WO2010079572A1 - 追記型情報記録媒体、情報記録装置、情報記録方法、情報再生装置および情報再生方法 - Google Patents

追記型情報記録媒体、情報記録装置、情報記録方法、情報再生装置および情報再生方法 Download PDF

Info

Publication number
WO2010079572A1
WO2010079572A1 PCT/JP2009/007250 JP2009007250W WO2010079572A1 WO 2010079572 A1 WO2010079572 A1 WO 2010079572A1 JP 2009007250 W JP2009007250 W JP 2009007250W WO 2010079572 A1 WO2010079572 A1 WO 2010079572A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
recording
size
bitmap
area
Prior art date
Application number
PCT/JP2009/007250
Other languages
English (en)
French (fr)
Inventor
高橋宜久
伊藤基志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN200980116399.7A priority Critical patent/CN102016993B/zh
Priority to MX2010011840A priority patent/MX2010011840A/es
Priority to AU2009336476A priority patent/AU2009336476A1/en
Priority to JP2010521252A priority patent/JP4746715B2/ja
Priority to US12/747,273 priority patent/US8264927B2/en
Priority to RU2010145181/28A priority patent/RU2504028C2/ru
Priority to EP09837461.4A priority patent/EP2375417A4/en
Priority to BRPI0912569A priority patent/BRPI0912569A2/pt
Publication of WO2010079572A1 publication Critical patent/WO2010079572A1/ja
Priority to US12/899,680 priority patent/US20110026391A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1883Methods for assignment of alternate areas for defective areas
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1264Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting concerns a specific kind of data
    • G11B2020/1265Control data, system data or management information, i.e. data used to access or process user data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1816Testing
    • G11B2020/1826Testing wherein a defect list or error map is generated
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B2020/1873Temporary defect structures for write-once discs, e.g. TDDS, TDMA or TDFL
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/215Recordable discs
    • G11B2220/216Rewritable discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2541Blu-ray discs; Blue laser DVR discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2562DVDs [digital versatile discs]; Digital video discs; MMCDs; HDCDs

