WO2010076428A1 - Procédé de dépôt de films d'oxydes sur tubes métalliques texturés - Google Patents

Procédé de dépôt de films d'oxydes sur tubes métalliques texturés Download PDF

Info

Publication number
WO2010076428A1
WO2010076428A1 PCT/FR2009/001448 FR2009001448W WO2010076428A1 WO 2010076428 A1 WO2010076428 A1 WO 2010076428A1 FR 2009001448 W FR2009001448 W FR 2009001448W WO 2010076428 A1 WO2010076428 A1 WO 2010076428A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
metal
oxide
temperature
Prior art date
Application number
PCT/FR2009/001448
Other languages
English (en)
Other versions
WO2010076428A8 (fr
Inventor
Philippe Odier
Stéphanie MORLENS
Cyril Millon
Tristan Caroff
Carmen Jimenez
Jean-Louis Soubeyroux
Arnaud Allais
Mark Rikel
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40690423&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010076428(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to US13/139,947 priority Critical patent/US8633138B2/en
Priority to ES09804275.7T priority patent/ES2495342T3/es
Priority to EP09804275.7A priority patent/EP2374167B1/fr
Priority to JP2011541537A priority patent/JP2012512802A/ja
Publication of WO2010076428A1 publication Critical patent/WO2010076428A1/fr
Publication of WO2010076428A8 publication Critical patent/WO2010076428A8/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0436Processes for depositing or forming copper oxide superconductor layers by chemical vapour deposition [CVD]
    • H10N60/0464Processes for depositing or forming copper oxide superconductor layers by chemical vapour deposition [CVD] by metalloorganic chemical vapour deposition [MOCVD]

