WO2010079452A1 - Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide - Google Patents

Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide Download PDF

Info

Publication number
WO2010079452A1
WO2010079452A1 PCT/IB2010/050049 IB2010050049W WO2010079452A1 WO 2010079452 A1 WO2010079452 A1 WO 2010079452A1 IB 2010050049 W IB2010050049 W IB 2010050049W WO 2010079452 A1 WO2010079452 A1 WO 2010079452A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
temperature
strip
liquid
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2010/050049
Other languages
English (en)
French (fr)
Inventor
Cyril Claveroulas
Frédéric MARMONIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives Stein SA
Original Assignee
Fives Stein SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41090379&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010079452(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP10702917.5A priority Critical patent/EP2376662B1/fr
Priority to CN201080004262.5A priority patent/CN102272338B/zh
Priority to PL10702917T priority patent/PL2376662T3/pl
Priority to JP2011544956A priority patent/JP2012514694A/ja
Priority to BRPI1006107-0A priority patent/BRPI1006107B1/pt
Application filed by Fives Stein SA filed Critical Fives Stein SA
Priority to ES10702917T priority patent/ES2881292T3/es
Priority to RU2011133250/02A priority patent/RU2541233C2/ru
Priority to US13/143,007 priority patent/US8918199B2/en
Publication of WO2010079452A1 publication Critical patent/WO2010079452A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Definitions

