 outputs a square signal to the driving unit 140 (step S703). Accordingly, the contact member 150 is instantaneously protruded from the measurement target by the driving unit 140.
  • the waveform measuring unit 613 acquires the peak of the output voltage of the piezoelectric element 155 (step S704).
  • the waveform measuring unit 613 calculates a difference between the output voltage acquired in step S702 and the peak output voltage acquired in step S704 (step S705).
  • the waveform measurement unit 613 outputs the calculation result obtained in step S705 to the display unit 170 (step S706), and ends a series of operations (END).
  • the circuit board 130 has the output voltage of the piezoelectric element 155 before the driving member 140 protrudes the contact member 150 and the peak of the output voltage of the piezoelectric element 155 when the driving unit 140 protrudes the contact member 150. Measure the difference. As a result, it is possible to compensate for variations in the output voltage of the piezoelectric element 155 before the contact member 150 is projected to the measurement object, and to measure the stiffness of the measurement object.
  • the method of acquiring the output voltage of the piezoelectric element 155 immediately before the contact member 150 is projected has been described, but the method is not limited to such a method.
  • the output voltage of the piezoelectric element 155 may be acquired before step S701.
  • step S705 the difference between the output voltage of the piezoelectric element 155 acquired before step S701 and the peak output voltage acquired in step S704 is calculated. Thereby, the hardness of a measuring object can be measured.
  • FIG. 8 is a flowchart showing another example of the operation of the circuit board 130.
  • the induction ham detection unit 611 determines whether or not induction hum is detected from all of the contact electrodes 161, 162, and 201 (step S801), and the induction ham is detected from all of the contact electrodes 161, 162, and 201.
  • Step S801: No loop When the induction hum is detected from all of the contact electrodes 161, 162, and 201 (step S801: Yes), the waveform measurement unit 613 acquires the output voltage of the piezoelectric element 155 (step S802).
  • step S803 the square wave generating unit 612 outputs a square signal to the driving unit 140 (step S803). Thereby, the contact member 150 is protruded by the driving unit 140.
  • the waveform measurement unit 613 determines whether or not the output voltage has been acquired a predetermined number of times in step S802 or step S806 (described later) (step S804).
  • step S804 if the output voltage has not been acquired a predetermined number of times (step S804: No), it is determined whether or not a predetermined time has elapsed since the output voltage was last acquired (step S805). And it waits until predetermined time passes (step S805: No loop).
  • the predetermined time to wait in step S805 may be changed each time step S805 is executed without always being a fixed time.
  • step S805 When a predetermined time elapses in step S805 (step S805: Yes), the waveform measurement unit 613 acquires the output voltage of the piezoelectric element 155 (step S806), and returns to step S804 to continue the processing.
  • step S804 the waveform measurement unit 613 calculates the attenuation amount of each output voltage acquired in step S802 or step S806 (step S807).
  • the waveform measurement unit 613 outputs the calculation result obtained in step S807 to the display unit 170 (step S808), and ends a series of operations (END).
  • the attenuation rate of the measurement target can be measured by acquiring the output voltage of the piezoelectric element 155 after the contact member 150 is projected a plurality of times and measuring the attenuation amount of each acquired output voltage.
  • FIG. 9 is a flowchart showing still another example of the operation of the circuit board 130.
  • the induction ham detection unit 611 determines whether or not induction hum is detected from all of the contact electrodes 161, 162, and 201 (step S901), and the induction ham is detected from all of the contact electrodes 161, 162, and 201. (Step S901: No loop).
  • step S901 when the induction hum is detected from all of the contact electrodes 161, 162, and 201 (step S901: Yes), the square wave generation unit 612 outputs a square signal to the drive unit 140 (step S902). Thereby, the contact member 150 is protruded by the driving unit 140.
  • the waveform measurement unit 613 acquires the peak value of the output voltage of the piezoelectric element 155 (step S903).
  • the waveform measuring unit 613 acquires a peak value of the output voltage of the piezoelectric element 155 (step S904).
  • the waveform measurement unit 613 calculates the amplitude of the output voltage of the piezoelectric element 155 based on the peak value acquired in step S903 and the peak value acquired in step S904 (step S905).
  • step S906 it is determined whether or not the amplitude of the output voltage has been calculated a predetermined number of times in step S905 (step S906).
  • step S906: No the process returns to step S903 to continue the processing.
  • step S906: Yes the waveform measuring unit 613 calculates the attenuation amount of each amplitude calculated in step S905 (step S907).
  • the waveform measurement unit 613 outputs the calculation result obtained in step S907 to the display unit 170 (step S908), and ends a series of operations (END).
  • the logarithmic attenuation rate of the measurement target can be measured by acquiring the amplitude of the output voltage of the piezoelectric element 155 after the contact member 150 is projected a plurality of times and measuring the attenuation amount of each acquired amplitude. .
  • FIG. 10 is a graph illustrating an example of measurement of the filter sponge by the measuring device 100.
  • FIG. 11 is a graph showing an example of measurement of cushion sponge by the measuring apparatus 100. 10 and 11, the horizontal axis represents time [msec]. 10 and 11, the vertical axis indicates the output voltage [V] of the piezoelectric element 155.
  • the waveform 1000 in FIG. 10 shows the result of measuring the hardness of the filter sponge by the operation shown in FIG.
  • the filter sponge is a urethane foam (CFH-20 manufactured by INOAC) used for the filter.
  • a waveform 1100 in FIG. 11 shows the result of measuring the hardness of the cushion sponge by the operation shown in FIG.
  • the cushion sponge is a urethane foam (ECM manufactured by INOAC) used for the cushion.
  • the base is an aluminum plate having a pressure of 0.3 [mm].
  • the amplifier 157 is an impedance converter with a time constant of 1 second.
  • the piezoelectric element 155 is a unimorph piezoelectric element.
  • the displacement amount (stroke length) of the contact member 150 due to the protrusion of the drive unit 140 was set to 0.3 mm.
  • the time t1 indicates the time when the induced hum is detected from all of the contact electrodes 161, 162, and 201 by the induced ham detection unit 611.
  • Time t2 indicates a time when the output voltage of the piezoelectric element 155 reaches a peak after time t1.
  • Each of the difference h1 in FIG. 10 and the difference h2 in FIG. 11 indicates a difference between the output voltages of the piezoelectric element 155 at the time t1 and the time t2.
  • the waveform measuring unit 613 calculates the difference h1 and the difference h2.
  • the difference h1 calculated by the waveform measurement unit 613 when the filter sponge is measured (FIG. 10) is the difference h2 calculated by the waveform measurement unit 613 when the cushion sponge is measured. It is larger than (FIG. 11). In this case, it can be seen that the filter sponge to be measured is harder than the cushion sponge to be measured.
  • FIG. 12 is a graph showing an example of soot measurement by the measuring apparatus 100.
  • FIG. 13 is a graph showing an example of cushion sponge measurement by the measuring apparatus 100. 12 and 13, the horizontal axis indicates time [msec]. In FIGS. 12 and 13, the vertical axis indicates the output voltage [V] of the piezoelectric element 155.
  • a waveform 1200 in FIG. 12 shows the result of measuring the decay rate of the cocoon by the operation shown in FIG.
  • a waveform 1300 in FIG. 13 shows the result of measuring the damping rate of the cushion sponge by the operation shown in FIG.
  • time t ⁇ b> 1 indicates a time when the induced hum is detected from all of the contact electrodes 161, 162, 201 by the induced ham detection unit 611.
  • Time t2 indicates the time when time a has elapsed after time t1.
  • Time t3 indicates the time when time b (> a) has elapsed after time t1.
  • the difference ha indicates the difference between the output voltages of the piezoelectric element 155 at the time t1 and the time t2.
  • the difference hb indicates the difference between the output voltages of the piezoelectric element 155 at time t1 and time t3.
  • the waveform measurement unit 613 calculates the attenuation amount of the difference hb with respect to the difference ha.
  • the attenuation amount of the difference hb with respect to the difference ha calculated by the waveform measuring unit 613 is calculated by the waveform measuring unit 613 when the cushion sponge is measured. It is larger than the attenuation amount of the difference hb with respect to the calculated difference ha (FIG. 13). In this case, it can be seen that the wrinkle to be measured has a larger attenuation rate than the cushion sponge to be measured.
  • the response h (t) of the measurement object to the protrusion of the contact member 150 by the step function can be expressed as the following equation (1).
  • t represents time.
  • h0 indicates the initial peak value of the reaction of the measurement object against the protrusion of the contact member 150.
  • represents the time constant of the measurement system.
  • represents the time constant (reciprocal of the attenuation factor) of the measurement object.
  • the following formula (4) is established by the above formula (2) and formula (3).
  • K is a constant.
  • FIG. 14 is a graph showing an example of measurement of forearm skin by the measuring apparatus 100.
  • FIG. 15 is a graph showing an example of cheek skin measurement by the measurement apparatus 100. 14 and 15, the horizontal axis indicates time [msec]. In FIGS. 14 and 15, the vertical axis indicates the output voltage [V] of the piezoelectric element 155.
  • time t ⁇ b> 1 indicates a time when the induced hum is detected from all of the contact electrodes 161, 162, 201 by the induced ham detector 611.
  • Time t2 indicates a time when the output voltage of the piezoelectric element 155 reaches a peak value after time t1.
  • the difference h1 indicates the difference between the output voltages of the piezoelectric element 155 at time t1 and time t2.
  • a time t3 indicates a time when the output voltage of the piezoelectric element 155 reaches a peak value after the time t2.
  • a time t4 indicates a time when the output voltage of the piezoelectric element 155 becomes a peak value after the time t3.
  • the difference h2 indicates the difference between the output voltages of the piezoelectric element 155 at time t3 and time t4.
  • the waveform measuring unit 613 calculates the attenuation amount of the difference h2 with respect to the difference h1.
  • the attenuation amount of the difference h2 with respect to the difference h1 calculated by the waveform measuring unit 613 is the waveform measuring unit 613 when the cheek skin is measured. Is smaller than the attenuation amount of the difference h2 with respect to the difference h1 calculated by (FIG. 15). In this case, it can be seen that the cheek skin to be measured has higher damping characteristics than the forearm skin to be measured.
  • the logarithmic decay rate ⁇ ln (h1 / h2) of the difference h2 with respect to the difference h1 shown in FIGS. 14 and 15 can be calculated as the damping characteristic to be measured.
  • FIG. 16 is a graph showing changes with time of wrinkles measured by the measuring apparatus 100.
  • the horizontal axis indicates time [minutes].
  • the vertical axis indicates the output voltage [mV] of the piezoelectric element 155.
  • a waveform 1600 in FIG. 16 shows a result of performing the operation shown in FIG. 7 every 15 minutes. As shown in the waveform 1600, it can be seen that the measurement apparatus 100 can measure how the wrinkles become harder with time.
  • the indices measured by the waveform measuring unit 613 are not limited to the various indices described above, and various indices based on the output voltage of the piezoelectric element 155 can be used.
  • the vibration suppression performance of the measurement target may be measured by the waveform measurement unit 613.
  • the example which measures the damping performance of a measuring object by the waveform measurement part 613 is demonstrated.
  • FIG. 17 is a graph for explaining a method for measuring the vibration damping performance by the half-width method.
  • the horizontal axis indicates the frequency [Hz] of the output voltage of the piezoelectric element 155.
  • the vertical axis indicates the amplitude of the output voltage of the piezoelectric element 155.
  • a waveform 1700 indicates a characteristic of the amplitude of the output voltage of the piezoelectric element 155 with respect to the frequency of the output voltage of the piezoelectric element 155.
  • the waveform measurement unit 613 uses ⁇ 0, ⁇ 1, and ⁇ 2 as a loss.
  • the coefficient ⁇ ( ⁇ 2 ⁇ 1) / ⁇ 0 is calculated.
  • the loss factor ⁇ indicates the vibration suppression performance of the measurement target.
  • FIG. 18 is a graph illustrating a method for measuring the damping performance by the attenuation rate method.
  • the horizontal axis indicates time
  • the vertical axis indicates the amplitude of the output voltage of the piezoelectric element 155.
  • a waveform 1800 shows a change with time of the amplitude of the output voltage of the piezoelectric element 155.
  • the waveform measurement unit 613 performs the decrease amount D and the resonance frequency.
  • the loss coefficient ⁇ D / (27.3f) is calculated using f.
  • the loss factor ⁇ indicates the vibration suppression performance of the measurement target.
  • the waveform measurement unit 613 may convert the calculation result regarding elasticity output from the waveform measurement unit 613 into information easy to understand for the user and display the information on the display unit 170.
  • the waveform measurement unit 613 stores a standard value of elasticity obtained beforehand by statistics, and compares the calculation result of elasticity with the standard value.
  • the waveform measurement unit 613 displays the comparison result on the display unit 170.
  • the waveform measurement unit 613 causes the display unit 170 to display information such as “elasticity is standard”, “elasticity is higher than standard”, or “elasticity is lower than standard”.
  • the waveform measuring unit 613 may store a standard value of elasticity for each age obtained in advance by statistics, and may display the age corresponding to the elasticity calculation result on the display unit 170 as the skin age.
  • the waveform measuring unit 613 causes the display unit 170 to display information such as “skin age 20 years”, “skin age 30 years”, or “skin age 40 years”.
  • the viscoelasticity of the measuring object can be easily and accurately measured.
  • the configuration for measuring the viscoelasticity or the like of the measurement target has been described.
  • a configuration in which a current-carrying electrode is further provided to simultaneously measure the wettability characteristics of the skin as well as the viscoelasticity of the measurement target may be used. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