Definitions

  • the present invention relates to an information recording medium that includes bit map information indicating a recording state / unrecorded state of each area and is capable of random recording, a recording / reproducing method for the recording medium, and a recording / reproducing apparatus.
  • the present invention relates to a write-once optical disc that can be recorded only once, such as high-density BD-R, and recording / reproduction with respect to such a disc.
  • an optical disc such as a DVD or Blu-ray Disc (hereinafter also referred to as BD)
  • the optical disc drive apparatus performs recording and reproduction by forming minute pits (marks) on an optical disc using laser light, and is therefore suitable for information recording that can be exchanged with a large capacity.
  • a laser beam a red laser is used as a DVD, and a blue laser having a shorter wavelength than that of a red laser is used as a laser beam.
  • the BD has a higher recording density and a higher capacity than a DVD. For example, in the case of a BD-R, a recording capacity of 27 GB at maximum is realized per recording layer.
  • An example of an optical disk is an optical disk using a phase change type recording material as a recording layer.
  • a phase change optical disk records information by irradiating an optical disk with a laser beam and locally changing the atomic bonding state of the thin film material on the recording film surface by the injection energy.
  • laser light having a sufficiently lower power than that at the time of recording is irradiated, the reflectance changes due to the difference in the physical state described above.
  • Information can be read by detecting the amount of change in reflectance.
  • Phase change type optical discs include a write once type optical disc that can be recorded only once, in addition to a rewritable optical disc that can be repeatedly recorded a plurality of times by a phase change type recording material used for a recording layer.
  • a recording mark is formed by irradiating a laser beam modulated in a multi-pulse form to cause a change in the physical state of the recording material.
  • Information is read by detecting a change in reflectance.
  • the optical disk is an exchangeable information recording medium
  • the recording surface is defective due to dust or scratches.
  • a higher-density recording medium is more susceptible to defects, so that not only a rewritable optical disc (eg, BD-RE) but also a write-once optical disc (eg, BD-R) can be used to guarantee the reliability of recorded / reproduced data.
  • a method of performing defect management has become common (for example, Patent Document 1).
  • BD-R in addition to a sequential recording mode in which recording is performed continuously from a specific additional recording point, which is a characteristic of a write-once recording medium, a recording mode called a random recording mode in which recording is performed at an arbitrary recording position is provided. It also has a feature of providing (for example, Patent Document 2, Patent Document 3, and Patent Document 4).
  • FIG. 1 is an area diagram of a general optical disc.
  • a disk-shaped optical disk 1 has a large number of tracks 2 formed in a spiral shape, and each track 2 has a large number of finely divided blocks 3 formed therein.
  • the block 3 is a unit for error correction, and is the minimum unit for performing recording and reproduction operations.
  • the block 3 is called a cluster, or in the case of a DVD, the block 3 is called an ECC.
  • One cluster which is one block in the case of BD is, for example, 32 sectors (one sector is 2 Kbytes and one cluster is 64 Kbytes), and one ECC which is one block in the case of DVDs is 16 sectors (32 Kbytes).
  • the area of the optical disc 1 is roughly divided into a lead-in area 4, a data area 5, and a lead-out area 6. Recording / reproduction of user data is performed on the data area 5.
  • the lead-in area 4 and the lead-out area 6 serve as margins so that the optical head (not shown) can follow the track even if the optical head overruns when accessing the end of the data area 5. Fulfill.
  • This area configuration is common to both rewritable optical discs and write once optical discs.
  • FIG. 2 is a diagram showing a data structure of one recording layer of a write-once optical disc having a defect management function.
  • the data area 5 includes a user data area 14 for recording / reproducing user data, and a spare area (inner circumference of the optical disc 1) prepared in advance as a block (hereinafter referred to as a replacement block) used instead of a defective block in the user data area 14.
  • An inner peripheral spare area 15 prepared on the outer side, and an outer peripheral spare area 16) prepared on the outer peripheral side.
  • FIG. 2 the case where one spare area is provided on each of the inner circumference side and the outer circumference side of the data area 5 has been described as an example, but either one (for example, only the inner circumference side) may be provided. Is not as shown in this figure.
  • Lead-in area 4 as an area for writing a disk management structure (Disc Management Structure; hereinafter referred to as DMS) that is management information such as spare area arrangement (size) information, recording mode information, and defective block information on optical disk 1
  • DMS disk management structure
  • DMA 1 Disc Management Area
  • DMA 2 Disc Management Area
  • DMA 3 Disc Management Area
  • DMA 13 Disc Management Area
  • DMA4 fourth DMA 13.
  • the DMA may also be referred to as Defect Management Area.
  • DMA1 to DMA4 are areas arranged at predetermined positions. Here, all of the same management information is recorded in DMA1 to DMA4 except for predetermined information such as position information. This is in preparation for the case where DMA1 to DMA4 themselves are affected by a defect. Even if there is a DMA that cannot be reproduced correctly, the defect management information can be acquired if any one of the DMAs can be reproduced correctly.
  • the lead-in area 4 includes a first TDMA (Temporary Disc Management Area) 17.
  • the TDMA is an area unique to a write-once optical disc that cannot be rewritten (overwrite updated), and is used to update and update transient management information during use of the optical disc 1.
  • TDMA may also be referred to as Temporary Defect Management Area.
  • initialization format processing (also referred to as initialization) is performed to determine the arrangement (size) of the spare area and the recording mode to make the write-once type optical disc 1 usable, and as shown in FIG. A TDMS (Temporary Disc Management Structure) 20 is recorded.
  • the recording process to the user data area 14 is performed.
  • the TDMS 21 # 0 updated to the corresponding information (defect information, end recording position information, etc.) is not recorded in the TDMA 17. Recording is performed at the head position (that is, from the recorded position to the unrecorded side from the unrecorded boundary position).
  • the management information is updated in the same manner, and the state shown in FIG. 14C shows the state after the initialization format process and m + 1 times of management information update. That is, the latest management information (latest TDMS) is the recorded TDMS adjacent to the recorded / unrecorded boundary position in the TDMA 17 (in this case, TDMS 21 #m).
  • the arrangement of DMA is the same for both write-once optical discs and rewritable optical discs.
  • rewritable optical discs can be rewritten (overwrite updated)
  • all management information including transient management information during use of optical disc 1 is updated. Can be performed in the DMA area.
  • rewriting (overwriting update) cannot be performed in the case of a write-once optical disc.
  • TDMA transitional information update area peculiar to the write-once type
  • subsequent recording additional write
  • finalization Finalize, (Also referred to as Disc Close
  • TDMA 17 in the lead-in area 4 has been described as an example, but two or more TDMAs 17 may be provided (for example, Patent Document 5).
  • TDMA # 0 in the lead-in area 4 for one recording layer in addition to TDMA # 0 in the lead-in area 4 for one recording layer, TDMA # 1 in the inner spare area 15 in the data area 5 and in the outer spare area 16
  • TDMA may be secured also in the spare area, such as TDMA # 2.
  • the TDMA may be provided for each recording layer.
  • Both the DMS recorded in the DMA and the TDMS 21 recorded in the TDMA 17 are composed of the same elements.
  • TDMS 21 will be described as an example.
  • FIG. 16 shows components constituting the TDMS 21 in the BD-R which is a write-once optical disc in the random recording mode.
  • the write-once type optical disc 1 having only one recording layer will be described as an example, and therefore, the contents of data held by each information are also described only for one recording layer. I will do it.
  • the TDMS 21 includes a SBM (Space Bit Map) 30, a TDFL (Temporary Defect List) 31, and a TDDS (Temporary Disc Definition Structure) 32.
  • SBM Space Bit Map
  • TDFL Temporal Defect List
  • TDDS Temporal Disc Definition Structure
  • the SBM 30 includes an SBM header 40 including an identifier indicating that this information is the SBM 30, update frequency information, information on the area range of the SBM management target (for example, the start address and size of the target area), and the SBM management target And bitmap information 41 indicating a recording state in the area range (for example, a recorded / unrecorded state for each block included in the area range).
  • the bitmap information 41 will be described in detail later.
  • the data area 5 (more specifically, the user data area 14) that can be managed by the SBM 30 is not physically continuous between the respective layers. Provided for each.
  • the TDFL 31 includes a DFL header including information indicating that this information is a TDFL, update count information, and the number of DFL entries 43 that are defect / alternative information included in the TDFL (n + 1 in the case of FIG. 16). 42, the number of DFL entries 43 described above, and a DFL terminator 44 including an identifier indicating the end position of the TDFL 31 whose size changes according to the number of DFL entries 43, update count information, and the like.
  • the TDFL 31 is, for example, a combination with a TDDS 32 having a sector size, which will be described later, and has a maximum size of 4 blocks (4 clusters in the case of BD) when the recording layer is 1 layer, and a maximum of 8 blocks in the case of 2 layers ( In the case of BD, the size is 8 clusters). That is, the size of the TDFL 31 is a maximum of “4 blocks (4 clusters in the case of BD) ⁇ 1 sector” when the recording layer is 1 layer, and a maximum of “8 blocks (in the case of BD) in the case of 2 layers. Is the size of 8 clusters) -1 sector ".
  • the TDDS 32 includes an identifier indicating that the information is the TDDS 32, a DDS header 50 including update count information, and the inner spare area which is size information of the inner spare area 15 for determining the area structure in the data area 5.
  • the outer periphery spare area size 52 which is size information of the size 51 and the outer periphery spare area 16, the recording mode information 53 indicating the recording mode of the sequential recording mode or the random recording mode, and the inner periphery spare area 15 as shown in FIG.
  • the inner spare area TDMA size 54 and the outer spare part TDMA size 55 indicating size information when the TDMA is secured in the outer spare area 16, and the SBM which is the position information in which the latest SBM 30 is recorded.
  • TDDS 32 has a fixed size, for example, it is assumed that it has a sector size as described above.
  • the bitmap information 41 is information for managing a recorded portion and an unrecorded portion of the data area. For example, recording / unrecording is managed in units of blocks.
  • the bitmap information 41 corresponds to one block in the SBM management target area range (for example, the user data area 14) with 1 bit, and is 0 if the block is in an unrecorded state. change. That is, as shown in FIG. 19, 1 byte (8 bits) data at a predetermined Byte position of the bitmap information 41 is associated with 8 blocks from A to H in the area range to be managed by SBM.
  • bit0 When bit0 is shown corresponding to block A,..., bit7 corresponds to block H, if all the target areas are unrecorded as shown in FIG. 19A, the corresponding bitmap information 41 is bit0 to bit7. Are all zero.
  • bit1, bit2, and bit5 of the corresponding bitmap information 41 become 1, respectively.
  • One byte (8 bits) data at the Byte position is 26h (hexadecimal notation). Since 1 block corresponds to 1 bit, 4000h (hexadecimal notation) block can be managed with bitmap information 41 of 1 sector (2 Kbytes), and 78000h (hexadecimal notation. Decimal notation) with bitmap information 41 of 30 sectors. 491, 520) The block can be managed.
  • the maximum number of blocks (clusters) included in the user data area 14 is less than 68000h (hexadecimal notation) blocks, so the size of the bitmap information 41 is 30 sectors are enough.
  • the SBM header 40 is set to one sector size, it can be guaranteed that the combined size of the 31 sector size SBM 30 and the one sector size TDDS 32 always fits in one block (32 sectors and one cluster).
  • the size of the TDFL 31 is variable depending on the number of DFL entries 43, it cannot be guaranteed that the size of the TDFL 31 will always fit within one block size in combination with the TDDS 32.
  • the SBM 30 and the TDFL 31 are always recorded in the TDMA 17 in a format combined with the TDDS 32 as one recording unit (this is called a disk management structure update unit).
  • the initial TDMS 20 is arranged at the head position of the TDMA 17, that is, the position where it is first used (recorded) in the optical disc 1.
  • the initial TDMS 20 includes the same components as the normal TDMS 21, but its contents are slightly different from the TDMS 21. As shown in FIG. 17, the initial TDMS 20 includes data (disk management structure update unit) of one block (one cluster) of the combination of the initial SBM 30 and TDDS 32, followed by one block (1 of the combination of the initial TDFL 31 and TDDS 32). Cluster) data (disk management structure update unit).
  • the initial SBM 30 is set only for the identifier of the SBM header 40 and information about the area range to be managed by the SBM, the update count information is 0, and the bitmap information 41 is all 0 (that is, user data).
  • Area 14 is an SBM in an unrecorded state.
  • (Inside peripheral spare TDMA size 54, outer spare TDMA size 55) and recording mode information 53 (random recording mode in this example) are determined.
  • the SBM # 0 position information 56 indicates position information from which the SBM 30 will be recorded.
  • DFL # 0 position information 57 corresponding to an initial TDFL 31 described later is recorded.
  • the DFL # 0 position information 57 indicates a block position where the initial TDFL 31 and the TDDS 32 are recorded following the initial SBM 30 and the TDDS 32.
  • unused DFL # 1 position information 58, DFL # 2 position information 59, and DFL # 3 position information 60 are recorded as data having no meaning (for example, all 0) indicating that these pieces of information do not exist. .
  • the initial TDFL 31 is a TDFL of the minimum size that does not include the DFL entry 43 at all. That is, in the initial TDFL 31, only the identifier information is set, the number of DFL entries 43, the update count information, etc. are 0, the DFL header 42 is set, and the identifier information is set, the update count information is only the 0 DFL terminator 44. It is a TDFL provided. Since the initial TDFL 31 is a size that can be accommodated by one sector size, even if it is recorded together with the TDDS 32, it can be accommodated in one block (one cluster) size. The TDDS 32 recorded here has almost the same contents as the TDDS 32 recorded by the initial SBM 30 and the TDDS 32 described above.
  • the only difference may be the DFL # 0 position information 57.
  • this value is the initial value. It may be different from the value of TDDS32 recorded with SBM30.
  • the TDDS 32 having information for determining the area structure and recording mode related to the data area 5 of the optical disc 1 is always recorded at the head position.
  • the TDDS 32 having information that can determine the area structure and recording mode regarding the data area 5 of the optical disc 1 is located at any position. Even in the case where it cannot be immediately determined whether it exists, always read the data of the first block of the TDMA 17 (if there is a defect, the first block that can be correctly recorded and reproduced subsequently). Thus, the area structure and recording mode of the data area 5 can be determined.
  • the reproduction-only apparatus for the optical disk 1 for example, for the optical disk 1 that does not have a spare area, if the layout (area structure) of the optical disk 1 can be grasped, the latest management information is not acquired and the reproduction from the host is performed. Playback processing can be performed according to the request. For this reason, the management information in the latest state is not necessarily required, and it is preferable that the TDDS 32 indicating the layout of the optical disc 1 can be acquired as soon as possible. From this point of view, it is desirable that data including the TDDS 32 is always recorded at a predetermined position (for example, one block at the head position of the TDMA 17).
  • the location where the TDMAs are located cannot be determined unless the size of the TDMAs in the spare area is known. For this reason, it is very important and efficient for an optical disc drive apparatus for recording / reproducing the optical disc 1 to always arrange data that can acquire the TDDS 32 at a predetermined position (in this case, the start position of the TDMA 17). is there.
  • the head position of the recording track also referred to as SRR: Sequential Recording Range
  • the recorded end position information are provided instead of the SBM 30.
  • SRR Sequential Recording Range
  • the initial TDMS is the initial TDFL 31 + the initial SRRI + TDDS 32, and fits in the size of one block (one cluster), so it is recorded in the form of one block (one cluster) data.
  • TDMS TDDS is arranged at the end position of TDMS
  • DDS is arranged at the head position of DMS (for example, Patent Document 1).
  • the recording mark 1 and recording space are shortened, and the recording layer 1 increases by about 25% from the maximum 27 GB of the conventional BD size.
  • 32 Gbytes and 33.4 GBytes per layer have been studied and may increase further.
  • JP 2005-56542 A Japanese Patent No. 3618856 US Pat. No. 7,188,271 US Patent Application Publication No. 2007/0122124 Japanese Patent No. 3865261
  • the disk management structure update unit combining the SBM 30 and the TDDS 32 also exceeds the size of one block (two or more blocks).
  • the TDDS 32 is located in the second block from the top.
  • a normal TDDS 32 is included in any block in order to perform recording until normal recording is performed while performing recording retry on the subsequent block. You have to search while checking if it is.
  • bitmap information 41 included in the SBM 30 recorded in the first block of the initial TDMS 20 is a meaningful value for each bit and can be any value. For this reason, for example, there is a possibility that the information of the identifier indicating the TDDS 32 included in the DDS header 50 and the information of the bitmap information 41 may coincide with each other, and the TDDS 32 in the normally recorded block is changed. It becomes very difficult to search.
  • the present invention has been made in view of the above-mentioned problems, and even if the size of management information such as the SBM 30 increases with an increase in recording capacity per recording layer, the predetermined position is always obtained.
  • an information recording medium in which data including TDDS 32 can be arranged for example, the first block of TDMA 17
  • a recording / reproducing method for the information recording medium for example, the first block of TDMA 17
  • the write-once information recording medium of the present invention is a write-once information recording medium that includes one or more recording layers and records information in units of blocks, and the write-once information recording medium records user data.
  • the user data area is provided for each recording layer, and the management information
  • a space bitmap including bitmap information for managing a recording state of the user data area of the recording layer, and a disk definition structure including position information regarding the space bitmap, and the size of the space bitmap is Regardless of the size of the user data area, the size is one block size in combination with the disk definition structure.
  • the management information area includes the A one-block size disk management structure update unit including one of a plurality of space bitmaps and the disk definition structure is recorded.
  • the bitmap information is divided into a plurality of partial bitmap information, and the plurality of space bitmaps Each includes one of the plurality of partial bitmap information.
  • each of the plurality of space bitmaps includes a header including information regarding a region range managed by the partial bitmap information included in each of the plurality of space bitmaps.
  • the size of the bitmap information increases as the size of the user data area increases, and the predetermined size includes the bitmap information, the disk definition structure, and the header. This is the size of the user data area when the combined size is one block size.
  • the header includes information on a start address and a size of an area range managed by the partial bitmap information.
  • the header includes update number information of the space bitmap.
  • a block at a predetermined position in the management information area includes a second disk management structure update unit of one block size including the disk management structure update unit, the disk definition structure, and an initial defect list.
  • the disc definition structure includes position information of the initial defect list, and the initial defect list is a defect list that does not include information regarding the defect area.
  • the block at the predetermined position is the first block among the recordable / reproducible blocks in the management information area.
  • the information recording apparatus of the present invention is an information recording apparatus that includes one or more recording layers and records information on a write-once information recording medium in which recording is performed in units of blocks, and the write-once information recording medium includes: A user data area for recording user data; and a management information area for recording management information relating to the write-once information recording medium.
  • the user data area is provided for each recording layer, and the management information Includes a space bitmap including bitmap information for managing a recording state of the user data area of the predetermined recording layer, and a disk definition structure including position information regarding the space bitmap, and the space bitmap Regardless of the size of the user data area, the size of one becomes a block size in combination with the disk definition structure.
  • the information recording apparatus has a plurality of space bitmaps for the user data area of the predetermined recording layer when the size of the user data area of the predetermined recording layer exceeds a predetermined size. And a block management structure update unit of one block size including one of the plurality of space bitmaps and the disk definition structure is recorded in the management information area.
  • the bitmap information is divided into a plurality of partial bitmap information, and the plurality of space bitmaps Each of which includes one of the plurality of partial bitmap information.
  • each of the plurality of space bitmaps includes a header including information regarding a region range managed by the partial bitmap information included in each of the plurality of space bitmaps.
  • the size of the bitmap information increases as the size of the user data area increases, and the predetermined size includes the bitmap information, the disk definition structure, and the header. This is the size of the user data area when the combined size is one block size.
  • the header includes information on a start address and a size of an area range managed by the partial bitmap information.
  • the header includes update number information of the space bitmap.
  • a block at a predetermined position in the management information area includes a second disk management structure update unit of one block size including the disk management structure update unit, the disk definition structure, and an initial defect list.
  • the disc definition structure includes position information of the initial defect list, and the initial defect list is a defect list that does not include information regarding the defect area.
  • the block at the predetermined position is the first block among the recordable / reproducible blocks in the management information area.
  • the information recording method of the present invention is an information recording method comprising one or more recording layers and recording information on a write-once information recording medium in which recording is performed in units of blocks, wherein the write-once information recording medium comprises: A user data area for recording user data; and a management information area for recording management information relating to the write-once information recording medium.
  • the user data area is provided for each recording layer, and the management information Includes a space bitmap including bitmap information for managing a recording state of the user data area of the predetermined recording layer, and a disk definition structure including position information regarding the space bitmap, and the space bitmap Regardless of the size of the user data area, the size of one becomes a block size in combination with the disk definition structure.
  • the information recording method includes a plurality of space bitmaps for the user data area of the predetermined recording layer when the size of the user data area of the predetermined recording layer exceeds a predetermined size. And recording a block management structure update unit of one block size including one of the plurality of space bitmaps and the disk definition structure in the management information area.
  • the size of the user data area of the predetermined recording layer exceeds the predetermined size, dividing the bitmap information into a plurality of partial bitmap information, and the plurality of spaces Further including including one of the plurality of partial bitmap information in each of the bitmaps.
  • each of the plurality of space bitmaps includes a header including information regarding a region range managed by the partial bitmap information included in each of the plurality of space bitmaps.
  • the size of the bitmap information increases as the size of the user data area increases, and the predetermined size includes the bitmap information, the disk definition structure, and the header. This is the size of the user data area when the combined size is one block size.
  • the header includes information on a start address and a size of an area range managed by the partial bitmap information.
  • the header includes update number information of the space bitmap.
  • a block at a predetermined position in the management information area includes a second disk management structure update unit of one block size including the disk management structure update unit, the disk definition structure, and an initial defect list.
  • the disc definition structure includes position information of the initial defect list, and the initial defect list is a defect list that does not include information regarding the defect area.
  • the block at the predetermined position is the first block among the recordable / reproducible blocks in the management information area.
  • the information reproduction apparatus of the present invention is an information reproduction apparatus that includes one or more recording layers and reproduces information from a write-once information recording medium on which recording is performed in units of blocks, and the write-once information recording medium includes: A user data area for recording user data; and a management information area for recording management information relating to the write-once information recording medium.
  • the user data area is provided for each recording layer, and the management information Includes a space bitmap including bitmap information for managing a recording state of the user data area of the predetermined recording layer, and a disk definition structure including position information regarding the space bitmap, and the space bitmap Regardless of the size of the user data area, the size of a single block size is combined with the disk definition structure.
  • a predetermined size If the size of the user data area of the predetermined recording layer exceeds a predetermined size, a plurality of space bitmaps are formed for the user data area of the predetermined recording layer, and the management In the information area, a one-block size disk management structure update unit including one of the plurality of space bitmaps and the disk definition structure is recorded, and the information reproducing apparatus reads from the management information area, The disk management structure update unit of one block size including the disk definition structure is read, and the space bitmap is read.
  • the bitmap information is divided into a plurality of partial bitmap information, and the plurality of space bitmaps Each include one of the plurality of partial bitmap information, and the information reproducing apparatus reads the partial bitmap information from the space bitmap.
  • each of the plurality of space bitmaps includes a header including information regarding a region range managed by the partial bitmap information included in each of the plurality of space bitmaps.
  • the size of the bitmap information increases as the size of the user data area increases, and the predetermined size includes the bitmap information, the disk definition structure, and the header. This is the size of the user data area when the combined size is one block size.
  • the header includes information on a start address and a size of an area range managed by the partial bitmap information.
  • the header includes update number information of the space bitmap.
  • a block at a predetermined position in the management information area includes a second disk management structure update unit of one block size including the disk management structure update unit, the disk definition structure, and an initial defect list.
  • the disc definition structure includes position information of the initial defect list, and the initial defect list is a defect list that does not include information regarding a defect area, and the information reproduction
  • the apparatus reads either the disk management structure update unit or the second disk management structure update unit from the block at the predetermined position.
  • the block at the predetermined position is the first block among the recordable / reproducible blocks in the management information area.
  • the information reproducing method of the present invention is an information reproducing method for reproducing information from a write-once information recording medium comprising one or more recording layers and recording is performed in units of blocks, wherein the write-once information recording medium includes: A user data area for recording user data; and a management information area for recording management information relating to the write-once information recording medium.
  • the user data area is provided for each recording layer, and the management information Includes a space bitmap including bitmap information for managing a recording state of the user data area of the predetermined recording layer, and a disk definition structure including position information regarding the space bitmap, and the space bitmap Regardless of the size of the user data area, the size of a single block size is combined with the disk definition structure.
  • the size of the user data area of the predetermined recording layer exceeds a predetermined size, a plurality of space bitmaps are formed for the user data area of the predetermined recording layer, and the management In the information area, a one-block size disk management structure update unit including one of the plurality of space bitmaps and the disk definition structure is recorded, and the information reproducing method includes the management information area, The step includes reading the disk management structure update unit of one block size including the disk definition structure and reading the space bitmap.
  • the bitmap information is divided into a plurality of partial bitmap information, and the plurality of space bitmaps Each include one of the plurality of partial bitmap information, and the information reproducing method further includes a step of reading the partial bitmap information from the space bitmap.
  • each of the plurality of space bitmaps includes a header including information regarding a region range managed by the partial bitmap information included in each of the plurality of space bitmaps.
  • the size of the bitmap information increases as the size of the user data area increases, and the predetermined size includes the bitmap information, the disk definition structure, and the header. This is the size of the user data area when the combined size is one block size.
  • the header includes information on a start address and a size of an area range managed by the partial bitmap information.
  • the header includes update number information of the space bitmap.
  • a block at a predetermined position in the management information area includes a second disk management structure update unit of one block size including the disk management structure update unit, the disk definition structure, and an initial defect list.
  • the disc definition structure includes position information of the initial defect list, and the initial defect list is a defect list that does not include information regarding a defect area, and the information reproduction
  • the method further includes the step of reading either the disk management structure update unit or the second disk management structure update unit from a block at a predetermined position in the management information area.
  • the block at the predetermined position is the first block among the recordable / reproducible blocks in the management information area.
  • the top block of the management information area of the write-once information recording medium Management information including TDDS including the layout information of the write-once information recording medium is always recorded (arranged) at a predetermined position.
  • FIG. 1 is a block diagram of an optical disc recording / reproducing apparatus in an embodiment of the present invention. It is a flowchart which shows the initialization format (Initialize) process in Embodiment 1 of this invention.
  • (A) And (b) is a figure which shows the data structure of initial stage TDMS in Embodiment 2 of this invention. It is a flowchart which shows the initialization format (Initialize) process in Embodiment 2 of this invention. It is a figure which shows the data structure of initial stage TDMS in Embodiment 3 of this invention.
  • (A) And (b) is explanatory drawing regarding the recording information of TDMS and the positional information which TDDS shows in Embodiment 3 of this invention. It is data structure explanatory drawing of the initial SBM in Embodiment 3 of this invention. It is a flowchart which shows the initialization format (Initialize) process in Embodiment 3 of this invention.
  • FIG. 1 It is a figure which shows the structural example of the three-layer disc in embodiment of this invention. It is a figure which shows the structural example of the four layer disc in embodiment of this invention. It is a figure which shows the physical structure of the optical disk in embodiment of this invention.
  • (A) is a figure which shows the example of BD of 25 GB
  • (B) is a figure which shows the example of the optical disk of higher recording density than BD of 25 GB. It is a figure which shows a mode that the light beam is irradiated to the mark row
  • a write-once information recording medium that can be recorded only once is used as the information recording medium.
  • the recording capacity (that is, the size of the user data area 14) in one recording layer of this recording medium is such that the SBM 30 is one block size or more (more specifically, the bitmap information 41 is 31 sector sizes or more), and the SBM 30 It is assumed that the combined size of the TDDS 32 is a recording capacity that is a size exceeding one block.
  • Embodiment 1 (1) Area Arrangement
  • the area structure of the optical disc 1 which is a write-once information recording medium in Embodiment 1 of the present invention is the same as the structure shown in FIG.
  • FIG. 3 shows recording at the head of the management information area TDMA 17 (the first TDMA used when there are a plurality of TDMAs) of the optical disc 1 in the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a data configuration of an initial disk management structure TDMS 20 to be executed.
  • the initial TDMS 20 includes an initial space bitmap SBM 30, a disk definition structure TDDS 32, and an initial defect list TDFL 31. ) Is recorded.
  • the initial TDMS 20 shown in FIG. 3 has the same components as the initial TDMS shown in FIG. 17, but the recording order is different. That is, before recording data including the initial SBM 30, one block (one cluster) data (disk management structure update unit) of the combination of the initial TDFL 31 and the TDDS 32 is recorded (arranged) at the head position, followed by the initial 2 blocks (2 clusters) of data (disk management structure update unit) of the combination of SBM 30 and TDDS 32 are recorded (arranged).
  • a portion of data having no meaning in the data of the block size is, for example, dummy data such as All0, or padding data indicating no meaning. As a result, data of one block size is generated.
  • the size of the SBM 30 increases according to the recording capacity per recording layer, and the size of the disk management structure update unit that combines the SBM 30 and the TDDS 32 becomes more than one block (two or more blocks). Even in this case, the data including the TDDS 32 can always be arranged in one block at the head position of the TDMA 17 (if there is a defect, the first one block that can be correctly recorded and reproduced subsequently).
  • this method can achieve the same effect even when applied to the case where the size of the SBM 30 is 31 sectors or less (that is, the SBM 30 and the TDDS 32 can be combined into one block size).
  • FIG. 4 is an explanatory diagram of a data structure provided in the TDDS 32 in Embodiment 1 of the present invention.
  • the TDDS 32 in FIG. 4 has basically the same configuration as that described with reference to FIG. 16, but further includes SBM # 1 position information 61 in addition to the SBM # 0 position information 56.
  • the TDDS 32 in FIG. 4 is the size information of the DDS header 50 including an identifier indicating that this information is the TDDS 32, update count information, and the inner spare area 15 for determining the area structure in the data area 5.
  • the peripheral spare area size 51 and the peripheral spare area size 52 which is the size information of the peripheral spare area 16, the recording mode information 53 indicating the recording mode of the sequential recording mode or the random recording mode, and the inner peripheral area as shown in FIG.
  • Inner spare TDMA size 54 and outer spare TDMA size 55 indicating size information when TDMA is secured in the spare area 15 and the outer spare area 16, and the latest TDFL 31 (for up to four blocks) are recorded.
  • DFL # 0 position information 57, DFL #, which is position information of each block Includes position information 58, DFL # 2 position information 59 and DFL # 3 position information 60, the SBM # 0 position information 56 and the SBM # 1 position information 61 is a position information latest SBM30 is recorded. That is, since the size of the SBM 30 has reached 2 blocks, the SBM position information is increased accordingly.
  • FIG. 5 is a diagram for explaining a recording image of the TDMS 21 (FIG. 14) recorded in the TDMA 17 and position information indicated by the TDDS 32. In this figure, description will be made by taking four blocks from block A to block D of TDMA 17 as an example.
  • FIG. 5A shows an example in which the data size combining the TDFL 31 and the TDDS 32 is within one block, and when the SBM 30 and the TDFL 31 are recorded simultaneously (that is, when the initial TDMS 20 is recorded, for example). It is.
  • the TDFD 31 and TDDS 32 are recorded in the first block A.
  • the DFL # 0 position information in the TDDS 32 at this time indicates the head position of the block A where the TDFL 31 is arranged. Since the SBM # 0 position information 56 and the SBM # 1 position information 61 will be recorded from now on, it is recorded in a state where the head positions of the block B and the block C are pointed to as prediction.
  • the DFL # 0 position information 57 in the TDDS 32 at this time indicates the head position of the block A in which the TDFL 31 is arranged as in the previous TDDS 32. Also, the SBM # 0 position information 56 and the SBM # 1 position information 61 are recorded in a state in which the head positions of the blocks B and C, which are actually recorded positions, are respectively pointed.
  • the two recorded TDDSs 32 are in the state of indicating the same position information.
  • FIG. 5B shows an example in which the TDFL 31 has a size exceeding 2 blocks and the recording target block B is defective. Since the TDFL 31 and the TDDS 32 are combined into a three-block size, first, the first block of data (TDFL # 0) is recorded in the block A. However, since the block B is a defective block, the data of the second block (TDFL # 1) is recorded in the subsequent block C, and then the last data (one block data combining TDFL # 2 and TDDS32) is the block. Recorded in D.
  • the DFL # 0 position information 57 indicates the head position of the block A
  • the DFL # 1 position information 58 indicates the head position of the block C
  • the DFL # 2 position information 59 It points to the head position of block D.
  • FIG. 5C shows a case where the data size of the combination of the TDFL 31 and the TDDS 32 fits in one block as in FIG. 5A, where the SBM 30 and the TDFL 31 are recorded simultaneously, and the block to be recorded. This is an example when C is a defect.
  • TDFL 31 and TDDS 32 are recorded in the first block A.
  • the DFL # 0 position information in the TDDS 32 at this time indicates the head position of the block A in which the TDFL 31 is arranged, and the SBM # 0 position information 56 and the SBM # 1 position information 61 will be recorded from now on. As shown, the prediction is recorded with pointing to the head positions of the blocks B and C, respectively.
  • the DFL # 0 position information 57 indicates the head position of the block A in which the TDFL 31 is arranged, as in the previous TDDS 32.
  • the SBM # 0 position information 56 and the SBM # 1 position information 61 are actually recorded positions, that is, the SBM # 0 position information 56 indicates the block B.
  • the SBM # 1 position information 61 is Unlike the contents of the TDDS 32 recorded in the block A by prediction, the head position of the block D is indicated.
  • the two recorded TDDSs 32 are partially different in content, but are always the latest TDDS 32 (in the case of FIG. 5C, the TDDS 32 recorded in the block D). The correct information will be recorded in.
  • the SBM # 0 position information 56 and the SBM # 1 position information 61 are described.
  • the recording order of the TDMS 21 is shown as an example in which the TDFL 31 is recorded before the SBM 30, but this order is necessary because the initial TDMS 20 of the above (2).
  • the SBM 30 may be recorded before the TDFL 31.
  • FIG. 6 is a diagram showing a configuration of an optical disc recording / reproducing device 100 that performs recording / reproducing on the optical disc 1 in the embodiment of the present invention.
  • the apparatus 100 may be a recording apparatus or a reproduction-only apparatus.
  • the optical disc recording / reproducing apparatus 100 is connected to a host controller (not shown) via the I / O bus 180.
  • the host control device is, for example, a host computer (host PC).
  • the optical disc recording / reproducing apparatus 100 outputs a command processing unit 110 that processes a command from the host controller, an optical head 120 that irradiates a laser beam to perform recording / reproduction on the optical disc 1, and the optical head 120.
  • a system control unit 170 for performing the above.
  • the system control unit 170 determines a recording unit 171 and a reproducing unit 172 that perform recording and reproduction of data such as user data and management information, and a position where data is read from the management information related to the optical disc 1 and a position where data is recorded next.
  • the access location management unit 173, the management information update unit 174 that updates the management information stored in the management information storage memory 160, and the data that needs to be updated from the SBM 30, TDFL 31, and TDDS 32 stored in the management information storage memory 160
  • a management information generation unit 175 that generates TDMS 21 and DMS for recording in combination with TDMA or DMA is provided.
  • FIG. 7 is a flowchart showing a procedure in which the optical disc recording / reproducing apparatus 100 performs initialization format processing (Initialization) on the write-once optical disc 1.