Definitions

  • the present invention relates to the field of high temperature superconducting devices, that is to say to electrical devices incorporating ceramic materials, in particular of the type YBa 2 Cu 3 O 7 - X (called YBaCuO), which show a superconductivity with the temperature of the liquid nitrogen.
  • the present invention relates to chemical processes for the epitaxy of thin films of oxides on round metal substrates with a small millimetric diameter. These films serve both as a chemical barrier to prevent diffusion of the metal in the YBaCuO superconductor layer, and matrix for the epitaxy of superconducting layers.
  • the present invention relates to a process for the chemical formation of buffer layers by the epitaxy of oxide films on metal substrates before the deposition of YBaCuO ceramics.
  • Ceramic materials YBaCuO type can be used to manufacture superconducting devices at the temperature of liquid nitrogen. These devices comprise a substrate, generally metallic, on which a layer of YBaCuO is deposited, for example by an epitaxial process for depositing YBaCuOs from a gaseous phase as described in documents WO 95/02711 and US 5,945,162. (Scientific Research National Center). It is constantly desired to improve the current densities that can be carried by these devices. This limit is related to the rapid decay of the critical current density J c when increasing the thickness of the YBaCuO layers.
  • YBaCuO epitaxial layers To promote the crystal growth of the YBaCuO epitaxial layers, it would be desirable to deposit them on a suitable monocrystalline substrate. But these substrates are expensive. In practice, and for large-scale applications, YBaCuO films are deposited on metal substrates biaxially textured.
  • Biaxially textured metal substrates can be obtained by a specific hardening process followed by a recrystallization annealing; these substrates of generally flat shape are known to those skilled in the art by the acronym RABiTS ("Rolling-Assisted Biaxially Textured Substrates"). They are described for example in the article "Deposition of Biaxially-Oriented Metal and Oxide-Buffered Layer-Films on Textured Ni-tapes: New Substrate for High-current, High-temperature Superconductors” by Qing He, D.K. Christen et al. (published in the journal Physica C 275 (1997), pp.
  • a buffer layer between the metal surface of the substrate and the ceramic YBaCuO, in order to prevent the metal of the substrate from diffusing into the substrate.
  • YBaCuO ceramic and that the substrate metal forms an oxide whose growth disrupts the crystallography of the surface. This is for example the case of nickel alloy substrates which are frequently used to deposit YBaCuO.
  • This buffer layer must be both dense and thin. It must be dense in order to constitute an effective barrier for the diffusion of nickel and oxygen. It must be thin to allow twisting without fracture when shaping the cable.
  • This compound can also be deposited in a non-stoichiometric manner (see US patent application 2008/0039330 (WoIf et al)). It is also possible to use oxides of other rare earths (samarium, gadolinium, dysprosium, erbium, ytterbium) to which is added ytterbium and ytterium, or several layers of different composition, for example La 2 Zr 2 O 7 / CeO 2 , see US 2007/01977045 (Trithor GmbH) and US 2007/0026247 (UT-Batelle, LLC).
  • the YBaCuO films grow epitaxially on the LZO and have critical current densities J c close to 1 MA.cm -2 at 77 K with a critical temperature T 0 of 91 K and a ⁇ 7 C ⁇ 1 K.
  • a layer of a thickness of 100 nm to 200 nm of cerium oxide or lanthanum-zirconium oxide may be deposited prior to the deposition of YBaCuO, using the same techniques as those employed for depositing YBaCuO.
  • this document contains no concrete example for the manufacture of such a product, and does not mention the performance of such devices.
  • the patent application US 2008/0119365 Arnaud Allais and Nat Dirk describes a method of manufacturing a superconducting electrical conductor of circular section.
  • the method consists in providing a metal support such as a wire, a rope or a tube with a diameter of between 0.5 and 3 mm, and preferably steel.
  • a metal layer is then deposited on the metal support, this layer having a thickness of between 1 and 20 nm.
  • the deposit is made by PVD, CVD, or CSD (deposit of a chemical solution).
  • the film thus deposited is then subjected to a texturizing treatment so that as far as possible all the crystal grains are aligned (the method used for the texturing is not specified).
  • a buffer layer of La 2 Zr 2 O 7 is then optionally deposited by dipping in a solution of propionic acid in which lanthanum acetylacetonate and zirconia acetylacetonate are dissolved.
  • the deposited liquid dries and the material is subjected to a heat treatment at 1000 0 C (the duration of treatment not being specified) to obtain an epitaxial layer of La 2 Zr 2 O 7, on which a layer of YBaCuO is then deposited by epitaxy.
  • the problem that the present invention aims to solve is to provide a method of manufacturing a long superconducting device, of substantially circular section, wherein the superconducting material is a YBaCuO 1 type ceramic deposited on the outer surface of a tube or wire or metal cylinder and said method including depositing an oxide buffer layer on the outer surface of the metal tube or wire or cylinder prior to deposition of the YBaCuO layer.
  • the superconducting material is a YBaCuO 1 type ceramic deposited on the outer surface of a tube or wire or metal cylinder and said method including depositing an oxide buffer layer on the outer surface of the metal tube or wire or cylinder prior to deposition of the YBaCuO layer.
  • a first subject of the invention is a method for depositing an epitaxial metal oxide buffer layer on a functionalized surface of a textured metal substrate, and preferably a long metal substrate of substantially circular or elliptical, textured cross section. cube having grains whose direction [001] is perpendicular to the long direction of the substrate, and whose direction [100] is parallel to the long direction of the substrate, said method comprising the following steps:
  • A represents a metal of valence 3 (such as La, Y, Gd, Dy, Lu Where N, Sa, La being preferred), or a mixture of several of these metals
  • B a metal of valence 4 (such as Zr, Ti, Sn 1 Hf, Pb, Ce, Zr being preferred) , such as La 2 Zr 2 0 7 , (also called LZO), and x is a number between -0.1 and +0.1, from a solution of the carboxylates (and preferably propionates) of said metals.
  • this solution preferably having a viscosity, measured at the process temperature, between 1 mPa s and 20 mPa s, and even more preferably between 2 mPa s and 10 mPa s, (2) allowed to dry said precursor layer, preferably at a temperature between 60 0 C and 150 0 C, and preferably between 80 and 100 0 C.
  • heat treating is performed to pyrolyze said oxide precursor and to form the oxide, at least a portion of said heat treatment being carried out under a reducing gas scan, preferably Ar + 5% (vol) H 2 ), said reducing gas preferably having a scanning speed greater than 0.005 cm / s, preferably between 0.012 cm / s and 0.1 cm / s, and even more preferably between 0.04 cm / s and 0.08 cm / s s.
  • the heat treatment (step (3)) comprises a so-called pyrolysis phase and a so-called crystallization phase.
  • the pyrolysis phase involves a heat treatment of between 150 ° C. and about 450 ° C.
  • the crystallization phase involves a heat treatment of between about 450 ° C. and about 1100 ° C., preferably between 800 ° C. and 1100 ° C., and preferably between 850 ° C. and 1000 ° C., to form the oxide.
  • the crystallization phase is carried out under reducing gas purging, as indicated above.
  • the heat treatment comprises a rate of rise in temperature of between 100 ° C./h and 2000 ° C./h, preferably between 250 ° C./h and
  • a second object of the invention is the use of this method in a method for manufacturing superconducting devices comprising a rare earth - barium - copper (TRBaCuO) or mixed yttrium - barium - copper mixed oxide superconducting layer ( YBaCuO or YBCO), said superconducting layer being deposited on said buffer layer.
  • TRBaCuO rare earth - barium - copper
  • YBaCuO or YBCO mixed yttrium - barium - copper mixed oxide superconducting layer
  • a third object of the invention is a method of manufacturing a superconducting electrical conductor of substantially circular or elliptical cross-section, said conductor comprising a rare earth-barium-copper (TRBaCuO) mixed oxide or yttrium mixed oxide layer barium-copper (YBaCuO or YBCO) as a superconducting material deposited on a metal substrate of substantially circular cross-section, said method comprising, in the order indicated, the following steps:
  • step (d) depositing the layer of TRBaCuO or YbaCuO on the metal oxide layer deposited in step (c);
  • a final object of the invention is a superconducting electrical conductor of substantially circular or elliptical cross section that can be obtained by the aforementioned method.
  • Figures 1 to 5 relate to the present invention.
  • FIG. 1 shows microscopic images of the surface of a substrate coated with an LZO buffer layer according to the invention.
  • the length of the bar is 10 ⁇ m.
  • Figure 2 shows a texture tube diagram according to the invention.
  • the texture axes are indicated: the axis parallel to the long direction of the tube, and a radial axis to the tube (i.e. perpendicular to the long direction of the tube).
  • Figure 3 shows a curve of the electrical resistance as a function of temperature for a product manufactured according to the method of the invention.
  • the horizontal axis is graduated in Kelvin, the vertical axis in Ohm.
  • FIG. 4 shows a differential suction tube used for the heat treatment of the buffer layer according to one embodiment of the invention.
  • Figure 5 shows the shape of a curved, biaxially textured substrate. This substrate has a "curled” or “ribbed” shape.
  • the present invention relates to a method of manufacturing a superconducting electrical conductor comprising a ceramic layer of (TR) Ba 2 Cu 3 O 7 -X type (where TR denotes one or more rare earth elements, this compound being called here, irrespective of its stoichiometry, "TRBaCuO") or of YBa 2 Cu 3 O 7 -X type (here called, independently of its stoichiometry, "YBaCuO”), of the Bi 2 Sr 2 Ca 2 Cu 3 O 10 + Y type , type TI 2 Ba 2 Cu 2 Cu 3 O 10 + y , or of type HgBa 2 Ca 2 Cu 3 O 8 ⁇ as a superconducting material deposited on a textured metal substrate.
  • TR denotes one or more rare earth elements, this compound being called here, irrespective of its stoichiometry, "TRBaCuO"
  • YBaCuO YBa 2 Cu 3 O 7 -X type
  • a superconducting electrical conductor comprising a yttrium-barium mixed oxide-copper (YBaCuO or YBCO layer, this designation being independent of the stoichiometry of the formula).
  • the method comprises, in the order indicated, the following steps:
  • step (iv) depositing the layer of TRBaCuO or YbaCuO on the metal oxide layer deposited in step (iii); (v) depositing a protective layer of metal, preferably silver;
  • step (vi) an oxidative treatment is carried out; said method being characterized in that: in step (iii),
  • A represents a metal of valence 3 (such as La, Y, Gd, Dy, Lu, Sc , Nd, Sa; La being preferred) or a mixture of several of these metals, and B a metal of valence 4 (such as Zr, Ti, Sn, Hf, Pb, Ce, Zr being preferred), such as the
  • La 2 Zr 2 0 7, also called LZO
  • x is a number between -0.1 and 0.1, from a solution propionates (carboxylates) of said metals A and B, said solution having preferably a viscosity, measured at the temperature of the process, between 1 mPa s and 20 mPa s, and even more preferably between 2 mPa s and 10 mPa s,
  • said precursor layer is allowed to dry, preferably at a temperature of between 80 and 100 ° C.
  • a heat treatment is carried out at a temperature T of between 800 ° C. and 1100 ° C., and preferably between 850 ° C. and 1000 ° C., to form the oxide, this heat treatment being carried out with a rate of rise at a temperature of between 100 ° C./h and 2000 ° C./h, preferably between 250 ° C./h and 2000 ° C./h and even more preferentially between 500 ° C./h and 2000 ° C./h, followed by bearing at temperature T for a period of between 1 and 120 minutes, preferably between 10 and 90 minutes, and even more preferably between 20 and 60 minutes, followed by cooling at a speed of between 100 ° C./h and 2000; ° C / h, preferably between 100 ° C / h and 1000 ° C / h and even more preferably between 100 ° C / h and 500 ° C / h; under a reduction gas purge, preferably Ar + 5% (vol) H 2 ),
  • a functionalization process of the metal substrate is advantageously carried out by a process comprising the steps of: vacuum treatment (a vacuum of about 10 ⁇ 3 bar is suitable) with a speed of temperature rise of 800 ° C./h, with a bearing at 600 ° C. for a duration of at least 1 minute and preferably of between 10 and 60 ° C.
  • the method according to the invention can be applied to flat or curved textured metal substrates, and in particular to substrates of substantially circular or elliptical cross-section. These substrates may be tubular. They must be made of a metal that crystallizes in a CFC (face-centered cubic) type structure. They can be nickel or nickel alloyed with tungsten, and must have a cube texture ⁇ 100 ⁇ ⁇ 100>.
  • Tubular substrates which are suitable for the embodiment of the invention may be manufactured by a method of welding edges in which a flat ribbon (also called flat band) is formed around a metal core arranged in its long axis in a split tube, the two parallel edges are then welded against each other over their entire length by a type of MIG or TIG welding. Laser welding is also possible; it does not pose any risk of pollution if it proceeds without filler metal. This tube is then stretched to reduce its diameter until the core is in contact with the entire inner wall of the tube. Other methods may be suitable for obtaining these textured substrates of substantially circular or elliptical section.
  • metallization functionalization treatments are carried out successively, chemical deposition of a precursor of the buffer layer, heat treatment, in sight to obtain a buffer layer consisting of an oxide film, as dense as possible and hypertextured. This is done by epitaxial growth on the grains of the substrate. Starting from a wetting metal-organic precursor which makes it possible to carry out the deposit which is dried and then heat-treated to synthesize the oxide. Prior to the functionalization of the substrate for depositing the buffer layer, the metal substrate must be degreased.
  • this is done in two stages: first with acetone (preferably in a bath subjected to ultrasound), then with the aid of an alcohol, such as methanol, ethanol, butanols or hexanols (methanol being preferred because its evaporation leaves no trace).
  • an alcohol such as methanol, ethanol, butanols or hexanols (methanol being preferred because its evaporation leaves no trace).
  • a first object is to provide an adaptation layer for the binding of LZO oxide on the metal: it is to create crystallographic sites on the metal that can bind to those of the oxide. Thus a layer is obtained which reproduces the atomic structure of the substrate (i.e. epitaxy).
  • Functionalization also aims to create a chemically stable surface, because this surface will necessarily be exposed to ambient pressure when the substrate is soaked in the solution to deposit the buffer layer.
  • This step is essential to allow a chemical bond of the atoms of the oxide to those of the metal.
  • the functionalization of the substrate is preferably carried out by a surface treatment, consisting of a deposit of one or more monolayers of sulfur.
  • Sulfur is known to form an ordered chemisorbed layer on metals with a CFC (face-centered cubic) crystallographic structure generally used as substrates.
  • This sulfur layer may be obtained by a suitable heat treatment, and advantageously by a process comprising the steps of:
  • vacuum treatment (a primary vacuum, ie of the order of 10 -3 bar, is sufficient) with a temperature rise rate of between 600 ° C./h and 1000 ° C./h (and preferably about 800.degree. ° C / h), followed by a plateau at a temperature of between 550 ° C. and 650 ° C. (preferably at about 600 ° C.) for about 30 minutes, followed by cooling to room temperature, inert gas (Ar) sweep with about 0.1% (vol) H 2 S at room temperature for about 30 minutes, at atmospheric pressure;
  • the control of this layer can be done by surface analysis techniques known to those skilled in the art for this purpose, such as Auger, RHEED.
  • the sulfurization treatment is known in principle: a monolayer of sulfur is deposited under ultrahigh vacuum, as suggested in the article "RHEED Studies of Epitaxial Oxide Seed-Layer Growth on RABiTS Ni (OOI): The RoIe of Surface Structure and Chemistry” , by C. Cantoni et al., (available on the Internet server [cond.supr.con], arXiv: cond-mat / 0106254v1). This method has not been exploited, to the inventors' knowledge, at atmospheric pressure or primary vacuum to functionalize a cylindrical substrate intended to receive a layer of liquid deposited LZO.
  • a process for deposition of sulfur on the substrate before deposition of the atmospheric pressure YBaCuO layer is also described in the patent applications of American Superconductor Corp., US 2007/0197395 (but in this document, a metal or oxidic buffer layer other than LZO is deposited on top of this sulfur layer, before deposition of the YBaCuO layer) and US 2007/0179063.
  • a sulfur compound such as an organic sulfide
  • carbon may interfere with surface functionalization.
  • the surface can also be treated with sulfur vapors, but it is difficult to determine. Given the availability and simplicity of the H 2 S molecule, this treatment is preferred.
  • the surface can also be functionalized by the creation of an oxygen monolayer.
  • the result of the functionalization process is an air stable functionalization layer for the time necessary to transfer the substrate into the epitaxial liquid phase.
  • the metal substrate contains sulfur
  • the surface layer which is formed by segregation is the surface layer which is formed by segregation as a result of certain treatments thermals of the metal, which then take the place of functionalization treatment.
  • the segregation taking place during cooling is the cooling that must be carefully controlled.
  • texturizing annealing may thus include functionalization annealing.
  • Deposition of the buffer layer is an essential feature of the present invention.
  • the layer is obtained by chemical deposition in solution followed by a heat treatment.
  • This buffer layer is essential because it is on this one that is duplicated the texture of the YBaCuO layer which, if it is correct, will allow the passage of large current densities of electric current.
  • An optimal buffer layer reproduces on the one hand the texture of the substrate and on the other hand constitutes an effective barrier to diffusion.
  • a layer is an effective barrier to diffusion especially if it is dense or has only a small porosity formed by small unconnected holes.
  • the buffer layer deposited in the context of the present invention is an oxide of type A 2 - ⁇ B 2+ ⁇ 7 where A is a metal of valence 3 (such as La or a lanthanide, such as Gd, Dy, Lu, Nd , Sa, or Sc, with La being preferred) and B a metal of valency 4 (such as Zr, Ti, Sn, Hf, Pb, Ce, Ta, with Zr being preferred), such as La 2 Zr 2 O 7 (also called LZO), and x is a number between -0.1 and +0.1. It is very preferably a mixed oxide of lanthanum and zirconia of nominal composition La 2 Zr 2 O 7 (LZO).
  • A is a metal of valence 3 (such as La or a lanthanide, such as Gd, Dy, Lu, Nd , Sa, or Sc, with La being preferred)
  • B a metal of valency 4 (such as Zr, Ti, Sn, Hf, Pb, Ce, Ta
  • A can also represent several metallic elements of valence 3
  • B can represent several metallic elements of valence 4.
  • one can substitute at least partially the atoms of La by Gd atoms.
  • Gd atoms we can also drop above a first thin layer of LZO a second layer of GZO (gadolinium-zirconium oxide).
  • the inventors have shown that a good buffer layer quality (and in particular an LZO layer deposited as described below) makes it possible to greatly simplify the architecture of the deposited superconductors.
  • the multilayer structure Ni5W / LZO / YBaCuO / protection (Ag) deposited on a flat substrate makes it possible to pass about 1 MA / cm 2 at 77 ° K while the solutions of the state of the art propose up to 10 buffer layers to achieve the same result.
  • the method according to the invention makes it possible in particular to use a single type of buffer layer, and therefore it is simpler than the known methods.
  • the method according to the invention makes it possible to deposit such a layer on a curved substrate, for example on a tube, so as to subsequently obtain a superconducting layer at the temperature of the liquid nitrogen, which does not seem be possible with the methods according to the state of the art.
  • Obtaining a buffer layer of good quality according to the method of the invention involves multiple factors.
  • the decomposition of the precursor must give an oxide.
  • carboxylates in which the cation is coordinated with oxygen are preferably used. They therefore allow the formation of oxides, even under reducing conditions avoiding oxidation of the substrate metal.
  • the advantage of the carboxylates is their stability with respect to the humidity of the atmosphere.
  • the precursor is deposited by liquid, and in particular by dipping. Of the carboxylates, propionates are preferred.
  • LaZr (prop) 7 is preferably prepared by etching in propionic acid La (acac) 3 x 3 H 2 O and Zr (acac) 4 (where "acac” refers to acetylacetonate) separately, heating slightly (typically at about 60 ° C.), without evaporating a significant quantity of propionic acid.
  • the maximum concentration of LaZr (prop) 7 usable appears to be 0.9 mol / l.
  • the carboxylates are advantageously used, and even more preferably the propionates of metals A and B.
  • GZO Gd 2 Zr 2 O 7
  • the viscosity ⁇ of the solution is a very important parameter because it conditions the thickness deposited after soaking.
  • the viscosity of metal propionate solutions, and especially that of LZO propionate solutions (LaZr (prop) 7), in propionic acid depends on the concentration of the solution. It is known (see, for example, Knoth et al., Sci.Technol 18 (2005), 334-339) that the viscosity of a solution of 0.05 mol / l is 1.5 mPas, 2.5 for 0.15 mol / l, and 6.5 mPas for a concentration of 0.3 mol / l.
  • the thickness deposited after quenching d is given by the Landau - Levich equation: where ⁇ is the liquid-vapor surface tension, p the liquid density and v the withdrawal rate out of the bath, and a is a numerical parameter which is about 0.94.
