WO2010074049A1 - 抗hs6st2抗体及びその用途 - Google Patents

抗hs6st2抗体及びその用途 Download PDF

Info

Publication number
WO2010074049A1
WO2010074049A1 PCT/JP2009/071271 JP2009071271W WO2010074049A1 WO 2010074049 A1 WO2010074049 A1 WO 2010074049A1 JP 2009071271 W JP2009071271 W JP 2009071271W WO 2010074049 A1 WO2010074049 A1 WO 2010074049A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
hs6st2
amino acid
seq
acid sequence
Prior art date
Application number
PCT/JP2009/071271
Other languages
English (en)
French (fr)
Inventor
重人 川合
木村 直紀
Original Assignee
株式会社 未来創薬研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 未来創薬研究所 filed Critical 株式会社 未来創薬研究所
Priority to US12/998,988 priority Critical patent/US8846870B2/en
Priority to JP2010544062A priority patent/JP5756292B2/ja
Priority to EP09834850.1A priority patent/EP2388320B1/en
Publication of WO2010074049A1 publication Critical patent/WO2010074049A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57449Specifically defined cancers of ovaries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]

Definitions

  • the present invention relates to an antibody that binds to HS6ST2 protein and use thereof. More specifically, the present invention relates to an anti-HS6ST2 antibody conjugated with a cytotoxic substance that can be used as an anticancer agent.
  • Proteoglycan is a glycoprotein formed by covalently binding a sugar chain (glycosaminoglycan) and protein (Non-patent Document 1).
  • Glycosaminoglycans are polysaccharides whose basic disaccharide structure is usually repeated 40-100 times, and are characterized by being sulfated to various degrees.
  • Glycosaminoglycans include chondroitin sulfate, dermatan sulfate, heparan sulfate, heparin, and keratan sulfate.
  • heparan sulfate-bound proteoglycan is called heparan sulfate proteoglycan (HSPG), and syndecan and glypican are known to be expressed on the cell membrane, and the basement membrane Perlecan, agrin and the like are known to be secreted into (basement membrane).
  • Heparan sulfate is highly expressed in the lungs and kidneys in mice and is less expressed in skeletal muscle, liver, skin, and brain (Non-patent Document 2).
  • HSPG is known to influence the activity of growth factors and to be involved in cell proliferation and differentiation.
  • Non-Patent Documents 3, 4, 5 fibroblast growth factor, heparin-binding epidermal growth factor-like ⁇ growth ⁇ factor, and amphiregulin transmit signals to cells through receptors for each growth factor while binding to heparan sulfate. It has been reported that HSPG is also involved in cancer cell proliferation and metastasis in cancer (Non-Patent Documents 7 and 8).
  • Heparan-sulfate-6-O-sulfotransferase-2 is an enzyme that adds a sulfate group to the 6-O position of glucosamine that constitutes heparan sulfate.
  • HS6ST1 and HS6ST3 are known as similar enzymes (sulfotransferase) (Non-patent Document 9).
  • These HS6ST families are type II membrane proteins, but are present in intracellular Golgi and function as enzymes (Non-patent Document 10).
  • HS6ST1 is secreted extracellularly by being cleaved in the vicinity of the transmembrane region (Non-Patent Documents 11, 12, and 13).
  • Non-Patent Document 14 mouse HS6ST2 (mHS6ST2) is forcibly expressed in CHO cells, it is also secreted extracellularly (Non-patent Document 15).
  • mHS6ST2 that remains in the Golgi and secreted mHS6ST2 have the same molecular weight, and mouse HS6ST3 may cleave the N-terminal region including the transmembrane region as a signal peptide
  • mouse HS6ST3 may cleave the N-terminal region including the transmembrane region as a signal peptide
  • Non-patent Document 15 a variant of mHS6ST2 whose N-terminal side is 146 amino acids long is not secreted extracellularly.
  • 3′-phosphoadenosinephospho5′-phosphosulfate which is a donor of sulfate group is rapidly degraded in blood, it is considered that HS6ST2 secreted extracellularly does not work as an enzyme.
  • Non-patent Document 16 Although the three-dimensional structure of HS6ST2 has not been elucidated, it is thought to recognize and bind to a partial sequence of heparan sulfate having 6 sugar chains or less (Non-patent Document 16).
  • Membrane type HSPG is expressed in almost all cells. The expression level is about 10 5 -10 6 molecules per cell, most of which is taken up into cells with a half-life of 3-8 hours and degraded by lysosomes (Non-patent Document 18). It is known that peptides such as HIV-Tat and bFGF, nucleic acids such as polylysine-DNA complexes, polyamines, or anti-HSPG antibodies are actually taken into cells via HSPG (Non-patent Documents 19 and 20). , 21).
  • An object of the present invention is to provide a novel anti-HS6ST2 antibody. Another object of the present invention is to clarify the physiological action of the obtained anti-HS6ST2 antibody and to use it for diagnosis and treatment of diseases, particularly cancer.
  • the present inventors have produced a novel anti-HS6ST2 antibody having cytotoxic activity, and found that the antibody is useful for diagnosis and treatment of cancer. Was completed.
  • the present invention provides the following.
  • [5] The antibody according to any one of [1] to [3], which binds to HS6ST2 expressed on a cell membrane.
  • [7] The region from the 379th amino acid to the 459th amino acid, the region from the 308th amino acid to the 393rd amino acid, or the 24th amino acid to the 175th amino acid of the HS6ST2 protein having the amino acid sequence of SEQ ID NO: 107
  • a pharmaceutical composition comprising the antibody according to any one of [1] to [7] as an active ingredient.
  • the pharmaceutical composition according to [8] which is an anticancer agent.
  • a method for diagnosing cancer comprising the following steps: (a) providing a sample collected from the subject; (b) A step of detecting HS6ST2 protein or HS6ST2 gene contained in the sample of (a). [11] HS6ST2 protein to which a cytotoxic substance is bound. [12] A pharmaceutical composition comprising the HS6ST2 protein according to [11] as an active ingredient. [13] The pharmaceutical composition according to [12], which is an anticancer agent.
  • the present inventors made an anti-HS6ST2 antibody and examined cancer diagnosis and treatment methods using this antibody. It has been found that the anti-HS6ST2 antibody of the present invention kills cells expressing HS6ST2 on the cell membrane by an antibody-dependent cellular cytotoxicity (ADCC) activity. In addition, cell proliferation was suppressed in the presence of a secondary antibody conjugated with toxin. This indicates that anti-HS6ST2 antibody having ADCC activity and immunotoxin targeting HS6ST2 are useful for cancer treatment.
  • HS6ST2 has two variants with different N-terminal amino acid lengths (UniProt Q96MM7-1, Q96MM7-2), and the obtained antibody bound to both variants.
  • HS6ST2 protein in cancer cells was evaluated using an anti-HS6ST2 antibody.
  • Analysis using flow cytometry revealed that lung and hepatoma cell lines express HS6ST2 on the cell membrane.
  • Western blot analysis revealed that lung and ovarian cancer cell lines express HS6ST2. Judging from the molecular weight, these HS6ST2s were considered to be variants (UniProt Q96MM7-2) lacking the N-terminal 146 amino acids.
  • Analysis using immunohistochemical staining revealed that HS6ST2 was expressed on cell membranes in clinical lung adenocarcinoma and clinical lung squamous cell carcinoma.
  • Analysis by Western blot revealed that lung and ovarian cancer cell lines secrete HS6ST2 in the culture supernatant.
  • soluble HS6ST2 binds to heparan sulfate on the cell membrane.
  • soluble HS6ST2 binds to heparan sulfate on the cell membrane.
  • the anti-HS6ST2 antibody suppressed cell growth in the presence of a secondary antibody conjugated with toxin. Therefore, it was shown that immunotoxin targeting soluble HS6ST2 is useful for the treatment of cancer.
  • Clinical lung cancer also expresses HSPG (Glycosaminoglycansaminoin human lung cancer. Cancer. 1981. 48: 2016; Heparan sulfate proteoglycan expression in human lung-cancer cells.
  • a method for diagnosing cancer using soluble HS6ST2 was examined. Using the obtained anti-HS6ST2 antibody, an ELISA system capable of detecting soluble HS6ST2 in the order of ng / mL was established. Since this ELISA system was measurable even in the presence of human serum, it was shown that cancer can be diagnosed using blood as a specimen.
  • FIG. 1A is a diagram showing an expression profile of HS6ST2 in normal tissues.
  • FIG. 1B is a diagram showing an expression profile of HS6ST2 in normal tissues.
  • FIG. 2A is a diagram showing an expression profile of HS6ST2 in a tumor part of a lung cancer cell line and a lung cancer removed tissue.
  • the AF on the vertical axis represents the lung adenocarcinoma cell line, large cell lung cancer cell line, lung squamous cell carcinoma cell line, small cell lung cancer cell line, tumor part of small cell lung cancer isolated tissue, and tumor part of lung adenocarcinoma isolated tissue, respectively. Indicates.
  • FIG. 1A is a diagram showing an expression profile of HS6ST2 in normal tissues.
  • FIG. 1B is a diagram showing an expression profile of HS6ST2 in normal tissues.
  • FIG. 2A is a diagram showing an expression profile of HS6ST2 in a tumor part of a lung cancer cell line and a lung cancer removed
  • FIG. 2B is a view showing an expression profile of HS6ST2 in a tumor part of a lung cancer cell line and a lung cancer-extracted tissue.
  • the AF on the vertical axis represents the lung adenocarcinoma cell line, large cell lung cancer cell line, lung squamous cell carcinoma cell line, small cell lung cancer cell line, tumor part of small cell lung cancer isolated tissue, and tumor part of lung adenocarcinoma isolated tissue, respectively.
  • FIG. 3A is a diagram showing an expression profile of HS6ST2 in cell lines other than lung cancer.
  • A-H on the vertical axis represents a colon cancer cell line, stomach cancer cell line, breast cancer cell line, ovarian cancer cell line, endometrial cancer cell line, lymphoma cell line, myeloma cell line, and liver cancer cell line, respectively.
  • FIG. 3B is a diagram showing an expression profile of HS6ST2 in cell lines other than lung cancer.
  • A-H on the vertical axis represents a colon cancer cell line, stomach cancer cell line, breast cancer cell line, ovarian cancer cell line, endometrial cancer cell line, lymphoma cell line, myeloma cell line, and liver cancer cell line, respectively.
  • FIG. 4 is a diagram showing the results of flow cytometry analysis for evaluating the binding of anti-HS6ST2 antibodies to HS6ST2_N-short_ctV5_CHO and mHS6ST2_ctV5_CHO.
  • the solid line is anti-HS6ST2 antibody, and the gray line is mIgG1.
  • FIG. 5 is a diagram showing the results of flow cytometry analysis for evaluating the binding of anti-HS6ST2 antibodies A6 and C8 to HS6ST2_N-short_ctV5_CHO and mHS6ST2_ctV5_CHO. ⁇ ; HS6ST2_N-short_ctV5_CHO, ⁇ ; mHS6ST2_ctV5_CHO.
  • FIG. 6 shows the results of evaluating ADCC activity of anti-HS6ST2 antibody against HS6ST2_N-short_ctV5_CHO.
  • FIG. 7 is a graph showing the results of evaluating the growth inhibitory activity of anti-HS6ST2 antibody against HS6ST2_N-short_ctV5_CHO using Mab-ZAP.
  • FIG. 8 is a diagram showing the results of flow cytometry analysis for evaluating the binding of anti-HS6ST2 antibodies to HS6ST2_N-short_ctV5_CHO and HS6ST2_N-long_ctV5_CHO.
  • the solid line is anti-HS6ST2 antibody, and the gray line is mIgG1.
  • FIG. 9 is a diagram showing the results of flow cytometry analysis in which the binding of anti-HS6ST2 antibody B6 to liver cancer cell line HuH6 and lung adenocarcinoma cell line ABC-1 was evaluated.
  • the solid line is anti-HS6ST2 antibody B6, and the gray line is mIgG1.
  • FIG. 10 shows the results of Western blotting of HS6ST2_N-short_ctV5_CHO and HS6ST2_N-long_ctV5_CHO using anti-HS6ST2 antibody C10 and anti-V5 tag antibody.
  • FIG. 11 shows the results of Western blotting of cancer cell lines using anti-HS6ST2 antibody C10.
  • FIG. 12 is a diagram showing the results of flow cytometry analysis for evaluating the expression of heparan sulfate on the cell membrane.
  • the solid line is anti-heparan sulfate antibody, and the gray line is mIgM.
  • FIG. 13 is a diagram showing the results of flow cytometry analysis for evaluating the binding of sHS6ST2_FLAG to heparan sulfate.
  • heparan sulfate in DG44 cells was degraded with an enzyme, and the expression level of heparan sulfate was compared with and without enzyme treatment.
  • the solid line is anti-heparan sulfate antibody, and the gray line is mIgM.
  • the binding of sHS6ST2_FLAG to DG44 cells was compared with and without enzyme treatment.
  • the solid line is anti-HS6ST2 antibody C8, and the gray line is mIgG1.
  • FIG. 14 shows the binding of sHS6ST2_FLAG to cancer cell line A549 and the antitumor activity of anti-HS6ST2 antibody C8 in the presence of Mab-ZAP.
  • FIG. 1 shows A549 cells reacted with sHS6ST2_FLAG at 100 ⁇ g / mL (thick line), 20 ⁇ g / mL (solid line), 4 ⁇ g / mL (dotted line), 0.8 ⁇ g / mL (dashed line), 0 ⁇ g / mL (solid line in gray) It is a figure which shows the result of having performed the flow cytometry analysis using the anti- HS6ST2 antibody C8 after having made it.
  • FIG. 15 is a diagram showing a calibration curve of an ELISA system for detecting soluble HS6ST2.
  • FIG. 16 is a diagram showing that heparan sulfate and human serum do not affect the ELISA system.
  • Figure 17 shows the results of immunohistochemical staining that analyzed the expression of HS6ST2 protein in clinical lung adenocarcinoma (A), clinical lung squamous cell carcinoma (B), normal tissue adjacent to lung cancer (C), and skin (D).
  • A clinical lung adenocarcinoma
  • B clinical lung squamous cell carcinoma
  • C normal tissue adjacent to lung cancer
  • D skin
  • the HS6ST2 protein used in the present invention is not particularly limited, and HS6ST2 protein known to those skilled in the art can be used.
  • the HS6ST2 protein is preferably human HS6ST2.
  • human HS6ST2 has a plurality of variants, HS6ST2 used in the present invention may be any variant.
  • HS6ST2 variants include variants lacking exons 4 and 5 (GenBank Accession No: NM_147175, UniProt: Q96MM7-1, SEQ ID NO: 106), variants lacking amino acids 1 to 146 of Q96MM7-1 ( UniProt: Q96MM7-2, SEQ ID NO: 107), and third variant (UniProt: Q96MM7-3, SEQ ID NO: 108).
  • HS6ST2 may be HS6ST2 protein expressed on the cell membrane or secreted HS6ST2 secreted.
  • Anti-HS6ST2 antibody used in the present invention may be bound to the HS6ST2 protein, and its origin, type, shape, etc. are not limited. Specifically, known antibodies such as non-human animal antibodies (eg, mouse antibodies, rat antibodies, camel antibodies), human antibodies, chimeric antibodies, and humanized antibodies can be used. In the present invention, monoclonal or polyclonal antibodies can be used as antibodies, but monoclonal antibodies are preferred.
  • the binding of the antibody to the HS6ST2 protein is preferably specific binding.
  • the HS6ST2 protein recognized by the anti-HS6ST2 antibody of the present invention is not particularly limited, and examples thereof include HS6ST2 protein expressed on the cell membrane, HS6ST2 protein secreted from the cell, HS6ST2 protein bound to heparan sulfate, and the like.
  • Heparan sulfate is generally a glycosaminoglycan obtained by subjecting the disaccharide unit repeating structure of D-glucuronic acid and D-glucosamine to N-sulfation and O-sulfation modification.
  • the heparan sulfate is preferably heparan sulfate contained in heparan sulfate proteoglycan, and more preferably heparan sulfate contained in heparan sulfate proteoglycan on the cancer cell membrane.
  • an antibody that binds to HS6ST2 protein bound to heparan sulfate on the cancer cell membrane can be exemplified.
  • the anti-HS6ST2 antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using known means.
  • a monoclonal antibody derived from a mammal is particularly preferable.
  • Mammal-derived monoclonal antibodies include those produced by hybridomas and those produced by hosts transformed with expression vectors containing antibody genes by genetic engineering techniques.
  • Monoclonal antibody-producing hybridomas can be basically produced using known techniques as follows. First, HS6ST2 protein is used as a sensitizing antigen, and this is immunized according to a normal immunization method. Immune cells obtained from an immunized animal are fused with a known parent cell by a conventional cell fusion method to obtain a hybridoma. Furthermore, from this hybridoma, a hybridoma producing an anti-HS6ST2 antibody can be selected by screening cells producing the target antibody by a usual screening method.
  • HS6ST2 protein used as a sensitizing antigen for antibody acquisition can be obtained. That is, after inserting a gene sequence encoding HS6ST2 into a known expression vector and transforming an appropriate host cell, the target human HS6ST2 protein is purified from the host cell or culture supernatant by a known method. it can. Purified natural HS6ST2 protein can also be used as well. Further, a fusion protein obtained by fusing a desired partial polypeptide of HS6ST2 protein with a different polypeptide can also be used as an immunogen.
  • a fusion protein as an immunogen, for example, an Fc fragment of an antibody, a peptide tag, or the like can be used.
  • a vector that expresses the fusion protein can be prepared by fusing genes encoding two or more desired polypeptide fragments in-frame and inserting the fusion gene into an expression vector. The method for producing the fusion protein is described in Molecular® Cloning® 2nd® ed. (Sambrook, Jet et al., “Molecular® Cloning® 2nd® ed.,” 9.47-9.58, “Cold® Spring® Harbor® Lab.® press,” 1989).
  • the HS6ST2 protein thus purified can be used as a sensitizing antigen used for immunization against mammals.
  • a partial peptide of HS6ST2 can also be used as a sensitizing antigen.
  • the following peptides can be used as the sensitizing antigen.
  • the region and size of HS6ST2 used as a partial peptide are not limited.
  • the number of amino acids constituting the peptide to be sensitized antigen is preferably at least 3 or more, for example, 5 or more, or 6 or more. More specifically, a peptide having 8 to 50, preferably 10 to 30 residues can be used as a sensitizing antigen.
  • the mammal immunized with the sensitizing antigen is not particularly limited.
  • an immunized animal in consideration of compatibility with a parent cell used for cell fusion.
  • rodent animals are preferred as immunized animals. Specifically, mice, rats, hamsters, or rabbits can be used as immunized animals.
  • monkeys and the like can be used as immunized animals.
  • the above animals can be immunized with a sensitizing antigen.
  • mammals can be immunized by injecting a sensitizing antigen intraperitoneally or subcutaneously. Specifically, the sensitizing antigen is administered to mammals several times every 4 to 21 days.
  • the sensitizing antigen is diluted with PBS (Phosphate-Buffered Saline) or physiological saline at an appropriate dilution ratio and used for immunization.
  • a sensitizing antigen can be administered with an adjuvant. For example, it can be mixed with Freund's complete adjuvant and emulsified to give a sensitizing antigen.
  • An appropriate carrier can be used for immunization with the sensitizing antigen.
  • a partial peptide having a small molecular weight is used as a sensitizing antigen, it is desirable to immunize the sensitizing antigen peptide by binding it to a carrier protein such as albumin or keyhole limpet hemocyanin.
  • DNA immunization refers to immunization by administering a vector DNA constructed in such a manner that a gene encoding an antigen protein can be expressed in an immunized animal, and expressing the immunizing antigen in the body of the immunized animal. It is a method of giving a stimulus.
  • DNA immunization can be expected to have the following advantages. ⁇ Implement immune stimulation by maintaining the structure of membrane proteins such as HS6ST2. -There is no need to purify immune antigens.
  • DNA expressing HS6ST2 protein is first administered to an immunized animal.
  • DNA encoding HS6ST2 can be synthesized by a known method such as PCR.
  • the obtained DNA is inserted into an appropriate expression vector and administered to an immunized animal.
  • the expression vector for example, a commercially available expression vector such as pcDNA3.1 can be used.
  • a method of administering the vector to a living body a generally used method can be used.
  • DNA immunization can be performed by driving gold particles adsorbed with an expression vector into cells with a gene gun.
  • immune cells are collected from the mammal and subjected to cell fusion.
  • spleen cells can be used.
  • Mammalian myeloma cells are used as cells to be fused with the above immune cells.
  • the myeloma cell is preferably provided with an appropriate selection marker for screening.
  • a selectable marker refers to a trait that can (or cannot) survive under certain culture conditions.
  • Known selection markers include hypoxanthine-guanine-phosphoribosyltransferase deficiency (hereinafter abbreviated as HGPRT deficiency) or thymidine kinase deficiency (hereinafter abbreviated as TK deficiency).
  • HGPRT deficiency hypoxanthine-guanine-phosphoribosyltransferase deficiency
  • TK deficiency thymidine kinase deficiency
  • Cells having HGPRT or TK deficiency have hypoxanthine-aminopterin-thymidine sensitivity (hereinafter abbreviated as HAT sensitivity).
  • HGPRT-deficient and TK-deficient cells can be selected in media containing 6 thioguanine, 8 azaguanine (hereinafter abbreviated as 8AG), or 5 'bromodeoxyuridine, respectively.
  • 8AG 8 azaguanine
  • Normal cells die because they incorporate these pyrimidine analogs into the DNA, but cells deficient in these enzymes cannot survive these pyrimidine analogs and can survive in selective media.
  • a selectable marker called G418 resistance confers resistance to 2-deoxystreptamine antibiotics (gentamicin analogs) with a neomycin resistance gene.
  • Various myeloma cells suitable for cell fusion are known. For example, the following myeloma cells can be used for the production of the monoclonal antibody in the present invention.
  • cell fusion can be carried out in a normal nutrient culture medium in the presence of a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ) or the like can be used.
  • an auxiliary agent such as dimethyl sulfoxide can be added as desired in order to increase the fusion efficiency.
  • the usage ratio of immune cells and myeloma cells can be set arbitrarily.
  • the number of immune cells is preferably 1 to 10 times that of myeloma cells.
  • the culture solution used for cell fusion for example, RPMI1640 culture solution suitable for growth of myeloma cell line, MEM culture solution, and other normal culture solutions used for this type of cell culture can be used.
  • serum supplements such as fetal calf serum (FCS) can be added to the culture medium.
  • a predetermined amount of immune cells and myeloma cells are mixed well in a culture solution, and a target PEG (hybridoma) is formed by mixing a PEG solution preheated to about 37 ° C.
  • a target PEG hybrida
  • PEG having an average molecular weight of about 1000 to 6000 can be usually added at a concentration of 30 to 60% (w / v).
  • cell fusion agents and the like that are undesirable for the growth of hybridomas are removed by sequentially adding the appropriate culture medium listed above, and then centrifuging to remove the supernatant.
  • the hybridoma obtained in this manner can be selected by using a selective culture solution corresponding to the selection marker possessed by the myeloma used for cell fusion.
  • a selective culture solution corresponding to the selection marker possessed by the myeloma used for cell fusion.
  • cells having HGPRT or TK deficiency can be selected by culturing in a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). That is, when HAT-sensitive myeloma cells are used for cell fusion, cells that have succeeded in cell fusion with normal cells can be selectively proliferated in the HAT culture solution.
  • the culture using the HAT culture solution is continued for a time sufficient for cells other than the target hybridoma (non-fusion cells) to die.
  • the target hybridoma can be selected by culturing for several days to several weeks. Subsequently, by carrying out the usual limiting dilution method, screening and single cloning of the hybridoma producing the target antibody can be performed.
  • an antibody that recognizes HS6ST2 can be prepared by the method described in International Publication WO03 / 104453.
  • Screening and single cloning of the target antibody can be suitably performed by a screening method based on a known antigen-antibody reaction.
  • the antigen is bound to a carrier such as beads made of polystyrene or the like, or a commercially available 96-well microtiter plate, and reacted with the culture supernatant of the hybridoma.
  • a secondary antibody labeled with an enzyme is reacted. If the culture supernatant contains an antibody of interest that reacts with the sensitizing antigen, the secondary antibody binds to the carrier via this antibody. By detecting the secondary antibody that finally binds to the carrier, it can be determined whether the antibody of interest is present in the culture supernatant.
  • substantially the same HS6ST2 protein can be preferably used as the antigen, including those used for immunization.
  • cell lines expressing HS6ST2, soluble HS6ST2 and the like can be used as antigens.
  • a target antibody can be obtained by sensitizing human lymphocytes with an antigen. Specifically, first, human lymphocytes are sensitized with HS6ST2 protein in vitro. The immunized lymphocytes are then fused with an appropriate fusion partner. As the fusion partner, for example, a myeloma cell derived from human and having a permanent division ability can be used (see Japanese Patent Publication No. 1-59878).
  • the anti-HS6ST2 antibody obtained by this method is a human antibody having binding activity to HS6ST2 protein.
  • anti-HS6ST2 can be obtained by administering an HS6ST2 protein as an antigen to a transgenic animal having all repertoires of human antibody genes or by immunizing with DNA constructed to express HS6ST2 in the animal.
  • Human antibodies can also be obtained.
  • Antibody-producing cells of the immunized animal can be immortalized by treatment such as cell fusion with an appropriate fusion partner or Epstein-Barr virus infection. From the immortalized cells thus obtained, a human antibody against the HS6ST2 protein can be isolated (see International Publications WO 94/25585, WO 93/22727, WO 92/03918, WO 94/02602).
  • the immortalized cells by cloning the immortalized cells, it is possible to clone cells that produce an antibody having the desired reaction specificity.
  • the animal's immune system recognizes human HS6ST2 as a foreign substance. Therefore, a human antibody against human HS6ST2 can be easily obtained.
  • the hybridoma producing the monoclonal antibody thus produced can be subcultured in a normal culture solution.
  • the hybridoma can also be stored for a long time in liquid nitrogen.
  • the hybridoma can be cultured according to a usual method, and the target monoclonal antibody can be obtained from the culture supernatant.
  • a hybridoma can be administered to a mammal compatible therewith to proliferate and a monoclonal antibody can be obtained as its ascites.
  • the former method is suitable for obtaining a highly pure antibody.
  • an antibody encoded by an antibody gene cloned from an antibody-producing cell can also be used.
  • the cloned antibody gene can be expressed as an antibody by incorporating it into an appropriate vector and introducing it into a host. Methods for isolation of antibody genes, introduction into vectors, and transformation of host cells have already been established (eg, Vandamme, A. M. et al., Eur.J. Biochem. (1990)). 192, 767-775).
  • a cDNA encoding the variable region (V region) of an anti-HS6ST2 antibody can be obtained from a hybridoma cell that produces the anti-HS6ST2 antibody.
  • total RNA is extracted from the hybridoma.
  • the following method can be used. ⁇ Guanidine ultracentrifugation (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299) ⁇ AGPC method (Chomczynski, P. et al., Anal. Biochem. (1987) 162, 156-159)
  • Extracted mRNA can be purified using mRNA “Purification” Kit (manufactured by GE Healthcare Bioscience) or the like.