 測定対象の粘弾性を簡単に精度よく測定することために、測定装置(100)は、接触部材(150)と、駆動部(140)と、圧電素子(155)と、回路基盤(130)と、表示部(170)と、を備えている。接触部材(150)は、測定対象に接触させるための接触部(151)を有する。駆動部(140)は、接触部材(150)を所定方向(101)に突き出す。圧電素子(155)は、接触部材(150)に設けられている。回路基盤(130)は、圧電素子(155)の出力電圧を測定する。表示部(170)は、回路基盤(130)による測定結果を出力する。

Description

測定装置および測定方法
 この発明は、測定対象の粘弾性を測定する測定装置および測定方法に関する。
 従来、測定対象の弾性などを測定するために、固有共振周波数を有する圧電素子などの先端部を測定対象に当てて、測定部位の附加質量に応じて変化する共振周波数を測定する技術が開示されている(たとえば、下記特許文献1,2参照。)。このような測定技術は、触覚に関わる医療分野や食品の品質管理など様々な分野で利用されている。
特開平5-322731号公報 特願平11-225970号公報
 しかしながら、上述した従来技術では、圧電素子などの先端部を測定対象に押し当てる力によって測定結果が変化するという問題がある。たとえば、ユーザが測定装置を把持して圧電素子の先端部を測定対象に押し当てる場合は、呼吸に伴う体動や手ぶれなどの筋肉振動があるため、先端部を測定対象に押し当てる力を常に一定にすることが困難である。
 また、上述した従来技術では、圧電素子などの先端部を測定対象に押し当てる角度によっても測定結果が変化するという問題がある。たとえば、ユーザが測定装置を把持して圧電素子などの先端部を測定対象に押し当てる場合は、呼吸に伴う体動や手ぶれなどの筋肉振動があるため、先端部を測定対象に対して常に垂直に押し当てることが困難である。
 したがって、上述した従来技術では、測定対象の弾性を精度よく測定することが困難である。特に、測定装置が、ユーザが把持して使用できるタイプのものである場合は、ユーザに過度の集中や忍耐を強いたり、測定結果がばらついたりする。このため、従来技術では、ユーザが把持して使用できるタイプの測定装置に適用することが困難であった。
 開示の測定装置および測定方法は、上述した問題点を解消するものであり、測定対象の粘弾性を簡単に精度よく測定することを目的とする。
 上述した課題を解決し、目的を達成するため、この発明にかかる測定装置は、測定対象に接触させるための接触部を有する接触部材と、前記接触部材を所定方向に突き出す駆動手段と、前記接触部材に設けられた圧電素子と、前記圧電素子の出力電圧を測定する測定手段と、前記測定手段による測定結果を出力する出力手段とを備えることを特徴とする。
 この発明によれば、接触部材を測定対象に突き出すことにより、測定対象の粘弾性に応じた反作用が接触部材を通じて圧電素子に伝わり、反作用の大きさに応じた電圧が圧電素子から出力される。
 また、この発明にかかる測定装置は、前記測定対象との接触を検知する接触電極と、前記接触電極によって前記測定対象との接触が検知されると、前記接触部材を突き出すように前記駆動手段を制御する駆動制御手段と、を備えることを特徴とする。
 この発明によれば、接触部材の突き出し直前の接触部材と測定対象との距離が一定になるため、ユーザが測定装置を測定対象に押しつける力の大きさを意識しなくても、接触部材を測定対象に一定の力で突き出すことができる。
 また、この発明にかかる測定装置は、前記接触電極は、前記所定方向の高さが前記駆動手段による突き出し後の前記接触部より低いことを特徴とする。
 この発明によれば、接触電極が測定対象と接触したときに、測定対象に対して接触部材を確実に押し込むことができる。
 また、この発明にかかる測定装置は、前記接触電極は、前記所定方向の高さが前記駆動手段による突き出し前の前記接触部の高さ以上であることを特徴とする。
 この発明によれば、接触電極が測定対象と接触する前は接触部材が測定対象に押し込まれないようにできるため、測定対象の粘弾性を測定対象からの反作用に精度よく反映させることができる。
 また、この発明にかかる測定装置は、前記接触電極は、前記所定方向と直交する平面上に2つ以上設けられ、前記駆動制御手段は、2つ以上の前記接触電極によって前記測定対象との接触が同時に検知されると前記駆動手段を制御することを特徴とする。
 この発明によれば、ユーザは、少なくとも一方向の角度に注意して測定対象に2つ以上の接触電極を接触させることで、測定対象の面に対して接触部材を直角に突き出すことができる。
 また、この発明にかかる測定装置は、前記接触電極は、前記所定方向と直交する平面上に3つ以上設けられ、前記駆動制御手段は、3つ以上の前記接触電極によって前記測定対象との接触が同時に検知されると前記駆動手段を制御することを特徴とする。
 この発明によれば、ユーザは、測定装置の角度に注意しなくても、測定対象に3つ以上の接触電極を接触させることで、測定対象の面に対して接触部材を直角に突き出すことができる。
 また、この発明にかかる測定装置は、前記接触電極は、前記駆動手段の突き出しによる前記接触部材の通過領域を囲んで設けられていることを特徴とする。
 この発明によれば、測定対象における、3つ以上の接触電極が接触した部分に囲まれる位置へ接触部材を直角に突き出すことができる。
 また、この発明にかかる測定装置は、前記駆動手段は、入力される駆動電流に応じた力で前記接触部材を突き出し、前記駆動制御手段は、前記駆動電流として方形波を前記駆動手段へ入力することにより前記駆動手段を制御することを特徴とする。
 この発明によれば、測定対象に対して接触部材を瞬時に突き出すことができる。
 また、この発明にかかる測定装置は、前記測定手段は、前記駆動手段による前記接触部材の突き出しの前における前記出力電圧と、前記駆動手段による前記接触部材の突き出し時における前記出力電圧のピークと、の差分を測定することを特徴とする。
 また、この発明にかかる測定装置は、前記測定手段は、前記駆動手段による前記接触部材の突き出しから10msec以下の期間内において前記突き出しの前における前記出力電圧および前記ピークを取得することを特徴とする。
 この発明によれば、ユーザの呼吸性の体動や筋肉振動の影響を受けずに測定対象の粘弾性を測定することができる。
 この発明によれば、接触部材が測定対象へ突き出される前の圧電素子の出力電圧のばらつきを補償して測定対象の粘弾性を測定することができる。
 また、この発明にかかる測定装置は、前記測定手段は、前記駆動手段による前記接触部材の突き出し後における前記出力電圧を複数回取得し、取得した各出力電圧の減衰量を測定することを特徴とする。
 この発明によれば、測定対象のダンピング特性を測定することができる。
 また、この発明にかかる測定装置は、前記測定手段は、前記駆動手段による前記接触部材の突き出し後における前記出力電圧の振幅を複数回取得し、取得した各振幅の減衰量を測定することを特徴とする。
 この発明によれば、測定対象のダンピング特性を測定することができる。
 また、この発明にかかる測定装置は、ユーザの把持操作によって変位可能なことを特徴とする。
 この発明によれば、ユーザの把持操作によって変位可能なタイプの測定装置であっても、ユーザの技術や筋肉振動に関わらず測定対象の粘弾性を精度よく測定することができる。
 開示の測定装置および測定方法によれば、測定対象の粘弾性を簡単に精度よく測定することができるという効果を奏する。
図1は、実施の形態にかかる測定装置を示す正面断面図である。 図2は、所定方向101の側から見た測定装置100を示す上面図である。 図3は、所定方向101の反対側から見た圧電素子155を示す下面図である。 図4は、測定装置100の動作例を示す図(その1)である。 図5は、測定装置100の動作例を示す図(その2)である。 図6は、回路基盤130の機能的構成の一例を示すブロック図である。 図7は、回路基盤130の動作の一例を示すフローチャートである。 図8は、回路基盤130の動作の他の例を示すフローチャートである。 図9は、回路基盤130の動作のさらに他の例を示すフローチャートである。 図10は、測定装置100によるフィルタスポンジの測定例を示すグラフである。 図11は、測定装置100によるクッションスポンジの測定例を示すグラフである。 図12は、測定装置100による餅の測定例を示すグラフである。 図13は、測定装置100によるクッションスポンジの測定例を示すグラフである。 図14は、測定装置100による前腕皮膚の測定例を示すグラフである。 図15は、測定装置100による頬皮膚の測定例を示すグラフである。 図16は、測定装置100による測定した餅の経時変化を示すグラフである。 図17は、制振性能の半値幅法による測定方法を説明するグラフである。 図18は、制振性能の減衰率法による測定方法を説明するグラフである。
