WO2010079753A1 - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
WO2010079753A1
WO2010079753A1 PCT/JP2010/000057 JP2010000057W WO2010079753A1 WO 2010079753 A1 WO2010079753 A1 WO 2010079753A1 JP 2010000057 W JP2010000057 W JP 2010000057W WO 2010079753 A1 WO2010079753 A1 WO 2010079753A1
Authority
WO
WIPO (PCT)
Prior art keywords
shower
substrate
base
plate
processing apparatus
Prior art date
Application number
PCT/JP2010/000057
Other languages
French (fr)
Japanese (ja)
Inventor
若松貞次
亀崎厚治
菊池正志
神保洋介
江藤謙次
浅利伸
内田寛人
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN2010800040969A priority Critical patent/CN102272894A/en
Priority to JP2010545748A priority patent/JP5394403B2/en
Priority to DE112010000717.9T priority patent/DE112010000717B4/en
Priority to KR1020117015198A priority patent/KR101290738B1/en
Publication of WO2010079753A1 publication Critical patent/WO2010079753A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a plasma processing apparatus.
  • This application claims priority based on Japanese Patent Application No. 2009-004022 filed on Jan. 9, 2009, the contents of which are incorporated herein by reference.
  • a plasma CVD apparatus that decomposes a source gas using plasma and forms a thin film on a substrate is known (see, for example, Patent Document 1).
  • a solar cell particularly a solar cell using microcrystal silicon ( ⁇ c-Si)
  • ⁇ c-Si microcrystal silicon
  • a high-pressure depletion method is effective in a state where the distance between the shower plate surface for ejecting deposition gas to the substrate surface and the substrate surface is narrow (narrow gap). For example, as shown in FIG.
  • film formation is performed in a state where mask members 135 and 143 made of an insulating material are disposed on the peripheral portion of the substrate 10 and the peripheral portion of the shower plate 105.
  • the mask members 135 and 143 prevent the plasma generated in the film formation space from diffusing to other than between the electrodes (between the shower plate 105 and the substrate 10), that is, to confine the plasma in the film formation space. Is provided. Further, each of the constituent members arranged in the CVD apparatus is thermally expanded, so that friction is generated between the members. Mask members 135 and 143 are provided to reduce particles generated due to the friction as much as possible.
  • a mask member 135 having a surface 135c is provided on the peripheral edge of the substrate 10. Further, the mask member 143 having the surface 143a is provided at the peripheral edge of the shower plate 105 having the surface 105a. Further, the shower plate 105 and the substrate 10 are arranged so that the surface 105 a of the shower plate 105 and the upper surface 10 a of the substrate 10 face each other.
  • the distance between the surface 135c and the surface 105a is smaller than the distance between the upper surface 10a and the surface 105a
  • the distance between the surface 143a and the surface 135c is It is smaller than the distance between 105a and the surface 135c. Therefore, it is difficult to realize a narrow gap process in which film formation is performed with the distance between the upper surface 10a of the substrate 10 and the surface 105a of the shower plate 105 set to, for example, 10 mm or less.
  • the mask members 135 and 143 processed to be thin are used in the conventional plasma CVD apparatus 100, there is a problem that the mask members 135 and 143 are frequently cracked. If the distance between the substrate 10 and the shower plate 105 is set as a narrow gap in the plasma CVD apparatus 100 without changing the configuration of the conventional plasma CVD apparatus 100, the distance between the mask members 135 and 143 facing each other is considerably large. Narrow. As a result, the path (gap) through which the film forming gas is exhausted becomes narrow.
  • the present invention has been made in view of the above circumstances, and provides a plasma processing apparatus capable of confining plasma between electrodes even when a narrow gap process is performed.
  • a plasma processing apparatus includes a chamber in which a process gas is introduced and plasma made of the process gas is generated, a first base surface on which a substrate is placed, A second base surface provided at a peripheral edge portion of the first base surface; and a base step portion provided between the first base surface and the second base surface, and disposed in the chamber.
  • a base member and a height that is equal to or less than a height (distance) from the second base surface to the upper surface of the substrate placed on the first base surface, and is disposed on the second base surface;
  • An insulating plate formed of an insulating material; a first shower surface in which an ejection hole is formed; a second shower surface provided at a peripheral edge of the first shower surface; and the first shower surface and the second shower shower between the surface It has a stepped portion, supplies the process gas toward the substrate, and is below the height (distance) from the shower plate disposed in the chamber and the second shower surface to the first shower surface.
  • An electrode mask having a height and disposed on the second shower surface to face the insulating plate and formed of an insulating material.
  • an alternating voltage is applied between the electrodes (between the base member and the shower plate) arranged in the chamber.
  • plasma composed of process gas is generated between the electrodes.
  • a step portion is formed between a plate placement surface, which is a region where the insulating plate is placed on the base member, and a substrate placement surface, which is a region where the substrate is placed.
  • the height from the plate mounting surface to the surface of the insulating plate is not more than the height from the plate mounting surface to the upper surface of the substrate. .
  • a step portion is formed between a mask placement surface, which is a region where the electrode mask is placed on the shower plate, and an ejection hole formation surface, which is a region where the ejection holes are formed in the shower plate. ing. In a state where the electrode mask is disposed on the shower plate, the height from the mask mounting surface to the surface of the electrode mask is not more than the height from the mask mounting surface to the ejection hole forming surface.
  • the plasma processing apparatus is configured in this manner, the upper surface of the substrate and the shower plate are formed in the film formation space formed between the upper surface of the substrate and the surface of the shower plate (first shower surface, ejection hole forming surface).
  • the distance from the first shower surface (spout hole forming surface), which is the region where the spout holes are formed, can be minimized. Therefore, the distance between the substrate and the shower plate can be set without being affected by the thickness of the insulating plate and the thickness of the electrode mask, and a narrow gap can be realized.
  • the step portions base step portion and shower step portion
  • an insulating plate and electrode mask having a sufficient thickness can be used, and cracking of the insulating plate and electrode mask can be prevented. .
  • the plasma can be confined between the electrodes (between the shower plate and the substrate).
  • the plasma can be confined between the electrodes even when a narrow gap process is performed.
  • a sufficient gap for exhausting the film forming gas is formed between the insulating plate and the electrode mask. In-plane uniformity can be stabilized, and the film thickness can be made uniform.
  • a plasma processing apparatus includes a chamber in which a process gas is introduced and plasma made of the process gas is generated, a first base surface on which a substrate is placed, A second base surface provided at a peripheral edge portion of the first base surface; and a base step portion provided between the first base surface and the second base surface, and disposed in the chamber.
  • a base member and a height that is equal to or less than a height (distance) from the second base surface to the upper surface of the substrate placed on the first base surface, and is disposed on the second base surface;
  • An insulating plate formed of an insulating material; a process gas supplied to the substrate; a shower plate disposed in the chamber; and a peripheral portion of the shower plate facing the insulating plate.
  • an alternating voltage is applied between the electrodes (between the base member and the shower plate) arranged in the chamber. As a result, plasma composed of process gas is generated between the electrodes.
  • a step portion is formed between a plate placement surface, which is a region where the insulating plate is placed on the base member, and a substrate placement surface, which is a region where the substrate is placed.
  • a plate placement surface which is a region where the insulating plate is placed on the base member
  • a substrate placement surface which is a region where the substrate is placed.
  • the first surface is an area where the upper surface of the substrate and the ejection holes of the shower plate are formed.
  • the distance from 1 shower surface (jet hole formation surface) can be made shorter than before. Therefore, the distance between the substrate and the shower plate can be shortened, and a narrow gap process can be realized.
  • the step portion base step portion
  • an insulating plate having a sufficient thickness can be used, and cracking of the insulating plate can be prevented. Further, by arranging the insulating plate and the electrode mask, the plasma can be confined between the electrodes (between the shower plate and the substrate).
  • the plasma can be confined between the electrodes even when a narrow gap process is performed. Furthermore, even when the distance between the substrate and the shower plate is set as a narrow gap, a sufficient gap for exhausting the film forming gas is formed between the insulating plate and the electrode mask. In-plane uniformity can be stabilized, and the film thickness can be made uniform.
  • a plasma processing apparatus includes a chamber into which a process gas is introduced and plasma composed of the process gas is generated, and the substrate is placed in the chamber.
  • the insulating plate formed of an insulating material, the first shower surface in which the ejection holes are formed, and the peripheral portion of the first shower surface A second shower surface, and a shower step provided between the first shower surface and the second shower surface, and the process gas is supplied toward the substrate and disposed in the chamber.
  • an alternating voltage is applied between the electrodes (between the base member and the shower plate) arranged in the chamber.
  • plasma composed of process gas is generated between the electrodes.
  • the mask placement surface which is a region where the electrode mask is placed on the shower plate
  • the ejection hole formation surface which is a region where the ejection holes are formed in the shower plate.
  • a step portion is formed. In a state where the electrode mask is disposed on the shower plate, the height from the mask mounting surface to the surface of the electrode mask is not more than the height from the mask mounting surface to the ejection hole forming surface.
  • the first surface is an area where the upper surface of the substrate and the ejection holes of the shower plate are formed.
  • the distance from 1 shower surface (jet hole formation surface) can be made shorter than before. Therefore, the distance between the substrate and the shower plate can be shortened, and a narrow gap process can be realized.
  • the step portion shown step portion
  • an electrode mask having a sufficient thickness can be used, so that the electrode mask can be prevented from cracking. Further, by arranging the insulating plate and the electrode mask, the plasma can be confined between the electrodes (between the shower plate and the substrate).
  • the plasma can be confined between the electrodes even when a narrow gap process is performed. Furthermore, even when the distance between the substrate and the shower plate is set as a narrow gap, a sufficient gap for exhausting the film forming gas is formed between the insulating plate and the electrode mask. In-plane uniformity can be stabilized, and the film thickness can be made uniform.
  • the insulating plate is provided on a first contact surface that is in contact with a side surface of the substrate and a back surface opposite to the upper surface of the substrate. It is preferable to include a protrusion having a second abutting surface to be abutted. In this configuration, the insulating plate has a protrusion that protrudes along the second base surface toward the center of the base member.
  • the insulating plate is placed on the base member (second base surface), and the substrate is disposed on the base member (first base surface) and the insulating plate.
  • the side surface of the substrate contacts the first contact surface, and the back surface of the substrate contacts the second contact surface.
  • the substrate and the protruding portion overlap each other when viewed from the vertical direction of the substrate. Therefore, the deposition gas ejected from the shower plate is supplied (injected) toward the substrate or the insulating plate, and the deposition gas can be prevented from coming into contact with the base member. Therefore, it is possible to prevent plasma from being generated between the shower plate and the base member and forming a film on the base member.
  • the first shower surface which is the region where the upper surface of the substrate and the shower hole of the shower plate are formed.
  • the distance to the surface can be minimized. Therefore, the distance between the substrate and the shower plate can be set without being affected by the thickness of the insulating plate and the thickness of the electrode mask, and a narrow gap can be realized.
  • the step portions base step portion and shower step portion
  • an insulating plate and electrode mask having a sufficient thickness can be used, and cracking of the insulating plate and electrode mask can be prevented. .
  • the plasma can be confined between the electrodes (between the shower plate and the substrate). As a result, the plasma can be confined between the electrodes even when a narrow gap process is performed.
  • FIG. 1 is a schematic configuration diagram of a film forming apparatus in the present embodiment.
  • a film forming apparatus 1 that performs a plasma CVD method includes a vacuum chamber 2 (chamber). An opening is formed in the bottom 11 of the vacuum chamber 2. A support column 25 is inserted into the opening, and the support column 25 is disposed in the lower portion of the vacuum chamber 2. A plate-like base member 3 with a built-in heater 16 is connected to the tip of the column 25 (in the vacuum chamber 2). An electrode flange 4 is attached to the upper portion of the vacuum chamber 2 via an insulating flange 31. Further, an exhaust pipe 27 is connected to the vacuum chamber 2. A vacuum pump 28 is provided at the tip of the exhaust pipe 27. The vacuum pump 28 reduces the pressure so that the inside of the vacuum chamber 2 is in a vacuum state.
  • the support column 25 is connected to an elevating mechanism (not shown) provided outside the vacuum chamber 2 and can move up and down in the vertical direction of the substrate 10.
  • the base member 3 connected to the tip of the support column 25 is configured to be able to move up and down.
  • a bellows 26 is provided outside the vacuum chamber 2 so as to cover the outer periphery of the support column 25.
  • the electrode flange 4 is placed on the insulating flange 31 and formed in a plate shape.
  • a conductor 32 is connected to the surface of the electrode flange 4 facing the film formation space.
  • a plate-like shower plate 5 is attached to the tip of the conductor 32.
  • a space 24 is formed between the shower plate 5 and the electrode flange 4.
  • a gas introduction pipe 7 is connected to the electrode flange 4.
  • the gas introduction pipe 7 supplies a source gas (for example, SiH 4 ) toward the space 24 from a film formation gas supply unit 21 provided outside the vacuum chamber 2.
  • the shower plate 5 includes a first shower surface 5a provided with a large number of gas ejection holes 6 and a second portion provided at the peripheral portion of the first shower surface 5a.
  • step-difference part 42 provided between the 1st shower surface 5a and the 2nd shower surface 5b are provided.
  • the gas ejection hole 6 passes through the shower plate 5.
  • the film forming gas introduced into the space 24 is supplied into the vacuum chamber 2 through the gas ejection holes 6.
  • the electrode flange 4 and the shower plate 5 are both made of a conductive material.
  • the electrode flange 4 is connected to an RF power source (high frequency power source) 9 provided outside the vacuum chamber 2.
  • a gas introduction pipe 8 different from the gas introduction pipe 7 is connected to the vacuum chamber 2.
  • the gas introduction pipe 8 is provided with a fluorine gas supply unit 22 and a radical source 23.
  • the radical source 23 decomposes the fluorine gas supplied from the fluorine gas supply unit 22.
  • the gas introduction pipe 8 supplies fluorine radicals obtained by decomposing fluorine gas to the film forming space in the vacuum chamber 2.
  • the base member 3 is a substantially plate-like member having a flat surface. As will be described later with reference to FIG. 2, the base member 3 includes a first base surface 33 on which the substrate 10 is placed, a second base surface 33 a provided at the peripheral edge of the first base surface 33, A base step portion 34 provided between the first base surface 33 and the second base surface 33 a is disposed in the vacuum chamber 2.
  • the base member 3 functions as a ground electrode and is made of, for example, an aluminum alloy.