  • kits for extracting total mRNA directly from cells such as QuickPrep mRNA Purification Kit (manufactured by GE Healthcare Bioscience) are also commercially available.
  • total mRNA can also be obtained from the hybridoma.
  • cDNA encoding the antibody V region can be synthesized using reverse transcriptase. In this case, any 15-30 base sequence selected from sequences common to antibody genes can be used as a primer.
  • cDNA can be synthesized by AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (manufactured by Seikagaku Corporation).
  • AMV Reverse Transcriptase First-strand cDNA Synthesis Kit manufactured by Seikagaku Corporation.
  • 5'-Ampli FINDER RACE Kit (Clontech) and 5'-RACE method using PCR (Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA (1988) 85, 8998-9002, Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932).
  • appropriate restriction enzyme sites described later can be introduced at both ends of the cDNA.
  • the desired cDNA fragment is purified from the obtained PCR product and then ligated with vector DNA.
  • a recombinant vector is produced, introduced into Escherichia coli or the like and a colony is selected, a desired recombinant vector can be prepared from Escherichia coli that has formed the colony. Then, the base sequence of the cDNA can be confirmed by a known method such as the dideoxynucleotide chain termination method.
  • a cDNA library can be used to obtain a gene encoding the variable region of an antibody.
  • cDNA is synthesized using mRNA extracted from antibody-producing cells as a template to obtain a cDNA library. It is convenient to use a commercially available kit for the synthesis of the cDNA library. Actually, the amount of mRNA obtained from only a small number of cells is extremely small, and the yield is low when it is directly purified. Therefore, it is usually purified after adding carrier RNA that is apparently free of antibody genes. Alternatively, when a certain amount of RNA can be extracted, it is possible to efficiently extract only RNA of antibody-producing cells. For example, carrier RNA may not be necessary for RNA extraction from 10 or more, 30 or more, preferably 50 or more antibody-producing cells.
  • Antibody gene is amplified by PCR using the obtained cDNA library as a template.
  • Primers for amplifying antibody genes by PCR are known.
  • primers for human antibody gene amplification can be designed based on the disclosure of a paper (J. Mol. Biol. (1991) 222, 581-597). These primers have different nucleotide sequences for each immunoglobulin subclass. Therefore, when a cDNA library whose subclass is unknown is used as a template, the PCR method is performed in consideration of all possibilities.
  • a primer capable of amplifying genes encoding ⁇ 1 to ⁇ 5 as a heavy chain and ⁇ chain and ⁇ chain as a light chain may be used. it can.
  • a primer that anneals to a portion corresponding to the hinge region is generally used as the 3′-side primer.
  • a primer corresponding to each subclass can be used as the 5′-side primer.
  • PCR products using primers for gene amplification of heavy and light chain subclasses should be independent libraries.
  • an immunoglobulin comprising a combination of a heavy chain and a light chain can be reconstructed.
  • the target antibody can be screened using the binding activity of the reconstituted immunoglobulin to HS6ST2 as an index.
  • the antibody gene can be incorporated into an expression vector so as to be expressed under the control of the expression control region.
  • An expression control region for expressing an antibody includes, for example, an enhancer and a promoter. Subsequently, by transforming an appropriate host cell with this expression vector, a recombinant cell expressing a DNA encoding an anti-HS6ST2 antibody can be obtained.
  • DNAs encoding antibody heavy chains (H chains) and light chains (L chains) can be incorporated into separate expression vectors.
  • An antibody molecule having an H chain and an L chain can be expressed by co-transfecting a vector incorporating the H chain and the L chain into the same host cell at the same time.
  • DNA encoding the H chain and L chain may be incorporated into a single expression vector to transform host cells (see International Publication WO94 / 11523).
  • a host and an expression vector for producing an antibody by introducing an isolated antibody gene into a suitable host are known. Any of these expression systems can be applied to the present invention.
  • animal cells, plant cells, or fungal cells can be used.
  • the following cells can be exemplified as animal cells that can be used in the present invention.
  • Mammalian cells CHO, COS, myeloma, BHK (baby hamster kidney), Hela, Vero, HEK293, Ba / F3, HL-60, Jurkat, SK-HEP1, etc.
  • Amphibian cells Xenopus oocytes and the like.
  • Insect cells sf9, sf21, Tn5, etc.
  • an antibody gene expression system using cells from the genus Nicotiana such as Nicotiana tabacum is known.
  • Callus cultured cells can be used for transformation of plant cells.
  • Yeast genus Saccharomyces such as Saccharomyces serevisiae, Pichia genus fungus such as methanol-utilizing yeast (Pichia pastoris): Aspergillus genus such as Aspergillus niger.
  • antibody gene expression systems using prokaryotic cells are also known.
  • bacterial cells such as E. coli and Bacillus subtilis can be used in the present invention.
  • the promoter / enhancer includes human cytomegalovirus early promoter / enhancer (human cytomegalovirus immediate-promoter / enhancer).
  • a promoter / enhancer derived from a mammalian cell such as a viral promoter / enhancer or human elongation factor 1 ⁇ (HEF1 ⁇ ) can be used for antibody expression.
  • viruses that can utilize promoters / enhancers include retroviruses, polyomaviruses, adenoviruses, and simian virus 40 (SV40).
  • the method of Mulligan et al. (Nature (1979) 277, 108) can be used. Further, the HEF1 ⁇ promoter / enhancer can be easily used for target gene expression by the method of Mizushima et al. (Nucleic Acids Res. (1990) 18, 5322).
  • the gene can be expressed by functionally combining a useful promoter commonly used, a signal sequence for antibody secretion, and an antibody gene to be expressed.
  • the promoter include lacZ promoter and araB promoter.
  • the lacZ promoter the method of Ward et al. (Nature (1989) 341, 544-546; FASEBJ. (1992) 6, 2422-2427) can be used.
  • the araB promoter can be used for the expression of the target gene by the method of Better et al. (Science (1988) 240, 1041-1043).
  • a pelB signal sequence (Lei, S. P. et al., J. Bacteriol. (1987) 169, 4379) may be used when the periplasm of E. coli is produced. Then, after separating the antibody produced in the periplasm, the structure of the antibody is refolded so as to have a desired binding activity by using a protein denaturant such as urea or guanidine hydrochloride.
  • the signal sequence of the antibody heavy chain gene or light chain gene is desirable to use as the signal sequence required for secretion outside the cell. It is also possible to use signal sequences possessed by secreted proteins such as IL-3 and IL-6.
  • a selectable marker can be inserted into the expression vector for amplification of the gene copy number in the host cell system. Specifically, the following selection markers can be used. ⁇ Aminoglycoside transferase (APH) gene ⁇ Thymidine kinase (TK) gene ⁇ E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene ⁇ Dihydrofolate reductase (dhfr) gene, etc.
  • APH Aminoglycoside transferase
  • TK Thymidine kinase
  • Ecogpt E. coli xanthine guanine phosphoribosyltransferase
  • dhfr Dihydrofolate reductase
  • Host cells are cultured according to a known method.
  • DMEM, MEM, RPMI1640, and IMDM can be used as the culture medium, and serum supplements such as fetal calf serum (FCS) can be used in combination.
  • FCS fetal calf serum
  • the antibody expressed and produced as described above can be purified by using a known method used in normal protein purification alone or in combination as appropriate.
  • antibodies can be separated and purified by appropriately selecting and combining affinity columns such as protein A columns, chromatography columns, filters, ultrafiltration, salting out, dialysis, etc. (Antibodies A Laboratory Manual. Ed Harlow , David David Lane, Cold Spring Spring Laboratory, 1988).
  • transgenic animals can also be used for the production of recombinant antibodies. That is, the antibody can be obtained from an animal into which a gene encoding the target antibody has been introduced.
  • an antibody gene can be constructed as a fusion gene by inserting in frame into a gene that encodes a protein that is uniquely produced in milk.
  • a protein secreted into milk for example, goat ⁇ -casein can be used.
  • the DNA fragment containing the fusion gene into which the antibody gene has been inserted is injected into a goat embryo, and the injected embryo is introduced into a female goat.
  • the desired antibody can be obtained as a fusion protein with milk protein from milk produced by a transgenic goat (or its offspring) born from a goat that has received the embryo.
  • hormones can be used as appropriate in transgenic goats to increase the amount of milk containing the desired antibody produced from the transgenic goat (Ebert, KM et al., Bio / Technology (1994) 12, 699-702). ).
  • a C region derived from a human antibody or a C region derived from a non-human animal antibody can be used.
  • C ⁇ 1, C ⁇ 2a, C ⁇ 2b, C ⁇ 3, C ⁇ , C ⁇ , C ⁇ 1, C ⁇ 2, C ⁇ can be used as the H chain C region of the mouse antibody
  • C ⁇ , C ⁇ can be used as the L chain C region.
  • antibodies such as rats, rabbits, goats, sheep, camels and monkeys can be used as antibodies from animals other than mice. These sequences are known.
  • the C region can be modified to improve the stability of the antibody or its production.
  • an antibody when administered to a human, it can be a genetically modified antibody that has been artificially modified for the purpose of reducing the heterologous antigenicity of the human.
  • the recombinant antibody includes, for example, a chimeric antibody and a humanized antibody. These modified antibodies can be produced using known methods.
  • Chimeric antibody refers to an antibody in which variable regions and constant regions derived from each other are linked.
  • an antibody consisting of the variable regions of the heavy and light chains of a mouse antibody and the constant regions of the heavy and light chains of a human antibody is a mouse-human-heterologous chimeric antibody.
  • a recombinant vector that expresses a chimeric antibody can be prepared by linking DNA encoding the variable region of a mouse antibody to DNA encoding the constant region of a human antibody and incorporating it into an expression vector.
  • the chimeric antibody produced in the culture can be obtained by culturing recombinant cells transformed with the vector and expressing the incorporated DNA.
  • a human antibody is used for the C region of the chimeric antibody and the humanized antibody.
  • C ⁇ 1, C ⁇ 2, C ⁇ 3, C ⁇ 4, C ⁇ , C ⁇ , C ⁇ 1, C ⁇ 2, and C ⁇ can be used as the C region.
  • C ⁇ and C ⁇ can be used as the C region.
  • the amino acid sequences of these C regions, as well as the base sequences encoding them, are known.
  • the human antibody C region can be modified to improve the stability of the antibody itself or the production of the antibody.
  • a chimeric antibody is composed of a V region of an antibody derived from a non-human animal and a C region derived from a human antibody.
  • humanized antibodies include complementarity determining regions (CDRs) of non-human animal-derived antibodies, framework regions derived from human antibodies (FR; framework regions), and C regions derived from human antibodies. Consists of Since humanized antibodies have reduced antigenicity in the human body, they are useful as the active ingredient of the therapeutic agent of the present invention.
  • Antibody variable regions are usually composed of three CDRs sandwiched between four FRs.
  • CDRs are regions that substantially determine the binding specificity of an antibody.
  • the amino acid sequence of CDR is rich in diversity.
  • the amino acid sequence constituting FR often shows high homology among antibodies having different binding specificities. Therefore, it is generally said that the binding specificity of one antibody can be transplanted to another antibody by CDR grafting.
  • Humanized antibodies are also referred to as reshaped human antibodies. Specifically, non-human animals, for example, humanized antibodies obtained by grafting mouse antibody CDRs to human antibodies are known. General genetic recombination techniques for obtaining humanized antibodies are also known.
  • overlap extension PCR is known as a method for transplanting mouse antibody CDRs to human FRs.
  • PCR extension the base sequence which codes CDR of the mouse antibody which should be transplanted is added to the primer for synthesize
  • selection of human FRs having high homology with mouse FRs is advantageous in maintaining CDR function. That is, generally, it is preferable to use a human FR comprising an amino acid sequence having high homology with the amino acid sequence of the FR adjacent to the mouse CDR to be transplanted.
  • the base sequences to be linked are designed to be connected to each other in frame.
  • Human FRs are synthesized individually by each primer.
  • a product in which DNA encoding mouse CDR is added to each FR is obtained.
  • the base sequences encoding mouse CDRs of each product are designed to overlap each other.
  • the overlapping CDR portions of the products synthesized using the human antibody gene as a template are annealed with each other to perform a complementary chain synthesis reaction. By this reaction, human FRs are linked via the mouse CDR sequence.
  • a human-type antibody expression vector can be prepared by inserting the DNA obtained as described above and a DNA encoding the human antibody C region into an expression vector so as to be fused in frame. After introducing this vector into a host to establish recombinant cells, the recombinant cells are cultured, and the DNA encoding the humanized antibody is expressed, whereby the humanized antibody is produced in the culture of the cultured cells. (See European Patent Publication EP 239400, International Publication WO 96/02576).
  • the CDR forms a favorable antigen-binding site when linked via CDR.
  • a human antibody FR can be suitably selected.
  • FR amino acid residues can be substituted so that the CDR of the reshaped human antibody forms an appropriate antigen-binding site.
  • amino acid sequence mutations can be introduced into FRs by applying the PCR method used for transplantation of mouse CDRs into human FRs.
  • partial nucleotide sequence mutations can be introduced into primers that anneal to the FR.
  • a nucleotide sequence mutation is introduced into the FR synthesized by such a primer.
  • a mutant FR sequence having a desired property can be selected by measuring and evaluating the antigen-binding activity of a mutant antibody substituted with an amino acid by the above method (Sato, K.et al., Cancer Res, 1993, 53 , 851-856).
  • the antibody of the present invention includes not only a bivalent antibody typified by IgG but also a monovalent antibody or a multivalent antibody typified by IgM as long as it binds to the HS6ST2 protein.
  • the multivalent antibodies of the present invention include multivalent antibodies that all have the same antigen-binding site, or multivalent antibodies that have some or all different antigen-binding sites.
  • the antibody of the present invention is not limited to the full-length antibody molecule, and may be a low molecular weight antibody or a modified product thereof as long as it binds to the HS6ST2 protein.
  • the low molecular weight antibody includes an antibody fragment in which a part of a full-length antibody (whole antibody, such as whole IgG) is deleted. As long as it has the ability to bind to the HS6ST2 antigen, partial deletion of the antibody molecule is tolerated.
  • the antibody fragment in the present invention preferably contains either or both of a heavy chain variable region (VH) and a light chain variable region (VL).
  • the antibody fragment in the present invention preferably contains CDR.
  • the number of CDRs contained in the antibody fragment of the present invention is not particularly limited, but preferably contains at least six of heavy chain CDR1, CDR2, CDR3, light chain CDR1, CDR2, and CDR3.
  • the amino acid sequence of VH or VL can contain substitutions, deletions, additions and / or insertions. Furthermore, as long as it has the ability to bind to the HS6ST2 antigen, either or both of VH and VL can be deleted.
  • the variable region may be chimerized or humanized.
  • Specific examples of antibody fragments include, for example, Fab, Fab ′, F (ab ′) 2, and Fv.
  • Specific examples of the low molecular weight antibody include, for example, Fab, Fab ′, F (ab ′) 2, Fv, scFv (single chain Fv), diabody, sc (Fv) 2 (single chain (Fv) 2 ), ScFv-Fc, and the like. Multimers of these antibodies (eg, dimer, trimer, tetramer, polymer) are also included in the low molecular weight antibody of the present invention.
  • Antibody fragments can be obtained by treating antibodies with enzymes to generate antibody fragments.
  • enzymes that produce antibody fragments include, for example, papain, pepsin, and plasmin.
  • genes encoding these antibody fragments can be constructed, introduced into an expression vector, and then expressed in an appropriate host cell (for example, Co, MS et al., J. Immunol. (1994) 152). , 2968-2976, Better, M. & Horwitz, A. H. Methods in Enzymology (1989) 178, 476-496, Plueckthun, A. & Skerra, A.
  • the digestive enzyme cleaves a specific position of the antibody fragment to give an antibody fragment having a specific structure as follows, for example. If a genetic engineering technique is used for such an enzymatically obtained antibody fragment, any part of the antibody can be deleted. Papain digestion: F (ab) 2 or Fab Pepsin digestion: F (ab ') 2 or Fab'
  • the low molecular weight antibody in the present invention can be an antibody fragment lacking any region as long as it has binding affinity for HS6ST2. Further, particularly in the treatment of cell proliferative diseases such as cancer according to the present invention, it is desirable that the antibody maintain its effector activity. That is, the preferred low molecular weight antibody in the present invention has both a binding affinity for HS6ST2 and an effector function.
  • Antibody effector functions include ADCC activity and CDC activity.
  • the therapeutic antibody in the present invention particularly preferably comprises one or both of ADCC activity and CDC activity as an effector function.
  • Diabody refers to a bivalent antibody fragment constructed by gene fusion (Holliger Pet et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993), EP 404,097, WO93 / 11161 etc.).
  • Diabodies are dimers composed of two polypeptide chains. Usually, in the polypeptide chain constituting the dimer, VL and VH are connected by a linker in the same chain. The linker in the diabody is generally so short that VL and VH cannot bind to each other. Specifically, the amino acid residues constituting the linker are, for example, about 5 residues. Therefore, VL and VH encoded on the same polypeptide chain cannot form a single chain variable region fragment but form a dimer with another single chain variable region fragment. As a result, the diabody has two antigen binding sites.
  • ScFv can be obtained by linking antibody H chain V region and L chain V region.
  • the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston, J. S. et al., Proc. Natl. Acad. Sci. USA, 1988, 85 , 5879-5883).
  • the H chain V region and L chain V region in scFv may be derived from any of the antibodies described herein.
  • region For example, any single chain peptide consisting of about 3 to 25 residues can be used as a linker. Specifically, for example, a peptide linker described later can be used.
  • the V regions of both chains can be linked by, for example, the PCR method as described above.
  • the DNA encoding the desired partial amino acid sequence is used as a template.
  • the DNAs encoding the V region of the H chain and the L chain are each amplified by PCR using a pair of primers having sequences corresponding to the sequences at both ends of the DNA to be amplified.
  • DNA encoding a peptide linker portion is prepared.
  • DNA encoding a peptide linker can also be synthesized using PCR.
  • a base sequence that can be linked to the amplification product of each V region synthesized separately is added to the 5 ′ side of the primer to be used.
  • PCR reaction is performed using each DNA of [H chain V region DNA]-[peptide linker DNA]-[L chain V region DNA] and assembly PCR primers.
  • the primer for assembly PCR consists of a combination of a primer that anneals to the 5 'side of [H chain V region DNA] and a primer that anneals to the 3' side of [L chain V region DNA]. That is, the assembly PCR primer is a primer set that can amplify DNA encoding the full-length sequence of scFv to be synthesized. On the other hand, a base sequence that can be linked to each V region DNA is added to [peptide linker DNA]. As a result, these DNAs are ligated, and the full length of scFv is finally produced as an amplification product by the primers for assembly PCR.
  • an expression vector containing them and a recombinant cell transformed with the expression vector can be obtained according to a conventional method. Further, the scFv can be obtained by culturing the resulting recombinant cells and expressing the DNA encoding the scFv.
  • ScFv-Fc is a low molecular weight antibody in which an Fc region is fused to an scFv consisting of an H chain V region and an L chain V region of an antibody (Cellular® & “Molecular® Immunology” 2006; 3: 439-443).
  • scFv derived from IgM
  • the origin of Fc is not particularly limited, and for example, human IgG (human IgG1 etc.) can be used.
  • scFv-Fc scFv- fragment obtained by linking the scFv fragment of IgM antibody and human IgG1 CH2 (eg, C ⁇ 2) and CH3 (eg, C ⁇ 3) at the hinge region (H ⁇ ) of human IgG1.
  • Fc can be mentioned.
  • sc (Fv) 2 is a low molecular weight antibody in which two VHs and two VLs are combined with a linker or the like to form a single chain (Hudsonudet al., J Immunol. Methods 1999; 231: 177-189) .
  • sc (Fv) 2 can be prepared, for example, by linking scFv with a linker.
  • VHs and two VLs are arranged in the order of VH, VL, VH, and VL ([VH] linker [VL] linker [VH] linker [VL]) starting from the N-terminal side of the single-chain polypeptide.
  • An antibody characterized in that it is preferred.
  • a peptide linker is preferred.
  • the length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose.
  • the amino acid residues constituting the peptide linker are 1 to 100 amino acids, preferably 3 to 50 amino acids, more preferably 5 to 30 amino acids, particularly preferably 12 to 18 amino acids (for example, 15 amino acids).
  • the amino acid sequence constituting the peptide linker can be any sequence as long as it does not inhibit the scFv binding action.
  • the following amino acid sequence can be used.
  • Ser Gly ⁇ Ser Gly ⁇ Gly ⁇ Ser Ser ⁇ Gly ⁇ Gly Gly, Gly, Ser (SEQ ID NO: 109) Ser, Gly, Gly, Gly (SEQ ID NO: 110) Gly, Gly, Gly, Gly, Ser (SEQ ID NO: 111) Ser, Gly, Gly, Gly, Gly (SEQ ID NO: 112) Gly, Gly, Gly, Gly, Gly, Ser (SEQ ID NO: 113) Ser, Gly, Gly, Gly, Gly, Gly (SEQ ID NO: 114) Gly, Gly, Gly, Gly, Gly, Gly, Ser (SEQ ID NO: 115) Ser, Gly, Gly, Gly, Gly, Gly, Gly, Gly (SEQ ID NO: 115) Ser, G
  • n which determines the length of the above peptide linker is usually 1 to 5, preferably 1 to 3, more preferably 1 or 2.
  • sc (Fv) 2 in the present invention include the following sc (Fv) 2.
  • V regions can be linked using a synthetic chemical linker (chemical cross-linking agent).
  • a crosslinking agent usually used for crosslinking such as peptide compounds can be used in the present invention.
  • the following chemical crosslinking agents are known. These crosslinking agents are commercially available.
  • N-hydroxysuccinimide (NHS), Disuccinimidyl suberate (DSS), Bis (sulfosuccinimidyl) suberate (BS3), Dithiobis (succinimidyl propionate) (DSP), Dithiobis (sulfosuccinimidyl propionate) (DTSSP), Ethylene glycol bis (succinimidyl succinate) (EGS), Ethylene glycol bis (sulfosuccinimidyl succinate) (sulfo-EGS), Disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), When binding four antibody variable regions such as bis [2- (succinimideoxycarbonyloxy) ethyl] sulfone (BSOCOES) and bis [2- (sulfosuccinimideoxycarbonyloxy) ethyl] sulfone (sul
  • the preferred low molecular weight antibody in the present invention is diabody or sc (Fv) 2.
  • the antibody is treated with an enzyme such as papain or pepsin to generate antibody fragments, or DNA encoding these antibody fragments is constructed and used as an expression vector. After the introduction, it may be expressed in an appropriate host cell (for example, Co, MS et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, AH, Methods Enzymol. ( (1989) 178, 476-496; Pluckthun, A. and Skerra, A., Methods Enzymol.
  • the antibody of the present invention includes not only a monovalent antibody but also a multivalent antibody.
  • the multivalent antibodies of the present invention include multivalent antibodies that all have the same antigen-binding site, or multivalent antibodies that have some or all different antigen-binding sites.
  • An antibody conjugated with various molecules such as polyethylene glycol (PEG) can also be used as a modified antibody. It is also possible to bind a cytotoxic substance such as a chemotherapeutic agent, a toxic peptide or a radioactive chemical substance to the antibody.
  • a modified antibody hereinafter referred to as antibody conjugate
  • antibody conjugate can be obtained by chemically modifying the obtained antibody.
  • the modification method of an antibody has already been established in this field.
  • the cytotoxic substance that binds to the anti-HS6ST2 antibody of the present invention to function the cytotoxic activity is specifically a chemotherapeutic agent such as the following chemotherapeutic agents: azaribine, anastro Anastrozole, azacytidine, bleomycin, bortezomib, bryostatin-1, busulfan, camptothecin, 10-hydroxycamptothecin, Carmustine, celebrex, chlorambucil, cisplatin, irinotecan, carboplatin, cladribine, cyclophosphamide, cytarabine, dacarbazine (Dacarbazine), Docetaki Docetaxel, dactinomycin, daunomycin glucuronide, daunorubicin, dexamethasone, diethylstilbestrol, ethylstilbestrol, doxorubicin rubo doxorubicin Epirubicin, eth
  • a preferable chemotherapeutic agent is a low-molecular chemotherapeutic agent.
  • Small molecule chemotherapeutic agents are less likely to interfere with antibody function after binding to the antibody.
  • the low-molecular chemotherapeutic agent usually has a molecular weight of 100 to 2000, preferably 200 to 1000.
  • the chemotherapeutic agents exemplified here are all low-molecular chemotherapeutic agents.
  • These chemotherapeutic agents in the present invention include a prodrug that is converted into an active chemotherapeutic agent in vivo. Activation of the prodrug may be enzymatic conversion or non-enzymatic conversion.
  • the cytotoxic substance of the present invention may be a toxic peptide.
  • the antibody is modified with the toxic peptide.
  • a toxic peptide the following can be mentioned, for example. Diphtheria toxin A chain (Diphtheria toxin A Chain) (Langone JJ, et al., Methods in Enzymology, 93, 307-308, 1983), Pseudomonas Exotoxin (Nature Medicine, 2, 350-353,1996) , Ricin A Chain (Fulton RJ, ulet al., J.Biol.Chem., 261, 5314-5319, 1986; Sivam G., et al., Cancer Res., 47, 3169-3173, 1987 ; Cumber AJ et al., J.Immunol.Methods, 135, 15-24, 1990; Wawzynczak EJ, et al., Cancer Res., 50, 7519-7562
  • FEBS letter 195, 1-8, 1986 ccModeccin (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); Viscumin (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); Volkesin (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); Dodecandrin (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); Tritin (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); Luffin (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); Trichokirin (Casellas P., et al., Eur.J. Biochem. 176, 581-588, 1988; B perfumesi A., et al., Clin.exp.Immunol., 89
  • the cytotoxic substance in the present invention may be a radioactive chemical substance, and the radioactive chemical substance refers to a chemical substance containing a radioisotope.
  • the radioactive isotope is not particularly limited, and any radioactive isotope may be used. For example, 32 P, 14 C, 125 I, 3 H, 131 I, 186 Re, 188 Re, etc. can be used. .
  • one or two or more small molecule chemotherapeutic agents and toxic peptides can be used in combination to modify the antibody.
  • Coupling between the anti-HS6ST2 antibody and the above small molecule chemotherapeutic agent can be covalent or noncovalent. Methods for producing antibodies bound with these chemotherapeutic agents are known.
  • proteinaceous drugs and toxins can be bound to antibodies by genetic engineering techniques.
  • a recombinant vector in which a DNA encoding the toxic peptide and a DNA encoding an anti-HS6ST2 antibody are fused in frame and incorporated into an expression vector can be constructed.
  • a transformed cell obtained by introducing the vector into an appropriate host cell is cultured, and the incorporated DNA is expressed, whereby an anti-HS6ST2 antibody to which a toxic peptide is bound can be obtained as a fusion protein.
  • a proteinaceous drug or toxin is generally arranged on the C-terminal side of the antibody.
  • a peptide linker can be interposed between the antibody and the proteinaceous drug or toxin.
  • the antibody of the present invention may be a bispecific antibody.
  • Bispecific antibodies refer to antibodies that have variable regions that recognize different epitopes within the same antibody molecule.
  • bispecific antibodies can have antigen binding sites that recognize different epitopes on the HS6ST2 molecule.
