WO2010076509A1 - Structure de purification incorporant un systeme de catalyse supporte par une zircone a l'etat reduit - Google Patents

Structure de purification incorporant un systeme de catalyse supporte par une zircone a l'etat reduit Download PDF

Info

Publication number
WO2010076509A1
WO2010076509A1 PCT/FR2009/052576 FR2009052576W WO2010076509A1 WO 2010076509 A1 WO2010076509 A1 WO 2010076509A1 FR 2009052576 W FR2009052576 W FR 2009052576W WO 2010076509 A1 WO2010076509 A1 WO 2010076509A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
filtration structure
structure according
cation
zirconium oxide
Prior art date
Application number
PCT/FR2009/052576
Other languages
English (en)
Inventor
Philippe Vernoux
Abdelkader Hadjar
Agnès PRINCIVALLE
Christian Guizard
Original Assignee
Saint-Gobain Centre De Recherches Et D'etudes Europeen
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Centre De Recherches Et D'etudes Europeen, Centre National De La Recherche Scientifique filed Critical Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority to JP2011541560A priority Critical patent/JP5587907B2/ja
Priority to US13/139,736 priority patent/US8802044B2/en
Priority to EA201170830A priority patent/EA201170830A1/ru
Priority to CN200980150676.6A priority patent/CN102256688B/zh
Priority to EP09803879A priority patent/EP2379207A1/fr
Publication of WO2010076509A1 publication Critical patent/WO2010076509A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the field of structures for purifying a gas charged with gaseous pollutants essentially of NO x type. More particularly, the invention relates to honeycomb structures, in particular used to treat the exhaust gas of a diesel engine, and incorporating a catalytic system for the depollution of said polluting species.
  • a conventional three-way catalyst allows the joint treatment of pollutants NO x , CO and HC and their conversion into neutral and chemically harmless gases such as N 2 , CO 2 and H 2 O.
  • a very good efficiency of the system is not achieved only by a continuous adjustment of the richness of the air-fuel mixture. It is thus known that the slightest deviation from the stoichiometry of said mixture causes a large increase in pollutant emissions.
  • the materials used to adsorb NOx are most often alkali or alkaline earth metal oxides, in particular barium oxide, which is today considered to be the most effective material in this domain.
  • barium oxide which is today considered to be the most effective material in this domain.
  • SOx sulfur oxides
  • the precursors of barium being difficult to disperse on the support material, it is necessary to provide significant amounts. This leads to reducing the accessibility of the noble metals of the catalytic system by a "covering" effect by barium oxide. A possible but too expensive solution would be to increase the contribution of noble metals in the system.
  • these barium-based NOx trap systems pose hygiene and environmental problems, barium being listed as heavy metal.
  • NOx reduction systems incorporating a zirconia type support material are also known, but these systems are not very efficient.
  • a Zirconia can be used as catalyst support in 3-way NOx reduction systems.
  • the zirconia employed described in this publication is a zirconia stabilized by Yttrium doping possibly comprising additions of cerium oxide or Lanthanum. In such systems, zirconia serves only to support the catalyst but does not allow storage of NOx.
  • the object of the present invention is to provide a solution for solving the problems described above, in particular with regard to the NOx storage function.
  • one of the aims of the present invention is to provide a structure for the purification of a polluted gas, in particular a structure for filtering an exhaust gas resulting from a diesel engine loaded with gaseous and particulate pollutants.
  • solid capable of functioning in the absence of specific NOx traps based on oxides of alkali or alkaline earth metals, in particular barium.
  • the invention consists of a filtration structure of a gas resulting from a diesel engine, charged with gaseous pollutants of the NO x nitrogen oxide type and solid particles, of the particulate filter type, said structure comprising a set longitudinal adjacent channels of axes parallel to each other separated by porous filtering walls constituted by said porous inorganic material, said channels being alternately plugged at one or the other end of the structure to define inlet channels and outlet channels for the gas to be filtered, and to force said gas to pass through the porous walls separating the inlet and outlet channels, said filtration structure being characterized by it comprises a catalytic system comprising at least one noble or transition metal suitable for the reduction of NOx and a support material, wherein said support material comprises or consists of a zirconium oxide partially substituted with a trivalent cation M 3+ or by a divalent cation M ' 2+ , said zirconium oxide being in a reduced state, under stoichiometric oxygen.
  • the catalytic system is advantageously chosen to also be suitable for the oxidation of polluting species of the HC, CO or H 2 hydrocarbon type.
  • a catalytic system comprises at least one precious metal selected from Pt and / or Pd and / or Rh and / or Ag and / or Au and / or transition metals, in particular Cu, Fe, Ni, Co , and transition metal oxides such as Mn 2 ⁇ 3 , Co 3 O 4 .
  • the support material corresponds to the formulation (Zr ⁇ 2- X) i- y (M 2 ⁇ 3- X) y, M being a cation of valency 3 preferably selected from the group consisting of Y 3+, Sc 3+, or rare earths and being strictly greater than 0 and preferably less than 2.
  • y is less than or equal to 0.5, more preferably y is less than or equal to 0.25, and most preferably y is less than or equal to 0.1.
  • the support material corresponds to the formulation (ZrO 2 -x) iy ' (M'Oi x ) y' , M 'being a cation of valence 2 preferably chosen from the group consisting of Ca 2+ and Sr 2+ and y 'being strictly greater than 0 and strictly less than 2.
  • y ' is less than 0.6, more preferably y' is less than 0.3, and most preferably y 'is less than or equal to 0.15.
  • the reduced filtration structure according to the invention is such that x is less than 0.5, preferably less than 0.1, and very preferably less than 0.05.
  • x is greater than 0.005, preferably greater than 0.01.
  • This support material of the catalytic system based on zirconia according to the invention preferably has, even after a calcination of 800 and 1000 0 C, a specific surface area of at least 5 m 2 / g, preferably at least 10 m 2 / g, or even at least 50 m 2 / g.
  • the zirconia forming all or part of the support material can be obtained by different doping by substituting the zirconium atoms with lower valence transition metal cations such as Y 3+ , Sc 3+ , Ca 2+ , Sr 2+ or rare earth.
  • the ionic conductivity is preferably between 1 and 10 -4 S / cm in the temperature range from 150 to 800 ° C.
  • the porous inorganic material has an open porosity, conventionally measured by mercury porosimetry, greater than 10%, preferably greater than 20%, or even greater than 30%. Too little porosity of the material constituting the filtering walls leads to a too high pressure drop.
  • the porous inorganic material comprises or consists of an electrically conductive inorganic material of the carbide type, for example SiC, or a silicide, for example MoSi 2 or boride, for example TiB 2 , or of the Lai x Sr x MnO 3 family. or mixed oxides of gadolinium and cerium (CGO).
  • an electrically conductive inorganic material of the carbide type for example SiC
  • a silicide for example MoSi 2 or boride, for example TiB 2 , or of the Lai x Sr x MnO 3 family. or mixed oxides of gadolinium and cerium (CGO).
  • the porous inorganic material is based on silicon carbide SiC, preferably recrystallized at a temperature of between 2100 and 2400 ° C.
  • the inorganic material may be based on doped SiC, for example with aluminum or nitrogen, and such that its electronic resistivity is preferably lower than 20 Ohm. cm, more preferably at 15 Ohm. cm, more preferably 10 Ohm. cm at 400 ° C.
  • SiC-based is meant in the sense of the present description that the material consists of at least 25% by weight, preferably at least 45% by weight and so very preferred at least 70% by weight of SiC.
  • the porous inorganic material is based on Cordierite or Aluminum Titanate.
  • the invention relates to a powder that can be used as a support material in a filtration structure as previously described, said powder comprising particles of zirconium oxide partially substituted by a cation M or M ', free of metal precious metals of the Pt, Pd, Rh, Ag, Au and transition metal type, in particular Cu, Fe, Ni, Co, said substituted zirconium oxide being in the reduced state, under stoichiometric oxygen and corresponding to the formulation (ZrO 2 - X) i- y (M 2 ⁇ 3_ x) y, M being a cation of valency 3 preferably selected from the group consisting of Y 3+, Sc 3+, or rare earths and being strictly greater than 0 and strictly less at 2 or responding to the formulation
  • the reduced state of the partially substituted zirconium oxide can be obtained by a heat treatment at a temperature above 400 ° C. under a reducing atmosphere or by an electrochemical treatment consisting of the polarization of the material by application of a voltage or bias current thereon.
  • a powder as described above is advantageous as support material for an NO x reduction catalyst, in a particulate filter type filter structure as previously described.
  • the powder makes it possible, in particular, to obtain a catalytic system such as has been previously described, characterized in particular by comprising at least one noble or transition metal suitable for the reduction of NO x and said support material. as previously described, comprising or consisting of zirconium oxide in a reduced state partially substituted by a trivalent M 3+ or divalent M ' 2+ cation.
  • the catalyst used would allow a selective oxidation reaction of NOx to NO2.
  • the NO2 would then, surprisingly and never before, be captured at the catalyst support in a ZrO (NO 2 ) form. Such a phenomenon would occur in particular during the operating phases of the lean fuel engine.
