WO2010079755A1 - 熱風ヒーター - Google Patents

熱風ヒーター Download PDF

Info

Publication number
WO2010079755A1
WO2010079755A1 PCT/JP2010/000066 JP2010000066W WO2010079755A1 WO 2010079755 A1 WO2010079755 A1 WO 2010079755A1 JP 2010000066 W JP2010000066 W JP 2010000066W WO 2010079755 A1 WO2010079755 A1 WO 2010079755A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hot air
heater
heating element
heat
Prior art date
Application number
PCT/JP2010/000066
Other languages
English (en)
French (fr)
Inventor
今田裕士
坂本泰宏
樋口馨
杉山昭
上田和彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010079755A1 publication Critical patent/WO2010079755A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between

Definitions

  • the present invention relates to a hot air heater used for various purposes such as drying, heating, welding and the like of a material disposed on a surface orthogonal to the hot air blowing direction by blowing hot air.
  • a hot air heater that heats a large area at a predetermined temperature and a predetermined temperature range is used for, for example, soldering of electronic parts, heat treatment of a resin material, heat drying, and the like.
  • a hot air heater for example, a coil-like heating element made of a heating wire is provided inside a heat-resistant tube body in which a gas supply port is provided at the base portion and a hot air blowing port is provided at the opposite end portion.
  • a hot air heater configured to heat a gas supplied from a supply port by energizing a heating element and blow it out as hot air (Patent Document 1).
  • a heater structure in which a coil-shaped heating element made of a heating wire is wound around the outer periphery of the gas channel (Patent Document) 2).
  • the heater structure is the same structure in which the gas flow path from the supply port to the blowout port is communicated, and it is possible to blow out hot air that has been made uniform to some extent.
  • a fluid rectification mechanism in which a rectification unit that rectifies fluid introduced from a supply port is arranged in a cylinder (Patent Document 3).
  • the rectifying mechanism is a mechanism provided with a dispersion rectifying plate for dispersing fluid introduced from a supply port provided near the upstream center of the cylinder in the four corners and four sides of the cylinder.
  • the drying device has a structure provided with a plurality of openings having a rectifying cylinder portion and a flow rate adjusting member, and blows the uniformized gas supplied thereby to the material to be processed, thereby adjusting the flow rate.
  • the member is a gas resistor and adjusts the flow rate by making the gas difficult to flow.
  • JP-A-6-304747 Japanese Patent Publication “JP-A-9-277040” Japanese Patent Publication “JP 2000-334333” Japanese Patent Publication “JP 2000-301004”
  • the flow velocity distribution of the hot air supplied from the heater blowout port is not a donut shape, but a radial cross section of the cylinder In this case, hot air having a uniform flow velocity distribution can be blown out from the center, and as a result, it is possible to heat-treat the material to be treated uniformly.
  • the diameter of the gas flow path is increased in order to increase the heat treatment area, the gas in the radial cross-section direction, that is, the center of the flow path and the circumferential end of the flow path cannot be heated uniformly.
  • the fluid rectifying mechanism described in Patent Document 3 can improve the rectifying property of gas, but on the other hand, the flow of gas becomes complicated, resulting in a large flow velocity loss. As a result, the temperature drop of the hot air is increased, and in order to obtain a desired temperature, the heater setting temperature must be increased and the gas supply amount must be increased. The heater life increases as the heater load increases. It becomes shorter, the replacement frequency is high, and the cost is high.
  • Patent Document 4 introduces a flow rate adjusting member on the supply chamber side of the rectifying cylinder portion in each opening portion in order to suppress variation between the opening portions of the gas blown out from the plurality of opening portions.
  • the material to be treated is a slurry for catalyst, and the gas blown out from the blowout port passes through the material to be treated at a high flow rate of 5 to 15 m / s in the axial direction of the heater, and convection while passing through the material to be treated.
  • Is used to uniformly heat-treat the contact surface with the gas and is not suitable for uniformly heat-treating a material to be treated that is disposed at a specific distance from the blower outlet of the heater to a surface orthogonal to the blow-out direction.
  • the material to be processed disposed on the surface perpendicular to the gas blowing direction of the hot air heater exceeds the area of the same size as the heater heating element or the heater flow path structure. It was impossible to perform heat treatment at a high temperature within a certain temperature range.
  • the hot air heater of the present invention is a hot air heater that heats a material to be processed disposed on a surface orthogonal to the gas blowing direction of the heater, a gas flow path structure in a heating means for heating the gas, and a heated gas.
  • the structure of the gas flow path of the blowout outlet is different, a cylindrical holder extending the length from the outlet side of the heating element to the outlet, and a plurality of holes in the cylindrical holder And a current plate.
  • the present invention is a heater structure that enables heat treatment of a material to be processed disposed on a surface orthogonal to the gas blowing direction of the heater, and suppresses the heater load and enables heat treatment substantially uniformly in a predetermined temperature range. The effect to do.
  • the hot air heater used in the present invention has a gas heating means, a rectifying and soaking means.
  • the heat treatment area of the material to be treated is ⁇ 10 mm or more (hereinafter referred to as a large area), and the temperature distribution within the heat treatment area is ⁇ 10% with respect to the desired heating temperature.
  • the heat treatment is particularly excellent in heating the material to be treated to a high temperature of 150 ° C. or higher.
  • the gas heating means has a structure in which a heating element 2 is provided in a cylindrical heater 1 having a gas supply port and a discharge port at both ends.