  • Step 701 Generate management information in the initial state.
  • the management information generation unit 175 generates the initial SBM 30, TDFL 31, and TDDS 32 in the management information storage memory 160.
  • the SBM 30, TDFL 31, and TDDS 32 in the initial state are management information in which only the identifier information and the like are set and the number of updates is all 0, and the SBM 30 and the TDFL 31 are the initial SBM 30 and the initial SBM 30 respectively. It has the same meaning as TDFL31.
  • Step 702 An initial TDMS 20 is generated. Specifically, the management information generation unit 175 combines the SBM 30, the TDFL 31, and the TDDS 32 so that the management information in the initial state generated in step 701 is in the format of the initial TDMS 20 in the state shown in FIG. Create an initial TDMS 20 of the form. More specifically, for example, a data area for 3 blocks to be used for recording is secured in the management information storage memory 160, and all the areas are cleared with 0 data, and the first block of the first block is stored. An initial TDFL 31 is arranged at the beginning and a TDDS 32 is arranged at the end of the first block.
  • the initial SBM 30 is arranged from the beginning of the second block, and finally, the TDDS 32 is arranged at the end of the third block to generate data corresponding to the initial TDMS 20.
  • the value of the TDDS 32 is changed by updating position information in steps 703 and 705, which will be described later. Therefore, the TDDS 32 is not arranged at this point and is preferably arranged immediately before recording.
  • Step 703 Update the position information on the TDFL 31.
  • the management information update unit 174 updates the DFL position information in the data corresponding to the TDDS 32 generated in the management information storage memory 160 when recording from now on. More specifically, the system control unit 170 calculates a recording position where the initial TDMS 20 can be recorded (for example, the start position of the TDMA 17) by the access position management unit 173.
  • the management information update unit 174 updates the DFL # 0 position information 57 to indicate the recording position calculated by the access position management unit 173 (for example, the start position of the TDMA 17), and the DFL # 1 position information 58 and the DFL # 2 position information 59 , DFL # 3 position information 60 is set to 0, respectively.
  • this data is arranged at a predetermined position (in this case, the end position of the first block) of the recording data area secured in the management information storage memory 160.
  • the position information regarding the SBM 30 cannot be determined yet to be recorded, so it may be left as 0, or it is assumed that it is normally recorded. Prediction and position information may be set in the prediction.
  • Step 704 A part of the initial TDMS 20 is recorded. Specifically, the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130. In step 703, the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173. The recording unit 171 records the initial combination data of the TDFL 31 and the TDDS 32 that is the first block data of the initial TDMS 20. If recording to this block fails, the processing is repeated from step 703, and recording is repeated until normal recording is performed.
  • the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130.
  • the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173.
  • the recording unit 171 records the initial combination data of the TDFL 31 and the TDDS 32 that is the first block data of the initial TDMS 20. If recording to this block fails, the processing is repeated from step 703, and recording is repeated until normal recording is performed.
  • Step 705 Update the location information related to the SBM 30.
  • the management information update unit 174 updates the SBM position information in the data corresponding to the TDDS 32 generated in the management information storage memory 160 when recording from now on.
  • the system control unit 170 uses the access position management unit 173 to record the next recordable position following the position where a part of the initial TDMS 20 was recorded in step 704 (for example, step 704 is recorded once). If successful, the position of the second block from the top of the TDMA 17 is calculated.
  • the management information update unit 174 updates the SBM # 0 position information 56 so as to indicate the recording position calculated by the access position management unit 173 (for example, the start position of the second block from the start of the TDMA17), and the SBM # 1 position information 61 is updated to indicate the next block position (for example, the start position of the third block from the start of the TDMA 17).
  • the DFL # 0 position information 57 is recorded with the contents indicating the position recorded in step 704.
  • the DFL # 1 position information 58, the DFL # 2 position information 59, and the DFL # 3 position information 60 are each recorded as 0 (that is, the same state as the TDDS 32 recorded in step 704).
  • Step 706 A part of the initial TDMS 20 is recorded. Specifically, the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130. In step 705, the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173. The recording unit 171 records the combination data of the initial SBM 30 and the TDDS 32, which is the data of the second block, which is the remaining two blocks of the initial TDMS 20, and the data of the third block. If there is a block that has failed to be recorded, the processing is repeated again from step 705 for the block that has failed to be recorded, and recording is repeated until all the blocks are normally recorded.
  • the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130.
  • the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173.
  • the recording unit 171 records the combination data of the initial SBM 30 and the TDDS 32, which is the data of the second block, which
  • the TDDS 32 includes update number information in the DDS header 50.
  • the number of updates is recorded as a value indicating information recorded at the time of the initialization format, such as 0.
  • the update count information may be recorded as 0, but the TDDS 32 is recorded twice during the initialization format. Recording will be done.
  • recording is performed with the update count information set to zero.
  • the TDDS 32 to be recorded first may be recorded with the update count information set to 0 and the TDDS 32 recorded for the second time set to 1 with the update count information set to a pure update count.
  • FIG. 8 shows recording at the head of the management information area TDMA 17 (the TDMA used first when there are a plurality of TDMAs) in the second embodiment of the present invention.
  • FIG. 2 is a diagram showing a data configuration of an initial disk management structure TDMS 20 to be executed.
  • the initial TDMS 20 according to the second embodiment of the present invention is different from the initial SBM 30 according to the first embodiment of the present invention in the contents of the initial space bitmap SBM 30.
  • the initial SBM 30 included in the initial TDMS 20 in Embodiment 2 of the present invention is characterized in that it includes only the SBM header 40 and does not include the bitmap information 41 as shown in FIG.
  • the initial TDMS 20 When the initial TDMS 20 is recorded, that is, when the initialization format (Initialization) is performed, the data area 5 and the area of the optical disc 1 are in an unrecorded state. That is, the bitmap information 41 of the SBM 30 included in the initial TDMS 20 is all zero data. That is, it can be determined that the bitmap information 41 of the initial TDMS 20 is not recorded. Therefore, for the purpose of suppressing the size of the initial TDMS 20, the feature of the present embodiment is that the initial SBM 30 does not include the bitmap information 41 and is information of only the SBM header 40.
  • FIG. 8 (a) is an example of the initial TDMS 20, and it is sufficient that the initial defect lists TDFL31 and TDDS32 that need to be incorporated into the initial TDMS 20 and recorded have a size of one sector. Also, since it is sufficient for the initial SBM 30 to have a size of one sector, only in the case of the initial TDMS 20, only one block of data combining the initial SBM 30, the initial TDFL 31, and the TDDS 32 is treated as a disk management structure update unit. This information is recorded in one block.
  • FIG. 8B is also an example of the initial TDMS 20, and in the first block in the initial TDMS 20, as in the first embodiment of the present invention, one block of data (disk management structure) combining the initial TDFL 31 and the TDDS 32 Update unit) is recorded (arranged) at the head position. Subsequently, one block of data (disk management structure update unit) combining the initial SBM 30 and TDDS 32 is recorded (arranged) in the next block.
  • the data including the TDDS 32 is changed to one block at the head position of the TDMA 17 (if it is defective)
  • the first block that can be correctly recorded / reproduced thereafter can always be arranged.
  • the configuration of the optical disc recording / reproducing device 100 that performs recording / reproducing on the optical disc 1 according to the second embodiment of the present invention is the same as that of the optical disc recording / reproducing device according to the first embodiment of the present invention described with reference to FIG. The same as 100.
  • FIG. 9 shows a procedure in which the optical disc recording / reproducing apparatus 100 performs initialization format processing (Initialization) on the write-once optical disc 1 according to Embodiment 2 of the present invention. It is a flowchart which shows.
  • the initial TDMS 20 will be described by taking as an example a case where recording is performed in one block as shown in FIG.
  • the procedure for recording in the form of FIG. 8B is basically the same as the procedure shown in FIG. 7 in the section (5) of the description of Embodiment 1 of the present invention. The description is omitted here.
  • Step 901 Generate management information in the initial state.
  • the management information generation unit 175 generates the initial SBM 30, TDFL 31, and TDDS 32 in the management information storage memory 160.
  • the SBM 30, TDFL 31, and TDDS 32 in the initial state are management information in which only the identifier information and the like are set and the number of updates is all 0, and the SBM 30 and the TDFL 31 are the initial SBM 30 and the initial SBM 30 respectively. It has the same meaning as TDFL31.
  • Step 902 An initial TDMS 20 is generated. Specifically, the management information generation unit 175 combines the SBM 30, TDFL 31, and TDDS 32 so that the management information in the initial state generated in step 901 is in the format of the initial TDMS 20 in the state shown in FIG.
  • the initial TDMS 20 having the above recording format is created. More specifically, for example, a data area for one block to be used for recording is secured in the management information storage memory 160, and all the areas are cleared with 0 data, and the first 1 of this block is set.
  • An initial TDFL 31 is arranged in a sector, an initial SBM 30 is arranged at a position one sector before the end of this block, and a TDDS 32 is arranged in one sector at the end to generate data corresponding to the initial TDMS 20.
  • the value of the TDDS 32 is changed by updating the position information in step 903, which will be described later. Therefore, the TDDS 32 is not arranged at this time but is preferably arranged immediately before recording.
  • Step 903 The position information regarding the TDFL 31 and the SBM 30 is updated.
  • the management information update unit 174 updates the DFL position information and the SBM position information in the data corresponding to the TDDS 32 generated in the management information storage memory 160 when recording from now on. More specifically, the system control unit 170 calculates a recording position where the initial TDMS 20 can be recorded (for example, the start position of the TDMA 17) by the access position management unit 173.
  • the management information update unit 174 updates the DFL # 0 position information 57 to indicate the recording position calculated by the access position management unit 173 (for example, the start position of the TDMA 17), and the DFL # 1 position information 58 and the DFL # 2 position Information 59 and DFL # 3 position information 60 are set to 0, respectively. Further, the SBM # 0 position information 56 is also updated to indicate the recording position of the same block (for example, the 31st sector start position from the start of the start block of TDMA17).
  • the SBM # 1 position information 61 is set to 0, for example, or a value indicating that valid bitmap information 41 exists but the information has not yet been recorded (for example, FFFFFFFFh (hexadecimal notation)) And Then, this data is arranged at a predetermined position (in this case, the end position of the first block) of the recording data area secured in the management information storage memory 160.
  • Step 904 A part of the initial TDMS 20 is recorded. Specifically, the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130. In step 903, the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173. The recording unit 171 records the combination data of the initial SBM 30, which is the initial TDMS 20, the initial TDFL 31, and the TDDS 32. If recording to this block fails, the processing is repeated from step 903, and recording is repeated until normal recording is performed.
  • the initial SBM 30 which is the initial TDMS 20, the initial TDFL 31, and the TDDS 32.
  • data including the TDDS 32 can always be arranged at the head position of the TDMA 17. For this reason, even when the data size of the management information is increased due to multi-layering / high-density, etc., the area of the optical disc 1 can be read by reading the data at a predetermined position without searching for the latest management information in the TDMA 17. It becomes possible to grasp the structure.
  • Embodiment 3 (1) Area Arrangement
  • the area structure of the optical disc 1 in Embodiment 3 of the present invention is the same as that of the optical disc 1 in Embodiment 1 of the present invention.
  • FIG. 10 is recorded at the head of the management information area TDMA 17 (TDMA used first when there are a plurality of TDMAs) in the third embodiment of the present invention.
  • FIG. 2 is a diagram showing a data configuration of an initial disk management structure TDMS 20 to be executed.
  • the initial TDMS 20 according to the third embodiment of the present invention is the same as the first embodiment of the present invention in terms of the configuration of the initial space bitmap SBM 30, but this recording method is different from that of the first embodiment of the present invention. .
  • the initial TDMS 20 shown in FIG. 10 is composed of the initial space bitmap SBM 30, the disk definition structure TDDS 32, and the initial defect list TDFL 31, as in the case shown in FIG. 17, but the recording method is different.
  • the SBM 30 that combines the SBM header 40 of 1 sector size and the bitmap information 41 of 31 sector size or more has a size of 32 sectors (1 block) or more.
  • such SBM 30 is converted to 31 sectors.
  • the combined size of the SBM header 40 and the bitmap information 41 is the size of one block and one sector (the SBM header 40 has one sector size and the bitmap information 41 has a total of 33 sector sizes, 33 SBM 30 # 0 including 17-sector-size valid data (partial bitmap information 41 # 0) consisting of the SBM header 40 and the first 16 sectors of the bitmap information 41, and bitmap information
  • the initial SBM 30 # 1 having effective data (partial bitmap information 41 # 1) of the latter half of 16 sectors is formed, and a TDDS 32 is combined with each to form and record a disk management structure update unit.
  • recording can be performed so that TDDS 32 is arranged for all blocks.
  • the size of the user data area 14 when the combined size of the bitmap information 41, the TDDS 32, and the SBM header 40 is one block size is a predetermined size. If the size of the user data area 14 in the predetermined recording layer exceeds the predetermined size, the bitmap information 41 includes a plurality of pieces of partial bitmap information (for example, the size of the user data area 14 is 2 with a predetermined size). In the case of a size less than or equal to double, it is divided into (partial bitmap information 41 # 0 and partial bitmap information 41 # 1). Each of the plurality of space bitmaps (SBM30 # 0, SBM30 # 1) includes one of the plurality of partial bitmap information. Each of the sizes of the plurality of space bitmaps (SBM30 # 0, SBM30 # 1) is a size that becomes one block size in combination with TDDS32.
  • each one block data combining the initial SBM30 # 0 and the initial SBM30 # 1 and the TDDS32 data other than 17 sectors of the initial SBM30 # 0 and 1 sector of the TDDS32 is not used.
  • data other than the initial two sectors of SBM 30 # 1 and one sector of TDDS 32 are not used.
  • Such unused data is, for example, dummy data of ALL0 as meaningless data or padding data indicating that it has no meaning, and generates data of one block size in combination with these unused data. Record.
  • the size of the SBM 30 increases in accordance with the recording capacity per recording layer (the size of the user data area 14), and is a disk management structure update unit that combines the SBM 30 and the TDDS 32. Even when the size exceeds 1 block (2 blocks or more), the data including TDDS32 can always be allocated in one block at the head position of TDMA17 by arranging as described above. If it is a defect, it can always be placed in the first block that can be correctly recorded and reproduced subsequently). More specifically, with this arrangement, the TDDS 32 can be recorded for all blocks of the TDMA 17 in which the initial TDMS 20 is recorded.
  • this recording method may be applied not only to the initialization format (initial TDMS 20) but also to the TDMS 21 during normal TDMA recording.
  • Bit map information 41 of 32 sectors is divided into partial bitmap information of data for the first 16 sectors and data for the second 16 sectors, and is SBM 30 # 0 which is the first half block of SBM 30 in initial TDMS 20 and one block of the second half.
  • SBM30 # 1 was demonstrated. The merit of this arrangement will be described below.
  • the recorded area is the area managed by the first 16 sectors in the bitmap information 41. If there is only the corresponding block, only the first 16 sectors in the bitmap information 41 are changed, and the latter 16 sectors are not changed from the previous state.
  • the SBM 30 # 0 including the data (partial bitmap information 41 # 0) for the first 16 sectors of the bitmap information 41 needs to be updated in the SBM 30.
  • the first 16 sectors of the bitmap information 41 (partial bitmap information 41 # 0) in the SBM management target area range managed by the bitmap information 41 in the SBM 30 When the bitmap information 41 is changed only in the area managed in step S4, only the changed SBM 30 # 0 needs to be updated as shown in FIG.
  • the SBM # 0 position information 56 indicated by the TDDS 32 is changed to a state indicating the head position of the newly recorded block D.
  • the SBM # 1 position information 61 is stored in the block B which is the previously recorded position. Just keep pointing at the beginning.
  • the TDMA 17 which is an information area can be used efficiently.
  • the update count information included in the SBM header 40 becomes a problem. That is, every time the SBM 30 is updated and recorded, the update count information in the SBM header 40 must be increased and recorded. Therefore, if the SBM header 40 is included only in the SBM 30 # 0 as described with reference to FIG. 10, the area managed by the partial bitmap information 41 # 1 included in the SBM 30 # 1 is recorded. Even if only the partial bitmap information 41 # 1 of the SBM 30 # 1 has changed, not only the SBM 30 # 1, but also the SBM 30 # 0 including the SBM header 40 having the update count information is not recorded at the same time. It will not be.
  • all 1-block size disk management structure update units including bitmap information 41 may be provided with an SBM header 40. That is, the SBM header 40 may be provided not only in the SBM 30 # 0 but also in the SBM 30 # 1. In this case, the SBM 30 # 1 has a configuration including effective data (partial bitmap information 41 # 1) having a 17-sector size including the SBM header 40 and the latter 16 sectors of the bitmap information 41. Thus, a plurality of (two in the above example) independent SBMs 30 are provided.
  • the SBM header 40 includes information related to the area range of the SBM management target.
  • the user data area 14 to be managed in the bitmap information 41 is divided into two areas, an area range managed by the SBM 30 # 0 and an area range managed by the SBM 30 # 1, and the SBM header 40 for managing each is divided.
  • the SBM header 40 including information on the area range to be managed by the SBM is provided in each of the SBM 30 # 0 and the SBM 30 # 1. It is desirable to keep it. Further, also from the viewpoint of updating the update count information described above, when performing partial update of the SBM 30, it is desirable to provide the SBM header 40 in each of the SBM 30 # 0 and the SBM 30 # 1.
  • each of the plurality of space bitmaps (SBM30 # 0, SBM30 # 1) managing the user data area 14 in the predetermined recording layer is a plurality of space bitmaps (SBM30 # 0, SBM30 # 1).
  • You may include the header (SBM header 40) provided with the information regarding the area range managed by the partial bitmap information (partial bitmap information 41 # 0, partial bitmap information 41 # 1) included in each.
  • each header (SBM header 40) of the plurality of space bitmaps (SBM30 # 0, SBM30 # 1) may include update count information of the space bitmap SBM30.
  • the SBM 30 Only # 1 can be updated. If the partial bitmap information of both SBM 30 # 0 and SBM 30 # 1 has changed, TDMS 21 including both SBM 30 # 0 and SBM 30 # 1 is recorded in TDMA 17. However, if only the partial bitmap information 41 # 1 of the SBM 30 # 1 changes, the TDMS 21 that includes the SBM 30 # 1 but does not include the SBM 30 # 0 is recorded in the TDMA 17.
  • the space bitmap including the specific partial bitmap information is updated and only recorded in the management information area TDMA17. It's okay.
  • the recording is performed in the management area of the space bitmap including the specific partial bitmap information, it is not necessary to update all the space bitmaps and record them in the management information area TDMA17. In this way, since only the portion of the management information that needs to be updated can be recorded in the TDMA 17, the management information area TDMA17 can be used more efficiently.
  • the 32-sector-sized bitmap information 41 is divided and divided into the partial bitmap information of SBM30 # 0 and SBM30 # 1 and allocated equally to the first 16 sectors and the latter 16 sectors.
  • the allocated size is not limited to this.
  • the size of the area managed by the bitmap information 41 included in the SBM 30 # 0 including the SBM header 40 that must be recorded every time the SBM 30 is recorded in the TDMA 17 is set to the SBM 30 not including the SBM header 40. It is set larger than the size of the area managed by the bitmap information 41 included in # 1. As a result, the larger the area managed by the bitmap information 41, the higher the probability that the bitmap information 41 changes, and as a result, the number of times that the SBM 30 # 1 has to be updated can be suppressed.
  • TDMS21 including both SBM30 # 0 and SBM30 # 1 is recorded in TDMA17.
  • a method of recording the TDMS 21 including the SBM 30 # 1 but not the SBM 30 # 0 in the TDMA 17 can be used. As a result, it is possible to obtain the above-described effect that only the portion of the management information that needs to be updated can be recorded in the TDMA 17.
  • the header (SBM header 40) of a plurality of space bitmaps includes an identifier indicating that this information is a space bitmap (SBM30 # 0, SBM30 # 1), and a space bit.
  • Information regarding a management target area range managed by partial bitmap information (partial bitmap information 41 # 0, partial bitmap information 41 # 1) included in each map (SBM30 # 0, SBM30 # 1) may be included.
  • Information regarding the area range managed by such partial bitmap information is, for example, the start address and size of the target area.
  • the allocation method can be easily changed, such as assigning the management area of the space bitmap to an arbitrary size, It is also possible to widen the range of user selection (degree of freedom).
  • the configuration of the optical disc recording / reproducing device 100 that performs recording / reproducing on the optical disc 1 according to the third embodiment of the present invention is the same as that of the optical disc recording / reproducing device according to the first embodiment of the present invention described with reference to FIG. The same as 100.
  • the size of the user data area 14 in a predetermined recording layer is a predetermined size (bitmap information 41 and TDDS 32).
  • bitmap information 41 and TDDS 32 A process in the case where the combined size of the SBM header 40 exceeds the size of the user data area when the size becomes one block size will be described.
  • a plurality of space bitmaps (SBM30 # 0, SBM30 # 1) are formed for the user data area 14 in the predetermined recording layer.
  • a one-block size disk management structure update unit including one of a plurality of space bitmaps (SBM30 # 0, SBM30 # 1) and the disk definition structure TDDS32 is recorded in the management information area TDMA17.
  • the recording process as described above and the recording process described later are performed by the system control unit 170 (FIG. 6) controlling each component of the recording / reproducing apparatus 100 and the optical head 120 irradiating the optical disk 1 with laser light. Is called.
  • the size of the user data area 14 of the predetermined recording layer is set to a predetermined size (the size of the user data area 14 when the size of the bitmap information 41, the TDDS 32, and the SBM header 40 is one block size).
  • the bitmap information 41 is divided into a plurality of partial bitmap information (partial bitmap information 41 # 0, partial bitmap information 41 # 1).
  • each of the plurality of space bitmaps may include one of the plurality of partial bitmap information.
  • the above-mentioned disk management structure update unit is recorded in a block at a predetermined position in the management information area TDMA17. Further, instead of such a disk management structure update unit, a second disk management structure update unit of one block size including the disk definition structure TDDS 32 and the initial defect list TDFL 31 may be recorded. At this time, the disk definition structure TDDS 32 may include initial defect list position information.
  • the initial defect list TDFL 31 is a TDFL of the minimum size that does not include any DFL entry 43 that is information regarding the defect area. That is, the initial defect list TDFL 31 includes only the identifier information and the like, and the number of DFL entries 43 and the update count information and the like are 0 DFL headers 42, and the identifier information is set and the update count information is only the 0 DFL terminator 44. It is a TDFL provided. Since the initial TDFL 31 is a size that can be accommodated in one sector size, even if it is recorded together with the TDDS 32, it can be accommodated in one block (one cluster) size.
  • the above-mentioned block at a predetermined position in the management information area TDMA17 is, for example, the first block among the recordable / reproducible blocks in the management information area TDMA17.
  • the optical head 120 receives reflected light obtained by irradiating the optical disc 1 with laser light to obtain a reproduction signal, and the system control unit 170 (FIG. 6) controls each component of the recording / reproducing apparatus 100. Then, it is executed by performing signal processing.
  • a plurality of space bitmaps (SBM30 # 0, SBM30 # 1) are formed for the user data area 14 in a predetermined recording layer, and a plurality of space bitmaps (SBM30 # 0) are stored in the management information area TDMA17 of the optical disc 1.
  • SBM30 # 1) and a disk management structure update unit of one block size including the disk definition structure TDDS32 are stored in the management information area TDMA17 of the optical disc 1.
  • a one-block size disc management structure update unit including the disc definition structure TDDS 32 is read, and a space bitmap (SBM30 # 0 or SBM30 # 1) is read.
  • the bitmap information 41 is divided into a plurality of partial bitmap information (partial bitmap information 41 # 0, partial bitmap information 41 # 1), and a plurality of space bitmaps (SBM30 #).
  • 0, SBM30 # 1) includes one of a plurality of pieces of partial bitmap information.
  • a space bitmap may be read from the optical disc 1 and partial bitmap information (partial bitmap information 41 # 0 or partial bitmap information 41 # 1) may be read from the space bitmap.
  • a disc management structure update unit is recorded, or one block size including the disc definition structure TDDS32 and the initial defect list TDFL31.
  • a second disk management structure update unit is recorded.
  • the disk management structure update unit or the second disk management structure update unit may be read from a block at a predetermined position in the management information area TDMA17.
  • the disk definition structure TDDS 32 may include initial defect list position information.
  • the block at a predetermined position in the management information area TDMA17 is, for example, the first block among the recordable / reproducible blocks in the management information area TDMA17.
  • FIG. 13 shows a procedure for the optical disc recording / reproducing apparatus 100 to perform initialization format processing (Initialization) on the write-once optical disc 1 according to Embodiment 3 of the present invention. It is a flowchart.
  • Step 1301 Generate management information in the initial state.
  • the management information generation unit 175 generates the initial SBM 30, TDFL 31, and TDDS 32 in the management information storage memory 160.
  • the SBM 30, TDFL 31, and TDDS 32 in the initial state are management information in which only the identifier information and the like are set and the number of updates is all zero.
  • SBM30 and TDFL31 have the same meaning as the initial SBM30 and initial TDFL31, respectively.
  • Step 1302 An initial TDMS 20 is generated. Specifically, the management information generation unit 175 combines the SBM 30, TDFL 31, and TDDS 32 with the initial state management information generated in step 1301 in the form of the initial TDMS 20 in the state shown in FIG. Create an initial TDMS 20 in recording format.
  • the size of the SBM 30 is a total of 33 sectors of 1 block and 1 sector
  • a data area for 3 blocks to be used for recording is secured in the management information storage memory 160. All areas are cleared with 0 data.
  • the data of 17 sectors in the first SBM 30 from the beginning of the first block (the 1 sector of the SBM header 40 and the first 16 sectors of the bitmap information 41 (partial bitmap information 41 # 0) total 17 sector sizes.
  • the initial SBM30 # 0) is arranged.
  • the TDDS 32 is arranged at the end sector of the first block.
  • data for the last 16 sectors in the initial SBM 30 from the beginning of the second block is arranged.
  • the TDDS 32 is arranged at the end sector of the second block.
  • An initial TDFL 31 is placed at the beginning of the third block.
  • the TDDS 32 is arranged at the end sector of the third block. In this way, data corresponding to the initial TDMS 20 is generated.
  • each of the plurality of space bitmaps (SBM30 # 0, SBM30 # 1) for managing the user data area 14 in the predetermined recording layer is a portion included in each of the plurality of space bitmaps. It may include a header (SBM header 40) provided with information related to an area range managed by bitmap information (partial bitmap information 41 # 0, partial bitmap information 41 # 1).
  • the data to be arranged at the head of the second block in the data area secured in the management information storage memory 160 is data corresponding to one sector of the SBM header 40 and the latter 16 sectors in the initial SBM 30 (partial bitmap).
  • the data is 17 sectors including the initial SBM 30 # 1) including the information 41 # 1.
  • the SBM header 40 may include an identifier indicating that this information is a space bitmap, and information (for example, the start address and size of the target area) regarding each area range to be managed of the space bitmap. Further, the SBM header 40 may include update count information of the space bitmap SBM 30.
  • the value of the TDDS 32 is changed by updating the position information in steps 1303, 1305, and 1307, which will be described later. Therefore, the TDDS 32 is preferably not placed at this time but immediately before recording.
  • Step 1303 Update the position information related to the SBM 30.
  • the management information update unit 174 updates the SBM position information in the data corresponding to the TDDS 32 generated in the management information storage memory 160 when recording from now on. More specifically, the system control unit 170 uses the access position management unit 173 to calculate a recording position where the initial TDMS 20 can be recorded (for example, the start position of the TDMA 17).
  • the management information update unit 174 updates the SBM # 0 position information 56 so as to indicate the recording position calculated by the access position management unit 173 (for example, the start position of the TDMA 17).
  • the DFL # 1 position information 58, the DFL # 2 position information 59, and the DFL # 3 position information 60 are set to 0, respectively. Then, this data is arranged at a predetermined position in the recording data area secured in the management information storage memory 160 (in this case, the end sector of the first block).
  • position SBM # 1 position information 61 which is position information related to SBM 30, and TDFL # 0 position information 57, which is position information related to TDFL 31, are to be recorded. It can be left as is. Alternatively, it is predicted that they are normally recorded, and the position information is set by prediction (for example, SBM # 1 position information 61 indicates the start position of the second block from the start of TDMA17, and DFL # The 0 position information 57 may be in a state indicating the head position of the third block from the head of the TDMA 17).
  • Step 1304 A part of the initial TDMS 20 is recorded. Specifically, the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130. In step 1303, the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173. Then, the recording unit 171 records the combination data of the initial SBM 30 # 0 and TDDS 32 that is the data of the first block of the initial TDMS 20. If recording to this block fails, the processing is repeated from step 1303, and recording is repeated until normal recording is performed.
  • the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130.
  • the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173.
  • the recording unit 171 records the combination data of the initial SBM 30 # 0 and TDDS 32 that is the data of the first block of the initial TDMS 20. If recording to this block fails, the processing is repeated from step 1303, and recording is repeated until normal recording
  • Step 1305 Update the location information regarding the SBM 30.
  • the management information update unit 174 updates the SBM position information in the data corresponding to the TDDS 32 generated in the management information storage memory 160 when recording from now on. More specifically, the system control unit 170 uses the access position management unit 173 to record the initial TDMS 20 at a recording position (for example, if recording is successful once in step 1304, the second block from the top of the TDMA 17). (Start position) is calculated.
  • the management information update unit 174 updates the SBM # 1 position information 61 to indicate the recording position calculated by the access position management unit 173 (for example, the start position of the second block from the start of the TDMA 17).
  • the SBM # 0 position information 56 indicates the position recorded in step 1304.
  • the DFL # 1 position information 58, the DFL # 2 position information 59, and the DFL # 3 position information 60 are set to 0, respectively. Then, this data is arranged at a predetermined position in the recording data area secured in the management information storage memory 160 (in this case, the end sector of the first block).
  • the TDFL # 0 position information 57 which is the position information related to the TDFL 31, may not be determined in which position it is to be recorded, so it may be left as 0. Alternatively, it is predicted that it is normally recorded, and position information is set by prediction (for example, DFL # 0 position information 57 is the next recordable position of 3 blocks from the top of TDMA 17). It may be in a state of pointing to the top position of the eyes.
  • Step 1306 A part of the initial TDMS 20 is recorded. Specifically, the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130. In step 1303, the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173. Then, the recording unit 171 records the combination data of the initial SBM30 # 1 and TDDS32 that is the data of the second block of the initial TDMS20. If recording to the block 3 has failed, the processing is repeated from step 1305, and recording is repeated until normal recording is performed.
  • the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130.
  • the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173.
  • the recording unit 171 records the combination data of the initial SBM30 # 1 and TDDS32 that is the data of the second block of the initial TDMS20. If recording to the block 3 has failed, the processing is repeated from step 1305, and recording is repeated until
  • Step 1307 The position information related to the TDFL 31 is updated. Specifically, the management information update unit 174 updates the TDFL position information when recording from now on. More specifically, the system control unit 170 uses the access position management unit 173 to record the next recordable position following the position where a part of the initial TDMS 20 was recorded in step 1306 (for example, once in steps 1304 and 1306). If the recording is successful, the position of the third block from the top of the TDMA 17 is calculated. The management information update unit 174 updates the DFL # 0 position information 57 to indicate the recording position calculated by the access position management unit 173 (for example, the start position of the third block from the start of the TDMA 17).
  • the SBM # 0 position information 56 is updated to indicate the position recorded in step 1304.
  • the SBM # 1 position information 61 is updated to indicate the position recorded in step 1306.
  • the DFL # 1 position information 58, the DFL # 2 position information 59, and the DFL # 3 position information 60 are each 0 (that is, the same state as the TDDS 32 recorded in step 1304). Recording is performed in such a state.
  • Step 1308 A part of the initial TDMS 20 is recorded. Specifically, the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130. In step 1307, the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173. Then, the recording unit 171 records the initial combination data of the TDFL 31 and the TDDS 32 that is the data of the third block which is the last one block of the initial TDMS 20. If recording to this block has failed, the process is repeated from step 1307, and recording is repeated until normal recording is performed.
  • the system control unit 170 sets recording conditions such as laser power and strategy for recording in the laser control unit 130.
  • the optical head 120 is moved using the mechanical control unit 140 to the recording position obtained by the access position management unit 173. Then, the recording unit 171 records the initial combination data of the TDFL 31 and the TDDS 32 that is the data of the third block which is the last one block of the initial TDMS 20. If recording to this block has failed,
  • the TDDS 32 includes update count information in the DDS header 50.
  • the number of updates is recorded as a value indicating information recorded at the time of the initialization format, such as 0.
  • the update count information may be recorded as 0 respectively.
  • the TDDS 32 is recorded three times during the initialization format. In this case, in order to indicate that any TDDS 32 is a TDDS included in the initial TDMS 20, recording is performed with the update count information set to zero. For example, the first TDDS 32 to be recorded has the update count information 0, the second TDDS 32 to be recorded the update count information 1 and the third TDDS 32 to be recorded the update count information 2 is pure. Recording may be performed by setting the number of updates.
  • the TDDS 32 is arranged in all the recorded blocks in the TDMA 17 (that is, the TDDS 32 is arranged in a predetermined position such as the head position of the TDMA 17). For this reason, even when the data size of the management information is increased due to multi-layering / high-density, etc., the area of the optical disc 1 can be read by reading the data at a predetermined position without searching for the latest management information in the TDMA 17. It becomes possible to grasp the structure.
  • FIG. 13 shows the recording process in the initialization format.
  • the item (2) in the third embodiment of the present invention described above As described in the above, it is not always necessary to record in a form including all of the SBM 30 # 0 and SBM 30 # 1 constituting the SBM 30. That is, as shown in the above section (2) of the third embodiment of the present invention, only the block including information that needs to be recorded in the TDMA 17 is recorded in the SBM 30 by updating the bitmap information 41. A method may be used.
  • the optical disc 1 in the first to third embodiments of the present invention is a write-once optical disc having one or more recording layers.
  • FIG. 20 is a diagram showing a cross section of the optical disc 1. As an example, FIG. 20 shows a multilayer optical disc 1 having three recording layers.
  • the optical disc 1 includes an information recording layer 1002 including a recording layer L0, a recording layer L1, and a recording layer L2 in order from the side irradiated with the light beam (that is, in order from the substrate 1001 side).
  • the user data area 14 is provided for each recording layer.
  • a method for manufacturing the optical disc 1 will be described.
  • a recording layer L0, a recording layer L1, and a recording layer L2 provided with tracks for recording information signals corresponding to address signals and control data are formed in this order.
  • the recording layer in which the user data area, the defect management area, and the spare area are arranged as shown in FIGS. 1 and 2 can be manufactured.
  • An intermediate layer or the like may be included between the recording layer and the recording layer.
  • a cover layer may be formed on the recording layer.
  • the TDMA currently used is indicated at the head position of TDMA17.
  • An area for an indicator that is information may be secured.
  • the head position of the TDMA 17 described as the predetermined position for recording the initial TDMS 20 in the present invention refers to the recording of the TDMS (initial TDMS 20 and normal TDMS 21) excluding the indicator area. That is, the first block recorded in the management information area of the optical disc 1 (the first block among the recordable / reproducible blocks in the management information area). It is.
  • the size of the SBM 30 in Embodiments 1 to 3 of the present invention has been described by taking an example in which the size is 2 blocks, even if the size of the SBM 30 is 3 blocks or more, The same effect as described in the first to third embodiments of the present invention can be obtained.
  • the size of the SBM 30 in the first to third embodiments of the present invention exceeds the size of one block, that is, the size of two blocks or more, like the DFL terminator 44 provided in the TDFL 31, it is determined that it is the terminal position of the SBM 30. Information such as the SBM terminator shown may be provided.
  • the SBM 30 is described as an example of management information, but the present invention is not limited to the SBM 30.
  • it is applied to management information in which the size when recording in the TDMA 17 at the time of initialization format is 1 block size or more and the size of the disk management structure update unit combined with the TDDS 32 exceeds 1 block (2 blocks or more).
  • the same effect can be obtained.
  • BD Blu-ray disc
  • other standard optical discs there are types of BDs such as a BD-ROM which is a read-only type, a BD-R which is a write once / write once type, and a BD-RE which is a rewritable type. Is applicable to R (write-once type / write-once) type recording media.
  • the main optical constants and physical formats of Blu-ray Discs can be found on the white papers posted on the Blu-ray Disc Reader (Ohm Publishing) and the Blu-ray Association website (http://www.blu-raydisc.com/). It is disclosed.
  • the laser beam with a wavelength of about 405 nm 400 to 410 nm if the tolerance of the error range is ⁇ 5 nm with respect to the standard value of 405 nm) and the numerical aperture (NA) is about 0.85 (standard value). If the tolerance of the error range is ⁇ 0.01 with respect to 0.85, an objective lens of 0.84 to 0.86) is used.