  • the catalyst used would also allow, during subsequent phases, the NOx reduction reaction (NO and NO2) in N2, in particular during the engine operating phases in fuel-rich mixture, that is to say say in a reducing atmosphere.
  • NO and NO2 NOx reduction reaction
  • the tests carried out by the applicant have indeed shown that during such phases, the zirconia-based carrier would release the nitrogen oxides previously stored. Without being considered definitive, the proposed mechanism could be as follows:
  • the metal catalysts can be deposited in a conventional manner by impregnation with the surface of a zirconia powder as described according to the invention, for example by processes such as those described in particular by US5884473.
  • the introduction of the catalytic system whose support material acts as a NOx trap advantageously makes it possible to greatly increase the catalyst surface area accessible to the pollutants, and consequently the probability of contact and exchanges between the reactive species,
  • the support material constituted according to the invention also has a high thermal stability with respect to alumina-type support materials, in particular because of a better sintering resistance of the metal catalyst particles deposited in contact with the oxygen vacancies of the material support, - the support material formed according to the invention has a high reactivation in a fuel-rich medium compared to previous solutions.
  • the catalytic system according to the invention not comprising barium is therefore much less sensitive to the presence of sulfur oxides (SO x ) in the gases to be treated.
  • the present invention is particularly applicable in the filter wall structures used for purification and the most effective for filtering an exhaust gas from a diesel engine.
  • Such structures generally referred to as particle filters, comprise at least one and preferably a plurality of monolithic honeycomb blocks joined by a joint cement.
  • the block or blocks comprising a set of adjacent ducts or channels of axes parallel to each other separated by porous walls, closed by plugs to one or the other. other of their ends to define inlet ducts opening on a gas inlet face and outlet ducts opening on a gas evacuation face, so that the gas passes through the porous walls.
  • Examples of such assembled or unassembled structures are for example described in EP 0816065, EP 1142619, EP1306358 or EP 1591430.
  • the porous inorganic structure is impregnated with an aqueous solution comprising zirconia particles having the characteristics according to the invention, that is to say that the support is a reduced zirconium oxide corresponding to the formulations (Zr ⁇ 2- X) iy (M 2 ⁇ 3_ x) y or (ZrO 2 - x) y '(me IM-x) y', wherein M is a cation of valence 3 and M 'is a cation of valency 2 .
  • said substituted zirconia type support is in a form reduced, that is to say that it has undergone a reduction treatment having brought it in a deficit state (or stoichiometric) oxygen
  • said reduction treatment can be chosen according to the invention among all known treatments for this purpose and in particular by heating in a reducing atmosphere, by electrochemistry, etc.
  • the reduced state of the support can be obtained in particular by a reduction treatment by thermal means that is to say by a high temperature treatment, for example between 400 and 1000 0 C, under a reducing atmosphere.
  • the reduction treatment can also be carried out under a reducing atmosphere of light hydrocarbon such as for example methane, propane, propene or carbon monoxide CO, in a temperature range between 400 and 1000 ° C.
  • the duration heat treatment can be adapted to the starting granulometry and / or the specific surface of the powder intended for the deposition on the structure and / or the temperature. This duration is in general at least equal to 10 minutes and preferably greater than or equal to 60 minutes.
  • the reduction treatment is carried out in a step prior to the impregnation of the structure with the substituted zirconia particles.
  • the structure comprising the support in the reduced state is then impregnated in one or more steps by the catalytic system (s) necessary for the conversion of NO x to N 2 .
  • the porous inorganic structure is this time first impregnated with an aqueous solution comprising doped zirconia particles by substituting the zirconium atoms with lower valence transition metal cations (3 or 4). 2) such as Y 3+ , Sc 3+ , Ca 2+ , Sr 2+ or rare earths to ultimately obtain a material of the previously described formulation.
  • the heat reduction treatment is performed this time on the structure impregnated with the support material, ie after the deposition of the zirconia.
  • the reduction treatment can be carried out under the same conditions as those already described in the previous mode.
  • the structure is impregnated in one or more steps by the catalytic system (s) necessary for the conversion of NO x to N 2 .
  • This second embodiment has the advantage of permitting the impregnation of the porous structure under conditions that are not necessarily reducing, for example under air.
  • the porous inorganic structure is impregnated with an aqueous solution comprising doped zirconia particles by substituting the zirconium atoms with lower valence (3 or 2) transition metal cations such as Y 3+ , Sc 3+ , Ca 2+ , Sr 2+ or rare earths to ultimately obtain a material of the previously described formulation.
  • the structure is impregnated in one or more steps by the catalytic system or systems to the conversion of NO x to N 2 .
  • the catalysts and the zirconia are deposited at the same time on the structure.
  • the thermal reduction treatment which may be of the same type as that previously described, is carried out on the structure already impregnated by the catalyst and its support material.
  • This third embodiment makes it possible to carry out the heat treatment at a lower temperature, typically at a temperature between 400 and 600 ° C., because of the reducing activity of the catalytic metals.
  • the reduced state of the partially substituted zirconium oxide can also be obtained according to the invention by an electrochemical treatment consisting of the polarization of the material by applying a voltage or a polarization current thereon. .
  • cylindrical honeycomb monoliths of recrystallized silicon carbide (SiC) cylindrical shape have been synthesized according to the conventional techniques already well known in the art and for example described in patent application EP 1 142 619 A1.
  • a mixture of silicon carbide particles with a purity greater than 98% was first produced in a kneader in accordance with the method of manufacturing an R-SiC structure described in application WO 1994/22556.
  • the mixture is obtained from a coarse fraction of SiC particles (75% by weight) whose median particle diameter is greater than 10 microns and a fraction of fine granulometry (25% weight) with a median particle size of less than 1 micron.
  • the median diameter refers to the diameter of the particles below which 50% by mass of the population is found.
  • Water is also added up to 20% by weight of the sum of the preceding constituents and kneaded to obtain a homogeneous paste whose plasticity allows the formation of monoliths or the extrusion through a die of a structure honeycomb.
  • the recrystallized SiC honeycomb monoliths are dried deliantes, corked and fired under a neutral atmosphere at a temperature of 2200 ° C.
  • the optimal experimental conditions are as follows: rise in temperature of 20 ° C. / hour up to 2200 0 C then temperature plateau of 6 hours at 2200 0 C.
  • the monoliths are immersed in an embodiment similar to that described in US Pat. No. 5,866,210 in this solution so as to impregnate about 1.5% by weight of zirconia doped with respect to the monolith. Drying is carried out at 40 ° C. and then calcination at 500 ° C. under air is carried out at a heating rate of 100 ° C./h and a plateau at the maximum temperature of one hour.
  • the monolith is impregnated with an aqueous solution of platinum dinitrodiamine chloride.
  • the monolith is dried at 40 ° C. and then calcined at 500 ° C. in air, according to a heating rate of 100 ° C./hour and a plateau at the maximum temperature of one hour.
  • the monolith is impregnated with an aqueous solution of Rhodium nitrate, the monolith is then dried at 40 ° C. and then calcined to 500 ° C. under air, with a heating rate of 100 ° C./h, with a bearing at the maximum temperature of one hour.
  • the concentration of precious metal solutions and the deposition process are adapted to constitute catalysed monoliths whose chemical analysis shows the following characteristics:
  • Example 1 The experimental protocol already described in Example 1 was entirely taken up in this example, except that this second series of monoliths underwent after impregnation of the supported catalyst additional reduction treatment in pure H 2 at 600 0 C for 1 hour.
  • the analyzes have shown that the zirconia substituted and reduced substantially corresponded to the formulation (Zr ⁇ 2- X) i- y (M 2 ⁇ 3_ x) y, wherein y is about 0.08 and x is close to 0.02 .
  • the test is carried out as follows: The mixture of lean gas 1 passes first on the catalysed monolith maintained in an electric oven at 250 or 300 ° C.
  • the composition of the gases passing through the monolith is alternated according to the following protocol: first mixture 1 for 3 minutes and then rocking to the gas mixture 2 (rich) for 2 minutes, then to mixture 1 (3 minutes) and so on.
  • the composition of the gases at the furnace outlet is analyzed after stabilization of the system so as to know the amount of NO x converted into N 2 .
  • the test as just described was carried out under the same conditions for each temperature 250 and 300 ° C. on the monolith according to Example 1 (unreduced zirconia) and on the monolith according to Example 2 (zirconia). scaled down) .
  • the gas flow rate is 10 1 / h for both mixtures.
  • Thermocouple type temperature sensors are placed about 5mm from the exit surface of the monolith.
  • the gas analysis is performed at the outlet of the reactor by IR and ⁇ GC

