JP2005147702A - 力センサのステップ応答特性の測定装置 - Google Patents

力センサのステップ応答特性の測定装置 Download PDF

Info

Publication number
JP2005147702A
JP2005147702A JP2003381391A JP2003381391A JP2005147702A JP 2005147702 A JP2005147702 A JP 2005147702A JP 2003381391 A JP2003381391 A JP 2003381391A JP 2003381391 A JP2003381391 A JP 2003381391A JP 2005147702 A JP2005147702 A JP 2005147702A
Authority
JP
Japan
Prior art keywords
movable
force
force sensor
measuring
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003381391A
Other languages
English (en)
Inventor
Yusaku Fujii
雄作 藤井
Original Assignee
Yusaku Fujii
雄作 藤井
Tokyo Sokki Kenkyusho Co Ltd
株式会社東京測器研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yusaku Fujii, 雄作 藤井, Tokyo Sokki Kenkyusho Co Ltd, 株式会社東京測器研究所 filed Critical Yusaku Fujii
Priority to JP2003381391A priority Critical patent/JP2005147702A/ja
Publication of JP2005147702A publication Critical patent/JP2005147702A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ステップ状に変化する力に対する力センサの応答特性を精度良く測定できるようにした測定装置を提供する。
【解決手段】可動部4をガイド軸線方向に直動自在に支持する直動軸受け3を、力センサAを固定する治具2に、可動部4が力センサAに対しガイド軸線方向に対向するような位置関係で取り付けて成る測定ユニット1を、ガイド軸線5aが鉛直方向の方向成分を持ち、可動部4が力センサAに向けて滑落可能となるように配置する。可動部4を力センサAとの間に力が作用しない初期位置に支持する支持手段9を設けると共に、可動部4のガイド軸線方向の加速度を計測する手段14を設ける。可動部4を初期位置から滑落させて力センサAに当接させ、このときに計測される加速度から可動部4の慣性力を算出し、これと可動部4に作用する重力との合力を力センサAに作用した真の力として、力センサAの検出出力と比較する。
【選択図】図1