  • the track pitch of the BD is approximately 0.32 ⁇ m (0.310 to 0.330 ⁇ m if the tolerance of the error range is ⁇ 0.010 ⁇ m with respect to the standard value of 0.320 ⁇ m), and the recording layer has one or two recording layers. Layers are provided.
  • the recording layer has a single-sided or double-sided recording surface from the laser incident side, and the distance from the surface of the protective layer of the BD to the recording surface is 75 ⁇ m to 100 ⁇ m.
  • the recording signal modulation method uses 17PP modulation, and the mark of the shortest mark to be recorded (2T mark: T is the period of the reference clock (the reference period of modulation in the case of recording a mark by a predetermined modulation rule))
  • T is the period of the reference clock (the reference period of modulation in the case of recording a mark by a predetermined modulation rule)
  • the length is 0.149 ⁇ m (or 0.138 ⁇ m) (channel bit length: T is 74.50 nm (or 69.00 nm)).
  • the recording capacity is a single-sided single layer 25 GB (or 27 GB) (more specifically 25.005 GB (or 27.020 GB)) or a single-sided double layer 50 GB (or 54 GB) (more specifically 50.050 GB (or 54 .040 GB)).
  • the channel clock frequency is 66 MHz (channel bit rate 66.000 Mbit / s) at a transfer rate of standard speed (BD1x), 264 MHz (channel bit rate 264.000 Mbit / s) at a transfer rate of quadruple speed (BD4x), 6
  • the transfer rate at double speed (BD6x) is 396 MHz (channel bit rate 396.000 Mbit / s), and the transfer rate at 8 times speed (BD8x) is 528 MHz (channel bit rate 528.000 Mbit / s).
  • the standard linear velocity (reference linear velocity, 1x) is 4.917 m / sec (or 4.554 m / sec).
  • the linear velocities of 2x (2x), 4x (4x), 6x (6x) and 8x (8x) are 9.834 m / sec, 19.668 m / sec, 29.502 m / sec and 39.50, respectively. 336 m / sec.
  • the linear velocity higher than the standard linear velocity is generally a positive integer multiple of the standard linear velocity, but is not limited to an integer and may be a positive real multiple. Also, a linear velocity that is slower than the standard linear velocity, such as 0.5 times (0.5x), may be defined.
  • the above is about commercialization, mainly about 1GB or 2GB BD of about 25GB per layer (or about 27GB).
  • a high-density BD having a capacity of approximately 32 GB or approximately 33.4 GB and a BD having a number of layers of three or four have been studied, and these will be described below.
  • FIG. 21 shows a configuration example of the multilayer disk in that case.
  • the illustrated optical disc is composed of (n + 1) information recording layers 502 (n is an integer of 0 or more).
  • the configuration is such that a cover layer 501, (n + 1) information recording layers (Ln to L0 layers) 502, and a substrate 500 are laminated on the optical disc in order from the surface on the side where the laser beam 505 is incident. Has been.
  • an intermediate layer 503 serving as an optical buffer material is inserted between (n + 1) information recording layers 502. That is, recording is performed such that the reference layer (L0) is provided at the farthest position (the furthest position from the light source) at a predetermined distance from the light incident surface, and the layers are increased from the reference layer (L0) to the light incident surface side.
  • the layers are stacked (L1, L2,..., Ln).
  • the distance from the light incident surface to the reference layer L0 in the multilayer disc is substantially the same as the distance from the light incident surface to the recording layer in the single-layer disc (for example, about 0.1 mm). May be.
  • the distance to the innermost layer is made constant (that is, the same distance as in the case of a single layer disc), regardless of whether it is a single layer or multiple layers. Compatibility regarding access to the reference layer can be maintained.
  • traveling direction of the spot also referred to as a track direction or a spiral direction
  • it may be a parallel path or an opposite path.
  • the playback direction is the same in all layers. That is, the traveling direction of the spot proceeds from the inner periphery to the outer periphery in all layers, or from the outer periphery to the inner periphery in all layers.
  • the playback direction is reversed between a layer and a layer adjacent to the layer. That is, when the reproduction direction in the reference layer (L0) is a direction from the inner periphery to the outer periphery, the reproduction direction in the recording layer L1 is a direction from the outer periphery to the inner periphery, and in the recording layer L2, the inner layer is directed to the outer periphery.
  • the reproducing direction is the direction from the inner periphery to the outer periphery in the recording layer Lm (m is 0 and an even number), and the direction from the outer periphery to the inner periphery in the recording layer Lm + 1.
  • the recording layer Lm (m is 0 and an even number) is a direction from the outer periphery to the inner periphery
  • the recording layer Lm + 1 is a direction from the inner periphery to the outer periphery.
  • the thickness of the protective layer (cover layer) is set to be thinner so that the focal length becomes shorter as the numerical aperture NA increases, and the influence of spot distortion due to tilt can be suppressed.
  • the numerical aperture NA is set to 0.45 for CD, 0.65 for DVD, and approximately 0.85 for BD.
  • the protective layer may have a thickness of 10 to 200 ⁇ m. More specifically, on a substrate of about 1.1 mm, a transparent protective layer of about 0.1 mm for a single layer disc, and an intermediate layer (SpacerLayer of about 0.025 mm on a protective layer of about 0.075 mm for a dual layer disc. ) May be provided. If the disc has three or more layers, the thickness of the protective layer and / or the intermediate layer may be further reduced.
  • FIG. 22 shows a configuration example of a single-layer disc
  • FIG. 23 shows a configuration example of a two-layer disc
  • FIG. 24 shows a configuration example of a three-layer disc
  • FIG. 25 shows a configuration example of a four-layer disc.
  • the total thickness of the disk is approximately 1.2 mm in any of FIGS.
  • the thickness of the substrate 500 is approximately 1.1 mm
  • the distance from the light irradiation surface to the reference layer L0 is approximately 0.1 mm.
  • n 0 in FIG.
  • the thickness of the cover layer 5012 is about 0.075 mm
  • the thickness of the intermediate layer 5302 is about 0.025 mm
  • information can be reproduced by irradiating a laser with a wavelength of 400 nm or more and 410 nm or less onto a substrate having a thickness of approximately 1.1 mm through an objective lens having a numerical aperture of 0.84 or more and 0.86 or less.
  • K recording layers are formed.
  • k-1 intermediate layers are formed between the recording layers.
  • a protective layer having a thickness of 0.1 mm or less is formed on the kth recording layer counted from the substrate side (in the case of a multilayer disc, the recording layer farthest from the substrate).
  • the reproducing direction is changed from the inner periphery side to the outer periphery side of the disc. Concentric or spiral tracks are formed so as to be in the directions. Further, when the jth recording layer (j is an even number not less than 1 and not more than k) from the substrate side is formed, it is concentric so that the reproducing direction is the direction from the outer peripheral side to the inner peripheral side of the disc. Alternatively, a spiral track is formed.
  • FIG. 26 shows a physical configuration of the optical disc 1 according to the embodiment of the present invention.
  • a disk-shaped optical disk 1 has a large number of tracks 2 formed, for example, concentrically or spirally, and each track 2 has a large number of finely divided sectors. As will be described later, data is recorded in each track 2 in units of blocks 3 having a predetermined size.
  • the optical disc 1 has a larger recording capacity per information recording layer than a conventional optical disc (for example, a 25 GB BD).
  • the expansion of the recording capacity is realized by improving the recording linear density, for example, by reducing the mark length of the recording mark recorded on the optical disc.
  • “to improve the recording linear density” means to shorten the channel bit length.
  • the channel bit is a length corresponding to the period T of the reference clock (the reference period T of modulation when a mark is recorded by a predetermined modulation rule).
  • the optical disk 1 may be multilayered. However, in the following, only one information recording layer is mentioned for convenience of explanation.
  • the recording linear density may be different for each layer.
  • Track 2 is divided into blocks for each data recording unit of 64 kB (kilobytes), and block address values are assigned in order.
  • the block is divided into sub-blocks of a predetermined length, and one block is constituted by three sub-blocks. Subblock numbers 0 to 2 are assigned to the subblocks in order from the front.
  • FIG. 27 (A) shows an example of a 25 GB BD.
  • the wavelength of the laser 123 is 405 nm
  • the numerical aperture (NA) of the objective lens 220 is 0.85.
  • recorded data is recorded as physical change mark rows 120 and 121 on track 2 of the optical disc.
  • the shortest mark in the mark row is called the “shortest mark”.
  • the mark 121 is the shortest mark.
  • the physical length of the shortest mark 121 is 0.149 ⁇ m. This is equivalent to approximately 1 / 2.7 of DVD, and even if the wavelength parameter (405 nm) and NA parameter (0.85) of the optical system are changed to increase the resolution of the laser, the light beam identifies the recording mark. We are approaching the limit of optical resolution that is possible.
  • FIG. 28 shows a state in which a mark row recorded on a track is irradiated with a light beam.
  • the light spot 30 is about 0.39 ⁇ m due to the optical system parameters.
  • the recording mark becomes relatively small with respect to the spot diameter of the light spot 30, so that the reproduction resolution is deteriorated.
  • FIG. 27B shows an example of an optical disc having a higher recording density than a 25 GB BD.
  • the wavelength of the laser 123 is 405 nm
  • the numerical aperture (NA) of the objective lens 220 is 0.85.
  • the physical length of the shortest mark (2T mark) 125 in the mark rows 125 and 124 of the disk is 0.1115 ⁇ m (or 0.11175 ⁇ m).
  • the spot diameter is the same, about 0.39 ⁇ m, but the recording marks are relatively small and the mark interval is also narrowed, so the reproduction resolution is poor.
  • the amplitude of the reproduction signal when the recording mark is reproduced with the light beam decreases as the recording mark becomes shorter, and becomes zero at the limit of optical resolution.
  • the reciprocal of the recording mark period is called a spatial frequency, and the relationship between the spatial frequency and the signal amplitude is called OTF (Optical-Transfer-Function).
  • OTF Optical-Transfer-Function
  • the signal amplitude decreases almost linearly as the spatial frequency increases.
  • the limit frequency of reproduction at which the signal amplitude becomes zero is called OTF cut-off.
  • FIG. 29 is a graph showing the relationship between the OTF and the shortest recording mark when the recording capacity is 25 GB.
  • the spatial frequency of the shortest mark of the BD is about 80% with respect to the OTF cutoff, and is close to the OTF cutoff. It can also be seen that the amplitude of the reproduction signal of the shortest mark is very small, about 10% of the maximum detectable amplitude.
  • the recording capacity in the BD corresponds to about 31 GB.
  • the resolution of the laser may be limited or exceeded, and the reproduction amplitude of the reproduction signal becomes small. This is a region where the S / N ratio deteriorates rapidly.
  • the recording linear density of the high recording density optical disk in FIG. 27B is the case where the frequency of the shortest mark of the reproduction signal is near the OTF cutoff frequency (below the OTF cutoff frequency but not significantly lower than the OTF cutoff frequency). In this case, it can be assumed that the frequency is higher than the OTF cutoff frequency.
  • FIG. 30 is a graph showing an example of the relationship between the signal amplitude and the spatial frequency when the spatial frequency of the shortest mark (2T) is higher than the OTF cutoff frequency and the amplitude of the 2T reproduction signal is 0. It is.
  • the 2T spatial frequency of the shortest mark length is 1.12 times the OTF cutoff frequency.
  • the SN ratio deterioration due to the multilayer information recording layer may be unacceptable from the viewpoint of the system margin.
  • the S / N ratio deterioration becomes remarkable when the frequency of the shortest recording mark exceeds the OTF cutoff frequency.
  • the recording density is described by comparing the frequency of the reproduction signal of the shortest mark with the OTF cutoff frequency. However, when the density is further increased, the next shortest mark (and the shortest one after another). Based on the same principle as described above, the recording density (recording line density, recording capacity) corresponding to the frequency of the reproduction signal of the mark (and the recording mark more than the next shortest mark) and the OTF cutoff frequency is used. May be set.
  • the recording capacity per layer when the spatial frequency of the shortest mark is equal to or higher than the OTF cutoff frequency is, for example, approximately 32 GB (for example, 32.0 GB ⁇ 0.5 GB or 32 GB ⁇ 1 GB) or more, or more Approximately 33 GB (for example, 33.0 GB ⁇ 0.5 GB, or 33 GB ⁇ 1 GB) or more, or approximately 33.3 GB (for example, 33.3 GB ⁇ 0.5 GB, or 33.3 GB ⁇ 1 GB) or more Or approximately 33.4 GB (for example, 33.4 GB ⁇ 0.5 GB, or 33.4 GB ⁇ 1 GB) or more, or approximately 34 GB (for example, 34.0 GB ⁇ 0.5 GB, or 34 GB ⁇ 1 GB), or more More than or approximately 35 GB (for example, 35.0 GB ⁇ 0.5 GB, or 35 GB ⁇ 1 GB or the like) or more.
  • 35 GB for example, 35.0 GB ⁇ 0.5
  • the recording density is about 33.3 GB
  • a recording capacity of about 100 GB (99.9 GB) can be realized with three layers
  • a recording capacity of 100 GB or more (100.2 GB) with three layers is achieved. realizable.
  • the recording density is 33 GB
  • 33 ⁇ 3 99 GB and the difference from 100 GB is 1 GB (1 GB or less)
  • 34 ⁇ 3 102 GB and the difference from 100 GB is 2 GB (2 GB or less)
  • the choice of whether the disk configuration is a four-layer structure of 25 GB per layer or a three-layer structure of 33 to 34 GB per layer occurs.
  • Multi-layering is accompanied by a decrease in reproduction signal amplitude (deterioration of SN ratio) in each recording layer, influence of multi-layer stray light (signal from an adjacent recording layer), and the like. Therefore, by using a 33-34 GB three-layer disc instead of a 25 GB four-layer disc, the influence of such stray light is suppressed as much as possible, that is, with a smaller number of layers (three layers instead of four layers), about It becomes possible to realize 100 GB.
  • a disc manufacturer who wants to achieve about 100 GB while avoiding multi-layering as much as possible can select three layers of 33 to 34 GB.
  • a disc manufacturer who wants to realize about 100 GB with the conventional format (recording density 25 GB) can select 25 GB of four layers.
  • manufacturers having different purposes can achieve the respective purposes with different configurations, and can give a degree of freedom in disc design.
  • the recording density per layer is about 30 to 32 GB, a 3-layer disc does not reach 100 GB (about 90 to 96 GB), and a 4-layer disc can achieve 120 GB or more.
  • the recording density is about 32 GB, a recording capacity of about 128 GB can be realized with a four-layer disc.
  • the number 128 is also a numerical value that matches the power of 2 (2 to the 7th power), which is convenient for processing by a computer.
  • the reproduction characteristic for the shortest mark is not stricter.
  • a combination of a plurality of types of recording densities and the number of layers can be used for disc manufacturers.
  • design freedom For example, a manufacturer who wants to increase the capacity while suppressing the influence of multilayering is given an option to manufacture a three-layer disc of about 100 GB by making three layers of 33 to 34 GB, while suppressing the influence on the reproduction characteristics.
  • an option of manufacturing a four-layer disc of about 120 GB or more by forming four layers of 30 to 32 GB can be given.
  • the recording method by forming a groove in the medium, a groove portion and an inter-groove portion between the grooves are formed, but recording is performed on the groove portion or recording is performed on the inter-groove portion.
  • a method of recording on the side which becomes the convex portion when viewed from the light incident surface among the grooves and the inter-groove portion is called an On-Groove method
  • a method of recording on the side which becomes the concave portion from the light incident surface is the In-Groove method. It is called a method.
  • the recording method is an On-Groove method, an In-Groove method, or a method that permits either one of the two methods.
  • the recording method identification information may be recorded on the medium.
  • recording method identification information for each layer may be recorded.
  • the recording method identification information for each layer is the reference layer (the layer farthest from the light incident surface (L0) or the nearest layer, the layer that is determined to be accessed first at the time of startup, etc.)
  • the recording method identification information relating to only that layer may be recorded in each layer, or the recording method identification information relating to all layers may be recorded in each layer.
  • the recording system identification information is recorded in an area such as a BCA (Burst Cutting Area) or a disc information area (inside or outside of the data recording area, mainly storing control information, a read-only area).
  • the track pitch may be wider than the data recording area) and wobble (recording superimposed on the wobble), etc., and even if it is recorded in any area, any area or all areas Good.
  • the on-groove method and the in-groove method may be reversed with respect to the wobble start direction.
  • the on-groove method starts the wobble start direction from the inner periphery side of the disc
  • the in-groove method starts the wobble start direction from the outer periphery side of the disc (or if In the case of the on-groove method, when the wobble start direction starts from the outer peripheral side of the disc, the wobble start direction may be started from the inner peripheral side of the disc in the in-groove method).
  • the tracking polarity can be made the same in either method.
  • the tracking polarities can be made the same by making the wobble start directions opposite to each other.
  • the characteristics of the recording film there are the following two characteristics depending on the reflectance relationship between the recorded portion and the unrecorded portion. That is, the HtoL characteristic in which the unrecorded part has a higher reflectance (High-to-Low) than the recorded part, and the LtoH characteristic in which the unrecorded part has a lower reflectance (Low-to-High) than the recorded part. It is. In the present invention, it does not matter whether the recording film characteristic of the medium is HtoL or LtoH, and either one is permitted.
  • recording film characteristic identification information indicating whether the recording film characteristic is HtoL or LtoH can be recorded on the medium so that the recording film characteristic can be easily identified.
  • recording film characteristic identification information for each layer may be recorded.
  • the recording film characteristic identification information for each layer is the reference layer (the layer farthest from the light incident surface (L0) or the nearest layer, the layer that is determined to be accessed first at the time of startup, etc.) ), Recording film characteristic identification information relating to only that layer may be recorded in each layer, or recording film characteristic identification information relating to all layers may be recorded in each layer.
  • the recording film characteristic identification information is recorded in an area such as a BCA (Burst Cutting Area) or a disk information area (inner side or / and outer side of the data recording area, mainly storing control information, but also reproducing) (There may be a track pitch wider than the data recording area in the dedicated area) and wobble (recorded superimposed on the wobble), etc., and recorded in any area, any area or all areas May be.
  • BCA Breast Cutting Area
  • a disk information area inner side or / and outer side of the data recording area, mainly storing control information, but also reproducing
  • wobble recorded superimposed on the wobble
  • the write-once information recording medium of the present invention is a write-once information recording medium that includes one or more recording layers and records information in units of blocks.
  • the information includes a space bitmap including bitmap information for managing a recording state of the user data area of the predetermined recording layer, and a disk definition structure including position information regarding the space bitmap, and the space bit
  • the map size is one block size in combination with the disk definition structure regardless of the size of the user data area.
  • a predetermined size If the size of the user data area of the predetermined recording layer exceeds a predetermined size, a plurality of space bitmaps are formed for the user data area of the predetermined recording layer, and the management In the information area, a one-block size disk management structure update unit including one of the plurality of space bitmaps and the disk definition structure is recorded.
  • the bitmap information is divided into a plurality of partial bitmap information, and the plurality of space bitmaps Each includes one of the plurality of partial bitmap information.
  • each of the plurality of space bitmaps includes a header including information regarding a region range managed by the partial bitmap information included in each of the plurality of space bitmaps.
  • the size of the bitmap information increases as the size of the user data area increases, and the predetermined size includes the bitmap information, the disk definition structure, and the header. This is the size of the user data area when the combined size is one block size.
  • the header includes information on a start address and a size of an area range managed by the partial bitmap information.
  • the header includes update number information of the space bitmap.
  • a block at a predetermined position in the management information area includes a second disk management structure update unit of one block size including the disk management structure update unit, the disk definition structure, and an initial defect list.
  • the disc definition structure includes position information of the initial defect list, and the initial defect list is a defect list that does not include information regarding the defect area.
  • the block at the predetermined position is the first block among the recordable / reproducible blocks in the management information area.
  • the information recording apparatus of the present invention is an information recording apparatus that includes one or more recording layers and records information on a write-once information recording medium in which recording is performed in units of blocks, and the write-once information recording medium includes: A user data area for recording user data; and a management information area for recording management information relating to the write-once information recording medium.
  • the user data area is provided for each recording layer, and the management information Includes a space bitmap including bitmap information for managing a recording state of the user data area of the predetermined recording layer, and a disk definition structure including position information regarding the space bitmap, and the space bitmap Regardless of the size of the user data area, the size of one becomes a block size in combination with the disk definition structure.
  • the information recording apparatus has a plurality of space bitmaps for the user data area of the predetermined recording layer when the size of the user data area of the predetermined recording layer exceeds a predetermined size. And a block management structure update unit of one block size including one of the plurality of space bitmaps and the disk definition structure is recorded in the management information area.
  • the bitmap information is divided into a plurality of partial bitmap information, and the plurality of space bitmaps Each of which includes one of the plurality of partial bitmap information.
  • each of the plurality of space bitmaps includes a header including information regarding a region range managed by the partial bitmap information included in each of the plurality of space bitmaps.
  • the size of the bitmap information increases as the size of the user data area increases, and the predetermined size includes the bitmap information, the disk definition structure, and the header. This is the size of the user data area when the combined size is one block size.
  • the header includes information on a start address and a size of an area range managed by the partial bitmap information.
  • the header includes update number information of the space bitmap.
  • a block at a predetermined position in the management information area includes a second disk management structure update unit of one block size including the disk management structure update unit, the disk definition structure, and an initial defect list.
  • the disc definition structure includes position information of the initial defect list, and the initial defect list is a defect list that does not include information regarding the defect area.
  • the block at the predetermined position is the first block among the recordable / reproducible blocks in the management information area.
  • the information recording method of the present invention is an information recording method comprising one or more recording layers and recording information on a write-once information recording medium in which recording is performed in units of blocks, wherein the write-once information recording medium comprises: A user data area for recording user data; and a management information area for recording management information relating to the write-once information recording medium.
  • the user data area is provided for each recording layer, and the management information Includes a space bitmap including bitmap information for managing a recording state of the user data area of the predetermined recording layer, and a disk definition structure including position information regarding the space bitmap, and the space bitmap Regardless of the size of the user data area, the size of one becomes a block size in combination with the disk definition structure.
  • the information recording method includes a plurality of space bitmaps for the user data area of the predetermined recording layer when the size of the user data area of the predetermined recording layer exceeds a predetermined size. And recording a block management structure update unit of one block size including one of the plurality of space bitmaps and the disk definition structure in the management information area.
  • the size of the user data area of the predetermined recording layer exceeds the predetermined size, dividing the bitmap information into a plurality of partial bitmap information, and the plurality of spaces Further including including one of the plurality of partial bitmap information in each of the bitmaps.
  • each of the plurality of space bitmaps includes a header including information regarding a region range managed by the partial bitmap information included in each of the plurality of space bitmaps.
  • the size of the bitmap information increases as the size of the user data area increases, and the predetermined size includes the bitmap information, the disk definition structure, and the header. This is the size of the user data area when the combined size is one block size.
  • the header includes information on a start address and a size of an area range managed by the partial bitmap information.
  • the header includes update number information of the space bitmap.
  • a block at a predetermined position in the management information area includes a second disk management structure update unit of one block size including the disk management structure update unit, the disk definition structure, and an initial defect list.
  • the disc definition structure includes position information of the initial defect list, and the initial defect list is a defect list that does not include information regarding the defect area.
  • the block at the predetermined position is the first block among the recordable / reproducible blocks in the management information area.
  • the information reproduction apparatus of the present invention is an information reproduction apparatus that includes one or more recording layers and reproduces information from a write-once information recording medium on which recording is performed in units of blocks, and the write-once information recording medium includes: A user data area for recording user data; and a management information area for recording management information relating to the write-once information recording medium.
  • the user data area is provided for each recording layer, and the management information Includes a space bitmap including bitmap information for managing a recording state of the user data area of the predetermined recording layer, and a disk definition structure including position information regarding the space bitmap, and the space bitmap Regardless of the size of the user data area, the size of a single block size is combined with the disk definition structure.
  • a predetermined size If the size of the user data area of the predetermined recording layer exceeds a predetermined size, a plurality of space bitmaps are formed for the user data area of the predetermined recording layer, and the management In the information area, a one-block size disk management structure update unit including one of the plurality of space bitmaps and the disk definition structure is recorded, and the information reproducing apparatus reads from the management information area, The disk management structure update unit of one block size including the disk definition structure is read, and the space bitmap is read.
  • the bitmap information is divided into a plurality of partial bitmap information, and the plurality of space bitmaps Each include one of the plurality of partial bitmap information, and the information reproducing apparatus reads the partial bitmap information from the space bitmap.
  • each of the plurality of space bitmaps includes a header including information regarding a region range managed by the partial bitmap information included in each of the plurality of space bitmaps.
  • the size of the bitmap information increases as the size of the user data area increases, and the predetermined size includes the bitmap information, the disk definition structure, and the header. This is the size of the user data area when the combined size is one block size.
  • the header includes information on a start address and a size of an area range managed by the partial bitmap information.
  • the header includes update number information of the space bitmap.
  • a block at a predetermined position in the management information area includes a second disk management structure update unit of one block size including the disk management structure update unit, the disk definition structure, and an initial defect list.
  • the disc definition structure includes position information of the initial defect list, and the initial defect list is a defect list that does not include information regarding a defect area, and the information reproduction
  • the apparatus reads either the disk management structure update unit or the second disk management structure update unit from the block at the predetermined position.
  • the block at the predetermined position is the first block among the recordable / reproducible blocks in the management information area.
  • the information reproducing method of the present invention is an information reproducing method for reproducing information from a write-once information recording medium comprising one or more recording layers and recording is performed in units of blocks, wherein the write-once information recording medium includes: A user data area for recording user data; and a management information area for recording management information relating to the write-once information recording medium.
  • the user data area is provided for each recording layer, and the management information Includes a space bitmap including bitmap information for managing a recording state of the user data area of the predetermined recording layer, and a disk definition structure including position information regarding the space bitmap, and the space bitmap Regardless of the size of the user data area, the size of a single block size is combined with the disk definition structure.
  • the size of the user data area of the predetermined recording layer exceeds a predetermined size, a plurality of space bitmaps are formed for the user data area of the predetermined recording layer, and the management In the information area, a one-block size disk management structure update unit including one of the plurality of space bitmaps and the disk definition structure is recorded, and the information reproducing method includes the management information area, The step includes reading the disk management structure update unit of one block size including the disk definition structure and reading the space bitmap.
  • the bitmap information is divided into a plurality of partial bitmap information, and the plurality of space bitmaps Each include one of the plurality of partial bitmap information, and the information reproducing method further includes a step of reading the partial bitmap information from the space bitmap.
  • each of the plurality of space bitmaps includes a header including information regarding a region range managed by the partial bitmap information included in each of the plurality of space bitmaps.
  • the size of the bitmap information increases as the size of the user data area increases, and the predetermined size includes the bitmap information, the disk definition structure, and the header. This is the size of the user data area when the combined size is one block size.
  • the header includes information on a start address and a size of an area range managed by the partial bitmap information.
  • the header includes update number information of the space bitmap.
  • a block at a predetermined position in the management information area includes a second disk management structure update unit of one block size including the disk management structure update unit, the disk definition structure, and an initial defect list.
  • the disc definition structure includes position information of the initial defect list, and the initial defect list is a defect list that does not include information regarding a defect area, and the information reproduction
  • the method further includes the step of reading either the disk management structure update unit or the second disk management structure update unit from a block at a predetermined position in the management information area.
  • the block at the predetermined position is the first block among the recordable / reproducible blocks in the management information area.
  • the write-once information recording medium is a write-once information recording medium that includes one or more recording layers and performs recording in units of blocks, and the write-once information recording medium stores user data.
  • the data area is provided for each recording layer, and the disc management structure includes: A space bitmap for managing the unrecorded state in the data area for each recording layer, a defect list for managing defects in the data area, layout information in the write-once information recording medium, and the space A disk definition structure comprising a bitmap and location information about the defect list, the space bitmap And the defect list are recorded in the management information area for each disk management structure update unit formed by combining the disk definition structures, and the space bitmap in one recording layer and the disk definition structure are combined.
  • the disk management structure update unit of one block size including the disk definition structure is recorded in at least a block at a predetermined position in the management information area.
  • the block at the predetermined position is a block recorded first in the management information area.
  • the block at the predetermined position is a head block of the management information area.
  • the block at the predetermined position is recorded with the disk definition structure update unit of one block size formed by combining the defect list in the initial state and the disk definition structure.
  • the space bitmap in one recording layer is divided into a plurality of partial space bitmaps that can form the disk definition structure update unit of one block size in combination with the disk definition structure,
  • the disk definition structure update unit of one block size formed by combining the partial space bitmap and the disk definition structure is recorded.
  • the space bitmap in one recording layer includes bitmap data indicating an unrecorded state for each block in the data area, and a header including information on the bitmap data.
  • the information recording method of the present invention is an information recording method for recording on a write-once information recording medium that includes one or more recording layers and is recorded in units of blocks, wherein the write-once information recording medium is a user A data area for recording data, and a management information area for recording a disc management structure that is management information relating to the information recording medium, wherein the data area is provided for each recording layer; Is a space bitmap for managing the recording unrecorded state in the data area for each recording layer, a defect list for managing defects in the data area, layout information in the write-once information recording medium, A disk definition structure comprising position information about the space bitmap and the defect list, and the space bitmap.
  • the map and the defect list are recorded in the management information area for each disk management structure update unit formed by combining the disk definition structures, and the space bitmap and the disk definition structure in one recording layer are recorded.
  • the combined size has a size of more than one block, and the information recording method records the disk management structure update unit of one block size including the disk definition structure at least in a block at a predetermined position in the management information area. .
  • the block at the predetermined position is a block to be recorded first in the management information area.
  • the block at the predetermined position is a head block of the management information area.
  • the block definition structure update unit of one block size formed by combining the defect list in the initial state and the disk definition structure is recorded in the block at the predetermined position.
  • the space bitmap in one recording layer is divided into a plurality of partial space bitmaps that can form the disk definition structure update unit of one block size in combination with the disk definition structure,
  • the disk definition structure update unit having a block size formed by combining the partial space bitmap and the disk definition structure is recorded in the management information area.
  • the space bitmap in one recording layer includes bitmap data indicating an unrecorded state for each block in the data area, and a header including information on the bitmap data.
  • the information recording apparatus of the present invention is an information recording apparatus that includes one or more recording layers and performs recording on a write-once information recording medium in which recording is performed in units of blocks, and the write-once information recording medium includes a user A data area for recording data, and a management information area for recording a disc management structure that is management information relating to the information recording medium, wherein the data area is provided for each recording layer; Is a space bitmap for managing the recording unrecorded state in the data area for each recording layer, a defect list for managing defects in the data area, layout information in the write-once information recording medium, A disk definition structure comprising position information about the space bitmap and the defect list, and the space bitmap.
  • the map and the defect list are recorded in the management information area for each disk management structure update unit formed by combining the disk definition structures, and the space bitmap and the disk definition structure in one recording layer are recorded.
  • the combined size has a size of more than one block, and the information recording device records the disk management structure update unit of one block size including the disk definition structure at least in a block at a predetermined position in the management information area.
  • a control unit is provided.
  • the block at the predetermined position is a block to be recorded first in the management information area.
  • the block at the predetermined position is a head block of the management information area.
  • control unit records the disk definition structure update unit of one block size formed by combining the defect list in the initial state and the disk definition structure in the block at the predetermined position. .
  • the space bitmap in one recording layer is divided into a plurality of partial space bitmaps that can form the disk definition structure update unit of one block size in combination with the disk definition structure,
  • the control unit records the disk definition structure update unit of one block size formed by combining the partial space bitmap and the disk definition structure in the management information area.
  • the space bitmap in one recording layer includes bitmap data indicating an unrecorded state for each block in the data area, and a header including information on the bitmap data.
  • the control unit includes the disk definition structure update unit formed by combining the header and the disk definition structure, which does not include the bitmap data in the space bitmap in the block at the predetermined position. Record.
  • the information reproducing method of the present invention is an information reproducing method for reproducing information from a write-once information recording medium comprising one or more recording layers and recording is performed in units of blocks, wherein the write-once information recording medium includes: A data area for recording user data, and a management information area for recording a disc management structure, which is management information relating to the information recording medium, wherein the data area is provided for each recording layer;
  • the structure includes a space bitmap for managing a recording unrecorded state in the data area for each recording layer, a defect list for managing defects in the data area, layout information in the write-once information recording medium, And a disk definition structure comprising position information about the space bitmap and the defect list, and the space.
  • the bitmap and the defect list are recorded in the management information area for each disk management structure update unit formed by combining the disk definition structures, and the space bitmap and the disk definition structure in one recording layer. And the information reproducing method reads out the disk management structure update unit of one block size including the disk definition structure from a block at a predetermined position in the management information area. .
  • the information reproduction apparatus of the present invention is an information reproduction apparatus that includes one or more recording layers and reproduces information from a write-once information recording medium on which recording is performed in units of blocks, and the write-once information recording medium includes: A data area for recording user data, and a management information area for recording a disc management structure, which is management information relating to the information recording medium, wherein the data area is provided for each recording layer;
  • the structure includes a space bitmap for managing a recording unrecorded state in the data area for each recording layer, a defect list for managing defects in the data area, layout information in the write-once information recording medium, And a disk definition structure comprising position information about the space bitmap and the defect list, and the space.
  • the bitmap and the defect list are recorded in the management information area for each disk management structure update unit formed by combining the disk definition structures, and the space bitmap and the disk definition structure in one recording layer.
  • the information reproducing apparatus reads the block management structure update unit having a block size including the disk definition structure from a block at a predetermined position in the management information area.
  • a control unit is provided.
  • the information recording medium according to the present invention can be applied to a write-once optical disc capable of random recording at an arbitrary location, and the information recording / reproducing method according to the present invention can be applied to a write-once optical disc capable of random recording at an arbitrary location. Can be applied to an optical disk drive device capable of recording and reproducing.

