WO2019151218A1 - 押込み試験装置及び押込み試験方法 - Google Patents

押込み試験装置及び押込み試験方法 Download PDF

Info

Publication number
WO2019151218A1
WO2019151218A1 PCT/JP2019/002903 JP2019002903W WO2019151218A1 WO 2019151218 A1 WO2019151218 A1 WO 2019151218A1 JP 2019002903 W JP2019002903 W JP 2019002903W WO 2019151218 A1 WO2019151218 A1 WO 2019151218A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
indenter
indentation
contact
indentation test
Prior art date
Application number
PCT/JP2019/002903
Other languages
English (en)
French (fr)
Inventor
光平 岡本
一良 安原
Original Assignee
新光電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018013281A external-priority patent/JP7019435B2/ja
Priority claimed from JP2018025684A external-priority patent/JP7019445B2/ja
Application filed by 新光電子株式会社 filed Critical 新光電子株式会社
Publication of WO2019151218A1 publication Critical patent/WO2019151218A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness

Definitions

  • the present invention relates to an indentation test apparatus and an indentation test method for indenting an indenter into food such as rice cake and ham, or a human flexible tissue, and measuring the softness thereof.
  • Patent Document 1 discloses an indentation test apparatus that measures the softness of a flexible food or human body tissue as an object.
  • the apparatus includes an indenter 10 that is pushed into the subject, a force sensor 30 that detects a force acting on the indenter 10 when the indenter 10 is pushed into the subject, and the softness of the subject.
  • the calculation part 40 which calculates the Young's modulus which evaluates based on the force which acts on the indenter 10, and the housing
  • the indenter 10 is disposed in the housing such that a certain amount of the hemispherical portion at the tip protrudes from the end 21 of the housing 20.
  • This indentation test apparatus can measure the softness of the subject at the place where the subject should be (so-called “in-situ measurement”), and can be expected to be used in a wide range of fields.
  • FIG. 12A shows a state where the indenter 10 is not inclined with respect to the surface of the subject
  • FIG. 12B shows a state where the indenter 10 is inclined by ⁇ with respect to the surface of the subject.
  • FIG. 13 shows the relationship between the inclination of the indenter 10 and the Young's modulus E error, with the angle corresponding to ⁇ taken on the horizontal axis and the Young's modulus E error taken on the vertical axis. It can be seen that in order to make the error of the Young's modulus E 1% or less, it is necessary to maintain the inclination of the indenter 10 within 0.2 °.
  • the graph of FIG. 14 shows the results of measuring the softness of the same subject using four conventional indentation test apparatuses by A, B, C, and D.
  • the horizontal axis indicates the inclination of the housing at the time of measurement (an angle corresponding to ⁇ ), and the vertical axis indicates the calculated Young's modulus. As is apparent from FIG. 14, the measurement results vary depending on the operator who operates the indentation test apparatus.
  • the present invention has been made in consideration of such circumstances, and an object thereof is to provide an indentation test apparatus and an indentation test method in which anyone can accurately measure the softness of a subject.
  • the present invention provides an indenter to be pushed into a subject, a case in which the indenter is disposed in a state in which at least a part projects from an end, and the case is operated so as to push the indenter into the subject.
  • a contact portion that contacts the subject behind the indenter, and the force acting on the indenter when the contact portion contacts the subject in accordance with the operation is a force sensor.
  • An indentation test device that detects the softness of the subject based on the detection result of the force sensor, and supports the indentation direction of the indenter into the subject to be perpendicular to the surface of the subject.
  • a pushing support means is provided.
  • anyone who operates this apparatus can accurately measure the softness of the subject because the pushing direction is perpendicular to the surface of the subject.
  • the indentation support means an outer cylinder part in which a guide hole for guiding the movement of the casing in a direction perpendicular to the surface of the subject is formed, and one end of the outer cylinder part A guide member provided with a large-diameter portion having an outer diameter larger than the outer diameter of the outer cylinder portion, and the large-diameter portion at one end of the guide member is disposed on the measurement surface of the subject. Then, the housing with the indenter side facing the subject is inserted from a guide hole that opens to the other end of the guide member.
  • a guide member having a large-diameter portion is arranged perpendicular to the surface of the subject, and guided by the guide member, so that the housing advances perpendicularly to the surface of the subject.
  • the said guide member is provided with the slide bush which smoothes the motion of the said housing
  • the indentation test apparatus of the present invention has a plurality of contact detection sensors that form the abutment portion as the indentation support means, and the plurality of contact detection sensors have a substantially equal circumference around the indenter. The softness of the subject is not calculated unless all of the plurality of contact detection sensors detect contact with the subject. If all of the plurality of contact detection sensors detect contact with the subject, the periphery of the indenter is in contact with the subject evenly.
  • the present invention also includes an indenter that is pushed into a subject, a force sensor that detects a force acting on the indenter, the force sensor, and a connection member that connects the force sensor and the indenter, A plurality of contact detection sensors for detecting contact between the casing in which the indenter is arranged in a state in which at least a part projects outward from the end face and a position where the end face of the casing is separated from the subject.
  • a plurality of contact detection sensors projecting the same length from the end face at the position dividing the circumference centered on the indenter at substantially equal distances, and outside the end face
  • the distance to the tip of the indenter that protrudes in the direction is longer than the length of the plurality of contact detection sensors protruding from the end surface, and the contact detection is performed when the casing is operated to push the indenter into the subject.
  • Sensor is the subject Force acting on the indenter contact point in time is detected by the force sensor, the softness of the subject is calculated based on the detection result.
  • this apparatus it can be seen from the contact state of the plurality of contact detection sensors to the subject whether the indentation test apparatus is inclined with respect to the surface of the subject.
  • the value of the softness of the subject is detected using the detection value of the force sensor at the time of detection. And a plurality of obtained values may be averaged.
  • the softness of the subject can be calculated with high accuracy by taking the average value.
  • the indentation speed of the indenter to the subject and the time difference between the times when the plurality of contact detection sensors detect contact with the subject are used. Calculate the inclination of the indentation direction, and use the inclination to calculate the indentation amount of the indenter when one of the contact detection sensors first contacts the subject, and the force sensor detects the indentation amount and the time point
  • the detected softness value may be used to calculate the softness value of the subject. In this apparatus, even if the pressing direction of the indenter is deviated from the direction perpendicular to the surface of the subject, an error due to the deviation can be corrected.
  • the contact detection sensor may have a pin shape.
  • the length of the indenter protruding from the end face of the housing is set longer than the length of the pin-shaped contact detection sensor.
  • the plurality of contact detection sensors may be configured by a vibrating body whose vibration state changes when in contact with the subject.
  • the vibration of the vibrating body stops or the amplitude decreases, so that contact with the subject can be detected.
  • the present invention provides an indenter to be pushed into a subject, a case in which the indenter is arranged in a state where at least a part projects from an end portion, and the case is operated so as to push the indenter into the subject.
  • each of the plurality of contact detection sensors Each time a contact with the subject is detected, an indentation load acting on the indenter is detected, an individual Young's modulus calculation step for calculating the Young's modulus of the subject using the indentation load, and a plurality of contact detection sensors And an averaging step of averaging a plurality of Young's modulus values obtained in the individual Young's modulus calculation step after all have detected contact with the subject.
  • the indentation test apparatus for the subject using the indentation speed of the indentation test apparatus to the subject and the time difference between the times when the plurality of contact detection sensors detect contact with the subject.
  • the softness of the subject can be determined with high accuracy by the indentation test apparatus and the indentation test method of the present invention.
  • 1 is an exploded perspective view of the guide member of FIG. Illustration of slide bush
  • the figure which shows the modification of a guide member 5 is an exploded perspective view of the guide member of FIG.
  • a diagram showing a pin-type contact detection sensor (A) A diagram showing a change in Young's modulus when the indentation test apparatus is pushed into the subject at a constant speed. (B) A relationship between an inclination and an error when calculating the Young's modulus by the method of the second embodiment.