  • the present invention relates to improvements made to the cooling sections of the continuous treatment lines of metal strips, in particular annealing, galvanizing or tinplate.
  • a line of continuous treatment of metal strips is composed of a succession of heat treatment sections, including heating, temperature maintenance, cooling, aging, etc.
  • the present invention relates to the cooling sections of the continuous treatment lines and more particularly the rapid cooling sections with projection of a liquid on the strip.
  • the coolant is usually water, can be pretreated, for example to extract dissolved oxygen or minerals, which may contain additives to improve the thermal exchange or limit oxidation of the strip.
  • Water cooling allows to obtain very large cooling slopes, beyond those that can be obtained with gas cooling.
  • the cooling of the strip can also be obtained by the projection on the strip of a mixture consisting of a gas and a liquid.
  • the gas is generally present as a carrier gas for spraying and spraying the liquid on the strip.
  • the gas used is most often nitrogen but may also be composed of a mixture of nitrogen and hydrogen, or any other gas.
  • the liquid can be sprayed in the form of a mist or sprayed with larger drops or in the form of a continuous liquid.
  • the cooling of the strip can begin while it is at a high temperature, for example 750oC.
  • the boiling temperature is close to 100oC. It can vary by a few degrees depending on the composition of the water and its content of additives.
  • the temperature of the water spray is then a first order parameter for the control of the cooling intensity, - Water oC).
  • - Water oC Regarding the phenomenon of calefaction, i!
  • This critical temperature depends on many parameters, including characteristics of the spray, the temperature or liquid sprayed, or the nature and temperature of the cooled surface.
  • the effect on this temperature of the coolant temperature and the spray parameters such as the speed and the diameter of the drops is mainly considered.
  • the object of the invention is, above all, to ensure a homogeneous cooling of the metal strip, in particular to prevent the formation of folds or significant differences in mechanical characteristics along the width and / or the length.
  • a method of controlling the cooling of a metal strip moving in a cooling section of a continuous treatment line by projection on the strip of a liquid or a mixture consisting of a gas and a a liquid, the parameter-dependent cooling comprising the temperature, the velocity, the characteristics of the cooling fluid stream, is characterized in that:
  • one or more zones in which the cooling parameters is determined are as might occur, or occurs, the local disappearance of a vapor film on the surface of ia hot strip, causing rewetting of the web,
  • the invention is thus first and foremost a method for controlling or cooling a metal strip moving in a continuous treatment line by spraying a liquid or a mixture consisting of a gas and a mixture on the strip.
  • a liquid so as to maintain a so-called "vapor film” cooling at the surface of the strip resulting from the phenomenon of heating of the cooling liquid in contact with a hot band, of increasing the temperature of the coolant in the zone or rewetting, where this occurs, resulting from the local disappearance of the vapor film, so as to remain or return to a vapor film cooling at the surface of the strip.
  • another adjusted cooling parameter is constituted by a sputtering parameter formed by the speed and / or the diameter of the drops of coolant in the zone or zones concerned.
  • the temperature of the coolant can be adjusted so that it is different between two successive cooling units of the cooling system. the cooling section.
  • a combined adjustment of the temperature and the flow rate of the coolant can be made to allow the thermal flux extracted from the band to be modulated.
  • the coolant temperature can be adjusted to the width of the strip.
  • Several coolant spraying units may be distributed along the width of the strip, and the temperature and flow rate of the coolant for each spraying unit is adjusted over the width of the strip.
  • the temperature or liquid can be adjusted at the beginning of cooling so as to limit the variation of the temperature gradient resulting from the cooling with respect to the heating or from the maintenance of the previous temperature.
  • the temperature of the liquid may be adjusted according to the intended cooling capacity so as to limit the variations in the flow rate of the coolant.
  • the zone in which it occurs determines the occurrence of a sharp increase in the transverse temperature gradient of the strip and a clean break of cooling slope resulting from greater cooling in the absence of vapor film, in using the strip temperature measuring devices in areas where rewetting is likely to occur.
  • tests are in an area on the staple length of the metal strip when the strip temperature is between 45CTC and 250oC 1 and at several points along the width of the tape so to detect large variations in temperature.
  • the invention also relates to a cooling section of a continuous processing line for the implementation of the method defined above, which section includes projection units on a metal strip of a liquid or a mixture consisting of a gas and a liquid, and is characterized in that it comprises, for at least one coolant projection unit on the tape, a cooling liquid supply assembly comprising two separate circuits each of which is equipped with a regulating valve and connects to the same outlet pipe a volume flow of the mixture being provided for the sieve pipe and a mixing temperature controller.
  • the supply assembly may comprise a regulator for adjusting the proportion of cold and hot water flow rates so as to obtain the desired overall liquid flow rate at the desired temperature for each projection device.
  • the temperature of the stiffening liquid can be adjusted according to the desired heat flow and as a function of the temperature of the strip.
  • the invention With warmer water at the end of cooling (for example 35 ° C. at the beginning of the cooling and 80 ° C. at the end of cooling), the invention makes it possible to maintain control over the cooling by staying longer in 20 ml of steam.
  • the water temperature when combined with an adjustment of the water flow over the band width, makes it possible to obtain a uniform strip temperature over its width.