  • Such a bispecific antibody can bind two antibody molecules to one molecule of HS6ST2. As a result, a stronger cytotoxic effect can be expected.
  • a bispecific antibody in which one antigen-binding site recognizes HS6ST2 and the other antigen-binding site recognizes a cytotoxic substance can also be used.
  • the cytotoxic substance includes a chemotherapeutic agent, a toxic peptide, a radioactive chemical substance, and the like.
  • Such bispecific antibodies capture cytotoxic substances while binding to cells expressing HS6ST2.
  • the cytotoxic substance can directly act on HS6ST2-expressing cells. That is, the bispecific antibody that recognizes the cytotoxic substance can specifically damage the tumor cell and suppress the growth of the tumor cell.
  • bispecific antibodies that recognize antigens other than HS6ST2 can also be combined.
  • a bispecific antibody that recognizes an antigen that is specifically expressed on the cell surface of the target cancer cell and is different from HS6ST2 can be combined.
  • bispecific antibodies can be produced by combining two types of antibodies with different recognition antigens.
  • the antibody to be bound may be a 1 ⁇ 2 molecule each having an H chain and an L chain, or may be a 1 ⁇ 4 molecule consisting only of an H chain.
  • bispecific antibody-producing fused cells can be prepared by fusing hybridomas that produce different monoclonal antibodies.
  • bispecific antibodies can be produced by genetic engineering techniques.
  • ELISA enzyme-linked immunosorbent assay
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • fluorescent immunoassay can be used.
  • the antibody of the present invention may be an antibody having a modified sugar chain. It is known that the cytotoxic activity of an antibody can be enhanced by modifying the sugar chain of the antibody.
  • modified sugar chains for example, the following antibodies are known. Antibodies with modified glycosylation (eg WO99 / 54342), Antibodies lacking fucose added to the sugar chain (WO00 / 61739, WO02 / 31140 etc.), Antibodies with sugar chains with bisecting GlcNAc (WO02 / 79255 etc.) etc.
  • the antibody of the present invention is used for therapeutic purposes, the antibody is preferably an antibody having cytotoxic activity.
  • cytotoxic activity in the present invention examples include antibody-dependent cell-mediated cytotoxicity (ADCC) activity and complement-dependent cytotoxicity (CDC) activity.
  • ADCC activity means cytotoxic activity by the complement system.
  • Fc ⁇ receptor-bearing cells immunodeficiency virus, etc.
  • Fc ⁇ receptor-bearing cells bind to the Fc portion via the Fc ⁇ receptor, causing damage to the target cell. Means activity.
  • Whether or not the anti-HS6ST2 antibody has ADCC activity or CDC activity can be measured by a known method (for example, Current protocols in Immunology, Chapter7. Immunologic studies in humans, Editor, John E, Coligan et al., John Wiley & Sons, Inc., (1993)).
  • effector cells are prepared.
  • complement solutions are prepared.
  • target cells are prepared.
  • effector cells Spleens are removed from CBA / N mice and the like, and spleen cells are isolated in RPMI1640 medium (Invitrogen). After washing with the same medium containing 10% fetal bovine serum (FBS, HyClone), effector cells can be prepared by adjusting the cell concentration to 5 ⁇ 10 6 / ml.
  • FBS fetal bovine serum
  • Target cell preparation HS6ST2 protein-expressing cells are cultured with 0.2 mCi of 51 Cr-sodium chromate (GE Healthcare Biosciences) in DMEM medium containing 10% FBS for 1 hour at 37 ° C.
  • the target cell can be radiolabeled.
  • cells expressing HS6ST2 protein cells transformed with a gene encoding HS6ST2 protein, lung adenocarcinoma cells, lung cancer cells, liver cancer cells, ovarian cancer cells, lung squamous cell carcinoma cells, etc. can be used. .
  • the target cells can be prepared by washing the cells three times with 10% FBS-containing RPMI1640 medium and adjusting the cell concentration to 2 ⁇ 10 5 / ml.
  • ADCC activity or CDC activity can be measured by the method described below.
  • 50 ⁇ l each of target cells and anti-HS6ST2 antibody are added to a 96-well U-bottom plate (BectonectDickinson) and allowed to react on ice for 15 minutes. Thereafter, 100 ⁇ l of effector cells are added and cultured for 4 hours in a carbon dioxide incubator. The final antibody concentration is 0 or 10 ⁇ g / ml. After incubation, 100 ⁇ l of the supernatant is collected, and the radioactivity is measured with a gamma counter (COBRAIIAAUTO-GAMMA, MODEL D5005, Packard Instruments Company).
  • COBRAIIAAUTO-GAMMA MODEL D5005, Packard Instruments Company
  • Cytotoxic activity (%) can be calculated based on the formula (A-C) / (B-C) x 100 using the obtained value.
  • A is the radioactivity (cpm) in each sample
  • B is the radioactivity (cpm) in the sample with 1% NP-40 (manufactured by nacalai tesque)
  • C is the radioactivity (cpm) of the sample containing only the target cells Show.
  • cytotoxic activity in the case of measuring the cytotoxic activity by the antibody conjugate, 50 ⁇ l each of the target cells and the anti-HS6ST2 antibody conjugate are added to a 96-well flat bottom plate (Becton-Dickinson) and allowed to react on ice for 15 minutes. Incubate for 1 to 4 hours in a carbon dioxide incubator. The final antibody concentration is 0 or 3 ⁇ g / ml. After incubation, 100 ⁇ l of the supernatant is collected, and the radioactivity is measured with a gamma counter. Cytotoxic activity can be calculated in the same manner as ADCC activity measurement.
  • Another example of the antibody used in the present invention is an antibody having an internalizing activity.
  • an antibody having an internalizing activity means an antibody that is transported into cells (cytoplasm, vesicle, other organelle, etc.) when bound to HS6ST2.
  • an anti-HS6ST2 antibody bound with a labeling substance is contacted with a cell expressing HS6ST2, and the labeling substance
  • a method for confirming whether or not it has been taken into the cell a method for confirming whether cell death has been induced in the HS6ST2-expressing cells by contacting an anti-HS6ST2 antibody conjugated with a cytotoxic substance with cells expressing HS6ST2, etc. Can be confirmed. More specifically, it is possible to confirm whether or not an antibody has an internalizing activity by the method described in the Examples below.
  • An antibody having an internalizing activity can be used as a pharmaceutical composition such as an anticancer agent by binding the above-mentioned cytotoxic substance.
  • a heavy chain comprising a heavy chain CDR1 having the amino acid sequence set forth in SEQ ID NO: 64, a heavy chain CDR2 having the amino acid sequence set forth in SEQ ID NO: 65, and a heavy chain CDR3 having the amino acid sequence set forth in SEQ ID NO: 66
  • An antibody comprising a chain variable region (A1);
  • An antibody comprising a chain variable region (A6);
  • having the same activity as the antibody of the present invention means that the binding activity to HS6ST2 and / or the cytotoxic activity to cells expressing HS6ST2 are equivalent.
  • the method of introducing a mutation into a polypeptide is one of methods well known to those skilled in the art for preparing a polypeptide functionally equivalent to a certain polypeptide.
  • a person skilled in the art can perform site-directed mutagenesis (Hashimoto-Gotoh, T. et al. (1995) Gene 152, 271-275, Zoller, MJ, and Smith, M. (1983) Methods Enzymol. 100 , 468-500, Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456, Kramer W, and Fritz HJ (1987) Methods. Enzymol. 154, 350-367, Kunkel, TA (1985) Proc Natl Acad Sci USA.
  • Antibodies can be prepared. Amino acid mutations can also occur in nature. Thus, an antibody having an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence of the antibody of the present invention and functionally equivalent to the antibody is also included in the antibody of the present invention.
  • the number of amino acids to be mutated is usually within 50 amino acids, preferably within 30 amino acids, and more preferably within 10 amino acids (for example, within 5 amino acids).
  • the amino acid residue to be mutated is preferably mutated to another amino acid in which the properties of the amino acid side chain are conserved.
  • the following classification has been established based on the properties of amino acid side chains.
  • Hydrophobic amino acids (A, I, L, M, F, P, W, Y, V)
  • Hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T)
  • Amino acids with aliphatic side chains G, A, V, L, I, P
  • An amino acid having a hydroxyl group-containing side chain S, T, Y
  • Amino acids having side chains containing sulfur atoms C, M
  • Amino acids with carboxylic acid and amide-containing side chains (D, N, E, Q)
  • Amino acids with base-containing side chains (R, K, H)
  • Amino acids with aromatic-containing side chains (H, F, Y, W) (In parentheses all represent one letter of amino acid)
  • amino acid sequence classified into each group in an amino acid sequence constituting a certain polypeptide is highly likely to maintain the activity of the polypeptide when substituted with each other.
  • substitution between amino acids in the group of amino acids is referred to as conservative substitution.
  • the present invention also provides an antibody that binds to the same epitope as that to which any of the above-mentioned antibodies (1) to (21) binds.
  • Specific examples of the antibodies (1) to (21) described above include the antibodies A1, A6, A10, B5, B6, C8, and C10 described in the Examples of the present application. That is, the present invention also provides an antibody that recognizes the same epitope as that recognized by A1, A6, A10, B5, B6, C8, and C10.
  • Such an antibody can be obtained, for example, by the following method.
  • test antibody shares an epitope with a certain antibody by competition for the same epitope.
  • Competition between antibodies is detected by a cross-blocking assay or the like.
  • a competitive ELISA assay is a preferred cross-blocking assay.
  • the anti-HS6ST2 antibody of the present invention is added after preincubation of HS6ST2 protein coated on the well of a microtiter plate in the presence or absence of a candidate competitive antibody. Is done.
  • the amount of the anti-HS6ST2 antibody of the present invention bound to the HS6ST2 protein in the well is indirectly correlated with the binding ability of a candidate competitive antibody (test antibody) that competes for binding to the same epitope. That is, the greater the affinity of the test antibody for the same epitope, the lower the amount of binding of the anti-HS6ST2 antibody of the present invention to the well coated with the HS6ST2 protein, while the test antibody bound to the well coated with the HS6ST2 protein. The amount of binding increases.
  • the amount of antibody bound to the well can be easily measured by labeling the antibody in advance.
  • biotin-labeled antibodies can be measured by using an avidin peroxidase conjugate and an appropriate substrate.
  • a cross-blocking assay using an enzyme label such as peroxidase is particularly referred to as a competitive ELISA assay.
  • the antibody can be labeled with another labeling substance that can be detected or measured. Specifically, radiolabels or fluorescent labels are known.
  • any antibody bound to the well can be measured by a labeled antibody that recognizes any constant region.
  • the antibodies bound to the wells can be measured by the antibodies that identify the respective classes.
  • Anti-HS6ST2 antibody binding is at least 20%, preferably at least 30%, more preferably at least 50% compared to the binding activity obtained in a control test performed in the absence of the candidate competing antibody Can block substantially the same epitope as the anti-HS6ST2 antibody of the invention, or is an antibody that competes for binding to the same epitope.
  • the constant region of the anti-HS6ST2 antibody of the present invention is replaced with the same constant region as the test antibody. Also good.
  • the test antibody has a human-derived constant region (human IgG1, IgG2, IgG3, IgG4, etc.)
  • the constant region of the anti-HS6ST2 antibody of the present invention is replaced with the same constant region as the test antibody. be able to.
  • A1, A10, B5, B6, C8 recognizes a peptide consisting of the 459th amino acid from the 379th amino acid of the HS6ST2 protein having the amino acid sequence of SEQ ID NO: 107
  • A1, A10, B5, B6, As a preferred example of an antibody that recognizes the same epitope as that recognized by C8, an antibody that recognizes the region from the 379th amino acid to the 459th amino acid of the HS6ST2 protein having the amino acid sequence of SEQ ID NO: 107 can be mentioned. .
  • A6 recognizes a peptide consisting of amino acids 308 to 393 of the HS6ST2 protein having the amino acid sequence of SEQ ID NO: 107
  • an antibody that recognizes a site from the 308th amino acid to the 393rd amino acid of the HS6ST2 protein having the amino acid sequence of SEQ ID NO: 107 is provided.
  • C10 recognizes a peptide consisting of amino acids 24 to 175 of the HS6ST2 protein having the amino acid sequence of SEQ ID NO: 107. Therefore, as a preferred example of an antibody that recognizes the same epitope as that recognized by C10 And an antibody that recognizes a site from the 24th amino acid to the 175th amino acid of the HS6ST2 protein having the amino acid sequence of SEQ ID NO: 107.
  • the present invention further provides an HS6ST2 protein to which a cytotoxic substance is bound. Since the HS6ST2 protein to which a cytotoxic substance is bound is considered to be internalized in the cell after binding to heparin sulfate, it can be used as an anticancer agent or the like.
  • the cytotoxic substance to be bound to the HS6ST2 protein is not particularly limited, and for example, the above-described cytotoxic substances can be used.
  • the HS6ST2 protein may be a fragment or mutant as long as it has the ability to bind to heparin sulfate.
  • the ability of HS6ST2 protein to bind to heparin sulfate and the internalizing activity can be confirmed by methods known to those skilled in the art. For example, it can be confirmed by the method described above.
  • the present invention provides a pharmaceutical composition containing an antibody that binds to HS6ST2 protein as an active ingredient.
  • the present invention also relates to a cell growth inhibitor, particularly an anticancer agent, containing an antibody that binds to HS6ST2 protein as an active ingredient.
  • the cytostatic agent and anticancer agent of the present invention are preferably administered to a subject suffering from or possibly suffering from cancer. Since the expression level of HS6ST2 is increased in cancer cells, it is considered that cytotoxicity specific to cancer cells can be obtained by administration of anti-HS6ST2 antibody.
  • the anti-HS6ST2 antibody used in the pharmaceutical composition (for example, anticancer agent) of the present invention is not particularly limited, and any anti-HS6ST2 antibody may be used.
  • the above-mentioned anti-HS6ST2 antibody can be used.
  • containing an antibody that binds to HS6ST2 as an active ingredient means that the anti-HS6ST2 antibody is contained as a main active ingredient, and does not limit the content of the anti-HS6ST2 antibody.
  • the present invention provides a pharmaceutical composition comprising HS6ST2 protein bound with a cytotoxic substance as an active ingredient.
  • the present invention also provides a cell growth inhibitor, particularly an anticancer agent, containing HS6ST2 protein bound with a cytotoxic substance as an active ingredient.
  • the cytostatic agent and anticancer agent of the present invention are preferably administered to a subject suffering from or possibly suffering from cancer.
  • containing a cytotoxic substance-bound HS6ST2 protein as an active ingredient means that a cytotoxic substance-bound HS6ST2 protein is included as a main active ingredient. It does not limit the content of bound HS6ST2 protein.
  • the target cancer is not particularly limited, but is preferably lung adenocarcinoma, lung cancer, liver cancer, ovarian cancer, or lung squamous cell carcinoma.
  • the cancer may be either a primary lesion or a metastatic lesion.
  • the pharmaceutical composition of the present invention can be administered to a patient by either oral or parenteral administration. Preferably, it is parenteral administration. Specific examples of such administration methods include injection administration, nasal administration, transpulmonary administration, and transdermal administration.
  • injection administration the pharmaceutical composition of the present invention can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dose for example, the dose can be selected in the range of 0.0001 mg to 1000 mg per kg of body weight per administration. Alternatively, for example, the dose can be selected in the range of 0.001 to 100,000 mg / body per patient.
  • the pharmaceutical composition of the present invention is not limited to these doses.
  • the pharmaceutical composition of the present invention can be formulated in accordance with a conventional method (for example, Remington's Pharmaceutical, Science, Latest Edition, Mark Publishing, Company, Easton, USA) together with pharmaceutically acceptable carriers and additives. It may be.
  • a conventional method for example, Remington's Pharmaceutical, Science, Latest Edition, Mark Publishing, Company, Easton, USA
  • pharmaceutically acceptable carriers and additives may be.
  • it is not limited to these, and other commonly used carriers can be used as appropriate.
  • silicic acid lactose, crystalline cellulose, mannitol, starch, carmellose calcium, carmellose sodium, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylacetal diethylaminoacetate, polyvinylpyrrolidone, gelatin, medium chain fatty acid triglyceride
  • the carrier include polyoxyethylene hydrogenated castor oil 60, sucrose, carboxymethylcellulose, corn starch, and inorganic salts.
  • the present invention also relates to a method of causing injury to HS6ST2-expressing cells by contacting an HS6ST2-expressing cell and an antibody that binds to HS6ST2 protein or cell proliferation Provide a method for suppressing
  • the antibody used in the method of the present invention is not particularly limited, and for example, the above-described antibodies can be used.
  • the cell to which the anti-HS6ST2 antibody binds is not particularly limited as long as it is a cell expressing HS6ST2.
  • Preferred HS6ST2-expressing cells in the present invention are cancer cells. More preferred are lung adenocarcinoma cells, lung cancer cells, liver cancer cells, ovarian cancer cells, and lung squamous cell carcinoma cells.
  • the method of the present invention can be applied to both primary lesions and metastatic lesions of these cancers.
  • contact is performed, for example, by adding an antibody to a culture solution of HS6ST2-expressing cells cultured in a test tube.
  • contact is also performed by administering to a non-human animal transplanted with HS6ST2-expressing cells or an animal having cancer cells that endogenously express HS6ST2.
  • the following method is preferably used as a method for evaluating or measuring the cytotoxicity caused to HS6ST2-expressing cells by contact with the anti-HS6ST2 antibody.
  • Methods for evaluating or measuring the cytotoxic activity in vitro include the above-described antibody-dependent cell-mediated cytotoxicity (ADCC) activity, complement-dependent cytotoxicity (complement-dependent cytotoxicity). : CDC) activity and the like. Whether or not the anti-HS6ST2 antibody has ADCC activity or CDC activity can be measured by a known method (for example, Current protocols in Immunology, Chapter 7. Immunologic studies in humans, Editor, John E Coligan et al., John Wiley & Sons, Inc., (1993)).
  • a binding antibody having the same isotype as the anti-HS6ST2 antibody and having no cytotoxic activity is used as a control antibody in the same manner as the anti-HS6ST2 antibody, and the anti-HS6ST2 antibody is stronger than the control antibody.
  • Activity can be determined by showing cytotoxic activity.
  • Antibody isotype is defined by the sequence of the H chain constant region of the amino acid sequence of the antibody. In vivo, the antibody isotype is finally determined by class switching caused by genetic recombination on the chromosome that occurs during maturation of antibody-producing B cells. Differences in isotypes are reflected in differences in the physiological and pathological functions of antibodies. Specifically, for example, it is known that the intensity of cytotoxic activity is influenced by the antibody isotype as well as the antigen expression level. Therefore, in the measurement of the cytotoxic activity described above, it is preferable to use the same isotype as the test antibody as the antibody used as a control.
  • the test antibody is administered daily or at intervals of several days from that day or the next day. Administer intravenously or intraperitoneally. Cytotoxic activity can be determined by measuring tumor size over time. Similar to the in vitro evaluation, a control antibody having the same isotype was administered, and the tumor size in the anti-HS6ST2 antibody administration group was significantly smaller than the tumor size in the control antibody administration group. Then it can be determined.
  • a nude (nu / nu) mouse in which the thymus is genetically deleted and the function of the T lymphocyte is deleted can be preferably used.
  • a method for diagnosing cancer comprising detecting HS6ST2 protein or a gene encoding HS6ST2 protein.
  • HS6ST2 has been confirmed to be significantly upregulated in various cancer tissues and cancer cell lines. Therefore, HS6ST2 is useful as a marker for specifically detecting cancer.
  • the present invention provides a method for diagnosing cancer comprising the following steps: (a) providing a sample collected from the subject; (b) A step of detecting HS6ST2 protein or HS6ST2 gene contained in the sample of (a).
  • cancer is diagnosed by detecting HS6ST2 protein in a sample.
  • the detection of the HS6ST2 protein is preferably performed using an antibody that recognizes the HS6ST2 protein.
  • One specific example of the diagnostic method of the present invention is a cancer diagnostic method including the following steps. (A) providing a sample collected from the subject; (B) A step of detecting HS6ST2 protein contained in the collected sample using an antibody that binds to HS6ST2 protein.
  • detection includes quantitative or qualitative detection.
  • qualitative detection can include the following measurements. ⁇ Measurement of whether or not HS6ST2 protein is present ⁇ Measurement of whether or not HS6ST2 protein is present in a certain amount or more ⁇ Measurement of comparing the amount of HS6ST2 protein with other samples (for example, control samples)
  • quantitative detection includes measurement of the concentration of HS6ST2 protein, measurement of the amount of HS6ST2 protein, and the like.
  • the test sample in the present invention is not particularly limited as long as it is a sample that may contain HS6ST2 protein.
  • a sample collected from the body of a living organism such as a mammal is preferable. Further preferred samples are samples taken from humans.
  • Specific examples of the test sample include blood, interstitial fluid, plasma, extravascular fluid, cerebrospinal fluid, synovial fluid, pleural fluid, serum, lymph fluid, saliva, urine, tissue, and the like.
  • a preferred sample is a sample obtained from a test sample such as a specimen in which tissue or cells collected from the body of an organism are fixed, or a culture solution of cells.
  • the cancer diagnosed by the present invention is not particularly limited and may be any cancer. Specific examples include lung adenocarcinoma, lung cancer, liver cancer, ovarian cancer, and lung squamous cell carcinoma. In the present invention, both primary lesions and metastatic lesions of these cancers can be diagnosed.
  • the present invention when a protein is detected in a test sample, cancer is diagnosed using the level as an index. Specifically, when the amount of HS6ST2 protein detected in a test sample is large compared to a negative control or a healthy subject, the subject is more likely to have cancer or suffer from cancer in the future. It is shown. That is, the present invention relates to a method for diagnosing cancer including the following steps. (1) detecting an HS6ST2 expression level in a biological sample collected from a subject, and (2) A step in which the subject is shown to have cancer when the expression level of HS6ST2 detected in (1) is higher than that of the control.
  • the control refers to a sample serving as a reference for comparison, and includes a negative control and a biological sample of a healthy person.
  • the negative control can be obtained by collecting a biological sample of a healthy person and mixing as necessary.
  • the control expression level of HS6ST2 can be detected in parallel with the expression level of HS6ST2 in the biological sample of the subject.
  • the expression level of HS6ST2 in biological samples of a large number of healthy subjects can be detected in advance, and the standard expression level in healthy subjects can be statistically determined. Specifically, for example, an average value ⁇ 2 ⁇ standard deviation (S.D.) or an average value ⁇ 3 ⁇ standard deviation (S.D.) can be used as the standard value.
  • the mean ⁇ 2 ⁇ standard deviation (S.D.) contains 80% and the mean ⁇ 3 ⁇ standard deviation (S.D.) contains 90% of healthy subjects.
  • the expression level of HS6ST2 in the control can be set using the ROC curve.
  • An ROC curve (receiver operating characteristic curve; receiver operating characteristic curve) is a graph in which the vertical axis indicates detection sensitivity and the horizontal axis indicates a false positive rate (ie, “1-specificity”).
  • an ROC curve can be obtained by plotting changes in sensitivity and false positive rate when the reference value for determining the expression level of HS6ST2 in a biological sample is continuously changed.
  • the “reference value” for obtaining the ROC curve is a numerical value temporarily used for statistical analysis.
  • the “reference value” for obtaining the ROC curve is generally changed continuously within a range that can cover all selectable reference values. For example, the reference value can be varied between the minimum and maximum values of HS6ST2 measurements in the population to be analyzed.
  • a standard value that can be expected to have a desired detection sensitivity and accuracy is also called a cut-off value.
  • the expression level of HS6ST2 detected in (1) is compared with the cut-off value.
  • the expression level of HS6ST2 detected in (1) is higher than the cut-off value, the subject's cancer is detected.
  • the expression level of HS6ST2 can be determined by any method. Specifically, the expression level of HS6ST2 can be known by evaluating the amount of HS6ST2 mRNA, the amount of HS6ST2 protein, and the biological activity of HS6ST2 protein. The amount of mRNA or protein of HS6ST2 can be determined by a method as described herein.
  • a particularly suitable subject is a human.
  • HS6ST2 protein of the animal species is detected.
  • the method for detecting the HS6ST2 protein contained in the test sample is not particularly limited, but it is preferably detected by an immunological method as exemplified below using an anti-HS6ST2 antibody.
  • the immunohistochemistry (IHC) method includes a step of detecting HS6ST2 protein on a section on which tissue or cells obtained from a patient suffering from cancer is immobilized, and is preferable as a method for diagnosing cancer.
  • One of the immunological assay methods One of the immunological assay methods.
  • the immunological methods described above, such as the immunohistochemistry (IHC) method, are methods known to those skilled in the art.
  • HS6ST2 is a membrane protein whose expression is specifically enhanced in cancer cells
  • cancer cells or cancer tissues can be detected by anti-HS6ST2 antibody.
  • immunohistological analysis cancer cells contained in cells or tissues collected from a living body are detected.
  • cancer tissue in a living body can be detected with an anti-HS6ST2 antibody.
  • the present invention includes (1) a step of administering an antibody that binds to an HS6ST2 protein labeled with a labeling substance such as a radioisotope to a subject, and (2) a step of detecting accumulation of the labeling substance. It relates to the detection method.
  • the antibodies can be detectably labeled. For example, the behavior of a fluorescent substance, a luminescent substance, or an antibody labeled with a radioisotope in a living body can be traced.
  • An antibody labeled with a fluorescent substance or a luminescent substance can be observed using an endoscope or a laparoscope.
  • a radioisotope can image the localization of an antibody by following its radioactivity.
  • the localization of anti-HS6ST2 antibody in vivo indicates the presence of cancer cells.
  • a positron emitting nuclide can be used as a radioisotope for labeling an antibody to detect cancer in vivo.
  • antibodies can be labeled with positron emitting nuclides such as 18F, 55Co, 64Cu, 66Ga, 68Ga, 76Br, 89Zr, and 124I.
  • positron emitting nuclides such as 18F, 55Co, 64Cu, 66Ga, 68Ga, 76Br, 89Zr, and 124I.
  • a known method Acta Oncol. 32, 825-830, 1993
  • the radiation emitted by the radionuclide is measured from outside the body by PET (Positron Tomography) and converted to an image by computer tomography. Is done.
  • PET is a device for non-invasively obtaining data on the behavior of a drug in the body. With PET, radiation intensity can be quantitatively imaged as signal intensity.
  • antigen molecules highly expressed in a specific cancer can be detected without collecting a sample from a patient.
  • the anti-HS6ST2 antibody can also be radiolabeled with a short-lived nuclide using a positron emitting nuclide such as 11C, 13N, 15O, 18F, 45Ti in addition to the above-mentioned nuclide.
  • a positron emitting nuclide such as 11C, 13N, 15O, 18F, 45Ti in addition to the above-mentioned nuclide.
  • anti-HS6ST2 antibodies can be labeled with various radioisotopes.
  • the anti-HS6ST2 antibody administered to the patient accumulates in the primary and metastatic lesions according to the specificity of the anti-HS6ST2 antibody for the pathological tissue at each site. If the anti-HS6ST2 antibody is labeled with a positron emitting nuclide, the presence of the primary and metastatic lesions is detected by the localization of the radioactivity by detecting the radioactivity.
  • an activity value of 25-4000 keV gamma particles or positron emission can be used appropriately.
  • an appropriate nuclide is selected and administered in a larger amount, a therapeutic effect can be expected.