  • Figure The flowchart which shows the procedure at the time of calculating a Young's modulus with the system of 2nd Embodiment.
  • the figure which shows the relation between inclination and error when calculating Young's modulus using a conventional indentation test device The figure which shows the measurement result when using the conventional indentation test equipment
  • FIG. 1 shows a guide member 60 and an indentation test apparatus 50 that can be pushed perpendicularly to the surface of the subject by using the guide member 60.
  • the indentation test apparatus 50 includes a casing 20 in which an indenter 10 that protrudes a predetermined amount from an end 21 that also serves as a contact portion is disposed, and a grip 51 that is attached to a part of the casing 20. ing. As shown in the exploded perspective view of FIG.
  • the guide member 60 includes a base 61 disposed so as to be in contact with the subject, and a cylindrical case 62 that is fixed to the base 61 by one end being screwed into a screw hole of the base 61.
  • a coil spring 64 disposed between the pair of washers 63 and 65 in the cylindrical case 62, a slide bush 66 disposed with the lower end positioned in the cylindrical case 62, and the casing 20 of the indentation test apparatus 50.
  • a cylindrical slider 67 that moves in the slide bush 66.
  • the outer diameter of the base 61 is set larger than the outer diameter of the cylindrical case 62 so that the base 61 can stably contact the subject.
  • the base 61 constitutes a “large-diameter portion” referred to in the claims.
  • the slide bush 66 has a ball that moves in the axial direction inside the through hole, and a high-precision linear motion of the slider 67 inserted into the through hole by the rolling of the ball. It becomes possible.
  • the lower end of the slider 67 that linearly moves in the direction of the base 61 abuts against the washer 65 (FIG. 1) and compresses the coil spring 64.
  • the casing 20 of the indentation test apparatus 50 is inserted into the hole of the slider 67 and is fixed to the slider 67 so that the tip projects from the hole of the slider 67 by a predetermined amount.
  • the amount of protrusion of the housing 20 from the slider 67 is set so that the end 21 protrudes from the lower end of the opening of the base 61 when the indentation test apparatus 50 is pushed toward the subject.
  • the coil spring 64 functions to repel the casing 20 via the slider 67 when the end 21 of the casing 20 approaches the subject and to prompt the operator to perform a careful operation.
  • An operator who operates the indentation test apparatus 50 holds the guide member 60 so that the lower surface of the base 61 of the guide member 60 is in contact with the surface of the subject. Then, by operating the grasping portion 51, the slider 67 fixed to the housing 20 is linearly moved toward the subject through the slide bush 66 until the end portion 21 at the front end of the housing 20 contacts the subject. . At this time, the guide member 60 having the base (large diameter portion) 61 can stand upright in a stable state with respect to the surface of the subject. The indentation test apparatus 50 guided by the guide member 60 can indent the indenter 10 perpendicularly to the surface of the subject.
  • the graph of FIG. 4 shows the results when three persons A, B, and D operate the indentation test apparatus 50 using the guide member 60 and measure the softness of the same subject.
  • the horizontal and vertical axes are the same as in FIG.
  • the presence of the guide member 60 makes it possible to measure the softness with high accuracy.
  • FIG. 5 shows a modification of the guide member.
  • the guide member 70 includes a holder 76 that is coupled to the housing 20 of the indentation test apparatus 50, and a case 75 that is screwed to the lower end of the holder 76 and moves together with the holder 76.
  • the slider 73 that guides the movement of the case 75 in the axial direction, the drive bush 72 that is disposed in the gap between the slider 73 and the case 75 so as to buffer the space between the slider 73, the lower end of the holder 76, and the upper end of the slider 73
  • a base 71 which is fixed to one end of the slider 73 and constitutes a large diameter portion.
  • the indentation test apparatus of the second embodiment includes a plurality of contact detection sensors 22 protruding from the end surface 21 of the housing 20.
  • the plurality of contact detection sensors 22 constitute a contact portion with the subject.
  • the plurality of contact detection sensors 22 are arranged at positions that divide the circumference around the indenter into substantially equal distances.
  • the protruding lengths from the end face 21 of the plurality of contact detection sensors 22 are all the same.
  • the contact detection sensor 22 may be any sensor that can detect contact with the subject, such as a pressure-sensitive rubber whose electrical resistance value changes due to contact with the subject, or a vibration state that changes due to contact with the subject.
  • Various things, such as a vibrating body can be used.
  • FIG. 8 shows an apparatus in which a pin-type contact detection sensor 221 in which the frequency characteristic of an applied electric signal changes due to contact with a subject is disposed around the indenter 10.
  • the tip of the indenter 10 protrudes from the tip of the contact detection sensor 221. Therefore, when the indenter 10 is pushed into the subject, the plurality of contact detection sensors 221 come in contact with the subject behind the indenter 10.
  • the softness of the subject may not be detected unless all of the plurality of contact detection sensors 22 detect contact with the subject. By doing so, the detection of the softness in the state where the periphery of the indenter uniformly contacts the subject and the indentation direction of the indenter is maintained in the direction perpendicular to the subject surface can be ensured.
  • FIG. 9A shows the results of measuring the transition of the Young's modulus of the subject while pushing the tip of the device into the subject at a constant speed using the indentation test device having two pin type contact detection sensors. Yes.
  • the horizontal axis represents time
  • the vertical axis represents Young's modulus.
  • Point A in FIG. 9A indicates the magnitude of Young's modulus when one of the contact detection sensors contacts the subject
  • point B in FIG. 9A indicates that the other of the contact detection sensor is on the subject.
  • the magnitude of Young's modulus when in contact is shown.
  • the indentation test apparatus is slightly inclined with respect to the surface of the subject, the time points when the two contact detection sensors contact the subject do not coincide.
  • the indentation test apparatus is not inclined with respect to the surface of the subject, and the Young's modulus when the two contact detection sensors contact the subject at the same time is the Young's modulus at point A and the Young's modulus at point B. It can be calculated as an average value.
  • the Young's modulus is calculated using the indentation load detected by the force sensor when each of the plurality of contact detection sensors contacts the subject, and the Young's modulus of the subject is calculated by averaging those Young's moduli.
  • FIG. 12D it is possible to calculate the Young's modulus with high accuracy even when the indentation direction is slightly inclined with respect to the surface of the subject.
  • FIG. 9B shows the relationship between the error (vertical axis) of the Young's modulus of the subject obtained by this method and the inclination (horizontal axis) corresponding to ⁇ in FIG. If the magnitude of the inclination is within 2 °, the Young's modulus error is 3% or less, and it can be seen that measurement results with extremely high accuracy can be obtained compared to the characteristics shown in FIG.
  • the flowchart of FIG. 10 shows a procedure for calculating the Young's modulus of the subject by this method.
  • the Young's modulus is calculated by using the indentation load at the time of detection (Equation 1). And recorded in the recording unit (step 2). This procedure is repeated until all contact detection sensors detect contact with the subject, and when all contact detection sensors detect contact with the subject (Yes in step 3), a plurality of Young's moduli recorded in the recording unit are recorded. Are averaged (step 4).
  • the average value of a plurality of Young's moduli is calculated, every time there is a contact detection sensor that newly detects contact with the subject among the plurality of contact detection sensors, the detection point is pushed in. After the load is recorded in the recording unit and all the contact detection sensors detect contact with the subject, the average value of a plurality of indentation loads recorded in the recording unit is obtained, and the Young's modulus is calculated using the average value. You may do it.
  • the indentation test apparatus including a plurality of contact detection sensors is pushed into the subject at a known indentation speed
  • the inclination of the indentation test apparatus with respect to the surface of the subject see FIG.
  • the angle corresponding to ⁇ of 12 (d) can be calculated.
  • a push-in test apparatus in which two contact detection sensors are arranged at a position that bisects the circumference of the casing end face is pushed into the subject at a constant push-in speed V. It is assumed that the time difference between the times when two contact detection sensors detect contact with the subject is t. At this time, the distance corresponding to y in FIG.
  • the number of the contact detection sensors which comprise a contact part should just be two or more.
  • the indenter having a hemispherical surface is shown here, the shape of the indenter is not limited to this. It may be a cylinder, cylinder, cube or the like.
  • the indentation test apparatus and indentation test method of the present invention are capable of measuring the softness of a subject with high accuracy, and are widely used in food fields, medical fields, fields in which materials are required, and the like. Can be used in the field.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