Abstract

 本発明によれば、1つの記録層のユーザデータ領域に対して、複数のスペースビットマップ(SBM30♯0、SBM30♯1)が形成される。それら複数のスペースビットマップのうちの1つとディスク定義構造(TDDS32)とを含む1ブロックサイズのディスク管理構造更新単位が管理情報領域(TDMA17)に記録される。これにより、ディスク定義構造(TDDS32)を含むデータを、管理情報領域(TDMA17)の先頭位置の1ブロックに常に配置することができる。

Description

追記型情報記録媒体、情報記録装置、情報記録方法、情報再生装置および情報再生方法
 本発明は、各領域の記録状態/未記録状態を示すビットマップ情報を含み、ランダム記録が可能な情報記録媒体、及びその記録媒体に対する記録再生方法、記録再生装置に関する。例えば、高密度BD-Rなどの記録が1回のみ可能な追記型光ディスク等や、そのようなディスクに対する記録再生に関する。
 近年、大容量で交換可能な情報記録媒体、およびそれを扱うディスクドライブ装置が広く普及している。大容量で交換可能な情報記録媒体としては、DVDやBlu-ray Disc(以下、BDとも記載する。)のような光ディスクが良く知られている。光ディスクドライブ装置は、レーザ光を用いて光ディスク上に微小なピット(マーク)を形成することによって記録再生を行うので、大容量で交換可能な情報記録に適している。レーザ光としてDVDは赤色レーザ、BDは赤色レーザより波長が短い青色レーザを用いることが特徴であり、それによりBDはDVDよりも記録密度を高め、大容量化を実現している。例えばBD-Rの場合、記録層1層あたり、最大で27GByteの記録容量を実現している。
 光ディスクの一例として、相変化タイプの記録材料を記録層に用いた光ディスクがある。相変化型光ディスクは、レーザ光線を光ディスクに照射し、その注入エネルギーにより、記録膜面上の薄膜物質の原子結合状態を局所的に変化させることにより情報を記録する。記録したときよりも十分低いパワーのレーザ光を照射すると、前述の物理状態の違いによって反射率が変化する。この反射率の変化量を検出すれば情報の読み取りを行うことができる。
 相変化型光ディスクは、記録層に用いる相変化タイプの記録材料によって複数回の繰り返し記録が可能な書き換え型光ディスクの他に、1回しか記録できない追記型光ディスクがある。これらの追記型光ディスクにマークエッジ記録する場合、マルチパルス状に変調されたレーザ光を照射して記録材料の物理状態の変化を生じさせることによって、記録マークを形成し、できたマークとスペースの反射率変化を検出して情報を読み出す。
 しかしながら、光ディスクは交換可能な情報記録媒体であるため、埃や傷などによってその記録面に欠陥が存在する可能性が高い。特に高密度な記録媒体ほど欠陥の影響を受けやすいこともあり、書き換え型光ディスク(例えばBD-RE)だけでなく、追記型光ディスク(例えばBD-R)でも記録再生データの信頼性保証のために欠陥管理を行う方法が一般的になっている(例えば特許文献1)。またBD-Rの場合はさらに、追記型記録媒体の特徴である特定の追記点から連続した記録を行うシーケンシャル記録モードに加えて、任意の記録位置への記録を行うランダム記録モードという記録モードを備えるという特徴も持っている(例えば特許文献2、特許文献3および特許文献4)。
 図1は、一般的な光ディスクの領域構成図である。円盤状の光ディスク1には、スパイラル状に多数のトラック2が形成されており、各トラック2には細かく分けられた多数のブロック3が形成されている。ブロック3は、エラー訂正の単位であり、記録および再生動作が行われる最小の単位である。BDの場合は、このブロック3のことをクラスタ(Cluster)と呼んだり、あるいはDVDの場合は、このブロック3のことをECCと呼んだりもする。BDの場合の1ブロックである1クラスタは例えば32セクタ(1セクタは2KByteで、1クラスタは64KByte)、DVDの場合の1ブロックである1ECCは16セクタ(32KByte)である。また、光ディスク1の領域は、リードイン領域4とデータ領域5とリードアウト領域6に大別される。ユーザデータの記録再生はデータ領域5に対して行われる。リードイン領域4とリードアウト領域6は、光ヘッド(図示せず)がデータ領域5の端へアクセスする場合に、光ヘッドがオーバーランしてもトラックに追随できるように、のりしろとしての役割を果たす。この領域構成は書き換え型光ディスク、追記型光ディスクとも共通である。
 図2は、欠陥管理機能を有する追記型光ディスクの記録層1層についてのデータ構造を示す図である。
 データ領域5は、ユーザデータの記録再生を行うユーザデータ領域14と、ユーザデータ領域14の中の欠陥ブロックの代わりに用いるブロック(以下交替ブロック)として予め用意されたスペア領域(光ディスク1の内周側に用意される内周スペア領域15と、外周側に用意される外周スペア領域16)とを備える。なお図2では、データ領域5の内周側と外周側にそれぞれ1つずつスペア領域を備えた場合を例にして記載したが、どちらか一方(例えば内周側のみ配置)でもよく、配置についてはこの図に示した限りではない。
 光ディスク1におけるスペア領域の配置(サイズ)情報や記録モード情報、欠陥ブロックの情報などの管理情報であるディスク管理構造(Disc Management Structure。以下DMSと呼ぶ)を書き込むための領域として、リードイン領域4は第1のDMA10(Disc Management Area。以下DMA1とする)と第2のDMA11(以下DMA2とする)とを備え、リードアウト領域6は第3のDMA12(以下DMA3とする)と第4のDMA13(以下DMA4とする)とを備える。なお、DMAは、Defect Management Areaと称されることもある。
 DMA1~DMA4はそれぞれ所定の位置に配置される領域である。ここでDMA1~DMA4には、位置情報のような所定の情報を除いて、全て同じ管理情報が多重記録されている。これは、DMA1~DMA4自身が欠陥に冒されている場合の備えであり、たとえ正しく再生されないDMAがあってもどれか1つでも正しく再生できるDMAがあれば欠陥管理情報を取得することができる。
 さらにリードイン領域4は第1のTDMA(Temporary Disc Management Area)17を備える。TDMAは、書き換え(上書き更新)が出来ない追記型光ディスク特有の領域であり、光ディスク1使用中の過渡的な管理情報を追記更新するために使用される。なお、TDMAは、Temporary Defect Management Areaと称されることもある。
 具体的なTDMA17の使い方について図14を用いて説明する。まずスペア領域の配置(サイズ)や記録モードを確定させて追記型の光ディスク1を使用可能な状態にする初期化フォーマット処理(Initializationとも呼ばれる)を行い、図14(a)に示すように、初期TDMS(Temporary Disc Management Structure)20が記録される。
 続けてユーザデータ領域14への記録処理が行われ、図14(b)に示すように、それに応じた情報(欠陥情報や終端記録位置情報など)に更新したTDMS21#0がTDMA17における未記録の先頭位置に(つまり記録済み位置と未記録の境界位置から未記録側に向かって)記録される。
 以降同様に管理情報更新が実施され、図14(c)に示す状態の場合は、初期化フォーマット処理と、m+1回の管理情報更新が実施された後の状態を示す。つまり、最新の管理情報(最新TDMS)は、TDMA17における記録済みと未記録の境界位置に隣接する記録済みのTDMS(この図の場合はTDMS21#m)ということになる。
 DMAの配置は追記型光ディスク、書き換え型光ディスクとも相違ないが、書き換え型光ディスクの場合は書き換え(上書き更新)が可能なため、光ディスク1使用中の過渡的な管理情報も含めてすべて、管理情報更新をDMA領域で行うことが出来る。これに対して、追記型光ディスクの場合には書き換え(上書き更新)が出来ない。そのため追記型の光ディスク1の場合には、追記型特有のTDMAという過渡的情報更新用の領域を備えるとともに、以降の光ディスク1への新規記録(追記)を禁止し再生専用とするファイナライズ(Finalize、もしくはDisc Closeとも呼ぶ)時に、最新TDMSの内容がDMAにコピー記録される。
 なお図2では、TDMA17がリードイン領域4中に1つ存在する場合を例に示して説明したが、TDMA17が2つ以上備えられる場合もある(例えば特許文献5)。例えば図15に示すように、記録層1層に対して、リードイン領域4中のTDMA♯0に加えて、データ領域5の内周スペア領域15中のTDMA♯1、外周スペア領域16中のTDMA♯2というように、例えばスペア領域中にもTDMAが確保されてもよい。また記録層を複数備えた追記型の光ディスク1の場合には、記録層毎に上記のTDMAを備えたりもする。
 DMAに記録されるDMS、およびTDMA17に記録されるTDMS21はいずれも同じ要素から構成される。ここではTDMS21を例にとって説明する。
 図16は、ランダム記録モードの場合の、追記型光ディスクであるBD-RにおけるTDMS21を構成する構成要素を示す。なおこの図では、記録層を1層のみ備えている場合の追記型の光ディスク1を例にとって説明することとし、そのため各情報が保持するデータの内容も記録層1層分のデータのみを記載することとする。
 TDMS21は、SBM(Space Bit Map)30と、TDFL(Temporary Defect List)31と、TDDS(Temporary Disc Definition Structure)32から構成される。
 SBM30は、この情報がSBM30であることを示す識別子や、更新回数情報、SBM管理対象の領域範囲に関する情報(例えば対象領域の先頭アドレスとサイズなど)などを備えるSBMヘッダ40と、SBM管理対象の領域範囲における記録状態(例えば、領域範囲に含まれるブロック毎の記録済み/未記録の状態)を示すビットマップ情報41とを備える。ビットマップ情報41については、後述で詳細に説明する。記録層を複数備えた光ディスク1の場合、SBM30が管理可能な領域であるデータ領域5(より詳細には、ユーザデータ領域14)は各層間では物理的に連続していないため、SBM30は記録層毎に備えられる。
 TDFL31は、この情報がTDFLであることを示す識別子や、更新回数情報、TDFLが備える欠陥・交替情報であるDFLエントリ43の個数(図16の場合は、n+1個)などの情報を備えるDFLヘッダ42と、上述した個数分のDFLエントリ43と、DFLエントリ43の個数に応じてサイズが変化するTDFL31の終端位置であることを示す識別子や、更新回数情報などを備えるDFLターミネータ44とを備える。TDFL31は例えば、後述の1セクタサイズのTDDS32との組み合わせで、記録層が1層の場合、最大で4ブロック(BDの場合は4クラスタ)サイズであり、2層の場合は最大で8ブロック(BDの場合は8クラスタ)サイズとなる。つまりTDFL31のサイズとしては記録層が1層の場合、最大で“4ブロック(BDの場合は4クラスタ)-1セクタ”のサイズであり、2層の場合は最大で“8ブロック(BDの場合は8クラスタ)-1セクタ”のサイズである。
 TDDS32は、この情報がTDDS32であることを示す識別子や、更新回数情報などを備えるDDSヘッダ50と、データ領域5中の領域構造を確定させる内周スペア領域15のサイズ情報である内周スペア領域サイズ51および外周スペア領域16のサイズ情報である外周スペア領域サイズ52と、シーケンシャル記録モードかランダム記録モードかという記録モードを示す記録モード情報53と、図15に示したように内周スペア領域15および外周スペア領域16内にTDMAが確保されている場合のサイズ情報を示す内周スペア内TDMAサイズ54および外周スペア内TDMAサイズ55と、上述の最新のSBM30が記録されている位置情報であるSBM#0位置情報56と、最新のTDFL31(最大4ブロック分)が記録されている各ブロックの位置情報であるDFL#0位置情報57、DFL#1位置情報58、DFL#2位置情報59、DFL#3位置情報60とを備える。
 TDDS32は固定サイズであり、例えば上述したように1セクタサイズであるとする。
 ここで、ビットマップ情報41について、図19を用いて詳細に説明する。ビットマップ情報41は、データ領域の記録済み部分および未記録部分を管理するための情報であり、例えば、ブロック単位で記録/未記録を管理する。ビットマップ情報41は、SBM管理対象の領域範囲(例えば、ユーザデータ領域14)における1ブロックを1ビットで対応させ、そのブロックが未記録状態ならば0であるが、記録された時点で1に変更する。つまり図19のように、SBM管理対象の領域範囲におけるA~Hまでの8ブロックに対して、ビットマップ情報41の所定のByte位置の1バイト(8ビット)データを対応させる。bit0をブロックA、・・・、bit7をブロックHに対応させて示す場合、図19(A)のように対象領域がすべて未記録状態であれば、対応するビットマップ情報41は、bit0~bit7がすべて0である。これに対して、図19(B)のようにブロックB、C、Fが記録された後では、対応するビットマップ情報41のbit1、bit2、bit5がそれぞれ1となり、ビットマップ情報41の所定のByte位置の1バイト(8ビット)データは26h(16進数表記)となる。1ブロックを1ビットで対応させるため、1セクタ(2KByte)のビットマップ情報41で4000h(16進数表記)ブロックを管理でき、30セクタのビットマップ情報41で78000h(16進数表記。10進数表記で491,520)ブロックを管理できる。
 BD-Rの場合、記録層1層の最大容量27GByteの場合、ユーザデータ領域14に含まれる最大ブロック(クラスタ)数は68000h(16進数表記)ブロック未満であるため、ビットマップ情報41のサイズは30セクタ分あれば十分である。SBMヘッダ40を1セクタサイズとした場合、31セクタサイズのSBM30と1セクタサイズのTDDS32を組み合わせたサイズは必ず1ブロック(32セクタ・1クラスタ)に収まることが保証できる。一方でTDFL31のサイズはDFLエントリ43の数に応じて可変であるため、TDDS32と組み合わせて必ず1ブロックサイズに収まることは保証できない。
 SBM30およびTDFL31は、必ずそれぞれTDDS32と組み合わせた形式を1つの記録単位(これをディスク管理構造更新単位と言う)としてTDMA17に記録される。
 次に初期TDMS20(図14)について説明する。
 初期TDMS20は、TDMA17の先頭位置、つまり当該光ディスク1の中で最初に使用(記録)される位置に配置される。
 初期TDMS20は通常のTDMS21と同じ構成要素を含むが、その内容がTDMS21とは少し異なる。初期TDMS20は、図17に示すように、初期のSBM30とTDDS32の組み合わせの1ブロック(1クラスタ)のデータ(ディスク管理構造更新単位)と、それに続く初期のTDFL31とTDDS32の組み合わせの1ブロック(1クラスタ)のデータ(ディスク管理構造更新単位)とから構成される。
 ここで初期のSBM30とは、SBMヘッダ40の識別子やSBM管理対象の領域範囲についての情報のみ設定され、更新回数情報などは0であり、さらにビットマップ情報41はすべて0である(つまりユーザデータ領域14はすべて未記録状態)のSBMのことである。
 初期のSBM30と組み合わせて記録するTDDS32においては、識別子情報等のみが設定されたDDSヘッダ50と、スペア領域のサイズ(内周スペア領域サイズ51、外周スペア領域サイズ52)と、スペア領域内のTDMAのサイズ(内周スペア内TDMAサイズ54、外周スペア内TDMAサイズ55)と、記録モード情報53(この例の場合はランダム記録モード)とを確定する。また、SBM#0位置情報56はこれからSBM30を記録する位置情報を示す。TDFL位置情報としては、後述の初期のTDFL31に対応するDFL#0位置情報57を記録する。DFL#0位置情報57は、初期のSBM30およびTDDS32に続けて初期のTDFL31およびTDDS32を記録するブロック位置を示す。
 なお、使用しないDFL#1位置情報58、DFL#2位置情報59、DFL#3位置情報60については、これらの情報が存在しないことを示す意味を持たないデータ(例えば、すべて0)で記録する。
 初期のTDFL31とは、DFLエントリ43を全く含まない最小サイズのTDFLである。つまり、初期のTDFL31は、識別子情報等のみ設定されてDFLエントリ43の個数や更新回数情報などは0のDFLヘッダ42、および、識別子情報は設定されて更新回数情報は0のDFLターミネータ44のみを備えたTDFLのことである。初期のTDFL31は1セクタサイズで収まるサイズであるため、TDDS32とともに記録しても1ブロック(1クラスタ)サイズに収めることができる。またここで記録するTDDS32も、上述の初期のSBM30とTDDS32で記録したTDDS32とほとんど同じ内容である。唯一異なりうるのは、DFL#0位置情報57であり、記録しようとしたブロックが欠陥等の理由で記録できずに後続のブロックへ記録されたような場合には、この値のみが、初期のSBM30と一緒に記録したTDDS32の値と異なりうる。
 このように、TDMA17の先頭位置には、初期TDMS20の一部のデータが記録される。このとき、必ず先頭位置には、光ディスク1のデータ領域5に関する領域構造や記録モードを判断できる情報を備えたTDDS32が記録される。これにより、例えばTDMAが複数存在するような場合や、既に複数回にわたって更新されたような場合など、どの位置に光ディスク1のデータ領域5に関する領域構造や記録モードを判断できる情報を備えたTDDS32が存在するかが即座に判断できないような場合であっても、必ずTDMA17の先頭位置の1ブロック(もしそこが欠陥であった場合は、後続の正しく記録再生できる最初の1ブロック)データを読み出すことでデータ領域5の領域構造や記録モードを確定させることができる。
 光ディスク1の再生専用装置においては、例えばスペア領域を備えない光ディスク1に対しては、光ディスク1のレイアウト(領域構造)さえ把握できれば、最新の管理情報を取得せずとも、あとはホストからの再生要求に従って再生処理を行うことが出来る。このため、必ずしも最新状態の管理情報は必要ではなく、光ディスク1のレイアウトを示すTDDS32を出来るだけ早く確実に取得できることが好ましい。そのような観点から見ても、必ず所定位置(例えばTDMA17の先頭位置の1ブロック)にTDDS32を備えたデータが記録されることが望まれる。
 さらに、もしTDMAが複数存在するような場合は、スペア領域中のTDMAのサイズがわからないことには、配置されている位置すら判断できないことになる。このため、TDDS32を取得できるデータを必ず所定の位置(この例の場合はTDMA17の先頭位置)に配置することは、この光ディスク1を記録再生する光ディスクドライブ装置にとって非常に重要で効率的な方法である。
 なお、ここではランダム記録モードの場合について説明したが、シーケンシャル記録モードの場合には、SBM30の代わりに、記録トラック(SRR:Sequential Recording Rangeとも言う)の先頭位置および記録済み終端位置情報などを備えるSRRI(SRR Information)が記録されることになるだけである。この場合、初期TDMSは、初期のTDFL31+初期のSRRI+TDDS32で、1ブロック(1クラスタ)サイズに収まるため、1ブロック(1クラスタ)データの形で記録される。
 なお、DMAに記録されるDMSと、TDMAに記録されるTDMSとでは、データの記録順番に差異がある。TDMSの場合にはTDDSがTDMSの終端位置に配置されるのに対して、DMSの場合にはDDSがDMSの先頭位置に配置される(例えば特許文献1)。
 また近年、光ディスクにおいては更なる大容量化への取り組みも活発になっている。光ディスクの大容量化、つまり記録容量を高めるための方法として、記録するマークおよびスペースの長さを短くしたり、あるいはトラックピッチを短くしたりして、記録層1層あたりの記録密度を高める方法と、情報記録層を多層化して記録容量を高める方法などがある。
 このうち、記録層1層あたりの記録密度を高める方法としては、記録するマークおよびスペースの長さを短くする方法で、従来のBDのサイズである最大27GByteの約25%増の、記録層1層あたり32GByteや33.4GByteなどが検討されており、さらに増加する可能性もある。
特開2005-56542号公報 特許第3861856号公報 米国特許第7188271号明細書 米国特許出願公開第2007/0122124号明細書 特許第3865261号公報
 しかし記録層1層あたりの記録容量が増えると、当然、SBM管理対象のデータ領域5およびユーザデータ領域14のサイズも増えることになる。上述したように、1セクタのビットマップ情報41で4000h(16進数表記の場合。10進数表記で16,384)ブロックの管理ができる。ビットマップ情報41のサイズが最大30セクタとすると、管理可能なブロック数は78000h(16進数表記の場合。10進数表記で491,520)である。しかし、仮に記録層1層あたりの記録容量が増加した場合、例えば33.4GByteの場合、記録層1層あたり約7D000h(16進数表記の場合。10進数表記で約512,000)ブロックとなるが、これを管理するためには32セクタ必要となり、ビットマップ情報41の最大サイズである30セクタを超えてしまう。そうなると、SBM30とTDDS32を組み合わせたサイズは1ブロック(32セクタ)を超えてしまうため、SBM30とTDDS32を組み合わせたディスク管理構造更新単位も1ブロック超(2ブロック以上)のサイズとなってしまう。
 この場合、初期TDMS20を従来どおりの内容および手順で記録した場合、図18に示すようになり、TDDS32を取得できるデータを必ずTDMA17の先頭位置に配置するということが保証できなくなってしまう。例えばこの図18の場合では、TDDS32は先頭から2ブロック目に位置することになる。初期TDMS20を記録しようとしたTDMA17のブロックが欠陥であった場合などには、後続のブロックに対して記録リトライを行いながら正常に記録されるまで記録を行うため、どのブロックに正常なTDDS32が含まれているかをチェックしながら探索しなくてはならなくなる。
 また、初期TDMS20の先頭ブロックに記録されるSBM30に含まれるビットマップ情報41はビットごとに意味を持つ値でどのような値にもなり得る。このため、例えばDDSヘッダ50に含まれる、TDDS32であることを示す識別子の情報と、ビットマップ情報41の情報とが偶然に合致してしまう可能性もあり、正常に記録されたブロックにおけるTDDS32を探索することは非常に困難になってしまう。
 本発明は、上記の問題点を鑑みてなされたものであり、記録層1層あたりの記録容量が増えることに伴って、SBM30のような管理情報のサイズが増えたとしても、必ず所定の位置(例えばTDMA17の先頭ブロック)にTDDS32を含んだデータを配置可能な情報記録媒体、およびその情報記録媒体に対する記録再生方法を提供する。
 本発明の追記型情報記録媒体は、1つ以上の記録層を備え、ブロック単位で情報の記録が行われる追記型情報記録媒体であって、前記追記型情報記録媒体は、ユーザデータを記録するためのユーザデータ領域と、前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域とを備え、前記ユーザデータ領域は、前記記録層毎に設けられ、前記管理情報は、所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、前記スペースビットマップに関する位置情報を含むディスク定義構造とを含み、前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップが形成され、前記管理情報領域には、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位が記録される。
 ある実施形態によれば、前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報は、複数の部分ビットマップ情報に分割され、前記複数のスペースビットマップのそれぞれは、前記複数の部分ビットマップ情報のうちの1つを含む。
 ある実施形態によれば、前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む。
 ある実施形態によれば、前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである。
 ある実施形態によれば、前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む。
 ある実施形態によれば、前記ヘッダは、前記スペースビットマップの更新回数情報を含む。
 ある実施形態によれば、前記管理情報領域の所定位置のブロックには、前記ディスク管理構造更新単位と、前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位とのうちのいずれかが記録され、前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストである。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである。
 本発明の情報記録装置は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体へ情報の記録を行なう情報記録装置であって、前記追記型情報記録媒体は、ユーザデータを記録するためのユーザデータ領域と、前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域とを備え、前記ユーザデータ領域は、前記記録層毎に備えられ、前記管理情報は、所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、前記スペースビットマップに関する位置情報を含むディスク定義構造とを含み、前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、前記情報記録装置は、前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップを形成し、前記管理情報領域に、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位を記録する。
 ある実施形態によれば、前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報を、複数の部分ビットマップ情報に分割し、前記複数のスペースビットマップのそれぞれに、前記複数の部分ビットマップ情報のうちの1つを含ませる。
 ある実施形態によれば、前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む。
 ある実施形態によれば、前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである。
 ある実施形態によれば、前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む。
 ある実施形態によれば、前記ヘッダは、前記スペースビットマップの更新回数情報を含む。
 ある実施形態によれば、前記管理情報領域の所定位置のブロックには、前記ディスク管理構造更新単位と、前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位とのうちのいずれかを記録し、前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストである。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである。
 本発明の情報記録方法は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体へ情報の記録を行なう情報記録方法であって、前記追記型情報記録媒体は、ユーザデータを記録するためのユーザデータ領域と、前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域とを備え、前記ユーザデータ領域は、前記記録層毎に備えられ、前記管理情報は、所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、前記スペースビットマップに関する位置情報を含むディスク定義構造とを含み、前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、前記情報記録方法は、前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップを形成するステップと、前記管理情報領域に、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位を記録するステップとを包含する。
 ある実施形態によれば、前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報を、複数の部分ビットマップ情報に分割するステップと、前記複数のスペースビットマップのそれぞれに、前記複数の部分ビットマップ情報のうちの1つを含ませるステップと、をさらに包含する。
 ある実施形態によれば、前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む。
 ある実施形態によれば、前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである。
 ある実施形態によれば、前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む。
 ある実施形態によれば、前記ヘッダは、前記スペースビットマップの更新回数情報を含む。
 ある実施形態によれば、前記管理情報領域の所定位置のブロックには、前記ディスク管理構造更新単位と、前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位とのうちのいずれかを記録し、前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストである。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである。
 本発明の情報再生装置は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体から情報の再生を行なう情報再生装置であって、前記追記型情報記録媒体は、ユーザデータを記録するためのユーザデータ領域と、前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域とを備え、前記ユーザデータ領域は、前記記録層毎に備えられ、前記管理情報は、所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、前記スペースビットマップに関する位置情報を含むディスク定義構造とを含み、前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップが形成され、前記管理情報領域には、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位が記録されており、前記情報再生装置は、前記管理情報領域から、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位を読み出し、前記スペースビットマップを読み出す。
 ある実施形態によれば、前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報は、複数の部分ビットマップ情報に分割され、前記複数のスペースビットマップのそれぞれは、前記複数の部分ビットマップ情報のうちの1つを含み、前記情報再生装置は、前記スペースビットマップから前記部分ビットマップ情報を読み出す。
 ある実施形態によれば、前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む。
 ある実施形態によれば、前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである。
 ある実施形態によれば、前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む。
 ある実施形態によれば、前記ヘッダは、前記スペースビットマップの更新回数情報を含む。
 ある実施形態によれば、前記管理情報領域の所定位置のブロックには、前記ディスク管理構造更新単位と、前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位とのうちのいずれかが記録され、前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストであり、前記情報再生装置は、前記所定位置のブロックから、前記ディスク管理構造更新単位および前記第2のディスク管理構造更新単位のうちのいずれかを読み出す。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである。
 本発明の情報再生方法は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体から情報の再生を行なう情報再生方法であって、前記追記型情報記録媒体は、ユーザデータを記録するためのユーザデータ領域と、前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域とを備え、前記ユーザデータ領域は、前記記録層毎に備えられ、前記管理情報は、所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、前記スペースビットマップに関する位置情報を含むディスク定義構造とを含み、前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップが形成され、前記管理情報領域には、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位が記録されており、前記情報再生方法は、前記管理情報領域から、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位を読み出し、前記スペースビットマップを読み出すステップを包含する。
 ある実施形態によれば、前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報は、複数の部分ビットマップ情報に分割され、前記複数のスペースビットマップのそれぞれは、前記複数の部分ビットマップ情報のうちの1つを含み、前記情報再生方法は、前記スペースビットマップから前記部分ビットマップ情報を読み出すステップをさらに包含する。
 ある実施形態によれば、前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む。
 ある実施形態によれば、前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである。
 ある実施形態によれば、前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む。
 ある実施形態によれば、前記ヘッダは、前記スペースビットマップの更新回数情報を含む。
 ある実施形態によれば、前記管理情報領域の所定位置のブロックには、前記ディスク管理構造更新単位と、前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位とのうちのいずれかが記録され、前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストであり、前記情報再生方法は、前記管理情報領域の所定位置のブロックから、前記ディスク管理構造更新単位および前記第2のディスク管理構造更新単位のうちのいずれかを読み出すステップをさらに包含する。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである。
 本発明によれば、記録層1層あたりの記録容量が増加し、その記録層に関する管理情報のサイズが増加したような場合であっても、追記型情報記録媒体の管理情報領域の先頭ブロックといった所定の位置に、追記型情報記録媒体のレイアウト情報などを備えたTDDSを含む管理情報が必ず記録(配置)されるようにする。これにより、最新の管理情報を必ずしも必要としない再生専用装置においても、追記型情報記録媒体のレイアウト情報を備えるTDDSを高速かつ確実に取得することが出来るため、ホスト装置からの再生命令などに対するより高速な応答が可能になる。
本発明の実施の形態における光ディスクを示す図である。 本発明の実施の形態における光ディスクのある記録層におけるデータ構造を示す図である。 本発明の実施の形態1における、初期TDMSのデータ構造を示す図である。 本発明の実施の形態における、TDDSの保持情報を示す図である。 (a)から(c)は、本発明の実施の形態1における、TDMSの記録イメージ、およびTDDSが示す位置情報に関する図である。 本発明の実施の形態における光ディスク記録再生装置のブロック図である。 本発明の実施の形態1における、初期化フォーマット(Inistialize)処理を示すフローチャートである。 (a)および(b)は、本発明の実施の形態2における、初期TDMSのデータ構造を示す図である。 本発明の実施の形態2における、初期化フォーマット(Inistialize)処理を示すフローチャートである。 本発明の実施の形態3における、初期TDMSのデータ構造を示す図である。 (a)および(b)は、本発明の実施の形態3における、TDMSの記録イメージ、およびTDDSが示す位置情報に関する説明図である。 本発明の実施の形態3における、初期のSBMのデータ構造説明図である。 本発明の実施の形態3における、初期化フォーマット(Inistialize)処理を示すフローチャートである。 TDMAの更新処理を示す図である。 ある記録層に配置された複数のTDMAを示す図である。 TDMSの保持情報を示す図である。 初期TDMS20のデータ構造を示す図である。 初期TDMS20のデータ構造を示す図である。 (A)および(B)は、ビットマップ情報を説明する図である。 本発明の実施の形態における光ディスクの断面を示す図である。 多層ディスクの構成例を示す図である。 本発明の実施の形態における単層ディスクの構成例を示す図である。 本発明の実施の形態における二層ディスクの構成例を示す図である。 本発明の実施の形態における三層ディスクの構成例を示す図である。 本発明の実施の形態における四層ディスクの構成例を示す図である。 本発明の実施の形態における光ディスクの物理的構成を示す図である。 (A)は25GBのBDの例を示す図であり、(B)は25GBのBDよりも高記録密度の光ディスクの例を示す図である。 トラック上に記録されたマーク列に光ビームを照射させている様子を示す図である。 25GB記録容量の場合のOTFと最短記録マークとの関係を示す図である。 最短マーク(2T)の空間周波数がOTFカットオフ周波数よりも高く、かつ、2Tの再生信号の振幅が0になっている例を示す図である。
 以下、本発明の実施の形態について、図面を用いて説明する。なお、本発明の実施の形態の説明においては、情報記録媒体として1回のみ記録可能な追記型情報記録媒体を用いて説明を行う。なお、この記録媒体の記録層1層における記録容量(つまりユーザデータ領域14のサイズ)は、SBM30が1ブロックサイズ以上(より詳細には、ビットマップ情報41が31セクタサイズ以上)で、SBM30とTDDS32を組み合わせたサイズが1ブロック超のサイズとなる記録容量であるとする。
 (実施の形態1)
 (1)領域配置
 本発明の実施の形態1における追記型情報記録媒体である光ディスク1の領域構造は、上述した図2に示す構造と同じである。
 (2)初期TDMS20のデータ構成
 図3は、本発明の実施の形態1における、光ディスク1の管理情報領域TDMA17(複数TDMAが存在する場合には、その最初に使用されるTDMA)の先頭に記録される初期のディスク管理構造TDMS20のデータ構成を示す図である。
 図3に示すように、初期TDMS20は初期のスペースビットマップSBM30と、ディスク定義構造TDDS32と、初期の欠陥リストTDFL31とから構成され、SBM30およびTDFL31はそれぞれTDDS32と組み合わせた形式(ディスク管理構造更新単位)で記録が行われる。図3に示す初期TDMS20は、図17に示した初期TDMSと構成要素は同じであるが、その記録順番が異なる。つまり、初期のSBM30を含むデータを記録する前に、初期TDFL31とTDDS32の組み合わせの1ブロック(1クラスタ)のデータ(ディスク管理構造更新単位)を先頭位置に記録(配置)し、それに続けて初期のSBM30とTDDS32の組み合わせの2ブロック(2クラスタ)のデータ(ディスク管理構造更新単位)を記録(配置)する。なお、組み合わせてブロック単位のデータを生成するにあたり、そのブロックサイズのデータ中で意味を持たないデータの部分については、例えばAll0などのダミーデータとしたり、意味を持たないことを示すパディングデータとしたりすることで、1ブロックサイズのデータを生成する。
 このように配置することで、SBM30のサイズが記録層1層あたりの記録容量に応じて増加し、SBM30とTDDS32を組み合わせたディスク管理構造更新単位のサイズが1ブロック超(2ブロック以上)になった場合であっても、常にTDDS32を含むデータを、TDMA17の先頭位置の1ブロック(もしそこが欠陥であった場合は、後続の正しく記録再生できる最初の1ブロック)に配置することができる。
 なお、この方法は、SBM30のサイズが31セクタ以下の場合(つまりSBM30とTDDS32を組み合わせても1ブロックサイズに収まる場合)に適用しても同様に効果を得ることができる。
 具体的な記録手順等については、後述の(5)項にて説明する。
 (3)TDDS32が備える各種情報
 図4は、本発明の実施の形態1における、TDDS32が備えるデータ構造についての説明図である。
 図4のTDDS32は、図16を用いて説明したものと基本的には同様の構成であるが、SBM#0位置情報56に加えてSBM#1位置情報61をさらに備える。
 図4のTDDS32は、この情報がTDDS32であることを示す識別子や、更新回数情報などを備えるDDSヘッダ50と、データ領域5中の領域構造を確定させる内周スペア領域15のサイズ情報である内周スペア領域サイズ51および外周スペア領域16のサイズ情報である外周スペア領域サイズ52と、シーケンシャル記録モードかランダム記録モードかという記録モードを示す記録モード情報53と、図15に示したように内周スペア領域15および外周スペア領域16内にTDMAが確保されている場合のサイズ情報を示す内周スペア内TDMAサイズ54および外周スペア内TDMAサイズ55と、最新のTDFL31(最大4ブロック分)が記録されている各ブロックの位置情報であるDFL#0位置情報57、DFL#1位置情報58、DFL#2位置情報59およびDFL#3位置情報60と、最新のSBM30が記録されている位置情報であるSBM#0位置情報56およびSBM#1位置情報61とを備える。つまり、SBM30のサイズが2ブロックにわたるサイズになったため、SBM位置情報もそれに応じて増やしている。
 ここで、これらのTDFL31の位置情報およびSBM30の位置情報が、各ブロックについての位置情報を備える理由を、具体例を用いて詳細に説明する。
 図5は、TDMA17に記録されるTDMS21(図14)の記録イメージ、およびTDDS32が示す位置情報について説明するための図である。この図では、TDMA17のブロックAからブロックDという4ブロックを例にとって説明する。
 図5(a)は、TDFL31とTDDS32とを組み合わせたデータサイズが1ブロックに収まる場合で、SBM30とTDFL31とを同時に記録したような場合(つまり、例えば初期TDMS20を記録したような場合)の例である。
 最初のブロックAにTDFL31とTDDS32を記録する。このときのTDDS32におけるDFL#0位置情報は、TDFL31が配置されるブロックAの先頭位置を指す。SBM#0位置情報56およびSBM#1位置情報61はこれから記録をするので、予測ということでそれぞれブロックB、ブロックCの先頭位置を指した状態で記録する。
 そして続けてSBM30とTDDS32の2ブロックにまたがるデータを記録する。このときのTDDS32におけるDFL#0位置情報57は、前のTDDS32と同様にTDFL31が配置されるブロックAの先頭位置を指す。また、SBM#0位置情報56およびSBM#1位置情報61も、実際に記録をした位置であるブロックBおよびCの先頭位置をそれぞれ指した状態で記録する。
 つまりこの例の場合、記録される2つのTDDS32は、それぞれ同じ位置情報を示した状態となる。
 図5(b)は、TDFL31が2ブロック超えのサイズで、且つ記録対象のブロックBが欠陥である場合の例である。TDFL31とTDDS32を組み合わせて3ブロックサイズになるため、まず、最初の1ブロック目のデータ(TDFL#0)をブロックAに記録する。しかし、ブロックBが欠陥ブロックであるため、2ブロック目のデータ(TDFL#1)は後続のブロックCに記録され、続けて最後のデータ(TDFL#2とTDDS32の組み合わせた1ブロックデータ)がブロックDに記録される。この場合、図中の実線矢印が示すように、DFL#0位置情報57はブロックAの先頭位置を指し、DFL#1位置情報58はブロックCの先頭位置を指し、DFL#2位置情報59はブロックDの先頭位置を指すことになる。
 図5(c)は、図5(a)と同様、TDFL31とTDDS32とを組み合わせたデータサイズが1ブロックに収まる場合で、SBM30とTDFL31とを同時に記録したような場合で、且つ記録対象のブロックCが欠陥である場合の例である。最初のブロックAにTDFL31とTDDS32を記録する。このときのTDDS32におけるDFL#0位置情報は、TDFL31が配置されるブロックAの先頭位置を指し、SBM#0位置情報56およびSBM#1位置情報61はこれから記録をするので、図中の破線矢印が示すように、予測ということでそれぞれブロックBおよびCの先頭位置を指した状態で記録する。
 そして続けてSBM30とTDDS32の2ブロックにまたがるデータを記録する。ブロックBにはSBM#0が正しく記録されるが、ブロックCは欠陥であるため記録に失敗し、SBM#1とTDDS32を組み合わせた1ブロックデータは後続のブロックDに記録される。
 このときのTDDS32における各位置情報は、図中実線矢印が示すように、DFL#0位置情報57は、前のTDDS32と同様に、TDFL31が配置されるブロックAの先頭位置を指す。SBM#0位置情報56およびSBM#1位置情報61についても実際に記録をした位置、つまりSBM#0位置情報56はブロックBを指すことになるが、しかし、SBM#1位置情報61だけは、予測でブロックAに記録したTDDS32の内容と異なり、ブロックDの先頭位置を指すことになる。
 つまりこの例の場合、記録される2つのTDDS32は、一部の内容が異なることになるが、常に最新のTDDS32(この図5(c)の場合であれば、ブロックDに記録されたTDDS32)には正しい情報が記録されることになる。
 なおここでは、同時にTDFL31とSBM30を記録することが分かっているためこのような例で記載したが、例えば図5(c)のような場合、SBM#0位置情報56およびSBM#1位置情報61については、直前に正しく記録されているSBM30の位置を指したままにしておくという方法もある。つまり、予測した位置情報を入れるのではなく、前回正しく記録された位置を指しておくことで、どのTDDS32を読み出した場合でも、誤った位置情報が読み出されることが無いようにすることができる。
 なお、図5(a)および(c)の状態でもTDMS21の記録順番として、TDFL31をSBM30よりも先に記録する例で示したが、この順番が必要となるのは上述(2)の初期TDMS20についてであり、TDMS21については、SBM30をTDFL31より先に記録してもよい。
 (4)記録再生装置
 図6は、本発明の実施の形態における光ディスク1への記録再生を行う光ディスク記録再生装置100の構成を示す図である。なお、装置100は記録装置や再生専用装置であってもよい。
 光ディスク記録再生装置100は、I/Oバス180を介して上位制御装置(図示せず)に接続される。上位制御装置は、例えば、ホストコンピュータ(ホストPC)である。
 光ディスク記録再生装置100は、上位制御装置からの命令を処理する命令処理部110と、光ディスク1に対して記録再生を行うためにレーザ光を照射する光ヘッド120と、光ヘッド120から出力されるレーザパワー等の制御を行うレーザ制御部130と、光ヘッド120を目的位置へ移動したりサーボ制御を行うためのメカ制御部140と、記録及び再生したユーザデータやその他情報を管理するメモリ150と、TDMAやDMAから読み出したりそれらに記録する最新状態のSBM30、TDFL31およびTDDS32等の管理情報を格納しておく管理情報格納メモリ160と、光ディスク1からの記録再生処理などのシステム処理全般の統括制御を行うシステム制御部170とを備える。
