WO2010079740A1 - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
WO2010079740A1
WO2010079740A1 PCT/JP2010/000028 JP2010000028W WO2010079740A1 WO 2010079740 A1 WO2010079740 A1 WO 2010079740A1 JP 2010000028 W JP2010000028 W JP 2010000028W WO 2010079740 A1 WO2010079740 A1 WO 2010079740A1
Authority
WO
WIPO (PCT)
Prior art keywords
base member
wall surface
substrate
vacuum chamber
chamber
Prior art date
Application number
PCT/JP2010/000028
Other languages
French (fr)
Japanese (ja)
Inventor
若松貞次
亀崎厚治
菊池正志
神保洋介
江藤謙次
浅利伸
内田寛人
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to DE112010000818T priority Critical patent/DE112010000818T8/en
Priority to KR1020117016415A priority patent/KR101303968B1/en
Priority to CN2010800039891A priority patent/CN102272893A/en
Priority to JP2010545742A priority patent/JPWO2010079740A1/en
Publication of WO2010079740A1 publication Critical patent/WO2010079740A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a plasma processing apparatus.
  • This application claims priority based on Japanese Patent Application No. 2009-004027 filed on Jan. 9, 2009, the contents of which are incorporated herein by reference.
  • a plasma CVD apparatus that decomposes a source gas using plasma and forms a thin film on a substrate is known (see, for example, Patent Document 1).
  • a solar cell particularly a solar cell using microcrystal silicon ( ⁇ c-Si)
  • ⁇ c-Si microcrystal silicon
  • a high-pressure depletion method is effective in a state where the distance between the shower plate surface for ejecting deposition gas to the substrate surface and the substrate surface is narrow (narrow gap).
  • a plasma CVD apparatus is indispensable for manufacturing LCDs or solar cells. As the size of the substrate increases, the size of the device also increases.
  • the high-frequency power supplied to the apparatus also increases, and further, high-rate film formation by narrow gap discharge is necessary, so that it is necessary to pass a large current through the apparatus.
  • a substrate 110 is placed on a base member 103, and a film formation surface (surface) of the substrate 110 and a surface of the shower plate 105 are opposed to each other. In this state, a film is formed on the substrate 110.
  • a ground plate 130 is provided between the base member 103 and the chamber 102, and a film is formed on the substrate 110 with the chamber 102 grounded. ing.
  • the side surface 132 of the base member 103 and the inner wall surface 134 of the chamber 102 face each other at a short distance, and both the base member 103 and the chamber 102 are formed of a conductive member. .
  • the high-frequency current I ′ flows in the direction of the arrow in FIG. 4 and an abnormality occurs between the side surface 132 of the base member 103 and the inner wall surface 134 of the chamber 102.
  • the present invention has been made in view of the above-described circumstances, and suppresses the occurrence of abnormal discharge even when a large current flows through the apparatus when supplying high-frequency high power to the apparatus.
  • a plasma processing apparatus capable of
  • a plasma processing apparatus includes an electrode flange, a chamber having an inner wall surface, an insulating flange disposed between the electrode flange and the chamber, and a side surface.
  • a base member that is disposed in the chamber and on which the substrate is placed, an RF power source that is connected to the electrode flange and applies a high-frequency voltage, the side surface of the base member that faces the inner wall surface, and And an insulating member disposed on at least one of the inner wall surfaces facing the side surface of the base member.
  • the conductive member is not disposed so as to face the exposed surface. Therefore, it is possible to suppress the occurrence of abnormal discharge between the side surface of the base member and the inner wall surface of the chamber. As a result, the upper limit value of the high frequency power that can be supplied to the apparatus can be increased.
  • the side surface of the base member facing the inner wall surface is electrically connected to the inner wall surface facing the side surface of the base member.
  • the insulating member is provided.
  • the insulating member is provided at a position where the distance between the side surface of the base member and the inner wall surface of the chamber is the shortest distance, abnormal discharge is caused between the side surface of the base member and the inner wall surface of the chamber. It can suppress more reliably that it arises. As a result, the upper limit value of the high frequency power that can be supplied to the apparatus can be increased.
  • the chamber is preferably grounded.
  • the conductive member is not disposed so as to face the exposed surface. Therefore, it is possible to suppress the occurrence of abnormal discharge between the side surface of the base member and the inner wall surface of the chamber. As a result, the upper limit value of the high frequency power that can be supplied to the apparatus can be increased.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a film forming apparatus in the present embodiment.
  • a film forming apparatus 1 that performs a plasma CVD method includes a vacuum chamber 2 (chamber). An opening is formed in the bottom 11 of the vacuum chamber 2. A support column 25 is inserted into the opening, and the support column 25 is disposed in the lower portion of the vacuum chamber 2. A plate-like base member 3 with a built-in heater 16 is connected to the tip of the column 25 (in the vacuum chamber 2). An electrode flange 4 is attached to the upper portion of the vacuum chamber 2 via an insulating flange 31. Further, an exhaust pipe 27 is connected to the vacuum chamber 2. A vacuum pump 28 is provided at the tip of the exhaust pipe 27. The vacuum pump 28 reduces the pressure so that the inside of the vacuum chamber 2 is in a vacuum state. Further, an outer frame 12 including an insulating flange 31 and an electrode flange 4 is provided above the vacuum chamber 2.
  • the support column 25 is connected to an elevating mechanism (not shown) provided outside the vacuum chamber 2 and can move up and down in the vertical direction of the substrate 10.
  • the base member 3 connected to the tip of the support column 25 is configured to be able to move up and down.
  • a bellows 26 is provided outside the vacuum chamber 2 so as to cover the outer periphery of the support column 25.
  • the electrode flange 4 is provided on the insulating flange 31 and is arranged so that the opening of the electrode flange 4 is located below in the vertical direction of the substrate 10.
  • a shower plate 5 is attached to the opening of the electrode flange 4, that is, at a position where the electrode flange 4 faces the film formation space.
  • a space 24 is formed between the shower plate 5 and the electrode flange 4.
  • a gas introduction pipe 7 is connected to the electrode flange 4. Outside the film forming apparatus 1, the gas introduction pipe 7 is connected to the film forming gas supply unit 21.
  • a source gas for example, SiH 4
  • the shower plate 5 is provided with a large number of gas ejection ports 6. The film forming gas introduced into the space 24 is ejected from the gas ejection port 6 into the vacuum chamber 2.
  • the electrode flange 4 and the shower plate 5 are made of a conductive material.
  • the electrode flange 4 is connected to an RF power source (high frequency power source) 9 provided outside the vacuum chamber 2.
  • a gas introduction pipe 8 different from the gas introduction pipe 7 is connected to the vacuum chamber 2.
  • the gas introduction pipe 8 is provided with a fluorine gas supply unit 22 and a radical source 23.
  • the radical source 23 decomposes the fluorine gas supplied from the fluorine gas supply unit 22.
  • the gas introduction pipe 8 supplies fluorine radicals obtained by decomposing fluorine gas to the film forming space in the vacuum chamber 2.
  • the base member 3 is a substantially plate-like member having a flat surface.
  • a substrate 10 is placed on the upper surface of the base member 3.
  • the base member 3 functions as a ground electrode and is made of, for example, an aluminum alloy.
  • materials other than said material may be employ
  • the distance between the substrate 10 and the shower plate 5 can be set to 3 mm to 10 mm, that is, a narrow gap can be realized.
  • a heater 16 is provided inside the base member 3.
  • the temperature of the base member 3 is adjusted to a predetermined temperature by the heater 16.
  • the power supply line 18 of the heater 16 protrudes from a substantially central portion of the base member 3 as viewed from the vertical direction of the base member 3 and the bottom surface 17 of the base member 3, is inserted into the support column 25, and is external to the vacuum chamber 2. Led to.
  • the power line 18 of the heater 16 is connected to a power source (not shown) outside the vacuum chamber 2 to adjust the temperature of the base member 3.
  • ground plates 30 that connect between the base member 3 and the vacuum chamber 2 are arranged at substantially equal intervals along the circumferential direction of the base member 3.
  • the earth plate 30 is made of a flexible metal plate, and is made of, for example, a nickel-based alloy or an aluminum alloy.