  • a gas such as air, water vapor, nitrogen, or argon may be used alone, or a plurality of gases may be mixed and used.
  • the gas introduced from the supply port of the heating means passes through the gas flow path 5 similarly provided in the axial direction in the outer peripheral portion of the heating element 2 provided in the axial direction in the cylindrical heater 1. Heated and blown out as hot air.
  • the heating element 2 may be sealed with a heat-resistant material such as quartz or ceramic.
  • the structure in which the heating element 2 is sealed may be either a prismatic type or a cylindrical type.
  • the structure of the gas flow path 5 on the outer peripheral portion of the heating element 2 may be either a prismatic type or a cylindrical type.
  • a cylindrical shape is preferred in which the distance from the heating element 2 is isotropic.
  • the residence time of the gas in the gas flow path 5 differs depending on the flow rate of the supplied gas, and the smaller the flow rate, the longer the residence time in the region in contact with the heating element 2. It becomes easy to heat.
  • the flow rate of the supplied gas is reduced, the flow rate of the hot air blown from the heater blowout port 12 is also reduced, so that it is affected by the external environment before reaching the material to be processed from the heater blowout port 12. It becomes easy to cause a temperature drop or a deviation of the hot air arrival position.
  • the heat conduction between the heating element 2 and the supply gas tends to be insufficient, and the heating element 2 needs to be increased or heated to compensate for the insufficient heat conduction.
  • the material when a viscous material such as a solution on a substrate, a resin material, and a solder material is heat-treated, the material is affected by the movement of the material due to the wind pressure of the blown gas, and is locally affected. Insufficient welding or a decrease in the adhesion of the material occurs, and the heat treatment results vary, resulting in a decrease in reliability in subsequent processes. Therefore, the flow rate of the gas to be supplied varies in the range of the flow rate suitable for the material to be processed.
  • the gas heating means has a structure in which the gas flow path 5 through which the gas passes while being heated is provided on the outer peripheral portion of the heating element 2, and thus the structure of the gas flow path 5 is a donut shape in the radial direction of the heater shaft.
  • the hot air has a donut-shaped flow velocity distribution, but the flow velocity distribution of the hot air can be equalized by using the gas rectification and heat equalization means of the present invention. That is, a cylindrical body holder 4 that extends the length from the air outlet side tip (hereinafter referred to as the heat generating body front end) 11 of the heating element to the heater air outlet 12, and the rectifying plate 3 is provided inside the cylindrical body holder 4. Thus, gas rectification and soaking can be performed.
  • the diameter 21 of the heating element is D1
  • the diameter 22 of the gas flow path structure around the outer periphery of the heating element is D2
  • the diameter 23 of the cylindrical holder is D3, D1 ⁇ D2 ⁇ D3 and D2 ⁇ D1 + 10 mm, respectively. , D3 ⁇ D1 + D2.
  • the optimum value of the diameter 21 (D1) of the heating element varies depending on the heat treatment area of the material to be treated. In the case of a normal hot air heater structure, it is ⁇ 5 to 30 mm, but is not limited thereto.
  • the diameter 22 (D2) of the gas flow path structure at the outer peripheral portion of the heating element is preferably larger than D1 and not more than D1 + 10 mm from the viewpoint of heat conduction of the gas in the flow path structure.
  • the diameter 23 (D3) of the cylindrical holder is not less than D2, and is preferably not more than D1 + D2 from the viewpoint of gas rectification to the inside and outside of D2 in the heater axial direction.
  • the cylindrical holder 4 has a structure that enhances the rectification and soaking properties of the heated gas, and the cylindrical holder 4 has a structure that extends the length from the heating element tip 11 to the heater outlet 12 by 30 to 75 mm. If it is 30 mm or less, the rectifying action and soaking action in the cylindrical holder 4 are poor, and uniform heating over a large area is impossible. If it is 75 mm or more, the distance from the heating element tip 11 to the heater outlet 12 becomes too long, so that the heat loss of hot air is large and the heater load increases to heat the treatment material to the desired temperature. Becomes shorter, the replacement frequency is higher, and the cost is higher.
  • the rectifying plate 3 has a plurality of holes with a diameter of 1.0 to 2.5 mm, and the holes are arranged so that the opening ratio is 10 to 40%.
  • the aperture ratio of the current plate 3 is calculated based on the hole diameter, pitch, and arrangement pattern.
  • the hole diameter is the hole size
  • the pitch is expressed by the distance between the hole centers of adjacent holes.
  • the hole area ratio is determined by the hole diameter, pitch, and arrangement pattern thereof.
  • the gas passing through the rectifying plate 3 receives a frictional resistance from the surface area of the hole calculated by the hole diameter, the plate thickness, and the hole area ratio of the rectifying plate 3, and the flow velocity decreases.
  • the hole diameter is smaller than ⁇ 1.0 mm, the frictional resistance increases before and after passing through the current plate 3, and the heating efficiency of the material to be processed decreases.
  • the gas blown out through any one hole portion of the current plate 3 is a gas on the current plate region related to the half length of the pitch with the center of the hole as a center.
  • the variation in flow velocity and temperature distribution is leveled by introducing the gas in the region around the hole into one hole, so if the hole diameter is smaller than ⁇ 1.0 mm, the rectifying action and soaking action Cannot be performed efficiently.
  • the diameter is larger than 2.5 mm, since the hole is too large, the rectifying effect in the flow velocity region used in the hot air heater cannot be obtained.
  • the hole area ratio is smaller than 10%, the flow rate blown out from the heater is insufficient, and the heating efficiency of the material to be treated is lowered. On the other hand, if the hole area ratio is larger than 40%, the rectifying action and the soaking action cannot be achieved.