符号の説明
 100 測定装置
 101 所定方向
 110 ケース
 111 電池フタ
 121 電池
 122,123 電極
 130 回路基盤
 140 駆動部
 141 ヨーク
 142 マグネット
 143 プレート
 144 ダンパ
 150 接触部材
 151 接触部
 152,158 基板
 153 支持部材
 154 ボイスコイル
 155 圧電素子
 156 導線
 157 増幅器
 160 開口板
 161,162,201 接触電極
 170 表示部
 400 測定対象
 611 誘導ハム検出部
 612 方形波生成部
 613 波形測定部
 t1,t2,t3,t4 時期
 h1,h2 差分
 以下に添付図面を参照して、この測定装置および測定方法の好適な実施の形態を詳細に説明する。
(実施の形態)
(測定装置の構成)
 図1は、実施の形態にかかる測定装置を示す正面断面図である。実施の形態にかかる測定装置は、測定対象の粘弾性(堅さや粘性抵抗など)を測定する測定装置である。図1に示すように、実施の形態にかかる測定装置100は、ケース110と、電池121と、回路基盤130と、駆動部140と、接触部材150と、接触電極161,162,201(接触電極201については図2参照)と、を備えている。
 測定装置100は、ユーザの把持操作によって変位可能な測定装置である。すなわち、測定装置100は、ユーザが手に持って動かすことができる小型の測定装置である。ユーザは、測定装置100を手に持って、測定装置100の所定方向101側の先端部を測定対象に当てることで、測定対象の粘弾性などを測定することができる。
 ケース110は、電池121と、回路基盤130と、駆動部140と、接触部材150と、を収納している。電池121は、電極122,123を介して回路基盤130および駆動部140へ電力を供給する電源である。また、電池121は、ケース110に設けられた電池フタ111を取り外すことによって交換することができる。
 ただし、回路基盤130および駆動部140へ電力を供給する電源は電池121に限らない。たとえば、回路基盤130へ電力を供給する電源は、電気ケーブルを介して回路基盤130に接続された外部の電源であってもよい。
 回路基盤130は、駆動部140の制御を行う駆動制御手段である。具体的には、回路基盤130は、接触電極161,162,201からの出力に応じて駆動部140へ駆動電流を入力することで、接触部材150を突き出すように駆動部140を制御する。また、回路基盤130は、圧電素子155の出力電圧を測定する測定手段である。回路基盤130は、圧電素子155の出力電圧の測定結果を表示部170に表示させる。
 駆動部140は、接触部材150を所定方向101へ突き出す駆動手段である。具体的には、駆動部140は、ヨーク141と、マグネット142と、プレート143と、ダンパ144と、接触部材150に設けられたボイスコイル154と、によって構成されている。ヨーク141はケース110の内壁に固定されている。ヨーク141の内部における底面の中心部にはマグネット142が設けられている。
 プレート143は、マグネット142の上に設けられている。ダンパ144はヨーク141上に設けられている。ダンパ144は、接触部材150が所定方向101の反対方向へ過度に変位しないように接触部材150を支持している。回路基盤130から駆動部140へ入力された駆動電流は、図示しない導線を介してボイスコイル154に流れる。
 ボイスコイル154に電流が流れると、ボイスコイル154に電磁力が働き、マグネット142に対して接触部材150が所定方向101へ突き出される。したがって、駆動部140は、回路基盤130から入力される駆動電流に応じた力で接触部材150を突き出す。たとえば、回路基盤130から駆動部140へ駆動電流として方形波が入力されると、ボイスコイル154に急激な電流が流れ、接触部材150が瞬時に突き出る。
 接触部材150は、測定対象に接触させるための接触部151を有する。接触部151は、接触部材150の所定方向101側が球面状に形成されている。接触部材150における接触部151と反対側の面には基板152が貼り付けられている。基板152の面積は、接触部材150における接触部151と反対側の面の面積よりも大きい。したがって、基板152は、接触部材150における接触部151と反対側の面に対してはみ出している。基板152は、たとえば、厚さが0.3[mm]程度のアルミ基板である。
 基板152における接触部材150とは反対側の面の外周部には、接触部材150とは反対方向に延びる支持部材153が設けられている。支持部材153における接触部材150とは反対方向の先端部は、マグネット142と接触しないようにマグネット142を囲む筒状に形成されている。そして、支持部材153における接触部材150とは反対方向の先端部にはボイスコイル154が巻き付けられている。
 また、基板152における接触部材150とは反対側の面には圧電素子155が貼り付けられている。したがって、圧電素子155は、基板152の歪みに応じて歪む。圧電素子155は、圧電素子155の歪みに応じた電圧を、導線156を通じて増幅器157へ出力する。圧電素子155は、たとえばユニモルフ圧電素子である。
 増幅器157は、支持部材153に固定された基板158上に設けられている。増幅器157は、圧電素子155の出力電圧を増幅する。そして、増幅器157は、増幅した出力電圧を、図示しない導線を介して回路基盤130へ出力する。増幅器157は、たとえば、圧電素子155の出力電圧のインピーダンス変換を行うインピーダンス変換器である。インピーダンス変換器としては、たとえば、FET(Field effect transistor:電界効果トランジスタ)を用いることができる。
 ケース110の所定方向101側の先端部には開口板160が設けられている。開口板160には開口部が設けられており、開口板160の開口部を通じて接触部材150が外部へ突き出るようになっている。開口板160上には、接触電極161,162,201が設けられている。接触電極161,162,201のそれぞれは、測定対象との接触を検知し、図示しない導線を通じて回路基盤130へ検知結果を出力する。
 接触電極161,162,201のそれぞれは、所定方向101の高さが、駆動部140による接触部材150の突き出し前における接触部151の高さとほぼ同じである。したがって、接触電極161,162,201のそれぞれは、所定方向101の高さが、駆動部140による接触部材150の突き出し後における接触部151の高さより低い。
 表示部170は、圧電素子155の出力電圧の測定結果を出力する出力手段である。表示部170は、回路基盤130の制御に従って、回路基盤130によって測定された圧電素子155の出力電圧の測定結果をユーザに対して表示する。
 図2は、所定方向101の側から見た測定装置100を示す上面図である。接触電極161,162,201は、所定方向101と直交する平面(図2の紙面)上に設けられている。このため、接触電極161,162,201のすべてを測定対象に接触させると、測定対象の面に対して接触部材150の突き出し方向(所定方向101)が直角になる。
 したがって、接触電極161,162,201のすべてが測定対象との接触を検知したときに接触部材150を突き出すことで、測定対象の面に対して接触部材150を直角に突き出すことができる。これにより、ユーザは、測定装置100の角度を特に注意しなくても、接触電極161,162,201を同時に測定対象に接触させることで、測定対象の粘弾性を精度よく測定することができる。