  • the material of the earth plate 30 other materials may be adopted as long as they are made of a conductive material having a width of about 10 to 200 mm, have high corrosion resistance, and have flexibility.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the plasma CVD apparatus in the embodiment of the present invention, and is an enlarged cross-sectional view showing a portion indicated by reference numeral A in FIG.
  • a locking portion 33 that locks the ground plate 30 is formed on the side surface (peripheral edge) 32 of the base member 3.
  • the locking portion 33 is formed so as to protrude from the side surface 32 in the horizontal direction (the direction horizontal to the substrate 10).
  • the first end 30a of the ground plate 30 is locked and is electrically joined by a bolt (not shown) or the like.
  • the second end 30b of the ground plate 30 is electrically joined to the inner wall surface 34 of the vacuum chamber 2 by a bolt (not shown) or the like. That is, the base member 3 and the vacuum chamber 2 are electrically connected by the ground plate 30.
  • the plurality of ground plates 30 are arranged at substantially equal intervals along the periphery of the base member 3.
  • the second end 30 b of the earth plate 30 is connected to the inner wall surface 34 of the vacuum chamber 2.
  • the ground plate 30 extends downward from the connecting portion between the second end 30 b and the inner wall surface 34 along the inner wall surface 34.
  • the earth plate 30 is folded back into a substantially U shape without extending to the bottom 11 of the vacuum chamber 2 and extends upward. That is, the ground plate 30 has a bent portion located between the first end 30a and the second end 30b.
  • the ground plate 30 extending upward from the bent portion is folded back at a locking portion 33 formed on the side surface 32 of the base member 3.
  • a first end 30 a of the ground plate 30 is connected to the base member 3.
  • the insulating member 41 is disposed on the side surface 32 of the base member 3 so as to cover the side surface 32 and the first end 30a of the earth plate 30.
  • An insulating member 42 is disposed on the inner wall surface 34 of the vacuum chamber 2 so as to cover the inner wall surface 34 and the second end 30 b of the earth plate 30. Note that the insulating member 41 and the insulating member 42 face each other.
  • the vacuum chamber 2 is depressurized using the vacuum pump 28.
  • the substrate 10 is carried into the vacuum chamber 2 and placed on the base member 3.
  • the base member 3 is positioned below the vacuum chamber 2. That is, before the substrate 10 is carried in, the distance between the base member 3 and the shower plate 5 is wide, so that the substrate 10 can be easily placed on the base member 3 using a robot arm (not shown). can do.
  • an elevating device (not shown) is activated, the support column 25 is pushed upward, and the substrate 10 placed on the base member 3 also moves upward. To do.
  • the interval between the shower plate 5 and the substrate 10 is determined as desired so that the interval necessary for proper film formation is achieved, and this interval is maintained.
  • the distance between the shower plate 5 and the substrate 10 is maintained at a distance suitable for forming a film on the substrate 10.
  • the distance between the substrate 10 and the shower plate 5 is set to a narrow gap of 3 to 10 mm.
  • a film forming gas raw material gas
  • the film forming gas is supplied into the vacuum chamber 2 through the gas outlet 6.
  • the electrode flange 4 is electrically insulated from the vacuum chamber 2 through an insulating flange 31. With the vacuum chamber 2 connected to the ground potential, the RF power source 9 is activated, and a high frequency voltage is applied to the electrode flange 4. As a result, a high frequency voltage is supplied between the shower plate 5 and the base member 3 to generate a discharge, and plasma is generated between the electrode flange 4 and the substrate 10. The film forming gas is decomposed in the plasma generated in this way, a plasma process gas is obtained, a vapor phase growth reaction occurs on the surface of the substrate 10, and a thin film is formed on the substrate 10.
  • a high frequency current I flows in the apparatus.
  • the high-frequency current I flows from the RF power source 9 to the surface of the electrode flange 4 and then flows to the surface of the shower plate 5.
  • plasma is generated in the film formation space, and the high-frequency current I flows from the shower plate 5 to the base member 3 (substrate 10).
  • the high-frequency current I that has reached the base member 3 flows on the surface of the base member 3 and flows in the ground plate 30.
  • the high-frequency current I flowing from the first end 30 a to the second end 30 b of the ground plate 30 flows on the surface of the outer frame 12 after flowing on the surface of the vacuum chamber 2.
  • the film forming material adheres to the inner side surface 34 and the like of the vacuum chamber 2, so that the inside of the vacuum chamber 2 is periodically cleaned.
  • the fluorine gas supplied from the fluorine gas supply unit 22 is decomposed by the radical source 23 to generate fluorine radicals.
  • the fluorine radicals pass through the gas introduction pipe 8 connected to the vacuum chamber 2 and pass through the vacuum chamber 2. To be supplied.
  • a chemical reaction occurs, and the attachment attached to the members disposed around the vacuum chamber 2 or the inner side surface 34 of the vacuum chamber 2. The kimono is removed.
  • the conductive members are not arranged to face each other while being exposed. Therefore, when supplying high frequency high power to the apparatus, even if a large current flows through the apparatus, abnormal discharge occurs between the side surface 32 of the base member 3 and the inner wall surface 34 of the vacuum chamber 2. Can be suppressed. As a result, the upper limit value of the high frequency power that can be supplied to the film forming apparatus 1 can be increased.
  • the power frequency applied to the film forming apparatus 1 from the RF power source 9 was set to 27.12 MHz.
  • the size of the shower plate 5 (size viewed from the vertical direction of the substrate 10) is set to 1300 mm ⁇ 1600 mm, and the size of the base member 3 (size viewed from the vertical direction of the substrate 10) is set to 1400 mm ⁇ 1700 mm.
  • the size of the substrate 10 was set to 1100 mm ⁇ 1400 mm.
  • the ratio of the flow rate of SiH 4 that is the deposition gas and the flow rate of H 2 was set to 1:25, and ⁇ c-Si was deposited on the substrate 10.
  • the distance (ES) between the shower plate 5 and the substrate 10 was changed every 4 mm between 4 mm and 10 mm. Further, the maximum power that can be supplied to the film forming apparatus 1 when the pressure in the film forming space was set to 700 Pa, 1300 Pa, and 2000 Pa was measured.
  • Table 1 shows the measurement results. “Unmeasured” indicates a result when the insulating members 41 and 42 are not arranged as in the conventional film forming apparatus. “Countermeasured” indicates the result when the insulating members 41 and 42 are arranged as in the film forming apparatus 1 of the present embodiment. Even when the distance between the shower plate 5 and the substrate 10 is changed and when the pressure in the film formation space is changed, the measurement result of “measured” is higher than the measurement result of “unmeasured”. I understand that. That is, the maximum power value that can be supplied to the “measured” film forming apparatus 1 can be increased.
  • the insulating members 41 and 42 on the side surface 32 of the base member 3 and the inner wall surface 34 of the vacuum chamber 2 as in the present embodiment a large current is supplied to the device when supplying high-frequency high power to the device. Even if it flows, it is possible to suppress the occurrence of abnormal discharge between the side surface 32 of the base member 3 and the inner wall surface 34 of the vacuum chamber 2. Therefore, the maximum power value that can be supplied to the film forming apparatus 1 can be increased. As a result, when the ⁇ c-Si film is formed with a narrow gap between the substrate 10 and the shower plate 5, the film formation rate can be increased, and high-quality ⁇ c-Si film can be formed.
  • the configuration in which the insulating member is disposed on both the side surface of the base member and the inner wall surface of the vacuum chamber has been described, but it is only necessary that the insulating member is disposed on at least one of them.
  • the configuration in which the insulating member is disposed on the side surface of the base member and the inner wall surface of the vacuum chamber has been described.
  • the surface of the earth plate may be covered with the insulating member.
  • the present invention is useful for a plasma processing apparatus capable of suppressing the occurrence of abnormal discharge even when a large current flows through the apparatus when supplying high-frequency high power to the apparatus. is there.
  • SYMBOLS 1 Film-forming apparatus (plasma processing apparatus) 2 ... Vacuum chamber (chamber) 3 ... Base member 4 ... Electrode flange 10 ... Substrate 31 ... Insulating flange 32 ... Side surface of base member 34 ... Inner wall surface of vacuum chamber 41 ... Insulating member 42 ... insulating members.