  • materials other than said material may be employ
  • substrate 10 is arrange
  • the deposition gas is supplied to the deposition space through the gas ejection holes 6 toward the surface of the substrate 10.
  • a heater 16 connected to a power supply line is provided inside the base member 3.
  • the temperature of the base member 3 is adjusted to a predetermined temperature by the heater 16.
  • a power line of the heater 16 protrudes from a substantially central portion of the base member 3 as viewed from the vertical direction of the base member 3 and from the bottom surface 17 of the base member 3, is inserted into the support column 25, and goes to the outside of the vacuum chamber 2. It is led with.
  • the heater 16 is connected to a power source (not shown) outside the vacuum chamber 2 and adjusts the temperature of the base member 3.
  • ground plates 30 connecting the base member 3 and the vacuum chamber 2 are arranged at substantially equal intervals on the bottom 11 of the vacuum chamber 2.
  • the earth plate 30 is made of a flexible metal plate, and is made of, for example, a nickel-based alloy or an aluminum alloy.
  • FIG. 2 is an enlarged cross-sectional view of the portion indicated by the symbol A in FIG.
  • “low position” means that the other position is lower than one position in the direction from the position of the film formation space toward the bottom 11 of the vacuum chamber 2.
  • “high position” means that the other position is higher than the one position in the direction from the position of the film formation space toward the electrode flange 4.
  • a second base surface 33 a formed at a position lower than the first base surface 33 is provided on the peripheral edge portion of the first base surface 33 of the base member 3.
  • a base step portion 34 is formed between the first base surface 33 and the second base surface 33a. The position of the base step portion 34 in the horizontal direction of the first base surface 33 is determined so that the length (diameter) of the first base surface 33 is smaller than the length (diameter) of the substrate 10. That is, when the substrate 10 is placed on the first base surface 33 of the base member 3, the position of the peripheral portion of the substrate 10 in the horizontal direction of the substrate 10 protrudes from the base step portion 34. In other words, the peripheral edge of the substrate 10 is located outside the first base surface 33. That is, the base step portion 34 is formed at a position in contact with the back surface 10 c of the substrate 10.
  • An insulating plate 35 is placed on the second base surface 33 a formed at a position lower than the first base surface 33 via the base step portion 34.
  • the insulating plate 35 is formed in a frame shape along the peripheral edge of the substrate 10.
  • a material of the insulating plate 35 for example, alumina which is an insulator is employed.
  • the thickness (height) of the insulating plate 35 is not more than the height from the second base surface 33 a to the upper surface 10 of the substrate 10 placed on the first base surface 33.
  • the position of the surface 35c of the insulating plate 35 and the position of the upper surface 10a of the substrate 10 coincide with each other in the vertical direction of the substrate 10. Yes.
  • the insulating plate 35 has a size that covers at least the second base surface 33a in the vertical direction of the substrate 10 when the insulating plate 35 is placed on the second base surface 33a.
  • the insulating plate 35 includes a first contact surface 35a that contacts the side surface 10b of the substrate 10 and a second contact surface 35d that contacts the back surface 10c opposite to the upper surface 10a of the substrate 10.
  • the insulating plate 35 has the protruding portion 35b protruding toward the center of the base member 3 along the second base surface 33a.
  • the protruding portion 35 b is located below the back surface 10 c of the substrate 10 and is in contact with the back surface 10 c of the substrate 10.
  • the protruding portion 35 b is substantially in contact with the base step portion 34.
  • the insulating plate 35 is formed so as to protrude from the end of the base member 3 in the horizontal direction, and is provided on the peripheral edge (second base surface 33a) of the base member 3. An end portion of the insulating plate 35 is supported by a support member 36 that supports the base member 3.
  • an insulator 37 made of alumina, for example, is attached to the inner surface of the vacuum chamber 2 facing the support member 36.
  • a second shower surface 5 b formed at a position higher than the first shower surface 5 a is provided at the peripheral edge portion of the first shower surface 5 a of the shower plate 5.
  • a shower step portion 42 is formed between the first shower surface 5a and the second shower surface 5b.
  • An electrode mask 43 formed in a frame shape is placed on the second shower surface 5b formed at a position higher than the first shower surface 5a via the shower step portion 42.
  • alumina which is an insulator is employed as a material of the electrode mask 43.
  • the electrode mask 43 is disposed on the second shower surface 5 b so as to face the insulating plate 35.
  • the thickness (height) of the electrode mask 43 is not more than the height from the second shower surface 5b to the first shower surface 5a.
  • the electrode mask 43 has a size that covers at least the second shower surface 5b in the vertical direction of the shower plate 5 when the electrode mask 43 is placed on the second shower surface 5b.
  • the electrode mask 43 is formed so as to protrude from the end of the shower plate 5 in the horizontal direction.
  • the electrode mask 43 has a size that covers the surface of the support member 44 that supports the shower plate 5 and the surface of the support member 45 provided between the vacuum chamber 2 and the insulating flange 31.
  • the vacuum chamber 2 is decompressed using the vacuum pump 28.
  • the substrate 10 is carried into the vacuum chamber 2 and placed on the base member 3 while the vacuum chamber 2 is maintained in a vacuum.
  • the base member 3 is positioned on the lower side in the vacuum chamber 2. That is, before the substrate 10 is carried in, the distance between the base member 3 and the shower plate 5 is wide, so that the substrate 10 can be easily placed on the base member 3 using a robot arm (not shown). can do.
  • an elevating device (not shown) is activated, the column 25 is pushed upward, and the substrate 10 placed on the base member 3 also moves upward.
  • the interval between the shower plate 5 and the substrate 10 is determined as desired so that the interval necessary for proper film formation is achieved, and this interval is maintained.
  • the position of the surface 35c of the insulating plate 35 coincides with the position of the upper surface 10a of the substrate 10, and the position of the surface 43a of the electrode mask 43 and the position of the first shower surface 5a are the same. I'm doing it.
  • the gap between the substrate 10 and the shower plate 5 can be reduced without the insulating plate 35 and the electrode mask 43 being in contact with each other, and a narrow gap (3 to 10 mm) can be realized.
  • a film forming gas raw material gas
  • the film forming gas is supplied into the vacuum chamber 2 (film forming space) from the gas ejection holes 6.
  • the RF power source 9 is activated and a high frequency voltage is applied to the electrode flange 4. Applied. At this time, a high frequency voltage is applied between the shower plate 5 and the base member 3 to generate a discharge, and plasma is generated between the electrode flange 4 and the surface of the substrate 10. The deposition gas is decomposed in the plasma generated in this way, and a vapor phase growth reaction occurs on the surface of the substrate 10, whereby a thin film is formed on the surface of the substrate 10.
  • the film forming material adheres to the inner wall surface of the vacuum chamber 2 and the like, so that the inside of the vacuum chamber 2 is periodically cleaned.
  • the fluorine gas supplied from the fluorine gas supply unit 22 is decomposed by the radical source 23 to generate fluorine radicals.
  • the fluorine radicals pass through the gas introduction pipe 8 connected to the vacuum chamber 2 and pass through the vacuum chamber 2. To be supplied.
  • a chemical reaction occurs. For example, the first shower surface 5a of the shower plate 5, the surface 43a of the electrode mask 43, or the surface of the insulating plate 35 Deposits adhered to 35c and the like are removed.
  • the base step portion 34 is formed between the second base surface 33a, which is a region where the insulating plate 35 is placed, and the first base surface 33, which is a region where the substrate 10 is placed. Has been. Further, in a state where the substrate 10 and the insulating plate 35 are placed on the base member 3, the position of the surface 35 c of the insulating plate 35 and the position of the upper surface 10 a of the substrate 10 coincide with each other in the vertical direction of the substrate 10.
  • a shower step portion 42 is formed between the second shower surface 5b, which is a region where the electrode mask 43 is placed, and the first shower surface 5a, which is a region where a plurality of ejection holes 6 are formed. Yes.
  • the position of the surface 43 a of the electrode mask 43 and the position of the first shower surface 5 a coincide with each other in the vertical direction of the shower plate 5. Therefore, in the film forming space formed between the upper surface 10a of the substrate 10 and the first shower surface 5a of the shower plate 5, the distance between the upper surface 10a of the substrate 10 and the first shower surface 5a of the shower plate 5 is set as follows. Can be as short as possible. Therefore, the distance between the substrate 10 and the shower plate 5 can be set without being affected by the thickness 35 of the insulating plate and the thickness of the electrode mask 43, and a narrow gap can be realized.
  • the insulating plate 35 and the electrode mask 43 having sufficient thickness can be used. Cracking can be prevented. Further, by disposing the insulating plate 35 and the electrode mask 43, the plasma can be confined between the electrodes (between the shower plate 5 and the substrate 10). As a result, the plasma can be confined between the electrodes even when a narrow gap process is performed. Further, even when the distance between the substrate 10 and the shower plate 5 is set as a narrow gap, a sufficient gap is formed between the insulating plate 35 and the electrode mask 43 for exhausting the film forming gas, The in-plane uniformity of the gas flow can be stabilized and the film thickness can be made uniform. That is, the ⁇ c-Si film can be formed in the plasma processing apparatus configured as described above.
  • the insulating plate 35 extends along the first contact surface 35a that contacts the side surface 10b of the substrate 10, the second contact surface 35d that contacts the back surface 10c of the substrate 10, and the second base surface 33a. And a protruding portion 35b protruding toward the center of the base member 3.
  • the insulating plate 35 having such a configuration is placed on the base member 3 and the substrate 10 is disposed on the first base surface 33, the back surface 10c of the substrate 10 contacts the second contact surface. Further, when viewed from the vertical direction of the substrate 10, the substrate 10 and the protruding portion 35b overlap.
  • the film forming gas supplied from the shower plate 5 comes into contact with the substrate 10 or the insulating plate 35, it is possible to prevent the film forming gas from coming into direct contact with the base member 3. Therefore, it is possible to prevent plasma from being generated between the shower plate 5 and the base member 3 and forming a film on the surface of the base member 3.
  • the electrode mask 43 is formed so as to protrude from the end of the shower plate 5 in the horizontal direction, and the support member 44 that supports the shower plate 5 and the support provided between the vacuum chamber 2 and the insulating flange 31.
  • the surface of the member 45 is covered.
  • the power frequency applied from the RF power source 9 was set to 27.12 MHz, and the RFPower density was set to 1.2 W / cm 2 .
  • the distance between the shower plate 5 and the substrate 10 was set to 7 mm (narrow gap), and the pressure in the film formation space was set to 1400 Pa.
  • the ratio of the flow rate (slm) of SiH 4 and the flow rate of H 2 (slm) as the deposition gas was set to 1:15, and ⁇ c-Si was deposited on the substrate 10.
  • a film formation rate was 2.1 nm / sec, and a ⁇ c-Si film having a film thickness distribution (thickness uniformity) of 11% could be formed.
  • the power frequency applied from the RF power source was set to 27.12 MHz, and the RFPower density was set to 1.2 W / cm 2 . Further, the distance between the shower plate 5 and the substrate 10 was set to 11 mm, and the pressure in the film formation space was set to 700 Pa. Then, the ratio of the flow rate (slm) of SiH 4 and the flow rate of H 2 (slm) as the deposition gas was set to 1:15, and ⁇ c-Si was deposited on the substrate 10.
  • a film formation rate was 1.1 nm / sec, and a film of ⁇ c-Si having a film thickness distribution (film thickness uniformity) of 23% was formed.
  • the position of the surface 35c of the insulating plate 35 and the position of the upper surface 10a of the substrate 10 coincide in the vertical direction of the substrate 10, and the position of the surface 43a of the electrode mask 43 and the first shower.
  • the film forming speed can be increased, the film thickness distribution (film thickness uniformity) is excellent, and the quality is high.
  • An appropriate ⁇ c-Si film can be formed.
  • the configuration in which the position of the surface 35c of the insulating plate 35 and the position of the upper surface 10a of the substrate 10 coincide in the vertical direction of the substrate 10 has been described.
  • a configuration in which the position of the surface 35c of the insulating plate 35 is low may be employed. That is, the thickness (height) of the insulating plate 35 is equal to or less than the height from the second base surface 33 a to the upper surface 10 of the substrate 10 placed on the first base surface 33.
  • the configuration in which the position of the surface 43a of the electrode mask 43 and the position of the first shower surface 5a coincide in the vertical direction of the shower plate 5 has been described.
  • a configuration in which the position of the surface 43a of the electrode mask 43 is higher than the position may be employed. That is, the thickness (height) of the electrode mask 43 is not more than the height from the second shower surface 5b to the first shower surface 5a.
  • the first configuration in which the position of the surface 35c of the insulating plate 35 and the position of the upper surface 10a of the substrate 10 coincide with each other in the vertical direction of the substrate 10, and the position of the surface 43a of the electrode mask 43.
  • the plasma processing apparatus was described in which the second configuration in which the position of the first shower surface 5a coincides in the vertical direction of the shower plate 5 has been described, the present invention is not limited to this configuration.
  • a plasma processing apparatus in which one of the first configuration and the second configuration is combined with the conventional configuration may be employed. That is, if the distance between the substrate 10 and the shower plate 5 is set so as to realize a narrow gap (10 mm or less), the above-described effects can be obtained. In addition, the above-described effects can be obtained if a sufficient gap is formed between the insulating plate 35 and the electrode mask 43 to smoothly exhaust the film forming gas.
  • the boundary between the surface 35c of the insulating plate 35 and the upper surface 10a of the substrate 10, and the boundary between the surface 43a of the electrode mask 43 and the first shower surface 5a of the shower plate 5 Although the side surface is formed so as to intersect at a substantially right angle, a curved surface may be formed between the upper surface and the side surface at the boundary. By forming a curved surface at the boundary portion in this way, it is possible to suppress the occurrence of abnormal discharge.
  • the present invention is useful for a plasma processing apparatus capable of confining plasma between electrodes even when a narrow gap process is performed.
  • SYMBOLS 1 Film-forming apparatus (plasma processing apparatus) 2 ... Vacuum chamber (chamber) 3 ... Base member 5 ... shower plate 5a ... 1st shower surface 5b ... 2nd shower surface 6 ... Gas ejection hole 10 ... Substrate 10a ... Upper surface 10b ... Side surface 10c ... Back surface 33 ... First base surface 33a ... Second base surface 34 ... Base step portion 35 ... Insulating plate 35a ... First contact surface 35b ... Projection portion 35c ... Surface 35d ... Second contact surface 42 ... shower step Part 43 ... Electrode mask 43a ... Surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Disclosed is a plasma processing apparatus comprising: a base member (3) having a first base surface (33), a second base surface (33a) and a base step portion (34); an insulating plate (35) which is formed from an insulating material and arranged on the second base surface (33a), while having a height equal to or less than the height from the second base surface (33a) to the upper surface (10a) of a substrate (10) that is arranged on the first base surface (33); a shower plate (5) having a first shower surface (5a), a second shower surface (5b) and a shower step portion (42); and an electrode mask (43) which is formed from an insulating material and so arranged on the second shower surface (5b) as to face the insulating plate (35), while having a height equal to or less than the height from the second shower surface (5b) to the first shower surface (5a).