  • the determination of the temperature of Lindonfrost is very difficult because many parameters affect it.
  • the spray molds are very important.
  • the proportion and temperature of the sputtering gas affect the Lindenfrost temperature.
  • the strip also influences the temperature, the roughness of the surface, the temperature of the heat exchange between the strip.
  • determining Lindonfrost's temperature will actually depend on how fast the drop of liquid will reach its vaporization temperature. More glue will be faster and Lindenfrost's temperatute will be reduced.
  • the large number of parameters influencing the rewetting of the band is that it occurs that it occurs in normal production of the line in an area where it was not expected.
  • the temperature of the coolant is increased by the operator in the area of interest so as to repel the rewetting in the next zone.
  • the operator may also anticipate increasing the temperature of the cooling water in the following zone (s) to repel the beginning of rewetting.
  • the temperature rise to be applied will have been defined beforehand during commissioning tests, for example 5oC. It can also be adjusted by the operator.
  • Increasing the coolant temperature in one zone may be accompanied by further adjustment of the sputtering parameters so as to maintain the target temperature slope on the belt without reducing the speed of the line.
  • the flow of cooling water may be increased in this area.
  • the increase of the water flow can be carried out automatically by the control and control system of the line so as to reach the band temperature setpoint at the outlet of the cooling zone.
  • the optimum settings have been defined. during the commissioning of the line or by self-learning during the operation of the line.
  • the foregoing description of the invention corresponds to the adjustment of the coolant temperature to remain in the vapor film mode. Another way to achieve this result, at constant liquid temperature, is to change the size of the drops and the speed at which they arrive on the tape.
  • adjustment of the speed and the droplet diameter may be achieved by a mechanical change of the nozzle at the liquid spray orifice.
  • the temperature of the coolant and the spray parameters such as the speed and diameter of the drops in the area where rewetting could occur, or where it occurs, resulting the local disappearance of the vapor film so as to remain or return to a vapor film cooling at the surface of the strip.
  • FIG. 1 is a diagram of a configuration according to the invention for supplying a cooling liquid projection unit.
  • FIG.2 is a perspective diagram in elevation of a cooling section according to the invention.
  • FIG. 3 is a diagram, similar to FIG. 2, of an alternative embodiment with fractional cooling units according to the bandwidth,
  • Fig.4 is a diagram, similar to Fig.3 .. of an alternative embodiment with fractional cooling units according to the width and the strip length,
  • Fig.5 is a schematic vertical section of an example of a cooling section.
  • Fig.1 is a diagram of an exemplary embodiment dxin A set of coolant supply according to the invention for a unit Di ... DIi! (Fig.2) liquid projection on a band B. scrolling vertically down, to cool.
  • Each unit Dl ... DIII is associated with a set A.
  • Set A provides flow and temperature control of the cooling water.
  • the configuration of A comprises two separate circuits supplying cold water 1 and hot water 2, each equipped with a control valve respectively CV1 CV2, and connected to the same outlet pipe 3.
  • a CD flow controller of the mixture is provided on the pipe 3 and a TE temperature controller of the mixture.
  • a regulator R makes it possible to adjust the proportion of the flow rates of cold water and hot water so as to obtain the desired overall flow rate of liquid at the desired temperature for each projection unit, also called a cooling unit.
  • D1, DII, DIII (Fig.2).
  • each cooling unit the drops of liquid sprayed by each cooling unit are represented as a whole in a prismatic sheet whose base is located on the strip 8, while the opposite edge corresponds to the liquid outlet nozzles. of the cooling unit.
  • a control of the temperature of the water spray and / or a control of the spray parameters according to the invention are additional means for controlling the flow of water spray. These means bring more flexibility and greater homogeneity of the cooling.
  • the temperature of the coolant and / or the sputtering parameters are adjusted so that they are different between two successive cooling units D1.
  • DIL DIlI FIG. 2 in the direction of travel of the strip, the device according to the invention makes it possible to control the temperature of the sprayed water and / or the spray parameters along the length of the cooling section by a fractionation along the length in zones I, II III (Fig.2) of cooling.
  • a cooling unit is provided on each side of the band, respectively Dl, DI, ... DIII, D'III.
  • Each cooling unit has a liquid temperature regulating member and / or the ejector nozzle separate from that of the other zones.
  • the device according to the invention also makes it possible to control the temperature of the water sprayed over the width of the cooling section by a fractionation, illustrated in FIG. 3, on the width in fractional cooling units DIa, DIb, ... DIe , each having a liquid temperature adjusting member separate from that of the other zones
  • the temperature adjusting member constituting the assembly A. is a hot water mixer - cold water fed with a hot water network and a cold water network. Depending on the temperature setpoint, the mixer adjusts the proportion of cold and hot water flow rates.
  • the temperature adjusting member is a heat exchanger between the coolant and another fluid, for example air or water.
  • Fig.3 is a diagram to: an exemplary embodiment of the invention this cross-regulation of the coolant temperature with 5 separate cooling units on the bandwidth.
  • the invention also relates to a cooling method so that the cooling curve is that referred to at each point of the width of the strip along the cooling section.
  • Adjusting the water temperature also helps to limit the risk of cool buckling at the beginning of cooling. This risk can result from a major break in the road the heat of the band during the passage of the heating section, or the temperature holding section, to its cooling section.