Abstract

Disclosed is a plasma processing apparatus which comprises: an electrode flange (4); a chamber (2) having an inner wall surface (34); an insulating flange (31) arranged between the electrode flange (4) and the chamber (2); a base member (3) which has a lateral surface (32) and is arranged within the chamber (2), and on which a substrate (10) is placed; an RF power supply (9) which is connected to the electrode flange (4) and applies a high-frequency voltage thereto; and insulating members (41, 42) which are arranged on at least either the lateral surface (32) of the base member (3), which faces the inner wall surface (34), or the inner wall surface (34), which faces the lateral surface (32) of the base member (3).

Description

プラズマ処理装置Plasma processing equipment
 本発明は、プラズマ処理装置に関する。
 本願は、2009年1月9日に出願された特願2009-004027号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a plasma processing apparatus.
This application claims priority based on Japanese Patent Application No. 2009-004027 filed on Jan. 9, 2009, the contents of which are incorporated herein by reference.
 従来から、プラズマを用いて原料ガスを分解し、基板上に薄膜を形成するプラズマCVD装置が知られている(例えば、特許文献1参照)。このプラズマCVD装置を用いて、太陽電池、特にマイクロクリスタルシリコン(μc-Si)を利用した太陽電池を製造する際には、生産性の観点から成膜速度の高速化が必要である。
 成膜速度の高速化を実現するためには、成膜ガスを基板表面に噴出するシャワープレート表面と基板表面との距離を狭くした状態(ナローギャップ)における高圧枯渇法が有効である。
 一方、LCD又は太陽電池を製造するためにプラズマCVD装置は欠かせない。基板の大型化に伴い、装置サイズも大型化している。基板面積が大きくなるにつれ、装置に供給する高周波電力も増加しており、更にナローギャップ放電によるハイレート成膜が必要であるために、大電流を装置内に流すことが必要になってきている。
 例えば、図4に示すように、従来のプラズマCVD装置100においては、ベース部材103上に基板110が載置され、基板110の被成膜面(表面)とシャワープレート105の表面とを対向させた状態で、基板110上に膜を形成している。このとき、ベース部材103の電位を接地電位にする必要があるため、ベース部材103とチャンバ102との間にアースプレート130を設け、チャンバ102が接地された状態で基板110上に膜を形成している。
2. Description of the Related Art Conventionally, a plasma CVD apparatus that decomposes a source gas using plasma and forms a thin film on a substrate is known (see, for example, Patent Document 1). When a solar cell, particularly a solar cell using microcrystal silicon (μc-Si), is manufactured using this plasma CVD apparatus, it is necessary to increase the deposition rate from the viewpoint of productivity.
In order to increase the deposition rate, a high-pressure depletion method is effective in a state where the distance between the shower plate surface for ejecting deposition gas to the substrate surface and the substrate surface is narrow (narrow gap).
On the other hand, a plasma CVD apparatus is indispensable for manufacturing LCDs or solar cells. As the size of the substrate increases, the size of the device also increases. As the substrate area increases, the high-frequency power supplied to the apparatus also increases, and further, high-rate film formation by narrow gap discharge is necessary, so that it is necessary to pass a large current through the apparatus.
For example, as shown in FIG. 4, in the conventional plasma CVD apparatus 100, a substrate 110 is placed on a base member 103, and a film formation surface (surface) of the substrate 110 and a surface of the shower plate 105 are opposed to each other. In this state, a film is formed on the substrate 110. At this time, since the potential of the base member 103 needs to be the ground potential, a ground plate 130 is provided between the base member 103 and the chamber 102, and a film is formed on the substrate 110 with the chamber 102 grounded. ing.
特開2008-244079号公報JP 2008-244079 A
 ところで、従来のプラズマCVD装置100においては、ベース部材103の側面132とチャンバ102の内壁面134とが近距離で対向しており、ベース部材103及びチャンバ102の両者は導電部材で形成されている。このため、上述したように、CVD装置100に大電流を流した場合、高周波電流I´が図4の矢印方向に流れ、ベース部材103の側面132とチャンバ102の内壁面134との間で異常放電が生じる虞がある。このため、異常放電に起因するインピーダンスの不整合が生じ、CVD装置100に供給できる電力の上限値が低下するという問題がある。 By the way, in the conventional plasma CVD apparatus 100, the side surface 132 of the base member 103 and the inner wall surface 134 of the chamber 102 face each other at a short distance, and both the base member 103 and the chamber 102 are formed of a conductive member. . For this reason, as described above, when a large current is passed through the CVD apparatus 100, the high-frequency current I ′ flows in the direction of the arrow in FIG. 4 and an abnormality occurs between the side surface 132 of the base member 103 and the inner wall surface 134 of the chamber 102. There is a risk of discharge. For this reason, impedance mismatching due to abnormal discharge occurs, and there is a problem that the upper limit value of power that can be supplied to the CVD apparatus 100 is lowered.
 そこで、この発明は、上述した事情に鑑みてなされたものであって、高周波の高電力を装置に供給する時に、装置に大電流が流れる場合であっても、異常放電の発生を抑制することができるプラズマ処理装置を提供する。 Therefore, the present invention has been made in view of the above-described circumstances, and suppresses the occurrence of abnormal discharge even when a large current flows through the apparatus when supplying high-frequency high power to the apparatus. Provided is a plasma processing apparatus capable of
 上記の課題を解決するために、本発明の第1態様のプラズマ処理装置は、電極フランジと、内壁面を有するチャンバと、前記電極フランジと前記チャンバとの間に配置された絶縁フランジと、側面を有し、前記チャンバ内に配置され、基板が載置されるベース部材と、前記電極フランジに接続され、高周波電圧を印加するRF電源と、前記内壁面に対向する前記ベース部材の前記側面及び前記ベース部材の側面に対向する前記内壁面の少なくともいずれか一方に配置された絶縁部材とを含む。 In order to solve the above problems, a plasma processing apparatus according to a first aspect of the present invention includes an electrode flange, a chamber having an inner wall surface, an insulating flange disposed between the electrode flange and the chamber, and a side surface. A base member that is disposed in the chamber and on which the substrate is placed, an RF power source that is connected to the electrode flange and applies a high-frequency voltage, the side surface of the base member that faces the inner wall surface, and And an insulating member disposed on at least one of the inner wall surfaces facing the side surface of the base member.
 この構成によれば、ベース部材の側面及びチャンバの内壁面の少なくともいずれか一方が絶縁部材で覆われるため、導電部材が露出しながら対向するように配置されていない。従って、ベース部材の側面とチャンバの内壁面との間で異常放電が生じるのを抑制することができる。結果として、装置に供給できる高周波電力の上限値を上昇させることができる。 According to this configuration, since at least one of the side surface of the base member and the inner wall surface of the chamber is covered with the insulating member, the conductive member is not disposed so as to face the exposed surface. Therefore, it is possible to suppress the occurrence of abnormal discharge between the side surface of the base member and the inner wall surface of the chamber. As a result, the upper limit value of the high frequency power that can be supplied to the apparatus can be increased.
 本発明の第1態様のプラズマ処理装置においては、前記内壁面に対向する前記ベース部材の側面は、前記ベース部材の側面に対向する前記内壁面に電気的に接続されていることが好ましい。 In the plasma processing apparatus according to the first aspect of the present invention, it is preferable that the side surface of the base member facing the inner wall surface is electrically connected to the inner wall surface facing the side surface of the base member.
 この構成によれば、電極フランジに高周波の高電力を供給したときに、高周波電流を電極フランジからベース部材を介してチャンバに流すことができる。従って、電極フランジとベース部材との間にプラズマを発生させることができる。 According to this configuration, when a high frequency high power is supplied to the electrode flange, a high frequency current can flow from the electrode flange to the chamber via the base member. Therefore, plasma can be generated between the electrode flange and the base member.
 本発明の第1態様のプラズマ処理装置においては、前記内壁面に対向する前記ベース部材の前記側面及び前記ベース部材の側面に対向する前記内壁面との距離が最短である少なくともいずれか一方の位置に、前記絶縁部材が設けられていることが好ましい。 In the plasma processing apparatus according to the first aspect of the present invention, at least one position where the distance between the side surface of the base member facing the inner wall surface and the inner wall surface facing the side surface of the base member is the shortest. Preferably, the insulating member is provided.
 この構成によれば、ベース部材の側面とチャンバの内壁面との距離が最短距離である位置に絶縁部材が設けられているため、ベース部材の側面とチャンバの内壁面との間で異常放電が生じることをより確実に抑制することができる。結果として、装置に供給できる高周波電力の上限値を上昇させることができる。 According to this configuration, since the insulating member is provided at a position where the distance between the side surface of the base member and the inner wall surface of the chamber is the shortest distance, abnormal discharge is caused between the side surface of the base member and the inner wall surface of the chamber. It can suppress more reliably that it arises. As a result, the upper limit value of the high frequency power that can be supplied to the apparatus can be increased.
 本発明の第1態様のプラズマ処理装置においては、前記チャンバは、接地されていることが好ましい。 In the plasma processing apparatus according to the first aspect of the present invention, the chamber is preferably grounded.