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structural Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention se rapporte à une structure de filtration d'un gaz issu d'un moteur diesel, chargé en polluants gazeux du type oxydes d'azote NOx et en particules solides, du type filtre à particules, ladite structure de filtration se caractérisant en ce qu'elle comprend un système catalytique comprenant au moins un métal noble ou de transition convenant pour la réduction des NOx et un matériau support, dans lequel ledit matériau support comprend ou est constitué par un oxyde de zirconium partiellement substitué par un cation trivalent M3+ ou par un cation divalent M'2+, ledit oxyde de zirconium étant dans un état réduit, sous stoechiométrique en oxygène.

Description

STRUCTURE DE PURIFICATION INCORPORANT UN SYSTEME DE CATALYSE SUPPORTE PAR UNE ZIRCONE A L'ETAT REDUIT
La présente invention se rapporte au domaine des structures de purification d'un gaz chargé en polluants gazeux essentiellement du type NOx. Plus particulièrement, l'invention se rapporte aux structures en nid d'abeille, notamment utilisées pour traiter les gaz d'échappement d'un moteur diesel, et incorporant un système catalytique de dépollution desdites espèces polluantes.
Les techniques et les problèmes liés à la purification des gaz pollués, notamment en sortie des lignes d'échappement des véhicules automobiles essence ou diesel sont bien connus de l'art. Un catalyseur conventionnel trois voies permet le traitement conjoint des polluants NOx, CO et HC et leur conversion en des gaz neutres et chimiquement non nocifs tels que N2, CO2 et H2O. Une très bonne efficacité du système n'est cependant atteinte que par un réglage continuel de la richesse du mélange air- carburant. Il est ainsi connu que le moindre écart par rapport à la stoechiométrie dudit mélange provoque une forte augmentation des émissions des polluants. Pour résoudre ce problème, il est nécessaire d' incorporer au catalyseur des matériaux permettant temporairement de fixer les NOx (souvent appelés dans le métier NOx trap) lorsque le mélange air/carburant est pauvre (c'est à dire sous stoechiométrique en carburant) . La désorption des NOx piégés sur le catalyseur et leur réduction catalytique en azote gazeux N2 sont obtenues en présence, au niveau du catalyseur permettant la réduction, d'une quantité suffisante des espèces réductrices sous forme d'hydrocarbures ou de monoxyde de carbone CO ou d'hydrogène gazeux H2, l'hydrogène gazeux pouvant être lui- même obtenu par une réaction catalytique entre les hydrocarbures HC et la vapeur d'eau et/ou le dioxyde de carbone ou entre le CO et la vapeur d'eau. A l'heure actuelle, les matériaux utilisés pour adsorber les NOx sont le plus souvent des oxydes de métaux alcalins ou d' alcalino-terreux, en particulier d'oxyde de Baryum, qui est aujourd'hui considéré comme le matériau le plus efficace dans ce domaine. Ces solutions posent cependant un problème de stabilité chimique car la fonction « NOx-trap » de l'oxyde de Baryum est rapidement empoisonnée par les oxydes de soufre (SOx) également contenus dans les gaz d'échappement, notamment de moteur Diesel. Par ailleurs, les précurseurs du Baryum étant difficiles à disperser sur le matériau support, il est nécessaire d'en apporter des quantités importantes. Ceci conduit à réduire l'accessibilité des métaux nobles du système catalytique par un effet de « couverture » par l'oxyde de Baryum. Une solution possible mais trop onéreuse consisterait à augmenter l'apport de métaux nobles dans le système. En outre, ces systèmes de piège à NOx à base de Baryum posent des problèmes d'hygiène et d'environnement, le Baryum étant répertorié comme métal lourd.
On connaît des systèmes alternatifs de réduction des NOx utilisant un support d' alumine de grande surface spécifique. Ce type de support n'est cependant pas utilisable dans une telle application, du fait de sa stabilité thermique insuffisante.
On connaît également des systèmes de réduction des NOx incorporant un matériau support de type zircone mais ces systèmes sont peu performants. Ainsi, de façon connue, par exemple tel qu'illustrée par le brevet US5232890, une zircone peut être utilisée comme support du catalyseur dans des systèmes 3 voies de réduction des NOx. La zircone employée décrite dans cette publication est une zircone stabilisée par dopage à l'Yttrium comportant éventuellement des additions d'oxyde de Cérium ou de Lanthane. Dans de tels systèmes, la zircone sert uniquement de support du catalyseur mais ne permet pas de stockage des NOx.
Dans les documents publics concernant ce sujet, il est communément indiqué qu'il est nécessaire au bon fonctionnement d'un tel système de faire intervenir en plus des matériaux à base d'oxyde de métaux alcalins ou alcalino-terreux, en général de l'oxyde de Baryum servant de piège à NOx.
Le but de la présente invention est de fournir une solution permettant de résoudre les problèmes précédemment décrits, en particulier en ce qui concerne la fonction de stockage des NOx. En particulier, un des buts de la présente invention est de fournir une structure pour la purification d'un gaz pollué, en particulier une structure de filtration d'un gaz d'échappement issu d'un moteur diesel chargé en polluants gazeux et en particules solides, susceptible de fonctionner en l'absence de pièges à NOx spécifique à base d'oxydes de métaux alcalins ou alcalino- terreux, en particulier de Baryum.
Plus précisément l'invention consiste en une structure de filtration d'un gaz issu d'un moteur diesel, chargé en polluants gazeux du type oxydes d'azote NOx et en particules solides, du type filtre à particules, ladite structure comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes constituées par ledit matériau inorganique poreux, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ladite structure de filtration se caractérisant en ce qu'elle comprend un système catalytique comprenant au moins un métal noble ou de transition convenant pour la réduction des NOx et un matériau support, dans lequel ledit matériau support comprend ou est constitué par un oxyde de zirconium partiellement substitué par un cation trivalent M3+ ou par un cation divalent M'2+, ledit oxyde de zirconium étant dans un état réduit, sous stœchiométrique en oxygène.
Ainsi, si dans les documents cités précédemment, il était déjà mentionné l'utilisation d'une zircone partiellement substituée par des cations de valence inférieure, par exemple des cations d' Yttrium Y3+, aucun traitement préalable particulier d'un tel matériau n'est mentionné, dans le but de le rendre apte à piéger efficacement les oxydes d'azote NOx, dans une telle structure de filtration.
En outre, le système catalytique est avantageusement choisi pour convenir également à l'oxydation des espèces polluantes du type hydrocarbures HC, CO ou H2. Sans y être limité, un tel système catalytique comprend au moins un métal précieux choisi parmi Pt et/ou Pd et/ou Rh et/ou Ag et/ou Au et/ou les métaux de transition, notamment Cu, Fe, Ni, Co, et les oxydes de métaux de transition comme Mn2θ3, Co3O4.
Alternativement, il est possible selon l'invention d'utiliser en complément un autre système catalytique convenant à l'oxydation des espèces polluantes du type hydrocarbures HC, CO ou H2.
Dans un exemple de structure de filtration selon l'invention, le matériau support répond à la formulation (Zrθ2-X) i-y (M2θ3-X) y, M étant un cation de valence 3 de préférence choisi dans le groupe constitué par Y3+, Sc3+ ou les terres rares et y étant strictement supérieur à 0 et strictement inférieur à 2. De préférence, y est inférieur ou égal à 0,5, de préférence encore y est inférieur ou égal à 0,25 et de manière très préférée y est inférieur ou égal à 0,1.
Dans un autre exemple de structure de filtration selon l'invention, le matériau support répond à la formulation (ZrO2-x) i-y' (M'Oi-x)y', M' étant un cation de valence 2 de préférence choisi dans le groupe constitué par Ca2+ et Sr2+ et y' étant strictement supérieur à 0 et strictement inférieur à 2.
De préférence, y' est inférieur à 0,6, de préférence encore y' est inférieur à 0,3 et de manière très préférée y' est inférieur ou égal à 0,15.
Dans les formules qui précèdent, la structure de filtration réduite selon l'invention est telle que x est inférieur à 0,5, de préférence inférieur à 0,1, et de manière très préférée, inférieur à 0,05. Avantageusement, x est supérieur à 0,005, de préférence supérieur à 0,01.
Ce matériau support du système catalytique à base de zircone selon l'invention présente de préférence, même après une calcination comprise 800 et 10000C, une surface spécifique d'au moins 5 m2 /g, de préférence d'au moins 10 m2/g, voire d'au moins 50 m2/g.