  • a plurality of rectifying plates 3 may be mounted in the cylindrical holder 4, but it is preferable that the number of the rectifying plates 3 is one because the flow velocity loss increases as the number increases.
  • the rectifying plate 3 is attached to the heating element tip 11 side from the center position in the axial direction of the cylindrical holder 4.
  • This hot air heater is a heater structure in which the gas flow path structure in the heating means in which the heating element 2 is present differs from the gas flow path structure in the heated hot air outlet. That is, since the flow path structure is not a consistent flow path structure in the gas flow direction but changed in the middle, the gas is rectified using the rectifying plate 3. In order to make the best use of the effect of the current plate 3, it is preferable to mount it between the position of the heating element tip 11 where the flow path structure changes and the axial center position of the cylindrical holder 4.
  • the rectifying plate 3 is mounted 3 mm or more away from the heating element tip 11 in the heater.
  • the heating element itself prevents the gas that has passed through the flow path structure in the heater from passing through the entire opening portion of the rectifying plate 3, and only from a part of the opening portion. It passes, and the function of the current plate 3 cannot be efficiently achieved. Further, the rectifying plate 3 may be deformed by the influence of radiant heat from the heating element 2.
  • the mounting position of the rectifying plate 3 is from the heating element tip 11 to the rectifying plate 3 in the cylindrical holder 4 in order to efficiently obtain the rectifying action and the soaking action in the cylindrical holder 4.
  • the ratio of the distance to the distance from the rectifying plate 3 to the heater outlet 12 is preferably 1: 9 to 5: 5.
  • the hot air blown out from the heater outlet 12 can be rectified and soaked by the cylindrical holder 4 and the rectifying plate 3 described above. Rectification means that the variation in the flow velocity distribution of the gas blown from the heater blowout port 12 is leveled in a plane orthogonal to the gas blowout direction of the heater. If the gas to be blown out varies in the flow velocity distribution, local temperature variations occur, and the material to be treated cannot be heated over a large area within a certain temperature range.
  • the variation in the flow velocity distribution is preferably such that the flow velocity at each position heated in a specific temperature range in the diameter cross section of the heater cylinder is within 30% of the maximum flow velocity.
  • the flow velocity distribution in the radial cross section in the cylindrical holder 4 becomes a laminar flow-like parabolic velocity distribution, so that the temperature distribution of the material to be treated is proportional to the flow velocity distribution, and the desired flow distribution is obtained.
  • the area cannot be heated in a certain temperature range. Further, soaking is to equalize the temperature of hot air blown from the heater.
  • the flow velocity distribution is preferably such that the flow velocity at each position where heating is performed within a certain temperature range is within 30% of the maximum flow velocity.
  • the flow velocity distribution in the diameter cross section in the cylindrical holder 4 becomes a laminar flow and has a parabolic velocity distribution with the center at its maximum, and a uniform flow velocity distribution cannot be obtained, resulting in a constant material to be treated. It cannot be heated to a large area in the temperature range. Further, soaking is to equalize the temperature of hot air blown from the heater.
  • the distance from the air outlet 12 of the heater to the material to be processed disposed on the surface orthogonal to the gas blowing direction is preferably 3 to 15 mm. If the distance from the heater outlet 12 to the material to be treated is too short than 3 mm, the effect of radiant heat from the heater housing is generated, and uniform heat treatment cannot be performed. On the other hand, if the distance is more than 15 mm, it is easily affected by the external environment before reaching the material to be processed from the heater outlet 12, causing a temperature drop or a deviation of the hot air arrival position, resulting in variations in the heat treatment results. As a result, the reliability of the subsequent process is reduced.
  • the material to be treated is a substrate such as glass, silicon, quartz, aluminum, or resin, and the substrate may be provided with a material such as resin, solder material, organic and inorganic fine particles, or metal.
  • the present invention will be described using examples of sintering and drying of SOG (spin-on-glass) material on a glass substrate.
  • the heater structure is the structure shown in FIG. 1.
  • the diameter of the heating element 2 is 16 mm
  • the diameter of the gas flow path 5 on the outer periphery of the heating element is 20 m
  • the diameter of the cylinder holder 4 is 30 mm
  • the length of the cylinder holder 4 is 40 mm.
  • the rectifying plate 3 having a hole diameter of ⁇ 1.5 mm and a pitch of 1: 2 in a 60 ° staggered arrangement and an aperture ratio of 22.7% was inserted at a position 5 mm away from the heating element 2 in the heater.
  • the distance from the heater outlet 12 to the glass substrate is 5 mm.
  • the baking of the SOG solution requires a temperature of 280 ° C. or higher, but the upper limit temperature is 300 ° C. because the characteristics of the aluminum electrode are deteriorated or peeled off due to thermal damage.
  • FIG. 2 is a measurement result of a certain uniaxial flow velocity distribution on the glass substrate
  • FIG. 3 is a distribution shape obtained by measuring the temperature distribution of the glass substrate with a plurality of thermocouples.
  • FIG. 2 shows that the range of the flow rate within 30% from the maximum flow rate is about 20 mm
  • FIG. 3 shows that the region of 280 to 300 ° C. is about ⁇ 20 mm, which can uniformly fire the SOG film. did it.
  • a temperature range of 290 ° C. ⁇ 10 ° C. can be heated in a region of about ⁇ 20 mm, and the SOG film patterned on the glass substrate is uniformly fired without misalignment. did it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Resistance Heating (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)
  • Drying Of Solid Materials (AREA)
  • Furnace Details (AREA)