Description

プラズマ処理装置Plasma processing equipment
 本発明は、プラズマ処理装置に関する。
 本願は、2009年1月9日に出願された特願2009-004022号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a plasma processing apparatus.
This application claims priority based on Japanese Patent Application No. 2009-004022 filed on Jan. 9, 2009, the contents of which are incorporated herein by reference.
 従来から、プラズマを用いて原料ガスを分解し、基板上に薄膜を形成するプラズマCVD装置が知られている(例えば、特許文献1参照)。
 このプラズマCVD装置を用いて太陽電池、特にマイクロクリスタルシリコン(μc-Si)を利用した太陽電池を製造する際には、生産性の観点から成膜速度の高速化が必要である。
 成膜速度の高速化を実現するためには、成膜ガスを基板表面に噴出するシャワープレート表面と基板表面との距離を狭くした状態(ナローギャップ)における高圧枯渇法が有効である。
 例えば、図3に示すように、従来のプラズマCVD装置100においては、基板10の周縁部及びシャワープレート105の周縁部に絶縁材で形成されたマスク部材135,143が配置された状態で成膜が行われていた。
 このマスク部材135,143は、成膜空間において発生するプラズマが電極間(シャワープレート105と基板10との間)以外へ拡散することを抑制するため、つまり、プラズマを成膜空間内に閉じ込めるために設けられている。
 また、CVD装置内に配置された構成部材の各々が熱膨張することで、各部材間で摩擦が生じる。その摩擦に起因して発生するパーティクルを極力減らすためにマスク部材135,143が設けられている。
2. Description of the Related Art Conventionally, a plasma CVD apparatus that decomposes a source gas using plasma and forms a thin film on a substrate is known (see, for example, Patent Document 1).
When manufacturing a solar cell, particularly a solar cell using microcrystal silicon (μc-Si), using this plasma CVD apparatus, it is necessary to increase the deposition rate from the viewpoint of productivity.
In order to increase the deposition rate, a high-pressure depletion method is effective in a state where the distance between the shower plate surface for ejecting deposition gas to the substrate surface and the substrate surface is narrow (narrow gap).
For example, as shown in FIG. 3, in the conventional plasma CVD apparatus 100, film formation is performed in a state where mask members 135 and 143 made of an insulating material are disposed on the peripheral portion of the substrate 10 and the peripheral portion of the shower plate 105. Was done.
The mask members 135 and 143 prevent the plasma generated in the film formation space from diffusing to other than between the electrodes (between the shower plate 105 and the substrate 10), that is, to confine the plasma in the film formation space. Is provided.
Further, each of the constituent members arranged in the CVD apparatus is thermally expanded, so that friction is generated between the members. Mask members 135 and 143 are provided to reduce particles generated due to the friction as much as possible.
特開2000-58518号公報JP 2000-58518 A
 ところで、従来のプラズマCVD装置100においては、表面135cを有するマスク部材135が、基板10の周縁部に設けられている。また、表面143aを有するマスク部材143は、表面105aを有するシャワープレート105の周縁部に設けられている。また、シャワープレート105の表面105aと基板10の上面10aとが対向するようにシャワープレート105と基板10とが配置されている。
 このような従来の構成において、特に基板10の鉛直方向においては、表面135cと表面105aとの距離は、上面10aと表面105aとの距離よりも小さく、表面143aと表面135cとの距離は、表面105aと表面135cとの距離よりも小さい。
 従って、基板10の上面10aとシャワープレート105の表面105aとの間の距離を例えば10mm以下に設定して成膜を行うナローギャッププロセスを実現することが困難である。
Incidentally, in the conventional plasma CVD apparatus 100, a mask member 135 having a surface 135c is provided on the peripheral edge of the substrate 10. Further, the mask member 143 having the surface 143a is provided at the peripheral edge of the shower plate 105 having the surface 105a. Further, the shower plate 105 and the substrate 10 are arranged so that the surface 105 a of the shower plate 105 and the upper surface 10 a of the substrate 10 face each other.
In such a conventional configuration, particularly in the vertical direction of the substrate 10, the distance between the surface 135c and the surface 105a is smaller than the distance between the upper surface 10a and the surface 105a, and the distance between the surface 143a and the surface 135c is It is smaller than the distance between 105a and the surface 135c.
Therefore, it is difficult to realize a narrow gap process in which film formation is performed with the distance between the upper surface 10a of the substrate 10 and the surface 105a of the shower plate 105 set to, for example, 10 mm or less.
 具体的には、厚さが薄くなるように加工されたマスク部材135,143を従来のプラズマCVD装置100に用いた場合、マスク部材135,143の割れが頻発するという問題がある。
 また、従来のプラズマCVD装置100の構成を変えずに、このプラズマCVD装置100において基板10とシャワープレート105との距離をナローギャップとして設定すると、互いに対向するマスク部材135,143間の距離がかなり狭くなる。その結果、成膜ガスが排気される経路(ギャップ)が狭くなる。
 つまり、例えば、P層,I層,及びN層を連続的に成膜する工程のように、互いに異なる複数種類の膜を同じチャンバ内で形成する場合、電極間距離(基板10とシャワープレート105との距離)を少し変化させるだけで、コンダクタンスが大きく変動する。このため、コンダクタンスの変動に伴ってガスの流れの面内均一性が不安定になり、膜厚が不均一になるという問題がある。
Specifically, when the mask members 135 and 143 processed to be thin are used in the conventional plasma CVD apparatus 100, there is a problem that the mask members 135 and 143 are frequently cracked.
If the distance between the substrate 10 and the shower plate 105 is set as a narrow gap in the plasma CVD apparatus 100 without changing the configuration of the conventional plasma CVD apparatus 100, the distance between the mask members 135 and 143 facing each other is considerably large. Narrow. As a result, the path (gap) through which the film forming gas is exhausted becomes narrow.
That is, for example, when a plurality of different types of films are formed in the same chamber as in the process of continuously forming the P layer, the I layer, and the N layer, the distance between the electrodes (the substrate 10 and the shower plate 105 The conductance fluctuates greatly with a slight change in the distance. For this reason, there is a problem that the in-plane uniformity of the gas flow becomes unstable with the conductance variation, and the film thickness becomes non-uniform.
 本発明は、上述の事情に鑑みてなされたものであり、ナローギャッププロセスを行う場合であってもプラズマを電極間に閉じ込めることができるプラズマ処理装置を提供する。 The present invention has been made in view of the above circumstances, and provides a plasma processing apparatus capable of confining plasma between electrodes even when a narrow gap process is performed.
 上記課題を解決するために、本発明の第1態様のプラズマ処理装置は、プロセスガスが導入され、前記プロセスガスからなるプラズマが生成されるチャンバと、基板が載置される第1ベース面,前記第1ベース面の周縁部に設けられた第2ベース面,及び前記第1ベース面と前記第2ベース面との間に設けられたベース段差部を有し、前記チャンバ内に配置されたベース部材と、前記第2ベース面から前記第1ベース面に載置された前記基板の上面までの高さ(距離)以下である高さを有し、前記第2ベース面上に配置され、絶縁物質で形成された絶縁プレートと、噴出孔が形成されている第1シャワー面,前記第1シャワー面の周縁部に設けられた第2シャワー面,及び前記第1シャワー面と前記第2シャワー面との間に設けられたシャワー段差部を有し、前記基板に向けて前記プロセスガスを供給し、前記チャンバ内に配置されたシャワープレートと、前記第2シャワー面から前記第1シャワー面までの高さ(距離)以下である高さを有し、前記絶縁プレートに対向するように前記第2シャワー面上に配置され、絶縁物質で形成された電極マスクとを含む。
 プラズマ処理装置においては、チャンバ内に配置された電極間(ベース部材とシャワープレートとの間)には、交流電圧が印加される。これによって電極間にはプロセスガスからなるプラズマが生成される。
 このプラズマ処理装置においては、前記ベース部材における前記絶縁プレートが載置される領域であるプレート載置面と、前記基板が載置される領域である基板載置面との間に段差部が形成されている。前記基板及び前記絶縁プレートが前記ベース部材に載置された状態で、プレート載置面から前記絶縁プレートの表面までの高さは、プレート載置面から前記基板の上面までの高さ以下である。
 また、前記シャワープレートにおける前記電極マスクが載置される領域であるマスク載置面と、前記シャワープレートにおける噴出孔が形成されている領域である噴出孔形成面との間に段差部が形成されている。前記電極マスクが前記シャワープレートに配置された状態で、マスク載置面から前記電極マスクの表面までの高さは、マスク載置面から噴出孔形成面までの高さ以下である。
In order to solve the above problems, a plasma processing apparatus according to a first aspect of the present invention includes a chamber in which a process gas is introduced and plasma made of the process gas is generated, a first base surface on which a substrate is placed, A second base surface provided at a peripheral edge portion of the first base surface; and a base step portion provided between the first base surface and the second base surface, and disposed in the chamber. A base member, and a height that is equal to or less than a height (distance) from the second base surface to the upper surface of the substrate placed on the first base surface, and is disposed on the second base surface; An insulating plate formed of an insulating material; a first shower surface in which an ejection hole is formed; a second shower surface provided at a peripheral edge of the first shower surface; and the first shower surface and the second shower Shower between the surface It has a stepped portion, supplies the process gas toward the substrate, and is below the height (distance) from the shower plate disposed in the chamber and the second shower surface to the first shower surface. An electrode mask having a height and disposed on the second shower surface to face the insulating plate and formed of an insulating material.
In the plasma processing apparatus, an alternating voltage is applied between the electrodes (between the base member and the shower plate) arranged in the chamber. As a result, plasma composed of process gas is generated between the electrodes.
In this plasma processing apparatus, a step portion is formed between a plate placement surface, which is a region where the insulating plate is placed on the base member, and a substrate placement surface, which is a region where the substrate is placed. Has been. In a state where the substrate and the insulating plate are mounted on the base member, the height from the plate mounting surface to the surface of the insulating plate is not more than the height from the plate mounting surface to the upper surface of the substrate. .
In addition, a step portion is formed between a mask placement surface, which is a region where the electrode mask is placed on the shower plate, and an ejection hole formation surface, which is a region where the ejection holes are formed in the shower plate. ing. In a state where the electrode mask is disposed on the shower plate, the height from the mask mounting surface to the surface of the electrode mask is not more than the height from the mask mounting surface to the ejection hole forming surface.
 このようにプラズマ処理装置が構成されているので、基板の上面とシャワープレートの表面(第1シャワー面,噴出孔形成面)との間に形成される成膜空間において、基板の上面とシャワープレートの噴出孔が形成された領域である第1シャワー面(噴出孔形成面)との間の距離を最短にすることができる。
 従って、絶縁プレートの厚さ及び電極マスクの厚さに影響されず、基板とシャワープレートとの間の距離を設定することができ、ナローギャップを実現することができる。
 また、段差部(ベース段差部及びシャワー段差部)が形成されているので、十分な厚さを有する絶縁プレート及び電極マスクを用いることができ、絶縁プレート及び電極マスクの割れを防止することができる。
 また、絶縁プレート及び電極マスクを配置することにより、プラズマを電極間(シャワープレートと基板との間)に閉じ込めることができる。
 結果として、ナローギャッププロセスを行う場合であってもプラズマを電極間に閉じ込めることができる。
 さらに、基板とシャワープレートとの距離をナローギャップとして設定した場合であっても、絶縁プレートと電極マスクとの間には成膜ガスを排気するための十分な隙間が形成され、ガスの流れの面内均一性を安定化させることができ、膜厚を均一にすることができる。
Since the plasma processing apparatus is configured in this manner, the upper surface of the substrate and the shower plate are formed in the film formation space formed between the upper surface of the substrate and the surface of the shower plate (first shower surface, ejection hole forming surface). The distance from the first shower surface (spout hole forming surface), which is the region where the spout holes are formed, can be minimized.
Therefore, the distance between the substrate and the shower plate can be set without being affected by the thickness of the insulating plate and the thickness of the electrode mask, and a narrow gap can be realized.
Further, since the step portions (base step portion and shower step portion) are formed, an insulating plate and electrode mask having a sufficient thickness can be used, and cracking of the insulating plate and electrode mask can be prevented. .
Further, by arranging the insulating plate and the electrode mask, the plasma can be confined between the electrodes (between the shower plate and the substrate).
As a result, the plasma can be confined between the electrodes even when a narrow gap process is performed.
Furthermore, even when the distance between the substrate and the shower plate is set as a narrow gap, a sufficient gap for exhausting the film forming gas is formed between the insulating plate and the electrode mask. In-plane uniformity can be stabilized, and the film thickness can be made uniform.