  • a gamma particle of 70-700 keV or a nuclide that gives a positron emission value can be used.
  • the expression of HS6ST2 gene is detected.
  • the gene detected in the present invention is not particularly limited, but mRNA is preferable.
  • detection includes quantitative or qualitative detection. For example, the following measurement operation can be given as qualitative detection. -Simply measuring whether HS6ST2 mRNA is present, Measurement of whether or not HS6ST2 mRNA is present above a certain amount, ⁇ Measurements comparing the amount of HS6ST2 mRNA with other samples (eg, control samples)
  • quantitative detection includes measurement of the concentration of HS6ST2 mRNA, measurement of the amount of HS6ST2 mRNA, and the like.
  • test sample in the present invention any sample that may contain HS6ST2 mRNA can be used.
  • a sample collected from the body of a living organism such as a mammal is preferable, and a sample collected from a human is more preferable.
  • Specific examples of the test sample include blood, interstitial fluid, plasma, extravascular fluid, cerebrospinal fluid, synovial fluid, pleural fluid, serum, lymph fluid, saliva, urine, tissue, and the like.
  • a preferable sample includes a sample obtained from a test sample, such as a specimen in which tissues or cells collected from the body of an organism are fixed, or a culture solution of cells, and the like.
  • an in situ hybridization method is preferably used.
  • the in situ hybridization method has been developed as a method for confirming the presence or distribution of specific DNA or RNA in cells or tissues and the intensity of its expression. In principle, this utilizes the property that a probe nucleic acid having a base sequence complementary to a specific nucleic acid sequence in a cell specifically forms a complex.
  • RI radioisotope
  • hapten antigenic substance
  • an RI label can be preferably used.
  • a fluorescent label using a non-radioactive material such as biotin or hapten such as digoxigenin can be used.
  • a detection method by fluorescence in situ hybridization called FISH is used.
  • the cancer to be diagnosed is not particularly limited. Specific examples include lung adenocarcinoma, lung cancer, liver cancer, ovarian cancer, and lung squamous cell carcinoma. In the present invention, both primary lesions and metastatic lesions of these cancers can be diagnosed.
  • any animal species that expresses the HS6ST2 gene can be the subject.
  • a particularly suitable subject is a human.
  • the HS6ST2 gene of the animal species is detected.
  • a sample is prepared from a subject.
  • HS6ST2 mRNA contained in the sample is detected.
  • cDNA synthesized from mRNA can also be detected.
  • mRNA of HS6ST2 or cDNA encoding HS6ST2 is detected in a test sample, it is determined that there is a possibility of cancer. For example, when the amount of HS6ST2 mRNA or cDNA encoding HS6ST2 detected in a test sample is higher than in a negative control or a healthy subject, the subject has cancer or will suffer from future cancer. It is shown that there is a high probability of doing.
  • Methods for detecting mRNA are known. Specifically, for example, Northern blotting method, RT-PCR method, DNA array method and the like can be used in the present invention.
  • the detection method of the present invention described above can be automated using various automatic inspection apparatuses. By automation, a large number of samples can be inspected in a short time.
  • the present invention also provides a diagnostic agent or kit for diagnosing cancer, comprising a reagent for detecting HS6ST2 protein in a test sample.
  • the diagnostic agent of the present invention contains at least an anti-HS6ST2 antibody.
  • kits for diagnosing cancer can be obtained by combining the diagnostic reagent for cancer of the present invention with other elements used for detection of HS6ST2. That is, the present invention includes a kit for diagnosing cancer, which comprises an antibody that binds to HS6ST2, a reagent for detecting the binding between the antibody and HS6ST2, and may further comprise a control sample comprising a biological sample containing HS6ST2. About.
  • the kit of the present invention may further include instructions for explaining the measurement operation.
  • Example 1 Expression analysis of HS6ST2 mRNA by Human Exon 1.0 ST Array
  • Human Exon 1.0 ST Array Expression of HS6ST2 mRNA in clinical cancer, cancer cell lines and various normal tissues was analyzed using Human Exon 1.0 ST Array (Affymetrix).
  • Human Exon 1.0 ST Array since at least one probe set is set for each exon of each gene, expression data of a plurality of probe sets can be obtained for one gene. Therefore, it is considered that the reliability of the expression data is improved as compared with the conventional expression array of Affymetrix, which basically has only one probe set per gene.
  • Samples include 41 tumors of lung adenocarcinoma tissue, 13 tumors of small cell lung cancer tissue, 2 normal regions of lung adenocarcinoma tissue, 10 normal regions of colon cancer tissue, Normal part of one breast cancer-extracted tissue, 24 lung adenocarcinoma cell lines, 1 large cell lung cancer cell line, 2 lung squamous cell carcinoma cell lines, 5 small cell lung cancer cell lines, 89 Total cell RNA derived from cancer cell lines other than lung cancer and 69 normal tissues were used. Cancer cell lines were purchased from ATCC, JCRB or RIKEN, and total RNA from normal tissues was purchased from Clontech, Ambion, Stratagene, Cell Applications, Panomics, Chemicon and Biochain Institute.
  • RNA was purified using Trizol® (Invitrogen) according to the method attached to the product. Expression analysis was performed using 1 ⁇ g of total RNA, according to GeneChip, Whole, Transcript (WT), Sense, Target, Labeling, Assay, and Manual (Affymetrix). ExACT (Exon Array Computational Tool) software (Affymetrix) was used to digitize the data.
  • the core probe set of Human Exon 1.0 ST Array for HS6ST2 is one in exon 1 (probe set ID; 4022257), five in exon 2 (4022252, 4022253, 4022254, 4022255, 4022256), and one in exon 3 (4022247) One for exon 4 (4022221), two for exon 5 (4022212, 4022213), and seven for exon 6 (4022194, 4022195, 4022196, 4022197, 4022198, 4022198, 1022200).
  • the average value of all the core probe sets of that exon was used as the expression data for that exon.
  • probe set ID4022253 showed a negative numerical value in all samples, it was judged to be unreliable and was excluded from data analysis.
  • Normal tissue expression data are shown in FIGS. 1A and 1B
  • lung cancer cell lines and tumor tissue expression data of lung cancer excised tissues are shown in FIGS. 2A and 2B
  • expression data of cancer cell lines other than lung cancer are shown in FIGS. 3A and 3B. Indicated.
  • Example 2 Preparation of antibodies against HS6ST2 2-1. Cloning of HS6ST2 As shown in Example 1, it was considered that the expression in cancer cells was a variant lacking exons 4 and 5 of HS6ST2. The gene sequence of this variant is registered in RefSeq as NM_147175. UniProt has its amino acid sequence registered as Q96MM7-1. On the other hand, a variant in which amino acid 1-146 of Q96MM7-1 is deleted is registered as Q96MM7-2. Q96MM7-2 corresponds to a protein whose translation is initiated from the 11th base of exon 3.
  • HS6ST2 As shown in Example 1, the expression of exons 1 and 2 could not be confirmed in the Human Exon 1.0 ST Array, and the first cloned HS6ST2 was an amino acid sequence corresponding to Q96MM7-2 (Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-O-sulphotransferase-2 having different expression patterns and properties.Biochem J. 2003. 371: 131), Q96MM7-2 is expressed dominantly It was considered. Therefore, Q96MM7-2 was named HS6ST2_N-short and cloned.
  • Pyrobest DNA Polymerase (Takara Bio) was used for PCR amplification, 3 ⁇ L of 10 ⁇ Pyrobest buffer II, 3 ⁇ L of dNTP mixture, 3 ⁇ L of HuH6 cDNA, 1 ⁇ L of SEQ ID NO: 1 primer (50 ⁇ M), 1 ⁇ L of SEQ ID NO: 2 primer Prepare a solution containing (50 ⁇ M), 0.5 ⁇ L Pyrobest DNA Polymerase, and 18.5 ⁇ L nuclease-free water, and amplify at 94 ° C for 1 minute (94 ° C for 30 seconds, 62 ° C for 30 seconds, 72 ° C for 1.5 minutes) x 35 cycles Went. PCR reamplification was similarly performed using 1 ⁇ L of this PCR product as a template.
  • the sequence of TOPO_HS6ST2_N-short was sequenced and confirmed to be the same as RefSeq Accession No. NM_147175.
  • HS6ST2_N-short expression CHO cell line HS6ST2_N-short cDNA was cloned into an expression vector for mammalian cells (pMCDN2_ctV5).
  • the pMCDN2_ctV5 expression vector is a vector in which expression can be induced under the control of a mouse CMV promoter (GenBank Accession No. U68299) and a neomycin resistance gene is incorporated.
  • a V5 tag sequence is added to the 3 ′ side of the inserted target gene.
  • the V5 tag is a sequence consisting of 14 amino acids of GKPIPNPLLGLDST that is recognized by an anti-V5 antibody (Invitrogen).
  • SEQ ID NO: 3 The sequence of EcoRI recognition sequence-Kozak sequence-start codon-multicloning site (NheI, SalI, NotI) -V5 tag sequence-stop codon of pMCDN2_ctV5 expression vector is shown in SEQ ID NO: 3.
  • Primer represented by SEQ ID NO: 4 (EcoRI recognition sequence-Kozak sequence-5 'end sequence of HS6ST2_N-short) and primer represented by SEQ ID NO: 5 (3' end excluding stop codon of NotI recognition sequence-HS6ST2_N-short) PCR amplification was performed using TOPO_HS6ST2_N-short as a template.
  • the amplified fragment was digested with EcoRI and NotI and cloned into the EcoRI and NotI sites of pMCDN2_ctV5 (pMCDN2_HS6ST2_N-short_ctV5).
  • the base sequence from the start codon to the stop codon of pMCDN2_HS6ST2_N-short_ctV5 is shown in SEQ ID NO: 6, and the amino acid sequence is shown in SEQ ID NO: 7.
  • PMCDN2_HS6ST2_N-short_ctV5 digested with PvuI was introduced into the CHO cell line DG44 by electroporation.
  • a C-terminal V5-tagged HS6ST2_N-short constant expression CHO cell line was established by selecting the introduced cell line with 500 ⁇ g / mL Geneticin (Invitrogen).
  • CHO-S-SFM II medium Invitrogen
  • HT supplement Invitrogen
  • penicillin / streptomycin Invitrogen
  • pMC mammalian cells
  • pMC is a vector capable of inducing expression under the control of the mouse CMV promoter.
  • PCR amplification using pMCDN2_HS6ST2_N-short_ctV5 as a template using the primer represented by SEQ ID NO: 4 and the primer represented by SEQ ID NO: 8 (SalI recognition sequence-stop codon-3 'end sequence excluding stop codon of HS6ST2_N-short) went.
  • the amplified fragment was digested with EcoRI and SalI and cloned into the EcoRI and SalI sites of pMC (pMC_HS6ST2_N-short).
  • HS6ST2_N-short is deleted from the N-terminal to the transmembrane region (16th amino acid of 8th to 23rd LLLALVMLFLFAVIVL) and replaced with epidermal growth factor receptor (EGFR, RefSeq Accession No. NM_005228) signal sequence (24 amino acid sequence of MRPSGTAGAALLALLAALCPASRA), and a secreted HS6ST2 (protein with 8 amino acids of DYKDDDDK recognized by anti-FLAG antibody) added to the C-terminus sHS6ST2_FLAG) expression vector was prepared.
  • EGFR epidermal growth factor receptor
  • Primer represented by SEQ ID NO: 9 (3 ′ end sequence of EGFR signal sequence-sequence after transmembrane region of HS6ST2_N-short) and primer represented by SEQ ID NO: 10 (NotI recognition sequence-stop codon-FLAG tag sequence- PCR amplification was performed using pMCDN2_HS6ST2_N-short_ctV5 as a template using 3 ′ terminal sequence excluding the stop codon of HS6ST2_N-short). Using this PCR product as a template, PCR amplification was performed using a primer represented by SEQ ID NO: 11 (EcoRI recognition sequence-Kozak sequence-5 'end sequence of EGFR signal sequence) and a primer represented by SEQ ID NO: 10.
  • pMCDN2_sHS6ST2_FLAG The amplified fragment was digested with EcoRI and NotI and cloned into the EcoRI and NotI sites of pMCDN2 (pMCDN2_sHS6ST2_FLAG).
  • pMCDN2 is a vector capable of inducing expression under the control of the mouse CMV promoter and incorporating a neomycin resistance gene.
  • the base sequence from the start codon to the stop codon of pMCDN2_sHS6ST2_FLAG is shown in SEQ ID NO: 12, and the amino acid sequence is shown in SEQ ID NO: 13.
  • PMCDN2_sHS6ST2_FLAG digested with PvuI was introduced into CHO cell line DG44 by electroporation.
  • the sHS6ST2_FLAG constant expression CHO cell line was established by selecting the introduced cell line with Geneticin® (500 ⁇ g / mL). CHO medium was used for the culture.
  • SHS6ST2_FLAG was purified from the culture supernatant of the established sHS6ST2_FLAG_CHO cells. Apply culture supernatant to anti-FLAG antibody-binding affinity gel (Sigma), wash with binding buffer (50 M Tris HCl, pH7.6, 150 mM NaCl), and then elution buffer (0.1 M glycine HCl, pH3.5) Eluted with. The eluate was immediately neutralized with a neutralization buffer (1M Tris HCl, pH 8.0) and then replaced with Dulbecco's phosphate-buffered saline (PBS, Invitrogen) using PD10 column (GE Healthcare).
  • a neutralization buffer (1M Tris HCl, pH 8.0
  • PBS Dulbecco's phosphate-buffered saline
  • the concentration of purified sHS6ST2_FLAG was measured using DC-Protein-Assay-Kit-I (Bio-Rad) according to the method attached to the product.
  • the attached bovine gamma globulin was used as the standard.
  • sHS6ST2_FLAG emulsified with Freund's complete adjuvant (Becton Dickinson) was subcutaneously administered.
  • 50 ⁇ g of sHS6ST2_FLAG was administered into the tail vein.
  • spleen cells were removed, mixed with mouse myeloma cell line P3-X63Ag8U1 (P3U1, ATCC) to 2: 1, and PEG1500 (Roche Diagnostics) was gradually added to prepare a hybridoma. . After adding RPMI1640 medium (Invitrogen) and centrifugation, PEG1500 was removed by removing the supernatant.
  • HAT medium RPMI1640 medium containing 10% fetal bovine serum (FBS), penicillin-streptomycin, 1 ⁇ HAT media supplement (Sigma), 0.5 ⁇ BM-Condimed H1 Hybridoma Cloning Supplement (Roche Diagnostics)
  • FBS fetal bovine serum
  • penicillin-streptomycin 1 ⁇ HAT media supplement
  • 0.5 ⁇ BM-Condimed H1 Hybridoma Cloning Supplement (Roche Diagnostics)
  • Screening was performed by measuring the binding of antibodies contained in the culture supernatant to HS6ST2_N-short_ctV5_CHO cells and the parent strain CHO cells using a flow cytometer (FACS Calibur, Becton Dickinson).
  • the hybridomas that specifically bound to HS6ST2_N-short_ctV5_CHO cells were continuously cultured, screened again by the same method, and then cloned by the limiting dilution method. As described above, clones A1, A6, and A10 were established as antibodies that specifically bind to HS6ST2.
  • mice female, 6 weeks old were subcutaneously administered with 100 ⁇ g of sHS6ST2_FLAG emulsified with Freund's complete adjuvant. After 15 days and 23 days, sHS6ST2_FLAG 50 ⁇ g emulsified with Freund's complete adjuvant was subcutaneously administered. For one animal, 50 ⁇ g of sHS6ST2_FLAG was administered into the tail vein 1 day after the last immunization, and a hybridoma was produced 3 days later.
  • sHS6ST2_FLAG 50 ⁇ g was administered into the tail vein 36 days after the last immunization, and a hybridoma was produced 3 days later.
  • screening was performed to establish clones B5, B6, C8, and C10 as antibodies that specifically bind to HS6ST2.
  • hybridomas were cultured in a HAT medium containing Ultra Low IgG FBS (Invitrogen) instead of FBS, and antibodies were purified from the culture supernatant using a HiTrap Protein G HP 1 mL column (GE Healthcare).
  • IsoStrip® Roche
  • the antibody concentration was measured using DC-Protein-Assay-Kit-I (Bio-Rad).
  • the attached bovine gamma globulin was used as the standard.
  • the above-described antibody purification, isotyping, and antibody concentration measurement were performed according to the method attached to the product.
  • Example 3 Evaluation of binding of anti-HS6ST2 antibody to mouse HS6ST2 3-1.
  • Mouse HS6ST2 has two variants of transcript variant 1 (NM_001077202) and transcript variant 2 (NM_015819) registered in RefSeq. Yes.
  • a variant corresponding to HS6ST2_N-short in which N-terminal 146 amino acids and exons 4 and 5 are deleted is transcript variant 2. Therefore, transcript variant 2 was cloned into mouse HS6ST2 (mHS6ST2).
  • a primer represented by SEQ ID NO: 14 (EcoRI recognition sequence-Kozak sequence-5 'terminal sequence of mHS6ST2)
  • a primer represented by SEQ ID NO: 15 (NotI recognition sequence- PCR amplification was performed using the 3 'terminal sequence of mHS6ST2)
  • the amplified product was cloned into pGEM-T Easy vector using pGEM-T Easy Vector Systems (Promega) (pGEM-T_mHS6ST2).
  • KOD Plus Ver.2 (Toyobo) was used, 5 ⁇ L of 10 ⁇ KOD Plus Ver.2 buffer, 5 ⁇ L of dNTP mixture, 4 ⁇ L of 25 mM MgSO 4 , 1.5 ⁇ L of the primer of SEQ ID NO: 14 (10 ⁇ M), Prepare a solution containing 1.5 ⁇ L of SEQ ID NO: 15 primer (10 ⁇ M), 4 ⁇ L of mouse spleen cDNA, 1 ⁇ L of KOD Plus Polymerase, 28 ⁇ L of nuclease-free water, 94 ° C. for 2 minutes (98 ° C. for 10 seconds, 72 ° C.
  • pMCDN2_ntHA an expression vector for mammalian cells
  • pMCDN2_ntHA is a vector capable of inducing expression under the control of the mouse CMV promoter and incorporating a neomycin resistance gene.
  • An HA tag sequence is added to the 5 ′ side of the inserted target gene.
  • the HA tag sequence is an HA epitope sequence (YPYDVPDYA) derived from influenza hemagglutinin protein, which is recognized by an HA-specific antibody.
  • the sequence of EcoRI recognition sequence-Kozak sequence-start codon-HA tag sequence-multicloning site (NheI, SalI, NotI) -stop codon of pMCDN2_ntHA expression vector is shown in SEQ ID NO: 16.
  • PCR amplification was performed using pGEM-T_mHS6ST2 as a template, using the primer represented by SEQ ID NO: 17 (NheI recognition sequence—the 5 ′ end sequence excluding the start codon of mHS6ST2) and the primer represented by SEQ ID NO: 15.
  • the amplified fragment was digested with NheI and NotI and cloned into the NheI and NotI sites of pMCDN2_ntHA (pMCDN2_mHS6ST2_ntHA).
  • mHS6ST2 cDNA was cloned into an expression vector for mammalian cells (pMCDN2_ctV5).
  • PCR amplification was performed using pMCDN2_mHS6ST2_ntHA as a template using the primer represented by SEQ ID NO: 17 and the primer represented by SEQ ID NO: 18 (NotI recognition sequence—3 ′ terminal sequence excluding the stop codon of mHS6ST2).
  • the amplified fragment was digested with NheI and NotI and cloned into the NheI and NotI sites of pMCDN2_ctV5 (pMCDN2_mHS6ST2_ctV5).
  • the base sequence from the start codon to the stop codon of pMCDN2_mHS6ST2_ctV5 is shown in SEQ ID NO: 19, and the amino acid sequence is shown in SEQ ID NO: 20.
  • PMCDN2_mHS6ST2_ctV5 digested with PvuI was introduced into CHO cell DG44 by electroporation.
  • a C-terminal V5-tagged mHS6ST2 constant expression CHO cell line (mHS6ST2_ctV5_CHO) was established by selecting the introduced cell line with Geneticin® (500 ⁇ g / mL). CHO medium was used for the culture.
  • PBS FACS buffer
  • anti-HS6ST2 antibody or mouse IgG1 mouse IgG1 (mIgG1, BD Biosciences Pharmingen) was added as a negative control. After reacting for 1 hour on ice, the cells were washed with FACS buffer.
  • a FITC-labeled anti-mouse antibody Goat F (ab ′) 2 Fragment Anti-mouse IgG (H + L) -FITC, Beckman Coulter
  • FACS buffer supplemented with propidium iodide (PI) 10 ⁇ g / mL (Sigma) and measured with a flow cytometer (FACS Calibur, Becton Dickinson).
  • PI propidium iodide
  • the measurement data was analyzed using CELLQuest software (Becton Dickinson), and the geo-mean value of FITC fluorescence intensity was calculated for a live cell population that was negative for PI.
  • Example 4 Analysis of epitope of anti-HS6ST2 antibody
  • GST_HS6ST2_N is the HS6ST2_N-short amino acid sequence from 24 to 175
  • GST_HS6ST2_mid is the amino acid sequence from 166 to 317
  • GST_HS6ST2_C is the protein that added GST at the N-terminus and His tag at the C-terminus It is.
  • the His tag is a tag peptide consisting of 6 consecutive histidine residues.
  • Primer represented by SEQ ID NO: 21 (EcoRI recognition sequence-5 'terminal sequence of amino acid sequence 24-175 of HS6ST2_N-short) and primer represented by SEQ ID NO: 22 (NotI recognition sequence-stop codon-His tag sequence PCR amplification was carried out using pMCDN2_HS6ST2_N-short_ctV5 as a template, using the HS6ST2_N-short 24′-175th amino acid sequence (3 ′ terminal sequence). The amplified product was digested with EcoRI and NotI and cloned into the EcoRI and NotI sites of pGEX-6P-1 (pGEX_GST_HS6ST2_N).
  • GST_HS6ST2_mid was cloned using the primers represented by SEQ ID NO: 23 and SEQ ID NO: 24, and GST_HS6ST2_C was cloned using the primers represented by SEQ ID NO: 25 and SEQ ID NO: 26 (pGEX_GST_HS6ST2_mid, pGEX_GST_HS6ST2_C).
  • GST_HS6ST2_C sequence was divided into two, and a GST fusion protein was prepared for each.
  • GST_HS6ST2_C1 is a protein in which 308-393th amino acid sequence is added, GST_HS6ST2_C2 is 379-459th amino acid sequence, GST is added to N-terminal and His tag is added to C-terminal.
  • GST_HS6ST2_C1 was cloned using the primers represented by SEQ ID NO: 25 and SEQ ID NO: 27 (pGEX_GST_HS6ST2_C1).
  • GST_HS6ST2_C2 was cloned using the primers represented by SEQ ID NO: 26 and SEQ ID NO: 28 (pGEX_GST_HS6ST2_C2).
  • GST_HS6ST2_N, GST_HS6ST2_mid, GST_HS6ST2_C, GST_HS6ST2_C1 and GST_HS6ST2_C2 are expressed using BL21 (DE3) et Competent Cells (Takara Bio).
  • Western blotting was performed with anti-HS6ST2 antibody.
  • the anti-HS6ST2 antibody was used at 10 ⁇ g / mL, the secondary antibody (HRP-antiIgGmIgG, GE Healthcare) was used at a 3000-fold dilution, and detected using ECL Western Blotting Detection Reagents (GE Healthcare).
  • anti-HS6ST2 antibodies A1, A10, B5, B6, and C8 bound to GST_HS6ST2_C2, A6 bound to GST_HS6ST2_C1, and C10 bound to GST_HS6ST2_N. Therefore, anti-HS6ST2 antibodies A1, A10, B5, B6, and C8 can bind to the amino acid sequence of 379-459 of HS6ST2_N-short, A6 can bind to the amino acid sequence of 308-393, and C10 can bind to the amino acid sequence of 24-175. It became clear.
  • Example 5 Evaluation of antibody-dependent cellular cytotoxicity (ADCC) activity of anti-HS6ST2 antibody
  • ADCC activity of the anti-HS6ST2 antibody prepared in Example 2 was measured.
  • HS6ST2_N-short_ctV5_CHO cells were used as target cells.
  • 1 ⁇ 10 6 HS6ST2_N-short_ctV5_CHO cells were cultured for 1 hour in the presence of Chromium-51 (GE Healthcare). After washing, the concentration was adjusted to 2 ⁇ 10 5 cells / mL with CHO medium, and 50 ⁇ L / well was added to a 96-well plate.
  • anti-HS6ST2 antibody prepared to 4 ⁇ g / mL in CHO medium or mIgG1 (BD Biosciences Pharmingen) as a negative control was added at 50 ⁇ L / well.
  • effector cells prepared to 5 ⁇ 10 5 / mL with CHO medium were added at 100 ⁇ L / well.
  • chimeric proteins containing the extracellular region of mouse Fc-gamma receptor 3 (RefSeq Accession No. NM_010188) and the transmembrane region and intracellular region of human gamma chain RefSeq Accession No.
  • NM_004106 were added to NK-92 cells ( A recombinant cell (Japanese Patent Application No. 2007-20155, WO2008 / 093688) forcibly expressed in ATCC was used. After culturing the plate for 4 hours in a 37 ° C, 5% CO 2 incubator, collect 100 ⁇ L / well of the culture supernatant and measure the radioactivity (cpm) using a gamma counter (1480 WIZARD 3 ⁇ , Wallac) The specific chromium release rate (%) was determined using the following formula.
  • Specific chromium release rate (%) (AC) x 100 / (BC)
  • A is the radioactivity in each well
  • B is the average radioactivity of the wells in which cells were lysed at a final concentration of 1% Nonidet P-40
  • C is the average radioactivity of wells to which only target cells were added. It is. B and C were performed in triplicate, and others were duplicated, and the average value and standard deviation of the specific chromium release rate were calculated.
  • anti-HS6ST2 antibodies A6, B5, B6, and C8 have ADCC activity (FIG. 6).
  • Example 6 Evaluation of anti-tumor activity of anti-HS6ST2 antibody using Mab-ZAP The potential of the anti-HS6ST2 antibody prepared in Example 2 as an immunotoxin was evaluated using Mab-ZAP (Advanced Targeting Systems).
  • Mab-ZAP is an antibody obtained by labeling saporin with a goat anti-mouse IgG antibody. Saporin is a toxin that inhibits protein synthesis in the ribosome.
  • a mouse antibody that binds to an antigen on the cell surface and Mab-ZAP are added to the culture system at the same time, when the mouse antibody is taken into the cell, Mab-ZAP is also taken into the cell and suppresses cell growth. .
  • HS6ST2_N-short_ctV5_CHO cells were used as target cells.
  • HS6ST2_N-short_ctV5_CHO cells prepared at 1 ⁇ 10 5 cells / mL in CHO medium were seeded in a 96-well plate at 50 ⁇ L / well and cultured in a 37 ° C., 5% CO 2 incubator.
  • anti-HS6ST2 antibody and Mab-ZAP were added to make 100 ⁇ L / well, and further cultured for 2 days.
  • the anti-HS6ST2 antibody had a final concentration of 20 ng / mL
  • Mab-ZAP had a final concentration of 100 ng / mL.