 また、接触電極161,162,201のすべてが測定対象との接触を検知したときに接触部材150を突き出すことで、接触部材150の突き出し直前における接触部151と測定対象との距離を常に一定にすることができる。これにより、測定対象に対して接触部151を常に一定の力で押し込み、測定対象の粘弾性に応じた反作用を得ることができる。このため、ユーザが測定装置100を測定対象に押し当てる力を意識しなくても、測定対象の粘弾性を簡単に精度よく測定することができる。
 また、接触電極161,162,201は、接触部151の通過領域を中心とした円上に設けられている。このように、接触部材150の通過領域を囲んで接触電極161,162,201を設けることで、測定対象における接触電極161,162,201が接触した各部分に囲まれる位置へ接触部材150を突き出すことができる。
 これにより、測定対象の面に対する接触部材150の突き出し方向をより確実に直角にすることができる。このため、ユーザは、接触電極161,162,201を同時に測定対象に接触させることで、測定対象の粘弾性をより簡単に精度よく測定することができる。
 ここでは、3つの接触電極(接触電極161,162,201)を設ける構成について説明したが、接触電極を2つにする構成も可能である。たとえば、接触電極201を省いた構成にしてもよい。この構成においては、接触電極161,162の両方が測定対象との接触を検知したときに接触部材150を突き出すようにする。
 これにより、ユーザは、一方向の角度のみに注意しながら接触電極161,162を同時に測定対象に接触させることで、測定対象の粘弾性を簡単に精度よく測定することができる。ここで、ユーザが注意する一方向の角度とは、接触電極161,162を結ぶ直線を回転軸として変化する測定装置100の角度である。
 また、接触電極を1つにする構成も可能である。たとえば、接触電極162,201を省いた構成にしてもよい。この構成においては、接触電極161が測定対象との接触を検知したときに接触部材150を突き出すようにする。これにより、接触部材150の突き出し直前における接触部151と測定対象との距離を常に一定にすることができる。
 したがって、測定対象に対して接触部151を常に一定の力で押し込み、測定対象の粘弾性に応じた反作用を得ることができる。このため、ユーザが測定装置100を測定対象に押し当てる力を意識しなくても、測定対象の粘弾性を簡単に精度よく測定することができる。また、接触電極を1つにする構成にする場合には、接触電極161をたとえば接触部151の表面に設ける構成とすることも可能である。
 また、接触電極を4つ以上にする構成も可能である。たとえば、接触部151の通過領域を中心とした円上にさらに接触電極を追加する構成にしてもよい。この構成においては、接触電極161,162,201および追加した接触電極のすべてが測定対象との接触を検知したときに接触部材150を突き出すようにする。
 なお、図示しないが、測定装置100に電源スイッチを設け、電源スイッチがONのときに接触電極161,162,201を測定対象に接触させると接触部材150を突き出すようにしてもよい。これにより、たとえば測定装置100の未使用時などに、ユーザの意に反して接触部材150が突き出ることを回避することができる。
 図3は、所定方向101の反対側から見た圧電素子155を示す下面図である。圧電素子155は、基板152よりも面積が小さく、圧電素子155の全面が基板152の一部に対して貼り付けられている。また、基板152と圧電素子155のそれぞれは円形に形成されている。このため、基板152と圧電素子155の取り付け方向に関わらず、基板152の歪みに応じて圧電素子155を歪ませることができる。
(測定装置の使用例)
 図4は、測定装置100の動作例を示す図(その1)である。図5は、測定装置100の動作例を示す図(その2)である。上述したように、接触電極161,162,201のそれぞれは、所定方向101の高さが、駆動部140による接触部材150の突き出し前における接触部151の高さ以上(図では同じ)である。
 これにより、接触部材150の突き出し前においては接触部151が測定対象400に押し込まれないようにすることができる。このため、接触部材150の突き出し時に、測定対象400の粘弾性を測定対象400からの反作用に精度よく反映させることができる。
 図4に示すように、測定対象400に接触電極161,162,201を同時に接触させると、回路基盤130の制御によって駆動部140が接触部材150を所定方向101へ突き出す。これにより、図5に示す状態になる。ここで、接触電極161,162,201のそれぞれは、所定方向101の高さが、駆動部140による接触部材150の突き出し後における接触部151の高さより低く形成されている。
 このため、図5に示すように、突き出し後の接触部151は、測定対象400と接触した接触電極161,162,201よりも所定方向101側へ変位するため、測定対象400に押し込まれる。測定対象400へ押し込まれた接触部151は、測定対象400から、測定対象400の粘弾性に応じた反作用を所定方向101とは反対方向に受ける。
 接触部151が受けた反作用は、接触部材150の接触部151とは反対側に設けられた基板152に伝わる。そして、基板152は、接触部材150との接触面よりも面積が大きい。このため、基板152が接触部材150からの反作用を所定方向101とは反対方向に受けると、基板152の接触部材150からはみ出した部分が所定方向101へわずかに変位し、その結果、基板152全体が歪む。
 そして、基板152全体の歪みに応じて、基板152の接触部材150とは反対側に貼り付けられた圧電素子155も歪み、圧電素子155の歪みに応じた電圧が回路基盤130へ出力される。したがって、回路基盤130へ出力される圧電素子155の出力電圧は、測定対象400の粘弾性に応じて変化する。このため、圧電素子155の出力電圧を取得することで、測定対象400の粘弾性を測定することができる。
(測定装置の機能的構成)
 図6は、回路基盤130の機能的構成の一例を示すブロック図である。図6に示すように、測定装置100の回路基盤130は、誘導ハム検出部611と、方形波生成部612と、波形測定部613と、を備えている。誘導ハム検出部611は、接触電極161,162,201のそれぞれの誘導ハムを検知する。
 誘導ハムは、接触電極161,162,201が測定対象と接触したときに接触電極161,162,201に発生する。誘導ハム検出部611は、接触電極161,162,201のすべてから同時に誘導ハムを検知すると、方形波生成部612および波形測定部613のそれぞれに対して検知信号を出力する。
 方形波生成部612は、誘導ハム検出部611から検知信号が出力されると方形波を生成する。そして、方形波生成部612は、生成した方形波を駆動電流として駆動部140へ入力する。方形波生成部612から駆動部140へ方形波を入力することで、ボイスコイル154に急激な電流が流れ、駆動部140による接触部材150の突き出しを瞬時に行うことができる(ステップファンクション)。
 波形測定部613は、誘導ハム検出部611から検知信号が出力されると、圧電素子155の出力電圧の波形測定を行い、波形測定の結果を表示部170によって表示させる。ところで、ユーザの呼吸性の体動や筋肉振動は通常20Hz以下である。このため、波形測定部613は、駆動部140による接触部材150の突き出しから10msec以下の期間内に圧電素子155の出力電圧を取得することが望ましい。これにより、ユーザの呼吸性の体動や筋肉振動の影響を受けずに測定対象の弾性を測定することができる。
 波形測定部613は、たとえば、駆動部140による接触部材150の突き出しの前における圧電素子155の出力電圧と、駆動部140による接触部材150の突き出し時における圧電素子155の出力電圧のピークと、の差分を測定する(たとえば図7参照)。
 または、波形測定部613は、駆動部140による接触部材150の突き出しの後における圧電素子155の出力電圧を複数回取得し、取得した各出力電圧の減衰量を測定するようにしてもよい(たとえば図8参照)。または、波形測定部613は、駆動部140による接触部材150の突き出しの後における圧電素子155の出力電圧の振幅を複数回取得し、取得した各振幅の減衰量を測定するようにしてもよい(たとえば図9参照)。
(回路基盤の動作)