Description

本発明は、ステップ波状に入力される力に対する力センサの応答特性を測定する装置に関する。
従来より、静的な力(時間的に変動しないか、もしくはその変化速度が十分小さい力) に対する力センサの検出出力の校正手法(静的校正法)は確立されている。この静的校正法は、既知の一定の力(例えば、所定の質量の物体に作用する重力)を力センサに作用させ、力センサの検出出力と力センサに作用させた力の真値とを比較して、力センサの静的特性(静的な力に対する検出出力の相関関係)を測定し、その測定データに基づいて作成された校正データに従って力センサの検出出力を校正する方法である。
ところで、力センサに動的な力が作用した場合は、力の変化に対する検出出力の応答遅れ等の独特の現象を生じ、この動的応答特性に起因して、力センサの検出出力を静的校正法で校正しても、動的な力を正確に計測することはできない。そのため、力センサの動的応答性を正確に把握することが強く要望されている。
従来、動的応答特性の一つである衝撃力に対する力センサの応答特性(衝撃応答特性)を測定する装置として以下のものが知られている。この測定装置は、ガイド部とガイド部の軸線方向に直動自在に支持されるガイド部とを有する直動軸受けを、可動部が力センサに対しガイド部の軸線方向に対向すると共に、ガイド部の軸線が水平になるように配置し、可動部に外力を加えて力センサに衝突させ、このときの可動部の慣性力を計測して、この慣性力に基づいて力センサに作用した衝撃力の真の値を求め、これと力センサの検出出力との比較で力センサの衝撃応答特性を測定するものである(特許文献1参照)。尚、このものでは、可動部のガイド部軸線方向の移動速度を計測する光波干渉計を設け、この光波干渉計で計測された可動部の移動速度を時間微分して求めた加速度に基づいて可動部の慣性力(=可動部の質量×加速度)を算出しており、この慣性力は高い精度で力センサに入力された衝撃力に一致する。
ところで、ロボット等の運動制御の分野においては、例えば、ハンド部で物を把持する場合、物に当接した瞬間からハンド部にステップ状に変化する力が作用するため、ステップ状に変化する力に対する力センサの応答特性(ステップ応答特性)を把握しておくことは、運動制御を高度化する上で重要である。また、ステップ応答特性の把握は、各種材料の粘弾性試験等においても重要である。このように力センサのステップ応答特性を把握しておくことは重要であるが、ステップ応答特性を測定する装置は未だ開発されていない。
特許第3177681号公報
本発明は、以上の背景に鑑み、上記従来の衝撃応答特性の測定装置を応用して、力センサのステップ応答特性を精度良く測定できるようにした装置を提供することをその課題としている。
本発明は、ステップ状に変化する力に対する力センサの応答特性を測定する装置であって、上記課題を解決するために、ガイド部とこのガイド部の軸線方向に直動自在に支持される可動部とを有する直動軸受けを、力センサを固定する治具に、可動部が力センサに対しガイド部軸線方向に対向するような位置関係で取り付けて成る測定ユニットと、可動部のガイド部軸線方向の慣性力を計測する手段とを備え、測定ユニットを、ガイド部の軸線が鉛直方向の方向成分を持ち、可動部が力センサに向けて滑落可能となるように配置すると共に、可動部を力センサとの間に力が作用しない初期位置に支持する支持手段を設け、支持手段による支持を解除して可動部を滑落させて力センサに当接させ、このときに計測手段で計測された可動部の慣性力と、可動部に作用する重力のガイド部軸線方向の成分との合力に基づいて、力センサの検出出力と比較すべき力センサに作用したステップ状に変化する力の真の値を求めるようにしている。
上記の構成によれば、可動部に作用する重力のガイド部軸線方向の成分が力センサに最後まで作用する力、即ち、ステップ状に変化する力の定常力になる。尚、この力は、可動部の質量と重力加速度とガイド部軸線の鉛直方向に対する角度とから算定できる。また、力センサには、可動部のガイド部軸線方向の慣性力も作用し、可動部が力センサに当接した当初、力センサに作用する力は可動部の慣性力の影響でオーバーシュートする。本発明では、この慣性力を計測して、これと可動部に作用する重力のガイド部軸線方向の成分との合力とに基づいて力センサに作用した力の真の値を求め、これを力センサの検出出力に対する比較対象としており、そのため、オーバーシュートを含めて力センサのステップ応答特性を精度良く測定することができる。
ここで、ガイド部の軸線の鉛直方向に対する角度を変化させると、力センサに入力される力に占める慣性力と重力の比が変化し、ガイド部の軸線を水平に近づけるほど、重力と比較したときの慣性力の影響が大きくなる。従って、測定ユニットを所定の水平軸線回りに傾動可能に設け、ガイド部の軸線の鉛直方向に対する角度を調整自在とすることにより、力センサに入力されるステップ状に変化する力の立上りの急峻さ、オーバーシュートの大きさ等を変化させて、種々のステップ応答特性を測定することができる。
また、可動部をワイヤによって初期位置に吊持し、ワイヤを切断することで可動部を滑落させるようにすれば、支持手段の構成を簡素化してコストダウンを図れる。この場合、ワイヤ切断中のワイヤの伸びにより可動部が若干下降する。そして、この下降により可動部が力センサに当接すると、力センサに作用する力は可動部の慣性力と重力との合力からワイヤの張力を減算した値になり、力センサに作用する力を正確に算出できなくなる。従って、可動部から力センサに作用する力の時間履歴を完全に知るためには、ワイヤ切断中のワイヤの伸びによっても可動部が力センサとの間に力が作用する位置まで下降しないように初期位置を設定することが必要になる。