 システム制御部170は、ユーザデータや管理情報等のデータの記録再生を行う記録部171および再生部172と、光ディスク1に関する管理情報などからデータを読み出す位置や次にデータを記録する位置を決定するアクセス位置管理部173と、管理情報格納メモリ160に格納された管理情報の更新を行う管理情報更新部174と、管理情報格納メモリ160に格納されたSBM30、TDFL31およびTDDS32から更新が必要なデータを組み合わせて、TDMAやDMAに記録するためのTDMS21やDMSを生成する管理情報生成部175とを備える。
 (5)初期TDMS20の記録(初期化:Initialize)方法
 図7は、光ディスク記録再生装置100が追記型光ディスク1に対して初期化フォーマット処理(Initialization)を行う手順を示すフローチャートである。
 ステップ701:初期状態の管理情報を生成する。具体的には、管理情報生成部175は、管理情報格納メモリ160中に、初期状態のSBM30、TDFL31、TDDS32を生成する。初期状態のSBM30、TDFL31、TDDS32とは、それぞれの識別子情報等のみが設定され、更新回数などはすべて0の状態の管理情報のことであり、SBM30およびTDFL31についてはそれぞれ、初期のSBM30および初期のTDFL31と同じ意味である。
 ステップ702:初期TDMS20を生成する。具体的には、管理情報生成部175は、ステップ701で生成した初期状態の管理情報を図3で示した状態の初期TDMS20の形式になるように、SBM30、TDFL31、TDDS32を組み合わせて、上記記録形式の初期TDMS20を作る。より具体的には、例えば、管理情報格納メモリ160中に記録に使用するための3ブロック分のデータ領域を確保し、この領域をすべて0データでクリアした状態にして、先頭の1ブロック目の先頭に初期のTDFL31を、1ブロック目の終端にTDDS32を配置する。さらに2ブロック目の先頭から初期のSBM30を配置し、最後に3ブロック目の終端にTDDS32を配置して初期TDMS20相当のデータを生成する。なお、TDDS32については、後述のステップ703やステップ705において位置情報の更新を行って値が変化することになるため、この時点では配置しておかず、記録直前に配置するのが望ましい。
 ステップ703:TDFL31に関する位置情報を更新する。具体的には、管理情報更新部174は、これから記録を行うにあたり、管理情報格納メモリ160中に生成したTDDS32相当のデータの中のDFL位置情報を更新する。より具体的には、システム制御部170はアクセス位置管理部173によって初期TDMS20の記録が可能な記録位置(例えばTDMA17の先頭位置)を算出する。管理情報更新部174はDFL#0位置情報57をアクセス位置管理部173によって算出した記録位置(例えばTDMA17の先頭位置)を指すように更新し、DFL#1位置情報58、DFL#2位置情報59、DFL#3位置情報60はそれぞれ0とする。そして、このデータを、管理情報格納メモリ160中に確保した記録用のデータ領域の所定の位置(この場合は先頭1ブロック目の終端位置)に対して配置する。
 なお、この時点でSBM30に関する位置情報については、まだどの位置に記録することになるかが確定できないため、0のままにしておいてもよいし、あるいは、正常に記録されることを想定して予測して、予測で位置情報を設定した状態にしておいてもよい。
 ステップ704:初期TDMS20の一部を記録する。具体的には、システム制御部170は、記録を行うレーザパワーやストラテジ等の記録条件をレーザ制御部130に設定する。ステップ703においてアクセス位置管理部173によって求めた記録を行う位置に対してメカ制御部140を用いて光ヘッド120を移動させる。記録部171によって、初期TDMS20の最初の1ブロック目のデータである初期のTDFL31とTDDS32の組み合わせデータを記録する。なお、もしこのブロックへの記録に失敗した場合には、再度ステップ703から処理を繰り返し、正常に記録がなされるまで繰り返して記録を行う。
 ステップ705:SBM30に関する位置情報を更新する。具体的には、管理情報更新部174は、これから記録を行うにあたり、管理情報格納メモリ160中に生成したTDDS32相当のデータの中のSBM位置情報を更新する。より具体的には、システム制御部170はアクセス位置管理部173によって、上記ステップ704で初期TDMS20の一部を記録した位置に続く次に記録可能な記録位置(例えばステップ704が1回で記録に成功した場合は、TDMA17の先頭から2ブロック目の位置)を算出する。管理情報更新部174は、SBM#0位置情報56を、アクセス位置管理部173によって算出した記録位置(例えばTDMA17の先頭から2ブロック目の先頭位置)を指すように更新し、SBM#1位置情報61をその次のブロック位置(例えばTDMA17の先頭から3ブロック目の先頭位置)を指すように更新する。なお、DFL#0位置情報57はステップ704で記録した位置を示す内容で記録する。DFL#1位置情報58、DFL#2位置情報59、DFL#3位置情報60はそれぞれ0(つまり、ステップ704で記録したTDDS32と同じ状態)として記録を行う。
 ステップ706:初期TDMS20の一部を記録する。具体的には、システム制御部170は記録を行うレーザパワーやストラテジ等の記録条件をレーザ制御部130に設定する。ステップ705においてアクセス位置管理部173によって求めた記録を行う位置に対して、メカ制御部140を用いて光ヘッド120を移動させる。記録部171によって、初期TDMS20の残りの2ブロックである2ブロック目のデータおよび3ブロック目のデータである、初期のSBM30とTDDS32の組み合わせデータを記録する。なお、もし記録に失敗したブロックがあった場合には、記録に失敗したブロックに対して再度ステップ705から処理を繰り返し、すべてのブロックが正常に記録されるまで繰り返して記録を行う。
 なおこのフローでは特に記述を行わなかったが、例えばTDDS32はDDSヘッダ50中に更新回数情報などを備える。初期化フォーマット時には、この更新回数は0など、初期化フォーマット時に記録した情報であることを示す値で記録する。ここでSBM30およびTDFL31については、初期化フォーマット処理の中でいずれも1回しか記録されないため、更新回数情報はそれぞれ0として記録を行えばよいが、TDDS32については、初期化フォーマットの際に2度記録を行うことになる。この場合にも、いずれのTDDS32とも初期TDMS20に含まれるTDDS32であることを示すため、更新回数情報を0とした記録を行う。なお別の方法として、例えば、最初に記録するTDDS32は更新回数情報を0とし、2回目に記録するTDDS32は更新回数情報を1として、純粋な更新回数を設定して記録を行ってもよい。
 以上で初期化フォーマット時の初期TDMS20の記録処理が完了する。このようにすることで、TDMA17の先頭位置に必ずTDDS32を含むデータを配置することができる。このため、多層化・高密度化などによって管理情報のデータサイズが大きくなったような場合でも、TDMA17における最新の管理情報を検索しなくとも、所定の位置のデータを読み出すことで光ディスク1の領域構造を把握することが可能となる。
 (実施の形態2)
 (1)領域配置
 本発明の実施の形態2における光ディスク1の領域構造は、本発明の実施の形態1における光ディスク1と同じである。
 (2)初期TDMS20のデータ構成
 図8は、本発明の実施の形態2における、光ディスク1の管理情報領域TDMA17(複数TDMAが存在する場合には、その最初に使用されるTDMA)の先頭に記録される初期のディスク管理構造TDMS20のデータ構成を示す図である。
 本発明の実施の形態2における初期TDMS20は、初期のスペースビットマップSBM30の内容が、本発明の実施の形態1の初期のSBM30と異なる。
 SBM30におけるビットマップ情報41は、1ブロック(32セクタ)のサイズが必要となるため、SBM30とディスク定義構造TDDS32を組み合わせたデータ(ディスク管理構造更新単位)は2ブロック相当のサイズが必要になる。本発明の実施の形態2における初期TDMS20に含まれる初期のSBM30は、図8に示すように、SBMヘッダ40のみを備え、ビットマップ情報41を備えていないことが特徴である。
 これについて詳細に説明する。初期TDMS20を記録する際、つまり初期化フォーマット(Initialization)が実施される際には、データ領域5をはじめ光ディスク1の領域は未記録状態である。つまり初期TDMS20に含まれるSBM30のビットマップ情報41はすべて0のデータとなる。つまり、初期TDMS20のビットマップ情報41については、データが記録されていなくとも判断することができる。よって、初期TDMS20のサイズを抑える目的で、初期のSBM30にはビットマップ情報41を備えない、SBMヘッダ40のみの情報であるという点が本実施形態での特徴である。
 図8(a)は、初期TDMS20の一例であり、初期TDMS20に組み込んで記録する必要のある初期の欠陥リストTDFL31およびTDDS32はともに、1セクタのサイズがあれば十分である。また、初期のSBM30も1セクタのサイズがあれば十分であるため、初期TDMS20の場合についてのみ、初期のSBM30と初期のTDFL31とTDDS32を組み合わせた1ブロックのデータをディスク管理構造更新単位として扱い、この情報を1ブロックにまとめて記録する。
 図8(b)も、初期TDMS20の一例であり、初期TDMS20における1ブロック目においては、本発明の実施の形態1と同様に、初期のTDFL31とTDDS32を組み合わせた1ブロックのデータ(ディスク管理構造更新単位)を先頭位置に記録(配置)する。それに続けて次のブロックに初期のSBM30とTDDS32を組み合わせた1ブロックのデータ(ディスク管理構造更新単位)を記録(配置)する。
 これらに示すように、初期のSBM30をSBMヘッダ40のみを含むデータとして、初期TDMS20を記録することで、TDDS32を含むデータを、TDMA17の先頭位置の1ブロック(もしそこが欠陥であった場合は、後続の正しく記録再生できる最初の1ブロック)に常に配置することができる。
 (3)TDDS32が備える各種情報
 本発明の実施の形態2における光ディスク1のTDDS32が含むデータ内容は、図4を用いて説明した本発明の実施の形態1における光ディスク1と同じである。
 (4)記録再生装置
 本発明の実施の形態2における光ディスク1への記録再生を行う光ディスク記録再生装置100の構成は、図6を用いて説明した本発明の実施の形態1における光ディスク記録再生装置100と同じである。
 (5)初期TDMS20の記録(初期化:Initialize)方法
 図9は、光ディスク記録再生装置100が、本発明の実施の形態2における追記型光ディスク1に対して初期化フォーマット処理(Initialization)を行う手順を示すフローチャートである。なおここでは、初期TDMS20は、図8(a)に示したように1ブロックにまとめて記録する場合を例にとって説明を行う。なお、図8(b)の形で記録を行う際の手順は、基本的に本発明の実施の形態1の説明の(5)項で図7を用いて示した手順と同じであるため、ここでは説明は省略する。
 ステップ901:初期状態の管理情報を生成する。具体的には、管理情報生成部175は、管理情報格納メモリ160中に、初期状態のSBM30、TDFL31、TDDS32を生成する。初期状態のSBM30、TDFL31、TDDS32とは、それぞれの識別子情報等のみが設定され、更新回数などはすべて0の状態の管理情報のことであり、SBM30およびTDFL31についてはそれぞれ、初期のSBM30および初期のTDFL31と同じ意味である。
 ステップ902:初期TDMS20を生成する。具体的には、管理情報生成部175は、ステップ901で生成した初期状態の管理情報を図8(a)で示した状態の初期TDMS20の形式になるように、SBM30、TDFL31、TDDS32を組み合わせて、上記記録形式の初期TDMS20を作る。より具体的には、例えば、管理情報格納メモリ160中に記録に使用するための1ブロック分のデータ領域を確保し、この領域をすべて0データでクリアした状態にして、このブロックの先頭の1セクタに初期のTDFL31を配置し、このブロックの終端から1セクタ手前の位置に初期のSBM30を配置し、終端の1セクタにTDDS32を配置して、初期TDMS20相当のデータを生成する。なお、TDDS32については、後述のステップ903において位置情報の更新を行って値が変化することになるため、この時点では配置しておかず、記録直前に配置するのが望ましい。
 ステップ903:TDFL31およびSBM30に関する位置情報を更新する。具体的には、管理情報更新部174は、これから記録を行うにあたり、管理情報格納メモリ160中に生成したTDDS32相当のデータの中のDFL位置情報、SBM位置情報を更新する。より具体的には、システム制御部170はアクセス位置管理部173によって初期TDMS20の記録が可能な記録位置(例えばTDMA17の先頭位置)を算出する。管理情報更新部174は、DFL#0位置情報57を、アクセス位置管理部173によって算出した記録位置(例えばTDMA17の先頭位置)を指すように更新し、DFL#1位置情報58、DFL#2位置情報59およびDFL#3位置情報60はそれぞれ0とする。さらにSBM#0位置情報56も同じブロックの記録位置(例えばTDMA17の先頭ブロックの先頭から31セクタ目の先頭位置)を指すように更新する。SBM#1位置情報61は例えば0とするか、もしくは、有効なビットマップ情報41が存在するがその情報がまだ記録されていない状態であることを示す値(例えば、FFFFFFFFh(16進数表記))とする。そして、このデータを、管理情報格納メモリ160中に確保した記録用のデータ領域の所定の位置(この場合は先頭1ブロック目の終端位置)に対して配置する。
 ステップ904:初期TDMS20の一部を記録する。具体的には、システム制御部170は記録を行うレーザパワーやストラテジ等の記録条件をレーザ制御部130に設定する。ステップ903においてアクセス位置管理部173によって求めた記録を行う位置に対してメカ制御部140を用いて光ヘッド120を移動させる。記録部171によって、初期TDMS20である初期のSBM30、初期のTDFL31およびTDDS32の組み合わせデータを記録する。なお、もしこのブロックへの記録に失敗した場合には、再度ステップ903から処理を繰り返し、正常に記録がなされるまで繰り返して記録を行う。
 以上で初期化フォーマット時の初期TDMS20の記録処理が完了する。
 このようにすることで、TDMA17の先頭位置に必ずTDDS32を含むデータを配置することができる。このため、多層化・高密度化などによって管理情報のデータサイズが大きくなったような場合でも、TDMA17における最新の管理情報を検索しなくとも、所定の位置のデータを読み出すことで光ディスク1の領域構造を把握することが可能となる。
 (実施の形態3)
 (1)領域配置
 本発明の実施の形態3における光ディスク1の領域構造は、本発明の実施の形態1における光ディスク1と同じである。
 (2)初期TDMS20のデータ構成
 図10は、本発明の実施の形態3における、光ディスク1の管理情報領域TDMA17(複数TDMAが存在する場合には、その最初に使用されるTDMA)の先頭に記録される初期のディスク管理構造TDMS20のデータ構成を示す図である。
 本発明の実施の形態3における初期TDMS20は、初期のスペースビットマップSBM30の構成としては本発明の実施の形態1と同様であるが、この記録方法が本発明の実施の形態1の場合と異なる。
 図10に示す初期TDMS20は、図17に示すものと同様に、初期のスペースビットマップSBM30とディスク定義構造TDDS32と初期の欠陥リストTDFL31とから構成されるが、その記録方法が異なる。
 1セクタサイズのSBMヘッダ40と、31セクタサイズ以上のビットマップ情報41とを組み合わせたSBM30は、32セクタ(1ブロック)サイズ以上となるが、本実施形態では、そのようなSBM30を、31セクタ以下の複数のスペースビットマップ(初期のSBM30#0および初期のSBM30#1)として形成し、それぞれのデータにTDDS32を組み合わせた1ブロックサイズのデータを1つのディスク管理構造更新単位として生成し、その単位で記録する。このように、個々のスペースビットマップのサイズは、ユーザデータ領域14のサイズに関係なく、TDDS32と組み合わせて1ブロックサイズとなるようにする。
 より具体的に言えば、例えばSBMヘッダ40とビットマップ情報41を組み合わせたサイズが、1ブロックと1セクタとのサイズ(SBMヘッダ40が1セクタサイズ、ビットマップ情報41が32セクタサイズの合計33セクタサイズ)であるとした場合、SBMヘッダ40とビットマップ情報41の前半16セクタからなる17セクタサイズの有効データ(部分ビットマップ情報41#0)を備える初期のSBM30#0と、ビットマップ情報41の後半16セクタサイズの有効データ(部分ビットマップ情報41#1)を備える初期のSBM30#1とを形成し、それぞれにTDDS32を組み合わせてディスク管理構造更新単位を形成し記録する。これにより、図10に示すように、すべてのブロックに対してTDDS32が配置されるように記録を行なうことができる。
 ここで、ビットマップ情報41とTDDS32とSBMヘッダ40とを合わせたサイズが1ブロックサイズとなる場合のユーザデータ領域14のサイズを所定のサイズとする。そして、所定の記録層におけるユーザデータ領域14のサイズが、その所定のサイズを超える場合は、ビットマップ情報41は、複数の部分ビットマップ情報(例えばユーザデータ領域14のサイズが所定のサイズの2倍以下のサイズの場合は、部分ビットマップ情報41#0、部分ビットマップ情報41#1の2つの部分ビットマップ情報)に分割される。複数のスペースビットマップ(SBM30#0、SBM30#1)のそれぞれは、複数の部分ビットマップ情報のうちの1つを含むことになる。複数のスペースビットマップ(SBM30#0、SBM30#1)のそれぞれのサイズはいずれも、TDDS32と組み合わせて1ブロックサイズとなるサイズである。
 なお、初期のSBM30#0および初期のSBM30#1とTDDS32を組み合わせた、それぞれの1ブロックデータにおいては、初期のSBM30#0の17セクタ分とTDDS32の1セクタ分以外のデータは使用されないデータであり、また、初期のSBM30#1の2セクタ分とTDDS32の1セクタ分以外のデータは使用されないデータである。それら使用されないデータは、例えば意味を持たないデータとしてALL0のダミーデータであったり、意味を持たないことを示すパディングデータであったりし、これら使用されないデータと組み合わせて1ブロックサイズのデータを生成し記録する。
 SBM30(より詳細には、ビットマップ情報41)のサイズが、記録層1層あたりの記録容量(ユーザデータ領域14のサイズ)に応じて増加し、SBM30とTDDS32を組み合わせたディスク管理構造更新単位のサイズが1ブロック超(2ブロック以上)になった場合であっても、上記のように配置することで、TDDS32を含むデータをTDMA17の先頭位置の1ブロックに常に配置することができる(もしそこが欠陥であった場合は、後続の正しく記録再生できる最初の1ブロックに常に配置することができる)。より詳細に言えば、このように配置すれば、TDMA17のうちの初期TDMS20を記録した全てのブロックに対して、TDDS32を記録することができる。
 なおこの記録方法は、初期化フォーマット(初期TDMS20)に対してだけでなく、通常のTDMA記録時のTDMS21に対しても同様に適用してもよい。
 32セクタのビットマップ情報41を前半16セクタ分のデータと後半16セクタ分のデータの部分ビットマップ情報に分割して、初期TDMS20におけるSBM30の前半1ブロックであるSBM30#0と後半1ブロックであるSBM30#1にそれぞれ配置する例を説明した。このように配置するメリットを以下説明する。
 SBM30におけるビットマップ情報41で管理するSBM管理対象の領域範囲に記録がなされてビットマップ情報41が変化した場合、例えば、記録されたのがビットマップ情報41における前半16セクタで管理される領域に相当するブロックだけであった場合には、ビットマップ情報41における前半16セクタ分が変化するだけで、後半16セクタ分は前の状態から変化していない。
 このような場合には、SBM30のうち更新しなくてはならないのはビットマップ情報41の前半16セクタ分のデータ(部分ビットマップ情報41#0)を含むSBM30#0のみでよい。例えば、図11(a)に示した初期化フォーマット後に、SBM30におけるビットマップ情報41で管理するSBM管理対象の領域範囲における、ビットマップ情報41の前半16セクタ分(部分ビットマップ情報41#0)で管理される領域にのみ記録がなされてビットマップ情報41が変化した場合は、図11(b)に示すように変化があったSBM30#0のみを更新すればよい。
 この際、TDDS32が示すSBM#0位置情報56は新たに記録したブロックDの先頭位置を指した状態に変更されるが、SBM#1位置情報61は、前回記録された位置であるブロックBの先頭位置を指したままにしておけばよい。
 このようにSBM30のような管理情報のうち更新が必要な部分のみをTDMA17に記録することで、毎回必ずSBM30全てのデータ(この例の場合は2ブロックサイズ)を記録する場合と比べて、管理情報領域であるTDMA17を効率的に使用することが出来るというメリットがある。
 但しこのように更新が必要な部分のみをTDMA17に対して記録させる場合、SBMヘッダ40に含まれる更新回数情報が問題となる。つまりSBM30を更新記録するたびにSBMヘッダ40中の更新回数情報も増やして記録を行なわなければならない。このため、仮に図10で説明したようにSBMヘッダ40がSBM30#0にのみ含まれる構成であった場合には、SBM30#1に含まれる部分ビットマップ情報41#1で管理される領域が記録され、SBM30#1の部分ビットマップ情報41#1が変化しただけの場合であっても、SBM30#1だけでなく、更新回数情報を備えるSBMヘッダ40を含んだSBM30#0も同時に記録しなくてはならなくなってしまう。
 これを解決するため、例えば、図12に示すように、ビットマップ情報41を含む全ての1ブロックサイズのディスク管理構造更新単位に、SBMヘッダ40を備えた構成にしてもよい。つまり、SBMヘッダ40は、SBM30#0だけでなく、SBM30#1にも備えられてもよい。この場合は、SBM30#1は、SBMヘッダ40とビットマップ情報41の後半16セクタからなる17セクタサイズの有効データ(部分ビットマップ情報41#1)を備えた構成となり、所定の記録層に対して複数(上記の例では2つ)の独立したSBM30を備える構成になる。
 より具体的に言えば、SBMヘッダ40は、SBM管理対象の領域範囲に関する情報を備えている。つまり、ビットマップ情報41での管理対象となるユーザデータ領域14を、SBM30#0で管理する領域範囲とSBM30#1で管理する領域範囲という2つに分けて、それぞれを管理するSBMヘッダ40を備える。SBM30#0側で管理する領域範囲とSBM30#1で管理する領域範囲とは異なるため、SBM管理対象の領域範囲に関する情報を備えたSBMヘッダ40を、SBM30#0およびSBM30#1のそれぞれに備えておくことが望ましい。さらに上述した更新回数情報の更新の観点からも、SBM30の部分更新を行う場合には、SBM30#0およびSBM30#1のそれぞれにSBMヘッダ40を備えておくことが望ましい。
 以上のように、所定の記録層におけるユーザデータ領域14を管理する複数のスペースビットマップ(SBM30#0、SBM30#1)のそれぞれは、複数のスペースビットマップ(SBM30#0、SBM30#1)のそれぞれが含む部分ビットマップ情報(部分ビットマップ情報41#0、部分ビットマップ情報41#1)によって管理される領域範囲に関する情報を備えたヘッダ(SBMヘッダ40)を含んでもよい。さらに、複数のスペースビットマップ(SBM30#0、SBM30#1)のそれぞれのヘッダ(SBMヘッダ40)は、スペースビットマップSBM30の更新回数情報を含んでもよい。
 これにより、例えば、SBM30#1に含まれる部分ビットマップ情報41#1で管理される領域のみに記録が行われ、SBM30#1の部分ビットマップ情報41#1が変化しただけの場合は、SBM30#1だけを更新することが可能となる。もしSBM30#0とSBM30#1の両方の部分ビットマップ情報が変化した場合はSBM30#0とSBM30#1の両方を含んだTDMS21をTDMA17に記録する。しかし、もしSBM30#1の部分ビットマップ情報41#1のみが変化した場合は、SBM30#1を含みSBM30#0は含まないTDMS21を、TDMA17に記録する。
 このように、特定の部分ビットマップ情報によって管理される管理領域に記録が行われた場合は、その特定の部分ビットマップ情報が含まれるスペースビットマップを更新し、管理情報領域TDMA17に記録するだけでよい。特定の部分ビットマップ情報が含まれるスペースビットマップの管理領域に記録が行われた場合には、全てのスペースビットマップを更新して管理情報領域TDMA17に記録する必要がない。このように、管理情報のうち更新が必要な部分のみをTDMA17に記録することが出来るため、管理情報領域TDMA17をより効率良く利用することが可能となる。
 なお、32セクタサイズのビットマップ情報41をSBM30#0およびSBM30#1の部分ビットマップ情報に分割して割り当てるサイズとして、それぞれ前半16セクタおよび後半16セクタと均等に割り当てる場合を例にとって説明を行ったが、割り当てるサイズとしてはこの限りではない。
 例えば、SBM30#0に前半30セクタ分(つまり、部分ビットマップ情報として備えることが可能な最大サイズ)を割り当て、SBM30#1に残りの後半2セクタ分を割り当てるといった形も効率的である。このことは、更新回数情報を備えるSBMヘッダ40を含むのがSBM30#0だけである場合に特に有用である。この場合は、SBM30をTDMA17に記録するたびに必ず記録しなくてはならないSBMヘッダ40を備えるSBM30#0に含まれるビットマップ情報41で管理される領域のサイズを、SBMヘッダ40を備えないSBM30#1に含まれるビットマップ情報41で管理される領域のサイズよりも大きくしておく。これにより、ビットマップ情報41で管理する領域の大きい方がビットマップ情報41の変化する確率が高くなり、結果としてSBM30#1を更新しなくてはならない回数を抑えることが出来る。
 もしSBM30#0およびSBM30#1の部分ビットマップ情報が変化した場合はSBM30#0とSBM30#1の両方を含んだTDMS21をTDMA17に記録する。しかし、もしSBM30#1の部分ビットマップ情報41#1のみが変化した場合は、SBM30#1を含みSBM30#0は含まないTDMS21をTDMA17に記録するといった方法を用いることが出来る。これにより、管理情報のうち更新が必要な部分のみをTDMA17に記録することが出来るという上述の効果を得ることが出来る。
 なお、複数のスペースビットマップ(SBM30#0、SBM30#1)のヘッダ(SBMヘッダ40)は、この情報がスペースビットマップ(SBM30#0、SBM30#1)であることを示す識別子や、スペースビットマップ(SBM30#0、SBM30#1)それぞれが含む部分ビットマップ情報(部分ビットマップ情報41#0、部分ビットマップ情報41#1)によって管理される管理対象の領域範囲に関する情報を含んでもよい。そのような部分ビットマップ情報によって管理される領域範囲に関する情報は、例えば対象領域の先頭アドレスやサイズなどである。
 これにより、特定のスペースビットマップのヘッダの管理対象の領域範囲に関する情報(対象領域の先頭アドレスとサイズ)を読み取ることで、その特定のスペースビットマップが管理する領域を特定することができる。さらに、ヘッダの管理対象の領域範囲に関する情報(対象領域の先頭アドレスとサイズ)を含むことで、スペースビットマップの管理領域を任意のサイズに割り当てるなど、割り当て方を容易に変更することができ、ユーザの選択の幅(自由度)を広げることも可能になる。
 (3)TDDS32が備える各種情報
 本発明の実施の形態3における光ディスク1のTDDS32が保持するデータ内容は、図4を用いて説明した本発明の実施の形態1における光ディスク1と同じである。
 (4)記録再生装置
 本発明の実施の形態3における光ディスク1への記録再生を行う光ディスク記録再生装置100の構成は、図6を用いて説明した本発明の実施の形態1における光ディスク記録再生装置100と同じである。
 本発明の実施の形態3における光ディスク1への情報の記録を行う情報記録装置および情報記録方法において、所定の記録層におけるユーザデータ領域14のサイズが、所定のサイズ(ビットマップ情報41とTDDS32とSBMヘッダ40とを合わせたサイズが1ブロックサイズとなる場合のユーザデータ領域のサイズ)を超える場合の処理を説明する。この場合は、所定の記録層におけるユーザデータ領域14に対して、複数のスペースビットマップ(SBM30#0、SBM30#1)を形成する。そして、管理情報領域TDMA17に、複数のスペースビットマップ(SBM30#0、SBM30#1)のうちの1つとディスク定義構造TDDS32とを含む1ブロックサイズのディスク管理構造更新単位を記録する。
 上述したような記録処理や後述する記録処理は、システム制御部170(図6)が、記録再生装置100の各構成要素を制御し、光ヘッド120が光ディスク1にレーザ光を照射することにより行われる。
 また、所定の記録層のユーザデータ領域14のサイズが、所定のサイズ(ビットマップ情報41とTDDS32とSBMヘッダ40とを合わせたサイズが1ブロックサイズとなる場合のユーザデータ領域14のサイズ)を超える場合は、ビットマップ情報41を、複数の部分ビットマップ情報(部分ビットマップ情報41#0、部分ビットマップ情報41#1)に分割する。そして、複数のスペースビットマップ(SBM30#0、SBM30#1)のそれぞれに、複数の部分ビットマップ情報のうちの1つを含ませてもよい。
 また、管理情報領域TDMA17における所定位置のブロックには、上述のディスク管理構造更新単位を記録する。また、そのようなディスク管理構造更新単位の代わりに、ディスク定義構造TDDS32と初期の欠陥リストTDFL31を含む1ブロックサイズの第2のディスク管理構造更新単位を記録してもよい。このとき、ディスク定義構造TDDS32は、初期の欠陥リストの位置情報を備えていてもよい。
 なお、初期の欠陥リストTDFL31とは、欠陥領域に関する情報であるDFLエントリ43を全く含まない最小サイズのTDFLである。つまり、初期の欠陥リストTDFL31とは、識別子情報等のみ設定されDFLエントリ43の個数や更新回数情報などは0のDFLヘッダ42と、識別子情報は設定され更新回数情報は0のDFLターミネータ44のみを備えたTDFLのことである。初期のTDFL31は、1セクタサイズで収まるサイズであるため、TDDS32とともに記録しても1ブロック(1クラスタ)サイズに収めることができる。
 また、上述の管理情報領域TDMA17における所定位置のブロックとは、例えば、管理情報領域TDMA17の記録再生可能なブロックのうち最も先頭にあるブロックである。
 次に、本発明の実施の形態3における光ディスク1からの情報の再生を行う情報再生装置および情報再生方法を説明する。再生処理は、光ヘッド120が光ディスク1にレーザ光を照射して得られる反射光を受光して再生信号を得て、システム制御部170(図6)が記録再生装置100の各構成要素を制御して信号処理を行うことにより実行される。
 所定の記録層におけるユーザデータ領域14に対して、複数のスペースビットマップ(SBM30#0、SBM30#1)が形成され、光ディスク1の管理情報領域TDMA17には、複数のスペースビットマップ(SBM30#0、SBM30#1)のうちの1つとディスク定義構造TDDS32とを含む1ブロックサイズのディスク管理構造更新単位が記録されている。この光ディスク1の管理情報領域TDMA17から、ディスク定義構造TDDS32を含む1ブロックサイズのディスク管理構造更新単位を読み出し、スペースビットマップ(SBM30#0またはSBM30#1)を読み出す。
 また、本実施形態の光ディスク1では、ビットマップ情報41が複数の部分ビットマップ情報(部分ビットマップ情報41#0、部分ビットマップ情報41#1)に分割され、複数のスペースビットマップ(SBM30#0、SBM30#1)のそれぞれに、複数の部分ビットマップ情報のうちの1つが含まれている。このような光ディスク1からスペースビットマップを読み出し、スペースビットマップから部分ビットマップ情報(部分ビットマップ情報41#0、または、部分ビットマップ情報41#1)を読み出してもよい。
 また、本実施形態の光ディスク1の管理情報領域TDMA17における所定位置のブロックには、ディスク管理構造更新単位が記録されているか、または、ディスク定義構造TDDS32と初期の欠陥リストTDFL31を含む1ブロックサイズの第2のディスク管理構造更新単位が記録されている。このような管理情報領域TDMA17の所定位置のブロックから、ディスク管理構造更新単位、または、第2のディスク管理構造更新単位を読み出してもよい。なお、ディスク定義構造TDDS32は、初期の欠陥リストの位置情報を備えてもよい。なお、ここで、管理情報領域TDMA17の所定位置のブロックとは、例えば、管理情報領域TDMA17の記録再生可能なブロックのうち最も先頭にあるブロックである。
 (5)初期TDMS20記録(初期化:Initialize)方法
 図13は、光ディスク記録再生装置100が本発明の実施の形態3における追記型光ディスク1に対して初期化フォーマット処理(Initialization)を行う手順を示すフローチャートである。
 ステップ1301:初期状態の管理情報を生成する。具体的には、管理情報生成部175は、管理情報格納メモリ160中に、初期状態のSBM30、TDFL31、TDDS32を生成する。初期状態のSBM30、TDFL31、TDDS32とは、それぞれの識別子情報等のみが設定され、更新回数などはすべて0の状態の管理情報のことである。SBM30、TDFL31についてはそれぞれ、初期のSBM30、初期のTDFL31と同じ意味である。
 ステップ1302:初期TDMS20を生成する。具体的には、管理情報生成部175は、ステップ1301で生成した初期状態の管理情報を、図10で示した状態の初期TDMS20の形式になるように、SBM30、TDFL31、TDDS32を組み合わせて、上記記録形式の初期TDMS20を作る。
 より具体的には、例えばSBM30のサイズが、1ブロックと1セクタの合計33セクタサイズの場合、管理情報格納メモリ160中に、記録に使用するための3ブロック分のデータ領域を確保し、この領域をすべて0データでクリアした状態にする。そして、先頭1ブロック目の先頭から初期のSBM30における先頭17セクタ分のデータ(SBMヘッダ40の1セクタと、ビットマップ情報41の前半16セクタ(部分ビットマップ情報41#0)の計17セクタサイズからなる、初期のSBM30#0)を配置する。1ブロック目の終端セクタにTDDS32を配置する。また、2ブロック目の先頭から初期のSBM30における後半16セクタ分のデータ(部分ビットマップ情報41#1を含む初期のSBM30#1)を配置する。2ブロック目の終端セクタにTDDS32を配置する。3ブロック目の先頭に初期のTDFL31を配置する。3ブロック目の終端セクタにTDDS32を配置する。このようにして、初期TDMS20相当のデータを生成する。
 なお、図12に示すように、所定の記録層におけるユーザデータ領域14を管理する複数のスペースビットマップ(SBM30#0、SBM30#1)のそれぞれは、それら複数のスペースビットマップのそれぞれが含む部分ビットマップ情報(部分ビットマップ情報41#0、部分ビットマップ情報41#1)によって管理される領域範囲に関する情報を備えたヘッダ(SBMヘッダ40)を含んでもよい。この場合、管理情報格納メモリ160中に確保したデータ領域のうちの2ブロック目の先頭に配置するデータは、SBMヘッダ40の1セクタと、初期のSBM30における後半16セクタ分のデータ(部分ビットマップ情報41#1を含む初期のSBM30#1)をあわせた17セクタ分のデータとなる。
 なお、SBMヘッダ40は、この情報がスペースビットマップであることを示す識別子や、スペースビットマップのそれぞれの管理対象の領域範囲に関する情報(例えば対象領域の先頭アドレスとサイズなど)を含んでもよい。また、SBMヘッダ40は、スペースビットマップSBM30の更新回数情報を含んでもよい。
 なお、TDDS32については、後述のステップ1303やステップ1305、ステップ1307において位置情報の更新を行って値が変化することになるため、この時点では配置しておかず、記録直前に配置するのが望ましい。
 ステップ1303:SBM30に関する位置情報を更新する。具体的には、管理情報更新部174は、これから記録を行うにあたり、管理情報格納メモリ160中に生成したTDDS32相当のデータの中のSBM位置情報を更新する。より具体的には、システム制御部170はアクセス位置管理部173によって、初期TDMS20の記録が可能な記録位置(例えばTDMA17の先頭位置)を算出する。管理情報更新部174は、SBM#0位置情報56を、アクセス位置管理部173によって算出した記録位置(例えばTDMA17の先頭位置)を指すように更新する。DFL#1位置情報58、DFL#2位置情報59、DFL#3位置情報60はそれぞれ0とする。そして、このデータを、管理情報格納メモリ160中に確保した記録用のデータ領域の所定の位置(この場合は先頭1ブロック目の終端セクタ)に対して配置する。
 なお、この時点ではSBM30に関する位置情報であるSBM#1位置情報61、およびTDFL31に関する位置情報であるTDFL#0位置情報57については、まだどの位置に記録することになるかが確定できないため、0のままにしておいてもよい。あるいは、それらが正常に記録されることを想定して予測して、予測で位置情報を設定した状態(例えばSBM#1位置情報61はTDMA17の先頭から2ブロック目の先頭位置を指し、DFL#0位置情報57はTDMA17の先頭から3ブロック目の先頭位置を指す状態)にしておいてもよい。
 ステップ1304:初期TDMS20の一部を記録する。具体的には、システム制御部170は、記録を行うレーザパワーやストラテジ等の記録条件をレーザ制御部130に設定する。ステップ1303においてアクセス位置管理部173によって求めた記録を行う位置に対してメカ制御部140を用いて光ヘッド120を移動させる。そして、記録部171によって、初期TDMS20の最初の1ブロック目のデータである初期のSBM30#0とTDDS32の組み合わせデータを記録する。なお、もしこのブロックへの記録に失敗した場合には、再度ステップ1303から処理を繰り返し、正常に記録がなされるまで繰り返して記録を行う。
 ステップ1305:SBM30に関する位置情報を更新する。具体的には、管理情報更新部174は、これから記録を行うにあたり、管理情報格納メモリ160中に生成したTDDS32相当のデータの中のSBM位置情報を更新する。より具体的には、システム制御部170はアクセス位置管理部173によって、初期TDMS20の記録が可能な記録位置(例えばステップ1304において1回で記録に成功した場合は、TDMA17の先頭から2ブロック目の先頭位置)を算出する。管理情報更新部174は、SBM#1位置情報61を、アクセス位置管理部173によって算出した記録位置(例えばTDMA17の先頭から2ブロック目の先頭位置)を指すように更新する。なお、SBM#0位置情報56は、ステップ1304において記録した位置を指す。DFL#1位置情報58、DFL#2位置情報59、DFL#3位置情報60はそれぞれ0とする。そして、このデータを、管理情報格納メモリ160中に確保した記録用のデータ領域の所定の位置(この場合は先頭1ブロック目の終端セクタ)に対して配置する。
 なお、この時点ではTDFL31に関する位置情報であるTDFL#0位置情報57については、まだどの位置に記録することになるかが確定できないため、0のままにしておいてもよい。あるいは、それが正常に記録されることを想定して予測して、予測で位置情報を設定した状態(例えば、DFL#0位置情報57は次に記録可能な位置であるTDMA17の先頭から3ブロック目の先頭位置を指した状態)にしておいてもよい。
 ステップ1306:初期TDMS20の一部を記録する。具体的には、システム制御部170は、記録を行うレーザパワーやストラテジ等の記録条件をレーザ制御部130に設定する。ステップ1303においてアクセス位置管理部173によって求めた記録を行う位置に対して、メカ制御部140を用いて光ヘッド120を移動させる。そして、記録部171によって、初期TDMS20の2ブロック目のデータである初期のSBM30#1とTDDS32の組み合わせデータを記録する。なお、もしこのブロック3への記録に失敗した場合には、再度ステップ1305から処理を繰り返し、正常に記録がなされるまで繰り返して記録を行う。
 ステップ1307:TDFL31に関する位置情報を更新する。具体的には、管理情報更新部174は、これから記録を行うにあたり、TDFL位置情報を更新する。より具体的には、システム制御部170はアクセス位置管理部173によって、上記ステップ1306で初期TDMS20の一部を記録した位置に続く次に記録可能な記録位置(例えばステップ1304および1306において1回で記録に成功した場合は、TDMA17の先頭から3ブロック目の位置)を算出する。管理情報更新部174は、DFL#0位置情報57を、アクセス位置管理部173によって算出した記録位置(例えばTDMA17の先頭から3ブロック目の先頭位置)を指すように更新する。SBM#0位置情報56はステップ1304で記録した位置を指すように更新する。SBM#1位置情報61はステップ1306で記録した位置を指すように更新する。DFL#1位置情報58、DFL#2位置情報59、DFL#3位置情報60は、それぞれ0(つまり、ステップ1304で記録したTDDS32と同じ状態)とする。このような状態で記録を行う。
 ステップ1308:初期TDMS20の一部を記録する。具体的には、システム制御部170は、記録を行うレーザパワーやストラテジ等の記録条件をレーザ制御部130に設定する。ステップ1307においてアクセス位置管理部173によって求めた記録を行う位置に対して、メカ制御部140を用いて光ヘッド120を移動させる。そして、記録部171によって、初期TDMS20の最後の1ブロックである3ブロック目のデータである初期のTDFL31とTDDS32の組み合わせデータを記録する。なお、もしこのブロックへの記録に失敗した場合には、再度ステップ1307から処理を繰り返し、正常に記録がなされるまで繰り返して記録を行う。
 なお、TDDS32は、DDSヘッダ50中に更新回数情報などを備える。初期化フォーマット時には、この更新回数は0など、初期化フォーマット時に記録した情報であることを示す値で記録する。ここで、SBM30およびTDFL31については、初期化フォーマット処理の中でいずれも1回しか記録されないため、更新回数情報はそれぞれ0として記録を行えばよい。しかし、TDDS32については、初期化フォーマットの際に3度記録を行うことになる。この場合は、いずれのTDDS32とも初期TDMS20に含まれるTDDSであることを示すために、更新回数情報を0とした記録を行う。なお、例えば、最初に記録するTDDS32は更新回数情報を0とし、2回目に記録するTDDS32は更新回数情報を1とし、3回目に記録するTDDS32は更新回数情報を2とするような、純粋な更新回数を設定して記録を行ってもよい。
 以上で初期化フォーマット時の初期TDMS20の記録処理が完了する。
 このようにすることで、TDMA17中の記録された全てのブロックにTDDS32が配置される(つまり、TDMA17の先頭位置といった所定の位置にもTDDS32が配置される)。このため、多層化・高密度化などによって管理情報のデータサイズが大きくなったような場合でも、TDMA17における最新の管理情報を検索しなくとも、所定の位置のデータを読み出すことで光ディスク1の領域構造を把握することが可能となる。
 なお、図13では、初期化フォーマットの際の記録処理を示したが、例えばSBM30を含んだ通常のTDMS21を記録するような場合には、上記の本発明の実施の形態3の(2)項で説明したように、必ずしもSBM30を構成するSBM30#0およびSBM30#1全てを含んだ形で記録しなくてもよい。つまり、上記の本発明の実施の形態3の(2)項に示したように、SBM30のうち、ビットマップ情報41が更新されてTDMA17への記録が必要な情報を含むブロックのみを記録するという方法を用いてもよい。
 本発明の実施の形態1から3における光ディスク1は、1つ以上の記録層を備える追記型の光ディスクである。図20は、光ディスク1の断面を示す図である。一例として、図20では、記録層を3層備えた多層の光ディスク1を示している。光ディスク1は、光ビームが照射される側から遠い順に(つまり基板1001側から順に)、記録層L0、記録層L1、記録層L2を含む情報記録層1002を備える。ユーザデータ領域14は、記録層毎に設けられる。
 光ディスク1の製造方法について説明する。ディスク基板1001上に、アドレス信号やコントロールデータに応じた情報信号を記録するためのトラックが設けられた記録層L0、記録層L1、記録層L2をこの順に形成する。これにより、ユーザデータ領域、欠陥管理領域、スペア領域が図1および図2に示す配置となる記録層を製造できる。なお、記録層と記録層の間には、中間層などを含んでもよい。また記録層の上にカバー層を形成してもよい。
 なお、上述した本発明の実施の形態1から3においては説明を省略したが、図15に示したように複数のTDMAを備えるような場合、例えばTDMA17先頭位置に、現在使用中のTDMAを示す情報であるインジケータ用の領域が確保されることもある。このような場合も含めて、本発明で言う初期TDMS20を記録する所定の位置として説明したTDMA17の先頭位置というのは、インジケータ用の領域を除いた、TDMS(初期TDMS20および通常のTDMS21)の記録に使用される領域の先頭位置のことであり、つまり当該光ディスク1における管理情報領域の中で最初に記録されるブロック(管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロック)のことである。
 なお、上述のインジケータ領域に、当該TDMAの最初に記録されるTDDS32のコピーが記録されたりする方法もあり、このインジケータを読み出せば光ディスク1の領域構造を把握できたりもする。しかし、インジケータが記録されていない状態も存在する(例えば、複数のTDMAが存在する中で、最初に使用されるリードイン領域4中のTDMA17を使用中の状態)ため、このような場合であっても、最初に使用されるTDMAの先頭位置といった所定の位置に必ずTDDS32を含むデータが配置されることによる効果を得ることが出来る。
 なお、本発明の実施の形態1から3におけるSBM30のサイズは、2ブロックサイズである場合を例にとって説明を行ったが、SBM30のサイズが3ブロック以上であるような場合などであっても、本発明の実施の形態1から3において説明したのと同様の効果を得ることが出来る。
 なお、本発明の実施の形態1から3におけるSBM30のサイズは1ブロックサイズを超えるサイズ、つまり2ブロックサイズ以上であるため、TDFL31が備えるDFLターミネータ44と同様に、SBM30の終端位置であることを示すSBMターミネータのような情報を備えてもよい。
 なお、本発明の実施の形態1から3では、管理情報としてSBM30を例にとって説明を行ったが、SBM30に限られない。例えば初期化フォーマット時などにTDMA17に記録する際のサイズが1ブロックサイズ以上で、TDDS32と組み合わせたディスク管理構造更新単位のサイズが1ブロック超(2ブロック以上)となるような管理情報に適用しても、同様の効果を得ることが出来る。
 次に、本発明の情報記録媒体についてさらに説明する。
 (主要パラメータ)
 本発明が適用可能な記録媒体の一例として、ブルーレイディスク(BD)や他の規格の光ディスクがあるが、ここではBDに関して説明する。BDには、記録膜の特性に応じて、再生専用型であるBD-ROM,追記記録型・ライトワンス型であるBD-R,書換記録型であるBD-REなどのタイプがあり、本発明は、R(追記型・ライトワンス型)のタイプの記録媒体に適用可能である。ブルーレイディスクの主な光学定数と物理フォーマットについては、「ブルーレイディスク読本」(オーム社出版)やブルーレイアソシエーションのホームページ(http://www.blu-raydisc.com/)に掲載されているホワイトペーパに開示されている。
 BDでは、波長が略405nm(標準値405nmに対して誤差範囲の許容値を±5nmとすれば、400~410nm)のレーザ光および開口数(NA:Numerical Aperture)が略0.85(標準値0.85に対して誤差範囲の許容値を±0.01とすれば、0.84~0.86)の対物レンズを用いる。BDのトラックピッチは略0.32μm(標準値0.320μmに対して誤差範囲の許容値を±0.010μmとすれば、0.310~0.330μm)であり、記録層が1層または2層設けられている。記録層の記録面がレーザ入射側から片面1層あるいは片面2層の構成であり、BDの保護層の表面から記録面まで距離は75μm~100μmである。