La zircone faisant tout ou partie du matériau support peut être obtenue par différents dopages en substituant les atomes de Zirconium par des cations de métaux de transition de valence inférieure tels que Y3+, Sc3+, Ca2+, Sr2+ ou des terres rares. La conductivité ionique est de préférence comprise entre 1 et 10~4 S /cm dans la gamme de température de 150 à 8000C. Au sens de la présente description, le matériau inorganique poreux présente une porosité ouverte, mesurée classiquement par porosimétrie au mercure, supérieure à 10%, de préférence supérieure à 20%, voire supérieure à 30%. Une porosité trop faible du matériau constituant les parois filtrantes conduit à une perte de charge trop élevée. Une porosité trop élevée du matériau constituant les parois filtrantes conduit à une efficacité de filtration insuffisante. Par exemple, le matériau inorganique poreux comprend ou est constitué par un matériau inorganique conducteur électronique du type carbure, par exemple le SiC, ou un siliciure, par exemple MoSi2 ou borure, par exemple TiB2, ou de la famille Lai_xSrxMnθ3 ou du type oxydes mixtes de gadolinium et cérium (CGO) . L'avantage de telles structures réalisées à base de matériau inorganique poreux conducteur électronique est de promouvoir l'activité du système catalytique par effet électrochimique, selon les principes tels que décrits par exemple dans le brevet US 6,878,354. Selon un mode possible, le matériau inorganique poreux est à base de carbure de silicium SiC, de préférence recristallisé à une température comprise entre 2100 et 24000C. En particulier, le matériau inorganique peut être à base de SiC dopé, par exemple par de l'aluminium ou de l'azote, et de telle façon que sa résistivité électronique soit inférieure de préférence à 20 Ohm. cm, de préférence encore à 15 Ohm. cm, de manière plus préférée à 10 Ohm. cm à 4000C. Par l'expression « à base de SiC », on entend au sens de la présente description que le matériau est constitué d'au moins 25% poids, de préférence d'au moins 45% poids et de manière très préférée d'au moins 70% poids de SiC.
Selon un autre mode possible le matériau inorganique poreux est à base de Cordiérite ou de Titanate d'Aluminium. Selon un autre aspect, l'invention se rapporte à une poudre utilisable comme matériau support dans une structure de filtration telle que précédemment décrite, ladite poudre comprenant des particules d'oxyde de zirconium partiellement substitué par un cation M ou M' , exemptes de métal précieux du type Pt, Pd, Rh, Ag, Au et de métaux de transition, notamment Cu, Fe, Ni, Co, ledit oxyde de zirconium substitué étant à l'état réduit, sous stœchiométrique en oxygène et répondant à la formulation (Zrθ2-X) i-y (M2θ3_x) y, M étant un cation de valence 3 de préférence choisi dans le groupe constitué par Y3+, Sc3+ ou les terres rares et y étant strictement supérieur à 0 et strictement inférieur à 2 ou répondant à la formulation
(Zrθ2-x) i-y' (M'0i-x) y' , M' étant un cation de valence 2 de préférence choisi dans le groupe constitué par Ca2+ et Sr2+ et y' étant strictement supérieur à 0 et strictement inférieur à 2, dans laquelle x est inférieur à 0,5, de préférence inférieur à 0,1, et de manière très préférée, inférieur à 0,05. Notamment, x peut être supérieur à 0,005, voire supérieur à 0,01.
Dans la poudre précédemment décrite, l'état réduit de l'oxyde de zirconium partiellement substitué peut être obtenu par un traitement thermique à une température supérieure à 4000C sous atmosphère réductrice ou par un traitement électrochimique consistant en la polarisation du matériau par application d'une tension ou d'un courant de polarisation sur celui-ci.
L'utilisation d'une poudre telle que précédemment décrite est avantageuse comme matériau de support d'un catalyseur de réduction des NOx, dans une structure filtrante du type filtre à particules telle que précédemment décrite. La poudre permet notamment l'obtention facilitée d'un système catalytique tel qu'il a été décrit précédemment, se caractérisant notamment en ce qu'il comprend au moins un métal noble ou de transition convenant pour la réduction des NOx et ledit matériau support tel que décrit précédemment, comprenant ou constitué par l'oxyde de zirconium dans un état réduit partiellement substitué par un cation trivalent M3+ ou divalent M'2+.
Selon un mécanisme possible d'action, sans pour autant qu'un tel mécanisme puisse être considéré comme une quelconque théorie, le catalyseur utilisé permettrait une réaction d'oxydation sélective des NOx en NO2. Les NO2 seraient ensuite, de façon étonnante et jamais encore observée, captés au niveau du support du catalyseur sous une forme ZrO(NOs) 2. Un tel phénomène se produirait notamment lors des phases de fonctionnement du moteur en mélange pauvre en carburant.
Selon un autre aspect, le catalyseur utilisé permettrait également, lors de phases ultérieures, la réaction de réduction des NOx (NO et NO2) en N2 en particulier lors des phases de fonctionnement du moteur en mélange riche en carburant, c'est-à-dire en atmosphère réductrice. Les essais effectués par le demandeur ont en effet montré que lors de telles phases, le support à base zircone relâcherait les oxydes d' azote préalablement stockés. Sans qu'il puisse être considéré comme définitif, le mécanisme proposé pourrait être le suivant :
ZrO(NOs)2 + O2" → ZrO2 + 2 NO2 + O2 + 2 e" Les oxydes d'azote, relâchés en masse et concentrés à proximité du catalyseur sont ensuite immédiatement réduits de manière efficace en azote gazeux N2 par ce dernier. Selon l'invention, les catalyseurs métalliques peuvent être déposés de manière conventionnelle par imprégnation à la surface d'une poudre de zircone telle que décrite selon l'invention, par exemple selon des procédés comme ceux décrits notamment par US5884473.
Une telle disposition présente par rapport aux structures connues jusqu'à maintenant de nombreux avantages parmi lesquelles :
- l'introduction du système catalytique dont le matériau support fait office de piège à NOx permet avantageusement d'augmenter fortement la surface développée de catalyseur accessible aux polluants, et par suite la probabilité de contact et d'échanges entre les espèces réactives,
- le matériau support constitué selon l'invention présente en outre une grande stabilité thermique par rapport aux matériaux support de type alumine, du fait notamment d'une meilleure résistance au frittage des particules de catalyseurs métalliques déposées au contact des lacunes d'oxygène du matériau support, - le matériau support constitué selon l'invention présente une grande réactivation en milieu riche en carburant par rapport aux solutions antérieures.
- un nombre limité des constituants du système doit être déposé sur le support, ce qui diminue fortement la dépendance des performances du système par rapport aux conditions de dépôt du catalyseur sur le support,
- une augmentation de l'efficacité catalytique, une meilleure dispersion des catalyseurs métalliques sur le matériau support pouvant être obtenue du fait de l'absence de substance additionnelle utile au stockage des NOx,
- le système catalytique selon l'invention ne comprenant pas de Baryum est donc beaucoup moins sensible à la présence d'oxydes de soufre (SOx) dans les gaz à traiter .
La présente invention trouve tout particulièrement son application dans les structures à parois filtrantes utilisées pour la purification et les plus efficaces pour la filtration d'un gaz d'échappement d'un moteur diesel. De telles structures, généralement désignées sous le terme filtres à particules, comprennent au moins un et de préférence une pluralité de blocs monolithiques en nid d'abeille reliés par un ciment de joint. A la différence des dispositifs de purification précédemment décrits, dans de tels filtres, le ou lesdits blocs comprenant un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses, obturés par des bouchons à l'une ou l'autre de leurs extrémités pour délimiter des conduits d'entrée s ' ouvrant suivant une face d'admission des gaz et des conduits de sortie s ' ouvrant suivant une face d'évacuation des gaz, de telle façon que le gaz traverse les parois poreuses. Des exemples de telles structures assemblées ou non assemblées sont par exemple décrits dans les publications EP 0816065, EP 1142619, EP1306358 ou encore EP 1591430.
Selon un premier mode de réalisation possible, la structure inorganique poreuse est imprégnée avec une solution aqueuse comportant des particules de zircone présentant les caractéristiques selon l'invention, c'est-à- dire que le support est un oxyde de zirconium réduit répondant aux formulations (Zrθ2-X) i-y (M2θ3_x) y ou (ZrO2-x) i-y' (M'Oi-x)y', M étant un cation de valence 3 et M' étant un cation de valence 2.
Selon une caractéristique essentielle de l'invention, ledit support du type zircone substituée est sous une forme réduite, c'est-à-dire qu'il a subi un traitement de réduction l'ayant amené dans un état déficitaire (ou sous stoechiométrique) en oxygène, ledit traitement de réduction pouvant être choisi selon l'invention parmi tous les traitements connus à cet effet et notamment par un chauffage sous atmosphère réductrice, par électrochimie, etc .
Selon l'invention, l'état réduit du support peut être obtenue notamment par un traitement de réduction par voie thermique c'est-à-dire par un traitement à haute température, par exemple entre 400 et 10000C, sous atmosphère réductrice. Ledit traitement peut typiquement être effectué sous une pression suffisante d'au moins 0,1 atm (1 atm = 105 Pa) et de préférence 1 atm de H2, éventuellement en mélange avec un autre gaz neutre. Le traitement de réduction peut également être mené sous une atmosphère réductrice d'hydrocarbure léger tel que par exemple le méthane, le propane, le propène ou le monoxyde de carbone CO, dans une gamme de température comprise entre 400 et 10000C. La durée du traitement thermique peut être adaptée à la granulométrie de départ et/ou la surface spécifique de la poudre visée pour le dépôt sur la structure et/ou la température. Cette durée est en général au moins égale à 10 minutes et de préférence supérieure ou égale à 60 minutes.