  • MIgG1 (BD Biosciences Pharmingen) was used as a negative control. After culturing, 10 ⁇ L / well of live cell measurement reagent SF (Nacalai Tesque) was added and further cultured for 1.5 hours, and then the absorbance at 450 nm to 655 nm was measured. The experiment was performed in duplicate, and the average value and standard deviation of absorbance were calculated.
  • Example 7 Evaluation of binding activity to HS6ST2 variant 7-1.
  • Cloning of HS6ST2 variant HS6ST2 has a variant with a long N-terminal amino acid sequence (UniProt Q96MM7-1, RefSeq Accession No. NM_147175). This variant was named HS6ST2_N-long, and it was confirmed that the anti-HS6ST2 antibody prepared in Example 2 was bound.
  • HS6ST2_N-short In the open reading frame of HS6ST2_N-short, there is a NheI recognition sequence near the 5 ′ end. Therefore, the HS6ST2_N-short sequence already cloned downstream from this NheI recognition sequence was used, and the HS6ST2_N-long sequence upstream was further cloned.
  • total RNA was extracted from cancer cell line HuH6 (RIKEN) using Trizol (Invitrogen) according to the method attached to the product, and further cDNA was prepared using SuperScript III Reverse Transcriptase (Invitrogen) according to the method attached to the product.
  • the primer represented by SEQ ID NO: 29 (HS6ST2_N-long 5'-UTR sequence) and the primer represented by SEQ ID NO: 30 (sequence downstream from the NheI recognition sequence of HS6ST2_N-short) were used.
  • PCR amplification was performed, and the amplified product was cloned into pGEM-T Easy vector using pGEM-T Easy Vector Systems (Promega) (pGEM-T_HS6ST2_N).
  • KOD Plus Ver.2 (Toyobo) was used, 5 ⁇ L of 10 ⁇ KOD Plus Ver.2 buffer, 5 ⁇ L of dNTP mixture, 3 ⁇ L of 25 mM MgSO 4 , 1 ⁇ L of primer of SEQ ID NO: 29 (10 ⁇ M), 1 ⁇ L Prepare a solution containing the primer of SEQ ID NO: 30 (10 ⁇ M), 2 ⁇ L of HuH6 cDNA, 1 ⁇ L of KOD Plus Polymerase, 33 ⁇ L of nuclease-free water, 94 ° C. for 2 minutes, (94 ° C. for 30 seconds, 58 ° C. for 30 seconds, 68 Amplification was performed at 35 ° C. for 3 minutes and 68 ° C. for 3 minutes.
  • the sequence of pGEM-T_HS6ST2_N was sequenced and confirmed to be the same as the sequence of the corresponding part of RefSeq Accession No. NM_147175.
  • PCR amplification is performed using the primer represented by SEQ ID NO: 31 (EcoRI recognition sequence-Kozak sequence-5 'end sequence of HS6ST2_N-long) and the primer represented by SEQ ID NO: 30
  • SEQ ID NO: 31 EcoRI recognition sequence-Kozak sequence-5 'end sequence of HS6ST2_N-long
  • SEQ ID NO: 30 The product was cloned into a TOPO vector (TOPO_HS6ST2_N) using TOPOOTA Cloning Kit (Invitrogen).
  • TOPO_HS6ST2_N was digested with EcoRI and NheI and cloned into the EcoRI and NheI sites of pMCDN2_HS6ST2_N-short_ctV5 to prepare a C6 V5 tagged HS6ST2_N-long expression vector (pMCDN2_HS6ST2_N-long_ctV5).
  • the base sequence from the start codon to the stop codon of pMCDN2_HS6ST2_N-long_ctV5 is shown in SEQ ID NO: 32, and the amino acid sequence is shown in SEQ ID NO: 33.
  • HS6ST2_N-long-expressing CHO cell line PvuI digested pMCDN2_HS6ST2_N-long_ctV5 was introduced into CHO cell DG44 by electroporation. By selecting the introduced cell line with Geneticin (500 ⁇ g / mL), a C-terminal V5-tagged HS6ST2_N-long constant expression CHO cell line (HS6ST2_N-long_ctV5_CHO) was established. CHO medium was used for the culture.
  • Example 8 Expression analysis of HS6ST2 in cancer cell lines 8-1. Expression analysis of HS6ST2 by flow cytometry Using the anti-HS6ST2 antibody prepared in Example 2, the expression of HS6ST2 on the cell membrane of cancer cell lines is a flow site Evaluation was performed using a meter.
  • the primary antibody is anti-HS6ST2 antibody B6 or negative control mIgG1 (BD Biosciences Pharmingen), and the cells are the lung adenocarcinoma cell line ABC-1 and the liver cancer cell line HuH6, which have the highest HS6ST2 expression in the Human Exon 1.0 ST Array. Used (Example 1).
  • Flow cytometry was performed in the same manner as in Example 3, and the primary antibody was used at a concentration of 10 ⁇ g / mL. As a result, the expression of HS6ST2 was confirmed on the cell membrane in any cell (FIG. 9).
  • N-Glycosidase F PNGaseF, New England Biolabs
  • Samples were subjected to SDS-PAGE electrophoresis with Multigel II Mini (8/16, Cosmo Bio), transferred to PVDF membrane (Immobilon-P, Millipore), and anti-HS6ST2 antibody C10 or anti-V5 tag antibody (Invitrogen) was used.
  • Western blot was performed.
  • Anti-HS6ST2 antibody C10 was used at 5 ⁇ g / mL
  • anti-V5 tag antibody was used at a 5000-fold dilution, and reacted at room temperature for 1 hour.
  • an HRP-labeled anti-mouse IgG antibody (GE Healthcare) was used and reacted at room temperature for 1 hour. Finally, color was developed using ECL Western Blotting Detection Reagents (GE Healthcare), and the band was detected by exposing to X-ray film.
  • the molecular weight estimated from the amino acid sequence is 55 kDa and 71 kDa respectively for HS6ST2_N-short_ctV5 and HS6ST2_N-long_ctV5.
  • N-Glycosidase F By removing the N-type sugar chain with N-Glycosidase F, a band of this estimated molecular weight was confirmed (FIG. 10A).
  • the anti-HS6ST2 antibody C10 showed the same band as the anti-V5 tag antibody, it was confirmed that it could be used for Western blotting.
  • soluble HS6ST2 secreted in the culture supernatant of HS6ST2_N-short_ctV5_CHO cells and HS6ST2_N-long_ctV5_CHO cells was detected by Western blot.
  • the culture supernatant of HS6ST2_N-short_ctV5_CHO cells and HS6ST2_N-long_ctV5_CHO cells was treated with N-Glycosidase F and Western blotted with anti-HS6ST2 antibody C10 and anti-V5 tag antibody, a band was confirmed around 50-60kDa ( Figure 10B).
  • HS6ST2_N-short and HS6ST2_N-long had the same molecular weight, it was considered that both were cleaved at the same site.
  • the downstream side of the transmembrane region (16 amino acids of LLLALVMLFLFAVIVL of HS6ST2_N-short from 8 to 23rd from the N terminus, and 1564 to 169th from HS6ST2_N-long) may be cleaved. It is known that the downstream side of the transmembrane region is also cleaved in HS6ST1 (Molecular characterization and expression expression of heparan-sulfate 6-sulfotransferase. J J Biol Chem. 1998. 273: 9208).
  • HS6ST2 was expressed in lung adenocarcinoma cell lines ABC-1, NCI-H441, NCI-H1781 and ovarian cancer cell lines OVMANA (FIG. 11A). All were considered to be N-short variants because the molecular weight after N-Glycosidase F treatment was 50-60 kDa.
  • A549 is a cell line that was confirmed not to express HS6ST2 in Example 1, and was used as a negative control.
  • HS6ST2 in the culture supernatant of these cells was measured.
  • the culture supernatant was filtered through 0.22 ⁇ m, concentrated 50 times using Amicon® Ultra® (10 kDa cut, Millipore), and used for Western blotting (FIG. 11B). Since the protein contained in FBS is affected, the cancer cell line cultured in a 10 cm culture dish was cultured overnight in a medium (5 ml) containing no FBS, and the culture supernatant was used. As a result, soluble HS6ST2 was detected in the culture supernatant of cancer cell lines, indicating that soluble HS6ST2 can be a diagnostic marker for cancer.
  • the cells after recovering the culture supernatant were dissolved in lysis buffer and the protein concentration was measured with DC Protein Protein Assay Kit I (Bio-Rad).
  • the amount of protein per petri dish was A549, ABC-1, NCI- H441, NCI-1781, and OVMANA were 1.4, 2.1, 1.8, 1.9, and 2.0 mg respectively, confirming that the number of cells was almost the same.
  • Example 9 Binding of soluble HS6ST2 to heparan sulfate and anti-tumor effect of anti-HS6ST2 antibody 9-1. Binding of soluble HS6ST2 to heparan sulfate Heparan on cell membrane is soluble HS6ST2 secreted from cells It was confirmed to bind to sulfuric acid. First, the expression of heparan sulfate on the cell membrane was examined by flow cytometry in the same manner as in Example 3. The cells used were lung adenocarcinoma cell lines A549, ABC-1, NCI-H441, NCI-H1781, ovarian cancer cell line OVMANA and CHO cell DG44.
  • Primary antibodies include anti-heparan sulfate antibody (HepSS-1, biochemical biobusiness) and mouse IgM (mIgM, BD Biosciences Pharmingen) as negative control at 20 ⁇ g / mL (NCI-H441, NCI-H1781) or 40 ⁇ g / mL (A549 , ABC-1, OVMANA, DG44). As a result, it was confirmed that A549, ABC-1 and DG44 express heparan sulfate (FIG. 12).
  • heparan sulfate on the cell membrane was digested with enzymes, and the binding of soluble HS6ST2 to cells was examined.
  • 1 ⁇ 10 6 DG44 cells in 37 mL of 3 mL of CHO-S-SFM II medium containing 1 mU / mL heparinase, heparitinase I and heparitinase II (both biochemical biobusiness), HT supplement, penicillin / streptomycin Culturing was carried out at 0 ° C. for 2 hours.
  • Heparinase, heparitinase I and heparitinase II are enzymes that specifically degrade heparan sulfate. In the cells treated with the enzyme, the expression of heparan sulfate was greatly reduced (FIG. 13A).
  • sHS6ST2_FLAG soluble HS6ST2
  • DG44 cells were treated with enzyme, and reacted with sHS6ST2_FLAG prepared at 50 ⁇ g / mL in FACS buffer at 4 ° C. for 3 hours. After washing, flow cytometry analysis was performed in the same manner as in Example 3.
  • the primary antibody used was anti-HS6ST2 antibody C8 and mIgG1 (BD Biosciences Pharmingen) as a negative control.
  • A549 cells were prepared at a concentration of 1 ⁇ 10 4 cells / mL in DMEM medium (Invitrogen) containing 10% FBS and penicillin / streptomycin, and seeded at 50 ⁇ L / well in a 96-well plate. At this time, wells containing and not containing 50 ⁇ g / mL sHS6ST2_FLAG were prepared. After culturing at 37 ° C.
  • Example 10 Measurement of soluble HS6ST2 by ELISA Since the cancer cell line secreted soluble HS6ST2 in Example 8 and could be a diagnostic marker for cancer, ELISA for detecting soluble HS6ST2 A system was constructed. Anti-HS6ST2 antibodies A6, B5, and C8 were used as antibodies. B5 and C8 bind to the 379-459th amino acid sequence of HS6ST2_N-short, and A6 binds to the 308-393th amino acid sequence (Example 4). C8 binds to mHS6ST2 but does not bind B5 (Example 3). Therefore, the binding sites of the three were considered different.
  • anti-HS6ST2 antibodies B5 and C8 were labeled with biotin using Biotin Protein Labeling Kit (Roche) according to the method attached to the product (B5-biotin, C8-biotin).
  • the concentration of the biotin-labeled antibody was measured using DC Protein Assay Kit I (Bio-Rad).
  • Anti-HS6ST2 antibody A6 was prepared to 5 ⁇ g / mL with coating buffer (0.1 M NaHCO 3 , pH 9.6, 0.02% NaN 3 ) and added to ELISA 96-well plate (F96 Cert. Maxisorp, Nunc) at 100 ⁇ L / well. .
  • the antibody was bound to the plate by allowing to stand at room temperature for 1 hour.
  • dilution buffer 50 mM Tris-HCl, pH8.1 , 150 mM NaCl, 1 mM MgCl 2, 0.05% Tween20, 1% bovine serum albumin, 0.02% NaN 3) to each 200 [mu] L / well Then, blocking was performed by allowing to stand at room temperature for 1 hour. After removing the supernatant, 50 ⁇ L / well of sample was added and allowed to react at room temperature for 1 hour.
  • a culture supernatant of lung adenocarcinoma cell line ABC-1 and a culture supernatant of HS6ST2_N-short_ctV5_CHO cells diluted 500-fold with RPMI1640 medium supplemented with 10% FBS were used. After washing the plate 3 times with rinse buffer (50 mM Tris-HCl, pH 7.6, 150 mM NaCl, 0.05% Tween20), 100 ⁇ L / well of dilution buffer containing 3 ⁇ g / mL B5-biotin and 3 ⁇ g / mL C8-biotin They were added one by one and reacted at room temperature for 1 hour.
  • rinse buffer 50 mM Tris-HCl, pH 7.6, 150 mM NaCl, 0.05% Tween20
  • the soluble HS6ST2 concentrations in the culture supernatants of lung adenocarcinoma cell lines ABC-1 and HS6ST2_N-short_ctV5_CHO cells were 9.5 ng / mL and 1.8 ⁇ g / mL, respectively.
  • a calibration curve is shown in FIG.
  • heparan sulfate As a diagnostic marker for cancer, it can be preferably measured using peripheral blood. Because heparan sulfate is present in the blood (Solubleynsyndecan-1 and serum basic fibroblastrowgrowth factor are newgnoprognostic factors in lung cancer. Cancer Res 62: 5210 (2002), Serum and urinary concentrations of heindiapatient Kidney Int 56: 650 (1999), Isolation and characterization of glycosaminoglycans in human plasma. J Clin Invest 76: 1984 (1985)), soluble HS6ST2 binds to heparan sulfate in blood and inhibits detection by ELISA The possibility was considered. Therefore, ELISA was examined in the presence of human serum or heparan sulfate.
  • SHS6ST2_FLAG was adjusted to 1 ⁇ g / mL using Dilution buffer, dilution buffer added with 100 ⁇ g / mL heparan sulfate (Biochemical Biobusiness), or human serum (Cosmo Bio), and allowed to stand at room temperature for 1 hour.
  • dilution buffer 4 steps of dilution from 100 ng / mL at a common ratio of 10 were measured by ELISA, and color development was confirmed even in the presence of heparan sulfate and human serum (FIG. 16). From the above, it was shown that the established ELISA system is not affected by human serum.
  • Example 11 Analysis of HS6ST2 expression in lung cancer by immunohistochemical staining Because HS6ST2 gene expression was increased in lung adenocarcinoma (Example 1), expression of HS6ST2 protein in lung cancer was analyzed by immunohistochemical staining. . A 4% paraformaldehyde-fixed AMeX-embedded paraffin block was prepared from each specimen, and 5 ⁇ m sliced sections were prepared. These sections were stained immunohistochemically as follows using the Ventana HX Discovery System (Ventana Medical Systems).
  • Blocker D Ventana Medical Systems
  • streptavidin horseradish peroxidase Ventana Medical Systems
  • DAB map solution Ventana Medical Systems
  • DAB map solution Ventana Medical Systems
  • DAB map solution Ventana Medical Systems
  • Lung macrophages and bronchial epithelial cells are known to express heparan sulfate (Heterogeneity of heparan sulfates in human lung. Am J Respir Cell Mol Biol. 2004. 30: 166) soluble soluble secreted from cancer cells The possibility that type HS6ST2 was bound was also considered.
  • Example 12 Determination of variable region gene sequence of anti-HS6ST2 antibody The nucleic acid sequence and amino acid sequence of the variable region of the anti-HS6ST2 antibody prepared in Example 2 were determined. Total RNA was purified from 1 ⁇ 10 6 hybridoma cells producing each antibody using Trizol (Invitrogen) according to the method attached to the product.
  • Trizol Invitrogen

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、HS6ST2タンパク質に結合する抗体、該抗体を有効成分として含む医薬組成物、該抗体を用いた癌の診断方法、細胞傷害性物質が結合したHS6ST2タンパク質および該HS6ST2タンパク質を有効成分として含む医薬組成物を提供する。

Description

抗HS6ST2抗体及びその用途
 本発明は、HS6ST2タンパク質に結合する抗体及びその用途に関する。さらに詳しくは、抗癌剤として使用できる、細胞傷害性物質が結合した抗HS6ST2抗体に関する。
 プロテオグリカンは糖鎖(グリコサミノグリカン)とタンパクが共有結合してできる糖タンパクである(非特許文献1)。グリコサミノグリカンは基本となる二糖構造が通常40-100回繰り返してできる多糖で、種々の程度に硫酸化を受けることが特徴である。グリコサミノグリカンにはコンドロイチン硫酸、デルマタン硫酸、ヘパラン硫酸、へパリン、ケラタン硫酸などがある。この中で、ヘパラン硫酸が結合したプロテオグリカンはヘパラン硫酸プロテオグリカン(heparan sulfate proteoglycan, HSPG)と呼ばれ、細胞膜上に発現するものにはシンデカン(syndecan)やグリピカン(glypican)が知られており、基底膜(basement membrane)に分泌されるものにはパーレカン(perlecan)やアグリン(agrin)等が知られている。ヘパラン硫酸はマウスにおいては肺や腎臓で多く発現し、骨格筋、肝臓、皮膚、脳では発現が少ない(非特許文献2)。HSPGは増殖因子の活性に影響し、細胞の増殖や分化に関わっていることが知られている。例えばfibroblast growth factor、heparin-binding epidermal growth factor-like growth factor、amphiregulinはヘパラン硫酸と結合しながら、各増殖因子の受容体を介して細胞内にシグナルを伝達する(非特許文献3、4、5、6)。癌においてもHSPGは癌細胞の増殖や転移に関与していることが報告されている(非特許文献7、8)。
 Heparan sulfate 6-O-sulfotransferase 2 (HS6ST2)は、ヘパラン硫酸を構成するグルコサミンの6-O位に硫酸基を付加する酵素である。同様な酵素(硫酸転移酵素)にはHS6ST1とHS6ST3が知られている(非特許文献9)。これらのHS6STファミリーはII型膜タンパクであるが、細胞内のゴルジに存在し酵素として働く(非特許文献10)。HS6ST1は膜貫通領域付近で切断されることにより、細胞外にも分泌される(非特許文献11、12、13)。またHS6ST2も細胞外に分泌されることが示唆されている(非特許文献14)。実際に、CHO細胞にマウスHS6ST2 (mHS6ST2)を強制発現させると細胞外にも分泌される(非特許文献15)。分泌のメカニズムは不明であるが、ゴルジに留まるmHS6ST2と分泌されたmHS6ST2では分子量が同じであること、マウスHS6ST3は膜貫通領域を含むN末側の領域がシグナルペプチドとして切断される可能性があること、N末側が146アミノ酸長いmHS6ST2のバリアントは細胞外へ分泌しないことが示されている(非特許文献15)。なお、硫酸基のドナーである3’-phosphoadenosine 5’-phosphosulfateが血中では速やかに分解されるため、細胞外に分泌されたHS6ST2は酵素としては働かないと考えられている。