 記録信号の変調方式は17PP変調を利用し、記録されるマークの最短マーク(2Tマーク:Tは基準クロックの周期(所定の変調則によってマークを記録する場合における、変調の基準周期))のマーク長は0.149μm(又は0.138μm)(チャネルビット長:Tが74.50nm(又は69.00nm))である。記録容量は片面単層25GB(又は27GB)(より詳細には、25.025GB(又は27.020GB))、または、片面2層50GB(又は54GB)(より詳細には、50.050GB(又は54.040GB))である。
 チャネルクロック周波数は、標準速度(BD1x)の転送レートでは66MHz(チャネルビットレート66.000Mbit/s)であり、4倍速(BD4x)の転送レートでは264MHz(チャネルビットレート264.000Mbit/s)、6倍速(BD6x)の転送レートでは396MHz(チャネルビットレート396.000Mbit/s)、8倍速(BD8x)の転送レートでは528MHz(チャネルビットレート528.000Mbit/s)である。
 標準線速度(基準線速度、1x)は4.917m/sec(又は、4.554m/sec)である。2倍(2x)、4倍(4x)、6倍(6x)および8倍(8x)の線速度は、それぞれ、9.834m/sec、19.668m/sec、29.502m/secおよび39.336m/secである。標準線速度よりも高い線速度は一般的には、標準線速度の正の整数倍であるが、整数に限られず、正の実数倍であってもよい。また、0.5倍(0.5x)など、標準線速度よりも遅い線速度も定義し得る。
 なお、上記は既に商品化が進んでいる、主に1層当たり約25GB(又は約27GB)の1層又は2層のBDに関するものであるが、更なる大容量化として、1層あたりの記録容量を略32GB又は略33.4GBとした高密度なBDや、層数を3層又は4層としたBDも検討されており、以降では、それらに関しても説明する。
 (多層について)
 レーザ光を保護層の側から入射して情報が再生及び/又は記録される片面ディスクとすると、記録層を二層以上にする場合、基板と保護層の間には複数の記録層が設けられることになるが、その場合における多層ディスクの構成例を図21に示す。図示された光ディスクは、(n+1)層の情報記録層502で構成されている(nは0以上の整数)。その構成を具体的に説明すると、光ディスクには、レーザ光505が入射する側の表面から順に、カバー層501、(n+1)枚の情報記録層(Ln~L0層)502、そして基板500が積層されている。また、(n+1)枚の情報記録層502の層間には、光学的緩衝材として働く中間層503が挿入されている。つまり、光入射面から所定の距離を隔てた最も奥側の位置(光源から最も遠い位置)に基準層(L0)を設け、基準層(L0)から光入射面側に層を増やすように記録層を積層(L1,L2,・・・,Ln)している。
 ここで、単層ディスクと比較した場合、多層ディスクにおける光入射面から基準層L0までの距離を、単層ディスクにおける光入射面から記録層までの距離とほぼ同じ(例えば0.1mm程度)にしてもよい。このように層の数に関わらず最奥層(最遠層)までの距離を一定にする(すなわち、単層ディスクにおける場合とほぼ同じ距離にする)ことで、単層か多層かに関わらず基準層へのアクセスに関する互換性を保つことができる。また、層数の増加に伴うチルト影響の増加を抑えることが可能となる。チルト影響の増加を抑えることが可能になるのは、最奥層が最もチルトの影響を受けるが、最奥層までの距離を、単層ディスクとほぼ同じ距離とすることで、層数が増加しても最奥層までの距離が増加することがなくなるからである。
 また、スポットの進行方向(あるいは、トラック方向,スパイラル方向とも言う)に関しては、パラレル・パスとしても、オポジット・パスとしてもよい。
 パラレル・パスでは、全ての層において、再生方向が同一である。つまり、スポットの進行方向は、全層にて内周から外周の方向へ、又は全層にて外周から内周の方向へ進行する。
 一方、オポジット・パスでは、ある層とその層に隣接する層とで、再生方向が逆になる。つまり、基準層(L0)における再生方向が、内周から外周へ向かう方向である場合、記録層L1における再生方向は外周から内周へ向かう方向であり、記録層L2では内周から外周へ向かう方向である。すなわち、再生方向は、記録層Lm(mは0及び偶数)では内周から外周へ向かう方向であって、記録層Lm+1では外周から内周へ向かう方向である。あるいは、記録層Lm(mは0及び偶数)では外周から内周へ向かう方向であって、記録層Lm+1では内周から外周へ向かう方向である。
 保護層(カバー層)の厚みは、開口数NAが上がることで、焦点距離が短くなるのに伴って、またチルトによるスポット歪みの影響を抑えられるよう、より薄く設定される。開口数NAは、CDでは0.45,DVDでは0.65に対して、BDでは略0.85に設定される。例えば記録媒体の総厚み1.2mm程度のうち、保護層の厚みを10~200μmとしてもよい。より具体的には、1.1mm程度の基板に、単層ディスクならば0.1mm程度の透明保護層、二層ディスクならば0.075mm程度の保護層に0.025mm程度の中間層(SpacerLayer)が設けられてもよい。三層以上のディスクならば、保護層及び/又は中間層の厚みはさらに薄くしてもよい。
 (1層から4層の各構成例)
 ここで、単層ディスクの構成例を図22に、二層ディスクの構成例を図23に、三層ディスクの構成例を図24に、四層ディスクの構成例を図25に示す。前述のように、光照射面から基準層L0までの距離を一定にする場合、図23から図25のいずれにおいても、ディスクの総厚みは略1.2mm(レーベル印刷なども含んだ場合、1.40mm以下にするのが好ましい)、基板500の厚みは略1.1mm、光照射面から基準層L0までの距離は略0.1mmとなる。図22の単層ディスク(図21においてn=0の場合)においては、カバー層5011の厚みは略0.1mm、また、図23の二層ディスク(図21においてn=1の場合)においては、カバー層5012の厚みは略0.075mm、中間層5302の厚みは略0.025mm、また、図24の三層ディスク(図21においてn=2の場合)においては、カバー層5013の厚み、及び/又は、中間層5303の厚みや、図25の四層ディスク(図21においてn=3の場合)においては、カバー層5014の厚み、及び/又は、中間層5304の厚みを更に薄くしてもよい。
 (光ディスクの製造方法)
 これらの単層又は多層のディスク(k層の記録層を有するディスク,kは1以上の整数)は、以下のような工程により製造することができる。
 つまり、厚みが略1.1mmの基板上に、開口数が0.84以上、0.86以下の対物レンズを介して、波長が400nm以上、410nm以下のレーザを照射することにより情報が再生可能なk個の記録層が形成される。
 次に、記録層と記録層との間にはk-1個の中間層が形成される。なお、単層ディスクの場合、k=1となるので、k-1=0となり中間層は形成されない。
 次に、基板側から数えてk番目の記録層(多層ディスクの場合は、基板から最も遠い記録層)の上に、厚みが0.1mm以下の保護層が形成される。
 そして、記録層を形成する工程において、基板側から数えてi番目(iは1以上、k以下の奇数)の記録層が形成される際には、再生方向がディスクの内周側から外周側の方向となるように同心円状又はスパイラル状のトラックが形成される。また、基板側から数えてj番目(jは1以上、k以下の偶数)の記録層が形成される際には、再生方向がディスクの外周側から内周側の方向となるように同心円状又はスパイラル状のトラックが形成される。なお、単層ディスクの場合、k=1となるので、k=1における1以上、k以下を満たす奇数であるiは“1”しか存在しないため、i番目の記録層としては1つの記録層しか形成されず、また、k=1における1以上、k以下を満たす偶数であるjは存在しないため、j番目の記録層は形成されないことになる。
 そして、記録層におけるトラックには、各種の領域が割り当て可能となる。
 図26は、本発明の実施形態による光ディスク1の物理的構成を示す。円盤状の光ディスク1には、たとえば同心円状またはスパイラル状に多数のトラック2が形成されており、各トラック2には細かく分けられた多数のセクタが形成されている。なお、後述するように、各トラック2には予め定められたサイズのブロック3を単位としてデータが記録される。
 本実施形態による光ディスク1は、従来の光ディスク(たとえば25GBのBD)よりも情報記録層1層あたりの記録容量が拡張されている。記録容量の拡張は、記録線密度を向上させることによって実現されており、たとえば光ディスクに記録される記録マークのマーク長をより短くすることによって実現される。ここで「記録線密度を向上させる」とは、チャネルビット長を短くすることを意味する。このチャネルビットとは、基準クロックの周期T(所定の変調則によってマークを記録する場合における、変調の基準周期T)に相当する長さをいう。なお、光ディスク1は多層化されていてもよい。ただし、以下では説明の便宜のため、1つの情報記録層にのみ言及する。また、複数の情報記録層が設けられている場合において、各情報記録層に設けられたトラックの幅が同一であるときでも、層ごとにマーク長が異なり、同一層中ではマーク長が一様であることで、層ごとに記録線密度を異ならせてもよい。
 トラック2は、データの記録単位64kB(キロバイト)毎にブロックに分けられて、順にブロックアドレス値が割り振られている。ブロックは、所定の長さのサブブロックに分割され、3個のサブブロックで1ブロックを構成している。サブブロックは、前から順に0から2までのサブブロック番号が割り振られている。
 (記録密度について)
 次に、記録密度について、図27、図28および図29を用いて説明する。
 図27(A)は25GBのBDの例を示す。BDでは、レーザ123の波長は405nm、対物レンズ220の開口数(Numerical Aperture;NA)は0.85である。
 DVD同様、BDにおいても、記録データは光ディスクのトラック2上に物理変化のマーク列120、121として、記録される。このマーク列の中で最も長さの短いものを「最短マーク」という。図では、マーク121が最短マークである。
 25GB記録容量の場合、最短マーク121の物理的長さは0.149umとなっている。これは、DVDの約1/2.7に相当し、光学系の波長パラメータ(405nm)とNAパラメータ(0.85)を変えて、レーザの分解能を上げても、光ビームが記録マークを識別できる限界である光学的な分解能の限界に近づいている。
 図28は、トラック上に記録されたマーク列に光ビームを照射させている様子を示す。BDでは、上記光学系パラメータにより光スポット30は、約0.39um程度となる。光学系の構造は変えないで記録線密度向上させる場合、光スポット30のスポット径に対して記録マークが相対的に小さくなるため、再生の分解能は悪くなる。
 たとえば図27(B)は、25GBのBDよりも高記録密度の光ディスクの例を示す。このディスクでも、レーザ123の波長は405nm、対物レンズ220の開口数(Numerical Aperture;NA)は0.85である。このディスクのマーク列125、124のうち、最短マーク(2Tマーク)125の物理的長さは0.1115um(又は、0.11175um)となっている。図27(A)と比較すると、スポット径は同じ約0.39umである一方、記録マークが相対的に小さくなり、かつ、マーク間隔も狭くなるため、再生の分解能は悪くなる。
 光ビームで記録マークを再生した際の再生信号の振幅は記録マークが短くなるに従って低下し、光学的な分解能の限界でゼロとなる。この記録マークの周期の逆数を空間周波数といい、空間周波数と信号振幅の関係をOTF(Optical Transfer Function)という。信号振幅は、空間周波数が高くになるに従ってほぼ直線的に低下する。信号振幅がゼロとなる再生の限界周波数を、OTFカットオフ(cutoff)という。
 図29は、25GB記録容量の場合のOTFと最短記録マークとの関係を示すグラフである。BDの最短マークの空間周波数は、OTFカットオフに対して80%程度であり、OTFカットオフに近い。また、最短マークの再生信号の振幅も、検出可能な最大振幅の約10%程度と非常に小さくなっているこが分かる。BDの最短マークの空間周波数が、OTFカットオフに非常に近い場合、すなわち、再生振幅がほとんど出ない場合の記録容量は、BDでは、約31GBに相当する。最短マークの再生信号の周波数が、OTFカットオフ周波数付近である、または、それを超える周波数であると、レーザの分解能の限界、もしくは超えていることもあり、再生信号の再生振幅が小さくなり、SN比が急激に劣化する領域となる。
 そのため、図27(B)の高記録密度光ディスクの記録線密度は、再生信号の最短マークの周波数が、OTFカットオフ周波数付近の場合(OTFカットオフ周波数以下だがOTFカットオフ周波数を大きく下回らない場合も含む)からOTFカットオフ周波数以上の場合が想定できる。
 図30は、最短マーク(2T)の空間周波数がOTFカットオフ周波数よりも高く、かつ、2Tの再生信号の振幅が0であるときの、信号振幅と空間周波数との関係の一例を示したグラフである。図30において、最短マーク長の2Tの空間周波数は、OTFカットオフ周波数の1.12倍である。
 (波長と開口数とマーク長との関係)
 また、高記録密度のディスクBにおける波長と開口数とマーク長/スペース長との関係は以下の通りである。
 最短マーク長をTMnm、最短スペース長をTSnmとしたとき、(最短マーク長+最短スペース長)を“P”で表すと、Pは、(TM+TS)nmである。17変調の場合、P=2T+2T=4Tとなる。レーザ波長λ(405nm±5nm、すなわち400~410nm)、開口数NA(0.85±0.01すなわち0.84~0.86)、最短マーク+最短スペース長P(17変調の場合、最短長は2Tとなるため、P=2T+2T=4T)の3つのパラメータを用いると、
  P ≦ λ/2NA
となるまで基準Tが小さくなると、最短マークの空間周波数は、OTFカットオフ周波数を超えることになる。
 NA=0.85,λ=405としたときの、OTFカットオフ周波数に相当する基準Tは、
  T = 405/(2x0.85)/4 = 59.558nm
となる(なお、逆に、P > λ/2NA である場合は、最短マークの空間周波数はOTFカットオフ周波数より低い)。
 このように、記録線密度を上げるだけでも、光学的な分解能の限界によりSN比が劣化する。よって、情報記録層の多層化によるSN比劣化は、システムマージンの観点で、許容できない場合がある。特に、上述のように、最短記録マークの周波数が、OTFカットオフ周波数を越える辺りから、SN比劣化が顕著になる。
 なお、以上では、最短マークの再生信号の周波数とOTFカットオフ周波数を比較して記録密度に関して述べたものであるが、更に高密度化が進んだ場合には、次最短マーク(更には次々最短マーク(更には次最短マーク以上の記録マーク))の再生信号の周波数とOTFカットオフ周波数との関係により、以上と同様の原理に基づき、それぞれに対応した記録密度(記録線密度,記録容量)を設定してもよい。
 (記録密度及び層数)
 ここで、波長405nm,開口数0.85等のスペックを有するBDにおける1層あたりの具体的な記録容量としては、最短マークの空間周波数がOTFカットオフ周波数付近である場合においては、例えば、略29GB(例えば、29.0GB±0.5GB,あるいは29GB±1GBなど)若しくはそれ以上、又は略30GB(例えば、30.0GB±0.5GB,あるいは30GB±1GBなど)若しくはそれ以上、又は略31GB(例えば、31.0GB±0.5GB,又は31GB±1GBなど)若しくはそれ以上、又は略32GB(例えば、32.0GB±0.5GB,あるいは32GB±1GBなど)若しくはそれ以上、などを想定することが可能である。
 また、最短マークの空間周波数がOTFカットオフ周波数以上における、1層あたりの記録容量としては、例えば、略32GB(例えば、32.0GB±0.5GB,あるいは32GB±1GBなど)若しくはそれ以上、又は略33GB(例えば、33.0GB±0.5GB,あるいは33GB±1GBなど)若しくはそれ以上、又は略33.3GB(例えば、33.3GB±0.5GB,あるいは33.3GB±1GBなど)若しくはそれ以上、又は略33.4GB(例えば、33.4GB±0.5GB,あるいは33.4GB±1GBなど)若しくはそれ以上、又は略34GB(例えば、34.0GB±0.5GB,あるいは34GB±1GBなど)若しくはそれ以上、又は略35GB(例えば、35.0GB±0.5GB,あるいは35GB±1GBなど)若しくはそれ以上、などを想定することが可能である。
 特に、記録密度が略33.3GBである場合、3層で約100GB(99.9GB)の記録容量が実現でき、略33.4GBとすると3層で100GB以上(100.2GB)の記録容量が実現できる。これは、25GBのBDを4層にした場合の記録容量とほぼ同じになる。例えば、記録密度を33GBとした場合、33x3=99GBで100GBとの差は1GB(1GB以下)、34GBとした場合、34x3=102GBで100GBとの差は2GB(2GB以下)、33.3GBとした場合、33.3x3=99.9GBで100GBとの差は0.1GB(0.1GB以下)、33.4GBとした場合、33.4x3=100.2GBで100GBとの差は0.2GB(0.2GB以下)となる。
 なお、記録密度が大幅に拡張されると、先に述べたように、最短マークの再生特性の影響により、精密な再生が困難になる。そこで、記録密度の大幅な拡張を抑えつつ、かつ100GB以上を実現する記録密度としては、略33.4GBが現実的である。
 ここで、ディスクの構成を、1層あたり25GBの4層構造とするか、1層あたり33~34GBの3層構造とするか、の選択肢が生じる。多層化には、各記録層における再生信号振幅の低下(SN比の劣化)や、多層迷光(隣接する記録層からの信号)の影響などが伴う。そのため、25GBの4層ディスクではなく、33~34GBの3層ディスクとすることにより、そのような迷光の影響を極力抑えつつ、即ち、より少ない層数(4層ではなく3層)で、約100GBを実現することが可能となる。そのため、多層化を極力避けつつ約100GBを実現したいディスクの製造者は、33~34GBの3層化を選択することが可能となる。一方、従来のフォーマット(記録密度25GB)のまま約100GBを実現したいディスク製造者は、25GBの4層化を選択することが可能となる。このように、異なる目的を有する製造者は、それぞれ異なる構成によって、それぞれの目的を実現することが可能となり、ディスク設計の自由度を与えることができる。
 また、1層あたりの記録密度を30~32GB程度とすると、3層ディスクでは100GBに届かないものの(90~96GB程度)、4層ディスクでは120GB以上が実現できる。そのうち、記録密度を略32GBとすると、4層ディスクでは約128GBの記録容量が実現できる。この128という数字はコンピュータで処理するのに便利な2のべき乗(2の7乗)に整合した数値でもある。そして、3層ディスクで約100GBを実現する記録密度のものと比べると、最短マークに対する再生特性はこちらの方が厳しくない。
 このことから、記録密度の拡張にあたっては、記録密度を複数種類設けることで(例えば略32GBと略33.4GBなど)、複数種類の記録密度と層数との組み合わせにより、ディスクの製造者に対して設計の自由度を与えることが可能となる。例えば、多層化を影響を抑えつつ大容量化を図りたい製造者に対しては33~34GBの3層化による約100GBの3層ディスクを製造するという選択肢を与え、再生特性を影響を抑えつつ大容量化を図りたい製造者に対しては、30~32GBの4層化による約120GB以上の4層ディスクを製造するという選択肢を与えることが可能となる。
 また記録方式に関して、媒体に溝を形成することによって、溝部と、溝と溝との間の溝間部と、が形成されることになるが、溝部に記録するか、溝間部に記録するか、溝部と溝間部の両方に記録するか、様々な方式がある。ここで、溝部と溝間部のうち、光入射面から見て凸部となる側に記録する方式をOn-Groove方式といい、光入射面から凹部となる側に記録する方式をIn-Groove方式という。本発明において、記録方式として、On-Groove方式とするか、In-Groove方式とするか、両方式のどちらか一方を許可する方式とするかは特に問わない。
 なお、両方式のどちらか一方を許可する方式の場合、その媒体が、どちらの記録方式であるかを容易に識別できるように、On-Groove方式であるかIn-Groove方式であるかを示した記録方式識別情報を媒体に記録してもよい。多層媒体については、各層についての記録方式識別情報を記録してもよい。その場合、各層についての記録方式識別情報を基準層(光入射面から見てもっとも遠い側の層(L0)又は最も近い層や、起動時に最初にアクセスされるように決められている層など)にまとめて記録してもよいし、各層にその層のみに関する記録方式識別情報を記録してもよいし、各層に全ての層に関する記録方式識別情報を記録してもよい。
 また記録方式識別情報を記録する領域としては、BCA(BurstCuttingArea)やディスク情報領域(データ記録領域よりも内周側又は/及び外周側にあり、主に制御情報を格納する領域、なお再生専用領域でデータ記録領域よりもトラックピッチが広くなっていることがある)やウォブル(ウォブルに重畳して記録)等があり、いずれかの領域又はいずれか複数の領域又は全ての領域に記録してもよい。
 またウォブルの開始方向に関して、On-Groove方式とIn-Groove方式とで互いに逆となるようにしてもよい。つまり、もしOn-Groove方式にてウォブルの開始方向がディスクの内周側から開始する場合には、In-Groove方式ではウォブルの開始方向をディスクの外周側から開始するようにし(、又は、もしOn-Groove方式にてウォブルの開始方向がディスクの外周側から開始する場合には、In-Groove方式ではウォブルの開始方向をディスクの内周側から開始するようにし)てもよい。このように、On-Groove方式とIn-Groove方式とでウォブルの開始方向互いに逆となるようにすることで、どちらの方式にしてもトラッキングの極性を同一にすることができる。なぜなら、On-Groove方式では、光入射面から凸部となる側に記録を行うのに対して、In-Groove方式では、光入射面から凹部となる側に記録を行うため、仮に両者で溝の深さが同じである場合、トラッキング極性は逆の関係となる。そこで、両者でウォブルの開始方向も互いに逆とすることにより、トラッキング極性を同じにすることができる。
 また、記録膜の特性に関して、記録部分と未記録部分との反射率の関係により、以下の2つの特性のものがある。つまり、未記録部分が記録済部分よりも高反射率(High-to-Low)であるHtoL特性と、未記録部分が記録済部分よりも低反射率(Low-to-High)であるLtoH特性である。本発明において、媒体の記録膜特性として、HtoLであるか、LtoHであるか、どちらか一方を許可するものであるかは特に問わない。
 また、どちらか一方を許可するものの場合、どちらの記録膜特性であるかを容易に識別できるように、HtoLであるかLtoHであるかを示した記録膜特性識別情報を媒体に記録してもよい。多層媒体については、各層についての記録膜特性識別情報を記録してもよい。その場合、各層についての記録膜特性識別情報を基準層(光入射面から見てもっとも遠い側の層(L0)又は最も近い層や、起動時に最初にアクセスされるように決められている層など)にまとめて記録してもよいし、各層にその層のみに関する記録膜特性識別情報を記録してもよいし、各層に全ての層に関する記録膜特性識別情報を記録してもよい。
 また、記録膜特性識別情報を記録する領域としては、BCA(BurstCuttingArea)やディスク情報領域(データ記録領域よりも内周側又は/及び外周側にあり、主に制御情報を格納する領域、なお再生専用領域でデータ記録領域よりもトラックピッチが広くなっていることがある)やウォブル(ウォブルに重畳して記録)等があり、いずれかの領域又はいずれか複数の領域又は全ての領域に記録してもよい。
 なお、以上の各種のフォーマットや方式に関して、記録密度が向上すると、複数の記録密度が存在する可能性が生じることになるが、記録密度の違いにより、その一部を採用し、一部を採用せずに別のフォーマットや方式を採用してもよい。
 以上説明したように、本発明の追記型情報記録媒体は、1つ以上の記録層を備え、ブロック単位で情報の記録が行われる追記型情報記録媒体であって、前記追記型情報記録媒体は、ユーザデータを記録するためのユーザデータ領域と、前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域とを備え、前記ユーザデータ領域は、前記記録層毎に設けられ、前記管理情報は、所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、前記スペースビットマップに関する位置情報を含むディスク定義構造とを含み、前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップが形成され、前記管理情報領域には、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位が記録される。
 ある実施形態によれば、前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報は、複数の部分ビットマップ情報に分割され、前記複数のスペースビットマップのそれぞれは、前記複数の部分ビットマップ情報のうちの1つを含む。
 ある実施形態によれば、前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む。
 ある実施形態によれば、前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである。
 ある実施形態によれば、前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む。
 ある実施形態によれば、前記ヘッダは、前記スペースビットマップの更新回数情報を含む。
 ある実施形態によれば、前記管理情報領域の所定位置のブロックには、前記ディスク管理構造更新単位と、前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位とのうちのいずれかが記録され、前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストである。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである。
 本発明の情報記録装置は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体へ情報の記録を行なう情報記録装置であって、前記追記型情報記録媒体は、ユーザデータを記録するためのユーザデータ領域と、前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域とを備え、前記ユーザデータ領域は、前記記録層毎に備えられ、前記管理情報は、所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、前記スペースビットマップに関する位置情報を含むディスク定義構造とを含み、前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、前記情報記録装置は、前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップを形成し、前記管理情報領域に、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位を記録する。
 ある実施形態によれば、前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報を、複数の部分ビットマップ情報に分割し、前記複数のスペースビットマップのそれぞれに、前記複数の部分ビットマップ情報のうちの1つを含ませる。
 ある実施形態によれば、前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む。
 ある実施形態によれば、前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである。
 ある実施形態によれば、前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む。
 ある実施形態によれば、前記ヘッダは、前記スペースビットマップの更新回数情報を含む。
 ある実施形態によれば、前記管理情報領域の所定位置のブロックには、前記ディスク管理構造更新単位と、前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位とのうちのいずれかを記録し、前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストである。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである。
 本発明の情報記録方法は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体へ情報の記録を行なう情報記録方法であって、前記追記型情報記録媒体は、ユーザデータを記録するためのユーザデータ領域と、前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域とを備え、前記ユーザデータ領域は、前記記録層毎に備えられ、前記管理情報は、所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、前記スペースビットマップに関する位置情報を含むディスク定義構造とを含み、前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、前記情報記録方法は、前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップを形成するステップと、前記管理情報領域に、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位を記録するステップとを包含する。
 ある実施形態によれば、前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報を、複数の部分ビットマップ情報に分割するステップと、前記複数のスペースビットマップのそれぞれに、前記複数の部分ビットマップ情報のうちの1つを含ませるステップと、をさらに包含する。
 ある実施形態によれば、前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む。
 ある実施形態によれば、前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである。
 ある実施形態によれば、前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む。
 ある実施形態によれば、前記ヘッダは、前記スペースビットマップの更新回数情報を含む。
 ある実施形態によれば、前記管理情報領域の所定位置のブロックには、前記ディスク管理構造更新単位と、前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位とのうちのいずれかを記録し、前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストである。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである。
 本発明の情報再生装置は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体から情報の再生を行なう情報再生装置であって、前記追記型情報記録媒体は、ユーザデータを記録するためのユーザデータ領域と、前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域とを備え、前記ユーザデータ領域は、前記記録層毎に備えられ、前記管理情報は、所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、前記スペースビットマップに関する位置情報を含むディスク定義構造とを含み、前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップが形成され、前記管理情報領域には、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位が記録されており、前記情報再生装置は、前記管理情報領域から、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位を読み出し、前記スペースビットマップを読み出す。
 ある実施形態によれば、前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報は、複数の部分ビットマップ情報に分割され、前記複数のスペースビットマップのそれぞれは、前記複数の部分ビットマップ情報のうちの1つを含み、前記情報再生装置は、前記スペースビットマップから前記部分ビットマップ情報を読み出す。
 ある実施形態によれば、前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む。
 ある実施形態によれば、前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである。
 ある実施形態によれば、前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む。
 ある実施形態によれば、前記ヘッダは、前記スペースビットマップの更新回数情報を含む。
 ある実施形態によれば、前記管理情報領域の所定位置のブロックには、前記ディスク管理構造更新単位と、前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位とのうちのいずれかが記録され、前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストであり、前記情報再生装置は、前記所定位置のブロックから、前記ディスク管理構造更新単位および前記第2のディスク管理構造更新単位のうちのいずれかを読み出す。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである。
 本発明の情報再生方法は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体から情報の再生を行なう情報再生方法であって、前記追記型情報記録媒体は、ユーザデータを記録するためのユーザデータ領域と、前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域とを備え、前記ユーザデータ領域は、前記記録層毎に備えられ、前記管理情報は、所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、前記スペースビットマップに関する位置情報を含むディスク定義構造とを含み、前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップが形成され、前記管理情報領域には、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位が記録されており、前記情報再生方法は、前記管理情報領域から、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位を読み出し、前記スペースビットマップを読み出すステップを包含する。
 ある実施形態によれば、前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報は、複数の部分ビットマップ情報に分割され、前記複数のスペースビットマップのそれぞれは、前記複数の部分ビットマップ情報のうちの1つを含み、前記情報再生方法は、前記スペースビットマップから前記部分ビットマップ情報を読み出すステップをさらに包含する。
 ある実施形態によれば、前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む。
 ある実施形態によれば、前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである。
 ある実施形態によれば、前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む。
 ある実施形態によれば、前記ヘッダは、前記スペースビットマップの更新回数情報を含む。
 ある実施形態によれば、前記管理情報領域の所定位置のブロックには、前記ディスク管理構造更新単位と、前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位とのうちのいずれかが記録され、前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストであり、前記情報再生方法は、前記管理情報領域の所定位置のブロックから、前記ディスク管理構造更新単位および前記第2のディスク管理構造更新単位のうちのいずれかを読み出すステップをさらに包含する。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである。
 また本発明によれば、追記型情報記録媒体は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体であって、前記追記型情報記録媒体は、ユーザデータを記録するためのデータ領域と、前記情報記録媒体に関する管理情報であるディスク管理構造を記録するための管理情報領域を備え、前記データ領域は、前記記録層毎に備えられ、前記ディスク管理構造は、前記記録層毎に前記データ領域における記録未記録状態を管理するためのスペースビットマップと、前記データ領域における欠陥を管理するための欠陥リストと、前記追記型情報記録媒体におけるレイアウト情報や、前記スペースビットマップおよび前記欠陥リストに関する位置情報を備えるディスク定義構造とから構成され、前記スペースビットマップおよび前記欠陥リストは、それぞれ前記ディスク定義構造を組み合わせて形成されるディスク管理構造更新単位ごとに前記管理情報領域に記録され、1つの前記記録層における前記スペースビットマップと前記ディスク定義構造とを組み合わせたサイズは1ブロック超のサイズを有し、少なくとも前記管理情報領域における所定位置のブロックには、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位が記録される。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の中で、最初に記録されるブロックである。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域先頭のブロックである。
 ある実施形態によれば、前記所定位置のブロックには、初期状態の前記欠陥リストと前記ディスク定義構造とを組み合わせて形成される1ブロックサイズの前記ディスク定義構造更新単位が記録される。
 ある実施形態によれば、1つの前記記録層における前記スペースビットマップは、前記ディスク定義構造と組み合わせて1ブロックサイズの前記ディスク定義構造更新単位を形成可能な複数の部分スペースビットマップに分割され、前記管理情報領域には、前記部分スペースビットマップと前記ディスク定義構造とを組み合わせて形成される1ブロックサイズの前記ディスク定義構造更新単位が記録される。
 ある実施形態によれば、1つの前記記録層における前記スペースビットマップは、前記データ領域内の前記ブロック毎の記録未記録状態を示すビットマップデータと、前記ビットマップデータに関する情報を備えたヘッダとから構成され、前記所定位置のブロックには、前記スペースビットマップにおける前記ビットマップデータを含まない、前記ヘッダと前記ディスク定義構造とを組み合わせて形成される前記ディスク定義構造更新単位が記録される。
 本発明の情報記録方法は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体への記録を行なう情報記録方法であって、前記追記型情報記録媒体は、ユーザデータを記録するためのデータ領域と、前記情報記録媒体に関する管理情報であるディスク管理構造を記録するための管理情報領域を備え、前記データ領域は、前記記録層毎に備えられ、前記ディスク管理構造は、前記記録層毎に前記データ領域における記録未記録状態を管理するためのスペースビットマップと、前記データ領域における欠陥を管理するための欠陥リストと、前記追記型情報記録媒体におけるレイアウト情報や、前記スペースビットマップおよび前記欠陥リストに関する位置情報を備えるディスク定義構造とから構成され、前記スペースビットマップおよび前記欠陥リストは、それぞれ前記ディスク定義構造を組み合わせて形成されるディスク管理構造更新単位ごとに前記管理情報領域に記録され、1つの前記記録層における前記スペースビットマップと前記ディスク定義構造とを組み合わせたサイズは1ブロック超のサイズを有し、前記情報記録方法は、少なくとも前記管理情報領域における所定位置のブロックに、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位を記録する。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の中で、最初に記録するブロックである。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域先頭のブロックである。
 ある実施形態によれば、前記所定位置のブロックに、初期状態の前記欠陥リストと前記ディスク定義構造とを組み合わせて形成される1ブロックサイズの前記ディスク定義構造更新単位を記録する。
 ある実施形態によれば、1つの前記記録層における前記スペースビットマップは、前記ディスク定義構造と組み合わせて1ブロックサイズの前記ディスク定義構造更新単位を形成可能な複数の部分スペースビットマップに分割され、前記管理情報領域に、前記部分スペースビットマップと前記ディスク定義構造とを組み合わせて形成される1ブロックサイズの前記ディスク定義構造更新単位を記録する。
 ある実施形態によれば、1つの前記記録層における前記スペースビットマップは、前記データ領域内の前記ブロック毎の記録未記録状態を示すビットマップデータと、前記ビットマップデータに関する情報を備えたヘッダとから構成され、前記所定位置のブロックに、前記スペースビットマップにおける前記ビットマップデータを含まない、前記ヘッダと前記ディスク定義構造とを組み合わせて形成される前記ディスク定義構造更新単位を記録する。
 本発明の情報記録装置は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体への記録を行なう情報記録装置であって、前記追記型情報記録媒体は、ユーザデータを記録するためのデータ領域と、前記情報記録媒体に関する管理情報であるディスク管理構造を記録するための管理情報領域を備え、前記データ領域は、前記記録層毎に備えられ、前記ディスク管理構造は、前記記録層毎に前記データ領域における記録未記録状態を管理するためのスペースビットマップと、前記データ領域における欠陥を管理するための欠陥リストと、前記追記型情報記録媒体におけるレイアウト情報や、前記スペースビットマップおよび前記欠陥リストに関する位置情報を備えるディスク定義構造とから構成され、前記スペースビットマップおよび前記欠陥リストは、それぞれ前記ディスク定義構造を組み合わせて形成されるディスク管理構造更新単位ごとに前記管理情報領域に記録され、1つの前記記録層における前記スペースビットマップと前記ディスク定義構造とを組み合わせたサイズは1ブロック超のサイズを有し、前記情報記録装置は、少なくとも前記管理情報領域における所定位置のブロックに、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位を記録する制御部を備える。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域の中で、最初に記録するブロックである。
 ある実施形態によれば、前記所定位置のブロックとは、前記管理情報領域先頭のブロックである。
 ある実施形態によれば、前記制御部は、前記所定位置のブロックに、初期状態の前記欠陥リストと前記ディスク定義構造とを組み合わせて形成される1ブロックサイズの前記ディスク定義構造更新単位を記録する。
 ある実施形態によれば、1つの前記記録層における前記スペースビットマップは、前記ディスク定義構造と組み合わせて1ブロックサイズの前記ディスク定義構造更新単位を形成可能な複数の部分スペースビットマップに分割され、前記制御部は、前記管理情報領域に、前記部分スペースビットマップと前記ディスク定義構造とを組み合わせて形成される1ブロックサイズの前記ディスク定義構造更新単位を記録する。
 ある実施形態によれば、1つの前記記録層における前記スペースビットマップは、前記データ領域内の前記ブロック毎の記録未記録状態を示すビットマップデータと、前記ビットマップデータに関する情報を備えたヘッダとから構成され、前記制御部は、前記所定位置のブロックに、前記スペースビットマップにおける前記ビットマップデータを含まない、前記ヘッダと前記ディスク定義構造とを組み合わせて形成される前記ディスク定義構造更新単位を記録する。
 本発明の情報再生方法は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体から情報の再生を行なう情報再生方法であって、前記追記型情報記録媒体は、ユーザデータを記録するためのデータ領域と、前記情報記録媒体に関する管理情報であるディスク管理構造を記録するための管理情報領域を備え、前記データ領域は、前記記録層毎に備えられ、前記ディスク管理構造は、前記記録層毎に前記データ領域における記録未記録状態を管理するためのスペースビットマップと、前記データ領域における欠陥を管理するための欠陥リストと、前記追記型情報記録媒体におけるレイアウト情報や、前記スペースビットマップおよび前記欠陥リストに関する位置情報を備えるディスク定義構造とから構成され、前記スペースビットマップおよび前記欠陥リストは、それぞれ前記ディスク定義構造を組み合わせて形成されるディスク管理構造更新単位ごとに前記管理情報領域に記録され、1つの前記記録層における前記スペースビットマップと前記ディスク定義構造とを組み合わせたサイズは1ブロック超のサイズを有し、前記情報再生方法は、前記管理情報領域における所定位置のブロックから、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位を読み出す。
 本発明の情報再生装置は、1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体から情報の再生を行なう情報再生装置であって、前記追記型情報記録媒体は、ユーザデータを記録するためのデータ領域と、前記情報記録媒体に関する管理情報であるディスク管理構造を記録するための管理情報領域を備え、前記データ領域は、前記記録層毎に備えられ、前記ディスク管理構造は、前記記録層毎に前記データ領域における記録未記録状態を管理するためのスペースビットマップと、前記データ領域における欠陥を管理するための欠陥リストと、前記追記型情報記録媒体におけるレイアウト情報や、前記スペースビットマップおよび前記欠陥リストに関する位置情報を備えるディスク定義構造とから構成され、前記スペースビットマップおよび前記欠陥リストは、それぞれ前記ディスク定義構造を組み合わせて形成されるディスク管理構造更新単位ごとに前記管理情報領域に記録され、1つの前記記録層における前記スペースビットマップと前記ディスク定義構造とを組み合わせたサイズは1ブロック超のサイズを有し、前記情報再生装置は、前記管理情報領域における所定位置のブロックから、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位を読み出す制御部を備える。
 本発明にかかる情報記録媒体は、任意の場所へのランダム記録が可能な追記型光ディスクなどに適用でき、本発明にかかる情報記録再生方法は、任意の場所へのランダム記録が可能な追記型光ディスクを記録再生可能な光ディスクドライブ装置などに適用できる。
 1  ディスク基板
 2  トラック
 3  ブロック
 4  リードイン領域
 5  データ領域
 6  リードアウト領域
 10、11、12、13  DMA
 14  ユーザデータ領域
 15、16  スペア領域
 17  TDMA
 20  初期TDMS
 21  TDMS
 30  SBM
 31  TDFL
 32  TDDS
 40  SBMヘッダ
 41  ビットマップ情報41
 42  DFLヘッダ
 43  DFLエントリ
 44  DFLターミネータ
 50  DDSヘッダ
 51  内周スペア領域サイズ
 52  外周スペア領域サイズ
 53  記録モード情報
 54  内周スペア内TDMAサイズ
 55  外周スペア内TDMAサイズ
 56  SBM#0位置情報
 57  DFL#0位置情報
 58  DFL#0位置情報
 59  DFL#0位置情報
 60  DFL#0位置情報
 61  SBM#1位置情報
 100  光ディスク記録再生装置
 110  命令処理部
 120  光ヘッド
 130  レーザ制御部
 140  メカ制御部
 150  メモリ
 160  管理情報格納メモリ
 170  システム制御部
 171  記録部
 172  再生部
 173  アクセス位置管理部
 174  管理情報更新部
 175  管理情報生成部
 180  I/Oバス