 この構成によれば、電極フランジに高周波の高電力を供給したときに、高周波電流を電極フランジからベース部材を介してチャンバに流すことができる。また、チャンバの電位が接地電位に保持されていることにより、電極フランジとベース部材との間にプラズマを安定して発生させることができる。 According to this configuration, when a high frequency high power is supplied to the electrode flange, a high frequency current can flow from the electrode flange to the chamber via the base member. Further, since the potential of the chamber is maintained at the ground potential, plasma can be stably generated between the electrode flange and the base member.
 本発明によれば、ベース部材の側面及びチャンバの内壁面の少なくともいずれか一方が絶縁部材で覆われているため、導電部材が露出しながら対向するように配置されていない。従って、ベース部材の側面とチャンバの内壁面との間で異常放電が生じるのを抑制することができる。結果として、装置に供給できる高周波電力の上限値を上昇させることができる。 According to the present invention, since at least one of the side surface of the base member and the inner wall surface of the chamber is covered with the insulating member, the conductive member is not disposed so as to face the exposed surface. Therefore, it is possible to suppress the occurrence of abnormal discharge between the side surface of the base member and the inner wall surface of the chamber. As a result, the upper limit value of the high frequency power that can be supplied to the apparatus can be increased.
本発明の実施形態におけるプラズマCVD装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the plasma CVD apparatus in embodiment of this invention. 本発明の実施形態におけるプラズマCVD装置の構成を示す概略断面図であって、図1において符号Aで示された部分を拡大して示した断面図である。It is a schematic sectional drawing which shows the structure of the plasma CVD apparatus in embodiment of this invention, Comprising: It is sectional drawing which expanded and showed the part shown by the code | symbol A in FIG. 本発明の実施形態におけるプラズマCVD装置に流れる電流のルートを説明する図である。It is a figure explaining the route | root of the electric current which flows into the plasma CVD apparatus in embodiment of this invention. 従来のプラズマCVD装置の構成を示す概略断面図であって、図2に対応する部分を示す断面図である。It is a schematic sectional drawing which shows the structure of the conventional plasma CVD apparatus, Comprising: It is sectional drawing which shows the part corresponding to FIG.
 以下、本発明に係るプラズマ処理装置の実施形態を図面に基づき説明する。
 また、以下の説明に用いる各図においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法及び比率を実際のものとは適宜に異ならせてある。
 また、本実施形態においては、プラズマCVD法を用いた成膜装置を説明する。
Hereinafter, embodiments of a plasma processing apparatus according to the present invention will be described with reference to the drawings.
In the drawings used for the following description, the dimensions and ratios of the respective components are appropriately changed from the actual ones in order to make the respective components large enough to be recognized on the drawings.
In this embodiment, a film forming apparatus using a plasma CVD method will be described.
 図1は、本実施形態における成膜装置の構成を示す概略断面図である。
 図1に示すように、プラズマCVD法を実施する成膜装置1は、真空チャンバ2(チャンバ)を有している。
 真空チャンバ2の底部11には、開口部が形成されている。この開口部には支柱25が挿通され、支柱25は真空チャンバ2の下部に配置されている。支柱25の先端(真空チャンバ2内)には、ヒータ16が内蔵された板状のベース部材3が接続されている。真空チャンバ2の上部には、絶縁フランジ31を介して電極フランジ4が取り付けられている。また、真空チャンバ2には、排気管27が接続されている。排気管27の先端には、真空ポンプ28が設けられている。真空ポンプ28は、真空チャンバ2内が真空状態となるように減圧する。更に、真空チャンバ2の上方には、絶縁フランジ31及び電極フランジ4を包含する外枠12が設けられている。
FIG. 1 is a schematic cross-sectional view showing a configuration of a film forming apparatus in the present embodiment.
As shown in FIG. 1, a film forming apparatus 1 that performs a plasma CVD method includes a vacuum chamber 2 (chamber).
An opening is formed in the bottom 11 of the vacuum chamber 2. A support column 25 is inserted into the opening, and the support column 25 is disposed in the lower portion of the vacuum chamber 2. A plate-like base member 3 with a built-in heater 16 is connected to the tip of the column 25 (in the vacuum chamber 2). An electrode flange 4 is attached to the upper portion of the vacuum chamber 2 via an insulating flange 31. Further, an exhaust pipe 27 is connected to the vacuum chamber 2. A vacuum pump 28 is provided at the tip of the exhaust pipe 27. The vacuum pump 28 reduces the pressure so that the inside of the vacuum chamber 2 is in a vacuum state. Further, an outer frame 12 including an insulating flange 31 and an electrode flange 4 is provided above the vacuum chamber 2.
 また、支柱25は、真空チャンバ2の外部に設けられた昇降機構(不図示)に接続されており、基板10の鉛直方向において上下に移動可能である。つまり、支柱25の先端に接続されているベース部材3は、上下方向に昇降可能に構成されている。また、真空チャンバ2の外部においては、支柱25の外周を覆うようにベローズ26が設けられている。 The support column 25 is connected to an elevating mechanism (not shown) provided outside the vacuum chamber 2 and can move up and down in the vertical direction of the substrate 10. In other words, the base member 3 connected to the tip of the support column 25 is configured to be able to move up and down. A bellows 26 is provided outside the vacuum chamber 2 so as to cover the outer periphery of the support column 25.
 電極フランジ4は、絶縁フランジ31上に設けられており、電極フランジ4の開口部が基板10の鉛直方向において下方に位置するように配置されている。電極フランジ4の開口部には、即ち、電極フランジ4が成膜空間に面している位置には、シャワープレート5が取り付けられている。そして、シャワープレート5と電極フランジ4との間に空間24が形成されている。 The electrode flange 4 is provided on the insulating flange 31 and is arranged so that the opening of the electrode flange 4 is located below in the vertical direction of the substrate 10. A shower plate 5 is attached to the opening of the electrode flange 4, that is, at a position where the electrode flange 4 faces the film formation space. A space 24 is formed between the shower plate 5 and the electrode flange 4.
 また、電極フランジ4にはガス導入管7が接続されている。成膜装置1の外部においては、ガス導入管7が成膜ガス供給部21に接続されている。成膜ガス供給部21からガス導入管7を通じて空間24内に原料ガス(例えば、SiH)が供給される。また、シャワープレート5には多数のガス噴出口6が設けられている。空間24内に導入された成膜ガスは、ガス噴出口6から真空チャンバ2内に噴出される。 A gas introduction pipe 7 is connected to the electrode flange 4. Outside the film forming apparatus 1, the gas introduction pipe 7 is connected to the film forming gas supply unit 21. A source gas (for example, SiH 4 ) is supplied from the film forming gas supply unit 21 into the space 24 through the gas introduction pipe 7. The shower plate 5 is provided with a large number of gas ejection ports 6. The film forming gas introduced into the space 24 is ejected from the gas ejection port 6 into the vacuum chamber 2.
 また、電極フランジ4及びシャワープレート5は、導電材で構成されている。電極フランジ4は、真空チャンバ2の外部に設けられたRF電源(高周波電源)9に接続されている。 The electrode flange 4 and the shower plate 5 are made of a conductive material. The electrode flange 4 is connected to an RF power source (high frequency power source) 9 provided outside the vacuum chamber 2.
 更に、真空チャンバ2には、ガス導入管7とは異なるガス導入管8が接続されている。ガス導入管8にはフッ素ガス供給部22とラジカル源23とが設けられている。ラジカル源23は、フッ素ガス供給部22から供給されたフッ素ガスを分解する。ガス導入管8は、フッ素ガスが分解されて得られたフッ素ラジカルを、真空チャンバ2内の成膜空間に供給する。 Furthermore, a gas introduction pipe 8 different from the gas introduction pipe 7 is connected to the vacuum chamber 2. The gas introduction pipe 8 is provided with a fluorine gas supply unit 22 and a radical source 23. The radical source 23 decomposes the fluorine gas supplied from the fluorine gas supply unit 22. The gas introduction pipe 8 supplies fluorine radicals obtained by decomposing fluorine gas to the film forming space in the vacuum chamber 2.
 ベース部材3は、表面が平坦に形成された略板状の部材である。ベース部材3の上面には、基板10が載置される。ベース部材3は、接地電極として機能し、例えばアルミニウム合金で形成されている。なお、ベース部材3の材料としては、剛性を有し、耐食性及び耐熱性を有する材料であれば、上記の材料以外の材料が採用されてもよい。基板10がベース部材3上に配置されると、基板10とシャワープレート5とは互いに近接して平行になる。ベース部材3上に基板10が配置された状態で、ガス噴出口6を通じて成膜ガスは基板10の表面に向けて供給される。なお、本実施形態においては、基板10とシャワープレート5との間の距離を3mm~10mmに設定することが可能であり、即ち、ナローギャップを実現することができる。 The base member 3 is a substantially plate-like member having a flat surface. A substrate 10 is placed on the upper surface of the base member 3. The base member 3 functions as a ground electrode and is made of, for example, an aluminum alloy. In addition, as a material of the base member 3, materials other than said material may be employ | adopted if it is a material which has rigidity and has corrosion resistance and heat resistance. If the board | substrate 10 is arrange | positioned on the base member 3, the board | substrate 10 and the shower plate 5 will adjoin and mutually become parallel. In a state where the substrate 10 is disposed on the base member 3, the film forming gas is supplied toward the surface of the substrate 10 through the gas ejection port 6. In the present embodiment, the distance between the substrate 10 and the shower plate 5 can be set to 3 mm to 10 mm, that is, a narrow gap can be realized.
 また、ベース部材3の内部には、ヒータ16が設けられている。ヒータ16によってベース部材3の温度が所定の温度に調整される。ヒータ16の電源線18は、ベース部材3の鉛直方向から見たベース部材3の略中央部、かつ、ベース部材3の底面17から突出され、支柱25の内部に挿通され、真空チャンバ2の外部へと導かれている。