ところで、計測手段により計測すべき可動部のガイド部軸線方向の慣性力は、可動部の質量とガイド部軸線方向の加速度との積に等しい。この場合、計測手段の構成要素として、可動部のガイド部軸線方向の移動速度を計測する光波干渉計を設ければ、この光波干渉計で計測された可動部の移動速度を微分して、可動部のガイド部軸線方向の加速度を正確に求めることができ、ひいては、この加速度から可動部のガイド部軸線方向の慣性力を正確に算出することができる。
また、直動軸受けのガイド部と可動部との間に摩擦力が作用すると、力センサに作用する力は可動部の慣性力と重力との合力から摩擦力を減算した値になり、力センサに作用する力を正確に算出できなくなる。この場合、直動軸受けとして、ガイド部と可動部との間に静圧の空気層を介在させた直動静圧空気軸受けを用いれば、ガイド部と可動部との間に作用する摩擦力を極力小さくすることができ、力センサに作用する力を正確に算出できる。
また、可動部が力センサに当接したときに、可動部に力センサからの反力によるモーメントが作用すると、可動部がモーメントによる姿勢変化でガイド部に部分的に接触して摩擦力が大きくなるといった様々な悪影響を生じ、力センサに作用する力を正確に算出できなくなる。この場合、可動部の重心と可動部の力センサに対する当接点とを結ぶ直線がガイド部の軸線と平行になるようにしておけば、可動部にモーメントは作用せず、力センサに作用する力を正確に算出できる。
図1は、ステップ状に変化する力に対する力センサAの応答特性を測定する装置を模式的に示している。この装置は、力センサAを固定する治具2と、直動軸受け3とで構成される測定ユニット1を備えている。治具2は上下方向に長手であって、力センサAの固定部となる下側の台座2aとこれに対向する上側の台座2bとを有し、中間に直動軸受け3が取り付けられている。
直動軸受け3としては、摩擦抵抗の小さい直動静圧空気軸受け、例えば、NTN株式会社製のエアスライド(登録商標)を使用している。この直動軸受け3は、ブロック状の可動部4と、可動部4に形成した貫通穴4aに挿通した直状のガイド部5とを有し、この貫通穴4aの内周面とガイド部5の外周面との間に全周に亘って圧縮空気層が形成されている。これにより、可動部4は、ガイド部5の軸線(以下、ガイド軸線と記す)5a方向に極めて小さい摩擦抵抗で直動自在になる。ガイド部5は、図3に示すように、ガイド軸線5a方向両端に設けた脚片5bを介して治具2に固定される。この際、可動部4が力センサAに対しガイド軸線5a方向に対向するように位置合せして、ガイド部5を治具2に固定する。尚、可動部4の力センサAに対する当接部にはゴム等の緩衝材4bが取り付けられている。
測定ユニット1は、図2、図3に示す如く、測定装置のベースとなる水平出し可能な基台6に対し、治具2の下側の台座2aの下面に設けた支軸7を介して、該軸7の軸線たる水平軸線回りに傾動自在に支持されている。そして、基台6に立設した縦板部6aに、治具2に植設したボルト2cを挿通する、支軸7と同心の円弧状のガイド穴6bを形成し、ボルト2cに螺合する締具2dを締め込むことにより、測定ユニット1を任意の傾動位置で固定できるようにしている。これにより、ガイド軸線5aの鉛直方向に対する角度θが調整自在となる。尚、ステッピングモータ等の駆動源により、測定ユニット1を指定された傾動位置に自動的に傾動させるようにすることも可能である。ここで、角度θが90度にならない限り、ガイド軸線5aは鉛直方向の方向成分を持ち、可動部4が力センサAに向けて滑落可能となる。また、この角度θを検出するために、支軸7にエンコーダ8を連結している。尚、エンコーダ8以外の他の検出手段で角度θを検出することも勿論可能である。
可動部4の上側の端面にはワイヤホルダ9aが固定され、また、治具2の上側の台座2bにもアジャスタ10を介してワイヤホルダ9bが取り付けられている。そして、両ワイヤホルダ9a,9b間にワイヤ9を張り渡し、可動部4を、力センサAとの間に力が作用しないように設定した初期位置、即ち、可動部4が力センサAに接触しない位置、もしくは、接触しても可動部4と力センサAとの間に作用・反作用力が作用しない位置に、ワイヤ9により吊持している。初期位置は、アジャスタ10によるワイヤホルダ9bの位置調整で微調節可能である。