 HS6ST2の立体構造は解明されていないが、6糖鎖以下のヘパラン硫酸の部分配列を認識し結合すると考えられている(非特許文献16)。一方、ヘパラン硫酸のグルコサミンの3-O位に硫酸基を付加する酵素であるマウスHS3ST1については結晶構造が調べられており、ヘパラン硫酸とはマイクロモルオーダーの親和性(Kd=2.79μM)で結合する(非特許文献17)。細胞外に分泌されたHS6ST2も細胞膜上のヘパラン硫酸に結合しうると考えられる。膜型HSPGはほとんどすべての細胞に発現している。発現量は細胞当たり105-106分子程度であり、その大半は半減期3-8時間で細胞内に取り込まれ、ライソゾームで分解される(非特許文献18)。実際にHIV-TatやbFGFなどのペプチド、ポリリシン-DNA複合体などの核酸、ポリアミン類、あるいは抗HSPG抗体はHSPGを介して細胞内に取り込まれることが知られている(非特許文献19,20,21)。
 したがって、HSPGに結合した分泌型HS6ST2も細胞内に取り込まれることが予想されるが、これまでに確認されていない。また、抗HS6ST2抗体の生理学的作用やその医薬用途への応用についても確認されていない。
Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 1996. 10:598-614 Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem. 2004. 279:42732 Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999. 68:729-777 Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest. 2001. 108:357-361 Heparan sulfate is essential to amphiregulin-induced mitogenic signaling by the epidermal growth factor receptor. J Biol Chem. 1994. 269:27149 The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest. 1998. 102:1662 Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro. J Biol Chem. 1998. 273:51 Structural differences between heparan sulphates of proteoglycan involved in the formation of basement membranes in vivo by Lewis-lung-carcinoma-derived cloned cells with different metastatic potentials. Biochem J. 1992. 288:215 The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine. J Biol Chem. 2000. 275:2859 Regulated diversity of heparan sulfate. J Biol Chem. 1998. 273:24979 Stem domains of heparan sulfate 6-O-sulfotransferase are required for golgi localization, oligomer formation and enzyme activity. J Cell Sci. 2004. 117:3331 Purification and characterization of heparan sulfate 6-sulfotransferase from the culture medium of Chinese hamster ovary cells. J Biol Chem. 1995. 270:4172 Molecular characterization and expression of heparan-sulfate 6-sulfotransferase. J Biol Chem. 1998. 273:9208 Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-O-sulphotransferase-2 having different expression patterns and properties. Biochem J. 2003. 371:131 Regulation of heparan sulfate 6-O-sulfation by b-secretase activity. J Biol Chem. 2007. 282:14942 Oligosaccharide library-based assessment of heparan sulfate 6-O-sulfotransferase substrate specificity. J Biol Chem. 2003. 278:24371 Affinity, kinetic, and structural study of the interaction of 3-O-sulfotransferase isoform 1 with heparan sulfate. Biochemistry. 2006. 45:5122 Cell surface heparan sulfate proteoglycans. J Biol Chem. 1992. 267:9451 Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci. 2003. 28:145 Novel aspects of glypican glycobiology. Cell Mol Life Sci. 2004. 61:1016 Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands. Traffic. 2007. 8:389
 本発明の課題は、新規な抗HS6ST2抗体を提供することである。また、本発明の他の課題は、前記得られた抗HS6ST2抗体の生理学的作用を明らかにし、さらにこれを疾患、特に癌の診断および治療に用いることである。
 本発明者らは、上記課題を解決するために鋭意研究した結果、細胞傷害活性を有する新規な抗HS6ST2抗体を作製し、前記抗体が癌の診断および治療に有用であることを見出して本発明を完成した。
 すなわち、本発明は以下のものを提供する。
[1] HS6ST2タンパク質に結合する抗体。
[2] 細胞傷害活性を有することを特徴とする[1]に記載の抗体。
[3] 細胞傷害性物質が結合していることを特徴とする[1]または[2]に記載の抗体。
[4] ヘパラン硫酸に結合したHS6ST2に結合することを特徴とする[1]~[3]のいずれかに記載の抗体。
[5] 細胞膜上に発現したHS6ST2に結合することを特徴とする[1]~[3]のいずれかに記載の抗体。
[6] 以下のいずれかに記載の抗体であることを特徴とする[1]~[5]のいずれかに記載の抗体:
(1)配列番号:64に記載のアミノ酸配列を有する重鎖CDR1、配列番号:65に記載のアミノ酸配列を有する重鎖CDR2、配列番号:66に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(A1);
(2)配列番号:70に記載のアミノ酸配列を有する重鎖CDR1、配列番号:71に記載のアミノ酸配列を有する重鎖CDR2、配列番号:72に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(A6);
(3)配列番号:76に記載のアミノ酸配列を有する重鎖CDR1、配列番号:77に記載のアミノ酸配列を有する重鎖CDR2、配列番号:78に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(A10);
(4)配列番号:82に記載のアミノ酸配列を有する重鎖CDR1、配列番号:83に記載のアミノ酸配列を有する重鎖CDR2、配列番号:84に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(B5);
(5)配列番号:88に記載のアミノ酸配列を有する重鎖CDR1、配列番号:89に記載のアミノ酸配列を有する重鎖CDR2、配列番号:90に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(B6);
(6)配列番号:94に記載のアミノ酸配列を有する重鎖CDR1、配列番号:95に記載のアミノ酸配列を有する重鎖CDR2、配列番号:96に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(C8);
(7)配列番号:100に記載のアミノ酸配列を有する重鎖CDR1、配列番号:101に記載のアミノ酸配列を有する重鎖CDR2、配列番号:102に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(C10);
(8)配列番号:67に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:68に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:69に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(A1);
(9)配列番号:73に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:74に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:75に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(A6);
(10)配列番号:79に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:80に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:81に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(A10);
(11)配列番号:85に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:86に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:87に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(B5);
(12)配列番号:91に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:92に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:93に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(B6);
(13)配列番号:97に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:98に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:99に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(C8);
(14)配列番号:103に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:104に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:105に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(C10);
(15)(1)の重鎖可変領域と(8)の軽鎖可変領域を含む抗体(A1);
(16)(2)の重鎖可変領域と(9)の軽鎖可変領域を含む抗体(A6);
(17)(3)の重鎖可変領域と(10)の軽鎖可変領域を含む抗体(A10);
(18)(4)の重鎖可変領域と(11)の軽鎖可変領域を含む抗体(B5);
(19)(5)の重鎖可変領域と(12)の軽鎖可変領域を含む抗体(B6);
(20)(6)の重鎖可変領域と(13)の軽鎖可変領域を含む抗体(C8);
(21)(7)の重鎖可変領域と(14)の軽鎖可変領域を含む抗体(C10);
(22)(1)から(21)のいずれかに記載の抗体において1若しくは複数のアミノ酸が置換、欠失、付加および/または挿入された抗体であって、(1)から(21)のいずれかに記載の抗体と同等の活性を有する抗体;
(23)(1)から(21)のいずれかに記載の抗体が結合するHS6ST2タンパク質のエピトープと同じエピトープに結合する抗体。
[7] 配列番号:107のアミノ酸配列を有するHS6ST2タンパク質の379番目のアミノ酸から459番目のアミノ酸までの部位、308番目のアミノ酸から393番目のアミノ酸までの部位、または24番目のアミノ酸から175番目のアミノ酸までの部位を認識することを特徴とする請求項1~5いずれかに記載の抗体。
[8] [1]~[7]のいずれかに記載の抗体を有効成分として含む医薬組成物。
[9] 抗癌剤である[8]に記載の医薬組成物。
[10] 以下の工程を含む癌の診断方法:
(a)被験者から採取された試料を提供する工程、
(b) (a)の試料に含まれるHS6ST2タンパク質又はHS6ST2遺伝子を検出する工程。
[11] 細胞傷害性物質が結合したHS6ST2タンパク質。
[12] [11]に記載のHS6ST2タンパク質を有効成分として含む医薬組成物。
[13] 抗癌剤である[12]に記載の医薬組成物。
 本発明者らは、抗HS6ST2抗体を作製し、これを用いた癌の診断および治療法を検討した。本発明の抗HS6ST2抗体は、細胞膜上にHS6ST2を発現させた細胞をantibody-dependent cellular cytotoxicity (ADCC)活性により殺傷することを見いだした。また、トキシンを結合した二次抗体の存在下では細胞の増殖を抑制した。このことから、ADCC活性を有する抗HS6ST2抗体や、HS6ST2を標的としたイムノトキシンが癌の治療に有用であることが示された。なお、HS6ST2にはN末アミノ酸の長さが異なる二つのバリアント(UniProt Q96MM7-1、Q96MM7-2)が存在するが、得られた抗体はいずれのバリアントにも結合した。
 次に、抗HS6ST2抗体を用いて癌細胞におけるHS6ST2タンパクの発現を評価した。フローサイトメトリーを用いた解析により、肺癌細胞株および肝癌細胞株が細胞膜上にHS6ST2を発現することが明らかとなった。ウェスタンブロットを用いた解析では、肺癌細胞株および卵巣癌細胞株がHS6ST2を発現することが明らかとなった。分子量から判断したところ、これらのHS6ST2はN末端の146アミノ酸を欠失したバリアント(UniProt Q96MM7-2)であると考えられた。免疫組織化学染色を用いた解析では、臨床肺腺癌および臨床肺扁平上皮癌において細胞膜上にHS6ST2が発現することが見出された。またウェスタンブロットを用いた解析で、肺癌細胞株および卵巣癌細胞株が培養上清中にHS6ST2を分泌することが見出された。
 続いて、可溶型HS6ST2を標的とした癌の治療法を検討した。まず、可溶型HS6ST2が細胞膜上のヘパラン硫酸に結合することをフローサイトメトリーを用いた解析により確認した。次に可溶型HS6ST2を肺癌細胞株に結合させたところ、トキシンを結合した二次抗体の存在下で抗HS6ST2抗体は細胞の増殖を抑制した。従って可溶型HS6ST2を標的としたイムノトキシンが癌の治療に有用であることが示された。なお、臨床の肺癌もHSPGを発現しており(Glycosaminoglycans in human lung cancer. Cancer. 1981. 48:2016; Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer. 1997. 74:335; Heterogeneity of heparan sulfates in human lung. Am J Respir Cell Mol Biol. 2004. 30:166)、分泌されたHS6ST2が癌細胞に結合することが考えられる。
 さらに可溶型HS6ST2を用いた癌の診断法を検討した。得られた抗HS6ST2抗体を用いて、可溶型HS6ST2をng/mLのオーダーで検出できるELISA系を樹立した。このELISA系はヒト血清存在下でも測定可能であったことから、血液を検体とした癌の診断が可能であることが示された。
図1Aは、正常組織でのHS6ST2の発現プロファイルを示す図である。 図1Bは、正常組織でのHS6ST2の発現プロファイルを示す図である。 図2Aは、肺癌細胞株と肺癌摘出組織の腫瘍部でのHS6ST2の発現プロファイルを示す図である。縦軸のA-Fはそれぞれ、肺腺癌細胞株、大細胞肺癌細胞株、肺扁平上皮癌細胞株、小細胞肺癌細胞株、小細胞肺癌摘出組織の腫瘍部、および肺腺癌摘出組織の腫瘍部を示す。 図2Bは、肺癌細胞株と肺癌摘出組織の腫瘍部でのHS6ST2の発現プロファイルを示す図である。縦軸のA-Fはそれぞれ、肺腺癌細胞株、大細胞肺癌細胞株、肺扁平上皮癌細胞株、小細胞肺癌細胞株、小細胞肺癌摘出組織の腫瘍部、および肺腺癌摘出組織の腫瘍部を示す。 図3Aは、肺癌以外の細胞株でのHS6ST2の発現プロファイルを示す図である。縦軸のA-Hはそれぞれ、大腸癌細胞株、胃癌細胞株、乳癌細胞株、卵巣癌細胞株、子宮体癌細胞株、リンパ腫細胞株、骨髄腫細胞株、および肝臓癌細胞株を示す。 図3Bは、肺癌以外の細胞株でのHS6ST2の発現プロファイルを示す図である。縦軸のA-Hはそれぞれ、大腸癌細胞株、胃癌細胞株、乳癌細胞株、卵巣癌細胞株、子宮体癌細胞株、リンパ腫細胞株、骨髄腫細胞株、および肝臓癌細胞株を示す。 図4は、抗HS6ST2抗体のHS6ST2_N-short_ctV5_CHO、mHS6ST2_ctV5_CHOへの結合を評価したフローサイトメトリー解析の結果を示す図である。実線は抗HS6ST2抗体、灰色で塗りつぶした線はmIgG1である。 図5は、抗HS6ST2抗体A6、C8のHS6ST2_N-short_ctV5_CHO、mHS6ST2_ctV5_CHOへの結合を評価したフローサイトメトリー解析の結果を示す図である。●; HS6ST2_N-short_ctV5_CHO、○; mHS6ST2_ctV5_CHO。 図6は、抗HS6ST2抗体のHS6ST2_N-short_ctV5_CHOに対するADCC活性を評価した結果を示す図である。 図7は、Mab-ZAPを用いて抗HS6ST2抗体のHS6ST2_N-short_ctV5_CHOに対する増殖抑制活性を評価した結果を示す図である。 図8は、抗HS6ST2抗体のHS6ST2_N-short_ctV5_CHO、HS6ST2_N-long_ctV5_CHOへの結合を評価したフローサイトメトリー解析の結果を示す図である。実線は抗HS6ST2抗体、灰色で塗りつぶした線はmIgG1である。 図9は、抗HS6ST2抗体B6の肝臓癌細胞株HuH6、肺腺癌細胞株ABC-1への結合を評価したフローサイトメトリー解析の結果を示す図である。実線は抗HS6ST2抗体B6、灰色で塗りつぶした線はmIgG1である。 図10は、抗HS6ST2抗体C10と抗V5タグ抗体を用いたHS6ST2_N-short_ctV5_CHO、HS6ST2_N-long_ctV5_CHOのウェスタンブロットの結果を示す図である。サンプルにはHS6ST2_N-short_ctV5_CHO (N-short)またはHS6ST2_N-long_ctV5_CHO (N-long)のwhole cell lysate (A)または培養上清(B)を用い、N-Glycosidase F処理の有無を比較した。 図11は、抗HS6ST2抗体C10を用いた癌細胞株のウェスタンブロットの結果を示す図である。サンプルには肺腺癌細胞株A549、ABC-1、NCI-H441、NCI-H1781、卵巣癌細胞株OVMANAのwhole cell lysate (A)または50倍濃縮培養上清(B)を用い、N-Glycosidase F処理の有無を比較した。 図12は、細胞膜上のヘパラン硫酸の発現を評価したフローサイトメトリー解析の結果を示す図である。実線は抗ヘパラン硫酸抗体、灰色で塗りつぶした線はmIgMである。 図13は、sHS6ST2_FLAGのヘパラン硫酸への結合を評価したフローサイトメトリー解析の結果を示す図である。(A)では、DG44細胞のヘパラン硫酸を酵素で分解し、酵素処理の有無でヘパラン硫酸の発現量を比較した。実線は抗ヘパラン硫酸抗体、灰色で塗りつぶした線はmIgMである。(B)では、DG44細胞へのsHS6ST2_FLAGの結合を酵素処理の有無で比較した。実線は抗HS6ST2抗体C8、灰色で塗りつぶした線はmIgG1である。 図14は、sHS6ST2_FLAGの癌細胞株A549への結合と、Mab-ZAP存在下における抗HS6ST2抗体C8の抗腫瘍活性を示す図である。(A)はA549細胞を100μg/mL (太線)、20μg/mL (実線)、4μg/mL (点線)、0.8μg/mL (破線)、0μg/mL (灰色で塗りつぶした線)のsHS6ST2_FLAGと反応させた後、抗HS6ST2抗体C8を用いてフローサイトメトリー解析を行った結果を示す図である。(B)はA549細胞をsHS6ST2_FLAG存在下(実線)または非存在下(点線)で培養後、Mab-ZAPを用いて抗HS6ST2抗体C8の細胞増殖抑制活性を評価した結果を示す図である。 図15は、可溶型HS6ST2を検出するELISA系の検量線を示す図である。 図16は、ヘパラン硫酸やヒト血清がELISA系に影響しないことを示す図である。 図17は、臨床肺腺癌(A)、臨床肺扁平上皮癌(B)、肺癌に隣接する正常組織(C)、および皮膚(D)におけるHS6ST2タンパクの発現を解析した免疫組織染色の結果を示す図である。
HS6ST2
 本発明で用いられるHS6ST2タンパク質は特に限定されず、当業者に公知のHS6ST2タンパク質を用いることが可能である。HS6ST2タンパク質は好ましくはヒトHS6ST2である。ヒトHS6ST2は複数のバリアントが存在しているが、本発明で用いられるHS6ST2は如何なるバリアントでもよい。HS6ST2のバリアントの例として、エクソン4と5が欠損したバリアント(GenBank Accession No:NM_147175、UniProt:Q96MM7-1、配列番号:106)、Q96MM7-1の1番目~146番目のアミノ酸が欠損したバリアント(UniProt:Q96MM7-2、配列番号:107)、第三のバリアント(UniProt:Q96MM7-3、配列番号:108)を挙げることができる。
 また、HS6ST2は細胞膜上に発現したHS6ST2タンパク質でもよいし、分泌された分泌型HS6ST2であってもよい。
抗HS6ST2抗体
 本発明で用いられる抗HS6ST2抗体は、HS6ST2タンパク質に結合すればよく、その由来、種類、形状などは問われない。具体的には、非ヒト動物の抗体(例えば、マウス抗体、ラット抗体、ラクダ抗体)、ヒト抗体、キメラ抗体、ヒト化抗体などの公知の抗体が使用できる。本発明においては、モノクローナル、あるいはポリクローナルを抗体として利用することができるが好ましくはモノクローナル抗体である。抗体のHS6ST2タンパク質への結合は特異的な結合であることが好ましい。
 本発明の抗HS6ST2抗体が認識するHS6ST2タンパク質は特に限定されず、細胞膜上に発現したHS6ST2タンパク質、細胞から分泌されたHS6ST2タンパク質、ヘパラン硫酸に結合したHS6ST2タンパク質などを挙げることができる。ヘパラン硫酸は一般的に、D-グルクロン酸、D-グルコサミンの二糖単位繰返し構造にN-硫酸化、O-硫酸化修飾を受けたグリコサミノグリカンである。本発明においては、特に限定されないが、ヘパラン硫酸はヘパラン硫酸プロテオグリカンに含まれるヘパラン硫酸が好ましく、特に癌細胞膜上のヘパラン硫酸プロテオグリカンに含まれるヘパラン硫酸が好ましい。
 従って、本発明においては、ヘパラン硫酸に結合したHS6ST2タンパク質に結合する抗体の好ましい態様として、癌細胞膜上のヘパラン硫酸に結合したHS6ST2タンパク質に結合する抗体を挙げることができる。
 本発明で使用される抗HS6ST2抗体は、公知の手段を用いてポリクローナルまたはモノクローナル抗体として取得できる。本発明で使用される抗HS6ST2抗体として、特に哺乳動物由来のモノクローナル抗体が好ましい。哺乳動物由来のモノクローナル抗体は、ハイブリドーマにより産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主により産生されるもの等を含む。
 モノクローナル抗体産生ハイブリドーマは、基本的には公知技術を使用し、以下のようにして作製できる。まず、HS6ST2タンパク質を感作抗原として使用して、これを通常の免疫方法にしたがって免疫する。免疫動物から得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させてハイブリドーマを得る。更にこのハイブリドーマから、通常のスクリーニング法により、目的とする抗体を産生する細胞をスクリーニングすることによって抗HS6ST2抗体を産生するハイブリドーマが選択できる。
 具体的には、モノクローナル抗体の作製は例えば以下に示すように行われる。まず、HS6ST2遺伝子を発現させることによって、抗体取得の感作抗原として使用されるHS6ST2タンパク質が取得できる。すなわち、HS6ST2をコードする遺伝子配列を公知の発現ベクターに挿入して適当な宿主細胞を形質転換させた後、その宿主細胞中または培養上清中から、目的のヒトHS6ST2タンパク質が公知の方法で精製できる。また、精製した天然のHS6ST2タンパク質もまた同様に使用できる。また、HS6ST2タンパク質の所望の部分ポリペプチドを異なるポリペプチドと融合した融合タンパク質を免疫原として利用することもできる。免疫原とする融合タンパク質を製造するために、例えば、抗体のFc断片やペプチドタグなどを利用することができる。融合タンパク質を発現するベクターは、所望の二種類又はそれ以上のポリペプチド断片をコードする遺伝子をインフレームで融合させ、当該融合遺伝子を発現ベクターに挿入することにより作製することができる。融合タンパク質の作製方法はMolecular Cloning 2nd ed.(Sambrook,J et al., Molecular Cloning 2nd ed., 9.47-9.58, Cold Spring Harbor Lab. press, 1989)に記載されている。
 このようにして精製されたHS6ST2タンパク質を、哺乳動物に対する免疫に使用する感作抗原として使用できる。HS6ST2の部分ペプチドもまた感作抗原として使用できる。たとえば、次のようなペプチドを感作抗原とすることができる。
・ヒトHS6ST2のアミノ酸配列に基づいて化学合成によって取得されたペプチド。
・HS6ST2遺伝子の一部を発現ベクターに組込んで発現させることによって取得されたペプチド。
・HS6ST2タンパク質をタンパク質分解酵素により分解することによって取得されたペプチド。
 部分ペプチドとして用いるHS6ST2の領域および大きさは限定されない。感作抗原とするペプチドを構成するアミノの数は、少なくとも3以上、たとえば、5以上、あるいは6以上であることが好ましい。より具体的には、8~50、好ましくは10~30残基のペプチドを感作抗原とすることができる。
 該感作抗原で免疫される哺乳動物は、特に限定されない。モノクローナル抗体を細胞融合法によって得るためには、細胞融合に使用する親細胞との適合性を考慮して免疫動物を選択するのが好ましい。一般的には、げっ歯類の動物が免疫動物として好ましい。具体的には、マウス、ラット、ハムスター、あるいはウサギを免疫動物とすることができる。その他、サル等を免疫動物とすることもできる。
 公知の方法にしたがって上記の動物が感作抗原により免疫できる。例えば、一般的方法として、感作抗原を腹腔内または皮下に注射することにより哺乳動物を免疫することができる。具体的には、該感作抗原が哺乳動物に4から21日毎に数回投与される。感作抗原は、PBS(Phosphate-Buffered Saline)や生理食塩水等で適当な希釈倍率で希釈して免疫に使用される。更に、感作抗原をアジュバントとともに投与することができる。例えばフロイント完全アジュバントと混合し、乳化して、感作抗原とすることができる。また、感作抗原の免疫時には適当な担体が使用できる。特に分子量の小さい部分ペプチドが感作抗原として用いられる場合には、該感作抗原ペプチドをアルブミン、キーホールリンペットヘモシアニン等の担体タンパク質と結合させて免疫することが望ましい。
 一方、モノクローナル抗体は、DNA免疫(DNA Immunization)によっても得ることができる。DNA免疫とは、免疫動物中で抗原タンパク質をコードする遺伝子が発現できるような態様で構築されたベクターDNAを当該免疫動物に投与し、免疫抗原を免疫動物の生体内で発現させることによって、免疫刺激を与える方法である。蛋白質抗原を投与する一般的な免疫方法と比べて、DNA免疫には、次のような優位性を期待できる。
・HS6ST2のような膜タンパク質の構造を維持して免疫刺激を与えることができる。
・免疫抗原を精製する必要が無い。
 DNA免疫によって本発明のモノクローナル抗体を得るには、まず、HS6ST2タンパク質を発現するDNAを免疫動物に投与する。HS6ST2をコードするDNAは、PCRなどの公知の方法によって合成することができる。得られたDNAを適当な発現ベクターに挿入し、免疫動物に投与する。発現ベクターとしては、たとえばpcDNA3.1などの市販の発現ベクターを利用することができる。ベクターを生体に投与する方法も、一般に用いられている方法を利用することができる。たとえば、発現ベクターを吸着させた金粒子を、遺伝子銃(gene gun)で細胞内に打ち込むことによってDNA免疫を行うことができる。
 上述のように哺乳動物が免疫され、血清中における所望の抗体量の上昇が確認された後に、哺乳動物から免疫細胞が採取され、細胞融合に付される。好ましい免疫細胞としては、特に脾細胞が使用できる。
 上記の免疫細胞と融合される細胞として、哺乳動物のミエローマ細胞が用いられる。ミエローマ細胞は、スクリーニングのための適当な選択マーカーを備えていることが好ましい。選択マーカーとは、特定の培養条件の下で生存できる(あるいはできない)形質を指す。選択マーカーには、ヒポキサンチン-グアニン-ホスホリボシルトランスフェラーゼ欠損(以下HGPRT欠損と省略する)、あるいはチミジンキナーゼ欠損(以下TK欠損と省略する)などが公知である。HGPRTやTKの欠損を有する細胞は、ヒポキサンチン-アミノプテリン-チミジン感受性(以下HAT感受性と省略する)を有する。HAT感受性の細胞はHAT選択培地中でDNA合成を行うことができず死滅するが、正常な細胞と融合すると正常細胞のサルベージ回路を利用してDNAの合成を継続することができるためHAT選択培地中でも増殖するようになる。
 HGPRT欠損やTK欠損の細胞は、それぞれ6チオグアニン、8アザグアニン(以下8AGと省略する)、あるいは5'ブロモデオキシウリジンを含む培地で選択することができる。正常な細胞はこれらのピリミジンアナログをDNA中に取り込んでしまうので死滅するが、これらの酵素を欠損した細胞は、これらのピリミジンアナログを取り込めないので選択培地の中で生存することができる。この他、G418耐性と呼ばれる選択マーカーは、ネオマイシン耐性遺伝子によって2-デオキシストレプタミン系抗生物質(ゲンタマイシン類似体)に対する耐性を与える。細胞融合に好適な種々のミエローマ細胞が公知である。例えば、以下のようなミエローマ細胞を、本発明におけるモノクローナル抗体の製造に利用することができる。
・P3(P3x63Ag8.653)(J. Immunol.(1979)123, 1548-1550)
・P3x63Ag8U.1(Current Topics in Microbiology and Immunology(1978)81, 1-7)
・NS-1(Kohler. G. and Milstein, C. Eur. J. Immunol.(1976)6, 511-519)
・MPC-11(Margulies. D.H. et al., Cell(1976)8, 405-415)
・SP2/0(Shulman, M. et al., Nature(1978)276, 269-270)
・FO(de St. Groth, S. F. et al., J. Immunol. Methods(1980)35, 1-21)
・S194(Trowbridge, I. S. J. Exp. Med.(1978)148, 313-323)、
・R210(Galfre, G. et al., Nature(1979)277, 131-133)等
 基本的には公知の方法、たとえば、ケーラーとミルステインらの方法(Kohler. G. and Milstein, C., Methods Enzymol.(1981)73, 3-46)等に準じて、免疫細胞とミエローマ細胞との細胞融合が行われる。
 より具体的には、例えば細胞融合促進剤の存在下で通常の栄養培養液中で、細胞融合が実施できる。融合促進剤としては、例えばポリエチレングリコール(PEG)、センダイウイルス(HVJ)等を使用することができる。更に融合効率を高めるために所望によりジメチルスルホキシド等の補助剤を加えることもできる。
 免疫細胞とミエローマ細胞との使用割合は任意に設定できる。例えば、ミエローマ細胞に対して免疫細胞を1から10倍とするのが好ましい。細胞融合に用いる培養液としては、例えば、ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液を利用することができる。さらに、牛胎児血清(FCS)等の血清補液を培養液に添加することができる。
 細胞融合は、免疫細胞とミエローマ細胞との所定量を培養液中でよく混合し、予め37℃程度に加温したPEG溶液を混合することによって目的とする融合細胞(ハイブリドーマ)が形成される。細胞融合法においては、例えば平均分子量1000から6000程度のPEGを、通常30から60%(w/v)の濃度で添加することができる。続いて、上記に挙げた適当な培養液を逐次添加し、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等が除去される。
 このようにして得られたハイブリドーマは、細胞融合に用いられたミエローマが有する選択マーカーに応じた選択培養液を利用することによって選択することができる。例えばHGPRTやTKの欠損を有する細胞は、HAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択できる。すなわち、HAT感受性のミエローマ細胞を細胞融合に用いた場合、HAT培養液中で、正常細胞との細胞融合に成功した細胞を選択的に増殖させることができる。目的とするハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間、上記HAT培養液を用いた培養が継続される。具体的には、一般に、数日から数週間の培養によって、目的とするハイブリドーマを選択することができる。ついで、通常の限界希釈法を実施することによって、目的とする抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングが実施できる。あるいは、HS6ST2を認識する抗体を国際公開WO03/104453に記載された方法によって作成することもできる。