被検体に押し込まれる圧子10と、圧子の一部が端部から突出する状態で配置される筐体20と、圧子を被検体に押し込むように筐体が操作されたとき、圧子に後れて被検体に当接する当接部21と、を有し、前記操作に伴い、当接部が被検体に当接した時点の圧子に作用する力が力センサで検出され、力センサの検出結果に基づいて被検体の柔らかさが算出される押込み試験装置であって、圧子の被検体への押込み方向が被検体の面に対して垂直方向となるように支援する押込み支援手段60を備えている。誰が操作する場合も、押込み方向が被検体の面に対して垂直になるため、精確に測定できる。

Description

押込み試験装置及び押込み試験方法
 本発明は、蒲鉾・ハム等の食品やヒトの柔軟な組織などに圧子を押込み、それらの柔らかさを計測する押込み試験装置と、その押込み試験方法に関する。
 下記特許文献1には、柔軟な食品や人体組織などを被検体として、その柔らかさを計測する押込み試験装置が開示されている。
 この装置は、図11に示すように、被検体に押込まれる圧子10と、圧子10を被検体に押込んだ時に圧子10に作用する力を検出する力センサ30と、被検体の柔らかさを評価するヤング率を、圧子10に作用する力に基づいて算出する演算部40と、それらが内部に配置される筐体20とを備えている。
 圧子10は、先端の半球部分の一定量が筐体20の端部21から突出するように筐体内に配置されている。
 この装置を操作する操作者は、筐体20部分を把持して、筐体20の端部21が被検体に当接するまで圧子10を被検体に押込む。
 このとき、筐体20の端部21が被検体に当接したときに力センサ30で検出された力(押込荷重)をF、筐体20の端部21から突出する圧子10の突出量(即ち、被検体に押込まれる圧子10の押込量)をδ、圧子10の半球面の直径をφ、被検体のヤング率をE、被検体に固有のポアソン比をνとすると、これらの間には(数1)で表される関係が存在する。
Figure JPOXMLDOC01-appb-M000001
 この(数1)を用いて、力センサ30で検出された押込荷重Fから被検体のヤング率Eを求めることができる。
 この押込み試験装置は、被検体の柔らかさを、被検体が本来あるべき場所で測定すること(いわゆる“その場測定”)が可能であり、幅広い方面での利用が期待できる。
WO2017/164426
 しかし、この押込み試験装置では、圧子10を被検体に押込む際に、その初期段階では、被検体に接触するのが筐体20から突出する圧子10のみであるため、筐体20を被検体の面に対して垂直な方向に押し進めることが難しい。
 圧子10を被検体に押込むときの筐体20の進行方向が被検体面の垂直方向から傾いている場合、次のような事態が発生する。
 図12(a)は、圧子10が被検体の面に対して傾いていない状態を示し、図12(b)は、圧子10が被検体の面に対してθだけ傾いている状態を示している。
 図12(a)の場合に力センサ30で検出される荷重をFとすると、図12(b)の場合に力センサ30で検出されるFの分力F’は、
 (数2)       F’=Fcosθ
となる。θの絶対値が5°以下であれば、FとF’との誤差は0.4%以下であり、実際上、問題にならない。
 しかし、この押込み試験装置では、圧子10が被検体の面に対して傾いていると、FとF’との誤差だけでなく、筐体20の端部21が被検体に当接したときの圧子10の押込量が違ってくる。
 図12(c)に示すように、圧子10が被検体の面に対して傾いていないとき、筐体20の端部21が被検体に当接するまでに押込まれる圧子10の押込量をδとする。なお、rは、円環状の端部21の外径における半径である。
 圧子10が被検体の面に対しθだけ傾いている場合、図12(d)に示すように、筐体20の端部21が被検体に当接したときの圧子10の押込量δ’は、
 (数3)       δ’=δ‐rsinθ
となる。
 そのため、(数1)において、F及びδがF’及びδ’に代わるため、ヤング率Eの誤差が大きくなる。
 なお、図12(d)のyは、筐体20の端部21の一部が被検体に接触したときの、その接触位置と対称の端部位置における被検体との距離を示している。
 図13は、θに相当する角度を横軸に、また、ヤング率Eの誤差を縦軸に取り、圧子10の傾きとヤング率Eの誤差との関係を示している。ヤング率Eの誤差を1%以下とするためには、圧子10の傾きを0.2°以内に維持する必要があることが分かる。
 また、図14のグラフは、A、B、C、Dの4名が従来の押込み試験装置を用いて同一の被検体の柔らかさを測定した結果を示している。横軸は測定時の筐体の傾き(θに相当する角度)を示し、縦軸は算出されたヤング率を示している。図14から明らかなように、押込み試験装置を操作する操作者により測定結果がバラついている。
 本発明は、こうした事情を考慮して創案したものであり、誰でも精確に被検体の柔らかさが測定できる押込み試験装置及び押込み試験方法を提供することを目的としている。
 本発明は、被検体に押し込まれる圧子と、前記圧子が、少なくとも一部が端部から突出する状態で配置される筐体と、前記圧子を被検体に押し込むように前記筐体が操作されたとき、前記圧子に後れて被検体に当接する当接部と、を有し、前記操作に伴い、前記当接部が被検体に当接した時点の前記圧子に作用する力が力センサで検出され、力センサの検出結果に基づいて被検体の柔らかさが算出される押込み試験装置であって、圧子の被検体への押込み方向が被検体の面に対して垂直方向となるように支援する押込み支援手段を備えている。
 この装置は、誰が操作する場合も、押込み方向が被検体の面に対して垂直になるため、被検体の柔らかさが精確に測定できる。