 図7は、回路基盤130の動作の一例を示すフローチャートである。まず(START)、誘導ハム検出部611が、接触電極161,162,201のすべてから誘導ハムを検知したか否かを判断し(ステップS701)、接触電極161,162,201のすべてから誘導ハムを検知するまで待つ(ステップS701:Noのループ)。
 ステップS701において、接触電極161,162,201のすべてから誘導ハムを検知すると(ステップS701:Yes)、波形測定部613が、圧電素子155の出力電圧を取得する(ステップS702)。また、方形波生成部612が、方形信号を駆動部140へ出力する(ステップS703)。これにより、駆動部140によって接触部材150が、測定対象に対して瞬時に突き出される。
 つぎに、波形測定部613が、圧電素子155の出力電圧のピークを取得する(ステップS704)。つぎに、波形測定部613が、ステップS702によって取得された出力電圧と、ステップS704によって取得されたピークの出力電圧と、の差分を算出する(ステップS705)。つぎに、波形測定部613が、ステップS705による算出結果を表示部170へ出力し(ステップS706)、一連の動作を終了する(END)。
 このように、回路基盤130は、駆動部140による接触部材150の突き出し前における圧電素子155の出力電圧と、駆動部140による接触部材150の突き出し時における圧電素子155の出力電圧のピークと、の差分を測定する。これにより、接触部材150が測定対象へ突き出される前の圧電素子155の出力電圧におけるばらつきを補償して測定対象の堅さを測定することができる。
 ここでは、接触部材150の突き出しの直前における圧電素子155の出力電圧を取得する方法を説明したが、このような方法に限らない。たとえば、接触部材150の突き出し前における圧電素子155の出力電圧が安定している場合は、ステップS701の前に圧電素子155の出力電圧を取得するようにしてもよい。そして、ステップS705においては、ステップS701の前に取得した圧電素子155の出力電圧と、ステップS704によって取得されたピークの出力電圧と、の差分を算出する。これにより、測定対象の堅さを測定することができる。
 図8は、回路基盤130の動作の他の例を示すフローチャートである。まず(START)、誘導ハム検出部611が、接触電極161,162,201のすべてから誘導ハムを検知したか否かを判断し(ステップS801)、接触電極161,162,201のすべてから誘導ハムを検知するまで待つ(ステップS801:Noのループ)。接触電極161,162,201のすべてから誘導ハムを検知すると(ステップS801:Yes)、波形測定部613が、圧電素子155の出力電圧を取得する(ステップS802)。
 つぎに、方形波生成部612が方形信号を駆動部140へ出力する(ステップS803)。これにより、接触部材150が駆動部140によって突き出される。つぎに、波形測定部613が、ステップS802またはステップS806(後述)によって出力電圧を所定回数取得したか否かを判断する(ステップS804)。
 ステップS804において、出力電圧を所定回数取得していない場合(ステップS804:No)は、出力電圧を最後に取得してから所定時間が経過したか否かを判断する(ステップS805)。そして、所定時間が経過するまで待つ(ステップS805:Noのループ)。ステップS805において待機する所定時間は、常に一定の時間にせずに、ステップS805を実行するたびに変更してもよい。
 ステップS805において所定時間が経過すると(ステップS805:Yes)、波形測定部613が圧電素子155の出力電圧を取得し(ステップS806)、ステップS804へ戻って処理を続行する。ステップS804において出力電圧を所定回数取得した場合(ステップS804:Yes)は、波形測定部613が、ステップS802またはステップS806によって取得された各出力電圧の減衰量を算出する(ステップS807)。
 つぎに、波形測定部613が、ステップS807による算出結果を表示部170へ出力し(ステップS808)、一連の動作を終了する(END)。このように、接触部材150の突き出し後における圧電素子155の出力電圧を複数回取得し、取得した各出力電圧の減衰量を測定することで、測定対象の減衰率を測定することができる。
 図9は、回路基盤130の動作のさらに他の例を示すフローチャートである。まず(START)、誘導ハム検出部611が、接触電極161,162,201のすべてから誘導ハムを検知したか否かを判断し(ステップS901)、接触電極161,162,201のすべてから誘導ハムを検知するまで待つ(ステップS901:Noのループ)。
 ステップS901において、接触電極161,162,201のすべてから誘導ハムを検知すると(ステップS901:Yes)、方形波生成部612が方形信号を駆動部140へ出力する(ステップS902)。これにより、接触部材150が駆動部140によって突き出される。つぎに、波形測定部613が、圧電素子155の出力電圧の波高値を取得する(ステップS903)。
 つぎに、波形測定部613が、圧電素子155の出力電圧の波低値を取得する(ステップS904)。つぎに、波形測定部613が、ステップS903によって取得された波高値と、ステップS904によって取得された波低値と、に基づいて圧電素子155の出力電圧の振幅を算出する(ステップS905)。
 つぎに、ステップS905によって出力電圧の振幅を所定回数算出したか否かを判断する(ステップS906)。出力電圧の振幅を所定回数算出していない場合(ステップS906:No)は、ステップS903へ戻って処理を続行する。出力電圧の振幅を所定回数算出した場合は(ステップS906:Yes)、波形測定部613が、ステップS905によって算出された各振幅の減衰量を算出する(ステップS907)。
 つぎに、波形測定部613が、ステップS907による算出結果を表示部170へ出力し(ステップS908)、一連の動作を終了する(END)。このように、接触部材150の突き出し後における圧電素子155の出力電圧の振幅を複数回取得し、取得した各振幅の減衰量を測定することで、測定対象の対数減衰率を測定することができる。
(測定結果の例)
 図10は、測定装置100によるフィルタスポンジの測定例を示すグラフである。図11は、測定装置100によるクッションスポンジの測定例を示すグラフである。図10および図11において、横軸は時間[msec]を示している。また、図10および図11において、縦軸は圧電素子155の出力電圧[V]を示している。
 図10の波形1000は、図7に示した動作によってフィルタスポンジの硬さを測定した結果を示している。フィルタスポンジは、フィルタに用いられるウレタンフォーム(イノアック社製CFH-20)である。図11の波形1100は、図7に示した動作によってクッションスポンジの硬さを測定した結果を示している。クッションスポンジは、クッションに用いられるウレタンフォーム(イノアック社製ECM)である。
 図10および図11に示す測定例において、基盤は0.3[mm]圧のアルミ板とした。また、増幅器157は時定数1秒のインピーダンス変換器とした。また、圧電素子155はユニモルフ圧電素子とした。また、駆動部140の突き出しによる接触部材150の変位量(ストローク長)は0.3mmとした。これらの各測定条件は、図12~図16に示す測定例においても同様である。
 図10および図11において、時期t1は、誘導ハム検出部611によって、接触電極161,162,201のすべてから誘導ハムが検知された時期を示している。時期t2は、時期t1の後に圧電素子155の出力電圧がピークとなった時期を示している。図10の差分h1および図11の差分h2のそれぞれは、時期t1と時期t2における圧電素子155の各出力電圧の差分を示している。
 波形測定部613は、差分h1や差分h2を算出する。図10および図11に示す例では、フィルタスポンジを測定した場合に波形測定部613によって算出される差分h1(図10)は、クッションスポンジを測定した場合に波形測定部613によって算出される差分h2(図11)よりも大きい。この場合は、測定対象のフィルタスポンジは、測定対象のクッションスポンジよりも堅いことが分かる。