Selon ce premier mode de réalisation de l'invention, le traitement de réduction est effectué dans une étape préalable à l'imprégnation de la structure par les particules de Zircone substituée. La structure comportant le support à l'état réduit est ensuite imprégnée en une seule ou plusieurs étapes par le ou les systèmes catalytiques nécessaires à la conversion des NOx en N2. Selon un deuxième mode de réalisation possible, la structure inorganique poreuse est cette fois d'abord imprégnée avec une solution aqueuse comportant des particules de zircone obtenue par dopage en substituant les atomes de Zirconium par des cations de métaux de transition de valence inférieure (3 ou 2) tels que Y3+, Sc3+, Ca2+, Sr2+ ou des terres rares pour obtenir au final un matériau de la formulation précédemment décrite.
Selon ce deuxième mode, le traitement de réduction par voie thermique est réalisé cette fois sur la structure imprégnée par le matériau support, c'est à dire après le dépôt de la zircone. Typiquement, le traitement de réduction peut être réalisé dans les mêmes conditions que celles déjà décrites dans le mode précédent. Après le traitement thermique, la structure est imprégnée en une seule ou plusieurs étapes par le ou les systèmes catalytiques nécessaires à la conversion des NOx en N2. Ce deuxième de réalisation présente pour avantage de permettre l'imprégnation de la structure poreuse dans des conditions non nécessairement réductrices, par exemple sous air .
Selon un troisième mode de réalisation possible, la structure inorganique poreuse est imprégnée avec une solution aqueuse comportant des particules de zircone obtenue par dopage en substituant les atomes de Zirconium par des cations de métaux de transition de valence inférieure (3 ou 2) tels que Y3+, Sc3+, Ca2+, Sr2+ ou des terres rares pour obtenir au final un matériau de la formulation précédemment décrite. Après un traitement de calcination, qui peut être facultatif, la structure est imprégnée en une seule ou plusieurs étapes par les le ou les systèmes catalytiques à la conversion des NOx en N2.
Selon une variante possible, les catalyseurs et la zircone sont déposés en même temps sur la structure. Selon ce troisième mode, le traitement de réduction par voie thermique, qui peut être du même type que celui précédemment décrit, est réalisé sur la structure déjà imprégnée par le catalyseur et son matériau support. Ce troisième mode de réalisation permet d'effectuer le traitement thermique à plus basse température typiquement à une température entre 400 et 600 0C, en raison de l'activité réductrice des métaux catalytiques .
Il est bien entendu que toute méthode ou procédé connu de réduction de l'oxyde de zirconium partiellement substitué peut être utilisé au sens de l'invention. Par exemple, l'état réduit de l'oxyde de zirconium partiellement substitué peut également être obtenu selon l'invention par un traitement électrochimique consistant en la polarisation du matériau par application d'une tension ou d'un courant de polarisation sur celui-ci.
L' invention et ses avantages seront mieux compris à la lecture des modes de réalisation non limitatifs et de l'exemple qui suivent :
EXEMPLE 1 (Comparatif) :
Selon ce premier exemple, on a synthétisé des monolithes en nid d'abeille de forme cylindrique en Carbure de Silicium (SiC) recristallisé selon les techniques conventionnelles déjà bien connues dans le domaine et par exemple décrits dans la demande de brevet EP 1 142 619 Al. Dans un premier temps on a d'abord réalisé dans un malaxeur un mélange de particules de carbure de silicium de pureté supérieure à 98% conformément au mode de fabrication d'une structure en R-SiC décrit dans la demande WO 1994/22556. Le mélange est obtenu à partir d'une fraction grossière de particules de SiC (75% poids) dont le diamètre médian des particules est supérieur à 10 micromètres et d'une fraction granulométrique fine (25% poids) dont la taille médiane des particules est inférieure à 1 microns. Au sens de la présente description, le diamètre médian désigne le diamètre des particules au dessous duquel se trouve 50% en masse de la population. A la portion de particules de SiC sont ajoutés, par rapport à leur masse totale, 7% poids d'un porogène du type polyéthylène et 5% poids d'un liant organique du type dérivé de cellulose.
On ajoute également de l'eau à hauteur de 20% poids de la somme des constituants précédents et on malaxe jusqu'à obtenir une pâte homogène et dont la plasticité permet la formation de monolithes ou l'extrusion à travers une filière d'une structure en nid d'abeille.
Après extrusion, les monolithes en nid d'abeille en SiC recristallisé sont séchés déliantes, bouchés et cuits sous atmosphère neutre à une température de 22000C. Dans le détail, les conditions expérimentales optimales sont les suivantes : montée en température de 20°C/heure jusqu'à 22000C puis palier en température de 6 heures à 22000C.
Ces monolithes présentent une structure en nid d'abeille dont les caractéristiques sont données dans le tableau 1 suivant :
Figure imgf000015_0001
Tableau 1
Dans un second temps, on réalise une suspension aqueuse chargée à 3% en masse de poudre de zircone dopée à 8% molaire d'oxyde d' Yttrium (zirconia powder basic grade TZ8Y de surface spécifique de 12 m2 /g et de densité 5,9) commercialisée par la société Tosoh. Les monolithes sont plongés selon un mode de mise en œuvre similaire à celui décrit dans le brevet US 5,866,210 dans cette solution de manière à imprégner environ 1,5% en masse de zircone dopée par rapport au monolithe. Un séchage est effectué à 400C puis une calcination à 5000C sous air est réalisée selon une vitesse de chauffe de 100°C/h et un palier à la température maximale d'une heure . Dans un troisième temps, on imprègne le monolithe avec une solution aqueuse de chlorure de dinitrodiamine de platine. Le monolithe est séché à 400C, puis calciné à 5000C sous air, selon une vitesse de chauffe de 100°C/h et un palier à la température maximale d'une heure. Dans un quatrième temps, on imprègne le monolithe avec une solution aqueuse de nitrate de Rhodium, le monolithe est ensuite séché à 400C puis calciné jusqu'à 5000C sous air, selon une vitesse de chauffe de 100°C/h, avec un palier à la température maximale d'une heure. La concentration des solutions de métaux précieux et le processus de dépôt sont adaptés pour constituer des monolithes catalysés dont l'analyse chimique montre les caractéristiques suivantes :
Figure imgf000016_0001
EXEMPLE 2 (Selon l' invention)
Le protocole expérimental déjà décrit dans l'exemple 1 a été entièrement repris dans cet exemple, excepté que cette deuxième série de monolithes a subi après imprégnation du catalyseur supporté un traitement additionnel de réduction sous H2 pur à 6000C pendant 1 heure .
Il a été vérifié que la concentration en métaux nobles n'est pas modifiée par cette étape supplémentaire.
Les analyses effectuées ont montrées que la zircone substituée et réduite répondait sensiblement à la formulation (Zrθ2-X) i-y (M2θ3_x) y, dans laquelle y est d'environ 0,08 et x est proche de 0,02.
Les performances des monolithes selon les exemples 1 et 2 ont été mesurées à une température de 250 et 3000C grâce aux deux mélanges synthétiques de gaz selon le tableau 2, caractéristiques des gaz d'échappement dans un fonctionnement d'un moteur Diesel en mélange pauvre
(mélange 1) et dans un fonctionnement d'un moteur Diesel en mélange riche (mélange 2) .
Figure imgf000017_0001
Tableau 2
Le test est opéré de la manière suivante : Le mélange de gaz pauvre 1 passe d'abord sur le monolithe catalysé maintenu dans un four électrique à 250 ou 3000C. La composition des gaz traversant le monolithe est alternée selon le protocole suivant : d' abord le mélange 1 pendant 3 minutes puis basculement vers le mélange de gaz 2 (riche) pendant 2 minutes, puis vers le mélange 1 (3 minutes) et ainsi de suite. La composition des gaz en sortie de four est analysée après stabilisation du système de façon à connaître la quantité de NOx convertie en N2. Le test tel qu'il vient d'être décrit a été mené dans les mêmes conditions pour chaque température 250 et 3000C sur le monolithe selon l'exemple 1 (zircone non réduite) et sur le monolithe selon l'exemple 2 (zircone réduite) . Le débit de gaz est de 10 1/h pour les deux mélanges. Des capteurs de mesure du type thermocouple de température sont placés à 5mm environ de la surface de sortie du monolithe. L'analyse des gaz est effectuée à la sortie du réacteur par des analyseurs IR et μGC .
Les résultats reportés dans le tableau 3 montrent que le monolithe selon l'invention (exemple 2) présente un taux de conversion des NOx nettement supérieur à celui du filtre comparatif (exemple 1) .
Figure imgf000018_0001
Tableau 3