  • Adjuvants such as plurifunctionalized compounds, selected for example from polyamines, polyamides, polyethers, aminoalcohols, or true polymers, such as, for example, polymethyl methacrylate (PMMA), polyethylene glycol (PEG), alcohol Polyvinyl (PVA) can be added to the propionate solution to thicken the solution and increase the deposited thickness.
  • PMMA polymethyl methacrylate
  • PEG polyethylene glycol
  • PVA polyvinyl
  • the thickness of the precursor deposit also depends on the temperature of the bath.
  • the elevation of the temperature by a few degrees can change by several tens of% the final thickness of oxide obtained after heat treatment. It is preferred not to exceed 40 ° C., and even more preferably not to exceed 30 ° C. Above 40 ° C., the composition of the solution is modified due to the evaporation of the solvent (typically propionic acid if uses propionates). Too low a bath temperature is likely to lead to the beginning of crystallization of one of the species present in the bath. Therefore, a temperature of between 20 ° C. and 30 ° C. is preferred.
  • the viscosity of the precursor solution at the temperature of the process is preferably between 1 mPa s and 20 mPa s, and even more preferably between 2 mPa s and 10 mPa s.
  • This measurement is carried out conventionally by a ball viscometer.
  • the method according to the invention involves a cylindrical substrate, such as a tube. The deposit is done by dipping. When the substrate is removed from the liquid, it flows out but a film remains deposited, the thickness of which is governed by the law written above.
  • the cylindrical geometry of the substrate modifies the flows with respect to the planar geometry, in particular because of the different edge effects.
  • Drying makes it possible to obtain a solid layer which has the appearance of a polymeric resin. It makes the object easily manipulable.
  • the precursor layer deposited by the liquid route is dried, preferably at a temperature between 80 0 C and 100 0 C, preferably by infrared heating. This drying leads to the at least partial polymerization of the resin, attested by the fact that the precursor becomes rigid and only partially soluble in the usual solvents.
  • This layer can also be dried by a stream of hot neutral gas (argon or nitrogen, for example), preferably at a temperature of between 60 ° C. and 150 ° C.
  • the quenching and drying / polymerization steps are done in a controlled atmosphere. This implies, on the one hand, the protection against dust that would make "straws" in the film. This also implies a careful control of the moisture content, so that the process is reproducible. A relative humidity of 20% is suitable. A lower rate may also be appropriate.
  • the deposited thickness depends on the extraction rate, the viscosity and the liquid vapor surface tension.
  • the extraction rate that is to say the rate with which the substrate is extracted from the liquid, is advantageously between 1 mm / min and 100 mm / min, and is preferably at least 10 mm / min. .
  • the optimal thickness range of LZO considering the properties of the superconductor which then covers it, is between 30 nm and 250 nm.
  • the inventors have been able to deposit on curved surfaces, and in particular on tubes with a diameter of a few millimeters, up to 250 nm of LZO, in several successive depositions, without cracks and with correct textural qualities, although these layers are not always crystallized on the surface as required.
  • a buffer layer which not only has the density, but also the thickness, within the limits indicated above. Indeed, the inventors have found that the properties of the above layer conductive TRBaCuO or YBaCuO, are better for the highest thicknesses of LZO.
  • a thickness of between 60 nm and 250 nm is preferred, and even more preferably between 80 nm and 250 nm.
  • the method according to the invention makes it possible to deposit a thickness of between 30 nm and about 120 nm in one go, without formation of cracks.
  • a typical thickness deposited at one time is 80 nm.
  • the deposition of several layers one on the other, these layers being of identical composition gives a better densification of the buffer layer obtained.
  • the deposited layer, in a single deposit or in several successive deposits, is bi-axially textured.
  • the process according to the invention differs from the flat substrate processes by the texture of the substrate.
  • the texture is three-dimensional and has two preferred orthogonal directions. This means that the grains are oriented relative to each other in the plane and perpendicular to the plane. If we roll this tape to make a tube, we will mechanically introduce radial disorientations between grains, and create surface stresses. The average radial disorientation between grains can be calculated if the number of grains is known over 360 °.
  • a substrate in the form of a tube typically has a mean grain size of 50 ⁇ m, observed over an area with a diameter of 2 mm, which leads to a average radial disorientation between grain about 3 °; this is acceptable.
  • Such a substrate has a bidirectional texture with a radial axis and an axial axis. Its oxide layer typically has a grain size between 50 nm and 80 nm.
  • Heat treatment This step is particularly critical for the process according to the invention. After drying, the film is brought to a temperature of between 850 and 1100 ° C. with a temperature rise rate of between 100 and 2000 ° C./h under a reducing gas sweep, preferably an argon mixture containing 5 vol -% H 2 .
  • a reducing gas sweep preferably an argon mixture containing 5 vol -% H 2 .
  • the use of such a gas avoids the oxidation of the substrate. It can be useful to carry out a bearing at high temperature.
  • the gas flow and flow rate, the rate of rise in temperature and the treatment temperature (maximum temperature) are essential parameters of the heat treatment phase.
  • the gas velocity must be as high as possible, without the risk of cooling the sample, and it determines the course of the pyrolysis of the gases. precursors, in particular the advancement of the pyrolysis front, and the advancement of the crystallization front of the textured part in the film.
  • the temperature of the heat treatment is advantageously between 800 ° C. and 1100 ° C. to form the oxide. It must be greater than 85O 0 C to initiate crystallization, and must be below the recrystallization temperature of the substrate at the risk of losing its texture.
  • the optimum temperature depends on the substrate. For Ni-5at% W substrates, the recrystallization temperature is advantageously close to 1100 ° C. A temperature that is too high, and a treatment that is too long at a high temperature, may favor the interdiffusion between the metal substrate and the buffer layer. .
  • the tungsten of the nickel-tungsten substrate can diffuse into the buffer layer, and the lanthanum of the buffer layer can diffuse into the metal substrate. There may also be reactions to the interface.
  • the optimum crystallization temperature depends slightly on the metal element composition of the layer. The values given above are optimal for the LZO. Gd doping may induce a slight drop in this temperature.
  • the heat treatment is advantageously carried out with a temperature rise rate of between 100 ° C./h and 2000 ° C./h, preferably between 250 ° C./h and 2000 ° C./h and even more preferentially. between 500 ° C / h and 2000 ° C / h, followed by a plateau at the temperature T for a period of between 1 and 120 minutes, preferably between 10 and 90 minutes, and even more preferably between 20 and 60 minutes, and followed by cooling at a speed of between 100 ° C./h and 2000 ° C./h, preferably between 100 ° C./h and 1000 ° C./h and even more preferably between 100 ° C./h and 500 ° C./ h.
  • the heat treatment may be carried out in two parts or phases distinguished by their temperature range: a first part or so-called pyrolysis phase, ranging from about 150 ° C. to about 350 ° C., and second part or so-called crystallization phase, ranging from about 45O 0 C to about 1000 0 C or 1100 0 C.
  • the rate of rise in temperature within these two regimes may be different, for example slow in the pyrolysis phase and fast in the crystallization phase.
  • the heat treatment involves a vacuum passage in the field of pyrolysis.
  • the heat treatment during the crystallization phase must be carried out under reducing gas purge, preferably Ar + 5% (vol) H 2 ), said reducing gas preferably having a scanning speed greater than 0.005 cm / s, preferably between 0.012 cm / s and 0.1 cm / s, and even more preferably between 0.04 cm / s and 0.08 cm / s. It is also possible to use a mixture of N 2 + H 2 (typically 5% by volume H 2 ) which is less expensive than an Ar + H 2 mixture.
  • this gas sweep is performed by injecting the preheated gas against the current in a so-called differential suction tube, which is shown schematically in FIG. 4. It comprises a heating wall (7). ) and perforated inner walls (3) which delimit an interior space (2) and an outer space (1).
  • the product to be treated (6) is in the interior space (2).
  • the gas enters (4) into the tube, entrains the gaseous products of the pyrolysis reaction and is extracted outside the tube by suction (4) through the perforated walls
  • the gas sweep may also be applied during the pyrolysis phase, if one does not choose to carry out the pyrolysis, as indicated above, under vacuum.
  • the pyrolysis phase is carried out at 350 ° C. under primary vacuum for 1 hour (minimum 30 minutes), in order to eliminate the residues of propionic acid, and the crystallization phase is carried out under a purge. argon / H 2 as described above.
  • the growth of the epitaxial part that starts from the interface by heterogeneous nucleation on the substrate must extend to the surface to allow epitaxial recovery for the deposition of a good quality layer TRBaCuO or YBaCuO.
  • the properties of the chemically obtained buffer oxide films make that nucleation can also occur in the non-epitaxial part by nucleation in homogeneous phase, the grains then germinating in random directions. It is essential to avoid this nucleation in homogeneous phase so that the film is texture throughout its thickness, to the surface.
  • the inventors think that the carbon and the carbon species, and perhaps also the oxygen and the carbon compounds which prevail, generated by the pyrolysis of the metal-organic precursor, play an important role in this process and may block nucleation and homogeneous growth, allowing the textured part to easily extend to the surface.
  • the inventors believe that the sweeping of the conditioning gas passing over the film during its heat treatment acts on the kinetics of the pyrolysis of the precursors and manages the advance of the growth front of the textured part. This hypothesis would explain why the annealing speed plays an important role in the pyrolysis, nucleation and crystallization, and thus determines, for a part, the microstructure of the ceramic film constituting the buffer layer.
  • nucleation is by epitaxy on the grains of the metal substrate, resulting in an epitaxial layer of excellent quality, that is to say crystallized, textured in surface and dense, which allows to deposit then TRBaCuO or YBaCuO layers of very good quality.
  • the obtaining by this method of a curved epitaxial layer which is textured on the surface is surprising, because any disorientation of the grains of the substrate may be reflected on the grains having nucleated. This is one of the problems specific to non-planar geometry; the method according to the invention solves this problem.
  • the LZO layer is textured on the surface allows the TRBaCuO or YBaCuO layer to take up this texture when it is deposited by epitaxy; thus obtaining a controlled structure TRBaCuO or YBaCuO layer which has excellent superconducting properties. It is therefore on non-planar substrates (i.e. curved) that the process according to the invention is particularly advantageous compared with known methods.
  • the substrate covered with its buffer layer is then covered with a superconducting layer of TRBaCuO or YBaCuO and finally a thin protective layer by Ag spraying.
  • This superconducting layer is advantageously a layer of YBaCuO. In one embodiment, its thickness is between 200 nm and 500 nm.
  • the deposition of the TRBaCuO or YBaCuO layer is preferably by the technique of MOCVD (metal-organic chemical vapor deposition), which the skilled person knows as such.
  • MOCVD metal-organic chemical vapor deposition
  • a suitable YBaCuO deposition technique by MOCVD is described for example in the patent application WO 93/08838 and in the article published by Donet et al. in J. Phys IV Pr 11 AA 319 in 2001.
  • a gas stream transports the precursors into the reaction zone where CVD growth takes place on a heated substrate. It is thus possible to inject either droplets consisting of mixtures of several precursors, or successively droplets consisting of a single precursor. This technique allows the deposition of layers of complex chemical composition.
  • nozzles distributed around the cylinder may be used, or the cylindrical substrate may be rotated about its long axis in front of a plurality of nozzles.
  • 16 nozzles distributed over a length of 30 cm can be used.
  • a metal layer is then deposited.
  • This layer is preferably permeable to oxygen, allowing its diffusion. Money gives the best result.
  • This layer may be deposited with any known technique, but deposition under conditions allowing the absence of interface contaminations preventing current transfer between the silver protective layer and the superconducting layer is preferred. The cleaning of the interface can be done for example by an argon-oxygen plasma.
  • a silver layer having a thickness of between 250 nm and 450 nm is deposited.
  • the oxidizing treatment is necessary because under the conditions of the MOCVD deposit, the YBaCO compound has an oxygen stoichiometry of less than 6.93 conferring on it a quadratic structure at high temperature, which transits to an orthorhombic structure at 500 ° C. Nevertheless, to approach the ideal stoichiometry of 6.93, the cooling must be done at atmospheric pressure of oxygen. In an online process this step is carried out separately by post-deposition treatment at a temperature of between 450 ° C. and 600 ° C., preferably between 500 ° C. and 600 ° C., under pure oxygen, for several hours, followed by a slow descent to a few hundred degrees per hour, typically 100 ° C / h. Silver, given its oxygen permeability and its oxygen-inert nature, makes oxidizing treatment possible after the metallization step.
  • a first variant supplying a flat metal substrate, previously bi-axially textured, which is coated with an epitaxial metal oxide buffer layer, using a method of the state of the art or the method according to the invention.
  • This flat substrate is then transformed into a long substrate of substantially circular or elliptical section, and typically a tubular substrate, preferably by the method of welding the songs described above.
  • the buffer layer is inevitably damaged, and it is necessary to redeposit a second buffer layer above the first, by the deposition method described above.
  • step (iv) it is preferred to deposit one or more layers of very thin epitaxial metal oxide, of a thickness of between 20 and 60 nm, and even more preferably of about 40 nm. Then, the process according to the invention is continued as described above with the deposition of the layer of TRBaCuO or YBaCuO (step (iv)), the deposition of the metal protective layer (step (v)) and the treatment oxidant (step (vi)).
  • a strongly hardened but non-textured flat substrate is supplied and is transformed into a long metal substrate of substantially circular or elliptical cross-section, and typically a tubular substrate, preferably using the method of welding the edges described hereinabove. above.
  • a texturizing annealing is carried out, and the method according to the invention is continued as described above, with a functionalization treatment (step (N)), followed by the deposition of the buffer layer (step (iii)), the deposition of the layer of TRBaCuO or YBaCuO (step (iv)), the deposition of the metal protective layer (step (v)) and the oxidizing treatment (step (vi)).
  • the method according to the invention has many advantages. It allows the preparation of high temperature superconducting conductors of substantially circular or elliptical cross section by a continuous process ("reel-to-reel", i.e. made from coil to coil) of successive deposition of layers of high crystallographic quality.
  • a textured metal substrate which has grooves.
  • a corrugated substrate or rib which was prepared from a flat sheet by a mechanical deformation process, for example by the application of rollers.
  • These grooves or ribs are advantageously arranged in a direction other than orthogonal to the long direction of the substrate; they do not need to be parallel to each other, or parallel to the long axis of the substrate.
  • TRBaCuO can be deposited in the (hollow) spaces of the grooves, ribs or corrugations, which generates veins of superconducting material; thus, the AC losses are reduced by splitting the section where the current flows.
  • the method according to the invention is particularly well suited for depositing a homogeneous buffer layer of type A 2-X B 2 + X O 7 on such a grooved substrate (such as a corrugated substrate or rib), whereas the vacuum processes on such a substrate generally lead to layers having an inhomogeneous thickness.
  • the metal oxide buffer layer is an LZO layer, which typically has a thickness of between 80 nm and 210 nm.
  • the layer of TRBaCuO or YBaCuO is advantageously a YBaCuO layer having a thickness of between 200 nm and 500 nm, and typically of the order of 350 nm.
  • the metal protective layer is a silver layer, which typically has a thickness between 250 nm and 450 nm, and typically of the order of
  • Such yarn of YBaCuO deposited on a Ni-textured yarn has a temperature T c of at least 83 K 1 preferably of at least 85 K, and even more preferably of at least 93 K.
  • the current density, measured at 4 K 1 is greater than 3 A per centimeter of perimeter.
  • FIG. 1 shows three micrographs, obtained by different techniques, of the same tube coated with a LZO layer deposited by the process according to the invention.
  • the LZO layer with a thickness of 110 nm was deposited on a bi-axial textured Ni-5at% W flat substrate, which was converted into a tube by a rolling-welding process.
  • Figure 1 (b) shows a micrograph obtained by scanning electron microscopy (20 kV acceleration voltage) on the rolled-welded tube. During the stretching phase, the LZO layer is fractured according to the L ⁇ ders bands generated by the deformation of the metal substrate. The micrograph shows the fractures of the LZO layer induced by this deformation.
  • Figure 1 (a) shows a micrograph obtained by backscattered electron diffraction (EBSD) electron microscopy of the same tube.
  • EBSD backscattered electron diffraction
  • FIG. 1 (c) shows a micrograph obtained by scanning electron microscopy in backscattered electron diffraction mode under conditions identical to those used for FIG. 1 (b), on a tube whose LZO layer has been repaired by deposition of a second layer of LZO by the process according to the invention. It is observed that this second deposit blocks the empty zones caused by the process of forming the tube, which are visible in Figures 1 (a) and 1 (b).
  • FIG. 3 shows that a deposit of YBaCuO on such a substrate can have a resistivity of less than 0.10 ⁇ at 80 K, and a resistivity at 60 K where it becomes superconducting.
  • Example 2 This example describes the deposition of a thin epitaxial layer of La 2 Zr 2 O 7 on corrugated or ribbed sheet.
  • the substrate was a biaxially textured Ni ribbed sheet, 80 ⁇ m thick, 4 cm long, and 1 cm wide; its shape is shown schematically in Figure 5.
  • This sheet was obtained from a flat sheet by pressing on two rods of alumina 1 mm in diameter, arranged parallel to the length of the sample and separated by 7 mm about. After pressing the shape of the rods is embedded in the sheet by giving an undulating shape with slightly angular projections. There is a significant increase in the stiffness of the sheet facilitating its handling.
  • This sheet was then dipped in a solution of a propionate of a metal, of adequate viscosity, and then extracted at the speed of 66 mm / min to cover a uniform deposit.
  • the thickness of this deposit is determined by the flow of the liquid downwards, the critical parameters being the viscosity and the surface tension.
  • the concave parts serve as drains and the thickness of the layer is lower in these parts, as evidenced by the final color of the film after crystallization. Conversely, the protruding parts are thicker.
  • the sample was crystallized in an oven following the treatment already described. There was a sample covered with a brilliant enamel whose color reflects its thickness. The flat parts are blue sky, corresponding to a thickness of 80 -100 nm.
  • the crystal structure was observed by X-ray diffraction with a beam of 2 mm x 1 mm, sized to probe the flat part. This is well crystallized with the expected texture (direction [001] // at the normal of the surface and the direction [100] parallel to the direction ⁇ 110> of Ni), indicating that the undulation has not induced disturbance on this area.
  • the structural characterization of the corrugated part can be done conventionally only by flattening it in a press.
  • the technique of microdiffraction makes it possible to avoid this difficulty being able to introduce artifacts during the setting flat.
  • the observation of the flattened sheet reveals a cube texture of good quality (equivalent to that of the flat part) demonstrating that the undulation created had no influence on the scale of the measurement, that is on a surface of some 2x1 mm 2 . This does not exclude that distortions may exist on a micron scale at the peaks of the projections, but their contribution to the mean is indistinguishable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Procédé de dépôt d'une couche tampon d'oxyde métallique épitaxique sur une surface fonctionnalisée d'un substrat métallique texture, ledit procédé comprenant les étapes suivantes : - (1) on dépose une couche d'un précurseur d'un oxyde de type A2-XB2+XO7 où A représente un métal de valence 3 ou un mélange de plusieurs de ces métaux, et B un métal de valence 4, et x est un nombre compris entre -0,1 et +0,1, à partir d'une solution des carboxylates desdits métaux A et B, - (2) on laisse sécher ladite couche de précurseur d'oxyde, - (3) on effectue un traitement thermique pour pyrolyser ledit précurseur d'oxyde et pour former l'oxyde, au moins une partie dudit traitement thermique étant effectuée sous balayage de gaz réducteur.