 図12は、測定装置100による餅の測定例を示すグラフである。図13は、測定装置100によるクッションスポンジの測定例を示すグラフである。図12および図13において、横軸は時間[msec]を示している。また、図12および図13において、縦軸は圧電素子155の出力電圧[V]を示している。
 図12の波形1200は、図8に示した動作によって餅の減衰率を測定した結果を示している。図13の波形1300は、図8に示した動作によってクッションスポンジの減衰率を測定した結果を示している。図12および図13において、時期t1は、誘導ハム検出部611によって、接触電極161,162,201のすべてから誘導ハムが検知された時期を示している。
 時期t2は、時期t1の後、時間aが経過した時期を示している。時期t3は、時期t1の後、時間b(>a)が経過した時期を示している。差分haは、時期t1と時期t2における圧電素子155の各出力電圧の差分を示している。差分hbは、時期t1と時期t3における圧電素子155の各出力電圧の差分を示している。波形測定部613は、差分haに対する差分hbの減衰量を算出する。
 図12および図13に示す例では、餅を測定した場合に波形測定部613によって算出される差分haに対する差分hbの減衰量(図12)は、クッションスポンジを測定した場合に波形測定部613によって算出される差分haに対する差分hbの減衰量(図13)よりも大きい。この場合は、測定対象の餅は、測定対象のクッションスポンジよりも減衰率が大きいことが分かる。
 ここで、測定対象の減衰率を測定する具体的な方法の一例について説明する。ステップファンクションによる接触部材150の突き出しに対する測定対象の応答h(t)は、下記(1)式のように示すことができる。
Figure JPOXMLDOC01-appb-M000001
 上記(1)式において、tは時間を示している。h0は、接触部材150の突き出しに対する測定対象の反作用の初期波高値を示している。βは測定系の時定数を示している。
 測定系の時定数を1秒とすると、時間t=aの場合の応答haおよび時間t=bの場合の応答hbは、それぞれ下記(2)式および(3)式のように示すことができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記(2)式および(3)式において、γは測定対象の時定数(減衰率の逆数)を示している。上記(2)式および(3)式によって、下記(4)式が成り立つ。
Figure JPOXMLDOC01-appb-M000004
 上記(4)式において、Kは定数である。上記(4)式により、時間t=aの場合の応答haおよび時間t=bの場合の応答hbをそれぞれ測定することで、測定対象の時定数γを算出することができる。応答haおよび応答hbには、たとえば、図12および図13に示した差分haおよび差分hbを用いることができる。したがって、測定対象の減衰率として、図12および図13に示した差分haおよび差分hbと、上記(4)式と、に基づく時定数γを算出することができる。
 図14は、測定装置100による前腕皮膚の測定例を示すグラフである。図15は、測定装置100による頬皮膚の測定例を示すグラフである。図14および図15において、横軸は時間[msec]を示している。また、図14および図15において、縦軸は圧電素子155の出力電圧[V]を示している。
 図14の波形1400は、図9に示した動作によって前腕皮膚の対数減衰率を測定した結果を示している。図15の波形1500は、図9に示した動作によって頬皮膚の対数減衰率を測定した結果を示している。図14および図15において、時期t1は、誘導ハム検出部611によって、接触電極161,162,201のすべてから誘導ハムが検知された時期を示している。
 時期t2は、時期t1の後に圧電素子155の出力電圧が波高値となった時期を示している。差分h1は、時期t1と時期t2における圧電素子155の各出力電圧の差分を示している。時期t3は、時期t2の後に圧電素子155の出力電圧が波高値となった時期を示している。時期t4は、時期t3の後に圧電素子155の出力電圧が波低値となった時期を示している。差分h2は、時期t3と時期t4における圧電素子155の各出力電圧の差分を示している。
 波形測定部613は、差分h1に対する差分h2の減衰量を算出する。図14および図15に示す例では、前腕皮膚を測定した場合に波形測定部613によって算出される差分h1に対する差分h2の減衰量(図14)は、頬皮膚を測定した場合に波形測定部613によって算出される差分h1に対する差分h2の減衰量(図15)より小さい。この場合は、測定対象の頬皮膚は測定対象の前腕皮膚よりダンピング特性が大きいことが分かる。
 ここで、測定対象のダンピング特性を測定する具体的な方法の一例について説明する。たとえば、測定対象のダンピング特性として、図14および図15に示した差分h1に対する差分h2の対数減衰率Δ=ln(h1/h2)を算出することができる。
 図16は、測定装置100による測定した餅の経時変化を示すグラフである。図16において、横軸は時間[分]を示している。また、図16において、縦軸は圧電素子155の出力電圧[mV]を示している。図16の波形1600は、図7に示した動作を15[分]毎に行った結果を示している。波形1600に示すように、時間経過によって餅が堅くなっていく様子を測定装置100により測定することができることが分かる。
(制振性能について)
 波形測定部613によって測定する指標は、上述した各種指標に限らず、圧電素子155の出力電圧に基づく様々な指標を用いることができる。圧電素子155の出力電圧に2次遅れ系の信号が強調される場合は、たとえば、波形測定部613によって測定対象の制振性能を測定してもよい。以下に、波形測定部613によって測定対象の制振性能を測定する例について説明する。
 図17は、制振性能の半値幅法による測定方法を説明するグラフである。図17において、横軸は圧電素子155の出力電圧の周波数[Hz]を示している。図17において、縦軸は圧電素子155の出力電圧の振幅を示している。波形1700は、圧電素子155の出力電圧の周波数に対する圧電素子155の出力電圧の振幅の特性を示している。
 たとえば、波形1700がピーク値となる周波数をω0とし、波形1700がピーク値から3[dB]小さくなる各周波数をω1およびω2とすると、波形測定部613は、ω0、ω1およびω2を用いて損失係数η=(ω2-ω1)/ω0を算出する。損失係数ηは、測定対象の制振性能を示している。
 図18は、制振性能の減衰率法による測定方法を説明するグラフである。図18において、横軸は時間を示し、縦軸は圧電素子155の出力電圧の振幅を示している。波形1800は、圧電素子155の出力電圧の振幅の経時変化を示している。
 たとえば、波形1800において、1[sec]の期間における圧電素子155の出力電圧の振幅の減少量をD[dB]とし、共振周波数をfとすると、波形測定部613は、減少量Dおよび共振周波数fを用いて損失係数η=D/(27.3f)を算出する。損失係数ηは、測定対象の制振性能を示している。
(測定結果の表示例)
 測定装置100を肌の弾性測定に用いる場合の表示部170による表示例について説明する。この場合は、波形測定部613は、波形測定部613から出力された弾性に関する算出結果を、ユーザに対して分かりやすい情報に変換して表示部170に表示させてもよい。たとえば、波形測定部613は、あらかじめ統計によって得られた弾性の標準値を記憶しており、弾性の算出結果と標準値とを比較する。
 そして、波形測定部613は、比較結果を表示部170に表示させる。たとえば、波形測定部613は、「弾性が標準的」、「弾性が標準より高い」または「弾性が標準より低い」などの情報を表示部170に表示させる。
 または、波形測定部613は、あらかじめ統計によって得られた年齢別の弾性の標準値を記憶しており、弾性の算出結果に対応する年齢を肌年齢として表示部170に表示させてもよい。たとえば、波形測定部613は、「肌年齢20歳」、「肌年齢30歳」または「肌年齢40歳」などの情報を表示部170に表示させる。
 以上説明したように、この発明にかかる測定装置および測定方法によれば、測定対象の粘弾性を簡単に精度よく測定することができる。なお、上述した実施の形態においては、測定対象の粘弾性などを測定する構成について説明したが、通電電極をさらに設け、測定対象の粘弾性とともに皮膚の濡れ特性なども同時に測定する構成としてもよい。