 そして、ヒータ16の電源線18は、真空チャンバ2の外部にて電源(不図示)と接続され、ベース部材3の温度を調節する。
A heater 16 is provided inside the base member 3. The temperature of the base member 3 is adjusted to a predetermined temperature by the heater 16. The power supply line 18 of the heater 16 protrudes from a substantially central portion of the base member 3 as viewed from the vertical direction of the base member 3 and the bottom surface 17 of the base member 3, is inserted into the support column 25, and is external to the vacuum chamber 2. Led to.
The power line 18 of the heater 16 is connected to a power source (not shown) outside the vacuum chamber 2 to adjust the temperature of the base member 3.
 また、ベース部材3と真空チャンバ2との間を接続する複数のアースプレート30(導電部材)が、ベース部材3の周方向に沿って略等間隔に配置されている。このアースプレート30は、フレキシブルな金属プレートで形成されており、例えば、ニッケル系合金又はアルミ合金などで構成されている。また、アースプレート30の材料としては、幅が10~200mm程度の導電材料からなり、耐食性が高く、可撓性を有する材料であれば、他の材料が採用されてもよい。 Further, a plurality of ground plates 30 (conductive members) that connect between the base member 3 and the vacuum chamber 2 are arranged at substantially equal intervals along the circumferential direction of the base member 3. The earth plate 30 is made of a flexible metal plate, and is made of, for example, a nickel-based alloy or an aluminum alloy. As the material of the earth plate 30, other materials may be adopted as long as they are made of a conductive material having a width of about 10 to 200 mm, have high corrosion resistance, and have flexibility.
 図2は、本発明の実施形態におけるプラズマCVD装置の構成を示す概略断面図であって、図1において符号Aで示された部分を拡大して示した断面図である。
 図2に示すように、ベース部材3の側面(周縁部)32には、アースプレート30が係止される係止部33が形成されている。係止部33は、側面32から水平方向(基板10に水平な方向)に突出するように形成されている。係止部33においては、アースプレート30の第一端30aが係止され、ボルト(不図示)などにより電気的に接合されている。
FIG. 2 is a schematic cross-sectional view showing the configuration of the plasma CVD apparatus in the embodiment of the present invention, and is an enlarged cross-sectional view showing a portion indicated by reference numeral A in FIG.
As shown in FIG. 2, a locking portion 33 that locks the ground plate 30 is formed on the side surface (peripheral edge) 32 of the base member 3. The locking portion 33 is formed so as to protrude from the side surface 32 in the horizontal direction (the direction horizontal to the substrate 10). In the locking portion 33, the first end 30a of the ground plate 30 is locked and is electrically joined by a bolt (not shown) or the like.
 また、アースプレート30の第二端30bは、真空チャンバ2の内壁面34にボルト(不図示)などにより電気的に接合されている。つまり、アースプレート30によって、ベース部材3と真空チャンバ2とが電気的に接続されている。複数のアースプレート30は、ベース部材3の周縁に沿って略等間隔に配置されている。 Further, the second end 30b of the ground plate 30 is electrically joined to the inner wall surface 34 of the vacuum chamber 2 by a bolt (not shown) or the like. That is, the base member 3 and the vacuum chamber 2 are electrically connected by the ground plate 30. The plurality of ground plates 30 are arranged at substantially equal intervals along the periphery of the base member 3.
 具体的に、アースプレート30の第二端30bは、真空チャンバ2の内壁面34に接続されている。アースプレート30は、第二端30bと内壁面34との接続部から内壁面34に沿うように下方へ延出している。アースプレート30は、真空チャンバ2の底部11に接触せずに、略U字状に折り返され、上方へ延出している。即ち、アースプレート30は、第一端30aと第二端30bとの間に位置する屈曲部を有する。屈曲部から上方へ延出されたアースプレート30は、ベース部材3の側面32に形成された係止部33において折り返されている。アースプレート30の第一端30aがベース部材3に接続されている。 Specifically, the second end 30 b of the earth plate 30 is connected to the inner wall surface 34 of the vacuum chamber 2. The ground plate 30 extends downward from the connecting portion between the second end 30 b and the inner wall surface 34 along the inner wall surface 34. The earth plate 30 is folded back into a substantially U shape without extending to the bottom 11 of the vacuum chamber 2 and extends upward. That is, the ground plate 30 has a bent portion located between the first end 30a and the second end 30b. The ground plate 30 extending upward from the bent portion is folded back at a locking portion 33 formed on the side surface 32 of the base member 3. A first end 30 a of the ground plate 30 is connected to the base member 3.
 更に、本実施形態においては、ベース部材3の側面32には、側面32及びアースプレート30の第一端30aを覆うように絶縁部材41が配置されている。また、真空チャンバ2の内壁面34には、内壁面34及びアースプレート30の第二端30bを覆うように絶縁部材42が配置されている。なお、絶縁部材41と絶縁部材42とは、互いに対向している。 Furthermore, in this embodiment, the insulating member 41 is disposed on the side surface 32 of the base member 3 so as to cover the side surface 32 and the first end 30a of the earth plate 30. An insulating member 42 is disposed on the inner wall surface 34 of the vacuum chamber 2 so as to cover the inner wall surface 34 and the second end 30 b of the earth plate 30. Note that the insulating member 41 and the insulating member 42 face each other.
 次に、上記構成の成膜装置1を用いて基板10に成膜する場合の作用について説明する。
 まず、真空ポンプ28を用いて真空チャンバ2内を減圧する。基板10は真空チャンバ2内に搬入され、ベース部材3上に載置される。
 ここで、基板10を載置する前は、ベース部材3は真空チャンバ2内の下方に位置している。つまり、基板10が搬入される前においては、ベース部材3とシャワープレート5との間隔が広くなっているので、ロボットアーム(不図示)を用いて基板10をベース部材3上に容易に載置することができる。
 そして、基板10がベース部材3上に載置された後には、昇降装置(不図示)が起動し、支柱25が上方へ押し上げられ、ベース部材3上に載置された基板10も上方へ移動する。これによって、適切に成膜を行うために必要な間隔になるようにシャワープレート5と基板10との間隔が所望に決定され、この間隔が維持される。ここで、シャワープレート5と基板10との間隔は、基板10上に膜を形成するために適した距離に保持される。このとき、基板10とシャワープレート5との間隔は、3~10mmであるナローギャップに設定される。
 その後、ガス導入管7を通じて成膜ガス(原料ガス)が空間24に導入され、ガス噴出口6を通じて真空チャンバ2内に成膜ガスが供給される。
Next, an operation when a film is formed on the substrate 10 using the film forming apparatus 1 having the above-described configuration will be described.
First, the vacuum chamber 2 is depressurized using the vacuum pump 28. The substrate 10 is carried into the vacuum chamber 2 and placed on the base member 3.
Here, before the substrate 10 is placed, the base member 3 is positioned below the vacuum chamber 2. That is, before the substrate 10 is carried in, the distance between the base member 3 and the shower plate 5 is wide, so that the substrate 10 can be easily placed on the base member 3 using a robot arm (not shown). can do.
After the substrate 10 is placed on the base member 3, an elevating device (not shown) is activated, the support column 25 is pushed upward, and the substrate 10 placed on the base member 3 also moves upward. To do. As a result, the interval between the shower plate 5 and the substrate 10 is determined as desired so that the interval necessary for proper film formation is achieved, and this interval is maintained. Here, the distance between the shower plate 5 and the substrate 10 is maintained at a distance suitable for forming a film on the substrate 10. At this time, the distance between the substrate 10 and the shower plate 5 is set to a narrow gap of 3 to 10 mm.
Thereafter, a film forming gas (raw material gas) is introduced into the space 24 through the gas introduction pipe 7, and the film forming gas is supplied into the vacuum chamber 2 through the gas outlet 6.
 電極フランジ4は、絶縁フランジ31を介して真空チャンバ2と電気的に絶縁されている。真空チャンバ2が接地電位に接続された状態で、RF電源9が起動し、電極フランジ4に高周波電圧が印加される。これによって、シャワープレート5とベース部材3との間に高周波電圧が供給され、放電が発生し、電極フランジ4と基板10との間にプラズマが発生する。こうして発生したプラズマ内で成膜ガスが分解され、プラズマ状態のプロセスガスが得られ、基板10の表面で気相成長反応が生じ、薄膜が基板10上に成膜される。 The electrode flange 4 is electrically insulated from the vacuum chamber 2 through an insulating flange 31. With the vacuum chamber 2 connected to the ground potential, the RF power source 9 is activated, and a high frequency voltage is applied to the electrode flange 4. As a result, a high frequency voltage is supplied between the shower plate 5 and the base member 3 to generate a discharge, and plasma is generated between the electrode flange 4 and the substrate 10. The film forming gas is decomposed in the plasma generated in this way, a plasma process gas is obtained, a vapor phase growth reaction occurs on the surface of the substrate 10, and a thin film is formed on the substrate 10.
 ここで、RF電源9から高周波電圧が印加されると、装置内には高周波電流Iが流れる。図3に示すように、高周波電流Iは、RF電源9から電極フランジ4の表面に流れ、その後、シャワープレート5の表面を流れる。また、成膜空間においてプラズマが発生するとともに、高周波電流Iは、シャワープレート5からベース部材3(基板10)に流れる。ベース部材3に到達した高周波電流Iは、ベース部材3の表面を流れ、アースプレート30内を流れる。アースプレート30の第一端30aから第二端30bに流れた高周波電流Iは、真空チャンバ2の表面を流れた後、外枠12の表面を流れる。 Here, when a high frequency voltage is applied from the RF power source 9, a high frequency current I flows in the apparatus. As shown in FIG. 3, the high-frequency current I flows from the RF power source 9 to the surface of the electrode flange 4 and then flows to the surface of the shower plate 5. In addition, plasma is generated in the film formation space, and the high-frequency current I flows from the shower plate 5 to the base member 3 (substrate 10). The high-frequency current I that has reached the base member 3 flows on the surface of the base member 3 and flows in the ground plate 30. The high-frequency current I flowing from the first end 30 a to the second end 30 b of the ground plate 30 flows on the surface of the outer frame 12 after flowing on the surface of the vacuum chamber 2.