  • Patent FR 2802552 (or US Pat. No. 6464808) describes this problem in more detail.
  • the invention makes it possible to limit the initial cooling of the strip and thus limits the risk of fold formation (cooi buckle) due to the fact that a slight slope break.
  • the invention is thus also relates to a method for controlling the read cooling a metal strip clans a continuous processing line for projection on the strip with a liquid or a mixture of a gas and a liquid with a temperature of the liquid adjusted at the beginning of cooling so as to limit the variation of the temperature gradient resulting from the cooling with respect to the previous heating or holding.
  • the combined adjustment of the temperature and the flow rate of the coolant makes it possible to modulate the thermal flux extracted from the strip.
  • the temperature and the flow rate of the cooling liquid are adjusted over the width and the length of the strip, so as to increase the flexibility of the installation while benefiting from greater range of adjustment of the cooling speed of the band.
  • the cooling units are divided according to the width ⁇ indices in letters a .... e) and according to the length (indices in Roman numerals I, II, III) in elementary units DIa 1 ... DIIIe.
  • the temperature profile control over the width of the strip resulting from the adjustment of the cooling capacity over the band width makes it possible to improve the guiding of the strip on the transport rollers by the width of the strip. obtaining long or short banks with respect to the center of the strip.
  • Controlling the temperature profile over the width of the strip resulting from the adjustment of the cooling capacity to the bandwidth improves the flatness of the strip by controlling the length of the banks with respect to the center of the strip. .
  • Controlling the temperature profile over the bandwidth resulting from the adjustment of the cooling capacity to the bandwidth improves the stability of the band by controlling the length of the banks relative to the center of the band. bandaged.
  • the adjustment of the cooling capacity over the length of the cooling section and the width of the strip is realized in real time by a control and control system (not shown) of the line by means of : calculator from mathematical models taking into account the evolution of thermal exchanges between the band and its environment in the cooling section and in the section located downstream thereof.
  • the computer controls the CVI control valves. CV2 of the different sets A.
  • the present invention also consists in a splitting into a plurality of cooling units in the device width direction and in the direction of! A length of the strip, shown in Fig.4.
  • Each unit is equipped with the necessary equipment to vary the coolant temperature and coolant, and / or the spraying parameters, independently of the other units.
  • the size of the cooling units D1 ... DIII may be different along the cooling section with a smaller size in the portion of the cooling section where the caifaction phenomenon may become unstable so as to better control the phenomenon.
  • the length of the cooling units may be smaller in the running direction of the strip.
  • the width of the cooling units can also be reduced in the bandwidth direction.
  • each unit may be equipped with two control members for varying the gas flow rate and the flow rate of the liquid.
  • Each unit may also be equipped with a device for varying the temperature of the gas, liquid or mixture of the gas and the liquid so as to influence the heating phenomenon and to vary the cooling capacity.
  • This variation of the temperature of the cooling means can be carried out for a constant flow rate of the cooling means or combined with a variation of the flow rate of the cooling means, so as to increase the flexibility of regulation of the installation.
  • the production capacity of a continuous line varies in important proportions according to the format of the band, in particular its thickness, and. according to the thermal cycle.
  • the projected water flow will be very variable which makes its control difficult for large and small flows due to the limited flexibility of flow control devices.
  • the invention also consists in varying the temperature of the cooling liquid so as to limit the amplitude of variation of the water flow.
  • the invention thus also relates to a method for controlling the cooling of a moving metal strip in a continuous treatment line by projection on the strip of a liquid or a mixture consisting of a gas and a liquid with a liquid temperature adjusted according to the cooling capacity aimed so as to limit the variations in the flow rate of the coolant.
  • FIG. 5 An exemplary embodiment, shown diagrammatically in FIG. 5 and reproduced below, shows the temperature variations of the cooling water according to the invention:
  • the metal strip is at 750oC and the water spray is at 8OoC so as to limit the risk of formation of folds on the band (cool buckle),
  • the water temperature is reduced to 40 ° C to quickly reach the required strip temperature (60 ° C) at the end cooling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
PCT/IB2010/050049 2009-01-09 2010-01-07 Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide Ceased WO2010079452A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/143,007 US8918199B2 (en) 2009-01-09 2010-01-07 Method and section for cooling a moving metal belt by spraying liquid
CN201080004262.5A CN102272338B (zh) 2009-01-09 2010-01-07 通过喷射液体对行进中的金属带进行冷却的方法和冷却段
PL10702917T PL2376662T3 (pl) 2009-01-09 2010-01-07 Sposób i sekcja schładzania poruszającej się taśmy metalowej poprzez natryskiwanie cieczy
JP2011544956A JP2012514694A (ja) 2009-01-09 2010-01-07 液体を噴霧することによる、移動する金属ベルトを冷却する方法及びセクション
BRPI1006107-0A BRPI1006107B1 (pt) 2009-01-09 2010-01-07 processo de controle do resfriamento de uma tira metálica, e, seção de resfriamento de uma linha de tratamento em modo contínuo para a execução do processo
EP10702917.5A EP2376662B1 (fr) 2009-01-09 2010-01-07 Procédé et section de refroidissement d'une bande métallique en défilement par projection d'un liquide
ES10702917T ES2881292T3 (es) 2009-01-09 2010-01-07 Método y sección para enfriar una banda metálica en movimiento mediante pulverización de líquido
RU2011133250/02A RU2541233C2 (ru) 2009-01-09 2010-01-07 Способ и секция охлаждения движущейся металлической полосы посредством распыления жидкости