Claims (14)

  1.  測定対象に接触させるための接触部を有する接触部材と、
     前記接触部材を所定方向に突き出す駆動手段と、
     前記接触部材に設けられた圧電素子と、
     前記圧電素子の出力電圧を測定する測定手段と、
     前記測定手段による測定結果を出力する出力手段と、
     を備えることを特徴とする測定装置。
  2.  前記測定対象との接触を検知する接触電極と、
     前記接触電極によって前記測定対象との接触が検知されると、前記接触部材を突き出すように前記駆動手段を制御する駆動制御手段と、
     を備えることを特徴とする請求項1に記載の測定装置。
  3.  前記接触電極は、前記所定方向の高さが前記駆動手段による突き出し後の前記接触部より低いことを特徴とする請求項2に記載の測定装置。
  4.  前記接触電極は、前記所定方向の高さが前記駆動手段による突き出し前の前記接触部の高さ以上であることを特徴とする請求項2に記載の測定装置。
  5.  前記接触電極は、前記所定方向と直交する平面上に2つ以上設けられ、
     前記駆動制御手段は、2つ以上の前記接触電極によって前記測定対象との接触が同時に検知されると前記駆動手段を制御することを特徴とする請求項2に記載の測定装置。
  6.  前記接触電極は、前記所定方向と直交する平面上に3つ以上設けられ、
     前記駆動制御手段は、3つ以上の前記接触電極によって前記測定対象との接触が同時に検知されると前記駆動手段を制御することを特徴とする請求項2に記載の測定装置。
  7.  前記接触電極は、前記駆動手段の突き出しによる前記接触部材の通過領域を囲んで設けられていることを特徴とする請求項6に記載の測定装置。
  8.  前記駆動手段は、入力される駆動電流に応じた力で前記接触部材を突き出し、
     前記駆動制御手段は、前記駆動電流として方形波を前記駆動手段へ入力することにより前記駆動手段を制御することを特徴とする請求項2に記載の測定装置。
  9.  前記測定手段は、前記駆動手段による前記接触部材の突き出しの前における前記出力電圧と、前記駆動手段による前記接触部材の突き出し時における前記出力電圧のピークと、の差分を測定することを特徴とする請求項1に記載の測定装置。
  10.  前記測定手段は、前記駆動手段による前記接触部材の突き出しから10msec以下の期間内において前記突き出しの前における前記出力電圧および前記ピークを取得することを特徴とする請求項9に記載の測定装置。
  11.  前記測定手段は、前記駆動手段による前記接触部材の突き出し後における前記出力電圧を複数回取得し、取得した各出力電圧の減衰量を測定することを特徴とする請求項1に記載の測定装置。
  12.  前記測定手段は、前記駆動手段による前記接触部材の突き出し後における前記出力電圧の振幅を複数回取得し、取得した各振幅の減衰量を測定することを特徴とする請求項1に記載の測定装置。
  13.  ユーザの把持操作によって変位可能なことを特徴とする請求項1~12のいずれか一つに記載の測定装置。
  14.  測定対象に接触させるための接触部を有する接触部材を備える測定装置による測定方法において、
     前記接触部材を所定方向に突き出す駆動工程と、
     前記接触部材に設けられた圧電素子の出力電圧を測定する測定工程と、
     前記測定工程による測定結果を出力する出力工程と、
     を含むことを特徴とする測定方法。
PCT/JP2009/050695 2009-01-19 2009-01-19 測定装置および測定方法 WO2010082356A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/050695 WO2010082356A1 (ja) 2009-01-19 2009-01-19 測定装置および測定方法
JP2010546533A JP5314052B2 (ja) 2009-01-19 2009-01-19 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050695 WO2010082356A1 (ja) 2009-01-19 2009-01-19 測定装置および測定方法