 このように成膜装置1を流れる高周波電流Iの経路において、ベース部材3の側面32と真空チャンバ2の内壁面34と間を接続するアースプレート30には、大電流が流れる。上述したように、ベース部材3側には絶縁部材41が配置され、真空チャンバ2側には絶縁部材42が配置されているため、ベース部材3の側面32と真空チャンバ2の内壁面34との隙間が小さくても、異常放電が発生することを抑制することができる。 Thus, in the path of the high-frequency current I flowing through the film forming apparatus 1, a large current flows through the ground plate 30 connecting the side surface 32 of the base member 3 and the inner wall surface 34 of the vacuum chamber 2. As described above, since the insulating member 41 is disposed on the base member 3 side and the insulating member 42 is disposed on the vacuum chamber 2 side, the side surface 32 of the base member 3 and the inner wall surface 34 of the vacuum chamber 2 are arranged. Even if the gap is small, the occurrence of abnormal discharge can be suppressed.
 また、上記のような成膜工程が何度か繰り返されると、真空チャンバ2の内側面34などに成膜材料が付着するため、真空チャンバ2内は定期的にクリーニングされる。クリーニング工程においては、フッ素ガス供給部22から供給されたフッ素ガスがラジカル源23によって分解され、フッ素ラジカルが生じ、フッ素ラジカルが真空チャンバ2に接続されたガス導入管8を通り、真空チャンバ2内に供給される。このように真空チャンバ2内の成膜空間2aにフッ素ラジカルを供給することによって、化学反応が生じ、真空チャンバ2内の周囲に配置された部材又は真空チャンバ2の内側面34に付着された付着物が除去される。 Further, when the film forming process as described above is repeated several times, the film forming material adheres to the inner side surface 34 and the like of the vacuum chamber 2, so that the inside of the vacuum chamber 2 is periodically cleaned. In the cleaning process, the fluorine gas supplied from the fluorine gas supply unit 22 is decomposed by the radical source 23 to generate fluorine radicals. The fluorine radicals pass through the gas introduction pipe 8 connected to the vacuum chamber 2 and pass through the vacuum chamber 2. To be supplied. By supplying fluorine radicals to the film formation space 2 a in the vacuum chamber 2 in this way, a chemical reaction occurs, and the attachment attached to the members disposed around the vacuum chamber 2 or the inner side surface 34 of the vacuum chamber 2. The kimono is removed.
 本実施形態によれば、ベース部材3の側面32及び真空チャンバ2の内壁面34が絶縁部材41,42で覆われるため、導電部材が露出しながら対向するように配置されていない。従って、高周波の高電力を装置に供給する時に、装置に大電流が流れる場合であっても、ベース部材3の側面32と真空チャンバ2の内壁面34との間で異常放電が発生することを抑制することができる。結果として、成膜装置1に供給できる高周波電力の上限値を上昇させることができる。 According to the present embodiment, since the side surface 32 of the base member 3 and the inner wall surface 34 of the vacuum chamber 2 are covered with the insulating members 41 and 42, the conductive members are not arranged to face each other while being exposed. Therefore, when supplying high frequency high power to the apparatus, even if a large current flows through the apparatus, abnormal discharge occurs between the side surface 32 of the base member 3 and the inner wall surface 34 of the vacuum chamber 2. Can be suppressed. As a result, the upper limit value of the high frequency power that can be supplied to the film forming apparatus 1 can be increased.
 次に、上述した成膜装置1を用いて成膜する際に成膜装置1に供給することができる最大電力について説明する。
 RF電源9から成膜装置1に印加する電力周波数を27.12MHzに設定した。シャワープレート5の大きさ(基板10の鉛直方向から見た大きさ)を1300mm×1600mmに設定し、ベース部材3の大きさ(基板10の鉛直方向から見た大きさ)を1400mm×1700mmに設定し、基板10の大きさを1100mm×1400mmに設定した。成膜ガスであるSiHの流量とHの流量との比率を1:25に設定し、μc-Siを基板10に成膜した。
 また、変動するパラメータとして、シャワープレート5と基板10との間の距離(ES)を4mmから10mmの間で2mmごとに変化させた。また、成膜空間の圧力を700Pa,1300Pa,及び2000Paに設定した場合に成膜装置1に供給することができる最大電力を測定した。
Next, the maximum power that can be supplied to the film forming apparatus 1 when forming a film using the film forming apparatus 1 described above will be described.
The power frequency applied to the film forming apparatus 1 from the RF power source 9 was set to 27.12 MHz. The size of the shower plate 5 (size viewed from the vertical direction of the substrate 10) is set to 1300 mm × 1600 mm, and the size of the base member 3 (size viewed from the vertical direction of the substrate 10) is set to 1400 mm × 1700 mm. The size of the substrate 10 was set to 1100 mm × 1400 mm. The ratio of the flow rate of SiH 4 that is the deposition gas and the flow rate of H 2 was set to 1:25, and μc-Si was deposited on the substrate 10.
Further, as a variable parameter, the distance (ES) between the shower plate 5 and the substrate 10 was changed every 4 mm between 4 mm and 10 mm. Further, the maximum power that can be supplied to the film forming apparatus 1 when the pressure in the film forming space was set to 700 Pa, 1300 Pa, and 2000 Pa was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に測定結果を示す。
 「未対策」は、従来の成膜装置のように、絶縁部材41,42が配置されていない場合の結果を示す。「対策済」は、本実施形態の成膜装置1のように、絶縁部材41,42が配置されている場合の結果を示す。
 シャワープレート5と基板10との間の距離を変化させた場合、及び成膜空間の圧力を変化させた場合であっても、「未対策」における測定結果より「対策済」の測定結果が高いことが分かる。即ち、「対策済」の成膜装置1に供給することができる最大電力値を大きくすることができる。
Table 1 shows the measurement results.
“Unmeasured” indicates a result when the insulating members 41 and 42 are not arranged as in the conventional film forming apparatus. “Countermeasured” indicates the result when the insulating members 41 and 42 are arranged as in the film forming apparatus 1 of the present embodiment.
Even when the distance between the shower plate 5 and the substrate 10 is changed and when the pressure in the film formation space is changed, the measurement result of “measured” is higher than the measurement result of “unmeasured”. I understand that. That is, the maximum power value that can be supplied to the “measured” film forming apparatus 1 can be increased.
 従って、本実施形態のように、ベース部材3の側面32及び真空チャンバ2の内壁面34に絶縁部材41,42を設けることにより、高周波の高電力を装置に供給する時に、装置に大電流が流れる場合であっても、ベース部材3の側面32と真空チャンバ2の内壁面34との間に異常放電が生じるのを抑制することができる。従って、成膜装置1に供給することができる最大電力値を大きくすることができる。
 結果として、基板10とシャワープレート5との間をナローギャップにしてμc-Siを成膜する際に、成膜速度を高速化でき、高品質なμc-Siを成膜することができる。
Therefore, by providing the insulating members 41 and 42 on the side surface 32 of the base member 3 and the inner wall surface 34 of the vacuum chamber 2 as in the present embodiment, a large current is supplied to the device when supplying high-frequency high power to the device. Even if it flows, it is possible to suppress the occurrence of abnormal discharge between the side surface 32 of the base member 3 and the inner wall surface 34 of the vacuum chamber 2. Therefore, the maximum power value that can be supplied to the film forming apparatus 1 can be increased.
As a result, when the μc-Si film is formed with a narrow gap between the substrate 10 and the shower plate 5, the film formation rate can be increased, and high-quality μc-Si film can be formed.
 なお、本発明の技術範囲は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。即ち、本実施形態で述べた具体的な材料又は構成等は本発明の一例であり、適宜変更が可能である。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. That is, the specific materials or configurations described in the present embodiment are examples of the present invention, and can be appropriately changed.
 例えば、本実施形態において、絶縁部材がベース部材の側面及び真空チャンバの内壁面の両方に配置された構成を説明したが、少なくともいずれか一方に絶縁部材が配置されていればよい。
 また、本実施形態において、絶縁部材がベース部材の側面及び真空チャンバの内壁面に配置された構成を説明したが、アースプレートの表面が絶縁部材で覆われていてもよい。
For example, in the present embodiment, the configuration in which the insulating member is disposed on both the side surface of the base member and the inner wall surface of the vacuum chamber has been described, but it is only necessary that the insulating member is disposed on at least one of them.
In the present embodiment, the configuration in which the insulating member is disposed on the side surface of the base member and the inner wall surface of the vacuum chamber has been described. However, the surface of the earth plate may be covered with the insulating member.
 以上詳述したように、本発明は、高周波の高電力を装置に供給する時に、装置に大電流が流れる場合であっても、異常放電の発生を抑制することができるプラズマ処理装置に有用である。 As described above in detail, the present invention is useful for a plasma processing apparatus capable of suppressing the occurrence of abnormal discharge even when a large current flows through the apparatus when supplying high-frequency high power to the apparatus. is there.
 1…成膜装置(プラズマ処理装置) 2…真空チャンバ(チャンバ) 3…ベース部材 4…電極フランジ 10…基板 31…絶縁フランジ 32…ベース部材の側面 34…真空チャンバの内壁面 41…絶縁部材 42…絶縁部材。 DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus (plasma processing apparatus) 2 ... Vacuum chamber (chamber) 3 ... Base member 4 ... Electrode flange 10 ... Substrate 31 ... Insulating flange 32 ... Side surface of base member 34 ... Inner wall surface of vacuum chamber 41 ... Insulating member 42 ... insulating members.