 上記課題を解決するために、本発明の第2態様のプラズマ処理装置は、プロセスガスが導入され、前記プロセスガスからなるプラズマが生成されるチャンバと、基板が載置される第1ベース面,前記第1ベース面の周縁部に設けられた第2ベース面,及び前記第1ベース面と前記第2ベース面との間に設けられたベース段差部を有し、前記チャンバ内に配置されたベース部材と、前記第2ベース面から前記第1ベース面に載置された前記基板の上面までの高さ(距離)以下である高さを有し、前記第2ベース面上に配置され、絶縁物質で形成された絶縁プレートと、前記基板に向けて前記プロセスガスを供給し、前記チャンバ内に配置されたシャワープレートと、前記絶縁プレートに対向するように前記シャワープレートの周縁部に配置され、絶縁物質で形成された電極マスクとを含む。
 プラズマ処理装置においては、チャンバ内に配置された電極間(ベース部材とシャワープレートとの間)には、交流電圧が印加される。これによって電極間にはプロセスガスからなるプラズマが生成される。
 このプラズマ処理装置においては、前記ベース部材における前記絶縁プレートが載置される領域であるプレート載置面と、前記基板が載置される領域である基板載置面との間に段差部が形成されている。前記基板及び前記絶縁プレートが前記ベース部材に載置された状態で、プレート載置面から前記絶縁プレートの表面までの高さは、プレート載置面から前記基板の上面までの高さ以下である。
In order to solve the above problems, a plasma processing apparatus according to a second aspect of the present invention includes a chamber in which a process gas is introduced and plasma made of the process gas is generated, a first base surface on which a substrate is placed, A second base surface provided at a peripheral edge portion of the first base surface; and a base step portion provided between the first base surface and the second base surface, and disposed in the chamber. A base member, and a height that is equal to or less than a height (distance) from the second base surface to the upper surface of the substrate placed on the first base surface, and is disposed on the second base surface; An insulating plate formed of an insulating material; a process gas supplied to the substrate; a shower plate disposed in the chamber; and a peripheral portion of the shower plate facing the insulating plate. Comprising an electrode mask formed of an insulating material.
In the plasma processing apparatus, an alternating voltage is applied between the electrodes (between the base member and the shower plate) arranged in the chamber. As a result, plasma composed of process gas is generated between the electrodes.
In this plasma processing apparatus, a step portion is formed between a plate placement surface, which is a region where the insulating plate is placed on the base member, and a substrate placement surface, which is a region where the substrate is placed. Has been. In a state where the substrate and the insulating plate are mounted on the base member, the height from the plate mounting surface to the surface of the insulating plate is not more than the height from the plate mounting surface to the upper surface of the substrate. .
 このようにプラズマ処理装置が構成されているので、基板の上面とシャワープレートの表面との間に形成される成膜空間において、基板の上面とシャワープレートの噴出孔が形成された領域である第1シャワー面(噴出孔形成面)との間の距離を従来よりも短くすることができる。
 従って、基板とシャワープレートとの間の距離を短くすることができ、ナローギャッププロセスを実現することができる。
 また、段差部(ベース段差部)が形成されているので、十分な厚さを有する絶縁プレートを用いることができ、絶縁プレートの割れを防止することができる。
 また、絶縁プレート及び電極マスクを配置することにより、プラズマを電極間(シャワープレートと基板との間)に閉じ込めることができる。
 結果として、ナローギャッププロセスを行う場合であってもプラズマを電極間に閉じ込めることができる。
 さらに、基板とシャワープレートとの距離をナローギャップとして設定した場合であっても、絶縁プレートと電極マスクとの間には成膜ガスを排気するための十分な隙間が形成され、ガスの流れの面内均一性を安定化させることができ、膜厚を均一にすることができる。
Since the plasma processing apparatus is configured in this way, in the film formation space formed between the upper surface of the substrate and the surface of the shower plate, the first surface is an area where the upper surface of the substrate and the ejection holes of the shower plate are formed. The distance from 1 shower surface (jet hole formation surface) can be made shorter than before.
Therefore, the distance between the substrate and the shower plate can be shortened, and a narrow gap process can be realized.
In addition, since the step portion (base step portion) is formed, an insulating plate having a sufficient thickness can be used, and cracking of the insulating plate can be prevented.
Further, by arranging the insulating plate and the electrode mask, the plasma can be confined between the electrodes (between the shower plate and the substrate).
As a result, the plasma can be confined between the electrodes even when a narrow gap process is performed.
Furthermore, even when the distance between the substrate and the shower plate is set as a narrow gap, a sufficient gap for exhausting the film forming gas is formed between the insulating plate and the electrode mask. In-plane uniformity can be stabilized, and the film thickness can be made uniform.
 上記課題を解決するために、本発明の第3態様のプラズマ処理装置は、プロセスガスが導入され、前記プロセスガスからなるプラズマが生成されるチャンバと、前記チャンバ内に配置され、基板が載置されるベース部材と、前記ベース部材の周縁部に配置され、絶縁物質で形成された絶縁プレートと、噴出孔が形成されている第1シャワー面,前記第1シャワー面の周縁部に設けられた第2シャワー面,及び前記第1シャワー面と前記第2シャワー面との間に設けられたシャワー段差部を有し、前記基板に向けて前記プロセスガスを供給し、前記チャンバ内に配置されたシャワープレートと、前記第2シャワー面から前記第1シャワー面までの高さ(距離)以下である高さを有し、前記絶縁プレートに対向するように前記第2シャワー面上に配置され、絶縁物質で形成された電極マスクと、を含む。
 プラズマ処理装置においては、チャンバ内に配置された電極間(ベース部材とシャワープレートとの間)には、交流電圧が印加される。これによって電極間にはプロセスガスからなるプラズマが生成される。
 このプラズマ処理装置においては、前記シャワープレートにおける前記電極マスクが載置される領域であるマスク載置面と、前記シャワープレートにおける噴出孔が形成されている領域である噴出孔形成面との間に段差部が形成されている。前記電極マスクが前記シャワープレートに配置された状態で、マスク載置面から前記電極マスクの表面までの高さは、マスク載置面から噴出孔形成面までの高さ以下である。
In order to solve the above-described problem, a plasma processing apparatus according to a third aspect of the present invention includes a chamber into which a process gas is introduced and plasma composed of the process gas is generated, and the substrate is placed in the chamber. Provided on the peripheral portion of the base member, the insulating plate formed of an insulating material, the first shower surface in which the ejection holes are formed, and the peripheral portion of the first shower surface A second shower surface, and a shower step provided between the first shower surface and the second shower surface, and the process gas is supplied toward the substrate and disposed in the chamber. A shower plate and a height equal to or less than a height (distance) from the second shower surface to the first shower surface, and on the second shower surface to face the insulating plate It is location, including an electrode mask formed of an insulating material, the.
In the plasma processing apparatus, an alternating voltage is applied between the electrodes (between the base member and the shower plate) arranged in the chamber. As a result, plasma composed of process gas is generated between the electrodes.
In this plasma processing apparatus, between the mask placement surface, which is a region where the electrode mask is placed on the shower plate, and the ejection hole formation surface, which is a region where the ejection holes are formed in the shower plate. A step portion is formed. In a state where the electrode mask is disposed on the shower plate, the height from the mask mounting surface to the surface of the electrode mask is not more than the height from the mask mounting surface to the ejection hole forming surface.
 このようにプラズマ処理装置が構成されているので、基板の上面とシャワープレートの表面との間に形成される成膜空間において、基板の上面とシャワープレートの噴出孔が形成された領域である第1シャワー面(噴出孔形成面)との間の距離を従来よりも短くすることができる。
 従って、基板とシャワープレートとの間の距離を短くすることができ、ナローギャッププロセスを実現することができる。
 また、段差部(シャワー段差部)が形成されているので、十分な厚さを有する電極マスクを用いることができるため、電極マスクの割れを防止することができる。
 また、絶縁プレート及び電極マスクを配置することにより、プラズマを電極間(シャワープレートと基板との間)に閉じ込めることができる。
 結果として、ナローギャッププロセスを行う場合であってもプラズマを電極間に閉じ込めることができる。
 さらに、基板とシャワープレートとの距離をナローギャップとして設定した場合であっても、絶縁プレートと電極マスクとの間には成膜ガスを排気するための十分な隙間が形成され、ガスの流れの面内均一性を安定化させることができ、膜厚を均一にすることができる。
Since the plasma processing apparatus is configured in this way, in the film formation space formed between the upper surface of the substrate and the surface of the shower plate, the first surface is an area where the upper surface of the substrate and the ejection holes of the shower plate are formed. The distance from 1 shower surface (jet hole formation surface) can be made shorter than before.
Therefore, the distance between the substrate and the shower plate can be shortened, and a narrow gap process can be realized.
In addition, since the step portion (shower step portion) is formed, an electrode mask having a sufficient thickness can be used, so that the electrode mask can be prevented from cracking.
Further, by arranging the insulating plate and the electrode mask, the plasma can be confined between the electrodes (between the shower plate and the substrate).
As a result, the plasma can be confined between the electrodes even when a narrow gap process is performed.
Furthermore, even when the distance between the substrate and the shower plate is set as a narrow gap, a sufficient gap for exhausting the film forming gas is formed between the insulating plate and the electrode mask. In-plane uniformity can be stabilized, and the film thickness can be made uniform.
 また、上記の第1態様及び第2態様のプラズマ処理装置においては、前記絶縁プレートは、前記基板の側面に当接される第1当接面と、前記基板の前記上面とは反対の裏面に当接される第2当接面を有する突出部とを含むことが好ましい。
 この構成においては、絶縁プレートは、第2ベース面に沿ってベース部材の中央に向けて突出する突出部を有する。
In the plasma processing apparatus of the first aspect and the second aspect, the insulating plate is provided on a first contact surface that is in contact with a side surface of the substrate and a back surface opposite to the upper surface of the substrate. It is preferable to include a protrusion having a second abutting surface to be abutted.
In this configuration, the insulating plate has a protrusion that protrudes along the second base surface toward the center of the base member.
 このようにプラズマ処理装置が構成されているので、ベース部材(第2ベース面)に絶縁プレートが載置され、ベース部材(第1ベース面)上と絶縁プレート上とに基板が配置された場合、基板の側面は第1当接面に接触し、基板の裏面は第2当接面に接触する。また、基板の鉛直方向から見て、基板と突出部とは重なっている。
 従って、シャワープレートから噴出された成膜ガスは、基板又は絶縁プレートに向けて供給され(噴射され)、成膜ガスがベース部材に接触することを防止することができる。
従って、シャワープレートとベース部材との間にプラズマが生じて、ベース部材に成膜されることを防止することができる。
Since the plasma processing apparatus is configured as described above, the insulating plate is placed on the base member (second base surface), and the substrate is disposed on the base member (first base surface) and the insulating plate. The side surface of the substrate contacts the first contact surface, and the back surface of the substrate contacts the second contact surface. Further, the substrate and the protruding portion overlap each other when viewed from the vertical direction of the substrate.
Therefore, the deposition gas ejected from the shower plate is supplied (injected) toward the substrate or the insulating plate, and the deposition gas can be prevented from coming into contact with the base member.
Therefore, it is possible to prevent plasma from being generated between the shower plate and the base member and forming a film on the base member.
 本発明によれば、基板の上面とシャワープレートの表面との間に形成される成膜空間において、基板の上面とシャワープレートの噴出孔が形成された領域である第1シャワー面(噴出孔形成面)との間の距離を最短にすることができる。
 従って、絶縁プレートの厚さ及び電極マスクの厚さに影響されず、基板とシャワープレートとの間の距離を設定することができ、ナローギャップを実現することができる。
 また、段差部(ベース段差部及びシャワー段差部)が形成されているので、十分な厚さを有する絶縁プレート及び電極マスクを用いることができ、絶縁プレート及び電極マスクの割れを防止することができる。
 また、絶縁プレート及び電極マスクを配置することにより、プラズマを電極間(シャワープレートと基板との間)に閉じ込めることができる。
 結果として、ナローギャッププロセスを行う場合であってもプラズマを電極間に閉じ込めることができる。
According to the present invention, in the film forming space formed between the upper surface of the substrate and the surface of the shower plate, the first shower surface (spout hole formation), which is the region where the upper surface of the substrate and the shower hole of the shower plate are formed. The distance to the surface) can be minimized.
Therefore, the distance between the substrate and the shower plate can be set without being affected by the thickness of the insulating plate and the thickness of the electrode mask, and a narrow gap can be realized.
Further, since the step portions (base step portion and shower step portion) are formed, an insulating plate and electrode mask having a sufficient thickness can be used, and cracking of the insulating plate and electrode mask can be prevented. .