Claims

REVENDICATIONS
1. Structure de filtration d'un gaz issu d'un moteur diesel, chargé en polluants gazeux du type oxydes d'azote NOx et en particules solides, du type filtre à particules, ladite structure comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses filtrantes constituées par ledit matériau inorganique poreux, lesdits canaux étant alternativement bouchés à l'une ou l'autre des extrémités de la structure de façon à définir des canaux d'entrée et des canaux de sortie pour le gaz à filtrer, et de façon à forcer ledit gaz à traverser les parois poreuses séparant les canaux d'entrée et de sortie, ladite structure de filtration se caractérisant en ce qu'elle comprend un système catalytique comprenant au moins un métal noble ou de transition convenant pour la réduction des NOx et un matériau support, dans lequel ledit matériau support comprend ou est constitué par un oxyde de zirconium partiellement substitué par un cation trivalent M3+ ou par un cation divalent M'2+, ledit oxyde de zirconium étant dans un état réduit, sous stœchiométrique en oxygène .
2. Structure de filtration selon la revendication 1, dans laquelle le système catalytique est choisi pour convenir également à l'oxydation des espèces polluantes du type hydrocarbures HC, CO ou H2.
3. Structure de filtration selon l'une des revendications précédentes, dans laquelle le matériau support répond à la formulation (Zrθ2-X) i-y (M2θ3_x) y M étant un cation de valence 3 de préférence choisi dans le groupe constitué par Y3+, Sc3+ ou les terres rares et y étant strictement supérieur à 0 et strictement inférieur à 2.
4. Structure de filtration selon la revendication précédente, dans laquelle y est inférieur ou égal à
0,5, de préférence dans laquelle y est inférieur ou égal à 0,25 et de manière très préférée dans laquelle y est inférieur ou égal à 0,1.
5. Structure de filtration selon l'une des revendications 1 ou 2, dans laquelle le matériau support répond à la formulation (Zrθ2-X) i-y' (M'Oi-x) y- , M' étant un cation de valence 2 de préférence choisi dans le groupe constitué par Ca2+ et Sr2+ et y' étant strictement supérieur à 0 et strictement inférieur à 2.
6. Structure de filtration selon la revendication précédente, dans laquelle y' est inférieur à 0,6, de préférence dans laquelle y' est inférieur à 0,3, de manière très préférée dans laquelle y' est inférieur ou égal à 0,15.
7. Structure de filtration selon l'une des revendications 3 à 6, dans laquelle x est inférieur à 0,5, de préférence inférieur à 0,1, et de manière très préférée, inférieur à 0,05.
8. Structure de filtration selon la revendication 7 dans laquelle x est supérieur à 0,005, de préférence supérieur à 0,01.
9. Structure de filtration selon l'une des revendications précédentes, dans laquelle ledit matériau support présente une surface spécifique d'au moins 5 m2 /g.
10. Structure de filtration selon l'une des revendications précédentes, dans laquelle le système catalytique comprend au moins un métal précieux choisi parmi Pt et/ou Pd et/ou Rh et/ou Ag et/ou Au et/ou les métaux de transition, notamment Cu, Fe, Ni, Co, et les oxydes de métaux de transition comme Mn2θ3, C03O4.
11. Structure de filtration selon l'une des revendications précédentes, dans laquelle ladite structure est en carbure de silicium SiC, en cordiérite ou en titanate d' aluminium.
12. Poudre utilisable comme matériau support dans une structure de filtration selon l'une des revendications précédentes, ladite poudre comprenant des particules d'oxyde de zirconium partiellement substitué par un cation M ou M' , exemptes de métal précieux du type Pt, Pd, Rh, Ag, Au et de métaux de transition, notamment Cu, Fe, Ni, Co, ledit oxyde de zirconium substitué étant à l'état réduit, sous stœchiométrique en oxygène et répondant à la formulation (Zrθ2-X) i-y (M2θ3_x) y, M étant un cation de valence 3 de préférence choisi dans le groupe constitué par Y3+, Sc3+ ou les terres rares et y étant strictement supérieur à 0 et strictement inférieur à 2 ou répondant à la formulation (Zrθ2-X)i- y' (M' Oi-X) y' , M' étant un cation de valence 2 de préférence choisi dans le groupe constitué par Ca2+ et Sr2+, y' étant strictement supérieur à 0 et strictement inférieur à 2 et x étant inférieur à 0,5, de préférence inférieur à 0,1, et de manière très préférée, inférieur à 0, 05.
13. Poudre selon la revendication 12, dans laquelle x est supérieur à 0,005, de préférence supérieur à 0,01.
14. Procédé d'obtention d'une poudre selon l'une des revendications 12 ou 13, dans lequel l'état réduit de l'oxyde de zirconium partiellement substitué est obtenu par un traitement thermique à une température supérieure à 4000C sous atmosphère réductrice.
15. Procédé d'obtention d'une poudre selon l'une des revendications 12 ou 13, dans lequel l'état réduit de l'oxyde de zirconium partiellement substitué est obtenu par un traitement électrochimique consistant en la polarisation du matériau par application d'une tension ou d'un courant de polarisation sur celui-ci.
PCT/FR2009/052576 2008-12-17 2009-12-16 Structure de purification incorporant un systeme de catalyse supporte par une zircone a l'etat reduit WO2010076509A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011541560A JP5587907B2 (ja) 2008-12-17 2009-12-16 還元状態のジルコンにより担持された触媒系を含む精製構造
US13/139,736 US8802044B2 (en) 2008-12-17 2009-12-16 Purification structure including a catalysis system supported by a zircon in reduced state
EA201170830A EA201170830A1 (ru) 2008-12-17 2009-12-16 Структура для очистки, включающая каталитическую систему с нанесенным оксидом циркония в восстановленном состоянии
CN200980150676.6A CN102256688B (zh) 2008-12-17 2009-12-16 包括由还原状态的锆石担载的催化剂体系的净化结构
EP09803879A EP2379207A1 (fr) 2008-12-17 2009-12-16 Structure de purification incorporant un systeme de catalyse supporte par une zircone a l'etat reduit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858720 2008-12-17
FR0858720A FR2939695B1 (fr) 2008-12-17 2008-12-17 Structure de purification incorporant un systeme de catalyse supporte par une zircone a l'etat reduit.