Claims (4)

  1.  プラズマ処理装置であって、
     電極フランジと、
     内壁面を有するチャンバと、
     前記電極フランジと前記チャンバとの間に配置された絶縁フランジと、
     側面を有し、前記チャンバ内に配置され、基板が載置されるベース部材と、
     前記電極フランジに接続され、高周波電圧を印加するRF電源と、
     前記内壁面に対向する前記ベース部材の前記側面及び前記ベース部材の側面に対向する前記内壁面の少なくともいずれか一方に配置された絶縁部材と、
     を含むことを特徴とするプラズマ処理装置。
    A plasma processing apparatus,
    An electrode flange;
    A chamber having an inner wall surface;
    An insulating flange disposed between the electrode flange and the chamber;
    A base member having a side surface, disposed in the chamber, on which a substrate is placed;
    An RF power source connected to the electrode flange and applying a high frequency voltage;
    An insulating member disposed on at least one of the side surface of the base member facing the inner wall surface and the inner wall surface facing the side surface of the base member;
    A plasma processing apparatus comprising:
  2.  請求項1に記載のプラズマ処理装置であって、
     前記内壁面に対向する前記ベース部材の側面は、前記ベース部材の側面に対向する前記内壁面に電気的に接続されていることを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to claim 1,
    The plasma processing apparatus, wherein a side surface of the base member facing the inner wall surface is electrically connected to the inner wall surface facing the side surface of the base member.
  3.  請求項1又は請求項2に記載のプラズマ処理装置であって、
     前記内壁面に対向する前記ベース部材の前記側面及び前記ベース部材の側面に対向する前記内壁面との距離が最短である少なくともいずれか一方の位置に、前記絶縁部材が設けられていることを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to claim 1 or 2,
    The insulating member is provided at at least one position where the distance between the side surface of the base member facing the inner wall surface and the inner wall surface facing the side surface of the base member is the shortest. A plasma processing apparatus.
  4.  請求項1から請求項3のいずれか一項に記載のプラズマ処理装置であって、
     前記チャンバは、接地されていることを特徴とするプラズマ処理装置。
    The plasma processing apparatus according to any one of claims 1 to 3, wherein
    The plasma processing apparatus, wherein the chamber is grounded.
PCT/JP2010/000028 2009-01-09 2010-01-05 Plasma processing apparatus WO2010079740A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112010000818T DE112010000818T8 (en) 2009-01-09 2010-01-05 Plasma processing apparatus
KR1020117016415A KR101303968B1 (en) 2009-01-09 2010-01-05 Plasma processing apparatus
CN2010800039891A CN102272893A (en) 2009-01-09 2010-01-05 Plasma processing apparatus
JP2010545742A JPWO2010079740A1 (en) 2009-01-09 2010-01-05 Plasma processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-004027 2009-01-09
JP2009004027 2009-01-09