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0900077A FR2940978B1 (fr) 2009-01-09 2009-01-09 Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide
FR0900077 2009-01-09

Publications (1)

Publication Number Publication Date
WO2010079452A1 true WO2010079452A1 (fr) 2010-07-15

Family

ID=41090379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/050049 Ceased WO2010079452A1 (fr) 2009-01-09 2010-01-07 Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide

Country Status (12)

Country Link
US (1) US8918199B2 (enExample)
EP (1) EP2376662B1 (enExample)
JP (2) JP2012514694A (enExample)
KR (1) KR20110114624A (enExample)
CN (1) CN102272338B (enExample)
BR (1) BRPI1006107B1 (enExample)
ES (1) ES2881292T3 (enExample)
FR (1) FR2940978B1 (enExample)
PL (1) PL2376662T3 (enExample)
PT (1) PT2376662T (enExample)
RU (1) RU2541233C2 (enExample)
WO (1) WO2010079452A1 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740904A (zh) * 2009-12-11 2014-04-23 株式会社Ihi 喷雾冷却装置、热处理装置以及喷雾冷却方法
US10041140B2 (en) 2013-12-05 2018-08-07 Fives Stein Method for continuous thermal treatment of a steel strip
WO2019002408A1 (fr) 2017-06-28 2019-01-03 Arcelormittal Bissen & Bettembourg Dispositif de refroidissement de fils galvanisés
WO2025132514A1 (fr) 2023-12-22 2025-06-26 Fives Stein Procede de controle d'un refroidissement rapide par contact avec un liquide d'une bande metallique en defilement dans une ligne continue