ワイヤ9を手動または自動のカッター(図示せず)で切断すると、可動部4が滑落して力センサAに当接し、力センサAにステップ状に変化する力が作用する。そして、可動部4には、力センサAからの反力が外力として作用する。ここで、可動部4に作用する外力Fと、可動部4のガイド軸線5a方向の慣性力F1と、可動部4に作用する重力のガイド軸線5a方向の成分F2との間には、次式、F=F1+F2が成立する。可動部4が力センサAに当接した状態において、可動部4には、力センサAからの反力に加えて、可動部4とガイド部5との間の摩擦力および緩衝材4bの慣性力(緩衝材4bの密度と可動部4に対する緩衝材4bの相対加速度の空間積分値)が外力として作用するが、摩擦力および緩衝材4bの慣性力は無視できるほど小さいため、慣性力F1と重力成分F2の合力と、可動部4に作用する力センサAからの反力、即ち、力センサAに作用する力とを等しいと看做すことができる。ここで、可動部4の質量(可動部に固定された全ての物を含む質量)をM、可動部4のガイド部軸線5a方向の加速度をa、重力加速度をgとして、F1=M・a、F2=M・g・cosθであり、結局、力センサAに作用する力はM・a+M・g・cosθに等しくなる。M,g,θは既知であり、可動部4のガイド部軸線5a方向の加速度aを知ることができれば、力センサAに作用する力の真の値を算出でき、この値と力センサAの検出出力とを比較することで、ステップ状に変化する力に対する力センサAの応答特性(ステップ応答特性)を測定できる。尚、緩衝材4bの慣性力が無視できない場合には、これを計算により推定し、M・a+M・g・cosθで求められる力を補正すればよい。
図1を参照して、測定装置は、力センサAの検出出力の増幅および波形整形(ノイズ成分の除去)を行うシグナルコンディショナ11と、このシグネルコンディショナ11を介して得られる力センサAの検出出力(アナログ信号)を高速でA/D変換して記憶保持するメモリ付きA/D変換器12と、このA/D変換器12に接続されたコンピュータ13と、可動部4のガイド軸線5a方向の移動速度を計測する光波干渉計14とを備えている。コンピュータ13は、パーソナルコンピュータ等の汎用コンピュータでもよいが、本装置に専用的なものであってもよい。
光波干渉計14は、公知のものであり、その概略について説明する。光波干渉計14は、ゼーマンタイプのヘリウムネオンレーザ等から成る光源15を備えており、この光源15から出射される光b1は分光器16で測定光b2と参照光b3とに分光される。測定光b2は、可動部4に固定したコーナ・キューブ・プリズム17にミラー18を介して入射され、コーナ・キューブ・プリズム17で反転されて再度ミラー18を介して分光器16に入射される。ここで、ミラー18とコーナ・キューブ・プリズム17との間の光路の方向はガイド軸線5aと平行なるように設定されており、測定光b2は、コーナ・キューブ・プリズム17で反転する際に、可動部4のガイド軸線5a方向の移動速度に応じたドップラシフト(ドップラ効果による周波数変化)を生ずる信号光b2´になる。参照光b3は分光器16から第2のコーナ・キューブ・プリズム19を経由して再度分光器16に入射され、ここで信号光b2´と合成され、信号光b2´と参照光b3との周波数の差分の周波数のビートを生ずる干渉光b4になる。干渉光b4は、分光器16からミラー20とグラン・トンプソン・プリズム21とを介して光検出器22に入射され、ここで干渉光b4のビート周波数fbeatに応じた電気信号に変換されて周波数カウンタ23に入力される。そして、周波数カウンタ23によりビート周波数fbeatの値を表すデジタルデータが作成され、これがコンピュータ13に送信される。また、光源15では、内蔵する光検出器により、可動部4の静止状態に対応する基準周波数frestの電気信号が作成され、この電気信号が周波数カウンタ23に入力される。そして、周波数カウンタ23により基準周波数frestの値を表すデジタルデータが作成され、これがコンピュータ13に送信される。ここで、可動部4のガイド軸線5a方向の移動速度vは、空気の屈折率をλairとして、v=λair・(fbeat−frest)/2になる。
コンピュータ13は、その機能的手段(プログラムによって実現される手段)として、ビート周波数fbeatと基準周波数frestとから可動部4のガイド軸線5a方向の移動速度vを上記式により逐次算出する手段と、この移動速度vの時系列値を逐次微分することにより可動部4のガイド軸線5a方向の加速度aを逐次算出する手段と、移動速度vの時系列値を逐次積分することにより可動部4のガイド軸線5a方向の位置xを逐次算出する手段と、予め記憶保持されている可動部4の質量Mに算出した加速度aを乗算して可動部4のガイド軸線5a方向の慣性力F1を逐次算出する手段と、エンコーダ8からコンピュータ13に送信されたガイド軸線5aの鉛直方向に対する角度θに基づいてその余弦(cosθ)を求め、この余弦と重力加速度gとを可動部4の質量Mに乗算して可動部4に作用する重力のガイド軸線5a方向の成分F2を算出する手段と、算出した慣性力F1と重力成分F2との合力(=F1+F2)を逐次算出する手段とを備える。また、コンピュータ13は、算出した移動速度V、加速度a、位置x、慣性力F1、重力成分F2、合力を時系列的にハードディスク等の記憶手段(図示せず)に記憶保持すると共に、これらのデータをディスプレイやプリンタ等の表示手段(図示せず)に適宜出力する。更に、コンピュータ13は、前記A/D変換器12に記憶保持された力センサAの検出出力の時系列データを読み込んで、検出出力を静的校正法(力センサAの静的特性に従った校正手法)で校正し、校正された検出出力Fsのデータを記憶手段に記憶保持すると共に、表示手段に適宜出力する。
尚、可動部4が力センサAに当接したときに、可動部4に力センサAからの反力によるモーメントが作用すると、可動部4の姿勢が変化して様々な悪影響を生ずる可能性がある。例えば、可動部4とガイド部5との間の空気層が破れて、摩擦力が大きくなったり、モーメントが空気層を介して治具2に伝達されて、光波干渉計14の構成部品を振動させる可能性があり、力センサに作用する力を正確に算出できなくなる。そこで、本実施形態では、可動部4に付加質量体4cを取り付けて、可動部4の重心Oと可動部4の力センサAに対する当接点(緩衝材4bの先端面の中心)とを結ぶ直線Lがガイド軸線5aと平行になるようにし、可動部4にモーメントが作用することを防止している。