 また、本発明の押込み試験装置では、前記押込み支援手段として、被検体の面に垂直な方向に前記筐体の動きを誘導するガイド孔が形成された外筒部と、前記外筒部の一端に設けられた、前記外筒部の外径よりも大きい外径の大径部と、を備えるガイド部材を有し、前記ガイド部材の一端の前記大径部が被検体の測定面上に配置され、前記ガイド部材の他端に開口するガイド孔から、圧子側を被検体に向けた前記筐体が挿入される。
 この装置では、大径部を有するガイド部材が被検体の面に垂直に配置され、このガイド部材に誘導されて、筐体が被検体の面に垂直に進行する。
 また、本発明の押込み試験装置では、前記ガイド部材が、前記筐体の動きを滑らかにするスライドブッシュを備えることが好ましい。
 スライドブッシュの存在により、直線移動する筐体のがたつきを除くことができ、精確な測定が可能になる。
 また、本発明の押込み試験装置は、前記押込み支援手段として、前記当接部を形成する複数の接触検知センサを有し、複数の接触検知センサは、前記圧子を中心とする円周を略等距離に分周する位置に配置されており、複数の接触検知センサの全てが被検体との接触を検知しなければ被検体の柔らかさが算出されない。
 複数の接触検知センサの全てが被検体との接触を検知すれば、圧子の周囲が均等に被検体に当接していることになる。
 また、本発明は、被検体に押し込まれる圧子と、前記圧子に作用する力を検出する力センサと、前記力センサと、該力センサと前記圧子とを接続する接続部材とが収納され、前記圧子が、少なくとも一部が端面より外側に突出する状態で配置される筐体と、前記筐体の前記端面の離隔する位置に設けられた、被検体との接触を検知する複数の接触検知センサと、を備える押込み試験装置であり、複数の接触検知センサは、前記圧子を中心とする円周を略等距離に分周する前記位置で前記端面から同じ長さ突出しており、前記端面より外側に突出する前記圧子の先端までの距離は、前記複数の接触検知センサが前記端面から突出する長さよりも長く、前記圧子を被検体に押し込むように前記筐体が操作されたとき、前記接触検知センサが被検体に接触した時点の前記圧子に作用する力が前記力センサで検出され、その検出結果に基づいて被検体の柔らかさが算出される。
 この装置では、複数の接触検知センサの被検体への接触状態から、押込み試験装置が被検体の面に対し傾いているかどうかが分かる。
 また、本発明の押込み試験装置では、前記複数の接触検知センサの各々が被検体との接触を検知するごとに、その検知時点の前記力センサの検出値を用いて被検体の柔らかさの値を算出し、得られた複数の前記値を平均化するようにしても良い。
 この装置では、圧子の押込み方向が被検体の面の垂直方向からずれていても、平均値を取ることで、被検体の柔らかさが高精度に算出できる。
 また、本発明の押込み試験装置では、前記圧子の被検体への押込み速度と、複数の接触検知センサが被検体との接触を検知した時刻の時間差とを用いて、被検体に対する前記筐体の押込み方向の傾きを算出し、前記傾きを用いて、接触検知センサの一つが最初に被検体に接触した時点の前記圧子の押込み量を算出し、前記押込み量と前記時点で前記力センサが検出した検出値とを用いて被検体の柔らかさの値を算出するようにしても良い。
 この装置では、圧子の押込み方向が被検体の面の垂直方向からずれていても、ずれによる誤差を補正することができる。
 また、本発明の押込み試験装置では、前記接触検知センサがピン形状であっても良い。
 この装置では、筐体の端面より突出する圧子の長さがピン形状の接触検知センサの長さよりも長く設定される。
 また、本発明の押込み試験装置では、複数の接触検知センサを、被検体との接触時に振動状態が変化する振動体で構成しても良い。
 振動体が被検体に接触すると、振動体の振動が止まり、あるいは、振幅が小さくなるので、被検体との接触が検知できる。
 また、本発明は、被検体に押し込まれる圧子と、前記圧子が、少なくとも一部が端部から突出する状態で配置される筐体と、前記圧子を被検体に押し込むように前記筐体が操作されたとき、前記圧子に後れて被検体に当接する複数の接触検知センサと、を有する押込み試験装置により被検体の柔らかさを測定する押込み試験方法であって、複数の接触検知センサの各々が被検体との接触を検知するごとに、前記圧子に作用する押込荷重を検出し、該押込荷重を用いて被検体のヤング率を算出する個別ヤング率算出ステップと、複数の接触検知センサの全てが被検体との接触を検知した後、個別ヤング率算出ステップで得られた複数のヤング率の値を平均化する平均化ステップと、を備える。
 この方法により、圧子の押込み方向が被検体の面の垂直方向から多少ずれている場合でも、被検体の柔らかさが高精度に算出できる。
 また、本発明の押込み試験方法では、押込み試験装置の被検体への押込み速度と、複数の接触検知センサが被検体との接触を検知した時刻の時間差とを用いて、被検体に対する押込み試験装置の押込み方向の傾きを算出する傾き算出ステップと、前記傾きを用いて、最初の接触検知センサが被検体に接触したときの圧子の押込み量を算出する押込み量算出ステップと、最初の接触検知センサが被検体に接触したときに圧子に作用する押込荷重と、押込み量算出ステップで算出した押込み量とを用いて被検体のヤング率を算出するヤング率算出ステップと、を備えるようにしても良い。
 この方法により、圧子の押込み方向が被検体の面の垂直方向から傾いている場合のヤング率算出誤差が補正できる。
 本発明の押込み試験装置及び押込み試験方法により、被検体の柔らかさを高精度に求めることができる。