Abstract

 本発明の課題は、熱風の吹出し方向と直交する面に配置された被処理材を一定の温度範囲で、大面積に加熱処理する熱風ヒーターを提供することである。本発明の熱風ヒーターは、熱風の加熱手段、整流および均熱手段をそれぞれ有することで、気体の吹出し方向と直交する面に配置された被処理材を大面積に加熱処理する。また、本発明の熱風ヒーターは、気体を熱する加熱手段における気体の流路構造と、熱せられた気体を吹出す吹出し口における気体の流路構造が異なる構造であって、ヒーターの吹出し口側に整流および均熱手段となる筒体ホルダーおよび整流板を有する。前記整流板を、前記筒体ホルダー内に配置し、かつ整流板は筒体ホルダー内の軸方向において発熱体先端から筒体ホルダーの中心位置の間に挿入されることで、整流作用および均熱作用を効果的に得ることができる。

Description

熱風ヒーター
 本発明は、熱風を吹付けることで、熱風の吹出し方向と直交する面に配置された被処理材の乾燥、加熱、溶接、等の各種用途に使用する熱風ヒーターに関するものである。
 大面積領域を所定の温度および所定の温度範囲にて加熱する熱風ヒーターは、例えば電子部品のハンダ付けや樹脂材料の加熱処理、加熱乾燥等に使用される。このような熱風ヒーターには、例えば気体の供給口を根元部に、逆側の先端部に熱風の吹出し口を設けた耐熱性の管体の内部に電熱線からなるコイル状の発熱体を設けて供給口から供給された気体を発熱体への通電によって加熱して熱風として吹出すように構成した熱風ヒーターがある(特許文献1)。
 また、気体の加熱部と吹出し口の気体流路の筒断面形状が同一であるヒーターとして、電熱線からなるコイル状の発熱体を気体流路外周部に巻回したヒーター構造がある(特許文献2)。該ヒーター構造は、供給口から吹出し口までの気体流路が連通した同一構造であり、ある程度均一化された熱風を吹出すことが可能である。
 また、供給口から導入した流体を整流する整流部を筒体内に配置した流体の整流機構がある(特許文献3)。該整流機構は、筒体の上流側中央付近に備えた供給口から導入した流体を、筒体の四隅部および四辺部方向に分散させるための分散整流板を設ける機構である。
 また、本体部と、整流筒部と、流量調整部材とを有する乾燥装置がある(特許文献4)。該乾燥装置は整流筒部と流量調整部材とを有する複数の開口部を設けた構造であり、これにより供給される均一化された気体を被処理材に吹付けて乾燥させるもので、流量調整部材は気体の抵抗体であって気体を流れにくくすることで流量を調整するものである。
日本国公開特許公報「特開平6-304747号」 日本国公開特許公報「特開平9-277040号」 日本国公開特許公報「特開2000-334333号」 日本国公開特許公報「特開2000-301004号」
 特許文献1に記載の熱風ヒーターの構造では、加熱部の気体流路は発熱体を中心とした周囲となるために、気体流路構造はヒーター筒の径断面においてドーナツ型のために熱風は吹出し口からそのままドーナツ状に吹出さることとなり、結果として被処理材の処理中心の温度は低く、処理エリアの円周領域が高温となるドーナツ状の温度分布となり所定の面積を均一化された温度で加熱処理することができない。すなわち、該ヒーター構造では、ヒーターの発熱体構造と同程度の径の大きさまでの面積を均一化した温度分布で加熱処理することはできない。
 特許文献2に記載の熱風ヒーターの構造は、供給口から吹出し口までの気体流路が連通しているので、ヒーター吹出し口から供給される熱風の流速分布はドーナツ状ではなく、筒の径断面において中心から一様な流速分布をもつ熱風を吹出すことができ、結果均一に被処理材を加熱処理することが可能である。しかしながら、加熱処理面積を大きくするために気体流路の径を大きくすると、筒の径断面方向、すなわち流路中心と流路の円周端部の気体を均一に加熱することができない。
 特許文献3に記載の流体の整流機構では、気体の整流性を向上させることができるが、その反面、気体の流れが煩雑化するために流速ロスが大きくなる。その結果、熱風の温度低下も大きくなり所望の温度を得るには、ヒーター設定温度を高く、かつ気体の供給量を多くしなければならないという設定条件となり、ヒーター負荷の増大にともないヒーターの寿命が短くなり、交換頻度が高く高コストとなってしまう。