Description

Procédé de dépôt de films d'oxydes sur tubes métalliques textures
Domaine de l'invention
La présente invention se rapporte au domaine des dispositifs supraconducteurs à haute température, c'est-à-dire aux dispositifs électriques incorporant des matériaux céramiques, notamment de type YBa2Cu3O7-X (appelés YBaCuO), qui montrent une supraconductivité à la température de l'azote liquide.
La présente invention concerne des procédés chimiques permettant l'épitaxie de films minces d'oxydes sur substrats métalliques ronds de faible diamètre millimétriques. Ces films servent à la fois de barrière chimique pour éviter la diffusion du métal dans la couche de supraconducteur YBaCuO, et de matrice pour l'épitaxie de couches supraconductrices.
Plus particulièrement, la présente invention concerne un procédé permettant la formation par voie chimique de couches tampons par l'épitaxie de films d'oxydes sur substrats métalliques avant le dépôt de la céramique de type YBaCuO.
Etat de la technique
Les matériaux céramiques de type YBaCuO (appelés aussi YBCO) permettent de fabriquer des dispositifs supraconducteurs à la température de l'azote liquide. Ces dispositifs comportent un substrat, en général métallique, sur lequel est déposée une couche de YBaCuO, par exemple par un procédé d'épitaxie pour déposer des YBaCuO à partir d'une phase gazeuse comme décrit dans les documents WO 95/02711 et US 5,945,162 (Centre National de la Recherche Scientifique). On souhaite constamment améliorer les densités de courant qui peuvent être transportées par ces dispositifs. Cette limite est liée à la décroissance rapide de la densité de courant critique Jc lorsque l'on augmente l'épaisseur des couches YBaCuO. Cela est décrit par exemple dans l'article "Overcoming the barrier to 1000 A/cm width superconducting coatings" par S.R. Foltyn et al., paru dans Applied Physics Letters 87 (16), 162505 (2005). La présence de défauts cristallographiques, qui deviennent plus fréquents lorsque l'épaisseur des films YBaCuO augmente, est un des facteurs qui semblent contribuer à cette décroissance. Les films YBaCuO, déposés en général par un procédé épitaxique, doivent avoir une structure cristallographique aussi proche que possible de celle d'un monocristal ; cela implique en particulier l'alignement des grains selon deux directions perpendiculaires. La minimisation de leurs défauts cristallographiques (tels que les dislocations aux joints de grains) et des défauts d'orientation cristallographique entre les grains) est un enjeu essentiel. Pour favoriser la croissance cristalline des couches épitaxiques de YBaCuO, il serait souhaitable de les déposer sur un substrat monocristallin approprié. Mais ces substrats sont chers. En pratique, et en vue d'applications à grande échelle, on dépose donc les films YBaCuO sur des substrats métalliques textures biaxialement.
Des substrats métalliques textures biaxialement peuvent être obtenus par un procédé spécifique de laminage à fort écrouissage suivi d'un recuit de recristallisation ; ces substrats de forme généralement plate sont connus de l'homme du métier sous l'acronyme RABiTS (« Rolling-Assisted Biaxially Textured Substrates »). Ils sont décrits par exemple dans l'article "Déposition of biaxially-oriented métal and oxide buffer-layer films on textured Ni tapes : new substrate for high-current, high-temperature superconductors" par Qing He, D. K. Christen et al. (paru dans la revue Physica C 275 (1997), p. 155-161), dans l'article "Using RABiTS to Fabricate High-Temperature Superconducting Wire" par A. Goyal et al. (paru dans la revue JOM (Juillet 1999), p. 19 - 23), dans l'article « Industriel Fe-Ni alloys for HTS coated conductor tapes » par J. L. Soubeyroux et al. (paru dans la revue Journal of Physics, Conférence Séries 97 (2008), 012069), et dans l'article "Récent progress in the fabrication of high-JC tapes by epitaxial déposition of YBCO on RABiTS" par A. Goyal et al. (paru dans la revue
Physica C 357-360 (2001), p. 903 - 913).
Cependant, en fonction de la nature chimique du substrat, il peut être nécessaire de déposer une couche tampon (« buffer layer ») entre la surface métallique du substrat et la céramique YBaCuO, afin d'éviter que le métal du substrat ne diffuse dans la céramique YBaCuO, et que le métal du substrat ne forme un oxyde dont la croissance perturbe la cristallographie de la surface. Cela est par exemple le cas des substrats d'alliages de nickel qui sont fréquemment utilisés pour déposer les YBaCuO. Cette couche tampon doit être à la fois dense et mince. Elle doit être dense afin de constituer une barrière efficace pour la diffusion du nickel et de l'oxygène. Elle doit être mince pour permettre des torsions sans fracture lors de la mise en forme du câble. Elle doit répliquer aussi fidèlement que possible la structure cristalline de la surface du substrat (voir l'article « In situ strain and transport magneto-optical investigations in superconductors » par A. Villaume et al., paru dans la revue Superconductor Science and Technology 21 (2008) 034009). On utilise par exemple des couches minces d'oxyde mixte de lanthane - zirconium La2Zr2O7 (voir par exemple le brevet US 6,451 ,450 (UT-Battelle)), la demande de brevet WO 2008/078852 (Korea Institute of Machinery & Materials), les brevets US 6,537,689 et 7,261,776 (American Superconductor Corp.), et la demande de brevet US 2008/0113869 (V. Selvamanickam). Ce composé peut aussi être déposé de manière non stcechiométrique (voir la demande de brevet US 2008/0039330 (WoIf et al)). On peut aussi utiliser des oxydes d'autres terres rares (samarium, gadolinium, dysprosium, erbium, ytterbium) auxquels s'ajoutent Pyttrium et le scandium, ou plusieurs couches de composition différente, par exemple La2Zr2O7 / CeO2, voir US 2007/01977045 (Trithor GmbH) et US 2007/0026247 (UT-Batelle, LLC). La publication intitulée « La2Zr2O7 single buffer layer for YBaCuO RABiTS coated conductors » (Caroff et al, Supercond. Sci. Technol. 21 (2008) 075007) décrit la préparation par MOD de couches tampon de La2Zr2O7 (LZO) de haute qualité sur des substrats métalliques (alliages Ni-5 at.% W) bitexturés par le procédé RABiTS et le dépôt subséquent de couches YBaCuO (de 450 à 800 nm d'épaisseur) par « pulsed injection MOCVD », conduisant à une architecture simple et peu coûteuse NiWRABιτs/LZOMoD/YBaCθMocvD- Dans cette nouvelle combinaison des procédés MOD et MOCVD, une couche tampon LZOMOD unique est suffisante pour assurer une compatibilité structurale entre YBaCuO et NiW, et protéger le substrat de l'oxydation pendant le dépôt MOCVD de YBaCuO. Les films YBaCuO croissent epitaxialement sur le LZO et possèdent des densités de courant critique Jc proche de 1 MA.cm"2 à 77 K avec une température critique T0 de 91 K et un Δ7C<1 K.
L'article « Growth of thick chemical solution derived pyrochlore La2Zr2O7 buffer layers for YBa2Cu3O7.,, coated conductors » par K. Knoth et al. (paru en 2008 dans la revue Thin Solid Films 516, p. 2099-2108) décrit le dépôt de couches LZO à partir de solutions de sels de Zr et La dans l'acide propionique sur des rubans de nickel contenant 5 at-% de tungstène ; l'épaisseur de ces couches est comprise entre 80 nm et 200 nm.
Cependant, tous ces travaux ne concernent que des substrats plats. Or il est peu aisé d'introduire des conducteurs plats dans des câbles de section généralement circulaire. II serait souhaitable de disposer de conducteurs ronds sous formes de fils pour pouvoir fabriquer des câbles conducteurs électriques, supra-conducteurs à la température de l'azote liquide, permettant le passage de fortes densités de courant, suffisamment flexibles et robustes pour des applications en milieu industriel, et suffisamment simples à fabriquer pour être économiquement viables. L'article « YBaCuO Thick Films on Planar and Curved Technical Substrates » de H. C. Freyhardt et al., paru en 1997 dans la revue IEEE Transactions on Applied Superconductivity, vol 7 n° 2, p. 1426 - 1431 , décrit le dépôt par pulvérisation cathodique de couches de type YSZ (yttria-stabilized zirconia) sur des surfaces planes et cylindriques ; leur surface a été polie par voie mécanique ou électrochimique.
La demande de brevet EP 1 916 720 (Nexans) décrit un procédé pour fabriquer des tubes en métal biaxialement texture, dans lequel un ruban plat (aussi appelée bande plate) est formé autour d'une âme métallique disposée dans son axe long en tube fendu, les deux chants parallèles étant ensuite soudés l'un contre l'autre sur toute leur longueur par une soudure de type MIG ou TIG ou laser. Ce tube est ensuite étiré pour réduire son diamètre jusqu'à ce que l'âme soit en contact avec toute la paroi interne du tube. Ensuite on dépose une couche de YBaCuO d'une épaisseur comprise entre 1 μm et 5 μm à partir d'une phase gazeuse ou liquide suivi d'un traitement thermique. Une couche d'une épaisseur de 100 nm à 200 nm d'oxyde de cérium ou d'oxyde de lanthane - zirconium peut être déposée avant le dépôt de YBaCuO, en utilisant les mêmes techniques que celles employées pour le dépôt de YBaCuO. Cependant, ce document ne contient aucun exemple concret pour la fabrication d'un tel produit, et ne mentionne pas les performances de tels dispositifs.
La demande de brevet US 2008/0119365 d'Arnaud Allais et Nat Dirk décrit un procédé de fabrication d'un conducteur électrique supraconducteur de section circulaire. Le procédé consiste à apporter un support métallique tel qu'un fil, une corde ou un tube d'un diamètre compris entre 0,5 et 3 mm, et de préférence en acier. Une couche métallique est ensuite déposée sur le support métallique, cette couche ayant une épaisseur comprise entre 1 et 20 nm. Le dépôt est réalisé par PVD, CVD, ou CSD (dépôt d'une solution chimique). Le film ainsi déposé est ensuite soumis à un traitement de texturation de manière à ce que dans la mesure du possible tous les grains de cristaux soient alignés (la méthode utilisée pour la texturation n'est pas précisée). Une couche tampon de La2Zr2O7 est ensuite optionnellement déposée, par trempage dans une solution d'acide propionique dans laquelle sont dissous de l'acétylacétonate de lanthane et de l'acétylacétonate de zircone. Le liquide déposé sèche et le matériau est soumis à un traitement thermique à 10000C (la durée du traitement n'étant pas précisée) pour obtenir une couche épitaxiée de La2Zr2O7, sur laquelle une couche de YBaCuO est ensuite déposée par épitaxie. Le problème que la présente invention vise à résoudre est de fournir un procédé de fabrication d'un dispositif supraconducteur long, de section sensiblement circulaire, dans lequel le matériau supraconducteur est une céramique de type YBaCuO1 déposée sur la surface externe d'un tube ou fil ou cylindre métallique et ledit procédé incluant le dépôt d'une couche tampon d'oxyde sur la surface externe du tube ou fil ou cylindre métallique préalablement au dépôt de la couche de YBaCuO.
Objet de l'invention
Un premier objet de l'invention est un procédé de dépôt d'une couche tampon d'oxyde de métaux épitaxique sur une surface fonctionnalisée d'un substrat métallique texture, et de préférence un substrat métallique long de section sensiblement circulaire ou elliptique, à texture cube présentant des grains dont la direction [001] est perpendiculaire au sens long du substrat, et dont la direction [100] est parallèle au sens long du substrat, ledit procédé comprenant les étapes suivantes :
(1 ) on dépose une couche d'un précurseur d'un oxyde de type (A)2-XB2+XO7 où A représente un métal de valence 3 (tel que le La, Y, Gd, Dy, Lu, Sc, Nd, Sa ; le La étant préféré), ou un mélange de plusieurs de ces métaux, et B un métal de valence 4 (tel que le Zr, Ti, Sn1 Hf, Pb, Ce ; le Zr étant préféré), tel que le La2Zr207,(appelé aussi LZO), et x est un nombre compris entre -0,1 et +0,1 , à partir d'une solution des carboxylates (et préférentiellement des propionates) desdits métaux A et B, cette solution ayant de préférence une viscosité, mesurée à la température du procédé, comprise entre 1 mPa s et 20 mPa s, et encore plus préférentiellement comprise entre 2 mPa s et 10 mPa s, (2) on laisse sécher ladite couche de précurseur, de préférence à une température comprise entre 600C et 1500C, et de préférence entre 80 et 1000C.
(3) on effectue un traitement thermique pour pyrolyser ledit précurseur d'oxyde et pour former l'oxyde, au moins une partie dudit traitement thermique étant effectuée sous balayage de gaz réducteur, de préférence Ar + 5%(vol) H2), ledit gaz réducteur ayant de préférence une vitesse de balayage supérieure à 0,005 cm/s, préférentiellement comprise entre 0,012 cm/s et 0,1 cm/s, et encore plus préférentiellement comprise entre 0,04 cm/s et 0,08 cm/s. Avantageusement, le traitement thermique (étape (3)) comprend une phase dite de pyrolyse et une phase dite de cristallisation. La phase de pyrolyse implique un traitement thermique compris entre 15O0C et environ 4500C (et qui ne dépasse de préférence pas 3500C), qui peut être effectué au moins en partie sous pression réduite. La phase de cristallisation implique un traitement thermique compris entre environ 4500C et environ 11000C, préférentiellement comprise entre 8000C et 1100°C, et préférentiellement entre 8500C et 1000°C, pour former l'oxyde. La phase de cristallisation est effectuée sous balayage de gaz réducteur, comme indiqué ci-dessus.
Avantageusement le traitement thermique comprend une vitesse de montée en température comprise entre 100°C/h et 2000°C/h, préférentiellement entre 250°C/h et
2000°C/h et encore plus préférentiellement entre 500°C/h et 2000°C/h, suivi d'un palier à la température T pendant une durée comprise entre 1 et 120 minutes, préférentiellement entre 10 et 90 minutes, et encore plus préférentiellement entre 20 et
60 minutes, et suivi d'un refroidissement à une vitesse comprise entre 100°C/h et 2000°C/h, préférentiellement entre 100°C/h et 1000°C/h et encore plus préférentiellement entre 100°C/h et 500°C/h.
Un deuxième objet de l'invention est l'utilisation de ce procédé dans un procédé de fabrication de dispositifs supraconducteurs comportant une couche supracondutrice d'oxyde mixte terre rare - baryum - cuivre (TRBaCuO) ou d'oxyde mixte yttrium - baryum - cuivre (YBaCuO ou YBCO), ladite couche supraconductrice étant déposé sur ladite couche tampon.
Un troisième objet de l'invention est un procédé de fabrication d'un conducteur électrique supraconducteur de section transversale sensiblement circulaire ou elliptique, ledit conducteur comportant une couche d'oxyde mixte terre rare -baryum - cuivre (TRBaCuO) ou d'oxyde mixte yttrium - baryum - cuivre (YBaCuO ou YBCO) en tant que matériau supraconducteur déposée sur un substrat métallique de section sensiblement circulaire, ledit procédé comportant, dans l'ordre indiqué, les étapes suivantes :
(a) on approvisionne un substrat métallique long de section sensiblement circulaire ou elliptique, et typiquement un substrat tubulaire, ledit substrat ayant une texture cube présentant des grains dont la direction [001] est perpendiculaire à l'axe cylindrique du substrat ; (b) on effectue un traitement de fonctionnalisation au moins de la surface externe dudit substrat métallique, de préférence par un traitement au H2S ;
(c) on dépose une couche tampon d'oxyde métallique épitaxique au moins sur la surface externe fonctionnalisée dudit tube à partir d'une solution liquide, en utilisant le procédé qui correspond au premier objet de la présente invention ;
(d) on dépose la couche de TRBaCuO ou de YbaCuO, sur la couche d'oxyde métallique déposée à l'étape (c) ;
(e) on dépose une couche de protection en métal, de préférence en argent ;
(f) on effectue un traitement oxydant.
Un dernier objet de l'invention est un conducteur électrique supraconducteur de section transversale sensiblement circulaire ou elliptique susceptible d'être obtenu par le procédé précité.
Description des figures
Les figures 1 à 5 se rapportent à la présente invention.
La figure 1 montre des images microscopiques de la surface d'un substrat revêtu d'une couche tampon de LZO selon l'invention. La longueur de la barre représente 10 μm.
La figure 2 montre un schéma de tube texture selon l'invention. Les axes de texture sont indiqués : l'axe parallèle au sens long du tube, et un axe radial au tube (i.e. perpendiculaire au sens long du tube).
La figure 3 montre une courbe de la résistance électrique en fonction de la température pour un produit fabriqué selon le procédé de l'invention. L'axe horizontal est gradué en Kelvin, l'axe vertical en Ohm. La figure 4 montre un tube à aspiration différentielle utilisé pour le traitement thermique de la couche tampon selon un mode de réalisation de l'invention.
Les repères suivants sont utilisés sur cette figure :
1 - Espace extérieur ; 2 - Espace intérieur ; 3 - Paroi perforée
4 - Direction de l'aspiration ; 5 - Direction de l'entrée de gaz 6 - Produit à traiter Les flèches indiquent une direction d'écoulement de gaz.
La figure 5 montre la forme d'un substrat courbé, texture biaxialement. Ce substrat a une forme « gondolée » ou « nervurée ».
Description de l'invention
La présente invention concerne un procédé de fabrication d'un conducteur électrique supraconducteur comportant une couche de céramique de type (TR)Ba2Cu3O7-X (où TR symbolise un ou plusieurs éléments de terre rare ; ce composé étant appelé ici, indépendamment de sa stoeichiométrie, « TRBaCuO ») ou de type YBa2Cu3O7-X (appelé ici, indépendamment de sa stoeichiométrie, « YBaCuO »), de type Bi2Sr2Ca2Cu3O10+Y, de type TI2Ba2Cu2Cu3O10+y, ou de type HgBa2Ca2Cu3O8^ en tant que matériau supraconducteur déposée sur un substrat métallique texture. Elle concerne notamment un procédé de fabrication d'un conducteur électrique supraconducteur comportant une couche d'oxyde mixte d'yttrium - baryum -cuivre (YBaCuO ou YBCO, cette désignation étant indépendante de la stoeichiométrie de la formule).
Dans un mode de revendication avantageux de l'invention, le procédé comporte, dans l'ordre indiqué, les étapes suivantes :
(i) on approvisionne un substrat métallique long de section sensiblement circulaire ou elliptique, et typiquement un substrat tubulaire, ledit substrat ayant une texture cube présentant des grains dont la direction [001] est perpendiculaire au sens long du substrat, et dont la direction [100] est parallèle au sens long du substrat ;
(ii) on effectue un traitement de fonctionnalisation au moins de la surface externe dudit substrat métallique, de préférence par un traitement au H2S ;
(iii) on dépose une couche tampon d'oxyde de métaux épitaxique au moins sur la surface externe fonctionnalisée dudit tube à partir d'une solution liquide ;
(iv) on dépose la couche de TRBaCuO ou de YbaCuO, sur la couche d'oxyde métallique déposée à l'étape (iii) ; (v) on dépose une couche de protection en métal, de préférence en argent ;
(vi) on effectue un traitement oxydant ; ledit procédé étant caractérisé en ce que : à l'étape (iii),
(a) on dépose une couche d'un précurseur d'un oxyde de type A2-XB2+XU7 où A représente un métal de valence 3 (tel que le La, Y, Gd, Dy, Lu, Sc, Nd, Sa ; le La étant préféré) ou un mélange de plusieurs de ces métaux, et B un métal de valence 4 (tel que le Zr, Ti, Sn, Hf, Pb, Ce ; le Zr étant préféré), tel que le
La2Zr207,(appelé aussi LZO), et x est un nombre compris entre -0,1 et +0,1 , à partir d'une solution des propionates (carboxylates) desdits métaux A et B, cette solution ayant de préférence une viscosité, mesurée à la température du procédé, comprise entre 1 mPa s et 20 mPa s, et encore plus préférentiellement comprise entre 2 mPa s et 10 mPa s,
(b) on laisse sécher ladite couche de précurseur, de préférence à une température comprise entre 80 et 1000C,
(c) on effectue un traitement thermique à une température T comprise entre 800°C et 11000C, et préférentiellement entre 8500C et 10000C, pour former l'oxyde, ce traitement thermique étant effectué : avec une vitesse de montée en température comprise entre 100°C/h et 2000°C/h, préférentiellement entre 250°C/h et 2000°C/h et encore plus préférentiellement entre 500°C/h et 2000°C/h, suivi d'un palier à la température T pendant une durée comprise entre 1 et 120 minutes, préférentiellement entre 10 et 90 minutes, et encore plus préférentiellement entre 20 et 60 minutes, et suivi d'un refroidissement à une vitesse comprise entre 100°C/h et 2000°C/h, préférentiellement entre 100°C/h et 1000°C/h et encore plus préférentiellement entre 100°C/h et 500°C/h ; sous balayage de gaz réducteur, de préférence Ar + 5%(vol) H2), ledit gaz réducteur ayant de préférence une vitesse de balayage supérieure à 0,005 cm/s, préférentiellement comprise entre 0,012 cm/s et 0,1 cm/s, et encore plus préférentiellement comprise entre 0,04 cm/s et 0,08 cm/s.