Publications (1)

Publication Number Publication Date
WO2010076509A1 true WO2010076509A1 (fr) 2010-07-08

Family

ID=40829239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052576 WO2010076509A1 (fr) 2008-12-17 2009-12-16 Structure de purification incorporant un systeme de catalyse supporte par une zircone a l'etat reduit

Country Status (8)

Country Link
US (1) US8802044B2 (fr)
EP (1) EP2379207A1 (fr)
JP (1) JP5587907B2 (fr)
KR (1) KR20110096044A (fr)
CN (1) CN102256688B (fr)
EA (1) EA201170830A1 (fr)
FR (1) FR2939695B1 (fr)
WO (1) WO2010076509A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173087B2 (en) 2008-02-05 2012-05-08 Basf Corporation Gasoline engine emissions treatment systems having particulate traps
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954134B2 (ja) * 2012-11-20 2016-07-20 マツダ株式会社 触媒付パティキュレートフィルタ
FR3039079B1 (fr) * 2015-07-23 2020-04-03 Psa Automobiles Sa. Filtre a particules catalyse
US9895674B1 (en) * 2015-09-14 2018-02-20 The United States Of America As Represented By The Secretary Of The Army Multi-functional media for the removal of basic and acidic gases and other toxic vapors

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0406896A1 (fr) * 1989-07-07 1991-01-09 Idemitsu Kosan Company Limited Catalyseur de reformage à la vapeur d'hydrocarbure
US5232890A (en) 1990-01-02 1993-08-03 Ganguli Partha S Precious metal catalysts with oxygen-ion conducting support
WO1994022556A1 (fr) 1993-04-05 1994-10-13 Per Stobbe Procede de fermeture d'un passage dans un echantillon de corps de filtrage
EP0816065A1 (fr) 1996-01-12 1998-01-07 Ibiden Co, Ltd. Structure ceramique
US5866210A (en) 1996-06-21 1999-02-02 Engelhard Corporation Method for coating a substrate
US5884473A (en) 1995-06-23 1999-03-23 Ngk Insulators, Ltd. System for exhaust gas purification and method for exhaust gas purification using said system
EP1040870A2 (fr) * 1999-03-29 2000-10-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyseur à base de métal précieux fonctionnant à température ambiante et procédé de destruction de substances gazeuses nocives
EP1142619A1 (fr) 1999-09-29 2001-10-10 Ibiden Co., Ltd. Filtre en nid d'abeilles et ensemble de filtres ceramiques
EP1287876A2 (fr) * 2001-08-30 2003-03-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Oxyde mixte, procédé pour sa fabrication et co-catalyseur pour la réduction des gaz d'échappement
EP1338322A1 (fr) * 2000-09-29 2003-08-27 Ibiden Co., Ltd. Filtre a support catalytique
US6878354B1 (en) 1999-09-03 2005-04-12 Mitsubishi Denki Kabushiki Kaisha Catalyst and process for exhaust purification
EP1591430A1 (fr) 2003-01-14 2005-11-02 Ngk Insulators, Ltd. Procede d'assemblage d'un corps de structure en nid d'abeilles en ceramique
US7169735B2 (en) * 2004-05-24 2007-01-30 Tanaka Kikinzoku Kogyo K.K. Catalyst and process for preparing the same
EP2000202A1 (fr) * 2006-03-28 2008-12-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyseur de purification de gaz d'echappement, son procede de regeneration, appareil de purification de gaz d'echappement l'utilisant et procede de purification de gaz d'echappement