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT511034B1 (de) * 2011-02-04 2013-01-15 Andritz Tech & Asset Man Gmbh Verfahren zum kontrollieren einer schutzgasatmosphäre in einer schutzgaskammer zur behandlung eines metallbandes
KR101376565B1 (ko) * 2011-12-15 2014-04-02 (주)포스코 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치
CN104169445B (zh) 2012-03-19 2016-08-24 杰富意钢铁株式会社 高强度冷轧钢板的制造方法及制造装置
EP2951327B1 (en) * 2013-02-01 2020-03-04 NV Bekaert SA Forced water cooling of thick steel wires
JP6079522B2 (ja) * 2013-09-13 2017-02-15 Jfeスチール株式会社 鋼板冷却装置及び鋼板冷却方法
JP6079523B2 (ja) * 2013-09-13 2017-02-15 Jfeスチール株式会社 鋼板冷却装置及び鋼板冷却方法
CN106661710B (zh) * 2014-07-24 2019-04-09 新日铁住金株式会社 钢带的冷却方法和冷却设备
CA2979814C (en) * 2015-04-02 2021-12-28 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
EP3409797B1 (en) * 2016-01-28 2019-09-04 JFE Steel Corporation Steel sheet temperature control device and temperature control method
JP6742399B2 (ja) * 2016-03-23 2020-08-19 株式会社Ihi 冷却装置及び熱処理装置
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same
EP3455068A1 (en) 2016-05-10 2019-03-20 United States Steel Corporation High strength steel products and annealing processes for making the same
US10555748B2 (en) 2016-05-25 2020-02-11 Ethicon Llc Features and methods to control delivery of cooling fluid to end effector of ultrasonic surgical instrument
NL1042205B1 (en) * 2016-12-30 2018-07-23 Bosch Gmbh Robert Method for operating a continuously variable transmission incorporating a drive belt in a motor vehicle
DE102017206540A1 (de) * 2017-04-18 2018-10-18 Sms Group Gmbh Vorrichtung und Verfahren zum Kühlen von Metallbändern oder -blechen
DE102017210230A1 (de) * 2017-06-20 2018-12-20 Sms Group Gmbh Verfahren zum Betreiben eines Glühofens
JP6813036B2 (ja) * 2017-10-31 2021-01-13 Jfeスチール株式会社 厚鋼板の製造設備及び製造方法
EP3966355A1 (en) 2019-05-07 2022-03-16 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
BR112022001335A2 (pt) 2019-08-07 2022-03-22 United States Steel Corp Produto de chapa de aço de têmpera e separação, e, método para produzir produto de chapa de aço de têmpera e separação
BR112022003136A2 (pt) 2019-08-19 2022-05-17 United States Steel Corp Produto de chapa de aço laminado de alta resistência, e, método para produzir um produto de chapa de aço laminado de alta resistência
FR3101888B1 (fr) 2019-10-14 2024-02-09 Fives Stein Refroidissement rapide des tôles d’acier à haute limite élastique
CN115743552B (zh) * 2022-12-12 2025-05-02 中国民用航空总局第二研究所 用于飞机热表面的冷却方法及其装置
WO2024133293A1 (fr) 2022-12-22 2024-06-27 Fives Stein Methode et dispositif de refroidissement rapide d'une bande metallique, ligne continue de production de bandes métalliques
FR3156805B1 (fr) * 2023-12-13 2025-11-07 Fives Stein Ligne de galvanisation a refroidissement humide
CN118404385A (zh) * 2024-05-28 2024-07-30 广东泰都钢铁有限责任公司 用于循环炼钢的冷剪机输出辊道喷雾冷却系统及控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120623A (en) * 1981-01-17 1982-07-27 Daido Steel Co Ltd Cooling method
JPS5871339A (ja) * 1981-10-23 1983-04-28 Mitsubishi Heavy Ind Ltd 帯状鋼板の冷却方法および装置
EP0111985A2 (fr) * 1982-12-21 1984-06-27 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Procédé de refroidissement de bandes métalliques minces
JPS59157228A (ja) * 1983-02-24 1984-09-06 Kawasaki Steel Corp 厚鋼板の加速冷却方法
JPS63125622A (ja) * 1986-11-15 1988-05-28 Kawasaki Steel Corp 鋼帯熱処理時の連続冷却方法
JPH1190521A (ja) * 1997-09-22 1999-04-06 Nkk Corp 高温鋼板の冷却方法
EP0921208A2 (en) * 1997-12-05 1999-06-09 Mitsubishi Heavy Industries, Ltd. Method and system for cooling strip material
JPH11309507A (ja) * 1998-04-28 1999-11-09 Sumitomo Metal Ind Ltd 鋼材冷却における熱流束予測方法およびそれを用いた冷却制御方法
JP2000178658A (ja) * 1998-12-08 2000-06-27 Nippon Steel Corp 金属ストリップの冷却方法
FR2802552A1 (fr) 1999-12-17 2001-06-22 Stein Heurtey Procede et dispositif de reduction des plis de bande dans une zone de refroidissement rapide de ligne de traitement thermique
JP2003185501A (ja) * 2001-12-13 2003-07-03 Sumitomo Metal Ind Ltd 鋼板の表面温度測定方法およびその装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU531579A1 (ru) 1975-04-15 1976-10-15 Донецкий научно-исследовательский институт черной металлургии Способ охлаждени гор чекатоного металла
JPS5741317A (en) 1980-08-27 1982-03-08 Kawasaki Steel Corp Cooling method for metallic plate material
JPS5959835A (ja) 1982-09-28 1984-04-05 Kawasaki Steel Corp 金属帯のフオグ冷却制御方法