本発明の第1の実施形態に係る押込み試験装置を示す図 図1のガイド部材の分解斜視図 スライドブッシュの説明図 図1の押込み試験装置を用いたときの測定結果を示す図 ガイド部材の変形例を示す図 図5のガイド部材の分解斜視図 本発明の第2の実施形態に係る押込み試験装置の接触検知センサを示す図 ピンタイプの接触検知センサを示す図 (a)押込み試験装置を一定速度で被検体に押し込んだときのヤング率の変化を示す図、(b)第2の実施形態の方式でヤング率を算出するときの傾きと誤差の関係を示す図 第2の実施形態の方式でヤング率を算出するときの手順を示すフロー図 従来の押込み試験装置を示す図 圧子の傾きがヤング率算出に及ぼす影響を説明する図 従来の押込み試験装置を用いてヤング率を算出するときの傾きと誤差の関係を示す図 従来の押込み試験装置を用いたときの測定結果を示す図
(第1の実施形態)
 第1の実施形態の押込み試験装置は、押込み試験装置の筐体部分の移動方向をガイドするガイド部材とともに使用する。
 図1には、ガイド部材60と、これを使うことで被検体の面に対して垂直に押込むことが可能になる押込み試験装置50とを示している。
 押込み試験装置50は、当接部を兼ねる端部21から所定量突出する圧子10が内部に配置されている筐体20と、筐体20の一部に装着された把持部51とを有している。
 ガイド部材60は、図2の分解斜視図に示すように、被検体と接するように配置されるベース61と、ベース61の螺孔に一端が螺合されてベース61に固定される円筒ケース62と、円筒ケース62内に一対のワッシャ63、65に挟まれて配置されるコイルバネ64と、円筒ケース62内に下端が位置決めされて配置されるスライドブッシュ66と、押込み試験装置50の筐体20と結合されてスライドブッシュ66内を移動する円筒状のスライダ67とを備えている。
 ベース61の外径は、被検体と安定的に接することができるように、円筒ケース62の外径よりも大きく設定されている。ベース61は、特許請求の範囲で言う「大径部」を構成している。
 スライドブッシュ66は、図3に示すように、貫通孔の内側に軸方向に巡回移動するボールを有しており、このボールの転がりにより貫通孔に挿通されたスライダ67の高精度な直線運動が可能になる。
 ベース61の方向に直線運動するスライダ67の下端は、ワッシャ65に当接して(図1)、コイルバネ64を圧縮する。
 押込み試験装置50の筐体20は、スライダ67の孔に挿通され、先端がスライダ67の孔から所定量突出する状態でスライダ67に固定される。筐体20のスライダ67からの突出量は、押込み試験装置50を被検体に向けて押込んだとき、端部21がベース61の開口の下端から突き出るように設定される。
 コイルバネ64は、筐体20の端部21が被検体に接近したとき、スライダ67を介して筐体20に反発力を作用し、操作者に慎重な操作を促す働きをしている。
 この押込み試験装置50を操作する操作者は、ガイド部材60のベース61の下面が被検体の面に接するようにガイド部材60を保持する。そして、把持部51を操作し、筐体20に固定したスライダ67を、筐体20先端の端部21が被検体に当接するまで、スライドブッシュ66を介して、被検体に向けて直線運動させる。
 このとき、ベース(大径部)61を有するガイド部材60は、被検体の面に対し、安定した状態で垂直に立てることができる。そして、このガイド部材60にガイドされる押込み試験装置50は、圧子10を被検体の面に対して垂直に押込むことができる。
 図4のグラフは、A、B、Dの3名がガイド部材60を用いて押込み試験装置50を操作し、同一の被検体の柔らかさを測定したときの結果を示している。横軸及び縦軸は、図14と同様である。
 図14及び図4の比較から明らかなように、ガイド部材60の存在が高精度の柔らかさの測定を可能にしている。
 図5は、ガイド部材の変形例を示している。このガイド部材70は、図6の分解斜視図に示すように、押込み試験装置50の筐体20と結合されるホルダ76と、ホルダ76の下端に螺合されてホルダ76と共に移動するケース75と、ケース75の軸線方向への移動を誘導するスライダ73と、スライダ73とケース75との間を緩衝するように両者の隙間に配置されるドライブッシュ72と、ホルダ76の下端とスライダ73の上端との間に配置されるコイルバネ74と、スライダ73の一端に固定されて大径部を構成するベース71と、を備えている。
 押込み試験装置50の筐体20を押込み、ホルダ76及びケース75を下方に移動させると、コイルバネ74が圧縮される。コイルバネ74の反発力に抗して筐体20を押込んだとき、筐体20の先端がベース71の孔から突出するように、筐体20はホルダ76に固定される。
 このガイド部材では、スライダ73に対するケース75の直線運動が、ドライブッシュ72の存在により滑らかに行われる。
(第2の実施形態)
 第2の実施形態の押込み試験装置は、図7に示すように、筐体20の端面21に、この端面から突出する複数の接触検知センサ22を備えている。この装置では、複数の接触検知センサ22が被検体との当接部を構成している。複数の接触検知センサ22は、圧子を中心とする円周を略等距離に分周する位置に配置されている。複数の接触検知センサ22の端面21からの突出長さは、みな同じである。
 なお、接触検知センサ22は、被検体との接触が検知できるものであれば良く、被検体との接触により電気抵抗値が変化する感圧ゴムや、被検体との接触により振動状態が変化する振動体など、各種のものが使用できる。
 振動体を接触検知センサとする場合は、複数の圧電体を図7の接触検知センサ22の位置に配置して、各圧電体に共振周波数の交流電圧を印加し、各圧電体に共振振動を行わせる。圧電体が被検体に接触すると、圧電体の振動が止まり、あるいは、振幅が小さくなるので、被検体との接触が検知できる。