 目的とする抗体のスクリーニングおよび単一クローニングは、公知の抗原抗体反応に基づくスクリーニング方法によって好適に実施できる。例えば、ポリスチレン等でできたビーズや市販の96ウェルのマイクロタイタープレート等の担体に抗原を結合させ、ハイブリドーマの培養上清と反応させる。次いで担体を洗浄した後に酵素で標識した二次抗体等を反応させる。もしも培養上清中に感作抗原と反応する目的とする抗体が含まれる場合、二次抗体はこの抗体を介して担体に結合する。最終的に担体に結合する二次抗体を検出することによって、目的とする抗体が培養上清中に存在しているかどうかが決定できる。抗原に対する結合能を有する所望の抗体を産生するハイブリドーマを限界希釈法等によりクローニングすることが可能となる。この際、抗原としては免疫に用いたものを始め、実質的に同質なHS6ST2タンパク質が好適に使用できる。たとえばHS6ST2を発現する細胞株、可溶型HS6ST2などを抗原として利用することができる。
 また、ヒト以外の動物に抗原を免疫することによって上記ハイブリドーマを得る方法以外に、ヒトリンパ球を抗原感作して目的とする抗体を得ることもできる。具体的には、まずインビトロにおいてヒトリンパ球をHS6ST2タンパク質で感作する。次いで免疫感作されたリンパ球を適当な融合パートナーと融合させる。融合パートナーには、たとえばヒト由来であって永久分裂能を有するミエローマ細胞を利用することができる(特公平1-59878号公報参照)。この方法によって得られる抗HS6ST2抗体は、HS6ST2タンパク質への結合活性を有するヒト抗体である。
 さらに、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物に対して抗原となるHS6ST2タンパク質を投与するか、又はHS6ST2を当該動物中において発現するように構築されたDNAによって免疫することによって、抗HS6ST2ヒト抗体を得ることもできる。免疫動物の抗体産生細胞は、適当な融合パートナーとの細胞融合やエプスタインバーウイルスの感染などの処理によって不死化させることができる。このようにして得られた不死化細胞から、HS6ST2タンパク質に対するヒト抗体を単離することができる(国際公開WO 94/25585、WO 93/12227、WO 92/03918、WO 94/02602参照)。更に不死化された細胞をクローニングすることにより、目的の反応特異性を有する抗体を産生する細胞をクローニングすることもできる。トランスジェニック動物を免疫動物とするときには、当該動物の免疫システムは、ヒトHS6ST2を異物と認識する。したがって、ヒトHS6ST2に対するヒト抗体を容易に得ることができる。
 このようにして作製されるモノクローナル抗体を産生するハイブリドーマは、通常の培養液中で継代培養することができる。また、該ハイブリドーマを液体窒素中で長期にわたって保存することもできる。
 当該ハイブリドーマを通常の方法に従い培養し、その培養上清から目的とするモノクローナル抗体を得ることができる。あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖させ、その腹水としてモノクローナル抗体を得ることもできる。前者の方法は、高純度の抗体を得るのに適している。
 本発明においては、抗体産生細胞からクローニングされた抗体遺伝子によってコードされる抗体を利用することもできる。クローニングした抗体遺伝子は、適当なベクターに組み込んで宿主に導入することによって抗体として発現させることができる。抗体遺伝子の単離と、ベクターへの導入、そして宿主細胞の形質転換のための方法は既に確立されている(例えば、Vandamme, A. M. et al., Eur.J. Biochem.(1990)192, 767-775参照)。
 たとえば、抗HS6ST2抗体を産生するハイブリドーマ細胞から、抗HS6ST2抗体の可変領域(V領域)をコードするcDNAを得ることができる。そのためには、通常、まずハイブリドーマから全RNAが抽出される。細胞からmRNAを抽出するための方法として、たとえば次のような方法を利用することができる。
・グアニジン超遠心法(Chirgwin, J. M. et al., Biochemistry(1979)18, 5294-5299)
・AGPC法(Chomczynski, P.et al., Anal. Biochem.(1987)162, 156-159)
 抽出されたmRNAは、mRNA Purification Kit (GEヘルスケアバイオサイエンス製)等を使用して精製することができる。あるいは、QuickPrep mRNA Purification Kit (GEヘルスケアバイオサイエンス製)などのように、細胞から直接全mRNAを抽出するためのキットも市販されている。このようなキットを用いて、ハイブリドーマから全mRNAを得ることもできる。得られたmRNAから逆転写酵素を用いて抗体V領域をコードするcDNAを合成することができる。その際、抗体遺伝子に共通な配列より選び出した任意の15-30塩基の配列をプライマーとして用いることができる。cDNAは、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit(生化学工業社製)等によって合成することができる。また、cDNAの合成および増幅のために、5’-Ampli FINDER RACE Kit(Clontech製)およびPCRを用いた5’-RACE法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA(1988)85, 8998-9002、Belyavsky, A.et al., Nucleic Acids Res.(1989)17, 2919-2932)を利用することができる。更にこうしたcDNAの合成の過程においてcDNAの両末端に後述する適切な制限酵素サイトが導入できる。
 得られたPCR産物から目的とするcDNA断片が精製され、次いでベクターDNAと連結される。このように組換えベクターが作製され、大腸菌等に導入されコロニーが選択された後に、該コロニーを形成した大腸菌から所望の組換えベクターが調製できる。そして、cDNAの塩基配列を、公知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法等により確認することができる。
 また、抗体の可変領域をコードする遺伝子を得るために、cDNAライブラリーを利用することもできる。まず抗体産生細胞から抽出されたmRNAを鋳型としてcDNAを合成し、cDNAライブラリーを得る。cDNAライブラリーの合成には市販のキットを用いるのが便利である。実際には、少数の細胞のみから得られるmRNAは極めて微量なので、それを直接精製すると収率が低い。したがって通常は、抗体遺伝子を含まないことが明らかなキャリアRNAを添加した後に精製される。あるいは一定量のRNAを抽出できる場合には、抗体産生細胞のRNAのみでも効率よく抽出することができる。たとえば10以上、あるいは30以上、好ましくは50以上の抗体産生細胞からのRNA抽出には、キャリアRNAの添加は必要でない場合がある。
 得られたcDNAライブラリーを鋳型として、PCR法によって抗体遺伝子が増幅される。抗体遺伝子をPCR法によって増幅するためのプライマーが公知である。たとえば、論文(J. Mol. Biol. (1991) 222, 581-597)などの開示に基づいて、ヒト抗体遺伝子増幅用のプライマーをデザインすることができる。これらのプライマーは、イムノグロブリンのサブクラスごとに異なる塩基配列となる。したがって、サブクラスが不明のcDNAライブラリーを鋳型とするときには、あらゆる可能性を考慮してPCR法が行われる。
 具体的には、たとえばヒトIgGをコードする遺伝子の取得を目的とするときには、重鎖としてγ1~γ5、軽鎖としてκ鎖とλ鎖をコードする遺伝子の増幅が可能なプライマーを利用することができる。IgGの可変領域遺伝子を増幅するためには、一般に3'側のプライマーにはヒンジ領域に相当する部分にアニールするプライマーが利用される。一方5'側のプライマーには、各サブクラスに応じたプライマーを用いることができる。
 重鎖と軽鎖の各サブクラスの遺伝子増幅用プライマーによるPCR産物は、それぞれ独立したライブラリーとする。こうして合成されたライブラリーを利用して、重鎖と軽鎖の組み合せからなるイムノグロブリンを再構成することができる。再構成されたイムノグロブリンの、HS6ST2に対する結合活性を指標として、目的とする抗体をスクリーニングすることができる。
 得られた遺伝子を基に抗HS6ST2抗体を製造するために、抗体遺伝子を発現制御領域による制御の下で発現するように発現ベクターに組み込むことができる。抗体を発現するための発現制御領域とは、例えば、エンハンサーやプロモーターを含む。次いで、この発現ベクターで適当な宿主細胞を形質転換することによって、抗HS6ST2抗体をコードするDNAを発現する組換え細胞を得ることができる。
 抗体遺伝子の発現にあたり、抗体重鎖(H鎖)および軽鎖(L鎖)をコードするDNAは、それぞれ別の発現ベクターに組み込むことができる。H鎖とL鎖が組み込まれたベクターを、同じ宿主細胞に同時に形質転換(co-transfect)することによって、H鎖とL鎖を備えた抗体分子を発現させることができる。あるいはH鎖およびL鎖をコードするDNAを単一の発現ベクターに組み込んで宿主細胞を形質転換させてもよい(国際公開WO 94/11523参照)。
 単離した抗体遺伝子を適当な宿主に導入して抗体を作製するための宿主と発現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明に応用することができる。真核細胞を宿主として使用する場合、動物細胞、植物細胞、あるいは真菌細胞が使用できる。具体的には、本発明に利用することができる動物細胞としては、次のような細胞を例示することができる。
(1)哺乳類細胞、:CHO、COS、ミエローマ、BHK(baby hamster kidney)、Hela、Vero、HEK293、Ba/F3、HL-60、Jurkat、SK-HEP1など。
(2)両生類細胞:アフリカツメガエル卵母細胞など。
(3)昆虫細胞:sf9、sf21、Tn5など。
 あるいは植物細胞としては、ニコティアナ・タバカム(Nicotiana tabacum)などのニコティアナ(Nicotiana)属由来の細胞による抗体遺伝子の発現系が公知である。植物細胞の形質転換には、カルス培養した細胞を利用することができる。
 更に真菌細胞としては、次のような細胞を利用することができる。酵母:サッカロミセス・セレビシエ(Saccharomyces serevisiae)などのサッカロミセス(Saccharomyces)属、メタノール資化酵母(Pichia pastoris)などのPichia属糸状菌:アスペスギルス・ニガー(Aspergillus niger)などのアスペルギルス(Aspergillus)属。
 あるいは原核細胞を利用した抗体遺伝子の発現系も公知である。たとえば、細菌細胞を用いる場合、大腸菌(E. coli)、枯草菌などの細菌細胞を本発明に利用することができる。
 哺乳類細胞を用いる場合、常用される有用なプロモーター、発現させる抗体遺伝子、その3’側下流にポリAシグナルを機能的に結合させて発現させることができる。例えばプロモーター/エンハンサーとしては、ヒトサイトメガロウイルス前期プロモーター/エンハンサー(human cytomegalovirus immediate early promoter/enhancer)を挙げることができる。
 また、その他に、ウイルスプロモーター/エンハンサー、あるいはヒトエロンゲーションファクター1α(HEF1α)などの哺乳類細胞由来のプロモーター/エンハンサー等を、抗体発現のために使用することができる。プロモーター/エンハンサーを利用することができるウイルスとして、具体的には、レトロウイルス、ポリオーマウイルス、アデノウイルス、シミアンウイルス40(SV40)等を示すことができる。
 SV40プロモーター/エンハンサーを使用する場合はMulliganらの方法(Nature(1979)277, 108)を利用することができる。また、HEF1αプロモーター/エンハンサーはMizushimaらの方法(Nucleic Acids Res.(1990)18, 5322)により、容易に目的とする遺伝子発現に利用することができる。
 大腸菌の場合、常用される有用なプロモーター、抗体分泌のためのシグナル配列および発現させる抗体遺伝子を機能的に結合させて当該遺伝子が発現できる。プロモーターとしては、例えばlacZプロモーター、araBプロモーターを挙げることができる。lacZプロモーターを使用する場合はWardらの方法(Nature(1989)341, 544-546 ; FASEBJ.(1992)6, 2422-2427)を利用することができる。あるいはaraBプロモーターはBetterらの方法(Science(1988)240, 1041-1043)により、目的とする遺伝子の発現に利用することができる。
 抗体分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelBシグナル配列(Lei, S. P. et al., J. Bacteriol.(1987)169, 4379)を使用すればよい。そして、ペリプラズムに産生された抗体を分離した後、尿素やグアニジン塩酸塩の様なタンパク質変性剤を使用することによって所望の結合活性を有するように、抗体の構造が組み直される(refolded)。
 動物細胞を用いて抗体を産生させる場合に、細胞外への分泌のために必要とされるシグナル配列としては抗体の重鎖遺伝子または軽鎖遺伝子のシグナル配列を用いることが望ましい。又、IL-3やIL-6などの分泌タンパク質が有するシグナル配列を用いることも可能である。
 発現ベクターに挿入される複製起源としては、SV40、ポリオーマウイルス、アデノウイルス、ウシパピローマウイルス(BPV)等の由来のものを用いることができる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクター中に、選択マーカー挿入することができる。具体的には、次のような選択マーカーを利用することができる。
・アミノグリコシドトランスフェラーゼ(APH)遺伝子
・チミジンキナーゼ(TK)遺伝子
・大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子
・ジヒドロ葉酸還元酵素(dhfr)遺伝子等
 これらの発現ベクターを宿主細胞に導入し、次に、形質転換された宿主細胞をインビトロまたはインビボで培養して目的とする抗体を産生させる。宿主細胞の培養は公知の方法に従い行う。例えば、培養液として、DMEM、MEM、RPMI1640、IMDMを使用することができ、牛胎児血清(FCS)等の血清補液を併用することもできる。
 上述のように発現、産生された抗体は、通常のタンパク質の精製で使用されている公知の方法を単独で使用することによって又は適宜組み合わせることによって精製できる。例えば、プロテインAカラムなどのアフィニティーカラム、クロマトグラフィーカラム、フィルター、限外濾過、塩析、透析等を適宜選択、組み合わせることにより、抗体を分離、精製することができる(Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)。
 また、組換え型抗体の産生には、上記宿主細胞に加えて、トランスジェニック動物を利用することもできる。すなわち目的とする抗体をコードする遺伝子を導入された動物から、当該抗体を得ることができる。例えば、抗体遺伝子は、乳汁中に固有に産生されるタンパク質をコードする遺伝子の内部にインフレームで挿入することによって融合遺伝子として構築できる。乳汁中に分泌されるタンパク質として、たとえば、ヤギβカゼインなどを利用することができる。抗体遺伝子が挿入された融合遺伝子を含むDNA断片はヤギの胚へ注入され、該注入胚が雌のヤギへ導入される。胚を受容したヤギから生まれるトランスジェニックヤギ(またはその子孫)が産生する乳汁からは、所望の抗体を乳汁タンパク質との融合タンパク質として取得できる。また、トランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、ホルモンがトランスジェニックヤギに適宜使用できる(Ebert, K.M. et al., Bio/Technology(1994)12, 699-702)。
 本発明の組み換え抗体のC領域として、ヒト抗体由来のC領域やヒト以外の動物の抗体由来のC領域を使用できる。例えばマウス抗体のH鎖C領域としては、Cγ1、Cγ2a、Cγ2b、Cγ3、Cμ、Cδ、Cα1、Cα2、Cεが、L鎖C領域としてはCκ、Cλが使用できる。また、マウス以外の動物の抗体としてラット、ウサギ、ヤギ、ヒツジ、ラクダ、サル等の抗体が使用できる。これらの配列は公知である。また、抗体またはその産生の安定性を改善するために、C領域を修飾することができる。
 本発明において、抗体がヒトに投与される場合、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体とすることができる。遺伝子組換え型抗体とは、例えば、キメラ(Chimeric)抗体、ヒト化(Humanized)抗体などを含む。これらの改変抗体は、公知の方法を用いて製造することができる。
 キメラ抗体とは、互いに由来の異なる可変領域と定常領域を連結した抗体をいう。例えば、マウス抗体の重鎖、軽鎖の可変領域と、ヒト抗体の重鎖、軽鎖の定常領域からなる抗体は、マウス-ヒト-異種キメラ抗体である。マウス抗体の可変領域をコードするDNAをヒト抗体の定常領域をコードするDNAと連結させ、これを発現ベクターに組み込むことによって、キメラ抗体を発現する組換えベクターが作製できる。該ベクターにより形質転換された組換え細胞を培養し、組み込まれたDNAを発現させることによって、培養中に生産される当該キメラ抗体を取得できる。キメラ抗体およびヒト化抗体のC領域には、ヒト抗体のものが使用される。
 例えばH鎖においては、Cγ1、Cγ2、Cγ3、Cγ4、Cμ、Cδ、Cα1、Cα2、およびCεをC領域として利用することができる。またL鎖においてはCκ、およびCλをC領域として使用できる。これらのC領域のアミノ酸配列、ならびにそれをコードする塩基配列は公知である。また、抗体そのもの、あるいは抗体の産生の安定性を改善するために、ヒト抗体C領域を修飾することができる。
 一般にキメラ抗体は、ヒト以外の動物由来抗体のV領域とヒト抗体由来のC領域とから構成される。これに対してヒト化抗体は、ヒト以外の動物由来抗体の相補性決定領域(CDR;complementarity determining region)と、ヒト抗体由来のフレームワーク領域(FR;framework region)およびヒト抗体由来のC領域とから構成される。ヒト化抗体はヒト体内における抗原性が低下しているため、本発明の治療剤の有効成分として有用である。
 抗体の可変領域は、通常、4つのFRにはさまれた3つのCDRで構成されている。CDRは、実質的に、抗体の結合特異性を決定している領域である。CDRのアミノ酸配列は多様性に富む。一方FRを構成するアミノ酸配列は、異なる結合特異性を有する抗体の間でも、高い相同性を示すことが多い。そのため、一般に、CDRの移植によって、ある抗体の結合特異性を、他の抗体に移植することができるといわれている。
 ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される。具体的には、ヒト以外の動物、たとえばマウス抗体のCDRをヒト抗体に移植したヒト化抗体などが公知である。ヒト化抗体を得るための一般的な遺伝子組換え手法も知られている。
 具体的には、マウスの抗体のCDRをヒトのFRに移植するための方法として、たとえばOverlap Extension PCRが公知である。Overlap Extension PCRにおいては、ヒト抗体のFRを合成するためのプライマーに、移植すべきマウス抗体のCDRをコードする塩基配列が付加される。プライマーは4つのFRのそれぞれについて用意される。一般に、マウスCDRのヒトFRへの移植においては、マウスのFRと相同性の高いヒトFRを選択するのが、CDRの機能の維持において有利であるといわれている。すなわち、一般に、移植すべきマウスCDRに隣接しているFRのアミノ酸配列と相同性の高いアミノ酸配列からなるヒトFRを利用するのが好ましい。
 また連結される塩基配列は、互いにインフレームで接続されるようにデザインされる。それぞれのプライマーによってヒトFRが個別に合成される。その結果、各FRにマウスCDRをコードするDNAが付加された産物が得られる。各産物のマウスCDRをコードする塩基配列は、互いにオーバーラップするようにデザインされている。続いて、ヒト抗体遺伝子を鋳型として合成された産物のオーバーラップしたCDR部分を互いにアニールさせて相補鎖合成反応が行われる。この反応によって、ヒトFRがマウスCDRの配列を介して連結される。
 最終的に3つのCDRと4つのFRが連結されたV領域遺伝子は、その5’末端と3'末端にアニールし適当な制限酵素認識配列を付加されたプライマーによってその全長が増幅される。上記のように得られたDNAとヒト抗体C領域をコードするDNAとをインフレームで融合するように発現ベクター中に挿入することによって、ヒト型抗体発現用ベクターが作成できる。このベクターを宿主に導入して組換え細胞を樹立した後に、組換え細胞を培養し、ヒト化抗体をコードするDNAを発現させることによって、ヒト化抗体が培養細胞の培養物中に産生される(欧州特許公開EP 239400 、国際公開WO 96/02576参照)。
 上記のように作製されたヒト化抗体の抗原への結合活性を定性的又は定量的に測定し、評価することによって、CDRを介して連結されたときに該CDRが良好な抗原結合部位を形成するようなヒト抗体のFRが好適に選択できる。必要に応じ、再構成ヒト抗体のCDRが適切な抗原結合部位を形成するようにFRのアミノ酸残基を置換することもできる。たとえば、マウスCDRのヒトFRへの移植に用いたPCR法を応用して、FRにアミノ酸配列の変異を導入することができる。具体的には、FRにアニーリングするプライマーに部分的な塩基配列の変異を導入することができる。このようなプライマーによって合成されたFRには、塩基配列の変異が導入される。アミノ酸を置換した変異型抗体の抗原への結合活性を上記の方法で測定し評価することによって所望の性質を有する変異FR配列が選択できる(Sato, K.et al., Cancer Res, 1993, 53, 851-856)。
 本発明の抗体には、HS6ST2タンパク質に結合する限り、IgGに代表される二価抗体だけでなく、一価抗体、若しくはIgMに代表される多価抗体も含まれる。本発明の多価抗体には、全て同じ抗原結合部位を有する多価抗体、または、一部もしくは全て異なる抗原結合部位を有する多価抗体が含まれる。本発明の抗体は、抗体の全長分子に限られず、HS6ST2タンパク質に結合する限り、低分子化抗体またはその修飾物であってもよい。
 低分子化抗体は、全長抗体(whole antibody、例えばwhole IgG等)の一部分が欠損している抗体断片を含む。HS6ST2抗原への結合能を有する限り、抗体分子の部分的な欠損は許容される。本発明における抗体断片は、重鎖可変領域(VH)および軽鎖可変領域(VL)のいずれか、または両方を含んでいることが好ましい。また、本発明における抗体断片はCDRを含んでいることが好ましい。本発明の抗体断片に含まれるCDRの数は特に限定されないが、重鎖CDR1、CDR2、CDR3、軽鎖CDR1、CDR2、CDR3の6つを少なくとも含んでいることが好ましい。
 VHまたはVLのアミノ酸配列は、置換、欠失、付加及び/又は挿入を含むことができる。さらにHS6ST2抗原への結合能を有する限り、VHおよびVLのいずれか、または両方の一部を欠損させることもできる。又、可変領域はキメラ化やヒト化されていてもよい。抗体断片の具体例としては、例えば、Fab、Fab'、F(ab')2、Fvなどを挙げることができる。また、低分子化抗体の具体例としては、例えば、Fab、Fab'、F(ab')2、Fv、scFv(single chain Fv)、ダイアボディー、sc(Fv)2(single chain (Fv)2)、scFv-Fcなどを挙げることができる。これら抗体の多量体(例えば、ダイマー、トリマー、テトラマー、ポリマー)も、本発明の低分子化抗体に含まれる。
 抗体の断片は、抗体を酵素で処理して抗体断片を生成させることによって得ることができる。抗体断片を生成する酵素として、例えばパパイン、ペプシン、あるいはプラスミンなどが公知である。あるいは、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させることができる(例えば、Co, M.S. et al., J. Immunol.(1994)152, 2968-2976、Better, M. & Horwitz, A. H. Methods in Enzymology(1989)178, 476-496、Plueckthun, A. & Skerra, A. Methods in Enzymology(1989)178, 476-496、Lamoyi, E., Methods in Enzymology(1989)121, 652-663、Rousseaux, J. et al., Methods in Enzymology(1989)121, 663-669、Bird, R. E. et al., TIBTECH(1991)9, 132-137参照)。
 消化酵素は、抗体断片の特定の位置を切断し、例えば次のような特定の構造の抗体断片を与える。このような酵素的に得られた抗体断片に対して、遺伝子工学的手法を利用すると、抗体の任意の部分を欠失させることができる。
パパイン消化:F(ab)2またはFab
ペプシン消化:F(ab’)2またはFab’
 したがって、本発明における低分子化抗体は、HS6ST2に対する結合親和性を有する限り、任意の領域を欠失した抗体断片であることができる。更に、特に、本発明による癌などの細胞増殖性疾患の治療においては、抗体は、そのエフェクター活性を維持していることが望ましい。すなわち、本発明における好ましい低分子化抗体は、HS6ST2に対する結合親和とエフェクター機能の両方を有する。抗体のエフェクター機能には、ADCC活性およびCDC活性が含まれる。本発明における治療用の抗体は、特に好ましくは、ADCC活性およびCDC活性のいずれか、または両方をエフェクター機能として備える。
 ダイアボディーは、遺伝子融合により構築された二価(bivalent)の抗体断片を指す(Holliger P et al., Proc.Natl.Acad.Sci.USA 90: 6444-6448 (1993)、EP404,097号、WO93/11161号等)。ダイアボディーは、2本のポリペプチド鎖から構成されるダイマーである。通常、ダイマーを構成するポリペプチド鎖は、各々、同じ鎖中でVL及びVHがリンカーにより結合されている。ダイアボディーにおけるリンカーは、一般に、VLとVHが互いに結合できない位に短い。具体的には、リンカーを構成するアミノ酸残基は、例えば、5残基程度である。そのため、同一ポリペプチド鎖上にコードされるVLとVHとは、単鎖可変領域フラグメントを形成できず、別の単鎖可変領域フラグメントと二量体を形成する。その結果、ダイアボディーは2つの抗原結合部位を有することとなる。
 scFvは、抗体のH鎖V領域とL鎖V領域とを連結することにより得られる。scFvにおいて、H鎖V領域とL鎖V領域は、リンカー、好ましくはペプチドリンカーを介して連結される(Huston, J. S. et al., Proc. Natl. Acad. Sci. U.S.A, 1988, 85, 5879-5883)。scFvにおけるH鎖V領域およびL鎖V領域は、本明細書に記載されたいずれの抗体由来であってもよい。V領域を連結するペプチドリンカーには、特に制限はない。例えば3から25残基程度からなる任意の一本鎖ペプチドをリンカーとして用いることができる。具体的には、たとえば後述のペプチドリンカー等を用いることができる。
 両鎖のV領域は、たとえば上記のようなPCR法によって連結することができる。PCR法によるV領域の連結のために、まず次のDNAのうち、全部あるいは所望の部分アミノ酸配列をコードするDNAが鋳型として利用される。
抗体のH鎖またはH鎖V領域をコードするDNA配列、および
抗体のL鎖またはL鎖V領域をコードするDNA配列
 増幅すべきDNAの両端の配列に対応する配列を有するプライマーの一対を用いたPCR法によって、H鎖とL鎖のV領域をコードするDNAがそれぞれ増幅される。次いで、ペプチドリンカー部分をコードするDNAを用意する。ペプチドリンカーをコードするDNAもPCRを利用して合成することができる。このとき利用するプライマーの5'側に、別に合成された各V領域の増幅産物と連結できる塩基配列を付加しておく。次いで、[H鎖V領域DNA]-[ペプチドリンカーDNA]-[L鎖V領域DNA]の各DNAと、アセンブリーPCR用のプライマーを利用してPCR反応を行う。
 アセンブリーPCR用のプライマーは、[H鎖V領域DNA]の5’側にアニールするプライマーと、[L鎖V領域DNA]の3'側にアニールするプライマーとの組み合わせからなる。すなわちアセンブリーPCR用プライマーとは、合成すべきscFvの全長配列をコードするDNAを増幅することができるプライマーセットである。一方[ペプチドリンカーDNA]には各V領域DNAと連結できる塩基配列が付加されている。その結果、これらのDNAが連結され、さらにアセンブリーPCR用のプライマーによって、最終的にscFvの全長が増幅産物として生成される。一旦scFvをコードするDNAが作製されると、それらを含有する発現ベクター、および該発現ベクターにより形質転換された組換え細胞が常法に従って取得できる。また、その結果得られる組換え細胞を培養して該scFvをコードするDNAを発現させることにより、該scFvが取得できる。
 scFv-Fcは抗体のH鎖V領域とL鎖V領域からなるscFvにFc領域を融合させた低分子化抗体である(Cellular & Molecular Immunology 2006; 3: 439-443)。scFv-Fcに用いられるscFvの由来は特に限定されないが、例えばIgM由来のscFvを用いることができる。又、Fcの由来は特に限定されないが、例えばヒトIgG(ヒトIgG1など)を用いることができる。従って、scFv-Fcの好ましい態様の例として、IgM抗体のscFv断片と、ヒトIgG1のCH2(たとえば、Cγ2)とCH3(たとえば、Cγ3)をヒトIgG1のヒンジ領域(Hγ)で連結させたscFv-Fcを挙げることができる。
 sc(Fv)2は、2つのVH及び2つのVLをリンカー等で結合して一本鎖にした低分子化抗体である(Hudson et al., J Immunol. Methods 1999;231:177-189)。sc(Fv)2は、例えば、scFvをリンカーで結ぶことによって作製できる。
 また2つのVH及び2つのVLが、一本鎖ポリペプチドのN末端側を基点としてVH、VL、VH、VL([VH]リンカー[VL]リンカー[VH]リンカー[VL])の順に並んでいることを特徴とする抗体が好ましい。
 2つのVHと2つのVLの順序は特に上記配置に限定されず、どのような順序で並べられていてもよい。例えば以下のような配置も挙げることができる。
[VL]リンカー[VH]リンカー[VH]リンカー[VL]
[VH]リンカー[VL]リンカー[VL]リンカー[VH]
[VH]リンカー[VH]リンカー[VL]リンカー[VL]
[VL]リンカー[VL]リンカー[VH]リンカー[VH]
[VL]リンカー[VH]リンカー[VL]リンカー[VH]
 抗体の可変領域を結合するリンカーとしては、遺伝子工学により導入し得る任意のペプチドリンカー、または合成化合物リンカー(例えば、Protein Engineering, 9(3), 299-305, 1996参照)に開示されるリンカー等を用いることができる。本発明においてはペプチドリンカーが好ましい。ペプチドリンカーの長さは特に限定されず、目的に応じて当業者が適宜選択することができる。通常、ペプチドリンカーを構成するアミノ酸残基は、1から100アミノ酸、好ましくは3から50アミノ酸、更に好ましくは5から30アミノ酸、特に好ましくは12から18アミノ酸(例えば、15アミノ酸)である。
 ペプチドリンカーを構成するアミノ酸配列は、scFvの結合作用を阻害しない限り、任意の配列とすることができる。例えば、ペプチドリンカーの場合次のようなアミノ酸配列を利用することができる。
Ser
Gly・Ser
Gly・Gly・Ser
Ser・Gly・Gly
Gly・Gly・Gly・Ser(配列番号:109)
Ser・Gly・Gly・Gly(配列番号:110)
Gly・Gly・Gly・Gly・Ser(配列番号:111)
Ser・Gly・Gly・Gly・Gly(配列番号:112)
Gly・Gly・Gly・Gly・Gly・Ser(配列番号:113)
Ser・Gly・Gly・Gly・Gly・Gly(配列番号:114)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(配列番号:115)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(配列番号:116)
(Gly・Gly・Gly・Gly・Ser(配列番号:111))n
(Ser・Gly・Gly・Gly・Gly(配列番号:112))n
 [nは1以上の整数である]
 ペプチドリンカーのアミノ酸配列は、目的に応じて当業者が適宜選択することができる。たとえば上記のペプチドリンカーの長さを決定するnは、通常1~5、好ましくは1~3、より好ましくは1または2である。
 よって本発明において特に好ましいsc(Fv)2の態様としては、例えば、以下のsc(Fv)2を挙げることができる。
[VH]ペプチドリンカー(15アミノ酸)[VL]ペプチドリンカー(15アミノ酸)[VH]ペプチドリンカー(15アミノ酸)[VL]
 あるいは、合成化学物リンカー(化学架橋剤)を利用してV領域を連結することもできる。ペプチド化合物などの架橋に通常用いられている架橋剤を本発明に利用することができる。例えば次のような化学架橋剤が公知である。これらの架橋剤は市販されている。
N-ヒドロキシスクシンイミド(NHS)、
ジスクシンイミジルスベレート(DSS)、
ビス(スルホスクシンイミジル)スベレート(BS3)、
ジチオビス(スクシンイミジルプロピオネート)(DSP)、
ジチオビス(スルホスクシンイミジルプロピオネート)(DTSSP)、
エチレングリコールビス(スクシンイミジルスクシネート)(EGS)、
エチレングリコールビス(スルホスクシンイミジルスクシネート)(スルホ-EGS)、
ジスクシンイミジル酒石酸塩(DST)、ジスルホスクシンイミジル酒石酸塩(スルホ-DST)、
ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン(BSOCOES)、および
ビス[2-(スルホスクシンイミドオキシカルボニルオキシ)エチル]スルホン(スルホ-BSOCOES)など
 4つの抗体可変領域を結合する場合には、通常、3つのリンカーが必要となる。複数のリンカーは、同じでもよいし、異なるリンカーを用いることもできる。本発明において好ましい低分子化抗体はダイアボディー又はsc(Fv)2である。このような低分子化抗体を得るには、抗体を酵素、例えば、パパイン、ペプシンなどで処理し、抗体断片を生成させるか、又はこれら抗体断片をコードするDNAを構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させればよい(例えば、Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976 ; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496 ; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515 ; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663 ; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669 ; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9, 132-137参照)。