Selon l'invention, à l'étape (ii) : on effectue avantageusement un traitement de fonctionnalisation du substrat métallique par un procédé comportant les étapes de : traitement sous vide (un vide d'environ 10~3 bar convient) avec une vitesse de montée en température de 800°C/h, avec un palier à 6000C pendant une durée d'au moins 1 minute et de préférence comprise entre 10 et 60 minutes (avantageusement pendant environ 30 minutes), suivi d'un refroidissement jusqu'à température ambiante, traitement de fonctionnalisation, de préférence par balayage de gaz inerte (Ar) avec 0,1%(vol) H2S à la température ambiante et à une pression comprise entre 10"3 bar et 10 bar, préférentiellement à la pression atmosphérique, pendant une durée d'au moins 1 minute, et avantageusement d'environ 30 minutes, traitement sous balayage de gaz réducteur Ar + 5%(vol) H2 avec une vitesse de montée en température de 800°C/h, avec un palier à 850cC pendant 30 minutes, suivi d'un refroidissement jusqu'à température ambiante.
Nous décrivons ici en détail chacune des étapes.
(i) Approvisionnement d'un substrat métallique Le procédé selon l'invention peut s'appliquer à des substrats métalliques textures plats ou courbés, et notamment à des substrats de section sensiblement circulaire ou elliptique. Ces substrats peuvent être tubulaires. Ils doivent être en un métal qui cristallise dans une structure de type CFC (cubique à faces centrées). Ils peuvent être en nickel ou en nickel allié au tungstène, et doivent posséder une texture cube {100}<100>. Des substrats tubulaires qui conviennent pour la réalisation de l'invention peuvent être fabriqués par un procédé de soudage des chants dans lequel un ruban plat (aussi appelée bande plate) est formé autour d'une âme métallique disposée dans son axe long en tube fendu, les deux chants parallèles étant ensuite soudés l'un contre l'autre sur toute leur longueur par une soudure de type MIG ou TIG. La soudure par laser est également possible ; elle n'entraîne aucun risque de pollution si elle procède sans métal d'apport. Ce tube est ensuite étiré pour réduire son diamètre jusqu'à ce que l'âme soit en contact avec toute la paroi interne du tube. D'autres procédés peuvent convenir pour obtenir ces substrats textures de section sensiblement circulaire ou elliptique. Sur ces substrats métalliques textures biaxialement, de préférence de section transversale sensiblement circulaire ou elliptique, et notamment sur des tubes, on réalise successivement des traitements de fonctionnalisation du substrat métallique, de dépôt chimique d'un précurseur de la couche tampon, de traitement thermique, en vue d'obtenir une couche tampon constituée d'un film d'oxyde, le plus dense possible et hypertexturé. On utilise pour cela la croissance par épitaxie sur les grains du substrat. On part d'un précurseur métal-organique mouillant qui permet d'effectuer le dépôt qui est séché puis traité thermiquement pour synthétiser l'oxyde. Préalablement à la fonctionnalisation du substrat en vue du dépôt de la couche tampon, le substrat métallique doit être dégraissé. Avantageusement, cela est fait en deux temps : d'abord à l'aide d'acétone (de préférence dans un bain soumis aux ultrasons), puis à l'aide d'un alcool, tel que le méthanol, l'éthanol, des butanols ou hexanols (le méthanol étant préféré car son évaporation ne laisse aucune trace).
(ii) Fonctionnalisation du substrat
Préalablement au dépôt du précurseur métal-organique de la couche tampon LZO, le substrat doit avoir été fonctionnalisé. La fonctionnalisation du substrat métallique a deux objectifs : un premier objet est d'assurer une couche d'adaptation permettant la liaison de l'oxyde LZO sur le métal : il s'agit de créer des sites cristallographiques sur le métal susceptibles de se lier à ceux de l'oxyde. Ainsi on obtient une couche qui reproduit la structure atomique du substrat (i.e. l'épitaxie).
La fonctionnalisation a également pour objet de créer une surface chimiquement stable, car cette surface sera forcément exposée à la pression ambiante lorsque le substrat sera trempé dans la solution pour déposer la couche tampon.
Cette étape est essentielle pour permettre une liaison chimique des atomes de l'oxyde à ceux du métal.
En pratique, la fonctionnalisation du substrat est réalisée de préférence par un traitement de surface, consistant en un dépôt d'une ou plusieurs monocouches de soufre. On sait que le soufre forme une couche chimisorbée ordonnée sur les métaux à structure cristallographique CFC (cubique face centrée) généralement utilisés comme substrats. Cette couche de soufre peut être obtenue par un traitement thermique approprié, et avantageusement par un procédé comportant les étapes de :
- traitement sous vide (un vide primaire, i.e. de l'ordre de 10~3 bar, suffit) avec une vitesse de montée en température comprise entre 600°C/h et 1000°C/h (et de préférence d'environ 800°C/h), suivi d'un palier à une température comprise entre 5500C et 6500C (de préférence à environ 6000C) pendant environ 30 minutes, puis d'un refroidissement jusqu'à température ambiante, - balayage de gaz inerte (Ar) avec environ 0,1%(vol) H2S à température ambiante pendant environ 30 minutes, à la pression atmosphérique ;
- traitement sous balayage de gaz réducteur, de préférence Ar + 5%(vol) H2, avec une vitesse de montée en température comprise entre 600°C/h et 1000°C/h (et de préférence d'environ 800°C/h), suivi optionnellement d'un palier à une température comprise entre 7500C et 9000C (de préférence à environ 8500C) pendant environ 30 minutes, puis d'un refroidissement jusqu'à température ambiante.
Le contrôle de cette couche peut être fait par des techniques d'analyse de surface connues de l'homme du métier pour cet usage, comme l'Auger, le RHEED. Le traitement de sulfuration est connu dans son principe : on dépose sous ultravide une monocouche de soufre, comme suggéré dans l'article "RHEED Studies of Epitaxial Oxide Seed-Layer Growth on RABiTS Ni(OOI) : The RoIe of Surface Structure and Chemistry", par C. Cantoni et al., (disponible sur le serveur d'intemet [cond- mat.supr.con], arXiv :cond-mat/0106254v1 ). Ce procédé n'a pas été exploité, à la connaissance des inventeurs, à une pression atmosphérique ou de vide primaire pour fonctionnaliser un substrat cylindrique destiné à recevoir une couche de LZO déposée par voie liquide.
Un procédé de dépôt de soufre sur le substrat avant dépôt de la couche YBaCuO à pression atmosphérique est décrit également dans les demandes de brevet de la société American Superconductor Corp., US 2007/0197395 (mais dans ce document, une couche tampon métallique ou oxydique autre que LZO est déposée au-dessus de cette couche de soufre, avant dépôt de la couche YBaCuO) et US 2007/0179063.
Alternativement, on peut utiliser pour le traitement de fonctionnalisation un composé soufré, tel qu'un sulfure organique ; cependant, le carbone risque de gêner la fonctionnalisation de surface. On peut aussi traiter la surface aux vapeurs de soufre, mais c'est difficile à doser. Compte tenu de la disponibilité et de la simplicité de la molécule H2S, ce traitement est préféré.
On peut aussi fonctionnaliser la surface par la création d'une monocouche d'oxygène.
Le résultat du procédé de fonctionnalisation est une couche de fonctionnalisation stable à l'air pendant la durée nécessaire pour transférer le substrat dans la phase liquide pour épitaxie.
Dans le cas où le substrat métallique contient du soufre, il est possible d'utiliser la couche de surface qui se forme par ségrégation à la suite de certains traitements thermiques du métal, qui tiennent alors lieu de traitement de fonctionnalisation. La ségrégation ayant lieu lors du refroidissement, c'est le refroidissement qui doit être soigneusement contrôlé. Dans certains cas, le recuit de texturisation peut ainsi comprendre le recuit de fonctionnalisation.
(iii) Dépôt de la couche tampon
Le dépôt de la couche tampon est une caractéristique essentielle de la présente invention. La couche est obtenue par dépôt chimique en solution suivi d'un traitement thermique. Cette couche tampon est primordiale car c'est sur celle-ci qu'est dupliquée la texture de la couche YBaCuO qui, si elle est correcte, permettra le passage de grandes densités de courant de courant électrique. Une couche tampon optimale reproduit d'une part la texture du substrat et constitue d'autre part une barrière efficace à la diffusion. Une couche constitue une barrière efficace à la diffusion en particulier si elle est dense ou ne présente qu'une faible porosité formée de petits trous non connectés.
La couche tampon déposée dans le cadre de la présente invention est un oxyde de type A2-χB2+χθ7 où A est un métal de valence 3 (tel que le La ou un lanthanide, tel que Gd, Dy, Lu, Nd, Sa, ou le Sc ; le La étant préféré) et B un métal de valence 4 (tel que le Zr, Ti, Sn, Hf, Pb, Ce, Ta ; le Zr étant préféré), tel que le La2Zr2O7 (appelé aussi LZO), et x est un nombre compris entre -0,1 et +0,1. Elle est très préférentiellement un oxyde mixte de lanthane et zircone de composition nominale La2Zr2O7 (LZO). En effet, il a été montré récemment (Caroff et al, Sup.Sci.Technol. 2008, 21 075007) qu'il était possible, sur des substrats plats, de n'avoir qu'une seule couche tampon de LZO, ce qui est très économique. On peut utiliser d'autres oxydes que LZO, tels que par exemple SrTiO3, LaMnO3, YSZ, mais alors il faut une architecture en général complexe car très peu d'oxydes arrivent à satisfaire toutes les fonctions des tampons en une fois. C'est pourquoi on préfère largement les couches de type A2.XB2+XO7 et plus spécialement le LZO. En particulier, si une couche tampon composée de plusieurs couches est envisagée, les inventeurs préfèrent utiliser une telle couche LZO en contact avec le substrat métallique. Mais ils préfèrent une couche homogène, appliquée en une seule fois.
Dans la formule A2.xB2+χ07, A peut représenter aussi plusieurs éléments métalliques de valence 3, et B peut représenter plusieurs éléments métalliques de valence 4. A titre d'exemple, dans une couche de type LZO, on peut substituer au moins partiellement les atomes de La par des atomes de Gd. On peut aussi déposer au-dessus d'une première couche mince de LZO une seconde couche de GZO (gadolinium-zirconium- oxyde).
Les inventeurs ont montré qu'une bonne qualité de couche tampon (et notamment une couche de LZO déposée comme décrit ci-dessous) permet de simplifier énormément l'architecture des supraconducteurs déposés. Ainsi la structure multicouche Ni5W/LZO/YBaCuO/protection(Ag) déposée sur un substrat plat permet de faire passer près de 1 MA/cm2 à 77°K alors que les solutions de l'état de la technique proposent jusqu'à 10 couches tampon pour parvenir au même résultat. Le procédé selon l'invention permet en particulier d'utiliser un seul type de couche tampon, et de ce fait, il est plus simple que les procédés connus. En particulier, le procédé selon l'invention permet de déposer une telle couche sur un substrat courbé, par exemple sur un tube, de manière à obtenir par la suite une couche supraconductrice à la température de l'azote liquide, ce qui ne semble pas être possible avec les procédés selon l'état de la technique. L'obtention d'une couche tampon de bonne qualité selon le procédé de l'invention fait intervenir de multiples facteurs.
(1) Précurseur
La décomposition du précurseur doit donner un oxyde. Dans la présente invention, on utilise de préférence des carboxylates dans lesquels le cation est coordonné à des oxygènes. Ils permettent donc la formation d'oxydes, même dans des conditions réductrices évitant l'oxydation du métal substrat. L'avantage des carboxylates est leur stabilité vis-à-vis de l'humidité de l'atmosphère. Le précurseur est déposé par voie liquide, et en particulier par trempage. Parmi les carboxylates, on préfère les propionates. Pour obtenir une couche de LZO1 le précurseur utilisé dans la présente invention est une solution à 0,6 mol/1 de LaZr(prop)7 (La / Zr = 1 :1 , i.e. la solution contient 0,3 mol/l de La et 0,3 mol/l de Zr) dans l'acide propionique. LaZr(prop)7 est de préférence préparé par attaque dans l'acide propionique de La(acac)3 x 3 H2O et Zr(acac)4 (où « acac » désigne l'acétylacétonate) séparément, en chauffant légèrement (typiquement à environ 600C), sans évaporer une quantité significative d'acide propionique. La concentration maximale de LaZr(prop)7 utilisable semble être 0,9 mol/l.
Pour obtenir d'autres couches de type A2-χB2+xO7, on utilise avantageusement également les carboxylates, et de manière encore plus préférée les propionates des métaux A et B. A titre d'exemple, pour introduire le gadolinium dans une composition pour déposer une couche de Gd2Zr2O7 (GZO)1 on utilise avantageusement le propionate de gadolinium.
(2) Viscosité
La viscosité η de la solution est un paramètre très important car elle conditionne l'épaisseur déposée après trempage.
La viscosité de solutions de propionate de métaux, et notamment celle de solutions de propionate de LZO (LaZr(prop)7), dans l'acide propionique dépend de la concentration de la solution. On sait (voir par exemple Knoth et al, Sup. Sci.Technol. 18(2005), p. 334-339) que la viscosité d'une solution de 0,05 mol/l vaut 1 ,5 mPas, 2,5 pour 0,15 mol/1, et 6,5 mPas pour une concentration de 0,3 mol/1. L'épaisseur déposée après la trempe d est donnée par l'équation de Landau - Levich :
Figure imgf000017_0001
où γ est la tension de surface liquide-vapeur, p la densité du liquide et v la vitesse de retrait hors du bain, et a est un paramètre numérique qui vaut environ 0,94. Des adjuvants tels que des composés plurifonctionnalisés, sélectionnés par exemple parmi les polyamines, les polyamides, les polyéthers, les aminoalcools, ou de véritables polymères, comme par exemple le polyméthacrylate de méthyle (PMMA), le polyéthylène glycol (PEG), l'alcool polyvinylique (PVA), peuvent être ajoutés à la solution de propionates pour épaissir la solution et augmenter l'épaisseur déposée. D'autre part, l'épaisseur du dépôt de précurseur dépend également de la température du bain. L'élévation de la température de quelques degrés peut modifier de plusieurs dizaines de % l'épaisseur finale d'oxyde obtenu après traitement thermique. On préfère ne pas dépasser 4O0C, et encore plus préférentiellement ne pas dépasser 300C. Au- dessus de 400C, la composition de la solution se modifié dû à l'évaporation du solvant (typiquement d'acide propionique si on utilise des propionates). Une température trop basse du bain est susceptible de conduire à un début de cristallisation d'une des espèces présentes dans le bain. Par conséquent, on préfère une température comprise entre 200C et 300C. La viscosité de la solution précurseur à la température du procédé est préférentiellement comprise entre 1 mPa s et 20 mPa s, et encore plus préférentiellement comprise entre 2 mPa s et 10 mPa s. Cette mesure est effectuée de manière classique par un viscosimètre à bille. Le procédé selon l'invention fait intervenir un substrat de forme cylindrique, tel qu'un tube. Le dépôt se fait par trempage. Lorsque l'on retire le substrat du liquide, celui-ci s'écoule mais une pellicule reste déposée, dont l'épaisseur est régie par la loi écrite plus haut. La géométrie cylindrique du substrat modifie les écoulements par rapport à la géométrie plane, en particulier à cause des effets de bords qui sont différents.
(3) Séchage
Le séchage permet d'obtenir une couche solide qui a l'aspect d'une résine polymérique. Elle rend l'objet manipulable aisément. Pour obtenir cette couche, la couche de précurseur déposée par voie liquide est séchée, de préférence à une température comprise entre 800C et 1000C, avantageusement par un chauffage infrarouge. Ce séchage conduit à la polymérisation au moins partielle de la résine, attestée par le fait que le précurseur devient rigide et seulement partiellement soluble dans les solvants usuels. On peut également sécher cette couche par un flux de gaz neutre chaud (argon ou azote par exemple), de préférence à une température comprise entre 60°C et 150°C.
Les étapes de trempe et séchage/polymérisation sont faites dans une atmosphère contrôlée. Cela implique, d'une part, la protection contre des poussières qui viendraient faire des « pailles » dans le film. Cela implique également un contrôle soigneux du taux d'humidité, afin que le procédé soit reproductible. Un taux d'humidité relative de 20% convient. Un taux plus faible peut également convenir.
(4) Epaisseur déposée
L'épaisseur déposée dépend de la vitesse d'extraction, de la viscosité et de la tension de surface liquide - vapeur. La vitesse d'extraction, c'est-à-dire la vitesse avec laquelle le substrat est extrait du liquide, se situe avantageusement entre 1 mm/min et 100 mm/min, et est de préférence d'au moins 10 mm/min. En général, la gamme d'épaisseur optimale de LZO, compte tenu des propriétés du supraconducteur qui le recouvre ensuite, se situe entre 30 nm et 250 nm. Les inventeurs ont pu déposer sur des surfaces courbées, et notamment sur des tubes d'un diamètre de quelques millimètres, jusqu'à 250 nm de LZO, en plusieurs dépôts successifs, sans craques et avec des qualités de textures correctes, bien que ces couches ne soient pas toujours cristallisées en surface comme requis. A condition d'avoir des qualités de texture et de cristallisation correctes, il est préférable d'avoir une couche tampon dont non seulement la densité, mais aussi l'épaisseur soit élevée, dans les limites indiquées ci- dessus. En effet, les inventeurs ont trouvé que les propriétés de la couche supra- conductrice TRBaCuO ou YBaCuO, sont meilleures pour les plus fortes épaisseurs de LZO. Une explication pourrait être que les défauts de surface du substrat sont davantage masqués avec des couches tampon épaisses. On préfère une épaisseur comprise entre 60 nm et 250 nm, et encore plus préférentiellement comprise entre 80 nm et 250 nm. En effet, le procédé selon l'invention permet de déposer une épaisseur comprise entre 30 nm et environ 120 nm en une seule fois, sans formation de craquelures. Une épaisseur typique déposée en une fois est 80 nm. Le dépôt de plusieurs couches l'une sur l'autre, ces couches étant de composition identique, donne une meilleure densification de la couche tampon obtenue. La couche déposée, en un seul dépôt ou en plusieurs dépôts successifs, est texturée bi-axialement.
Le procédé selon l'invention diffère des procédés sur substrat plat par la texture du substrat. Dans les rubans plats, la texture est tridimensionnelle et présente deux directions orthogonales préférentielles. Ceci signifie que les grains sont orientés les uns par rapport aux autres dans le plan et perpendiculairement au plan. Si on roule ce ruban pour en faire un tube, on va mécaniquement introduire des désorientations radiales entre grains, et créer des contraintes de surface. La désorientation radiale moyenne entre grains peut être calculée si l'on connaît le nombre de grains sur 360°. Un substrat sous la forme d'un tube, tel qu'utilisé dans le cadre de la présente invention, présente typiquement une taille moyenne de grains de 50 μm, observée sur une zone d'un diamètre de 2 mm, ce qui conduit à une désorientation radiale moyenne entre grain d'environ 3° ; cela est acceptable. Un tel substrat présente une texture bidirectionnelle avec un axe radial et un axe axial. Sa couche d'oxyde présente typiquement une taille de grain comprise entre 50 nm et 80 nm.
(5) Traitement thermique Cette étape est particulièrement critique pour le procédé selon l'invention. Après séchage, le film est porté à une température comprise entre 850 et 11000C avec une vitesse de montée en température comprise entre 100 et 2000°C/h sous un balayage de gaz réducteur, de préférence un mélange d'argon contenant 5 vol-% H2. L'utilisation d'un tel gaz évite l'oxydation du substrat. Il peut être utile d'effectuer un palier à haute température.
Le flux et le débit de gaz, la vitesse de montée en température et la température de traitement (température maximum) sont des paramètres essentiels de la phase du traitement thermique. La vitesse de gaz doit être la plus élevée possible, sans risquer de refroidir l'échantillon et elle conditionne le déroulement de la pyrolyse des précurseurs, notamment l'avancement du front de pyrolyse, et l'avancement du front de cristallisation de la partie texturée dans le film.