JPS61136633A (ja) * 1984-12-06 1986-06-24 Kawasaki Steel Corp 非調質高張力鋼の製造法
SU1765197A1 (ru) 1991-01-21 1992-09-30 Научно-Производственное Объединение По Защите Атмосферы, Водоемов, Использованию Вторичных Энергоресурсов И Охлаждению Металлургических Агрегатов На Предприятиях Черной Металлургии "Энергосталь" Устройство дл охлаждени гор чекатаных полос
JPH06256858A (ja) 1993-03-02 1994-09-13 Nippon Steel Corp 熱延鋼板の冷却方法
IT1276442B1 (it) 1995-06-27 1997-10-31 Gevipi Ag Dispositivo di controllo della portata per un rubinetto miscelatore termostatico.
GC0000091A (en) 1998-12-31 2004-06-30 Shell Int Research Method for removing condensables from a natural gas stream.
JP3480366B2 (ja) * 1999-05-07 2003-12-15 住友金属工業株式会社 熱延鋼板の巻取温度制御方法
ATE299766T1 (de) * 2000-04-25 2005-08-15 Sms Demag Ag Verfahren und vorrichtung zur thermischen kontrolle einer stranggiesskokille
EP1215291B1 (de) 2000-12-15 2005-05-25 AFT Advanced Forging Technologies GmbH Vorrichtung zum Abkühlen und Behandeln erhitzter rotationssymmetrischer Körper aus Metall
JP3903898B2 (ja) * 2002-10-10 2007-04-11 住友金属工業株式会社 金属板の製造方法及び温度制御装置
JP2004331992A (ja) * 2003-04-30 2004-11-25 Jfe Steel Kk 熱間圧延における金属板の温度予測方法および冷却方法
RU2003121296A (ru) 2003-07-15 2005-01-20 Сергей Павлович Соловьев (RU) Биологически активная добавка к пище с пониженным содержанием тяжелых изотопов водорода и кислорода и продукты, ее содержащие
EP1538228A1 (fr) * 2003-12-01 2005-06-08 R & D du groupe Cockerill-Sambre Procédé et Dispositif de refroidissement d'une bande d'acier
JP4586791B2 (ja) * 2006-10-30 2010-11-24 Jfeスチール株式会社 熱延鋼帯の冷却方法
DE102007053523A1 (de) * 2007-05-30 2008-12-04 Sms Demag Ag Vorrichtung zur Beeinflussung der Temperaturverteilung über der Breite
FI20070622A7 (fi) * 2007-08-17 2009-04-15 Outokumpu Oy Menetelmä ja laitteisto tasaisuuden kontrolloimiseksi ruostumatonta terästä olevan nauhan jäähdytyksessä
JP5100327B2 (ja) 2007-11-20 2012-12-19 住友金属工業株式会社 冷延鋼板の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120623A (en) * 1981-01-17 1982-07-27 Daido Steel Co Ltd Cooling method
JPS5871339A (ja) * 1981-10-23 1983-04-28 Mitsubishi Heavy Ind Ltd 帯状鋼板の冷却方法および装置
EP0111985A2 (fr) * 1982-12-21 1984-06-27 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Procédé de refroidissement de bandes métalliques minces
JPS59157228A (ja) * 1983-02-24 1984-09-06 Kawasaki Steel Corp 厚鋼板の加速冷却方法
JPS63125622A (ja) * 1986-11-15 1988-05-28 Kawasaki Steel Corp 鋼帯熱処理時の連続冷却方法
JPH1190521A (ja) * 1997-09-22 1999-04-06 Nkk Corp 高温鋼板の冷却方法
EP0921208A2 (en) * 1997-12-05 1999-06-09 Mitsubishi Heavy Industries, Ltd. Method and system for cooling strip material
JPH11309507A (ja) * 1998-04-28 1999-11-09 Sumitomo Metal Ind Ltd 鋼材冷却における熱流束予測方法およびそれを用いた冷却制御方法
JP2000178658A (ja) * 1998-12-08 2000-06-27 Nippon Steel Corp 金属ストリップの冷却方法
FR2802552A1 (fr) 1999-12-17 2001-06-22 Stein Heurtey Procede et dispositif de reduction des plis de bande dans une zone de refroidissement rapide de ligne de traitement thermique
US6464808B2 (en) 1999-12-17 2002-10-15 Stein Heurtey Method and apparatus for reducing wrinkles on a strip in a rapid cooling zone of a heat treatment line
JP2003185501A (ja) * 2001-12-13 2003-07-03 Sumitomo Metal Ind Ltd 鋼板の表面温度測定方法およびその装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740904A (zh) * 2009-12-11 2014-04-23 株式会社Ihi 喷雾冷却装置、热处理装置以及喷雾冷却方法
EP2511385A4 (en) * 2009-12-11 2015-08-26 Ihi Corp MISTAKE COOLING DEVICE, HEAT TREATMENT DEVICE AND MELT COOLING METHOD
US9187795B2 (en) 2009-12-11 2015-11-17 Ihi Corporation Mist cooling apparatus, heat treatment apparatus, and mist cooling method
CN103740904B (zh) * 2009-12-11 2016-08-24 株式会社Ihi 喷雾冷却装置、热处理装置以及喷雾冷却方法
US10041140B2 (en) 2013-12-05 2018-08-07 Fives Stein Method for continuous thermal treatment of a steel strip
US11193181B2 (en) 2013-12-05 2021-12-07 Fives Stein Method and apparatus for continuous thermal treatment of a steel strip
WO2019002408A1 (fr) 2017-06-28 2019-01-03 Arcelormittal Bissen & Bettembourg Dispositif de refroidissement de fils galvanisés
LU100329B1 (fr) * 2017-06-28 2019-01-08 Arcelormittal Bissen & Bettembourg Dispositif de refroidissement de fils galvanisés
WO2025132514A1 (fr) 2023-12-22 2025-06-26 Fives Stein Procede de controle d'un refroidissement rapide par contact avec un liquide d'une bande metallique en defilement dans une ligne continue