Publications (1)

Publication Number Publication Date
WO2010082356A1 true WO2010082356A1 (ja) 2010-07-22

Family

ID=42339623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050695 WO2010082356A1 (ja) 2009-01-19 2009-01-19 測定装置および測定方法

Country Status (2)

Country Link
JP (1) JP5314052B2 (ja)
WO (1) WO2010082356A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2687151A1 (en) * 2012-07-20 2014-01-22 Tanita Corporation Viscoelasticity measuring apparatus
WO2015018900A1 (de) * 2013-08-07 2015-02-12 Eberhard Karls Universität Tübingen Vorrichtung und verfahren zur messung der elastizität einer makroskopischen probe
CN104840184A (zh) * 2015-04-27 2015-08-19 苏州美一点智能科技有限公司 一种皮肤测试仪
US9194781B2 (en) 2012-07-20 2015-11-24 Tanita Corporation Viscoelasticity measuring apparatus
WO2019151218A1 (ja) * 2018-01-30 2019-08-08 新光電子株式会社 押込み試験装置及び押込み試験方法
JP2019132815A (ja) * 2018-02-16 2019-08-08 新光電子株式会社 押込み試験装置
JP2019132630A (ja) * 2018-01-30 2019-08-08 新光電子株式会社 押込み試験装置及び押込み試験方法
JP2019158683A (ja) * 2018-03-14 2019-09-19 新光電子株式会社 押込み試験装置
JP2019207237A (ja) * 2015-06-25 2019-12-05 マクセル株式会社 硬度計

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131278A (ja) * 1974-09-11 1976-03-17 Akashi Seisakusho Kk
JPS53122479A (en) * 1977-03-04 1978-10-25 Oreal Hardness measuring apparatus
JPS589044A (ja) * 1981-06-24 1983-01-19 Sumitomo Rubber Ind Ltd ゴム、プラスチツク等の硬度測定方法およびそれに表いる硬度計
JPS58115202U (ja) * 1982-01-29 1983-08-06 三菱油化株式会社 生体用トランスジユ−サ
JPS6122231A (ja) * 1984-03-16 1986-01-30 アントン パ−ル カ−ゲ− マイクロ硬度テスト装置
US6068604A (en) * 1998-04-09 2000-05-30 Smith & Nephew, Inc. Cartilage indentor instrument
JP2000316818A (ja) * 1999-05-06 2000-11-21 Shiseido Co Ltd 皮膚の粘弾性特性測定装置および測定方法
US6186962B1 (en) * 1997-10-28 2001-02-13 Alere Incorporated Method and device for detecting edema

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313752A (ja) * 1993-04-30 1994-11-08 Imada:Kk 軟質材用硬度計
JP4922056B2 (ja) * 2007-05-01 2012-04-25 伊藤超短波株式会社 筋組織硬度計

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131278A (ja) * 1974-09-11 1976-03-17 Akashi Seisakusho Kk
JPS53122479A (en) * 1977-03-04 1978-10-25 Oreal Hardness measuring apparatus
JPS589044A (ja) * 1981-06-24 1983-01-19 Sumitomo Rubber Ind Ltd ゴム、プラスチツク等の硬度測定方法およびそれに表いる硬度計
JPS58115202U (ja) * 1982-01-29 1983-08-06 三菱油化株式会社 生体用トランスジユ−サ
JPS6122231A (ja) * 1984-03-16 1986-01-30 アントン パ−ル カ−ゲ− マイクロ硬度テスト装置
US6186962B1 (en) * 1997-10-28 2001-02-13 Alere Incorporated Method and device for detecting edema
US6068604A (en) * 1998-04-09 2000-05-30 Smith & Nephew, Inc. Cartilage indentor instrument
JP2000316818A (ja) * 1999-05-06 2000-11-21 Shiseido Co Ltd 皮膚の粘弾性特性測定装置および測定方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194781B2 (en) 2012-07-20 2015-11-24 Tanita Corporation Viscoelasticity measuring apparatus
CN103565414A (zh) * 2012-07-20 2014-02-12 株式会社百利达 粘弹性测量装置
JP2014038089A (ja) * 2012-07-20 2014-02-27 Tanita Corp 粘弾性測定装置
EP2687151A1 (en) * 2012-07-20 2014-01-22 Tanita Corporation Viscoelasticity measuring apparatus
US20160183800A1 (en) * 2013-08-07 2016-06-30 Eberhard Karls Universitat Tubingen Device and method for measuring the elasticity of a macroscopic sample
WO2015018900A1 (de) * 2013-08-07 2015-02-12 Eberhard Karls Universität Tübingen Vorrichtung und verfahren zur messung der elastizität einer makroskopischen probe
CN104840184A (zh) * 2015-04-27 2015-08-19 苏州美一点智能科技有限公司 一种皮肤测试仪
JP2019207237A (ja) * 2015-06-25 2019-12-05 マクセル株式会社 硬度計
WO2019151218A1 (ja) * 2018-01-30 2019-08-08 新光電子株式会社 押込み試験装置及び押込み試験方法
JP2019132630A (ja) * 2018-01-30 2019-08-08 新光電子株式会社 押込み試験装置及び押込み試験方法
JP7019435B2 (ja) 2018-01-30 2022-02-15 新光電子株式会社 押込み試験装置及び押込み試験方法
JP2019132815A (ja) * 2018-02-16 2019-08-08 新光電子株式会社 押込み試験装置
JP7019445B2 (ja) 2018-02-16 2022-02-15 新光電子株式会社 押込み試験装置
JP2019158683A (ja) * 2018-03-14 2019-09-19 新光電子株式会社 押込み試験装置
JP7037966B2 (ja) 2018-03-14 2022-03-17 新光電子株式会社 押込み試験装置

Also Published As

Publication number Publication date
JP5314052B2 (ja) 2013-10-16
JPWO2010082356A1 (ja) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5314052B2 (ja) 測定装置
US10782785B2 (en) Vibro-haptic design and automatic evaluation of haptic stimuli
JP4783575B2 (ja) 接触式変位測長器
US10842402B2 (en) Determination system, control signal output system, rehabilitation system, determination method, control signal output method, and recording medium
JP2021518606A (ja) トランスデューサの共振周波数を補償するための駆動波形の調整
US10981053B2 (en) Vibration control apparatus
US20160199203A1 (en) Determination system, control signal output system, rehabilitation system, determination method, control signal output method, recording medium, and electroencephalogram signal acquisition system
KR20200143320A (ko) 버튼형 액추에이터, 이를 포함하는 버튼형 액추에이터 피드백 시스템 및 그 제어 방법
JP3561787B2 (ja) 音響振動体感付与方法ならびにその装置
CN107438880A (zh) 电子打击乐器
JP2010022585A (ja) 振動感覚測定装置の加振ユニット
WO2009093477A1 (ja) 睡眠状態の判定方法およびシステム
JP6151235B2 (ja) 加速度発生装置および情報呈示方法
JP2013076658A (ja) 硬度計算システムおよび硬度計算方法
Wollman et al. On the characterization of vibrotactile feedback in violinists' left hand: a case study
JP2009034404A (ja) 脳機能検出方法および装置
JP3907267B2 (ja) 生体表面部の力学特性測定のためのセンサ内蔵形加振器
JP2009188638A (ja) マイクロホン装置
JP5447936B2 (ja) ベルト張力測定装置
CN110972461B (zh) 中耳传音特性评价系统、及计测探头
KR20200143319A (ko) 버튼형 액추에이터, 이를 포함하는 버튼형 액추에이터 피드백 시스템 및 그 제어 방법
Hatzfeld et al. Vibrotactile force perception thresholds at the fingertip
Wokurek et al. Acceleration sensor measurements of vibrations of the larynx in patients with vocal fold adduction deficiencies.
Wofford Study of the interaction between the musician and the instrument. Application to the playability of the cello
JP2010256307A (ja) 硬さ測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010546533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838324

Country of ref document: EP

Kind code of ref document: A1