Further, by arranging the insulating plate and the electrode mask, the plasma can be confined between the electrodes (between the shower plate and the substrate).
As a result, the plasma can be confined between the electrodes even when a narrow gap process is performed.
本発明の実施形態におけるプラズマCVD装置の概略構成図である。It is a schematic block diagram of the plasma CVD apparatus in embodiment of this invention. 本発明の実施形態におけるプラズマCVD装置の概略構成図であって、図1において符号Aで示された部分を拡大して示した断面図である。It is a schematic block diagram of the plasma CVD apparatus in embodiment of this invention, Comprising: It is sectional drawing which expanded and showed the part shown by the code | symbol A in FIG. 従来のプラズマCVD装置の概略構成図であって、図2に対応する部分を示す断面図である。It is a schematic block diagram of the conventional plasma CVD apparatus, Comprising: It is sectional drawing which shows the part corresponding to FIG.
 以下、本発明に係るプラズマ処理装置の実施形態を図面に基づき説明する。
 また、以下の説明に用いる各図においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法及び比率を実際のものとは適宜に異ならせてある。
 また、本実施形態においては、プラズマCVD法を用いた成膜装置を説明する。
Hereinafter, embodiments of a plasma processing apparatus according to the present invention will be described with reference to the drawings.
In the drawings used for the following description, the dimensions and ratios of the respective components are appropriately changed from the actual ones in order to make the respective components large enough to be recognized on the drawings.
In this embodiment, a film forming apparatus using a plasma CVD method will be described.
 図1は、本実施形態における成膜装置の概略構成図である。
 図1に示すように、プラズマCVD法を実施する成膜装置1は、真空チャンバ2(チャンバ)を有している。
 真空チャンバ2の底部11には、開口部が形成されている。この開口部には支柱25が挿通され、支柱25は真空チャンバ2の下部に配置されている。支柱25の先端(真空チャンバ2内)には、ヒータ16が内蔵された板状のベース部材3が接続されている。
真空チャンバ2の上部には、絶縁フランジ31を介して電極フランジ4が取り付けられている。
また、真空チャンバ2には、排気管27が接続されている。排気管27の先端には、真空ポンプ28が設けられている。真空ポンプ28は、真空チャンバ2内が真空状態となるように減圧する。
FIG. 1 is a schematic configuration diagram of a film forming apparatus in the present embodiment.
As shown in FIG. 1, a film forming apparatus 1 that performs a plasma CVD method includes a vacuum chamber 2 (chamber).
An opening is formed in the bottom 11 of the vacuum chamber 2. A support column 25 is inserted into the opening, and the support column 25 is disposed in the lower portion of the vacuum chamber 2. A plate-like base member 3 with a built-in heater 16 is connected to the tip of the column 25 (in the vacuum chamber 2).
An electrode flange 4 is attached to the upper portion of the vacuum chamber 2 via an insulating flange 31.
Further, an exhaust pipe 27 is connected to the vacuum chamber 2. A vacuum pump 28 is provided at the tip of the exhaust pipe 27. The vacuum pump 28 reduces the pressure so that the inside of the vacuum chamber 2 is in a vacuum state.
 また、支柱25は、真空チャンバ2の外部に設けられた昇降機構(不図示)に接続されており、基板10の鉛直方向において上下に移動可能である。
つまり、支柱25の先端に接続されているベース部材3は、上下方向に昇降可能に構成されている。
また、真空チャンバ2の外部においては、支柱25の外周を覆うようにベローズ26が設けられている。
The support column 25 is connected to an elevating mechanism (not shown) provided outside the vacuum chamber 2 and can move up and down in the vertical direction of the substrate 10.
In other words, the base member 3 connected to the tip of the support column 25 is configured to be able to move up and down.
A bellows 26 is provided outside the vacuum chamber 2 so as to cover the outer periphery of the support column 25.
 電極フランジ4は、絶縁フランジ31上に載置され、板状に形成されている。
 成膜空間に面している電極フランジ4の面には、導電体32が連結されている。導電体32の先端には板状のシャワープレート5が取り付けられている。
そして、シャワープレート5と電極フランジ4との間に空間24が形成されている。
The electrode flange 4 is placed on the insulating flange 31 and formed in a plate shape.
A conductor 32 is connected to the surface of the electrode flange 4 facing the film formation space. A plate-like shower plate 5 is attached to the tip of the conductor 32.
A space 24 is formed between the shower plate 5 and the electrode flange 4.
 また、電極フランジ4にはガス導入管7が接続されている。ガス導入管7は、真空チャンバ2の外部に設けられた成膜ガス供給部21から空間24に向けて原料ガス(例えば、SiH)を供給する。
 また、図2を参照して後述するように、シャワープレート5は、多数のガス噴出孔6が設けられている第1シャワー面5aと、第1シャワー面5aの周縁部に設けられた第2シャワー面5bと、第1シャワー面5aと第2シャワー面5bとの間に設けられたシャワー段差部42とを有する。ガス噴出孔6は、シャワープレート5を貫通している。空間24内に導入された成膜ガスは、ガス噴出孔6を通じて真空チャンバ2内に供給される。
A gas introduction pipe 7 is connected to the electrode flange 4. The gas introduction pipe 7 supplies a source gas (for example, SiH 4 ) toward the space 24 from a film formation gas supply unit 21 provided outside the vacuum chamber 2.
Moreover, as will be described later with reference to FIG. 2, the shower plate 5 includes a first shower surface 5a provided with a large number of gas ejection holes 6 and a second portion provided at the peripheral portion of the first shower surface 5a. The shower surface 5b and the shower level | step-difference part 42 provided between the 1st shower surface 5a and the 2nd shower surface 5b are provided. The gas ejection hole 6 passes through the shower plate 5. The film forming gas introduced into the space 24 is supplied into the vacuum chamber 2 through the gas ejection holes 6.
 また、電極フランジ4とシャワープレート5とは、ともに導電材で構成されている。電極フランジ4は、真空チャンバ2の外部に設けられたRF電源(高周波電源)9に接続されている。 The electrode flange 4 and the shower plate 5 are both made of a conductive material. The electrode flange 4 is connected to an RF power source (high frequency power source) 9 provided outside the vacuum chamber 2.
 さらに、真空チャンバ2には、ガス導入管7とは異なるガス導入管8が接続されている。
 ガス導入管8にはフッ素ガス供給部22とラジカル源23とが設けられている。ラジカル源23は、フッ素ガス供給部22から供給されたフッ素ガスを分解する。ガス導入管8は、フッ素ガスが分解されて得られたフッ素ラジカルを、真空チャンバ2内の成膜空間に供給する。
Further, a gas introduction pipe 8 different from the gas introduction pipe 7 is connected to the vacuum chamber 2.
The gas introduction pipe 8 is provided with a fluorine gas supply unit 22 and a radical source 23. The radical source 23 decomposes the fluorine gas supplied from the fluorine gas supply unit 22. The gas introduction pipe 8 supplies fluorine radicals obtained by decomposing fluorine gas to the film forming space in the vacuum chamber 2.
 ベース部材3は、表面が平坦に形成された略板状の部材である。図2を参照して後述するように、ベース部材3は、基板10が載置される第1ベース面33と、第1ベース面33の周縁部に設けられた第2ベース面33aと、第1ベース面33と第2ベース面33aとの間に設けられたベース段差部34とを有し、真空チャンバ2内に配置されている。
 ベース部材3は、接地電極として機能し、例えばアルミニウム合金で構成されている。なお、ベース部材3の材料としては、剛性を有し、耐食性及び耐熱性を有する材料であれば、上記の材料以外の材料が採用されてもよい。
 基板10がベース部材3の第1ベース面33上に配置されると、基板10とシャワープレート5とは互いに近接して平行になる。
 ベース部材3上に基板10が配置された状態で、ガス噴出孔6を通じて成膜ガスは基板10の表面に向けて成膜空間に供給される。
The base member 3 is a substantially plate-like member having a flat surface. As will be described later with reference to FIG. 2, the base member 3 includes a first base surface 33 on which the substrate 10 is placed, a second base surface 33 a provided at the peripheral edge of the first base surface 33, A base step portion 34 provided between the first base surface 33 and the second base surface 33 a is disposed in the vacuum chamber 2.
The base member 3 functions as a ground electrode and is made of, for example, an aluminum alloy. In addition, as a material of the base member 3, materials other than said material may be employ | adopted if it is a material which has rigidity and has corrosion resistance and heat resistance.
If the board | substrate 10 is arrange | positioned on the 1st base surface 33 of the base member 3, the board | substrate 10 and the shower plate 5 will adjoin and become parallel.
In a state where the substrate 10 is disposed on the base member 3, the deposition gas is supplied to the deposition space through the gas ejection holes 6 toward the surface of the substrate 10.
 また、ベース部材3の内部には、電源線に接続されたヒータ16が設けられている。ヒータ16によってベース部材3の温度が所定の温度に調整される。ヒータ16の電源線は、ベース部材3の鉛直方向から見たベース部材3の略中央部、かつ、ベース部材3の底面17から突出され、支柱25の内部に挿通され、真空チャンバ2の外部へと導かれている。
 そして、ヒータ16は、真空チャンバ2の外部において電源(不図示)と接続され、ベース部材3の温度を調節する。
In addition, a heater 16 connected to a power supply line is provided inside the base member 3. The temperature of the base member 3 is adjusted to a predetermined temperature by the heater 16. A power line of the heater 16 protrudes from a substantially central portion of the base member 3 as viewed from the vertical direction of the base member 3 and from the bottom surface 17 of the base member 3, is inserted into the support column 25, and goes to the outside of the vacuum chamber 2. It is led with.
The heater 16 is connected to a power source (not shown) outside the vacuum chamber 2 and adjusts the temperature of the base member 3.
 また、ベース部材3と真空チャンバ2との間を接続する複数アースプレート30が真空チャンバ2の底部11において略等間隔に配置されている。
このアースプレート30は、フレキシブルな金属プレートで形成されており、例えば、ニッケル系合金又はアルミ合金などで構成されている。
In addition, a plurality of ground plates 30 connecting the base member 3 and the vacuum chamber 2 are arranged at substantially equal intervals on the bottom 11 of the vacuum chamber 2.
The earth plate 30 is made of a flexible metal plate, and is made of, for example, a nickel-based alloy or an aluminum alloy.
 図2は、図1の符号Aで示された部分が拡大して示された断面図である。
 なお、以下の説明において、「低い位置」とは、成膜空間の位置から真空チャンバ2の底部11に向けた方向において、一方の位置よりも他方の位置が低いことを意味する。また、「高い位置」とは、成膜空間の位置から電極フランジ4に向けた方向において一方の位置よりも他方の位置が高いことを意味する。
FIG. 2 is an enlarged cross-sectional view of the portion indicated by the symbol A in FIG.
In the following description, “low position” means that the other position is lower than one position in the direction from the position of the film formation space toward the bottom 11 of the vacuum chamber 2. Further, “high position” means that the other position is higher than the one position in the direction from the position of the film formation space toward the electrode flange 4.
 図2に示すように、ベース部材3の第1ベース面33における周縁部には、第1ベース面33よりも低い位置に形成された第2ベース面33aが設けられている。第1ベース面33と第2ベース面33aとの間には、ベース段差部34が形成されている。第1ベース面33の水平方向におけるベース段差部34の位置は、基板10の長さ(直径)よりも第1ベース面33の長さ(直径)が小さくなるように決定されている。即ち、基板10がベース部材3の第1ベース面33上に載置された場合、基板10の水平方向における基板10の周縁部の位置がベース段差部34から突出している。換言すれば、基板10の周縁部が第1ベース面33の外側に位置している。
つまり、ベース段差部34は基板10の裏面10cに当接する位置に形成されている。
As shown in FIG. 2, a second base surface 33 a formed at a position lower than the first base surface 33 is provided on the peripheral edge portion of the first base surface 33 of the base member 3. A base step portion 34 is formed between the first base surface 33 and the second base surface 33a. The position of the base step portion 34 in the horizontal direction of the first base surface 33 is determined so that the length (diameter) of the first base surface 33 is smaller than the length (diameter) of the substrate 10. That is, when the substrate 10 is placed on the first base surface 33 of the base member 3, the position of the peripheral portion of the substrate 10 in the horizontal direction of the substrate 10 protrudes from the base step portion 34. In other words, the peripheral edge of the substrate 10 is located outside the first base surface 33.
That is, the base step portion 34 is formed at a position in contact with the back surface 10 c of the substrate 10.
 また、ベース段差部34を介して第1ベース面33よりも低い位置に形成された第2ベース面33aには、絶縁プレート35が載置されている。絶縁プレート35は、基板10の周縁部に沿ってフレーム状に形成されている。
絶縁プレート35の材料としては、例えば絶縁物であるアルミナが採用される。
 絶縁プレート35の厚さ(高さ)は、第2ベース面33aから、第1ベース面33に載置された基板10の上面10までの高さ以下である。本実施形態においては、第2ベース面33aに絶縁プレート35が載置されたときに、絶縁プレート35の表面35cの位置と基板10の上面10aの位置とが基板10の鉛直方向において一致している。
 また、絶縁プレート35は、第2ベース面33aに絶縁プレート35が載置されたときに、基板10の鉛直方向において少なくとも第2ベース面33aを全て覆う大きさを有している。
 また、絶縁プレート35は、基板10の側面10bに当接される第1当接面35aと、基板10の上面10aとは反対の裏面10cに当接される第2当接面35dとを含む。換言すれば、絶縁プレート35は、第2ベース面33aに沿ってベース部材3の中央に向けて突出する突出部35bを有する。突出部35bは、基板10の裏面10cの下に位置し、基板10の裏面10cに当接している。また、突出部35bは、ベース段差部34に略当接している。