 特許文献4に記載の装置構造は、複数の開口部から吹出される気体の各開口部間のバラツキを抑制するために、各開口部における整流筒部の供給室側に流量調整部材を導入したものである。また、被処理材は触媒用スラリーであって、吹出し口から吹出された気体はヒーター軸方向に5~15m/sと大きな流速で被処理材を通過し、被処理材を通過中に対流等を利用して気体との接触面を均一に熱処理するものであり、ヒーターの吹出し口から吹出し方向と直交する面に特定の距離をもって配置された被処理材を均一に熱処理するには適さない。
 以上のように、従来の熱風ヒーターでは、熱風ヒーターの気体の吹出し方向と直交する面に配置された被処理材をヒーターの発熱体ないしはヒーターの流路構造と同程度の大きさの面積以上に、一定の温度範囲内に高温で、加熱処理することは不可能であった。
 上記の課題を解決するために、本発明者は気体の加熱手段に加え、整流および均熱手段を有することで、気体の吹出し方向と直交する面に配置された被処理材を大面積に加熱処理することが可能であることを見出した。本発明の熱風ヒーターは、ヒーターの気体吹出し方向と直交する面に配置された被処理材を加熱処理する熱風ヒーターにおいて、気体を熱する加熱手段における気体の流路構造と、熱せられた気体を吹出す吹出し口の気体の流路構造が異なる構造であって、発熱体の吹出し口側先端から前記吹出し口までの長さを延長する筒体ホルダーと、前記筒体ホルダー内部に複数の孔のある整流板とを具備したことを特徴とする。
 本発明は、ヒーターの気体吹出し方向と直交する面に配置された被処理材の加熱処理を可能とするヒーター構造で、ヒーター負荷を抑制し、所定の温度範囲で略均一に加熱処理を可能とする効果を奏する。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。
本発明における熱風ヒーターの内部構造を示した縦断面図である。 実施例1のガラス基板位置の1次元の流速分布測定の結果である。 実施例1のガラス基板の2次元の温度分布測定の結果である。
 本発明で用いる熱風ヒーターは、気体の加熱手段、整流および均熱手段を有する。それにより、本発明の熱風ヒーターは、被処理材の加熱処理面積がφ10mm以上(以下大面積と表記する)で、当該加熱処理面積内における温度分布が前記所望の加熱温度に対して±10%以内の加熱処理ができる。更には、被処理材を150℃以上の高温に加熱することに特に優れている。
 気体の加熱手段は、気体の供給口と吹出し口を両端に有する円筒状のヒーター1内に発熱体2を具備した構造である。ここで用いられる気体は、空気、水蒸気、窒素、アルゴン等の気体を単体で用いてもよいし、複数を混合して用いてもよい。加熱手段の供給口から導入された気体は、円筒状のヒーター1内の軸方向に備えられた発熱体2の外周部において、同様に軸方向に設けられた気体流路5を通過することで熱せられ、熱風として吹出される。発熱体2は、石英やセラミック等の耐熱性材料で封止されていてもよい。またその際の発熱体2を封止した構造は、角柱型および円柱型のいずれでもよいが、耐熱性材料の加工性、および、封止体の外周部を通過する気体との接触面積の点から、円柱型であることが好ましい。発熱体2の外周部の気体流路5の構造も同様に、角柱型および円柱型のいずれでもよいが、耐熱性材料の加工性、および、前記ヒーター内の軸方向と垂直な面内方向において発熱体2からの距離が等方的である円柱型が好ましい。
 供給される気体の流速によって気体流路5における気体の滞留時間が異なり、流速が小さい方が発熱体2と接触する領域の滞留時間が長くなるため、他の条件が同じ場合には気体を高温に加熱し易くなる。一方で、供給される気体の流速を小さくするとヒーター吹出し口12から吹き出される熱風の流速も小さくなるために、ヒーター吹出し口12から被処理材に到達するまでの間に外部環境に影響を受け易くなり、温度低下や熱風到達位置のずれなどが発生する。また、流速を大きくすると、発熱体2と供給気体との熱伝導が不足し易くなり、熱伝導の不足を補うために発熱体2を大きくまたは高温にする必要が発生する。さらに、例えば基板上の溶液、樹脂材料およびはんだ材等の粘性のある材料を加熱処理する場合には、前記材料が吹出された気体の風圧によって材料位置が動くなどの影響を受け、局所的な溶着不備や、材料の密着性低下が発生し、熱処理結果がばらつくことで後工程への信頼性低下が生じる。そのため、供給される気体の流速は、被処理材により適する流速の範囲が異なることになり、本発明の気体の吹出し方向と直交する面に配置された被処理材を加熱処理する場合、ヒーター吹出し口12から吹出される熱風の流速が0.2~5m/sとなるよう、ヒーター1に気体を供給することが好ましい。