また、ワイヤ9の切断中にワイヤ9の伸びを生じて、可動部4が力センサAに当接すると、力センサAに作用する力は、慣性力F1と重力成分F2との合力からワイヤ9の張力を差し引いた値になり、力センサAに作用する力を正確に算出できなくなる。そのため、ワイヤ9は、切断中の伸びが少ない脆い材質のものを用いることが望ましい。更に、ワイヤ9の切断中の不可避的な伸びによっても、可動部4が力センサAに接触しないように、即ち、可動部4と力センサAとの間にワイヤ9の切断中の伸び以上の隙間が確保されるように、可動部4の初期位置を設定することが望ましい。
次に、図4、図5に示されている実験結果について説明する。この実験は、半導体ひずみゲージを弾性体に貼り付けた構造の容量10Nの力センサAを上記治具2の台座2aに固定し、ガイド軸線5aの鉛直方向に対する角度θを0度、即ち、ガイド軸線5aを鉛直にし、力センサAと緩衝材4bとの間に0.5mmの隙間が空くように設定した初期位置からステンレス製のワイヤ9を切断して可動体4を滑落させることにより行った。このときの光波干渉計14の計測データから算出された可動体4の移動速度vが図4(a)、位置xが図4(b)、加速度aが図4(c)、慣性力F1と重力成分F2の合力が図4(d)に示されている。尚、図4の時間軸(横軸)の零点は可動部4(緩衝材4b)が力センサAに当接した瞬間の時点であり、また、t1はワイヤ9の切断開始時点、t2はワイヤ9の切断完了時点である。図4から明らかなように、慣性力F1と重力成分F2との合力、即ち、力センサAに作用する力は、慣性力F1の影響によるオーバーシュートを伴うステップ状の変化を示し、重力成分F2に等しい定常力に収斂する。尚、可動部4の位置は力センサAに作用する力が安定しても低下しているが、これは緩衝材4bの粘弾性の影響によるものである。
一方、上記実験時の力センサAの静的校正法で校正した出力Fsは図5に実線で示すようになった。尚、図5は、時間軸を図4より引き伸ばして描かれており、慣性力F1と重力成分F2との合力が丸印でプロットされている。同図から明らかなように、慣性力F1と重力成分F2との合力と力センサAの出力Fsとの間には数%の差がある。慣性力F1と重力成分F2との合力は力センサAに作用する力の真の値に高い精度(不確かさは0.5%程度)で一致するから、この合力と力センサAの出力との数%の差は、力センサAの静的特性と動的特性との差異によるものと考えられる。このように、慣性力F1と重力成分F2との合力と力センサAの出力とを比較することにより、力センサAのステップ応答特性を測定、評価することができる。例えば、力の時間積分値の差異、瞬時値の差異の最大値、瞬時値の差異の標準偏差、応答遅れ時間の最大値、応答遅れ時間の平均値等を、最初の立上り、最初の1周期、最初の2周期、定常値に安定したとき等の様々な時間領域について計測し、これらを評価項目としてステップ応答特性を評価することができる。尚、ステップ応答特性は、力センサA単独ではなく、シグナルコンディショナ11およびメモリ付きA/D変換器12を含むセンシングシステム全体の応答特性として捉えるべきである。
ところで、力センサAに作用する力のオーバーシュートは、緩衝材4bの働きである程度緩和され、また、初期位置における力センサAと可動部4との間の隙間を小さくするほど、力センサに作用する力の変化は純粋なステップ状の形に近づく。但し、この隙間を実質的に零にしても、力センサA自体の弾性により、いくらかのオーバーシュートは避けられない。
また、ガイド軸線5aの鉛直方向に対する角度θを変化させることにより、力センサAに作用する力に占める慣性力F1と重力成分F2の比が変化し、角度θを大きくするほど、重力成分F2と比較したときの慣性力F1の影響が大きくなる。従って、初期位置、緩衝材4bのダンピング特性、可動部4の質量と共に、角度θを調整することにより、力センサAに作用するステップ状の力の立上りの急峻さ、オーバーシュートの大きさ等を変化させることができ、種々のステップ状の力に対する力センサAの応答特性を測定することが可能になる。
尚、上記実施形態では、可動部4を初期位置に支持する支持手段としてワイヤ9を用いたが、支持手段はこれに限られるものではなく、可動部4の支持の急速な解除と、解除後の可動部4との力の作用が無視できることの2つの条件が満たされるものであれば、どのような支持手段を用いても良い。例えば、支持手段として、可動部4を初期位置に吸着支持する電磁石を用いても良い。
本発明の実施形態の測定装置のシステム構成図。 実施形態の測定装置の機械的構造を示す正面図。 実施形態の測定装置の機械的構造を示す側面図。 実験時の光波干渉計の計測データから求めた可動部の移動速度、位置、加速度、慣性力と重力成分の合力を示すグラフ。 実験時の力センサの検出出力と、慣性力と重力成分の合力を示すグラフ。
符号の説明
A…力センサ、1…測定ユニット、2…治具、3…直動軸受け、4…可動部、5…ガイド部、5a…ガイド部の軸線、7…測定ユニットの支軸、9…ワイヤ、13…コンピュータ(演算手段)、14…光波干渉計。