 なお、本実施形態においては、絶縁プレート35は、水平方向にベース部材3の端部よりも突出して形成され、ベース部材3の周縁部(第2ベース面33a)に設けられている。絶縁プレート35の端部は、ベース部材3を支持する支持部材36に支持されている。
 なお、支持部材36に対向する真空チャンバ2の内面には、例えば、アルミナで形成された絶縁物37が取り付けられている。
An insulating plate 35 is placed on the second base surface 33 a formed at a position lower than the first base surface 33 via the base step portion 34. The insulating plate 35 is formed in a frame shape along the peripheral edge of the substrate 10.
As a material of the insulating plate 35, for example, alumina which is an insulator is employed.
The thickness (height) of the insulating plate 35 is not more than the height from the second base surface 33 a to the upper surface 10 of the substrate 10 placed on the first base surface 33. In the present embodiment, when the insulating plate 35 is placed on the second base surface 33a, the position of the surface 35c of the insulating plate 35 and the position of the upper surface 10a of the substrate 10 coincide with each other in the vertical direction of the substrate 10. Yes.
The insulating plate 35 has a size that covers at least the second base surface 33a in the vertical direction of the substrate 10 when the insulating plate 35 is placed on the second base surface 33a.
The insulating plate 35 includes a first contact surface 35a that contacts the side surface 10b of the substrate 10 and a second contact surface 35d that contacts the back surface 10c opposite to the upper surface 10a of the substrate 10. . In other words, the insulating plate 35 has the protruding portion 35b protruding toward the center of the base member 3 along the second base surface 33a. The protruding portion 35 b is located below the back surface 10 c of the substrate 10 and is in contact with the back surface 10 c of the substrate 10. Further, the protruding portion 35 b is substantially in contact with the base step portion 34.
In the present embodiment, the insulating plate 35 is formed so as to protrude from the end of the base member 3 in the horizontal direction, and is provided on the peripheral edge (second base surface 33a) of the base member 3. An end portion of the insulating plate 35 is supported by a support member 36 that supports the base member 3.
Note that an insulator 37 made of alumina, for example, is attached to the inner surface of the vacuum chamber 2 facing the support member 36.
 一方、図2に示すように、シャワープレート5の第1シャワー面5aにおける周縁部には、第1シャワー面5aよりも高い位置に形成された第2シャワー面5bが設けられている。第1シャワー面5aと第2シャワー面5bとの間には、シャワー段差部42が形成されている。
 また、シャワー段差部42を介して第1シャワー面5aより高い位置に形成された第2シャワー面5bには、フレーム状に形成された電極マスク43が載置されている。
電極マスク43の材料としては、例えば絶縁物であるアルミナが採用される。電極マスク43は、絶縁プレート35に対向するように第2シャワー面5b上に配置されている。
 電極マスク43の厚さ(高さ)は、第2シャワー面5bから第1シャワー面5aまでの高さ以下である。本実施形態においては、
第2シャワー面5bに電極マスク43が載置されたときに、電極マスク43の表面43aの位置と第1シャワー面5aの位置とがシャワープレート5の鉛直方向において一致している。
 また、電極マスク43は、第2シャワー面5bに電極マスク43が載置されたときに、シャワープレート5の鉛直方向において少なくとも第2シャワー面5bを全て覆う大きさを有している。
 なお、本実施形態においては、電極マスク43は、水平方向にシャワープレート5の端部よりも突出して形成されている。また、電極マスク43は、シャワープレート5を支持する支持部材44及び真空チャンバ2と絶縁フランジ31との間に設けられた支持部材45の表面を覆う大きさを有する。
On the other hand, as shown in FIG. 2, a second shower surface 5 b formed at a position higher than the first shower surface 5 a is provided at the peripheral edge portion of the first shower surface 5 a of the shower plate 5. A shower step portion 42 is formed between the first shower surface 5a and the second shower surface 5b.
An electrode mask 43 formed in a frame shape is placed on the second shower surface 5b formed at a position higher than the first shower surface 5a via the shower step portion 42.
As a material of the electrode mask 43, for example, alumina which is an insulator is employed. The electrode mask 43 is disposed on the second shower surface 5 b so as to face the insulating plate 35.
The thickness (height) of the electrode mask 43 is not more than the height from the second shower surface 5b to the first shower surface 5a. In this embodiment,
When the electrode mask 43 is placed on the second shower surface 5b, the position of the surface 43a of the electrode mask 43 and the position of the first shower surface 5a coincide with each other in the vertical direction of the shower plate 5.
The electrode mask 43 has a size that covers at least the second shower surface 5b in the vertical direction of the shower plate 5 when the electrode mask 43 is placed on the second shower surface 5b.
In the present embodiment, the electrode mask 43 is formed so as to protrude from the end of the shower plate 5 in the horizontal direction. The electrode mask 43 has a size that covers the surface of the support member 44 that supports the shower plate 5 and the surface of the support member 45 provided between the vacuum chamber 2 and the insulating flange 31.
 次に、成膜装置1を用いて基板10に成膜する場合の作用について説明する。
 上記のように構成された成膜装置1を用いて基板10の表面に薄膜を成膜する前に、真空ポンプ28を用いて真空チャンバ2内を減圧する。
 真空チャンバ2内が真空に維持された状態で、基板10は真空チャンバ2内に搬入され、ベース部材3上に載置される。
 ここで、基板10を載置する前は、ベース部材3は真空チャンバ2内の下側に位置している。
つまり、基板10が搬入される前においては、ベース部材3とシャワープレート5との間隔が広くなっているので、ロボットアーム(不図示)を用いて基板10をベース部材3上に容易に載置することができる。
 基板10がベース部材3上に載置された後には、昇降装置(不図示)が起動し、支柱25が上方へ押し上げられ、ベース部材3上に載置された基板10も上方へ移動する。これによって、適切に成膜を行うために必要な間隔になるようにシャワープレート5と基板10との間隔が所望に決定され、この間隔が維持される。
 このとき、基板10の鉛直方向において、絶縁プレート35の表面35cの位置と基板10の上面10aの位置とが一致し、電極マスク43の表面43aの位置と第1シャワー面5aの位置とが一致している。このため、絶縁プレート35と電極マスク43とが接触することなく、基板10とシャワープレート5との間隔を小さくすることができ、ナローギャップ(3~10mm)を実現することができる。
 その後、ガス導入管7から成膜ガス(原料ガス)を導入して、ガス噴出孔6から真空チャンバ2(成膜空間)内に成膜ガスが供給される。
Next, an operation when a film is formed on the substrate 10 using the film forming apparatus 1 will be described.
Before forming a thin film on the surface of the substrate 10 using the film forming apparatus 1 configured as described above, the vacuum chamber 2 is decompressed using the vacuum pump 28.
The substrate 10 is carried into the vacuum chamber 2 and placed on the base member 3 while the vacuum chamber 2 is maintained in a vacuum.
Here, before the substrate 10 is placed, the base member 3 is positioned on the lower side in the vacuum chamber 2.
That is, before the substrate 10 is carried in, the distance between the base member 3 and the shower plate 5 is wide, so that the substrate 10 can be easily placed on the base member 3 using a robot arm (not shown). can do.
After the substrate 10 is placed on the base member 3, an elevating device (not shown) is activated, the column 25 is pushed upward, and the substrate 10 placed on the base member 3 also moves upward. As a result, the interval between the shower plate 5 and the substrate 10 is determined as desired so that the interval necessary for proper film formation is achieved, and this interval is maintained.
At this time, in the vertical direction of the substrate 10, the position of the surface 35c of the insulating plate 35 coincides with the position of the upper surface 10a of the substrate 10, and the position of the surface 43a of the electrode mask 43 and the position of the first shower surface 5a are the same. I'm doing it. For this reason, the gap between the substrate 10 and the shower plate 5 can be reduced without the insulating plate 35 and the electrode mask 43 being in contact with each other, and a narrow gap (3 to 10 mm) can be realized.
Thereafter, a film forming gas (raw material gas) is introduced from the gas introduction pipe 7, and the film forming gas is supplied into the vacuum chamber 2 (film forming space) from the gas ejection holes 6.
 絶縁フランジ31を介して電極フランジ4と真空チャンバ2とは電気的に絶縁され、かつ、真空チャンバ2が接地電位に接続された状態で、RF電源9を起動して電極フランジ4に高周波電圧が印加される。
 このとき、シャワープレート5とベース部材3との間に高周波電圧が印加されて放電が生じ、電極フランジ4と基板10の表面との間にプラズマが発生する。
 こうして発生したプラズマ内で成膜ガスが分解され、基板10の表面で気相成長反応が起こることにより、基板10の表面に薄膜が成膜される。
In a state where the electrode flange 4 and the vacuum chamber 2 are electrically insulated via the insulating flange 31 and the vacuum chamber 2 is connected to the ground potential, the RF power source 9 is activated and a high frequency voltage is applied to the electrode flange 4. Applied.
At this time, a high frequency voltage is applied between the shower plate 5 and the base member 3 to generate a discharge, and plasma is generated between the electrode flange 4 and the surface of the substrate 10.
The deposition gas is decomposed in the plasma generated in this way, and a vapor phase growth reaction occurs on the surface of the substrate 10, whereby a thin film is formed on the surface of the substrate 10.
 また、上記のような成膜工程が何度か繰り返されると、真空チャンバ2の内壁面などに成膜材料が付着するため、真空チャンバ2内は定期的にクリーニングされる。クリーニング工程においては、フッ素ガス供給部22から供給されたフッ素ガスがラジカル源23によって分解され、フッ素ラジカルが生じ、フッ素ラジカルが真空チャンバ2に接続されたガス導入管8を通り、真空チャンバ2内に供給される。
 このように真空チャンバ2内の成膜空間にフッ素ラジカルを供給することによって、化学反応が生じ、例えば、シャワープレート5の第1シャワー面5a,電極マスク43の表面43a,又は絶縁プレート35の表面35c等に付着された付着物が除去される。
Further, when the film forming process as described above is repeated several times, the film forming material adheres to the inner wall surface of the vacuum chamber 2 and the like, so that the inside of the vacuum chamber 2 is periodically cleaned. In the cleaning process, the fluorine gas supplied from the fluorine gas supply unit 22 is decomposed by the radical source 23 to generate fluorine radicals. The fluorine radicals pass through the gas introduction pipe 8 connected to the vacuum chamber 2 and pass through the vacuum chamber 2. To be supplied.
By supplying fluorine radicals to the film formation space in the vacuum chamber 2 in this way, a chemical reaction occurs. For example, the first shower surface 5a of the shower plate 5, the surface 43a of the electrode mask 43, or the surface of the insulating plate 35 Deposits adhered to 35c and the like are removed.
 本実施形態によれば、絶縁プレート35が載置される領域である第2ベース面33aと、基板10が載置される領域である第1ベース面33との間にベース段差部34が形成されている。また、基板10及び絶縁プレート35がベース部材3に載置された状態で、絶縁プレート35の表面35cの位置と基板10の上面10aの位置とが基板10の鉛直方向において一致している。また、電極マスク43が載置される領域である第2シャワー面5bと、複数の噴出孔6が形成されている領域である第1シャワー面5aとの間にシャワー段差部42が形成されている。また、電極マスク43がシャワープレート5に載置された状態で、電極マスク43の表面43aの位置と第1シャワー面5aの位置とがシャワープレート5の鉛直方向において一致している。
 従って、基板10の上面10aとシャワープレート5の第1シャワー面5aとの間に形成される成膜空間において、基板10の上面10aとシャワープレート5の第1シャワー面5aとの間の距離を最短にすることができる。
 従って、絶縁プレートの厚さ35及び電極マスク43の厚さに影響されず、基板10とシャワープレート5との間の距離を設定することができ、ナローギャップを実現することができる。
 また、段差部34,42(ベース段差部及びシャワー段差部)が形成されているので、十分な厚さを有する絶縁プレート35及び電極マスク43を用いることができ、絶縁プレート35及び電極マスク43の割れを防止することができる。
 また、絶縁プレート35及び電極マスク43を配置することにより、プラズマを電極間(シャワープレート5と基板10との間)に閉じ込めることができる。
 結果として、ナローギャッププロセスを行う場合であってもプラズマを電極間に閉じ込めることができる。
 さらに、基板10とシャワープレート5との距離をナローギャップとして設定した場合であっても、絶縁プレート35と電極マスク43との間には成膜ガスを排気するための十分な隙間が形成され、ガスの流れの面内均一性を安定化させることができ、膜厚を均一にすることができる。
 つまり、このように構成されたプラズマ処理装置において、μc-Siの成膜を行うことができる。
According to the present embodiment, the base step portion 34 is formed between the second base surface 33a, which is a region where the insulating plate 35 is placed, and the first base surface 33, which is a region where the substrate 10 is placed. Has been. Further, in a state where the substrate 10 and the insulating plate 35 are placed on the base member 3, the position of the surface 35 c of the insulating plate 35 and the position of the upper surface 10 a of the substrate 10 coincide with each other in the vertical direction of the substrate 10. In addition, a shower step portion 42 is formed between the second shower surface 5b, which is a region where the electrode mask 43 is placed, and the first shower surface 5a, which is a region where a plurality of ejection holes 6 are formed. Yes. Further, in a state where the electrode mask 43 is placed on the shower plate 5, the position of the surface 43 a of the electrode mask 43 and the position of the first shower surface 5 a coincide with each other in the vertical direction of the shower plate 5.