 前記気体の加熱手段は、発熱体2の外周部に気体が熱されながら通過する気体流路5が備わった構造であるため、気体流路5の構造はヒーター軸の径方向でドーナツ型であり、熱風はドーナツ型の流速分布となるが、本発明の気体の整流および均熱手段を用いることで熱風の流速分布を均すことが可能となる。すなわち、発熱体の吹出し口側先端(以下発熱体先端と表記する)11からヒーター吹出し口12までの長さを延長する筒体ホルダー4、および、前記筒体ホルダー4内部に整流板3を供えることで気体の整流および均熱を行うことができる。
 ヒーター1内における、発熱体の径21をD1、発熱体外周部の気体流路構造の径22をD2、筒体ホルダーの径23をD3とすると、それぞれはD1<D2≦D3、D2<D1+10mm、D3≦D1+D2の関係を満たす。発熱体の径21(D1)は被処理材の加熱処理面積によって最適値は変化し、通常の熱風ヒーター構造の場合はφ5~30mmであるがこれに限るものではない。発熱体外周部の気体流路構造の径22(D2)は、D1より大きく、流路構造内での気体の熱伝導の観点からD1+10mm以下であることが好ましい。筒体ホルダーの径23(D3)は、D2以上であり、ヒーター軸方向におけるD2の内側および外側への気体の整流性の観点から、D1+D2以下であることが好ましい。
 筒体ホルダー4は加熱された気体の整流性および均熱性を高め、該筒体ホルダー4は発熱体先端11からヒーター吹出し口12までの長さを30~75mm延長する構造である。30mm以下では筒体ホルダー4内での整流作用および均熱作用が乏しく大面積の均一加熱が不可である。75mm以上では、発熱体先端11からヒーター吹出し口12までの距離が長くなりすぎるために、熱風の熱損失が大きく処理材を所望の温度まで加熱するにはヒーター負荷が高くなるために、ヒーター寿命が短くなり交換頻度が高く、高コストとなる。
 整流板3はφ1.0~2.5mmの複数の孔を有し、開孔率が10~40%となるように孔を配列されてなる。整流板3の開孔率は、孔径、ピッチ、配列様式により算出される。ここで、孔径は孔の大きさであり、ピッチは隣接する孔の孔中心間の距離で表わされる。孔径、ピッチ、およびそれらの配列様式により開孔率は決定する。整流板3を通過する際の気体は整流板3の孔径、板厚、開孔率で算出される孔の表面積から摩擦抵抗を受け、流速が低下する。孔径がφ1.0mmより小さいと、整流板3を通過する前後で摩擦抵抗が大きくなり被処理材の加熱の効率が低下する。また、整流板3の任意の一つの孔部を通過して吹出される気体は、当該する孔の中心を中心としピッチの半分の長さに関係する整流板領域上の気体であり、整流板3を通過する際は、孔の周囲の領域の気体を一つの孔に取り入れることで、流速および温度分布のバラツキが均されるので、孔径がφ1.0mmより小さいと、整流作用および均熱作用を効率よく果たすことができない。φ2.5mmより大きいと、孔が大きすぎるために本熱風ヒーターで使用する流速域での整流効果が得られない。また、開孔率が10%より小さいとヒーターから吹出される流量が不足し被処理材の加熱効率が低下する。一方で開孔率が40%より大きくなると、整流作用および均熱作用を果たすことができなくなる。
 なお、整流板3は複数枚を筒体ホルダー4内に装着してもよいが、枚数が増えるに従い流速ロスが増加するため、1枚であることが好ましい。
 整流板3は、筒体ホルダー4の軸方向における中心位置より発熱体先端11側に装着する。本熱風ヒーターは、発熱体2の存在する加熱手段における気体の流路構造と、熱せられた熱風の吹出し口における気体の流路構造が異なるヒーター構造である。すなわち気体の流れ方向において一貫した流路構造ではなく途中で変化した流路構造となるため、整流板3を用いて気体の整流を行う。整流板3の効用を最大限に活用するためには、この流路構造が変化する発熱体先端11位置から筒体ホルダー4の軸方向の中心位置の間に装着することが好ましい。整流板3の装着位置が筒体ホルダー4の軸方向における中心位置よりもヒーター吹出し口12側にあった場合、筒体ホルダー4内における整流作用は整流板3手前側の方が大きく、整流板3を通過した後の整流作用は筒体ホルダー4本来のものよりも半減してしまう。
 また、通常の熱風ヒーター構造であれば、整流板3はヒーター内の発熱体先端11から3mm以上離して装着することが好ましい。発熱体先端11からの距離が3mm以下では、発熱体自身によってヒーター内の流路構造を通過してきた気体が整流板3の開孔部全体を通過することを阻害され開孔部の一部分のみから通過してしまい、整流板3の作用を効率良く果たすことができない。また、発熱体2からの輻射熱の影響で整流板3が変形する恐れもある。また、以上から、整流板3の装着位置は筒体ホルダー4内での整流作用および均熱作用を効率的に得るために、筒体ホルダー4内において、発熱体先端11から整流板3までの距離と整流板3からヒーター吹出し口12までの距離の比が1:9~5:5であることが好ましい。