Claims (6)

  1. ステップ状に変化する力に対する力センサの応答特性を測定する装置であって、
    ガイド部とこのガイド部の軸線方向に直動自在に支持される可動部とを有する直動軸受けを、力センサを固定する治具に、可動部が力センサに対しガイド部軸線方向に対向するような位置関係で取り付けて成る測定ユニットと、
    可動部のガイド部軸線方向の慣性力を計測する手段とを備え、
    測定ユニットを、ガイド部の軸線が鉛直方向の方向成分を持ち、可動部が力センサに向けて滑落可能となるように配置すると共に、可動部を力センサとの間に力が作用しない初期位置に支持する支持手段を設け、
    支持手段による支持を解除して可動部を滑落させて力センサに当接させ、このときに計測手段で計測された可動部の慣性力と、可動部に作用する重力のガイド部軸線方向の成分との合力に基づいて、力センサの検出出力と比較すべき力センサに作用したステップ状に変化する力の真の値を求めることを特徴とする力センサのステップ応答特性の測定装置。
  2. 前記測定ユニットを所定の水平軸線回りに傾動可能に設け、前記ガイド部の軸線の鉛直方向に対する角度を調整自在とすることを特徴とする請求項1記載の力センサのステップ応答特性の測定装置。
  3. 前記支持手段は、前記可動部を前記初期位置に吊持するワイヤで構成され、このワイヤを切断することで可動部を滑落させると共に、ワイヤ切断中のワイヤの伸びによっても可動部が力センサとの間に力が働く位置まで下降しないように初期位置を設定することを特徴とする請求項1または2記載の力センサのステップ応答特性の測定装置。
  4. 前記計測手段は、前記可動部の前記ガイド部軸線方向の移動速度を計測する光波干渉計と、この光波干渉計で計測された可動部の移動速度を微分して求めた加速度から前記慣性力を算出する演算手段とで構成されることを特徴とする請求項1〜3の何れか1項に記載の力センサのステップ応答特性の測定装置。
  5. 前記直動軸受けは、直動静圧空気軸受けであることを特徴とする請求項1〜4の何れか1項に記載の力センサのステップ応答特性の測定装置。
  6. 前記可動部の重心と可動部の前記力センサに対する当接点とを結ぶ直線が前記ガイド部の軸線と平行であることを特徴とする請求項1〜5の何れか1項に記載の力センサのステップ応答特性の測定装置。
JP2003381391A 2003-11-11 2003-11-11 力センサのステップ応答特性の測定装置 Pending JP2005147702A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381391A JP2005147702A (ja) 2003-11-11 2003-11-11 力センサのステップ応答特性の測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381391A JP2005147702A (ja) 2003-11-11 2003-11-11 力センサのステップ応答特性の測定装置