Publications (1)

Publication Number Publication Date
WO2010079740A1 true WO2010079740A1 (en) 2010-07-15

Family

ID=42316506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000028 WO2010079740A1 (en) 2009-01-09 2010-01-05 Plasma processing apparatus

Country Status (6)

Country Link
JP (1) JPWO2010079740A1 (en)
KR (1) KR101303968B1 (en)
CN (1) CN102272893A (en)
DE (1) DE112010000818T8 (en)
TW (1) TW201034526A (en)
WO (1) WO2010079740A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863199B2 (en) * 2017-09-25 2021-04-21 トヨタ自動車株式会社 Plasma processing equipment
WO2019142812A1 (en) * 2018-01-19 2019-07-25 株式会社アルバック Heater base and processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079350A (en) * 1996-09-04 1998-03-24 Kokusai Electric Co Ltd Plasma processor
JP2002270598A (en) * 2001-03-13 2002-09-20 Tokyo Electron Ltd Plasma treating apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598717B2 (en) * 1997-03-19 2004-12-08 株式会社日立製作所 Plasma processing equipment
JP4593381B2 (en) * 2005-06-20 2010-12-08 東京エレクトロン株式会社 Upper electrode, plasma processing apparatus, and plasma processing method
JP5022077B2 (en) * 2007-03-27 2012-09-12 株式会社アルバック Deposition equipment
JP4712004B2 (en) 2007-06-21 2011-06-29 パナソニック株式会社 Small diameter light production equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079350A (en) * 1996-09-04 1998-03-24 Kokusai Electric Co Ltd Plasma processor
JP2002270598A (en) * 2001-03-13 2002-09-20 Tokyo Electron Ltd Plasma treating apparatus

Also Published As

Publication number Publication date
DE112010000818T8 (en) 2012-08-09
CN102272893A (en) 2011-12-07
TW201034526A (en) 2010-09-16
KR101303968B1 (en) 2013-09-05
DE112010000818T5 (en) 2012-05-31
KR20110089457A (en) 2011-08-08
JPWO2010079740A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP7175339B2 (en) Process chamber for periodic and selective material removal and etching
CN100524641C (en) Plasma processing device
WO2010079756A1 (en) Plasma processing apparatus
JP5443127B2 (en) Plasma processing equipment
US10519549B2 (en) Apparatus for plasma atomic layer deposition
JP5328814B2 (en) Plasma processing apparatus and plasma CVD film forming method
JP5377749B2 (en) Plasma generator
JP2010161316A (en) Plasma processing device
JP5022077B2 (en) Deposition equipment
JP5378416B2 (en) Plasma processing equipment
WO2010079740A1 (en) Plasma processing apparatus
WO2010079753A1 (en) Plasma processing apparatus
JP4933979B2 (en) Cleaning method for film forming apparatus
TW202028520A (en) Plasma processing chamber, lid assembly for the same, and backing plate apparatus for the same
JP4870608B2 (en) Deposition equipment
JP5038769B2 (en) Plasma processing equipment
JP6662998B2 (en) Plasma processing equipment
CN116568862A (en) Method for aging a processing chamber
KR102298836B1 (en) An Upper Electrode For Plasma Chemical Vapor Deposition Equipment
JP3581813B2 (en) Thin film manufacturing method and thin film solar cell manufacturing method
JP5302835B2 (en) Plasma processing equipment
JP2008244389A (en) Vacuum treatment apparatus, vacuum treatment method, and plasma cvd method
JP2007291442A (en) Film deposition apparatus, and film deposition method
JP2015029004A (en) Plasma cvd system and film formation method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003989.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010545742

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112010000818

Country of ref document: DE

Ref document number: 1120100008183

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20117016415

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10729160

Country of ref document: EP

Kind code of ref document: A1