 上記の筒体ホルダー4および整流板3により、ヒーター吹出し口12から吹出される熱風を整流および均熱化することが可能となる。整流化とは、ヒーター吹出し口12から吹出される気体の流速分布のバラツキがヒーターの気体吹出し方向と直交する面内において均すことである。吹出される気体に流速分布のバラツキがあると局所的な温度バラツキが発生し、被処理材を一定の温度範囲で大面積に加熱することができない。流速分布のバラツキは、ヒーター筒の径断面において特定の温度範囲で加熱する各位置の流速を、最大流速の30%以内におさめることが好ましい。30%より大きくなると、筒体ホルダー4内の径断面における流速分布が層流状に近く放物線状の速度分布となるために、被処理材の温度分布は流速分布に比例してしまい、所望の面積に一定の温度範囲で加熱することができない。また、均熱化はヒーターから吹出される熱風の温度を均すことである。流速分布は、一定の温度範囲で加熱する各位置の流速を最大流速の30%以内におさめることが好ましい。30%より大きくなると、筒体ホルダー4内の径断面における流速分布が層流状に近く中心を最大にした放物線状の速度分布となり、均一な流速分布が得られず、結果被処理材を一定の温度範囲で大面積に加熱することができない。また、均熱化はヒーターから吹出される熱風の温度を均すことである。
 ヒーターの吹出し口12から、気体の吹出し方向と直交する面に配置された被処理材までの距離は、3~15mmが好ましい。ヒーター吹出し口12から被処理材までの距離が3mmより近すぎると、ヒーター筐体からの輻射熱の影響が生じるため、均一な加熱処理ができない。また、15mmより遠すぎると、ヒーター吹出し口12から被処理材に到達するまでの間に外部環境に影響を受け易くなり、温度低下や熱風到達位置のずれなどが発生し、熱処理結果がばらつくことで後工程への信頼性低下が生じる。
 被処理材は、ガラス、シリコン、石英、アルミニウム、樹脂等の基板であり、前記基板上に樹脂、はんだ材料、有機および無機材料の微粒子、金属等の材料が備わっていてもよい。
 ガラス基板上のSOG(スピンオンガラス)材料の焼結乾燥の実施例を用いて本発明を説明する。
 アルミニウム電極がパターン形成されたガラス基板上に、電極を覆うように塗布されたSOG溶液を焼成させるために、本発明の熱風ヒーターを用いて加熱処理を行った。ヒーター構造は図1に示す構造であり、発熱体2の直径が16mm、発熱体外周部の気体流路5の直径が20m、筒体ホルダー4の直径を30mm、筒体ホルダー4の長さ40mm、孔径がφ1.5mm、ピッチ1:2の60°千鳥配列で開孔率22.7%の整流板3を、ヒーター内の発熱体2から5mm離した位置に挿入した。ヒーター吹出し口12からガラス基板までの距離は5mmである。SOG溶液の焼成には280℃以上の温度が必要であるが、熱ダメージによるアルミニウム電極の特性劣化や剥がれが起こるために、上限温度は300℃である。
 アルミニウム電極は、サイズ1mm□、間隔2mmで5個直線状に配置されており、アルミニウム電極を覆うようにSOG溶液を塗布した。SOG溶液を塗布した基板に対して、熱風ヒーターで加熱処理して、SOGの乾燥、焼成を行ったところ、5個の電極全てで均一にSOG膜を焼成することができた。図2はガラス基板上のある一軸方向の流速分布の測定結果であり、図3はガラス基板の温度分布を複数の熱電対で測定した分布形状である。図2から最大流速から30%以内の流速の範囲は約20mmの範囲があり、また図3から280~300℃の領域が約φ20mmあることが判り、これにより均一にSOG膜を焼成することができた。
 本発明のヒーター構造を利用することで、290℃±10℃の温度範囲を約φ20mmの領域で加熱することができ、かつガラス基板上にパターン形成されたSOG膜を位置ずれなく、均一に焼成できた。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 1 ヒーター
 2 発熱体
 3 整流板
 4 筒体ホルダー
 5 気体流路
 11 発熱体先端(発熱体の吹出し口側先端)
 12 ヒーター吹出し口
 21 発熱体の径(D1)
 22 発熱体外周部の気体流路構造の径(D2)
 23 筒体ホルダーの径(D3)