La température du traitement thermique est avantageusement comprise entre 800°C et 11000C pour former l'oxyde. Elle doit être supérieure à 85O0C pour amorcer une cristallisation, et doit être inférieure à la température de recristallisation du substrat sous peine de le voir perdre sa texture. La température optimale dépend du substrat. Pour les substrats de Ni - 5at%W, la température de recristallisation se situe avantageusement proche de 11000C. Une température trop élevée, et un traitement trop long à température élevée, peut favoriser l'interdiffusion entre le substrat métallique et la couche tampon. En particulier, le tungstène du substrat en nickel - tungstène peut diffuser dans la couche tampon, et le lanthane de la couche tampon peut diffuser dans le substrat métallique. Il peut aussi y avoir des réactions à l'interface. La température de cristallisation optimale dépend légèrement de la composition en éléments métalliques de la couche. Les valeurs données ci-dessus sont optimales pour le LZO. Un dopage au Gd peut inciter à baisser légèrement cette température.
En tout état de cause, le traitement thermique se fait avantageusement avec une vitesse de montée en température comprise entre 100°C/h et 2000°C/h, préférentiellement entre 250°C/h et 2000°C/h et encore plus préférentiellement entre 500°C/h et 2000°C/h, suivi d'un palier à la température T pendant une durée comprise entre 1 et 120 minutes, préférentiellement entre 10 et 90 minutes, et encore plus préférentiellement entre 20 et 60 minutes, et suivi d'un refroidissement à une vitesse comprise entre 100°C/h et 2000°C/h, préférentiellement entre 100°C/h et 1000°C/h et encore plus préférentiellement entre 100°C/h et 500°C/h. Dans un mode de réalisation particulier, le traitement thermique peut être effectué en deux parties ou phases se distinguant par leur domaine de température : une première partie ou phase dite de pyrolyse, allant d'environ 1500C à environ 350°C, et une seconde partie ou phase dite de cristallisation, allant d'environ 45O0C à environ 10000C ou 11000C. Les vitesses de montée en température à l'intérieur de ces deux régimes peuvent être différentes, par exemple lent en phase de pyrolyse et rapide en phase de cristallisation.
De manière avantageuse, le traitement thermique fait intervenir un passage sous vide dans le domaine de la pyrolyse. A la fin de la phase de pyrolyse, on peut laisser refroidir jusqu'à la température ambiante, ou on peut continuer le traitement thermique en augmentant là température pour arriver dans la phase de cristallisation.
Par ailleurs, le traitement thermique pendant la phase de cristallisation doit se faire sous balayage de gaz réducteur, de préférence Ar + 5%(vol) H2), ledit gaz réducteur ayant de préférence une vitesse de balayage supérieure à 0,005 cm/s, préférentielle- ment comprise entre 0,012 cm/s et 0,1 cm/s, et encore plus préférentiellement comprise entre 0,04 cm/s et 0,08 cm/s. On peut aussi utiliser un mélange de N2 + H2 (typiquement 5% vol. H2) qui est moins cher qu'un mélange Ar + H2.
Dans un mode de réalisation avantageux de l'invention, ce balayage de gaz est effectué en injectant le gaz préchauffé à contre-courant dans un tube dit à aspiration différentielle, qui est montré schématiquement sur la figure 4. Il comporte une paroi chauffante (7) et des parois internes perforées (3) qui délimitent un espace intérieur (2) et un espace extérieur (1). Le produit à traiter (6) se trouve dans l'espace intérieur (2).
Le gaz entre (4) dans le tube, entraîne les produits gazeux de la réaction de pyrolyse et est extrait à l'extérieur du tube par une aspiration (4) à travers les parois perforées
(3). La pression dans l'espace intérieur (2) est supérieure à celle dans l'espace extérieur (1).
Le balayage de gaz peut aussi être appliqué pendant la phase de pyrolyse, si l'on ne choisit pas d'effectuer la pyrolyse, comme indiqué ci-dessus, sous vide. Dans un mode de réalisation typique, la phase de pyrolyse est effectuée à 3500C sous vide primaire pendant 1 heure (minimum 30 minutes), pour éliminer les résidus de l'acide propionique, et la phase de cristallisation est effectuée sous balayage d'argon/H2 comme décrit ci-dessus.
La croissance de la partie épitaxiée qui démarre de l'interface par nucléation hétérogène sur le substrat doit s'étendre jusqu'à la surface pour permettre une reprise d'épitaxie pour le dépôt d'une couche TRBaCuO ou YBaCuO de bonne qualité. Or, les propriétés des films d'oxyde tampon obtenus par voie chimique font que la nucléation peut aussi se produire dans la partie non épitaxiée par nucléation en phase homogène, les grains germant alors dans des directions aléatoires. Il est indispensable d'éviter cette nucléation en phase homogène afin que le film soit texture dans toute son épaisseur, jusqu'à la surface.
Sans vouloir s'enfermer dans cette hypothèse scientifique, les inventeurs pensent que le carbone et les espèces carbonées, et peut-être aussi l'oxygène et les composés carbonés qui l'emportent, générés par la pyrolyse du précurseur métal-organique, jouent un rôle important dans ce processus et bloquent peut-être la nucléation et la croissance homogène, permettant ainsi à la partie texturée de s'étendre facilement jusqu'à la surface.
De même, les inventeurs s'imaginent que le balayage du gaz de conditionnement passant au dessus du film lors de son traitement thermique agit sur la cinétique de la pyrolyse des précurseurs et gère l'avancée du front de croissance de la partie texturée. Cette hypothèse permettrait d'expliquer pourquoi la vitesse de recuit joue un rôle important dans la pyrolyse, la nucléation et la cristallisation, et détermine donc, pour une part, la microstructure du film céramique constituant la couche tampon. De manière surprenante, les inventeurs ont constaté que dans le procédé selon l'invention, la nucléation se fait par épitaxie sur les grains du substrat métallique, conduisant à une couche épitaxique d'excellente qualité, c'est-à-dire cristallisée, texturée en surface et dense, qui permet de déposer ensuite des couches TRBaCuO ou YBaCuO de très bonne qualité. L'obtention par ce procédé d'une couche épitaxique courbée qui est texturée en surface est surprenante, car toute désorientation des grains du substrat risque de se traduire sur les grains ayant nucléés. C'est un des problèmes spécifique à la géométrie non plane ; le procédé selon l'invention permet de résoudre ce problème. Le fait que la couche LZO soit texturée en surface permet à la couche TRBaCuO ou YBaCuO de reprendre cette texture lors de son dépôt par épitaxie ; on obtient ainsi une couche TRBaCuO ou YBaCuO de structure contrôlée qui présente d'excellentes propriétés supraconductrices. C'est donc sur des substrats non plans (i.e. courbés) que le procédé selon l'invention est particulièrement avantageux par rapport aux procédés connus.
(iv) Dépôt de la couche de TRBaCuO
Le substrat recouvert de sa couche tampon est ensuite recouvert d'une couche supraconductrice de TRBaCuO ou YBaCuO et enfin d'une couche protectrice fine par pulvérisation d'Ag. Cette couche supraconductrice est avantageusement une couche d' YBaCuO. Dans un mode de réalisation, son épaisseur est comprise entre 200 nm et 500 nm.
Le dépôt de la couche TRBaCuO ou YBaCuO se fait de préférence par la technique de MOCVD (metal-organic chemical vapour déposition), que l'homme du métier connaît en tant que telle. Une technique de dépôt d'YBaCuO par MOCVD qui convient est décrite par exemple dans la demande de brevet WO 93/08838 et dans l'article publié par Donet et al. dans J. Phys IV Pr 11 AA 319 en 2001.
On peut utiliser avantageusement une technique MOCVD à injection périodique de gouttelettes telle que décrite dans les documents WO 95/02711 et US 5,945,162 précités, qui permet de synthétiser des couches minces de matériaux complexes de type TRBaCuO avec un très bon contrôle de la stœchiométrie, de la vitesse de croissance et de la qualité cristalline des films. Son principe repose sur l'utilisation d'une micro-vanne à commande électronique qui permet d'introduire des volumes liquides très précisément contrôlés d'une solution composé de précurseurs organométalliques et d'un solvant. La solution est contenue dans un flacon pressurisé sous atmosphère inerte et connecté à l'injecteur. Des microgouttelettes sont injectées séquentiellement dans un évaporateur (à une température d'environ 2500C) où le solvant et les précurseurs sont vaporisées. Un flux gazeux transporte les précurseurs dans la zone de réaction où la croissance CVD a lieu sur un substrat chauffé. On peut ainsi injecter soit des gouttelettes constituées de mélanges de plusieurs précurseurs, soit successivement des gouttelettes constitué d'un seul précurseur. Cette technique permet le dépôt de couches de composition chimique complexe.
Pour déposer de manière homogène sur un substrat de forme cylindrique, on peut utiliser par exemple plusieurs rangs de buses reparties autour du cylindre, ou on peut faire tourner le substrat cylindrique autour de son axe long devant une pluralité de buses. On peut utiliser par exemple 16 buses réparties sur une longueur de 30 cm.
(v) Dépôt d'une couche métallique
Au-dessus de la couche TRBaCuO ou YBaCuO, on dépose ensuite une couche métallique. Cette couche est de préférence perméable pour l'oxygène, permettant sa diffusion. L'argent donne le meilleur résultat. Cette couche peut être déposée avec toute technique connue, mais on préfère le dépôt dans des conditions permettant l'absence de contaminations d'interface empêchant le transfert de courant entre la couche protectrice d'argent et la couche supraconductrice. Le nettoyage de l'interface peut se faire par exemple par un plasma d'argon-oxygène.
Dans un mode de réalisation, on dépose une couche d'argent d'une épaisseur comprise entre 250 nm et 450 nm. (vi) Traitement oxydant
Le traitement oxydant est nécessaire car dans les conditions du dépôt MOCVD, le composé YBaCO présente une stoechiométrie de l'oxygène inférieure à 6,93 lui conférant une structure quadratique à haute température, qui transite vers une structure orthorhombique à 5000C. Néanmoins, pour s'approcher de la stoechiométrie idéale de 6,93, le refroidissement doit se faire en pression atmosphérique d'oxygène. Dans un procédé en ligne cette étape est effectuée séparément grâce à traitement post-dépôt à une température comprise entre 4500C et 6000C, de préférence entre 5000C et 600°, sous oxygène pur, pendant plusieurs heures, suivis d'une descente lente à quelques centaines de degrés par heure, typiquement 100°C/h. L'argent, compte tenu de sa perméabilité à l'oxygène et de son caractère inerte vis-à-vis de l'oxygène rend possible le traitement oxydant après l'étape de métallisation.
Nous décrivons ici deux variantes du procédé selon l'invention. Dans une première variante, on approvisionne un substrat métallique plat, préalablement texture bi-axialement, qui est revêtu d'une couche tampon d'oxyde métallique épitaxique, en utilisant un procédé de l'état de la technique ou le procédé selon l'invention. Ce substrat plat est ensuite transformé en substrat long de section sensiblement circulaire ou elliptique, et typiquement un substrat tubulaire, de préférence par le procédé de soudage des chants décrit ci-dessus. Lors de ce procédé de roulage - soudage, la couche tampon est inévitablement endommagée, et il est nécessaire de redéposer une seconde couche tampon au-dessus de la première, par le procédé de dépôt décrit ci-dessus. On préfère déposer une ou plusieurs couches d'oxyde métallique épitaxique très mince, d'une épaisseur comprise entre 20 et 60 nm, et de manière encore plus préférée d'environ 40 nm. Ensuite, on poursuit le procédé selon l'invention comme décrit ci-dessus avec le dépôt de la couche de TRBaCuO ou YBaCuO (étape (iv)), le dépôt de la couche de protection en métal (étape (v)) et le traitement oxydant (étape (vi)).
Dans une deuxième variante, on approvisionne un substrat plat fortement écroui mais non texture, et on le transforme en substrat métallique long de section sensiblement circulaire ou elliptique, et typiquement un substrat tubulaire, de préférence en utilisant le procédé de soudage des chants décrit ci-dessus. Ensuite, on effectue un recuit texturant, et poursuit le procédé selon l'invention comme décrit ci-dessus, avec un traitement de fonctionnalisation (étape (N)), suivi du dépôt de la couche tampon (étape (iii)), le dépôt de la couche de TRBaCuO ou YBaCuO (étape (iv)), le dépôt de la couche de protection en métal (étape (v)) et le traitement oxydant (étape (vi)).
Le procédé selon l'invention a de nombreux avantages. Il permet la préparation de conducteurs supraconducteurs à haute température de section transversale sensiblement circulaire ou elliptique par un procédé continu (« reel-to-reel », i.e. effectué de bobine en bobine) de dépôt successif de couches de grande qualité cristallographique.
Dans un mode de réalisation particulier de l'invention, on utilise un substrat métallique texture qui présente des rainures. On peut par exemple utiliser un substrat ondulé ou nervure, qui a été préparé à partir d'une tôle plate par un procédé mécanique de déformation, par exemple par l'application de rouleaux. Ces rainures ou nervures sont disposées avantageusement dans une direction autre qu'orthogonale au sens long du substrat ; elles n'ont pas besoin d'être parallèles l'une par rapport à l'autre, ou parallèles à l'axe long du substrat. Sur de tels substrats, on peut déposer du TRBaCuO dans les espaces (creux) des rainures, nervures ou ondulations, ce qui génère des veines de matériau supraconducteur ; ainsi, on diminue les pertes en courant alternatif en fractionnant la section où circule le courant.
Le procédé selon l'invention est particulièrement bien adapté pour déposer une couche tampon homogène de type A2-XB2+XO7 sur un tel substrat rainure (tel qu'un substrat ondulé ou nervure), alors que les procédé sous vide sur un tel substrat conduisent en général à des couches présentant une épaisseur inhomogène.
Exemples Ces exemples servent à illustrer des modes de réalisation de l'invention, mais ne la limitent pas.
Exemple 1 :
On a élaboré des produits avantageux selon l'invention, qui présentent les caractéristiques suivantes : « La couche tampon d'oxyde métallique est une couche de LZO, qui a typiquement une épaisseur comprise entre 80 nm et 210 nm. • La couche de TRBaCuO ou YBaCuO est avantageusement une couche d'YBaCuO présentant une épaisseur comprise entre 200 nm et 500 nm, et typiquement de l'ordre de 350 nm.
• La couche de protection en métal est une couche d'argent, qui a typiquement une épaisseur comprise entre 250 nm et 450 nm, et typiquement de l'ordre de
350 nm.
Un tel fil d'YBaCuO déposé sur un fil texture de Ni, présente une température Tc d'au moins 83 K1 préférentiellement d'au moins 85 K, et encore plus préférentiellement d'au moins 93 K. La densité de courant, mesurée à 4 K1 est supérieure à 3 A par centimètre de périmètre.
La figure 1 montre trois micrographies, obtenues par des techniques différentes, d'un même tube revêtu d'une couche de LZO déposée par le procédé selon l'invention. Dans cet exemple, on a déposé la couche de LZO d'une épaisseur de 110 nm sur un substrat plat Ni-5at%W texture bi-axial, qui a été transformé en tube par un procédé de roulage - soudage.
La figure 1(b) montre une micrographie obtenue par microscopie électronique à balayage (tension d'accélération 20 kV) sur le tube roulé-soudé. Lors de la phase d'étirement, la couche de LZO est fracturée selon les bandes de Lϋders générées par la déformation du substrat métallique. La micrographie montre les fractures de la couche LZO induites par cette déformation.
La figure 1 (a) montre une micrographie obtenue par microscopie électronique à balayage en mode de diffraction d'électrons rétrodiffusés (EBSD = Electron BackScattered Surface Diffraction) du même tube. Cette technique donne des informations sur les orientations relatives des grains de la surface. Les parties sombres représentent des grains de La2Zr2O7 avec leurs axes [001] parallèles à la normale de la surface du tube (axe r, voir la figure 4) et leurs axes [100] parallèles à l'axe du cylindre (Z). Les zones gris clair sont tournées de 45° par rapport aux précédentes (direction <110>). Il s'agit de zones de Ni-5at%W découvertes lors de la préparation du tube qui apparaissent en sombre sur la micrographie de la figure 1(b). Elles sont tournées de 45e par rapport aux grains de La2Zr2O7 pour des raisons d'accord de maille cristallographique entre ces deux composés. Les régions blanches correspondent à des grains totalement désorientés. La figure 1(c) montre une micrographie obtenue par microscopie électronique à balayage en mode de diffraction d'électrons rétrodiffusés dans des conditions identique à celles employées pour la figure 1(b), sur un tube dont la couche de LZO a été réparée par dépôt d'une deuxième couche de LZO par le procédé selon l'invention. On observe que ce deuxième dépôt bouche les zones vides causées par le processus de mise en forme du tube, qui sont visibles sur les figures 1(a) et 1(b).
Cet exemple montre que la surface fracturée de LZO, endommagé lors de la mise en forme d'un substrat métallique initialement plat, peut être réparée moyennant une deuxième couche de LZO déposée selon le procédé de l'invention. La figure 3 montre qu'un dépôt de YBaCuO sur un tel substrat peut présenter une résistivité de moins de 0,10 Ω à 80 K, et une résistivité nulle vers 60 K où il devient supraconducteur.
Exemple 2 : Cet exemple décrit le dépôt d'une couche mince épitaxiée de La2Zr2O7 sur tôle ondulée ou nervurée. Le substrat était une tôle nervurée de Ni texturée bi-axialement, d'épaisseur 80 μm, de longueur 4 cm, et de largeur 1 cm ; sa forme est montrée schématiquement sur la figure 5. Cette tôle a été obtenue à partir d'une tôle plate par pressage sur deux baguettes d'alumine de 1 mm de diamètre, disposées parallèlement à la longueur de l'échantillon et séparées de 7 mm environ. Après pressage la forme des baguettes s'incruste dans la tôle en donnant une forme ondulée possédant des saillies légèrement anguleuses. On note une augmentation significative de la raideur de la tôle facilitant sa manipulation.
Cette tôle a ensuite été trempée dans une solution d'un propionate d'un métal, de viscosité adéquate, puis extraite à la vitesse de 66 mm/min afin de la couvrir d'un dépôt uniforme. L'épaisseur de ce dépôt est déterminée par l'écoulement du liquide vers le bas, les paramètres critiques étant la viscosité et la tension de surface. Sur la surface de la tôle, les parties concaves font office de drains d'écoulement et l'épaisseur de la couche est plus faible dans ces parties, comme en témoigne la couleur finale du film après cristallisation. Inversement, les parties en saillies sont plus épaisses.
Après séchage à 600C pendant quelques minutes, l'échantillon a été mis à cristalliser dans un four en suivant le traitement déjà décrit. Il en est ressorti un échantillon couvert d'un émail brillant dont la couleur reflète son épaisseur. Les parties planes sont bleues ciel, correspondant à une épaisseur de 80 -100 nm.
La structure cristalline a été observée par diffraction des rayons X avec un faisceau de 2 mm x 1 mm, de taille adaptée à sonder la partie plane. Celle-ci est bien cristallisée avec la texture attendue (direction [001]// à la normale de la surface et la direction [100] parallèle à la direction <110> du Ni), indiquant que l'ondulation n'a pas induit de perturbation sur cette zone.
La caractérisation structurale de la partie ondulée ne peut être faite de façon classique qu'en aplatissant celle-ci dans une presse. En revanche, la technique de microdiffraction permet d'éviter cette difficulté pouvant introduire des artefacts lors de la mise à plat. L'observation de la tôle aplatie révèle une texture cube de bonne qualité (équivalent à celle de la partie plane) démontrant que l'ondulation crée n'avait pas d'influence à l'échelle de la mesure, soit sur une surface de quelques 2x1 mm2. Ceci n'exclu pas que des distorsions puisse exister sur une échelle du micron sur les sommets des saillies, mais leur contribution à la moyenne est indiscernable.
Il est intéressant de noter que la mise à plat ne crée pas de fissurations longitudinales excessives de la couche, ce qui peut être expliqué par sa faible épaisseur. Cependant de courtes fissures perpendiculaires à la longueur de l'échantillon ont été observées et imputables à des contraintes dilatométriques.