 また、図8は、被検体との接触により、印加されている電気信号の周波数特性が変化するピンタイプの接触検知センサ221が圧子10を囲んで配置された装置を示している。
 圧子10の先端は、接触検知センサ221の先端よりも突出している。そのため、圧子10を被検体に押し込むとき、複数の接触検知センサ221は圧子10に後れて被検体に接触する。
 第2の実施形態の押込み試験装置では、複数の接触検知センサ22が全て被検体に接触したことを検知しなければ、被検体の柔らかさの検出を行わないようにしても良い。そうすることで、圧子の周囲が均等に被検体に接触し、被検体面の垂直方向に圧子の押込み方向が維持された状態での柔らかさの検出が担保できる。
 図9(a)は、二つのピンタイプの接触検知センサを備える押込み試験装置を用いて、装置の先端を一定速度で被検体に押込みながら被検体のヤング率の推移を測定した結果について示している。図9(a)の横軸は時間であり、縦軸はヤング率である。
 図9(a)のA点は、接触検知センサの一方が被検体に接触したときのヤング率の大きさを示し、図9(a)のB点は、接触検知センサの他方が被検体に接触したときのヤング率の大きさを示している。ここでは、被検体の面に対して押込み試験装置が多少傾いているため、二つの接触検知センサが被検体に接触した時点は一致していない。
 A点に至るまでの時間帯は、接触検知センサのいずれもが被検体に接触しておらず、圧子のみが被検体に押込まれることでヤング率が増加している。
 A点とB点との間の時間帯は、接触検知センサの一方と圧子とが被検体に押込まれることでヤング率が増加している。また、B点からヤング率のピークまでの時間帯は、二つの接触検知センサと圧子とが被検体に押込まれることでヤング率が増加している。
 ピーク以降は、押込み力が解除されてヤング率が減少している。
 この場合、被検体の面に対して押込み試験装置が傾いておらず、二つの接触検知センサが同時に被検体に接触したときのヤング率は、A点のヤング率とB点のヤング率との平均値として算出することができる。
 このように、複数の接触検知センサの各々が被検体に接触したときに力センサで検出された押込み荷重を用いてヤング率を算出し、それらのヤング率を平均化して被検体のヤング率とする方式を採る場合は、図12(d)に示すように、圧子の押込み方向が被検体の面に対して多少傾いていても、精度の高いヤング率の算出が可能になる。
 図9(b)は、この方式で求めた被検体のヤング率の誤差(縦軸)と、図12のθに相当する傾き(横軸)との関係を示している。傾きの大きさが2°以内であれば、ヤング率の誤差は3%以下であり、図13の特性に比べて、極めて高精度の測定結果が得られることが分かる。
 図10のフロー図は、この方式により被検体のヤング率を算出するときの手順を示している。
 複数の接触検知センサの中で被検体との接触を新たに検知した接触検知センサがある場合に(ステップ1でYes)、その検知時点の押込み荷重を用いて(数1)によりヤング率を計算し、記録部に記録する(ステップ2)。この手順を全ての接触検知センサが被検体との接触を検知するまで繰り返し、全ての接触検知センサが被検体との接触を検知すると(ステップ3でYes)、記録部に記録した複数のヤング率を平均化する(ステップ4)。
 なお、ここでは、複数のヤング率の平均値を算出しているが、複数の接触検知センサの中で被検体との接触を新たに検知した接触検知センサがある毎に、その検知時点の押込み荷重を記録部に記録し、全ての接触検知センサが被検体との接触を検知した後、記録部に記録した複数の押込み荷重の平均値を求め、その平均値を用いてヤング率を算出するようにしても良い。
 また、複数の接触検知センサを備える押込み試験装置を既知の押込み速度で被検体に押し込む場合は、複数の接触検知センサの接触検知時点のズレから、被検体の面に対する押込み試験装置の傾き(図12(d)のθに相当する角度)を算出することができる。
 いま、図12(d)に示すように、筐体端面の円周を二分する位置に二つの接触検知センサが配置された押込み試験装置が、一定の押込み速度Vで被検体に押し込まれ、二つの接触検知センサが被検体との接触を検知した時刻の時間差がtであったとする。
 このとき、図12(d)のyに相当する距離は、
 (数4)       y=Vt
で表され、また、傾きθは、
 (数5)       θ=sin-1(y/2r)
で表される。
 このθを用いて(数3)のδ’の算出が可能である。
 そして、(数1)により、初めて接触検知センサが被検体との接触を検知したときに力センサが検出した押込み荷重Fと、押込み量δ’とを用いてヤング率Eを算出すれば、押込み試験装置の押込み方向が被検体の面に対して多少傾いていても、被検体の柔らかさを高精度に算出することができる。
 なお、当接部を構成する接触検知センサの数は、2以上であれば良い。
 また、ここでは半球面を有する圧子を示したが、圧子の形状はこれに限定されない。円柱、円筒、立方体などであっても良い。
 本発明の押込み試験装置及び押込み試験方法は、被検体の柔らかさを高精度に測定することが可能であり、柔らかさの測定を必要とする食品分野、医療分野、素材を扱う分野など、幅広い分野において利用することができる。
 10  圧子
 20  筐体
 21  端部
 22  接触検知センサ
 30  力センサ
 40  演算部
 50  押込み試験装置
 51  把持部
 60  ガイド部材
 61  ベース
 62  円筒ケース
 63  ワッシャ
 64  コイルバネ
 65  ワッシャ
 66  スライドブッシュ
 67  スライダ
 71  ベース
 72 ドライブッシュ
 73 スライダ
 74 コイルバネ
 75 ケース
 76 ホルダ
 221 ピンタイプの接触検知センサ