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265699A (ja) * 1994-03-31 1995-10-17 Tosoh Corp ジルコニア系酸化触媒
JPH0889801A (ja) * 1994-09-19 1996-04-09 Toyota Motor Corp 排気ガス浄化用触媒
JP3797081B2 (ja) * 2000-09-08 2006-07-12 トヨタ自動車株式会社 吸収還元型NOx浄化用触媒
JP3758487B2 (ja) * 2000-09-08 2006-03-22 トヨタ自動車株式会社 吸収還元型nox浄化用触媒
DE10054877A1 (de) * 2000-11-06 2002-05-29 Omg Ag & Co Kg Abgasreinigungsanlage für die selektive katalytische Reduktion von Stickoxiden unter mageren Abgasbedingungen und Verfahren zur Abgasreinigung
JP3845274B2 (ja) * 2001-06-26 2006-11-15 ダイハツ工業株式会社 排ガス浄化用触媒
JP4628676B2 (ja) * 2002-02-15 2011-02-09 株式会社アイシーティー 内燃機関排ガス浄化用触媒、その製法および内燃機関排ガスの浄化方法
DE10214343A1 (de) * 2002-03-28 2003-10-09 Omg Ag & Co Kg Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase
JP2004261641A (ja) * 2003-02-12 2004-09-24 Toyota Motor Corp 排ガス浄化用触媒及びその製造方法
JP4120559B2 (ja) 2003-10-24 2008-07-16 トヨタ自動車株式会社 排気ガス浄化用触媒
JP2005262184A (ja) * 2004-03-22 2005-09-29 Mazda Motor Corp ディーゼルパティキュレートフィルタ
FR2868768B1 (fr) * 2004-04-07 2007-07-20 Rhodia Chimie Sa Composition a base d'oxydes de zirconium et d'ytrium, procede de preparation et utilisation dans un systeme catalytique
JP4521515B2 (ja) * 2004-06-28 2010-08-11 独立行政法人産業技術総合研究所 触媒型電気化学反応器
US7722829B2 (en) * 2004-09-14 2010-05-25 Basf Catalysts Llc Pressure-balanced, catalyzed soot filter
WO2007026844A1 (fr) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Structure de catalyseur en nid d’abeille, support prérêvetu permettant de produire une structure de catalyseur en nid d’abeille, et procédé de production de la structure de catalyseur en nid d’abeille
US20090232714A1 (en) * 2005-10-06 2009-09-17 Akira Abe Particulate combustion catalyst, particulate filter, and exhaust gas clean-up system
JP2007209913A (ja) * 2006-02-10 2007-08-23 Mazda Motor Corp 触媒材およびその製造方法並びにディーゼルパティキュレートフィルタ
JP2008030031A (ja) * 2006-07-03 2008-02-14 Tokyo Institute Of Technology 有機物質処理剤、有機物質処理方法、および有機物質処理装置
US8067330B2 (en) * 2007-02-15 2011-11-29 Mazda Motor Corporation Catalytic material and catalyst for purifying exhaust gas component
DE102007046158B4 (de) * 2007-09-27 2014-02-13 Umicore Ag & Co. Kg Verwendung eines katalytisch aktiven Partikelfilters zur Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
EP2044999B1 (fr) * 2007-10-01 2012-02-01 Mazda Motor Corporation Filtre à particules
US8114354B2 (en) * 2007-12-18 2012-02-14 Basf Corporation Catalyzed soot filter manufacture and systems

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0406896A1 (fr) * 1989-07-07 1991-01-09 Idemitsu Kosan Company Limited Catalyseur de reformage à la vapeur d'hydrocarbure
US5232890A (en) 1990-01-02 1993-08-03 Ganguli Partha S Precious metal catalysts with oxygen-ion conducting support
US5275997A (en) * 1990-01-02 1994-01-04 Pcp Consulting And Research, Inc. Precious metal catalysts utilizing composites of oxygen-ion conducting and inert support materials
WO1994022556A1 (fr) 1993-04-05 1994-10-13 Per Stobbe Procede de fermeture d'un passage dans un echantillon de corps de filtrage
US5884473A (en) 1995-06-23 1999-03-23 Ngk Insulators, Ltd. System for exhaust gas purification and method for exhaust gas purification using said system
EP1306358A2 (fr) 1996-01-12 2003-05-02 Ibiden Co., Ltd. Elément d' étanchéité
EP0816065A1 (fr) 1996-01-12 1998-01-07 Ibiden Co, Ltd. Structure ceramique
US5866210A (en) 1996-06-21 1999-02-02 Engelhard Corporation Method for coating a substrate
EP1040870A2 (fr) * 1999-03-29 2000-10-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyseur à base de métal précieux fonctionnant à température ambiante et procédé de destruction de substances gazeuses nocives
US6878354B1 (en) 1999-09-03 2005-04-12 Mitsubishi Denki Kabushiki Kaisha Catalyst and process for exhaust purification
EP1142619A1 (fr) 1999-09-29 2001-10-10 Ibiden Co., Ltd. Filtre en nid d'abeilles et ensemble de filtres ceramiques
EP1338322A1 (fr) * 2000-09-29 2003-08-27 Ibiden Co., Ltd. Filtre a support catalytique
EP1287876A2 (fr) * 2001-08-30 2003-03-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Oxyde mixte, procédé pour sa fabrication et co-catalyseur pour la réduction des gaz d'échappement
EP1591430A1 (fr) 2003-01-14 2005-11-02 Ngk Insulators, Ltd. Procede d'assemblage d'un corps de structure en nid d'abeilles en ceramique
US7169735B2 (en) * 2004-05-24 2007-01-30 Tanaka Kikinzoku Kogyo K.K. Catalyst and process for preparing the same
EP2000202A1 (fr) * 2006-03-28 2008-12-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyseur de purification de gaz d'echappement, son procede de regeneration, appareil de purification de gaz d'echappement l'utilisant et procede de purification de gaz d'echappement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BELLIDO J D A ET AL: "Effect of the Y2O3-ZrO2 support composition on nickel catalyst evaluated in dry reforming of methane", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 352, no. 1-2, 11 October 2008 (2008-10-11), pages 179 - 187, XP025800245, ISSN: 0926-860X, [retrieved on 20081011], DOI: 10.1016/j.apcata.2008.10.002 *
LABAKI M ET AL: "Thermal analysis and temperature-programmed reduction studies of copper-zirconium and copper-zirconium-yttrium compounds", THERMOCHIMICA ACTA, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 427, no. 1-2, 1 March 2005 (2005-03-01), pages 193 - 200, XP025387003, ISSN: 0040-6031, [retrieved on 20050301] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173087B2 (en) 2008-02-05 2012-05-08 Basf Corporation Gasoline engine emissions treatment systems having particulate traps
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters

Also Published As

Publication number Publication date
US20110250112A1 (en) 2011-10-13
CN102256688A (zh) 2011-11-23
JP2012512020A (ja) 2012-05-31
EP2379207A1 (fr) 2011-10-26
FR2939695A1 (fr) 2010-06-18
US8802044B2 (en) 2014-08-12
JP5587907B2 (ja) 2014-09-10
KR20110096044A (ko) 2011-08-26
CN102256688B (zh) 2015-01-28
EA201170830A1 (ru) 2011-12-30
FR2939695B1 (fr) 2011-12-30

Similar Documents

Publication Publication Date Title
EP2015861B1 (fr) Structure de purification incorporant un systeme de catalyse electrochimique
EP2197568B1 (fr) Structure de purification incorporant un systeme de catalyse electrochimique polarise
EP2197567B1 (fr) Structure de purification texture incorporant un systeme de catalyse electrochimique
FR2889080A1 (fr) Support et filtre catalytique a base de carbure de silicium et a haute surface specifique
EP1090211B1 (fr) Procede de traitement par combustion des particules carbonees dans un circuit d'echappement d'un moteur a combustion interne
EP1177034A1 (fr) COMPOSITION D'EPURATION AVEC TRAITEMENT DES NOx DES GAZ D'ECHAPPEMENT D'UN MOTEUR A COMBUSTION INTERNE
WO2010076509A1 (fr) Structure de purification incorporant un systeme de catalyse supporte par une zircone a l'etat reduit
EP2790825B1 (fr) Catalyseur de traitement de gaz d'échappement
WO2011157964A1 (fr) Utilisation d'un systeme catalytique de reduction des nox a base d'oxyde mixte de cerium
FR2791907A1 (fr) COMPOSITIONS UTILISABLES COMME PIEGE A NOx, A BASE DE MANGANESE ET D'UN ALCALIN OU D'UN ALCALINO-TERREUX ET UTILISATION DANS LE TRAITEMENT DES GAZ D'ECHAPPEMENT
WO2011157963A2 (fr) Systeme de catalyse electrochimique
FR2961407A1 (fr) Filtre a particules catalyse, systeme de traitement des gaz equipe d'un tel filtre et moteur
EP2014360A1 (fr) Dispositif de traitement des émissions gazeuses d'un moteur
EP1414538B1 (fr) Procédé pour l' élimination des oxydes d'azote
WO2011027083A1 (fr) Filtre a particules en sic incorporant du cerium
FR2939696A1 (fr) Structure de purification incorporant un systeme de catalyse electrochimique polarise

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150676.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09803879

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009803879

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009803879

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13139736

Country of ref document: US

Ref document number: 2485/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117013808

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011541560

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201170830

Country of ref document: EA