Claims

REVENDICATIONS
1. Procédé de dépôt d'une couche tampon d'oxyde métallique épitaxique sur une surface fonctionnalisée d'un substrat métallique texture, ledit procédé comprenant les étapes suivantes :
(1 ) on dépose une couche d'un précurseur d'un oxyde de type A2-χB2+χθ7 où A représente un métal de valence 3 (tel que le La, Y, Gd, Dy, Lu, Sc, Nd, Sa ; le La étant préféré) ou un mélange de plusieurs de ces métaux, et B un métal de valence 4 (tel que le Zr, Ti, Sn, Hf, Pb, Ce ; le Zr étant préféré), tel que le La2Zr2O7,(appelé aussi LZO), et x est un nombre compris entre -0,1 et +0,1 , à partir d'une solution des carboxylates (et préférentiellement des propionates) desdits métaux A et B, cette solution ayant de préférence une viscosité, mesurée à la température du procédé, comprise entre 1 mPa s et 20 mPa s, et encore plus préférentiellement comprise entre 2 mPa s et 1O mPa s, (2) on laisse sécher ladite couche de précurseur d'oxyde, de préférence à une température comprise entre 60°C et 150°C, et de préférence entre 80 et 1000C,
(3) on effectue un traitement thermique pour pyrolyser ledit précurseur d'oxyde et pour former l'oxyde, au moins une partie dudit traitement thermique étant effectuée sous balayage de gaz réducteur, de préférence Ar + 5%(vol) H2), ledit gaz réducteur ayant de préférence une vitesse de balayage supérieure à 0,005 cm/s, préférentiellement comprise entre 0,012 cm/s et 0,1 cm/s, et encore plus préférentiellement comprise entre 0,04 cm/s et 0,08 cm/s.
2. Procédé selon la revendication 1, caractérisé en ce que le traitement thermique (étape (3)) comprend une phase dite de pyrolyse et une phase dite de cristallisation, la phase de pyrolyse impliquant un traitement thermique compris entre 1500C et environ 4500C (et de préférence ne pas dépassant 35O0C), et la phase de cristallisation impliquant un traitement thermique compris entre environ 450°C et environ 11000C.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que ledit traitement thermique (étape (3)) comprend un traitement à une température T comprise entre 8000C et 1100°C, et préférentiellement entre 8500C et 1000°C, pour former l'oxyde.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le traitement thermique comprend une vitesse de montée en température comprise entre 100°C/h et 2000°C/h, préférentiellement entre 250°C/h et 2000°C/h et encore plus préférentiellement entre 500°C/h et 2000°C/h, suivi d'un palier à la température T pendant une durée comprise entre 1 et 120 minutes, préférentiellement entre 10 et 90 minutes, et encore plus préférentiellement entre 20 et 60 minutes, et suivi d'un refroidissement à une vitesse comprise entre 100°C/h et 2000°C/h, préférentiellement entre 100°C/h et 1000°C/h et encore plus préférentiellement entre 100°C/h et 500°C/h.
5. Procédé selon l'une quelconque des revendications 2 à 4, caractérisé en ce que la phase de pyrolyse est effectué au moins en partie à une pression réduite.
6. Procédé selon l'une quelconque des revendications 2 à 5, caractérisé en ce que la phase de cristallisation est effectuée sous balayage de gaz réducteur.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit substrat métallique est un substrat métallique long de section sensiblement circulaire ou elliptique, à texture cube présentant des grains dont la direction [001] est perpendiculaire au sens long du substrat, et dont la direction [100] est parallèle au sens long du substrat.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit substrat métallique présente des rainures, telles que des ondulations ou des nervures.
9. Utilisation du procédé selon l'une quelconque des revendications 1 à 8 dans un procédé de fabrication de dispositifs supraconducteurs comportant une couche supracondutrice d'oxyde mixte Terre Rare - Baryum - Cuivre (TRBaCuO) et notamment d'oxyde mixte Yttrium - Baryum - Cuivre (YBaCuO ou YBCO), ladite couche supraconductrice étant déposé sur ladite couche tampon.
10. Procédé de fabrication d'un conducteur électrique supraconducteur de section transversale sensiblement circulaire ou elliptique, ledit conducteur comportant une couche d'oxyde mixte d'Yttrium - Baryum - Cuivre (YbaCuO ou YBCO) en tant que matériau supraconducteur déposée sur un substrat métallique de section sensiblement circulaire, ledit procédé comportant, dans l'ordre indiqué, les étapes suivantes :
(a) on approvisionne un substrat métallique long de section sensiblement circulaire ou elliptique, et typiquement un substrat tubulaire, ledit substrat ayant une texture cube présentant des grains dont la direction [001] est perpendiculaire au sens long du substrat, et dont la direction [100] est parallèle au sens long du substrat ;
(b) on effectue un traitement de fonctionnalisation au moins de la surface externe dudit substrat métallique, de préférence par un traitement au H2S ;
(c) on dépose une couche tampon d'oxyde de métaux épitaxique au moins sur la surface externe fonctionnalisée dudit tube à partir d'une solution liquide, en utilisant le procédé selon l'une quelconque des revendications 1 à 8 ;
(d) on dépose la couche de TRBaCuO, et notamment de YbaCuO, sur la couche d'oxyde métallique déposée à l'étape (c) ;
(e) on dépose une couche de protection en métal, de préférence en argent ;
(f) on effectue un traitement oxydant.
11. Procédé selon la revendication 10, caractérisé en ce que le traitement au H2S est effectué à une pression comprise entre 10~3 et 10 bar, et de préférence à la pression atmosphérique.
12. Procédé selon la revendication 11 , caractérisé en ce que le traitement au H2S est effectué pendant une durée d'au moins une minute.
13. Conducteur électrique supraconducteur de section transversale sensiblement circulaire ou elliptique susceptible d'être obtenu par le procédé selon l'une quelconque des revendications 10 à 12.
14. Conducteur électrique supraconducteur selon la revendication 13, caractérisé en ce qu'il présente une température Tc d'au moins 83 K, préférentiellement d'au moins 85 K et encore plus préférentiellement d'au moins 93 K.
15. Conducteur électrique supraconducteur selon la revendication 13 ou 14, caractérisé en ce qu'il présente une densité de courant, mesurée à une température de 4 K, supérieure à 3 A par centimètre de périmètre.
PCT/FR2009/001448 2008-12-18 2009-12-18 Procédé de dépôt de films d'oxydes sur tubes métalliques texturés WO2010076428A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/139,947 US8633138B2 (en) 2008-12-18 2009-12-18 Method for depositing oxide films on textured metal pipes
ES09804275.7T ES2495342T3 (es) 2008-12-18 2009-12-18 Procedimiento de deposición de películas de óxido sobre tubos metálicos con textura
EP09804275.7A EP2374167B1 (fr) 2008-12-18 2009-12-18 Procédé de dépôt de films d'oxydes sur tubes métalliques texturés
JP2011541537A JP2012512802A (ja) 2008-12-18 2009-12-18 配向金属チューブ上に酸化物薄膜を堆積する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0807113A FR2940323B1 (fr) 2008-12-18 2008-12-18 Procede de depot de films d'oxydes sur tubes metalliques textures
FR0807113 2008-12-18