Claims (11)

  1.  被検体に押し込まれる圧子と、前記圧子が、少なくとも一部が端部から突出する状態で配置される筐体と、前記圧子を前記被検体に押し込むように前記筐体が操作されたとき、前記圧子に後れて前記被検体に当接する当接部と、を有し、前記操作に伴い、前記当接部が前記被検体に当接した時点の前記圧子に作用する力が力センサで検出され、前記力センサの検出結果に基づいて前記被検体の柔らかさが算出される押込み試験装置であって、
     前記圧子の前記被検体への押込み方向が前記被検体の面に対して垂直方向となるように支援する押込み支援手段を備える押込み試験装置。
  2.  請求項1記載の押込み試験装置であって、
     前記押込み支援手段として、前記被検体の面に垂直な方向に前記筐体の動きを誘導するガイド孔が形成された外筒部と、前記外筒部の一端に設けられた、前記外筒部の外径よりも大きい外径の大径部と、を備えるガイド部材を有し、
     前記ガイド部材の一端の前記大径部が前記被検体の測定面上に配置され、前記ガイド部材の他端に開口する前記ガイド孔から、前記圧子側を前記被検体に向けた前記筐体が挿入される押込み試験装置。
  3.  請求項2記載の押込み試験装置であって、
     前記ガイド部材が、前記筐体の動きを滑らかにするスライドブッシュを備える押込み試験装置。
  4.  請求項1から3のいずれかに記載の押込み試験装置であって、
     前記押込み支援手段として、前記当接部を形成する複数の接触検知センサを有し、前記複数の接触検知センサは、前記圧子を中心とする円周を略等距離に分周する位置に配置され、前記複数の接触検知センサの全てが前記被検体との接触を検知しなければ前記被検体の柔らかさが算出されない押込み試験装置。
  5.  被検体に押し込まれる圧子と、
     前記圧子に作用する力を検出する力センサと、
     前記力センサと、該力センサと前記圧子とを接続する接続部材とが収納され、前記圧子が、少なくとも一部が端面より外側に突出する状態で配置される筐体と、
     前記筐体の前記端面の離隔する位置に設けられた、前記被検体との接触を検知する複数の接触検知センサと、
    を備え、
     前記複数の接触検知センサは、前記圧子を中心とする円周を略等距離に分周する前記位置で前記端面から同じ長さ突出しており、
     前記端面より外側に突出する前記圧子の先端までの距離は、前記複数の接触検知センサが前記端面から突出する長さよりも長く、
     前記圧子を前記被検体に押し込むように前記筐体が操作されたとき、前記接触検知センサが前記被検体に接触した時点の前記圧子に作用する力が前記力センサで検出され、その検出結果に基づいて前記被検体の柔らかさが算出される押込み試験装置。
  6.  請求項5記載の押込み試験装置であって、
     前記複数の接触検知センサの各々が前記被検体との接触を検知するごとに、その検知時点の前記力センサの検出値を用いて前記被検体の柔らかさの値が算出され、得られた複数の前記値が平均化される押込み試験装置。
  7.  請求項5記載の押込み試験装置であって、
     前記圧子の前記被検体への押込み速度と、前記複数の接触検知センサが前記被検体との接触を検知した時刻の時間差とを用いて、前記被検体に対する前記筐体の押込み方向の傾きが算出され、前記傾きを用いて、前記接触検知センサの一つが最初に前記被検体に接触した時点の前記圧子の押込み量が算出され、前記押込み量と前記時点で前記力センサが検出した検出値とを用いて前記被検体の柔らかさの値が算出される押込み試験装置。
  8.  請求項5記載の押込み試験装置であって、
     前記接触検知センサがピン形状である押込み試験装置。
  9.  請求項5記載の押込み試験装置であって、
     前記接触検知センサが、前記被検体との接触時に振動状態が変化する振動体から成る押込み試験装置。
  10.  被検体に押し込まれる圧子と、前記圧子が、少なくとも一部が端部から突出する状態で配置される筐体と、前記圧子を前記被検体に押し込むように前記筐体が操作されたとき、前記圧子に後れて前記被検体に当接する複数の接触検知センサと、を有する押込み試験装置により前記被検体の柔らかさを測定する押込み試験方法であって、
     前記複数の接触検知センサの各々が前記被検体との接触を検知するごとに、前記圧子に作用する押込荷重を検出し、該押込荷重を用いて前記被検体のヤング率を算出する個別ヤング率算出ステップと、
     前記複数の接触検知センサの全てが前記被検体との接触を検知した後、前記個別ヤング率算出ステップで得られた複数のヤング率の値を平均化する平均化ステップと、
    を備える押込み試験方法。
  11.  被検体に押し込まれる圧子と、前記圧子が、少なくとも一部が端部から突出する状態で配置される筐体と、前記圧子を前記被検体に押し込むように前記筐体が操作されたとき、前記圧子に後れて前記被検体に当接する複数の接触検知センサと、を有する押込み試験装置により前記被検体の柔らかさを測定する押込み試験方法であって、
     前記押込み試験装置の前記被検体への押込み速度と、前記複数の接触検知センサが前記被検体との接触を検知した時刻の時間差とを用いて、前記被検体に対する前記押込み試験装置の押込み方向の傾きを算出する傾き算出ステップと、
     前記傾きを用いて、最初の前記接触検知センサが前記被検体に接触したときの前記圧子の押込み量を算出する押込み量算出ステップと、
     前記最初の接触検知センサが前記被検体に接触したときに前記圧子に作用する押込荷重と、前記押込み量算出ステップで算出した前記押込み量とを用いて前記被検体のヤング率を算出するヤング率算出ステップと、
    を備える押込み試験方法。
PCT/JP2019/002903 2018-01-30 2019-01-29 押込み試験装置及び押込み試験方法 WO2019151218A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018013281A JP7019435B2 (ja) 2018-01-30 2018-01-30 押込み試験装置及び押込み試験方法
JP2018-013281 2018-01-30
JP2018025684A JP7019445B2 (ja) 2018-02-16 2018-02-16 押込み試験装置
JP2018-025684 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019151218A1 true WO2019151218A1 (ja) 2019-08-08