Also Published As

Publication number Publication date
ES2881292T3 (es) 2021-11-29
EP2376662A1 (fr) 2011-10-19
BRPI1006107B1 (pt) 2021-02-23
FR2940978A1 (fr) 2010-07-16
RU2541233C2 (ru) 2015-02-10
US20110270433A1 (en) 2011-11-03
PT2376662T (pt) 2021-07-26
BRPI1006107A2 (pt) 2020-08-18
US8918199B2 (en) 2014-12-23
JP2012514694A (ja) 2012-06-28
FR2940978B1 (fr) 2011-11-11
KR20110114624A (ko) 2011-10-19
RU2011133250A (ru) 2013-02-20
EP2376662B1 (fr) 2021-04-28
CN102272338B (zh) 2014-09-03
JP2015083719A (ja) 2015-04-30
CN102272338A (zh) 2011-12-07
PL2376662T3 (pl) 2021-11-08

Similar Documents

Publication Publication Date Title
EP2376662A1 (fr) Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide
FR2940979A1 (fr) Procede de refroidissement d'une bande metallique en defilement
EP2226400B1 (fr) Procédé de refroidissement d'une bande métallique circulant dans une section de refroidissement d'une ligne de traitement thermique en continu, et installation de mise en oeuvre dudit procédé
EP2875304B1 (fr) Absorbeur a echangeur a plaques avec element de repartition poreux
BE1014868A3 (fr) Procede et dispositif de patentage de fils d'acier
EP3555324A1 (fr) Procede et section de refroidissement rapide d'une ligne continue de traitement de bandes metalliques
EP1655383B1 (fr) Procédé et dispositif de limitation de la vibration de bandes d'acier ou d'aluminium dans des zones de refroidissement par soufflage de gaz ou d'air
EP0761829A1 (fr) Dispositif de refroidissement d'un produit laminé
EP2826570B1 (fr) Systeme de pre-refroidissement avec reglage interne pilote
WO2013030470A1 (fr) Système de fabrication d'un matériau cristallin par cristallisation dirigée muni d'une source de chaleur additionnelle latérale
WO2005054524A1 (fr) Procede et dispositif de refroidissement d'une bande d'acier
EP1969163B1 (fr) Dispositif et procede de fabrication d'un bloc de materiau cristallin
EP0031772B1 (fr) Procédé et dispositif pour la fabrication de verre par flottage
FR2789757A1 (fr) Dispositif d'echange de chaleur avec un produit plat
FR2775916A1 (fr) Procede et dispositif de controle du profil d'epaisseur d'une bande metallique mince obtenue par coulee continue entre moules mobiles
Huang et al. Continuous long-distance liquid transport along fibers arising from Plateau-Rayleigh instability
FR2670514A1 (fr) Procede et dispositif pour compenser le flechissement d'une poutre de support de racle.
FR3058206A1 (fr) Echangeur air/neige carbonique et procede de regulation d'un tel echangeur
BE699499A (enExample)
EP0078199A2 (fr) Appareil de distribution de liquide
WO2005064034A2 (fr) Dispositif pour deposer une couche de silicium polycristallin sur un support
Chen et al. Condensate Drop Movement on Heat Transfer Surface With Bulk Temperature Gradient in Marangoni Dropwise Condensation
EP2396285A1 (fr) Fabrication de verre plat texture au flottage
BE435389A (enExample)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004262.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10702917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13143007

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 5188/DELNP/2011

Country of ref document: IN

Ref document number: 2010702917

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011544956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117018446

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011133250

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1006107

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1006107

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110707