Claims (40)

  1.  1つ以上の記録層を備え、ブロック単位で情報の記録が行われる追記型情報記録媒体であって、
     前記追記型情報記録媒体は、
     ユーザデータを記録するためのユーザデータ領域と、
     前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域と
     を備え、
     前記ユーザデータ領域は、前記記録層毎に設けられ、
     前記管理情報は、
     所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、
     前記スペースビットマップに関する位置情報を含むディスク定義構造と
     を含み、
     前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、
     前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップが形成され、
     前記管理情報領域には、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位が記録される、追記型情報記録媒体。
  2.  前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報は、複数の部分ビットマップ情報に分割され、
     前記複数のスペースビットマップのそれぞれは、前記複数の部分ビットマップ情報のうちの1つを含む、請求項1に記載の追記型情報記録媒体。
  3.  前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む、請求項2に記載の追記型情報記録媒体。
  4.  前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、
     前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである、請求項3に記載の追記型情報記録媒体。
  5.  前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む、請求項3に記載の追記型情報記録媒体。
  6.  前記ヘッダは、前記スペースビットマップの更新回数情報を含む、請求項3に記載の追記型情報記録媒体。
  7.  前記管理情報領域の所定位置のブロックには、
     前記ディスク管理構造更新単位と、
     前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位と
     のうちのいずれかが記録され、
     前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、
     前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストである、請求項1に記載の追記型情報記録媒体。
  8.  前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである、請求項7に記載の追記型情報記録媒体。
  9.  1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体へ情報の記録を行なう情報記録装置であって、
     前記追記型情報記録媒体は、
     ユーザデータを記録するためのユーザデータ領域と、
     前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域と
     を備え、
     前記ユーザデータ領域は、前記記録層毎に備えられ、
     前記管理情報は、
     所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、
     前記スペースビットマップに関する位置情報を含むディスク定義構造と
     を含み、
     前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、
     前記情報記録装置は、
     前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップを形成し、
     前記管理情報領域に、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位を記録する、情報記録装置。
  10.  前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報を、複数の部分ビットマップ情報に分割し、
     前記複数のスペースビットマップのそれぞれに、前記複数の部分ビットマップ情報のうちの1つを含ませる、請求項9に記載の情報記録装置。
  11.  前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む、請求項10に記載の情報記録装置。
  12.  前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、
     前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである、請求項11に記載の情報記録装置。
  13.  前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む、請求項11に記載の情報記録装置。
  14.  前記ヘッダは、前記スペースビットマップの更新回数情報を含む、請求項11に記載の情報記録装置。
  15.  前記管理情報領域の所定位置のブロックには、
     前記ディスク管理構造更新単位と、
     前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位と
     のうちのいずれかを記録し、
     前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、
     前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストである、請求項9に記載の情報記録装置。
  16.  前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである、請求項15に記載の情報記録装置。
  17.  1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体へ情報の記録を行なう情報記録方法であって、
     前記追記型情報記録媒体は、
     ユーザデータを記録するためのユーザデータ領域と、
     前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域と
     を備え、
     前記ユーザデータ領域は、前記記録層毎に備えられ、
     前記管理情報は、
     所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、
     前記スペースビットマップに関する位置情報を含むディスク定義構造と
     を含み、
     前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、
     前記情報記録方法は、
     前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップを形成するステップと、
     前記管理情報領域に、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位を記録するステップと、
     を包含する、情報記録方法。
  18.  前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報を、複数の部分ビットマップ情報に分割するステップと、
     前記複数のスペースビットマップのそれぞれに、前記複数の部分ビットマップ情報のうちの1つを含ませるステップと、
     をさらに包含する、請求項17に記載の情報記録方法。
  19.  前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む、請求項18に記載の情報記録方法。
  20.  前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、
     前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである、請求項19に記載の情報記録方法。
  21.  前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む、請求項19に記載の情報記録方法。
  22.  前記ヘッダは、前記スペースビットマップの更新回数情報を含む、請求項19に記載の情報記録方法。
  23.  前記管理情報領域の所定位置のブロックには、
     前記ディスク管理構造更新単位と、
     前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位と
     のうちのいずれかを記録し、
     前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、
     前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストである、請求項17に記載の情報記録方法。
  24.  前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである、請求項23に記載の情報記録方法。
  25.  1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体から情報の再生を行なう情報再生装置であって、
     前記追記型情報記録媒体は、
     ユーザデータを記録するためのユーザデータ領域と、
     前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域と
     を備え、
     前記ユーザデータ領域は、前記記録層毎に備えられ、
     前記管理情報は、
     所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、
     前記スペースビットマップに関する位置情報を含むディスク定義構造と
     を含み、
     前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、
     前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップが形成され、
     前記管理情報領域には、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位が記録されており、
     前記情報再生装置は、
     前記管理情報領域から、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位を読み出し、前記スペースビットマップを読み出す、情報再生装置。
  26.  前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報は、複数の部分ビットマップ情報に分割され、
     前記複数のスペースビットマップのそれぞれは、前記複数の部分ビットマップ情報のうちの1つを含み、
     前記情報再生装置は、前記スペースビットマップから前記部分ビットマップ情報を読み出す、請求項25に記載の情報再生装置。
  27.  前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む、請求項26に記載の情報再生装置。
  28.  前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、
     前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである、請求項27に記載の情報再生装置。
  29.  前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む、請求項27に記載の情報再生装置。
  30.  前記ヘッダは、前記スペースビットマップの更新回数情報を含む、請求項27に記載の情報再生装置。
  31.  前記管理情報領域の所定位置のブロックには、
     前記ディスク管理構造更新単位と、
     前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位と
     のうちのいずれかが記録され、
     前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、
     前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストであり、
     前記情報再生装置は、前記所定位置のブロックから、前記ディスク管理構造更新単位および前記第2のディスク管理構造更新単位のうちのいずれかを読み出す、請求項25に記載の情報再生装置。
  32.  前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである、請求項31に記載の情報再生装置。
  33.  1つ以上の記録層を備え、ブロック単位で記録が行われる追記型情報記録媒体から情報の再生を行なう情報再生方法であって、
     前記追記型情報記録媒体は、
     ユーザデータを記録するためのユーザデータ領域と、
     前記追記型情報記録媒体に関する管理情報を記録するための管理情報領域と
     を備え、
     前記ユーザデータ領域は、前記記録層毎に備えられ、
     前記管理情報は、
     所定の前記記録層の前記ユーザデータ領域の記録状態を管理するためのビットマップ情報を含むスペースビットマップと、
     前記スペースビットマップに関する位置情報を含むディスク定義構造と
     を含み、
     前記スペースビットマップのサイズは、前記ユーザデータ領域のサイズに関係なく、前記ディスク定義構造と組み合わせて1ブロックサイズとなるサイズであり、
     前記所定の記録層の前記ユーザデータ領域のサイズが所定のサイズを超える場合、前記所定の記録層の前記ユーザデータ領域に対して、複数の前記スペースビットマップが形成され、
     前記管理情報領域には、前記複数のスペースビットマップのうちの1つと前記ディスク定義構造とを含む1ブロックサイズのディスク管理構造更新単位が記録されており、
     前記情報再生方法は、
     前記管理情報領域から、前記ディスク定義構造を含む1ブロックサイズの前記ディスク管理構造更新単位を読み出し、前記スペースビットマップを読み出すステップ、
     を包含する、情報再生方法。
  34.  前記所定の記録層の前記ユーザデータ領域のサイズが前記所定のサイズを超える場合、前記ビットマップ情報は、複数の部分ビットマップ情報に分割され、
     前記複数のスペースビットマップのそれぞれは、前記複数の部分ビットマップ情報のうちの1つを含み、
     前記情報再生方法は、
     前記スペースビットマップから前記部分ビットマップ情報を読み出すステップ、
     をさらに包含する、請求項33に記載の情報再生方法。
  35.  前記複数のスペースビットマップのそれぞれは、前記複数のスペースビットマップのそれぞれが含む前記部分ビットマップ情報によって管理される領域範囲に関する情報を含んだヘッダを含む、請求項34に記載の情報再生方法。
  36.  前記ビットマップ情報のサイズは、前記ユーザデータ領域のサイズの増加に応じて増加し、
     前記所定のサイズとは、前記ビットマップ情報と前記ディスク定義構造と前記ヘッダとを合わせたサイズが、1ブロックサイズとなる場合の前記ユーザデータ領域のサイズである、請求項35に記載の情報再生方法。
  37.  前記ヘッダは、前記部分ビットマップ情報によって管理される領域範囲の先頭アドレスおよびサイズに関する情報を含む、請求項35に記載の情報再生方法。
  38.  前記ヘッダは、前記スペースビットマップの更新回数情報を含む、請求項35に記載の情報再生方法。
  39.  前記管理情報領域の所定位置のブロックには、
     前記ディスク管理構造更新単位と、
     前記ディスク定義構造および初期の欠陥リストを含む1ブロックサイズの第2のディスク管理構造更新単位と
     のうちのいずれかが記録され、
     前記ディスク定義構造は、前記初期の欠陥リストの位置情報を含み、
     前記初期の欠陥リストとは、欠陥領域に関する情報を含まない欠陥リストであり、
     前記情報再生方法は、
     前記管理情報領域の所定位置のブロックから、前記ディスク管理構造更新単位および前記第2のディスク管理構造更新単位のうちのいずれかを読み出すステップ、
     をさらに包含する、請求項33に記載の情報再生方法。
  40.  前記所定位置のブロックとは、前記管理情報領域の記録再生可能なブロックのうち最も先頭にあるブロックである、請求項39に記載の情報再生方法。
PCT/JP2009/007250 2009-01-06 2009-12-25 追記型情報記録媒体、情報記録装置、情報記録方法、情報再生装置および情報再生方法 WO2010079572A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN200980116399.7A CN102016993B (zh) 2009-01-06 2009-12-25 补写型信息记录介质、信息记录装置及方法、信息再生装置及方法
MX2010011840A MX2010011840A (es) 2009-01-06 2009-12-25 Medio de grabacion de informacion de una sola escritura, aparato de grabacion de informacion. metodo de grabacion de informacion, aparato de reproduccion de informacion y metodo de reproduccion de informacion.
AU2009336476A AU2009336476A1 (en) 2009-01-06 2009-12-25 Write-once information recording medium, information recording apparatus, information recording method, information reproducing apparatus, and information reproducing method
JP2010521252A JP4746715B2 (ja) 2009-01-06 2009-12-25 追記型情報記録媒体、情報記録装置、情報記録方法、情報再生装置および情報再生方法
US12/747,273 US8264927B2 (en) 2009-01-06 2009-12-25 Write-once information recording medium, information recording apparatus, information recording method, information reproducing apparatus and information reproducing method
RU2010145181/28A RU2504028C2 (ru) 2009-01-06 2009-12-25 Неперезаписываемый носитель записи информации, устройство записи информации, способ записи информации, устройство воспроизведения информации и способ воспроизведения информации
EP09837461.4A EP2375417A4 (en) 2009-01-06 2009-12-25 SINGLE WRITE INFORMATION RECORDING MEDIUM, INFORMATION RECORDING APPARATUS, INFORMATION RECORDING METHOD, INFORMATION REPRODUCING APPARATUS, AND INFORMATION REPRODUCING METHOD
BRPI0912569A BRPI0912569A2 (pt) 2009-01-06 2009-12-25 meio de registro de informação de gravação única, aparelho de registro de informação, método de registro de informação, aparelho de reprodução de informação e método de reprodução de informação
US12/899,680 US20110026391A1 (en) 2009-01-06 2010-10-07 Write-once information recording medium, information recording apparatus, information recording method, information reproducing apparatus and information reproducing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009001002 2009-01-06
JP2009-001002 2009-01-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/899,680 Continuation US20110026391A1 (en) 2009-01-06 2010-10-07 Write-once information recording medium, information recording apparatus, information recording method, information reproducing apparatus and information reproducing method

Publications (1)

Publication Number Publication Date
WO2010079572A1 true WO2010079572A1 (ja) 2010-07-15

Family

ID=42316350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007250 WO2010079572A1 (ja) 2009-01-06 2009-12-25 追記型情報記録媒体、情報記録装置、情報記録方法、情報再生装置および情報再生方法

Country Status (11)

Country Link
US (2) US8264927B2 (ja)
EP (1) EP2375417A4 (ja)
JP (2) JP4746715B2 (ja)
KR (1) KR20110102810A (ja)
CN (1) CN102016993B (ja)
AU (1) AU2009336476A1 (ja)
BR (1) BRPI0912569A2 (ja)
MX (1) MX2010011840A (ja)
RU (1) RU2504028C2 (ja)
TW (1) TW201034009A (ja)
WO (1) WO2010079572A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100113993A (ko) * 2009-04-14 2010-10-22 삼성전자주식회사 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
WO2011036859A1 (ja) * 2009-09-24 2011-03-31 パナソニック株式会社 追記型情報記録媒体、情報記録方法、情報記録装置、情報再生方法、情報再生装置、および情報記録媒体の製造方法
KR20110046238A (ko) * 2009-10-26 2011-05-04 삼성전자주식회사 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
US8406107B2 (en) 2009-09-25 2013-03-26 Panasonic Corporation Write-once information recording medium, information recording method, information recording apparatus, information reproducing method, information reproducing apparatus and manufacturing method of the information recording medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079578A1 (ja) * 2009-01-07 2010-07-15 パナソニック株式会社 追記型情報記録媒体、情報記録装置、情報記録方法、情報再生装置および情報再生方法
JP5011326B2 (ja) * 2009-02-24 2012-08-29 株式会社日立製作所 情報記録媒体、アドレス生成及び検出方法、再生及び記録装置
US9690489B2 (en) * 2014-03-08 2017-06-27 Storart Technology Co. Ltd. Method for improving access performance of a non-volatile storage device
US9792942B2 (en) * 2015-05-18 2017-10-17 Panasonic Intellectual Property Management Co., Ltd. Optical information medium having multiple layers with management information areas disposed at the same distance from center

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251446A (ja) * 1999-03-01 2000-09-14 Sanyo Electric Co Ltd データ記録装置及び方法
WO2004081936A1 (ja) * 2003-03-12 2004-09-23 Sony Corporation 記録媒体、記録装置、再生装置、記録方法、再生方法
JP2005056542A (ja) 2002-12-25 2005-03-03 Matsushita Electric Ind Co Ltd 追記型情報記録媒体、情報記録方法、情報再生方法、情報記録装置および情報再生装置
WO2005091291A1 (ja) * 2004-03-22 2005-09-29 Pioneer Corporation 追記型記録媒体、追記型記録媒体用の記録装置および記録方法、追記型記録媒体用の再生装置および再生方法、並びにコンピュータプログラム
JP2006512699A (ja) * 2002-09-30 2006-04-13 エルジー エレクトロニクス インコーポレーテッド 1回だけ記録可能な光ディスクと1回だけ記録可能な光ディスクにおける管理情報の記録方法及び装置
JP2006520513A (ja) * 2003-03-13 2006-09-07 サムスン エレクトロニクス カンパニー リミテッド データ領域管理の可能な追記型ディスク、追記型ディスクのデータ領域の管理方法、データ記録装置、データの再生方法及びその装置
JP3861856B2 (ja) 2003-06-13 2006-12-27 ソニー株式会社 記録再生装置、記録再生方法
JP3865261B2 (ja) 2003-07-23 2007-01-10 パイオニア株式会社 追記型記録媒体、追記型記録媒体用の記録装置及び記録方法、追記型記録媒体用の再生装置及び再生方法、記録又は再生制御用のコンピュータプログラム、並びにデータ構造
US7188271B2 (en) 2003-02-25 2007-03-06 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
JP2007179695A (ja) * 2005-12-28 2007-07-12 Sony Corp 記録装置、記録制御方法
JP2007323695A (ja) * 2006-05-30 2007-12-13 Nec Corp 書き換え型光ディスクの記録制御方法およびその記録再生用のドライブ装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856261B2 (ja) 1998-03-18 2006-12-13 ソニー株式会社 同期検出装置
KR101063746B1 (ko) * 2002-12-25 2011-09-08 파나소닉 주식회사 Worm 정보 기록 매체, 정보 기록 방법, 정보 재생 방법, 정보 기록 장치, 및 정보 재생 장치
TWI278851B (en) 2003-02-25 2007-04-11 Lg Electronics Inc Recording medium having data structure for managing at least a data area of the recording medium and recording and reproducing methods and apparatuses
JP4658614B2 (ja) 2003-03-04 2011-03-23 エルジー エレクトロニクス インコーポレイティド 光記録媒体の記録方法及び装置
EP1602104B1 (en) 2003-03-13 2019-08-07 Samsung Electronics Co., Ltd. Apparatus for recording data on a write once disc
RU2005127337A (ru) * 2003-03-13 2006-02-10 Самсунг Электроникс Ко. Лтд. (Kr) Однократное записываемый диск, способ распределения области данных однократно записываемого диска, устройство и способ воспроизведения данных с такого диска
US8184513B2 (en) 2003-04-15 2012-05-22 Samsung Electronics Co., Ltd. Recording/reproducing method, recording/reproducing apparatus, optical recording medium, and computer readable recording medium having recorded thereon program for the recording/reproducing method
EP2068322A3 (en) 2003-05-09 2009-09-23 LG Electronics Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
WO2004100155A1 (en) 2003-05-09 2004-11-18 Lg Electronics Inc. Recording medium having data structure for managing at least a data area of the recording medium and recording and reproducing methods and apparatuses
CN101231867A (zh) * 2003-05-09 2008-07-30 Lg电子株式会社 用于管理记录介质的数据结构及其方法和设备
JP4533892B2 (ja) * 2003-07-04 2010-09-01 エルジー エレクトロニクス インコーポレイティド 追記型光ディスクの上書きを管理する方法及び装置
US20050162989A1 (en) * 2004-01-05 2005-07-28 Samsung Electronics Co., Ltd. Method and apparatus for recording and/or reproducing data and write-once information storage medium
KR20070028546A (ko) * 2004-06-21 2007-03-12 코닌클리케 필립스 일렉트로닉스 엔.브이. 제어정보를 은닉 저장하는 시스템
JP2007179666A (ja) * 2005-12-28 2007-07-12 Toshiba Corp 情報記録媒体、情報記録再生装置及び情報記録方法
KR101301649B1 (ko) 2006-11-10 2013-08-30 삼성전자주식회사 기록/재생 방법, 기록/재생 장치 및 정보 저장 매체
KR20080065506A (ko) 2007-01-09 2008-07-14 삼성전자주식회사 기록 재생 장치 및 방법, 그 정보 저장 매체
WO2010079578A1 (ja) 2009-01-07 2010-07-15 パナソニック株式会社 追記型情報記録媒体、情報記録装置、情報記録方法、情報再生装置および情報再生方法
JP5503659B2 (ja) * 2009-09-24 2014-05-28 パナソニック株式会社 追記型情報記録媒体、情報記録方法、情報記録装置、情報再生方法、情報再生装置、および情報記録媒体の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251446A (ja) * 1999-03-01 2000-09-14 Sanyo Electric Co Ltd データ記録装置及び方法
JP2006512699A (ja) * 2002-09-30 2006-04-13 エルジー エレクトロニクス インコーポレーテッド 1回だけ記録可能な光ディスクと1回だけ記録可能な光ディスクにおける管理情報の記録方法及び装置
JP2005056542A (ja) 2002-12-25 2005-03-03 Matsushita Electric Ind Co Ltd 追記型情報記録媒体、情報記録方法、情報再生方法、情報記録装置および情報再生装置
US7188271B2 (en) 2003-02-25 2007-03-06 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US20070122124A1 (en) 2003-02-25 2007-05-31 Park Yong C Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
WO2004081936A1 (ja) * 2003-03-12 2004-09-23 Sony Corporation 記録媒体、記録装置、再生装置、記録方法、再生方法
JP2006520513A (ja) * 2003-03-13 2006-09-07 サムスン エレクトロニクス カンパニー リミテッド データ領域管理の可能な追記型ディスク、追記型ディスクのデータ領域の管理方法、データ記録装置、データの再生方法及びその装置
JP3861856B2 (ja) 2003-06-13 2006-12-27 ソニー株式会社 記録再生装置、記録再生方法
JP3865261B2 (ja) 2003-07-23 2007-01-10 パイオニア株式会社 追記型記録媒体、追記型記録媒体用の記録装置及び記録方法、追記型記録媒体用の再生装置及び再生方法、記録又は再生制御用のコンピュータプログラム、並びにデータ構造
WO2005091291A1 (ja) * 2004-03-22 2005-09-29 Pioneer Corporation 追記型記録媒体、追記型記録媒体用の記録装置および記録方法、追記型記録媒体用の再生装置および再生方法、並びにコンピュータプログラム
JP2007179695A (ja) * 2005-12-28 2007-07-12 Sony Corp 記録装置、記録制御方法
JP2007323695A (ja) * 2006-05-30 2007-12-13 Nec Corp 書き換え型光ディスクの記録制御方法およびその記録再生用のドライブ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2375417A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100113993A (ko) * 2009-04-14 2010-10-22 삼성전자주식회사 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
JP2012524360A (ja) * 2009-04-14 2012-10-11 サムスン エレクトロニクス カンパニー リミテッド 情報記録媒体、記録再生装置及び記録再生方法
KR101636873B1 (ko) 2009-04-14 2016-07-07 삼성전자주식회사 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
WO2011036859A1 (ja) * 2009-09-24 2011-03-31 パナソニック株式会社 追記型情報記録媒体、情報記録方法、情報記録装置、情報再生方法、情報再生装置、および情報記録媒体の製造方法
EP2482282A1 (en) * 2009-09-24 2012-08-01 Panasonic Corporation Write-once information recording medium, information recording method, information recording device, information reproduction method, information reproduction device and method for manufacturing information recording medium
EP2482282A4 (en) * 2009-09-24 2013-11-06 Panasonic Corp NON-REINSTANDABLE INFORMATION RECORDING MEDIUM, INFORMATION RECORDING METHOD, INFORMATION RECORDING DEVICE, INFORMATION REPRODUCING METHOD, INFORMATION REPRODUCING DEVICE, AND RECORDING MEDIUM MANUFACTURING METHOD INFORMATION
US8732395B2 (en) 2009-09-24 2014-05-20 Panasonic Corporation Write-once information recording medium, information recording method, information recording device, information reproduction method, information reproduction device and method for manufacturing information recording medium
US8406107B2 (en) 2009-09-25 2013-03-26 Panasonic Corporation Write-once information recording medium, information recording method, information recording apparatus, information reproducing method, information reproducing apparatus and manufacturing method of the information recording medium
KR20110046238A (ko) * 2009-10-26 2011-05-04 삼성전자주식회사 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
JP2013508888A (ja) * 2009-10-26 2013-03-07 サムスン エレクトロニクス カンパニー リミテッド 情報記録媒体、記録再生装置及び記録再生方法
KR101636875B1 (ko) 2009-10-26 2016-07-06 삼성전자주식회사 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법

Also Published As

Publication number Publication date
AU2009336476A1 (en) 2010-07-15
MX2010011840A (es) 2010-11-30
US20100329098A1 (en) 2010-12-30
RU2010145181A (ru) 2013-02-20
CN102016993B (zh) 2014-05-14
TW201034009A (en) 2010-09-16
US8264927B2 (en) 2012-09-11
EP2375417A1 (en) 2011-10-12
JP4746715B2 (ja) 2011-08-10
RU2504028C2 (ru) 2014-01-10
JPWO2010079572A1 (ja) 2012-06-21
BRPI0912569A2 (pt) 2015-10-13
EP2375417A4 (en) 2013-11-13
US20110026391A1 (en) 2011-02-03
KR20110102810A (ko) 2011-09-19
JP2010231888A (ja) 2010-10-14
CN102016993A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4746715B2 (ja) 追記型情報記録媒体、情報記録装置、情報記録方法、情報再生装置および情報再生方法
KR100991786B1 (ko) 1회 기록가능한 광디스크 및 1회 기록가능한 광디스크에있어서의 결함 정보 관리방법 및 장치
JP4895809B2 (ja) 追記型光ディスク、および追記型光ディスクにおける管理情報の記録方法および装置
US20060044979A1 (en) Recording medium, recording apparatus, reproduction apparatus, recording method and reproduction method
KR20090122406A (ko) 다층 정보 기록 매체, 정보 재생 방법 및 프로그램
KR20060054009A (ko) 교체 처리 방법, 기록 장치, 기록 시스템
WO2010050143A1 (ja) 情報記録媒体、記録装置および再生装置
WO2010035444A1 (ja) 情報記録媒体、記録方法および再生方法
JP5252039B2 (ja) 記録方法、記録装置、及び記録媒体
US7969842B2 (en) Playback device and management information acquiring method
WO2010079578A1 (ja) 追記型情報記録媒体、情報記録装置、情報記録方法、情報再生装置および情報再生方法
US7801015B2 (en) Optical recording medium having physical and logical position information of buffer areas
WO2010103769A1 (ja) 情報記録媒体、情報記録媒体への情報の記録方法、情報記録媒体からの情報の再生方法および情報記録媒体の製造方法
JP5503659B2 (ja) 追記型情報記録媒体、情報記録方法、情報記録装置、情報再生方法、情報再生装置、および情報記録媒体の製造方法
JP2013235647A (ja) 多層ディスクに情報を記録する方法および記録装置
WO2010103770A1 (ja) 情報記録媒体、情報記録媒体への情報の記録方法、情報記録媒体からの情報の再生方法および情報記録媒体の製造方法
WO2010052820A1 (ja) 情報記録媒体、記録方法および再生方法
JP5021362B2 (ja) 再生装置、判定方法
KR100944105B1 (ko) 다층 정보 기록 매체, 기록 장치, 및 기록 방법
WO2010050144A1 (ja) 情報記録媒体、記録装置および再生装置
WO2007094307A1 (ja) 情報記録装置及び方法、情報記録システム、並びにコンピュータプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116399.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010521252

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12747273

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009336476

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/011840

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 7110/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107024799

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009837461

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009336476

Country of ref document: AU

Date of ref document: 20091225

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010145181

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0912569

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101104