Family

ID=67478751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002903 WO2019151218A1 (ja) 2018-01-30 2019-01-29 押込み試験装置及び押込み試験方法

Country Status (1)

Country Link
WO (1) WO2019151218A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103156A (ja) * 2019-12-26 2021-07-15 株式会社テック技販 押し込み試験装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154839U (ja) * 1984-03-26 1985-10-15 川崎製鉄株式会社 手持ち超音波硬さ測定器用アタツチメント
WO2010082356A1 (ja) * 2009-01-19 2010-07-22 株式会社エム・アイ・ラボ 測定装置および測定方法
US7966866B2 (en) * 2007-04-03 2011-06-28 The Regents Of The University Of California Methods and instruments for materials testing
WO2017164426A2 (ja) * 2017-02-11 2017-09-28 新光電子株式会社 押込み試験装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154839U (ja) * 1984-03-26 1985-10-15 川崎製鉄株式会社 手持ち超音波硬さ測定器用アタツチメント
US7966866B2 (en) * 2007-04-03 2011-06-28 The Regents Of The University Of California Methods and instruments for materials testing
WO2010082356A1 (ja) * 2009-01-19 2010-07-22 株式会社エム・アイ・ラボ 測定装置および測定方法
WO2017164426A2 (ja) * 2017-02-11 2017-09-28 新光電子株式会社 押込み試験装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103156A (ja) * 2019-12-26 2021-07-15 株式会社テック技販 押し込み試験装置
JP7370515B2 (ja) 2019-12-26 2023-10-30 株式会社テック技販 押し込み試験装置

Similar Documents

Publication Publication Date Title
JP6262512B2 (ja) 力感知キャリパーにおいて測定力閾値を設定するシステム及び方法
JP6164641B2 (ja) 粘弾性測定装置
JP6267237B2 (ja) 生体軟組織の非侵襲的測定のシステム及び方法
CN103196411B (zh) 扫描型探针显微镜的探针形状测定方法
US7678064B2 (en) Apparatus for detecting tactile sensitivity
CN107830972B (zh) 柔性力传感器标定测试平台及方法
CN104285124A (zh) 用来测量物体表面的表面微结构纹理或粗糙度的测量设备和方法
US20150323436A1 (en) Self-aligning probes and related devices
WO2017164426A2 (ja) 押込み試験装置
WO2019151218A1 (ja) 押込み試験装置及び押込み試験方法
WO2003063698A1 (en) Elasticity measuring device for biological tissue
JPH06313752A (ja) 軟質材用硬度計
JP7019435B2 (ja) 押込み試験装置及び押込み試験方法
JP2003185547A (ja) 材料表面の機械的特性試験装置
US11788932B2 (en) Snap button device for non-destructive characterization of materials
JP7019445B2 (ja) 押込み試験装置
US20140053422A1 (en) Probe
JP5297735B2 (ja) 接触式変位センサ
US8533970B2 (en) Apparatus for measuring objects
Kawamura et al. Impact force measurement of a plastic sheet using drop ball test by the Levitation Mass Method (LMM)
JP2005147702A (ja) 力センサのステップ応答特性の測定装置
JP7474023B2 (ja) 押込み試験装置
JP4974128B2 (ja) 張力測定装置
JPS63284451A (ja) 弾力性測定装置
JP7397312B2 (ja) 測定器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19748106

Country of ref document: EP

Kind code of ref document: A1