Claims (6)

  1.  気体の供給口と吹出し口を両端に有する円筒状のヒーター内に発熱体を具備し、
    前記発熱体の周囲を気体が通過することにより加熱された気体を前記吹出し口から吹出し、
    気体の吹出し方向と直交する面に配置された被処理材を加熱処理する熱風ヒーターにおいて、
     前記発熱体の吹出し口側先端から前記吹出し口までの長さを延長する筒体ホルダーと、前記筒体ホルダー内部に複数の孔のある整流板とを具備したことを特徴とする熱風ヒーター。
  2.  前記筒体ホルダーは、熱風ヒーターにおける前記発熱体の吹出し口側先端から前記吹出し口までの長さが30mm以上75mm以下となることを特徴とする請求項1に記載の熱風ヒーター。
  3.  前記整流板が、前記筒体ホルダーの軸方向における中心位置より発熱体側に位置することを特徴とする請求項1または2記載の熱風ヒーター。
  4.  前記整流板は、孔の開孔率は10~40%の範囲内であることを特徴とする請求項1から請求項3のいずれかに記載の熱風ヒーター。
  5.  前記整流板は、φ1.0~2.5mmの孔部が配列されてなることを特徴とする請求項1から請求項4のいずれかに記載の熱風ヒーター。
  6.  ヒーターから吹出される熱風の最大流速が0.2~5m/sで、最大流速から30%以内の流速に均された流速分布で被処理材を加熱処理することを特徴とする請求項1から請求項5のいずれかに記載の熱風ヒーター。
PCT/JP2010/000066 2009-01-07 2010-01-07 熱風ヒーター WO2010079755A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009001212A JP4717932B2 (ja) 2009-01-07 2009-01-07 熱風ヒーター
JP2009-001212 2009-01-07

Publications (1)

Publication Number Publication Date
WO2010079755A1 true WO2010079755A1 (ja) 2010-07-15

Family

ID=42316521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000066 WO2010079755A1 (ja) 2009-01-07 2010-01-07 熱風ヒーター

Country Status (2)

Country Link
JP (1) JP4717932B2 (ja)
WO (1) WO2010079755A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460794A (zh) * 2020-11-02 2021-03-09 中国建材国际工程集团有限公司 一种高温陶瓷面板换热箱

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256216B1 (ko) 2013-01-04 2013-04-19 (주)옥련건설 비굴착식 관로보수장치
CN104880052B (zh) * 2015-06-04 2017-08-25 东莞华南设计创新院 用于电场干燥中的辅助暖风机
KR101993090B1 (ko) * 2018-06-25 2019-06-25 배지현 연탄형 열풍 구이 장치
US11612019B2 (en) 2018-10-30 2023-03-21 Hong Ku Kang Air heater
CN109556289B (zh) * 2018-11-22 2021-09-17 宁波百事利电器有限公司 便于携带的暖风机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191755U (ja) * 1984-11-21 1986-06-14
JPS61147039U (ja) * 1985-03-06 1986-09-10
JPS6392158U (ja) * 1986-12-04 1988-06-15

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191755A (ja) * 1984-10-11 1986-05-09 Fujitsu Denso Ltd デ−タ伝送制御方式
JPS61127351A (ja) * 1984-11-28 1986-06-14 日立電線株式会社 銅張積層板の製造方法
JPS61147039A (ja) * 1984-12-20 1986-07-04 Tohoku Electric Power Co Inc 空気調和機の除霜制御装置
JPS6392158A (ja) * 1986-10-07 1988-04-22 Oki Electric Ind Co Ltd 電子黒板装置のマ−ク検出回路
JP2568153B2 (ja) * 1993-04-22 1996-12-25 インフリッヂ工業株式会社 エアヒーター
JP4663686B2 (ja) * 2007-06-13 2011-04-06 気高電機株式会社 熱風発生器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191755U (ja) * 1984-11-21 1986-06-14
JPS61147039U (ja) * 1985-03-06 1986-09-10
JPS6392158U (ja) * 1986-12-04 1988-06-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460794A (zh) * 2020-11-02 2021-03-09 中国建材国际工程集团有限公司 一种高温陶瓷面板换热箱

Also Published As

Publication number Publication date
JP2010159898A (ja) 2010-07-22
JP4717932B2 (ja) 2011-07-06

Similar Documents

Publication Publication Date Title
WO2010079755A1 (ja) 熱風ヒーター
TWI710000B (zh) 陶瓷加熱器
US11956863B2 (en) Multi-zone heater
JP3856293B2 (ja) 加熱装置
WO2011136041A1 (ja) 塗膜乾燥炉
TWI623960B (zh) 半導體製造設備及其處理方法
JP2006127883A (ja) ヒータ及びウェハ加熱装置
KR20160033085A (ko) 연속 소성로
JP5443825B2 (ja) エナメル線焼付装置
US20090014435A1 (en) Heating apparatus, substrate processing apparatus employing the same, method of manufacturing semiconductor devices, and insulator
JP2001012856A (ja) 熱処理装置
JP2001012856A5 (ja)
JP2005203456A (ja) 加熱装置
JP7223738B2 (ja) スパッタリング装置
JP6310526B2 (ja) 熱風生成装置及び熱風生成装置の制御方法
JP4931360B2 (ja) ウェハ加熱装置
WO2014203733A1 (ja) ガス供給管および熱処理装置
US7692122B2 (en) Heat conductor support disc
JP4000156B2 (ja) ガラス状炭素製誘導発熱体及び加熱装置
TW202125577A (zh) 具有內嵌式加熱器的離子源腔室
US20040134480A1 (en) Convective system
US20180269083A1 (en) Finned rotor cover
JP6837202B2 (ja) 基材加熱装置および方法および電子デバイスの製造方法
JP2007234425A (ja) 加熱装置
JP4671262B2 (ja) 半導体加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10729175

Country of ref document: EP

Kind code of ref document: A1