Publications (1)

Publication Number Publication Date
JP2005147702A true JP2005147702A (ja) 2005-06-09

Family

ID=34690780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381391A Pending JP2005147702A (ja) 2003-11-11 2003-11-11 力センサのステップ応答特性の測定装置

Country Status (1)

Country Link
JP (1) JP2005147702A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148511A1 (ja) * 2006-06-20 2007-12-27 National University Corporation Gunma University 力検出装置及び力センサの受感部の有効慣性質量の算出方法
CN103499413A (zh) * 2013-10-17 2014-01-08 中国测试技术研究院力学研究所 力杠杆和杠杆式力标准装置
JP2015072189A (ja) * 2013-10-03 2015-04-16 株式会社アドヴィックス 荷重測定装置
CN106706207A (zh) * 2016-11-10 2017-05-24 合肥工业大学 一种用于力传感器动态标定的阶跃力产生装置
KR101910476B1 (ko) 2017-10-11 2018-10-22 한국산업기술시험원 격투기용 충격센싱장치의 테스트장치

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148511A1 (ja) * 2006-06-20 2007-12-27 National University Corporation Gunma University 力検出装置及び力センサの受感部の有効慣性質量の算出方法
JP4976389B2 (ja) * 2006-06-20 2012-07-18 国立大学法人群馬大学 力検出装置及び力センサの受感部の有効慣性質量の算出方法
JP2015072189A (ja) * 2013-10-03 2015-04-16 株式会社アドヴィックス 荷重測定装置
CN103499413A (zh) * 2013-10-17 2014-01-08 中国测试技术研究院力学研究所 力杠杆和杠杆式力标准装置
CN106706207A (zh) * 2016-11-10 2017-05-24 合肥工业大学 一种用于力传感器动态标定的阶跃力产生装置
CN106706207B (zh) * 2016-11-10 2019-02-26 合肥工业大学 一种用于力传感器动态标定的阶跃力产生装置
KR101910476B1 (ko) 2017-10-11 2018-10-22 한국산업기술시험원 격투기용 충격센싱장치의 테스트장치

Similar Documents

Publication Publication Date Title
Fujii Proposal for a step response evaluation method for force transducers
US20020062678A1 (en) Fine friction and wear testing apparatus
JP5611297B2 (ja) 測定プローブ
US5616857A (en) Penetration hardness tester
Fujii Toward establishing dynamic calibration method for force transducers
JP2005147702A (ja) 力センサのステップ応答特性の測定装置
WO1992021932A1 (en) Measuring probe
Fujii et al. Method for evaluating material viscoelasticity
US6918304B2 (en) Material testing method
US5115664A (en) Tunable feedback transducer for transient friction measurement
Fujii et al. Proposal for material viscoelasticity evaluation method under impact load
JP2010266297A (ja) 摩擦係数測定機
Fujii Method for generating and measuring the micro-Newton level forces
JP3739314B2 (ja) 材料表面の機械的特性試験装置
Kawamura et al. Impact force measurement of a plastic sheet using drop ball test by the Levitation Mass Method (LMM)
US8865989B1 (en) Kinetic measurement of piano key mechanisms for inertial properties and keystroke characteristics
JPH0814874A (ja) 測定装置
Fan et al. Analysis of the contact probe mechanism for micro-coordinate measuring machines
JP2016045168A (ja) 天秤型の食感測定装置
Fujii A method of evaluating the dynamic response of materials to forced oscillation
Djamal et al. New method for evaluating dynamic characteristics of cantilever spring of vibration sensor
JP2021103155A (ja) 押し込み試験装置
JP2006010469A (ja) 接触式プローブの跳ね現象の検出方法
JP2020056700A (ja) 硬さ試験機
Fujii Dynamic three-point bending tester using inertial mass and optical interferometer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060922

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A02