Therefore, in the film forming space formed between the upper surface 10a of the substrate 10 and the first shower surface 5a of the shower plate 5, the distance between the upper surface 10a of the substrate 10 and the first shower surface 5a of the shower plate 5 is set as follows. Can be as short as possible.
Therefore, the distance between the substrate 10 and the shower plate 5 can be set without being affected by the thickness 35 of the insulating plate and the thickness of the electrode mask 43, and a narrow gap can be realized.
Further, since the step portions 34 and 42 (base step portion and shower step portion) are formed, the insulating plate 35 and the electrode mask 43 having sufficient thickness can be used. Cracking can be prevented.
Further, by disposing the insulating plate 35 and the electrode mask 43, the plasma can be confined between the electrodes (between the shower plate 5 and the substrate 10).
As a result, the plasma can be confined between the electrodes even when a narrow gap process is performed.
Further, even when the distance between the substrate 10 and the shower plate 5 is set as a narrow gap, a sufficient gap is formed between the insulating plate 35 and the electrode mask 43 for exhausting the film forming gas, The in-plane uniformity of the gas flow can be stabilized and the film thickness can be made uniform.
That is, the μc-Si film can be formed in the plasma processing apparatus configured as described above.
 また、絶縁プレート35は、基板10の側面10bに当接される第1当接面35aと、基板10の裏面10cに当接される第2当接面35dと、第2ベース面33aに沿ってベース部材3の中央に向けて突出する突出部35bを有する。このような構成を有する絶縁プレート35がベース部材3に載置され、第1ベース面33上に基板10が配置されると、基板10の裏面10cは第2当接面に接触する。また、基板10の鉛直方向から見て、基板10と突出部35bとは重なる。
 従って、シャワープレート5から供給された成膜ガスは基板10又は絶縁プレート35に接触するため、ベース部材3に成膜ガスが直接接触することを防止することができる。
 従って、シャワープレート5とベース部材3との間にプラズマが生じて、ベース部材3の表面に成膜されることを防止することができる。
The insulating plate 35 extends along the first contact surface 35a that contacts the side surface 10b of the substrate 10, the second contact surface 35d that contacts the back surface 10c of the substrate 10, and the second base surface 33a. And a protruding portion 35b protruding toward the center of the base member 3. When the insulating plate 35 having such a configuration is placed on the base member 3 and the substrate 10 is disposed on the first base surface 33, the back surface 10c of the substrate 10 contacts the second contact surface. Further, when viewed from the vertical direction of the substrate 10, the substrate 10 and the protruding portion 35b overlap.
Accordingly, since the film forming gas supplied from the shower plate 5 comes into contact with the substrate 10 or the insulating plate 35, it is possible to prevent the film forming gas from coming into direct contact with the base member 3.
Therefore, it is possible to prevent plasma from being generated between the shower plate 5 and the base member 3 and forming a film on the surface of the base member 3.
 また、電極マスク43は、水平方向にシャワープレート5の端部よりも突出して形成されており、シャワープレート5を支持する支持部材44及び真空チャンバ2と絶縁フランジ31との間に設けられた支持部材45の表面を覆う大きさを有する。このような電極マスク43を用いることにより、シャワープレート5の近傍で生じたパーティクルが基板10上に落下することを抑制することができる。 The electrode mask 43 is formed so as to protrude from the end of the shower plate 5 in the horizontal direction, and the support member 44 that supports the shower plate 5 and the support provided between the vacuum chamber 2 and the insulating flange 31. The surface of the member 45 is covered. By using such an electrode mask 43, it is possible to prevent particles generated in the vicinity of the shower plate 5 from falling on the substrate 10.
 次に、上述した成膜装置1を用いてμc-Siを成膜する実施例について説明する。
 表1に示すように、RF電源9から印加される電力周波数は、27.12MHzに設定し、RFPower密度を1.2W/cmに設定した。
 また、シャワープレート5と基板10との間隔を7mm(ナローギャップ)に設定し、成膜空間の圧力を1400Paに設定した。
 そして、成膜ガスのSiHの流量(slm)とHの流量(slm)との比率を1:15に設定し、μc-Siを基板10上に成膜した。
Next, an example of forming μc-Si using the film forming apparatus 1 described above will be described.
As shown in Table 1, the power frequency applied from the RF power source 9 was set to 27.12 MHz, and the RFPower density was set to 1.2 W / cm 2 .
In addition, the distance between the shower plate 5 and the substrate 10 was set to 7 mm (narrow gap), and the pressure in the film formation space was set to 1400 Pa.
Then, the ratio of the flow rate (slm) of SiH 4 and the flow rate of H 2 (slm) as the deposition gas was set to 1:15, and μc-Si was deposited on the substrate 10.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 その結果、成膜速度は2.1nm/secであり、膜厚分布(膜厚均一性:thickness uniformity)が11%であるμc-Siの膜を成膜することができた。 As a result, a film formation rate was 2.1 nm / sec, and a μc-Si film having a film thickness distribution (thickness uniformity) of 11% could be formed.
 次に、図3に示すような従来の成膜装置を用いてμc-Siを成膜する比較例について説明する。
 表2に示すように、RF電源から印加する電力周波数を27.12MHzに設定し、RFPower密度を1.2W/cmに設定した。
 また、シャワープレート5と基板10との間隔を11mmに設定し、成膜空間の圧力を700Paに設定した。
 そして、成膜ガスのSiHの流量(slm)とHの流量(slm)との比率を1:15に設定し、μc-Siを基板10に成膜した。
Next, a comparative example in which μc-Si is formed using a conventional film forming apparatus as shown in FIG. 3 will be described.
As shown in Table 2, the power frequency applied from the RF power source was set to 27.12 MHz, and the RFPower density was set to 1.2 W / cm 2 .
Further, the distance between the shower plate 5 and the substrate 10 was set to 11 mm, and the pressure in the film formation space was set to 700 Pa.
Then, the ratio of the flow rate (slm) of SiH 4 and the flow rate of H 2 (slm) as the deposition gas was set to 1:15, and μc-Si was deposited on the substrate 10.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 その結果、成膜速度は1.1nm/secであり、膜厚分布(膜厚均一性)が23%であるμc-Siの膜が成膜された。 As a result, a film formation rate was 1.1 nm / sec, and a film of μc-Si having a film thickness distribution (film thickness uniformity) of 23% was formed.
 従って、本実施形態のように、絶縁プレート35の表面35cの位置と基板10の上面10aの位置とが基板10の鉛直方向において一致し、かつ、電極マスク43の表面43aの位置と第1シャワー面5aの位置とがシャワープレート5の鉛直方向において一致しているプラズマ処理装置を用いることにより、成膜速度を高速化でき、優れた膜厚分布(膜厚均一性)を有し、高品質なμc-Siを成膜することができる。 Therefore, as in the present embodiment, the position of the surface 35c of the insulating plate 35 and the position of the upper surface 10a of the substrate 10 coincide in the vertical direction of the substrate 10, and the position of the surface 43a of the electrode mask 43 and the first shower. By using a plasma processing apparatus in which the position of the surface 5a coincides in the vertical direction of the shower plate 5, the film forming speed can be increased, the film thickness distribution (film thickness uniformity) is excellent, and the quality is high. An appropriate μc-Si film can be formed.
 なお、本発明の技術範囲は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 すなわち、本実施形態で述べた具体的な材料又は構成等は本発明の一例であり、適宜変更が可能である。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
That is, the specific materials or configurations described in this embodiment are examples of the present invention, and can be changed as appropriate.
 例えば、本実施形態においては、絶縁プレート35の表面35cの位置と基板10の上面10aの位置とが基板10の鉛直方向において一致している構成を説明したが、基板10の上面の位置よりも絶縁プレート35の表面35cの位置が低い構成を採用してもよい。即ち、絶縁プレート35の厚さ(高さ)は、第2ベース面33aから、第1ベース面33に載置された基板10の上面10までの高さ以下である。
 同様に、本実施形態においては、電極マスク43の表面43aの位置と第1シャワー面5aの位置とがシャワープレート5の鉛直方向において一致している構成を説明したが、第1シャワー面5aの位置よりも電極マスク43の表面43aの位置が高い構成を採用してもよい。即ち、電極マスク43の厚さ(高さ)は、第2シャワー面5bから第1シャワー面5aまでの高さ以下である。 
For example, in the present embodiment, the configuration in which the position of the surface 35c of the insulating plate 35 and the position of the upper surface 10a of the substrate 10 coincide in the vertical direction of the substrate 10 has been described. A configuration in which the position of the surface 35c of the insulating plate 35 is low may be employed. That is, the thickness (height) of the insulating plate 35 is equal to or less than the height from the second base surface 33 a to the upper surface 10 of the substrate 10 placed on the first base surface 33.
Similarly, in the present embodiment, the configuration in which the position of the surface 43a of the electrode mask 43 and the position of the first shower surface 5a coincide in the vertical direction of the shower plate 5 has been described. A configuration in which the position of the surface 43a of the electrode mask 43 is higher than the position may be employed. That is, the thickness (height) of the electrode mask 43 is not more than the height from the second shower surface 5b to the first shower surface 5a.
 また、本実施形態においては、絶縁プレート35の表面35cの位置と基板10の上面10aの位置とが基板10の鉛直方向において一致している第1構成と、電極マスク43の表面43aの位置と第1シャワー面5aの位置とがシャワープレート5の鉛直方向において一致している第2構成とが組み合わされたプラズマ処理装置について説明したが、本発明は、この構成に限定されない。第1構成及び第2構成のうちいずれか一方の構成と、従来の構成とが組み合わされたプラズマ処理装置が採用されてもよい。
 つまり、基板10とシャワープレート5との間隔がナローギャップ(10mm以下)を実現するように設定されていれば、上述した効果が得られる。また、絶縁プレート35と電極マスク43との間に、成膜ガスをスムーズ排気するための十分な隙間が形成されていれば、上述した効果が得られる。
In the present embodiment, the first configuration in which the position of the surface 35c of the insulating plate 35 and the position of the upper surface 10a of the substrate 10 coincide with each other in the vertical direction of the substrate 10, and the position of the surface 43a of the electrode mask 43. Although the plasma processing apparatus was described in which the second configuration in which the position of the first shower surface 5a coincides in the vertical direction of the shower plate 5 has been described, the present invention is not limited to this configuration. A plasma processing apparatus in which one of the first configuration and the second configuration is combined with the conventional configuration may be employed.
That is, if the distance between the substrate 10 and the shower plate 5 is set so as to realize a narrow gap (10 mm or less), the above-described effects can be obtained. In addition, the above-described effects can be obtained if a sufficient gap is formed between the insulating plate 35 and the electrode mask 43 to smoothly exhaust the film forming gas.
 さらに、本実施形態において、絶縁プレート35の表面35cと基板10の上面10aとの境界部、及び電極マスク43の表面43aとシャワープレート5の第1シャワー面5aとの境界部においては、上面と側面とが略直角に交わるように形成されているが、この境界部における上面と側面との間に曲面を形成してもよい。
 このように境界部に曲面を形成することにより、異常放電の発生を抑制することができる。
Further, in the present embodiment, the boundary between the surface 35c of the insulating plate 35 and the upper surface 10a of the substrate 10, and the boundary between the surface 43a of the electrode mask 43 and the first shower surface 5a of the shower plate 5, Although the side surface is formed so as to intersect at a substantially right angle, a curved surface may be formed between the upper surface and the side surface at the boundary.
By forming a curved surface at the boundary portion in this way, it is possible to suppress the occurrence of abnormal discharge.
 以上詳述したように、本発明は、ナローギャッププロセスを行う場合であってもプラズマを電極間に閉じ込めることができるプラズマ処理装置に有用である。 As described in detail above, the present invention is useful for a plasma processing apparatus capable of confining plasma between electrodes even when a narrow gap process is performed.
 1…成膜装置(プラズマ処理装置) 2…真空チャンバ(チャンバ) 3…ベース部材 5…シャワープレート 5a…第1シャワー面 5b…第2シャワー面 6…ガス噴出孔 10…基板 10a…上面 10b…側面 10c…裏面 33…第1ベース面 33a…第2ベース面 34…ベース段差部 35…絶縁プレート 35a…第1当接面 35b…突出部 35c…表面 35d…第2当接面 42…シャワー段差部 43…電極マスク 43a…表面。
 
DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus (plasma processing apparatus) 2 ... Vacuum chamber (chamber) 3 ... Base member 5 ... Shower plate 5a ... 1st shower surface 5b ... 2nd shower surface 6 ... Gas ejection hole 10 ... Substrate 10a ... Upper surface 10b ... Side surface 10c ... Back surface 33 ... First base surface 33a ... Second base surface 34 ... Base step portion 35 ... Insulating plate 35a ... First contact surface 35b ... Projection portion 35c ... Surface 35d ... Second contact surface 42 ... Shower step Part 43 ... Electrode mask 43a ... Surface.

Claims (5)

  1.  プラズマ処理装置であって、
     プロセスガスが導入され、前記プロセスガスからなるプラズマが生成されるチャンバと、 
    基板が載置される第1ベース面,前記第1ベース面の周縁部に設けられた第2ベース面,及び前記第1ベース面と前記第2ベース面との間に設けられたベース段差部を有し、前記チャンバ内に配置されたベース部材と、
     前記第2ベース面から前記第1ベース面に載置された前記基板の上面までの高さ以下である高さを有し、前記第2ベース面上に配置され、絶縁物質で形成された絶縁プレートと、
    噴出孔が形成されている第1シャワー面,前記第1シャワー面の周縁部に設けられた第2シャワー面,及び前記第1シャワー面と前記第2シャワー面との間に設けられたシャワー段差部を有し、前記基板に向けて前記プロセスガスを供給し、前記チャンバ内に配置されたシャワープレートと、
     前記第2シャワー面から前記第1シャワー面までの高さ以下である高さを有し、前記絶縁プレートに対向するように前記第2シャワー面上に配置され、絶縁物質で形成された電極マスクと、
     を含むことを特徴とするプラズマ処理装置。
    A plasma processing apparatus,
    A chamber in which a process gas is introduced and a plasma composed of the process gas is generated;
    A first base surface on which a substrate is placed, a second base surface provided at a peripheral portion of the first base surface, and a base step portion provided between the first base surface and the second base surface A base member disposed in the chamber;
    An insulation having a height equal to or less than a height from the second base surface to an upper surface of the substrate placed on the first base surface, and disposed on the second base surface and formed of an insulating material Plates,
    A first shower surface in which an ejection hole is formed, a second shower surface provided at a peripheral portion of the first shower surface, and a shower step provided between the first shower surface and the second shower surface A shower plate disposed in the chamber, and supplying the process gas toward the substrate;
    An electrode mask having a height equal to or less than a height from the second shower surface to the first shower surface, disposed on the second shower surface so as to face the insulating plate, and formed of an insulating material. When,
    A plasma processing apparatus comprising:
  2.  請求項1に記載のプラズマ処理装置であって、
     前記絶縁プレートは、前記基板の側面に当接される第1当接面と、前記基板の前記上面とは反対の裏面に当接される第2当接面を有する突出部とを含むことを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to claim 1,
    The insulating plate includes a first abutting surface that abuts against a side surface of the substrate and a protrusion having a second abutting surface that abuts against a back surface opposite to the top surface of the substrate. A plasma processing apparatus.
  3.  プラズマ処理装置であって、
     プロセスガスが導入され、前記プロセスガスからなるプラズマが生成されるチャンバと、
     基板が載置される第1ベース面,前記第1ベース面の周縁部に設けられた第2ベース面,及び前記第1ベース面と前記第2ベース面との間に設けられたベース段差部を有し、前記チャンバ内に配置されたベース部材と、
     前記第2ベース面から前記第1ベース面に載置された前記基板の上面までの高さ以下である高さを有し、前記第2ベース面上に配置され、絶縁物質で形成された絶縁プレートと、
     前記基板に向けて前記プロセスガスを供給し、前記チャンバ内に配置されたシャワープレートと、
     前記絶縁プレートに対向するように前記シャワープレートの周縁部に配置され、絶縁物質で形成された電極マスクと、
     を含むことを特徴とするプラズマ処理装置。
    A plasma processing apparatus,
    A chamber in which a process gas is introduced and a plasma composed of the process gas is generated;
    A first base surface on which a substrate is placed, a second base surface provided at a peripheral portion of the first base surface, and a base step portion provided between the first base surface and the second base surface A base member disposed in the chamber;
    An insulation having a height equal to or less than a height from the second base surface to an upper surface of the substrate placed on the first base surface, and disposed on the second base surface and formed of an insulating material Plates,
    Supplying the process gas toward the substrate, and a shower plate disposed in the chamber;
    An electrode mask disposed on the peripheral edge of the shower plate so as to face the insulating plate, and formed of an insulating material;
    A plasma processing apparatus comprising:
  4.  請求項3に記載のプラズマ処理装置であって、
     前記絶縁プレートは、前記基板の側面に当接される第1当接面と、前記基板の前記上面とは反対の裏面に当接される第2当接面を有する突出部とを含むことを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to claim 3,
    The insulating plate includes a first abutting surface that abuts against a side surface of the substrate and a protrusion having a second abutting surface that abuts against a back surface opposite to the top surface of the substrate. A plasma processing apparatus.
  5.  プラズマ処理装置であって、
     プロセスガスが導入され、前記プロセスガスからなるプラズマが生成されるチャンバと、
     前記チャンバ内に配置され、基板が載置されるベース部材と、
     前記ベース部材の周縁部に配置され、絶縁物質で形成された絶縁プレートと、
     噴出孔が形成されている第1シャワー面,前記第1シャワー面の周縁部に設けられた第2シャワー面,及び前記第1シャワー面と前記第2シャワー面との間に設けられたシャワー段差部を有し、前記基板に向けて前記プロセスガスを供給し、前記チャンバ内に配置されたシャワープレートと、
     前記第2シャワー面から前記第1シャワー面までの高さ以下である高さを有し、前記絶縁プレートに対向するように前記第2シャワー面上に配置され、絶縁物質で形成された電極マスクと、
     を含むことを特徴とするプラズマ処理装置。
    A plasma processing apparatus,
    A chamber in which a process gas is introduced and a plasma composed of the process gas is generated;
    A base member disposed in the chamber and on which a substrate is placed;
    An insulating plate disposed on the periphery of the base member and formed of an insulating material;
    A first shower surface in which an ejection hole is formed, a second shower surface provided at a peripheral portion of the first shower surface, and a shower step provided between the first shower surface and the second shower surface A shower plate disposed in the chamber, and supplying the process gas toward the substrate;
    An electrode mask having a height equal to or less than a height from the second shower surface to the first shower surface, disposed on the second shower surface so as to face the insulating plate, and formed of an insulating material. When,
    A plasma processing apparatus comprising:
PCT/JP2010/000057 2009-01-09 2010-01-06 Plasma processing apparatus WO2010079753A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800040969A CN102272894A (en) 2009-01-09 2010-01-06 Plasma processing apparatus
JP2010545748A JP5394403B2 (en) 2009-01-09 2010-01-06 Plasma processing equipment
DE112010000717.9T DE112010000717B4 (en) 2009-01-09 2010-01-06 Plasma processing apparatus
KR1020117015198A KR101290738B1 (en) 2009-01-09 2010-01-06 Plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009004022 2009-01-09
JP2009-004022 2009-01-09

Publications (1)

Publication Number Publication Date
WO2010079753A1 true WO2010079753A1 (en) 2010-07-15

Family

ID=42316519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000057 WO2010079753A1 (en) 2009-01-09 2010-01-06 Plasma processing apparatus

Country Status (6)

Country Link
JP (1) JP5394403B2 (en)
KR (1) KR101290738B1 (en)
CN (1) CN102272894A (en)
DE (1) DE112010000717B4 (en)
TW (1) TW201110828A (en)
WO (1) WO2010079753A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031514A (en) * 2011-09-30 2013-04-10 北京北方微电子基地设备工艺研究中心有限责任公司 Shielding device, PVD device with the shielding device and control method of PVD device
CN112563158A (en) * 2019-09-26 2021-03-26 株式会社爱发科 Vacuum processing apparatus
KR20230143951A (en) 2022-04-06 2023-10-13 가부시키가이샤 아루박 Plasma processing apparatus
US11901162B2 (en) 2019-01-07 2024-02-13 Ulvac, Inc. Vacuum processing apparatus and method of cleaning vacuum processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227859A (en) * 1994-11-30 1996-09-03 Applied Materials Inc Cvd processing chamber
JPH08260158A (en) * 1995-01-27 1996-10-08 Kokusai Electric Co Ltd Substrate treating device
JPH0955374A (en) * 1995-06-08 1997-02-25 Tokyo Electron Ltd Plasma treatment apparatus
JPH09205132A (en) * 1996-01-25 1997-08-05 Sumitomo Metal Ind Ltd Clamping plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW434745B (en) * 1995-06-07 2001-05-16 Tokyo Electron Ltd Plasma processing apparatus
JP3002448B1 (en) * 1998-07-31 2000-01-24 国際電気株式会社 Substrate processing equipment
CN1249777C (en) * 2001-08-27 2006-04-05 松下电器产业株式会社 Device and method for plasma treatment
CN100418187C (en) * 2003-02-07 2008-09-10 东京毅力科创株式会社 Plasma processing device, annular element and plasma processing method
JP4972327B2 (en) * 2006-03-22 2012-07-11 東京エレクトロン株式会社 Plasma processing equipment
JP4116066B1 (en) 2007-06-21 2008-07-09 七山 美智賜 Magnetic data erasing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227859A (en) * 1994-11-30 1996-09-03 Applied Materials Inc Cvd processing chamber
JPH08260158A (en) * 1995-01-27 1996-10-08 Kokusai Electric Co Ltd Substrate treating device
JPH0955374A (en) * 1995-06-08 1997-02-25 Tokyo Electron Ltd Plasma treatment apparatus
JPH09205132A (en) * 1996-01-25 1997-08-05 Sumitomo Metal Ind Ltd Clamping plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031514A (en) * 2011-09-30 2013-04-10 北京北方微电子基地设备工艺研究中心有限责任公司 Shielding device, PVD device with the shielding device and control method of PVD device
US11901162B2 (en) 2019-01-07 2024-02-13 Ulvac, Inc. Vacuum processing apparatus and method of cleaning vacuum processing apparatus
CN112563158A (en) * 2019-09-26 2021-03-26 株式会社爱发科 Vacuum processing apparatus
KR20210036807A (en) 2019-09-26 2021-04-05 가부시키가이샤 아루박 Vacuum processing apparatus
CN112563158B (en) * 2019-09-26 2024-04-19 株式会社爱发科 Vacuum processing apparatus
KR20230143951A (en) 2022-04-06 2023-10-13 가부시키가이샤 아루박 Plasma processing apparatus
JP7510457B2 (en) 2022-04-06 2024-07-03 株式会社アルバック Plasma Processing Equipment

Also Published As

Publication number Publication date
DE112010000717T5 (en) 2012-07-05
JPWO2010079753A1 (en) 2012-06-21
CN102272894A (en) 2011-12-07
TW201110828A (en) 2011-03-16
DE112010000717T8 (en) 2013-04-18
JP5394403B2 (en) 2014-01-22
KR20110089453A (en) 2011-08-08
KR101290738B1 (en) 2013-07-29
DE112010000717B4 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP5274229B2 (en) Plasma CVD apparatus and method
JP5328814B2 (en) Plasma processing apparatus and plasma CVD film forming method
WO2010079756A1 (en) Plasma processing apparatus
US20100024729A1 (en) Methods and apparatuses for uniform plasma generation and uniform thin film deposition
US20070221129A1 (en) Apparatus for depositing atomic layer using gas separation type showerhead
US8906471B2 (en) Method of depositing metallic film by plasma CVD and storage medium
JP6050860B1 (en) Plasma atomic layer growth equipment
JP6778553B2 (en) Atomic layer growth device and atomic layer growth method
JP5378416B2 (en) Plasma processing equipment
JP5394403B2 (en) Plasma processing equipment
JP5022077B2 (en) Deposition equipment
JP2000223429A (en) Film-forming device, film-forming method and cleaning method therefor
JP2010161316A (en) Plasma processing device
JP4933979B2 (en) Cleaning method for film forming apparatus
JP2006331740A (en) Plasma processor
WO2010079740A1 (en) Plasma processing apparatus
KR20120073839A (en) Gas spraying apparatus and substrate processing apparatus having the same
KR102298836B1 (en) An Upper Electrode For Plasma Chemical Vapor Deposition Equipment
JP2001140077A (en) Semi-conductor manufacturing device
JP5302835B2 (en) Plasma processing equipment
JP2005330518A (en) Plasma treatment device
JP2005310834A (en) Plasma processing apparatus
JP2007291442A (en) Film deposition apparatus, and film deposition method
JP2010182729A (en) Plasma cvd device
JPH10149995A (en) Plasma enhanced cvd device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004096.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010545748

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117015198

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112010000717

Country of ref document: DE

Ref document number: 1120100007179

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10729173

Country of ref document: EP

Kind code of ref document: A1