Publications (2)

Publication Number Publication Date
WO2010076428A1 true WO2010076428A1 (fr) 2010-07-08
WO2010076428A8 WO2010076428A8 (fr) 2010-11-18

Family

ID=40690423

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2009/001449 WO2010076429A1 (fr) 2008-12-18 2009-12-18 Procédé de dépôt de films d'oxydes minces sur des surfaces métalliques texturées courbées
PCT/FR2009/001448 WO2010076428A1 (fr) 2008-12-18 2009-12-18 Procédé de dépôt de films d'oxydes sur tubes métalliques texturés

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/001449 WO2010076429A1 (fr) 2008-12-18 2009-12-18 Procédé de dépôt de films d'oxydes minces sur des surfaces métalliques texturées courbées

Country Status (7)

Country Link
US (2) US8633138B2 (fr)
EP (2) EP2374168A1 (fr)
JP (2) JP2012512803A (fr)
KR (2) KR20110112365A (fr)
ES (1) ES2495342T3 (fr)
FR (1) FR2940323B1 (fr)
WO (2) WO2010076429A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013064776A1 (fr) 2011-11-02 2013-05-10 Fabien Gaben Procede de realisation de couches minces denses par electrophorese
JP2015508324A (ja) * 2011-12-01 2015-03-19 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデイション 平坦および湾曲する基板上のフォトニック素子およびその製造方法
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606226B2 (ja) 2009-11-30 2014-10-15 キヤノン株式会社 X線モノクロメータ及びx線分光装置
EP3120450B1 (fr) * 2014-03-18 2019-11-20 Fondazione Istituto Italiano di Tecnologia Composite triboélectrique permettant une collecte et une détection de l'énergie mécanique
EP2960954A1 (fr) * 2014-06-24 2015-12-30 Basf Se Procédé de fabrication d'un composite constitué d'une couche à supraconducteur haute température (HTS)
CN109273255B (zh) * 2018-09-18 2021-04-23 陕西科技大学 一种高铁磁性的lsmo薄膜及其制备方法
WO2021063723A1 (fr) * 2019-09-30 2021-04-08 Basf Se Ruban supraconductrice à haute température avec tampon à teneur en carbone contrôlée

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993008838A1 (fr) 1991-10-28 1993-05-13 Mount Sinai School Of Medicine Of The City University Of New York Composition pharmaceutique orale contenant un conjugue d'immunoglobuline de polyethylene glycol
WO1995002711A1 (fr) 1993-07-12 1995-01-26 Centre National De La Recherche Scientifique Procede et dispositif d'introduction de precurseurs dans une enceinte de depot chimique en phase vapeur
US6451450B1 (en) 1995-04-10 2002-09-17 Ut-Battelle, Llc Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom
US6537689B2 (en) 1999-11-18 2003-03-25 American Superconductor Corporation Multi-layer superconductor having buffer layer with oriented termination plane
WO2006015819A1 (fr) * 2004-08-05 2006-02-16 Trithor Gmbh Procede de fabrication de supraconducteurs a haute temperature critique fortement textures et en forme de bandes
US20070026247A1 (en) 2005-07-29 2007-02-01 Paranthaman Mariappan P Doped LZO buffer layers for laminated conductors
US20070179063A1 (en) 2006-01-10 2007-08-02 American Superconductor Corporation Fabrication of sealed high temperature superconductor wires
US7261776B2 (en) 2004-03-30 2007-08-28 American Superconductor Corporation Deposition of buffer layers on textured metal surfaces
US20080039330A1 (en) 2006-05-18 2008-02-14 Andre Wolf Coated conductor and polycrystalline films useful for the production of high temperatures superconductor layers
EP1916720A1 (fr) 2006-10-27 2008-04-30 Nexans Procédé de fabrication pour un conducteur électrique supraconducteur
US20080113869A1 (en) 2006-11-10 2008-05-15 Venkat Selvamanickam Superconducting article and method of making
US20080119365A1 (en) 2006-11-17 2008-05-22 Arnaud Allais Method for producing a superconductive electrical conductor
WO2008078852A1 (fr) 2006-12-22 2008-07-03 Korea Institute Of Machinery & Materials Solution de précurseur de synthèse destinée à former une couche tampon à texture biaxiale par recuit à basse température

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1977045A (en) 1931-09-12 1934-10-16 Superior Tool & Mfg Co Inc Process of drying laminated paper material or boards
US5217754A (en) 1987-07-27 1993-06-08 Trustees Of The University Of Pennsylvania Organometallic precursors in conjunction with rapid thermal annealing for synthesis of thin film ceramics
JPH0677544A (ja) * 1992-07-09 1994-03-18 Sanyo Electric Co Ltd 酸化物超電導デバイス
US6001416A (en) 1994-11-24 1999-12-14 Fuji Xerox Co., Ltd. Oxide thin film and process for forming the same
US6077344A (en) 1997-09-02 2000-06-20 Lockheed Martin Energy Research Corporation Sol-gel deposition of buffer layers on biaxially textured metal substances
US6270908B1 (en) 1997-09-02 2001-08-07 Ut-Battelle, Llc Rare earth zirconium oxide buffer layers on metal substrates
US6440211B1 (en) 1997-09-02 2002-08-27 Ut-Battelle, Llc Method of depositing buffer layers on biaxially textured metal substrates
US6086957A (en) 1999-05-28 2000-07-11 Sandia Corporation Method of producing solution-derived metal oxide thin films
US20020173426A1 (en) * 2001-03-06 2002-11-21 Vrtis Christine L. Dip coating of phase pure YBCO films on substrates
JP4175016B2 (ja) * 2002-04-18 2008-11-05 住友電気工業株式会社 酸化物超電導線材の製造方法および製造装置
US20050065035A1 (en) * 2003-06-10 2005-03-24 Rupich Martin W. Superconductor methods and reactors
KR100694850B1 (ko) 2005-07-01 2007-03-13 학교법인 한국산업기술대학 유기금속전구용액 제조방법 및 이를 이용한유기금속증착법에 의한 박막형 산화물 초전도체 제조방법
GB2432726B (en) * 2005-11-25 2008-06-18 Coated Conductors Consultancy Template for a superconducting coil
ATE529900T1 (de) 2007-07-02 2011-11-15 Nexans Verfahren zum herstellen eines beschichteten leiters mit vereinfachter schichtarchitektur
JP5313478B2 (ja) 2007-10-05 2013-10-09 東レ・ダウコーニング株式会社 セラミック状酸化ケイ素系被膜の形成方法、セラミック状酸化ケイ素系被膜を有する無機質基材の製造方法、セラミック状酸化ケイ素系被膜形成剤および半導体装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993008838A1 (fr) 1991-10-28 1993-05-13 Mount Sinai School Of Medicine Of The City University Of New York Composition pharmaceutique orale contenant un conjugue d'immunoglobuline de polyethylene glycol
WO1995002711A1 (fr) 1993-07-12 1995-01-26 Centre National De La Recherche Scientifique Procede et dispositif d'introduction de precurseurs dans une enceinte de depot chimique en phase vapeur
US5945162A (en) 1993-07-12 1999-08-31 Centre National De La Recherche Scientifique Method and device for introducing precursors into chamber for chemical vapor deposition
US6451450B1 (en) 1995-04-10 2002-09-17 Ut-Battelle, Llc Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom
US6537689B2 (en) 1999-11-18 2003-03-25 American Superconductor Corporation Multi-layer superconductor having buffer layer with oriented termination plane
US7261776B2 (en) 2004-03-30 2007-08-28 American Superconductor Corporation Deposition of buffer layers on textured metal surfaces
US20070197045A1 (en) 2004-08-05 2007-08-23 Trithor, Gmbh Process for the Production of Highly-Textured, Band-Shaped, High-Temperature Superconductors
WO2006015819A1 (fr) * 2004-08-05 2006-02-16 Trithor Gmbh Procede de fabrication de supraconducteurs a haute temperature critique fortement textures et en forme de bandes
US20070026247A1 (en) 2005-07-29 2007-02-01 Paranthaman Mariappan P Doped LZO buffer layers for laminated conductors
US20070197395A1 (en) 2006-01-10 2007-08-23 American Superconductor Corporation Method of patterning oxide superconducting films
US20070179063A1 (en) 2006-01-10 2007-08-02 American Superconductor Corporation Fabrication of sealed high temperature superconductor wires
US20080039330A1 (en) 2006-05-18 2008-02-14 Andre Wolf Coated conductor and polycrystalline films useful for the production of high temperatures superconductor layers
EP1916720A1 (fr) 2006-10-27 2008-04-30 Nexans Procédé de fabrication pour un conducteur électrique supraconducteur
US20080113869A1 (en) 2006-11-10 2008-05-15 Venkat Selvamanickam Superconducting article and method of making
US20080119365A1 (en) 2006-11-17 2008-05-22 Arnaud Allais Method for producing a superconductive electrical conductor
WO2008078852A1 (fr) 2006-12-22 2008-07-03 Korea Institute Of Machinery & Materials Solution de précurseur de synthèse destinée à former une couche tampon à texture biaxiale par recuit à basse température

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
A. GOYAL ET AL.: "Recent progress in the fabrication of high-JC tapes by epitaxial deposition of YBCO on RABiTS", PHYSICA C, vol. 357-360, 2001, pages 903 - 913, XP004274351, DOI: doi:10.1016/S0921-4534(01)00437-3
A. GOYAL ET AL.: "Using RABITS to Fabricate High-Temperature Superconducting Wire", JOM, July 1999 (1999-07-01), pages 19 - 23
A. VILLAUME ET AL.: "In situ strain and transport magneto-optical investigations in superconductors", SUPERCONDUCTOR SCIENCE AND TECHNOLOGY, vol. 21, 2008, pages 034009
CAROFF ET AL., SUP.SCI.TECHNOL., vol. 21, 2008, pages 075007
CAROFF ET AL.: "La2Zr2O7 single buffer layer for YBaCuO RABiTS coated conductors", SUPERCOND. SCI. TECHNOL., vol. 21, 2008, pages 075007
DONET ET AL., J. PHYS IV PR, vol. 11, 2001, pages 319
H.C. FREYHARDT ET AL.: "YBaCuO Thick Films on Planar and Curved Technical Substrates", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, vol. 7, no. 2, 1997, pages 1426 - 1431, XP011501346, DOI: doi:10.1109/77.620839
J.L. SOUBEYROUX ET AL.: "Industrial Fe-Ni alloys for HTS coated conductor tapes", JOURNAL OF PHYSICS, CONFERENCE, vol. 97, 2008, pages 012069
K. KNOTH ET AL.: "Growth of thick chemical solution derived pyrochlore La2Zr207 buffer layers for YBa2Cu3O7-x coated conductors", THIN SOLID FILMS, vol. 516, 2008, pages 2099 - 2108, XP022449765, DOI: doi:10.1016/j.tsf.2007.08.130
KNOTH ET AL., SUP. SCI.TECHNOL., vol. 18, 2005, pages 334 - 339
KNOTH ET AL: "Detailed investigations on La2Zr2O7 buffer layers for YBCO-coated conductors prepared by chemical solution deposition", 16 December 2006, ACTA MATERIALIA, ELSEVIER, OXFORD, GB, PAGE(S) 517 - 529, ISSN: 1359-6454, XP005806507 *
QING HE; D.K. CHRISTEN ET AL.: "Deposition of biaxially-oriented metal and oxide buffer-layer films on textured Ni tapes : new substrate for high-current, high-temperature superconductors", PHYSICA C, vol. 275, 1997, pages 155 - 161
S.R. FOLTYN ET AL.: "Overcoming the barrier to 1000 A/cm width superconducting coatings", APPLIED PHYSICS LETTERS, vol. 87, no. 16, 2005, pages 162505, XP012076044, DOI: doi:10.1063/1.2106021
TERANISHI R ET AL: "Growth mechanism of Y123 film by MOD-TFA process", 1 October 2002, PHYSICA C, NORTH-HOLLAND PUBLISHING, AMSTERDAM, NL, PAGE(S) 1033 - 1038, ISSN: 0921-4534, XP004383045 *
YU Z M ET AL: "La2Zr2O7 films on Cu-Ni alloy by chemical solution deposition process", MATERIALS SCIENCE AND ENGINEERING B, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 130, no. 1-3, 15 June 2006 (2006-06-15), pages 126 - 131, XP025099770, ISSN: 0921-5107, [retrieved on 20060615] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013064776A1 (fr) 2011-11-02 2013-05-10 Fabien Gaben Procede de realisation de couches minces denses par electrophorese
JP2015508324A (ja) * 2011-12-01 2015-03-19 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデイション 平坦および湾曲する基板上のフォトニック素子およびその製造方法
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Also Published As

Publication number Publication date
FR2940323B1 (fr) 2011-02-11
US20110312500A1 (en) 2011-12-22
ES2495342T3 (es) 2014-09-17
US8642511B2 (en) 2014-02-04
WO2010076428A8 (fr) 2010-11-18
EP2374167A1 (fr) 2011-10-12
US8633138B2 (en) 2014-01-21
JP2012512803A (ja) 2012-06-07
KR20110125209A (ko) 2011-11-18
US20120028810A1 (en) 2012-02-02
KR20110112365A (ko) 2011-10-12
WO2010076429A1 (fr) 2010-07-08
EP2374167B1 (fr) 2014-06-11
JP2012512802A (ja) 2012-06-07
EP2374168A1 (fr) 2011-10-12
FR2940323A1 (fr) 2010-06-25

Similar Documents

Publication Publication Date Title
EP2374167B1 (fr) Procédé de dépôt de films d&#39;oxydes sur tubes métalliques texturés
Araki et al. Review of a chemical approach to YBa2Cu3O7− x-coated superconductors—metalorganic deposition using trifluoroacetates
RU2232448C2 (ru) Способ получения пленки оксидного сверхпроводника и оксидное сверхпроводниковое изделие
US6669774B1 (en) Methods and compositions for making a multi-layer article
RU2384907C1 (ru) Сверхпроводящий тонкопленочный материал и способ его изготовления
Engel et al. An all chemical solution deposition approach for the growth of highly texturedCeO2 caplayers on La2Zr2O7-buffered long lengths of biaxially textured Ni–W substrates for YBCO-coatedconductors
KR100683186B1 (ko) 다층 제품 및 그의 제조방법
JP2008509509A (ja) 高度に組織化されたテープ状高温超電導体の製造方法
US20100093545A1 (en) Method for making high jc superconducting films and polymer-nitrate solutions used therefore
JP5799081B2 (ja) 単層コーティングによる酸化物厚膜
Xiong et al. A novel process for CeO2 single buffer layer on biaxially textured metal substrates in YBCO coated conductors
JP2011528316A (ja) 希土類金属−Ba2Cu3O7−δ薄膜の製造のための組成物及び方法
Narayanan et al. Aqueous chemical solution deposition of lanthanum zirconate and related lattice-matched single buffer layers suitable for YBCO coated conductors: A review
JP5535453B2 (ja) 単純化された層構造を有する被覆導体
Wesolowski et al. Nitrate-based metalorganic deposition of CeO 2 on yttria-stabilized zirconia
Paranthaman et al. Epitaxial growth of solution-based rare-earth niobate, RE3NbO7, films on biaxially textured Ni–W substrates
Castaño et al. Kinetics study of YBCO thin film epitaxic growth on LAO (100) single crystals by the TFA-MOD method
Kim et al. Deposition of CeO/sub 2/buffer layers for YBCO coated conductors on biaxially textured Ni substrates by MOCVD technique
US20110111964A1 (en) Coated conductor architecture
Geo-Myung et al. Fabrication of YBCO films on metal tapes by the TFA-MOD process
EP0357480A1 (fr) Eléments composites comportant un coeur en matériau supraconducteur et leur procédé de préparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541537

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009804275

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009804275

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117016805

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13139947

Country of ref document: US