 また、本発明の抗体には、一価抗体だけでなく、多価抗体も含まれる。本発明の多価抗体には、全て同じ抗原結合部位を有する多価抗体、または、一部もしくは全て異なる抗原結合部位を有する多価抗体が含まれる。
 抗体の修飾物として、ポリエチレングリコール(PEG)等の各種分子と結合した抗体を使用することもできる。又、抗体に化学療法剤、毒性ペプチド或いは放射性化学物質などの細胞障害性物質を結合することも可能である。このような抗体修飾物(以下、抗体コンジュゲートと称する。)は、得られた抗体に化学的な修飾を施すことによって得ることができる。尚、抗体の修飾方法はこの分野においてすでに確立されている。
 本発明の抗HS6ST2抗体に結合させて細胞傷害活性を機能させる細胞傷害性物質は具体的には化学療法剤であり、たとえば次のような化学療法剤が例示できる:アザリビン(azaribine)、アナストロゾール(anastrozole)、アザシチジン(azacytidine)、ブレオマイシン(bleomycin)、ボルテゾミブ(bortezomib)、ブリオスタチン-1(bryostatin-1)、ブスルファン(busulfan)、カンプトテシン(camptothecin)、10-ヒドロキシカンプトテシン(10-hydroxycamptothecin)、カルムスチン(carmustine)、セレブレックス(celebrex)、クロラムブシル(chlorambucil)、シスプラチン(cisplatin)、イリノテカン(irinotecan)、カルボプラチン(carboplatin)、クラドリビン(cladribine)、シクロホスファミド(cyclophosphamide)、シタラビン(cytarabine)、ダカルバジン(dacarbazine)、ドセタキセル(docetaxel)、ダクチノマイシン(dactinomycin)、ダウノマイシングルクロニド(daunomycin glucuronide)、ダウノルビシン(daunorubicin)、デキサメタゾン(dexamethasone)、ジエチルスチルベストロール(diethylstilbestrol)、ドキソルビシン(doxorubicin)、ドキソルビシンブルクロニド(doxorubicin glucuronide)、エピルビシン(epirubicin)、エチニルエストラジオール(ethinyl estradiol)、エストラムスチン(estramustine)、エトポシド(etoposide)、エトポシドグルクロニド(etoposide glucuronide)、フロキシウリジン(floxuridine)、フルダラビン(fludarabine)、フルタミド(flutamide)、フルオロウラシル(fluorouracil)、フルオキシメステロン(fluoxymesterone)、ゲムシタビン(gemcitabine)、ヒドロキシプロゲステロンカプロエート(hydroxyprogesterone caproate)、ヒドロキシウレア(hydroxyurea)、イダルビシン(idarubicin)、イフォスファミド(ifosfamide)、ロイコボリン(leucovorin)、ロムスチン(lomustine)、メクロレタミン(mechlorethamine)、メドロキシプロゲステロンアセテート(medroxyprogesterone acetate)、メゲストロールアセテート(megestrol acetate)、メルファラン(melphalan)、メルカプトプリン(mercaptopurine)、メトトレキセート(methotrexate)、ミトキサントロン(mitoxantrone)、ミトラマイシン(mithramycin)、ミトマイシン(mitomycin)、ミトタン(mitotane)、フェニルブチレート(phenylbutyrate)、プレドニゾン(prednisone)、プロカルバジン(procarbazine)、パクリタキセル(paclitaxel)、ペントスタチン(pentostatin)、セムスチン(semustine)、ストレプトゾシン(streptozocin)、タモキシフェン(tamoxifen)、タキサン類(taxanes)、タキソール(taxol)、テストステロンプロピオネート(testosterone propionate)、サリドマイド(thalidomide)、チオグアニン(thioguanine)、チオテパ(thiotepa)、テニポシド(teniposide)、トポテカン(topotecan)、ウラシルマスタード(uracil mustard)、ビンブラスチン(vinblastine)、ビノレルビン(vinorelbine)、ビンクリスチン(vincristine)。
 本発明において、好ましい化学療法剤は、低分子の化学療法剤である。低分子の化学療法剤は、抗体への結合の後も、抗体の機能に干渉する可能性が低い。本発明において、低分子の化学療法剤は、通常100~2000、好ましくは200~1000の分子量を有する。ここに例示した化学療法剤は、いずれも低分子の化学療法剤である。これらの本発明における化学療法剤は、生体内で活性な化学療法剤に変換されるプロドラッグを含む。プロドラッグの活性化は酵素的な変換であっても、非酵素的な変換であっても良い。
 また、本発明の細胞傷害性物質は毒性ペプチドであってもよく、この場合抗体を毒性ペプチドで修飾する。毒性ペプチドの例としては、例えば、次のものを挙げることができる。ジフテリアトキシンA鎖(Diphtheria toxin A Chain) (Langone J.J., et al., Methods in Enzymology, 93, 307-308, 1983)、シュードモナスエキソトキシン(Pseudomonas Exotoxin) (Nature Medicine, 2, 350-353, 1996)、リシン鎖(Ricin A Chain) (Fulton R.J., et al., J.Biol.Chem., 261, 5314-5319, 1986; Sivam G., et al., Cancer Res., 47, 3169-3173, 1987; Cumber A.J. et al., J.Immunol.Methods, 135, 15-24, 1990; Wawrzynczak E.J., et al., Cancer Res., 50, 7519-7562, 1990; Gheeite V., et al., J.Immunol.Methods, 142, 223-230, 1991); 無糖鎖リシンA鎖(Deglicosylated Ricin A Chain) (Thorpe P.E., et al., Cancer Res., 47, 5924-5931, 1987); アブリンA鎖(Abrin A Chain) (Wawrzynczak E.J., et al., Br.J.Cancer, 66, 361-366, 1992; Wawrzynczak E.J., et al., Cancer Res., 50, 7519-7562, 1990; Sivam G., et al., Cancer Res., 47, 3169-3173, 1987; Thorpe P.E., et al., Cancer Res., 47, 5924-5931, 1987); ゲロニン(Gelonin) (Sivam G., et al., Cancer Res., 47, 3169-3173, 1987; Cumber A.J., et al., J.Immunol.Methods, 135, 15-24, 1990; Wawrzynczak E.J., et al., Cancer Res., 50, 7519-7562, 1990; Bolognesi A., et al., Clin.exp.Immunol., 89, 341-346, 1992); ポークウイード抗ウィルス蛋白(PAP-s; Pokeweed anti-viral protein from seeds) (Bolognesi A., et al., Clin.exp.Immunol., 89, 341-346, 1992); ブリオジン(Briodin) (Bolognesi A., et al., Clin.exp.Immunol., 89, 341-346, 1992); サポリン(Saporin) (Bolognesi A., et al., Clin.exp.Immunol., 89, 341-346, 1992); モモルジン(Momordin) (Cumber A.J., et al., J.Immunol.Methods, 135, 15-24, 1990; Wawrzynczak E.J., et al., Cancer Res., 50, 7519-7562, 1990; Bolognesi A., et al., Clin.exp.Immunol., 89, 341-346, 1992); モモルコキン(Momorcochin) (Bolognesi A., et al., Clin.exp.Immunol., 89, 341-346, 1992); ジアンシン32(Dianthin 32) (Bolognesi A., et al., Clin.exp.Immunol., 89, 341-346, 1992); ジアンシン30(Dianthin 30) (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); モデッシン(Modeccin) (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); ビスカミン(Viscumin) (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); ボルケシン(Volkesin) (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); ドデカンドリン(Dodecandrin) (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); トリチン(Tritin) (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); ルフィン(Luffin) (Stirpe F., Barbieri L., FEBS letter 195, 1-8, 1986); トリコキリン(Trichokirin) (Casellas P., et al., Eur.J.Biochem. 176, 581-588, 1988; Bolognesi A., et al., Clin.exp.Immunol., 89, 341-346, 1992)。
 本発明における細胞傷害性物質は放射性化学物質であってもよく、放射性化学物質とは、放射性同位体を含む化学物質のことをいう。放射性同位体は特に限定されず、如何なる放射性同位体を用いてもよいが、例えば、32P、14C、125I、3H、131I、186Re、188Reなどを用いることが可能である。
 また別の態様では、一または二以上の低分子化学療法剤と毒性ペプチドをそれぞれ組み合わせて抗体の修飾に使用できる。抗HS6ST2抗体と上記の低分子化学療法剤との結合は共有結合または非共有結合が利用できる。これら化学療法剤を結合した抗体の作製方法は公知である。
 更に、タンパク質性の薬剤や毒素は、遺伝子工学的な手法によって抗体と結合することができる。具体的には、たとえば上記毒性ペプチドをコードするDNAと抗HS6ST2抗体をコードするDNAをインフレームで融合させて発現ベクター中に組み込んだ組換えベクターが構築できる。該ベクターを適切な宿主細胞に導入することにより得られる形質転換細胞を培養し、組み込んだDNAを発現させて、毒性ペプチドを結合した抗HS6ST2抗体を融合タンパク質として得ることができる。抗体との融合タンパク質を得る場合、一般に、抗体のC末端側にタンパク質性の薬剤や毒素を配置される。抗体と、タンパク質性の薬剤や毒素の間には、ペプチドリンカーを介在させることもできる。
 さらに、本発明の抗体は二重特異性抗体(bispecific antibody)であってもよい。二重特異性抗体とは、異なるエピトープを認識する可変領域を同一の抗体分子内に有する抗体を言う。本発明において、二重特異性抗体はHS6ST2分子上の異なるエピトープを認識する抗原結合部位を有することができる。このような二重特異性抗体は、1分子のHS6ST2に対して2分子の抗体分子が結合できる。その結果、より強力な細胞傷害作用を期待できる。
 あるいは、一方の抗原結合部位がHS6ST2を認識し、他方の抗原結合部位が細胞傷害性物質を認識する二重特異性抗体とすることもできる。細胞傷害性物質には、具体的には、化学療法剤、毒性ペプチド或いは放射性化学物質等が含まれる。このような二重特異性抗体は、HS6ST2を発現している細胞に結合する一方で、細胞傷害性物質を捕捉する。その結果、細胞傷害性物質をHS6ST2発現細胞に直接作用させることができる。すなわち細胞傷害性物質を認識する二重特異性抗体によって、腫瘍細胞を特異的に傷害し、腫瘍細胞の増殖を抑制することができる。
 また本発明においては、HS6ST2以外の抗原を認識する二重特異性抗体を組み合わせることもできる。たとえば、HS6ST2と同様に標的とする癌細胞の細胞表面に特異的に発現する抗原であって、HS6ST2とは異なる抗原を認識するような二重特異性抗体を組み合わせることができる。
 二重特異性抗体を製造するための方法は公知である。たとえば、認識抗原が異なる2種類の抗体を結合させて、二重特異性抗体を作製することができる。結合させる抗体は、それぞれがH鎖とL鎖を有する1/2分子であっても良いし、H鎖のみからなる1/4分子であっても良い。あるいは、異なるモノクローナル抗体を産生するハイブリドーマを融合させて、二重特異性抗体産生融合細胞を作製することもできる。さらに、遺伝子工学的手法により二重特異性抗体が作製できる。
 抗体の抗原結合活性(Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)の測定には公知の手段を使用することができる。例えば、ELISA(酵素結合免疫吸着検定法)、EIA(酵素免疫測定法)、RIA(放射免疫測定法)あるいは蛍光免疫法などを用いることができる。
 本発明の抗体は糖鎖が改変された抗体であってもよい。抗体の糖鎖を改変することにより抗体の細胞傷害活性を増強できることが知られている。糖鎖が改変された抗体としては、例えば、次のような抗体が公知である。
グリコシル化が修飾された抗体(WO99/54342など)、
糖鎖に付加するフコースが欠損した抗体(WO00/61739、WO02/31140など))、
バイセクティングGlcNAcを有する糖鎖を有する抗体(WO02/79255など)など
 本発明の抗体が治療目的で用いられる場合、抗体は好ましくは細胞傷害活性を有する抗体である。
 本発明における細胞傷害活性としては、例えば抗体依存性細胞介在性細胞傷害(antibody-dependent cell-mediated cytotoxicity:ADCC)活性、補体依存性細胞傷害(complement-dependent cytotoxicity:CDC)活性などを挙げることができる。本発明において、CDC活性とは補体系による細胞傷害活性を意味する。一方ADCC活性とは標的細胞の細胞表面抗原に特異的抗体が付着した際、そのFc部分にFcγ受容体保有細胞(免疫細胞等)がFcγ受容体を介して結合し、標的細胞に傷害を与える活性を意味する。
 抗HS6ST2抗体がADCC活性を有するか否か、又はCDC活性を有するか否かは公知の方法により測定することができる(例えば、Current protocols in Immunology, Chapter7. Immunologic studies in humans, Editor, John E, Coligan et al., John Wiley & Sons, Inc.,(1993)等)。
 具体的には、まず、エフェクター細胞、補体溶液、標的細胞の調製が実施される。
 (1)エフェクター細胞の調製
 CBA/Nマウスなどから脾臓を摘出し、RPMI1640培地(Invitrogen社製)中で脾臓細胞が分離される。10%ウシ胎児血清(FBS、HyClone社製)を含む同培地で洗浄後、細胞濃度を5×106/mlに調製することによって、エフェクター細胞が調製できる。
 (2)補体溶液の調製
 Baby Rabbit Complement(CEDARLANE社製)を10% FBS含有培地(Invitrogen社製)にて10倍希釈し、補体溶液が調製できる。
 (3)標的細胞の調製
 HS6ST2タンパク質を発現する細胞を0.2 mCiの51Cr-クロム酸ナトリウム(GEヘルスケアバイオサイエンス社製)とともに、10% FBS含有DMEM培地中で37℃にて1時間培養することにより該標的細胞を放射性標識できる。HS6ST2タンパク質を発現する細胞としては、HS6ST2タンパク質をコードする遺伝子で形質転換された細胞、肺腺癌細胞、肺癌細胞、肝臓癌細胞、卵巣癌細胞、肺扁平上皮癌細胞等を利用することができる。放射性標識後、細胞を10% FBS含有RPMI1640培地にて3回洗浄し、細胞濃度を2×105/mlに調製することによって、該標的細胞が調製できる。
 ADCC活性、又はCDC活性は下記に述べる方法により測定できる。ADCC活性の測定の場合は、96ウェルU底プレート(Becton Dickinson社製)に、標的細胞と、抗HS6ST2抗体を50μlずつ加え、氷上にて15分間反応させる。その後、エフェクター細胞100μlを加え、炭酸ガスインキュベーター内で4時間培養する。抗体の終濃度は0または10μg/mlとする。培養後、100μlの上清を回収し、ガンマカウンター(COBRAII AUTO-GAMMA、MODEL D5005、Packard Instrument Company社製)で放射活性を測定する。細胞傷害活性(%)は得られた値を使用して(A-C) / (B-C) x 100の計算式に基づいて計算できる。Aは各試料における放射活性(cpm)、Bは1% NP-40(nacalai tesque社製)を加えた試料における放射活性(cpm)、Cは標的細胞のみを含む試料の放射活性(cpm)を示す。
 一方、CDC活性の測定の場合は、96ウェル平底プレート(Becton Dickinson社製)に、標的細胞と、抗HS6ST2抗体を50μlずつ加え、氷上にて15分間反応させる。その後、補体溶液100μlを加え、炭酸ガスインキュベーター内で4時間培養する。抗体の終濃度は0または3μg/mlとする。培養後、100μlの上清を回収し、ガンマカウンターで放射活性を測定する。細胞傷害活性はADCC活性の測定と同様にして計算できる。
 一方、抗体コンジュゲートによる細胞傷害活性の測定の場合は、96ウェル平底プレート(Becton Dickinson社製)に、標的細胞と、抗HS6ST2抗体コンジュゲートを50μlずつ加え、氷上にて15分間反応させる。炭酸ガスインキュベーター内で1から4時間培養する。抗体の終濃度は0または3μg/mlとする。培養後、100μlの上清を回収し、ガンマカウンターで放射活性を測定する。細胞傷害活性はADCC活性の測定と同様にして計算できる。また、本発明で用いられる抗体の他の態様の一つとしてインターナライズ活性を有する抗体を挙げることができる。本発明において「インターナライズ活性を有する抗体」とは、HS6ST2に結合した際に細胞内(細胞質内、小胞内、他の小器官内など)に輸送される抗体を意味する。
 抗体がインターナライズ活性を有するか否かは当業者に公知の方法を用いて確認することができ、例えば、標識物質を結合した抗HS6ST2抗体をHS6ST2を発現する細胞に接触させ該標識物質が細胞内に取り込まれたか否かを確認する方法、細胞障害性物質を結合した抗HS6ST2抗体をHS6ST2を発現する細胞に接触させ該HS6ST2発現細胞に細胞死が誘導されたか否かを確認する方法、などにより確認することができる。より具体的には下記の実施例に記載の方法などにより抗体がインターナライズ活性を有するか否かを確認することが可能である。
 インターナライズ活性を有する抗体は例えば上述の細胞障害性物質を結合することにより抗癌剤などの医薬組成物として用いることができる。
 本発明で用いられるHS6ST2を認識する抗体の例として、特に限定されないが、例えば以下の抗体を挙げることができる。
(1)配列番号:64に記載のアミノ酸配列を有する重鎖CDR1、配列番号:65に記載のアミノ酸配列を有する重鎖CDR2、配列番号:66に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(A1);
(2)配列番号:70に記載のアミノ酸配列を有する重鎖CDR1、配列番号:71に記載のアミノ酸配列を有する重鎖CDR2、配列番号:72に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(A6);
(3)配列番号:76に記載のアミノ酸配列を有する重鎖CDR1、配列番号:77に記載のアミノ酸配列を有する重鎖CDR2、配列番号:78に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(A10);
(4)配列番号:82に記載のアミノ酸配列を有する重鎖CDR1、配列番号:83に記載のアミノ酸配列を有する重鎖CDR2、配列番号:84に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(B5);
(5)配列番号:88に記載のアミノ酸配列を有する重鎖CDR1、配列番号:89に記載のアミノ酸配列を有する重鎖CDR2、配列番号:90に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(B6);
(6)配列番号:94に記載のアミノ酸配列を有する重鎖CDR1、配列番号:95に記載のアミノ酸配列を有する重鎖CDR2、配列番号:96に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(C8);
(7)配列番号:100に記載のアミノ酸配列を有する重鎖CDR1、配列番号:101に記載のアミノ酸配列を有する重鎖CDR2、配列番号:102に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(C10);
(8)配列番号:67に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:68に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:69に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(A1);
(9)配列番号:73に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:74に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:75に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(A6);
(10)配列番号:79に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:80に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:81に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(A10);
(11)配列番号:85に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:86に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:87に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(B5);
(12)配列番号:91に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:92に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:93に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(B6);
(13)配列番号:97に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:98に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:99に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(C8);
(14)配列番号:103に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:104に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:105に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(C10);
(15)(1)の重鎖可変領域と(8)の軽鎖可変領域を含む抗体(A1);
(16)(2)の重鎖可変領域と(9)の軽鎖可変領域を含む抗体(A6);
(17)(3)の重鎖可変領域と(10)の軽鎖可変領域を含む抗体(A10);
(18)(4)の重鎖可変領域と(11)の軽鎖可変領域を含む抗体(B5);
(19)(5)の重鎖可変領域と(12)の軽鎖可変領域を含む抗体(B6);
(20)(6)の重鎖可変領域と(13)の軽鎖可変領域を含む抗体(C8);
(21)(7)の重鎖可変領域と(14)の軽鎖可変領域を含む抗体(C10);
(22)(1)から(21)のいずれかに記載の抗体において1若しくは複数のアミノ酸が置換、欠失、付加および/または挿入された抗体であって、(1)から(21)のいずれかに記載の抗体と同等の活性を有する抗体;
(23)(1)から(21)のいずれかに記載の抗体が結合するHS6ST2タンパク質のエピトープと同じエピトープに結合する抗体。
 本発明において、本発明の抗体と同等の活性を有するとは、HS6ST2への結合活性および/またはHS6ST2を発現する細胞への細胞障害活性が同等であることをいう。
 ポリペプチドに変異を導入する方法は、あるポリペプチドと機能的に同等なポリペプチドを調製するための、当業者によく知られた方法の一つである。例えば、当業者であれば、部位特異的変異誘発法(Hashimoto-Gotoh, T. et al. (1995) Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Methods Enzymol. 100, 468-500、Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ(1987) Methods. Enzymol. 154, 350-367、Kunkel,TA(1985) Proc Natl Acad Sci USA. 82, 488-492、Kunkel (1988) Methods Enzymol. 85, 2763-2766)などを用いて、本発明の抗体に適宜変異を導入することにより、該抗体と機能的に同等な抗体を調製することができる。また、アミノ酸の変異は自然界においても生じうる。このように、本発明の抗体のアミノ酸配列において1もしくは複数のアミノ酸が変異したアミノ酸配列を有し、該抗体と機能的に同等な抗体もまた本発明の抗体に含まれる。
 このような変異体における、変異するアミノ酸数は、通常、50アミノ酸以内であり、好ましくは30アミノ酸以内であり、さらに好ましくは10アミノ酸以内(例えば、5アミノ酸以内)である。
 変異するアミノ酸残基においては、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質に基づいて、次のような分類が確立している。
疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、
親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、
脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、
水酸基含有側鎖を有するアミノ酸(S、T、Y)、
硫黄原子含有側鎖を有するアミノ酸(C、M)、
カルボン酸及びアミド含有側鎖を有するアミノ酸(D、N、E、Q)、
塩基含有側鎖を有するアミノ酸(R、K、H)、
芳香族含有側鎖を有するアミノ酸(H、F、Y、W)
(括弧内はいずれもアミノ酸の一文字標記を表す)
 あるアミノ酸配列に対する1又は複数個のアミノ酸残基の欠失、付加及び/又は他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドが、その生物学的活性を維持することはすでに知られている(Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666、Zoller, M. J. and Smith, M., Nucleic Acids Research (1982) 10, 6487-6500、Wang, A. et al., Science 224, 1431-1433、Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413)。すなわち、一般に、あるポリペプチドを構成するアミノ酸配列中、各群に分類されたアミノ酸は、相互に置換したときに、当該ポリペプチドの活性が維持される可能性が高いといわれている。本発明において、上記アミノ酸群の群内のアミノ酸間の置換を保存的置換と言う。
 また本発明は、上述の(1)~(21)いずれかの抗体が結合するエピトープと同じエピトープに結合する抗体もまた提供する。上述の(1)~(21)の抗体の具体的な例として、本願実施例に記載されたA1、A6、A10、B5、B6、C8、C10の抗体を挙げることができる。すなわち本発明は、A1、A6、A10、B5、B6、C8、C10が認識するエピトープと同一のエピトープを認識する抗体も提供する。このような抗体は、例えば、以下の方法により得ることができる。
 被験抗体が、ある抗体とエピトープを共有することは、両者の同じエピトープに対する競合によって確認することができる。抗体間の競合は、交叉ブロッキングアッセイなどによって検出される。例えば競合ELISAアッセイは、好ましい交叉ブロッキングアッセイである。
 具体的には、交叉ブロッキングアッセイにおいては、マイクロタイタープレートのウェル上にコートしたHS6ST2タンパク質を、候補の競合抗体の存在下、または非存在下でプレインキュベートした後に、本発明の抗HS6ST2抗体が添加される。ウェル中のHS6ST2タンパク質に結合した本発明の抗HS6ST2抗体の量は、同じエピトープへの結合に対して競合する候補競合抗体(被験抗体)の結合能に間接的に相関している。すなわち同一エピトープに対する被験抗体の親和性が大きくなればなる程、本発明の抗HS6ST2抗体のHS6ST2タンパク質をコートしたウェルへの結合量は低下し、一方、被験抗体のHS6ST2タンパク質をコートしたウェルへの結合量は増加する。
 ウェルに結合した抗体量は、予め抗体を標識しておくことによって、容易に測定することができる。たとえば、ビオチン標識された抗体は、アビジンペルオキシダーゼコンジュゲートと適切な基質を使用することにより測定できる。ペルオキシダーゼなどの酵素標識を利用した交叉ブロッキングアッセイを、特に競合ELISAアッセイと言う。抗体は、検出あるいは測定が可能な他の標識物質で標識することができる。具体的には、放射標識あるいは蛍光標識などが公知である。
 更に被験抗体が本発明の抗HS6ST2抗体と異なる種に由来する定常領域を有する場合には、ウェルに結合したいずれかの抗体を、いずれかの定常領域を認識する標識抗体によって測定することもできる。あるいは同種由来の抗体であっても、クラスが相違する場合には、各クラスを識別する抗体によって、ウェルに結合した抗体を測定することができる。
 候補の競合抗体の非存在下で実施されるコントロール試験において得られる結合活性と比較して、候補抗体が、少なくとも20%、好ましくは少なくとも30%、さらに好ましくは少なくとも50%、抗HS6ST2抗体の結合をブロックできるならば、該候補競合抗体は本発明の抗HS6ST2抗体と実質的に同じエピトープに結合するか、又は同じエピトープへの結合に対して競合する抗体である。
 又、被検抗体が本発明の抗HS6ST2抗体と同じエピトープに結合するか否かを測定する際には、本発明の抗HS6ST2抗体の定常領域を被検抗体と同一の定常領域に置換してもよい。例えば、被検抗体がヒト由来の定常領域(ヒトIgG1、IgG2、IgG3、IgG4など)を有する場合、本発明の抗HS6ST2抗体の定常領域を被検抗体の定常領域と同一の定常領域に置換することができる。
 また、A1、A10、B5、B6、C8は配列番号:107のアミノ酸配列を有するHS6ST2タンパク質の379番目のアミノ酸から459番目のアミノ酸からなるペプチドを認識することから、A1、A10、B5、B6、C8が認識するエピトープと同じエピトープを認識する抗体の好ましい例として、配列番号:107のアミノ酸配列を有するHS6ST2タンパク質の379番目のアミノ酸から459番目のアミノ酸までの部位を認識する抗体を挙げることができる。
 また、A6は配列番号:107のアミノ酸配列を有するHS6ST2タンパク質の308番目のアミノ酸から393番目のアミノ酸からなるペプチドを認識することから、A6が認識するエピトープと同じエピトープを認識する抗体の好ましい例として、配列番号:107のアミノ酸配列を有するHS6ST2タンパク質の308番目のアミノ酸から393番目のアミノ酸までの部位を認識する抗体を挙げることができる。
 また、C10は配列番号:107のアミノ酸配列を有するHS6ST2タンパク質の24番目のアミノ酸から175番目のアミノ酸からなるペプチドを認識することから、C10が認識するエピトープと同じエピトープを認識する抗体の好ましい例として、配列番号:107のアミノ酸配列を有するHS6ST2タンパク質の24番目のアミノ酸から175番目のアミノ酸までの部位を認識する抗体を挙げることができる。
細胞傷害性物質が結合したHS6ST2タンパク質
 本発明はさらに、細胞傷害性物質が結合したHS6ST2タンパク質を提供する。細胞傷害性物質が結合したHS6ST2タンパク質は、ヘパリン硫酸に結合した後、細胞内にインターナライズされると考えられるので、抗癌剤等に用いることが可能である。
 HS6ST2タンパク質に結合させる細胞傷害物質は特に限定されず、例えば、上述の細胞傷害性物質を用いることが可能である。HS6ST2タンパク質はヘパリン硫酸への結合能を有していればその断片や変異体であってもよい。HS6ST2タンパク質のヘパリン硫酸への結合能や、インターナライズ活性は当業者に公知の方法により確認することが可能であり、例えば、上述の方法により確認することができる。
医薬組成物
 別の観点においては、本発明は、HS6ST2タンパク質に結合する抗体を有効成分として含有する医薬組成物を提供する。また、本発明はHS6ST2タンパク質に結合する抗体を有効成分として含有する細胞増殖抑制剤、特に抗癌剤に関する。本発明の細胞増殖抑制剤および抗癌剤は、癌を罹患している対象または罹患している可能性がある対象に投与されることが好ましい。HS6ST2の発現レベルは癌細胞で亢進していることから、抗HS6ST2抗体の投与によって、癌細胞特異的な細胞傷害作用が得られると考えられる。
 本発明の医薬組成物(例えば、抗癌剤)において用いられる抗HS6ST2抗体は特に限定されず、如何なる抗HS6ST2抗体であってもよく、例えば上述の抗HS6ST2抗体を用いることができる。
 本発明において、「HS6ST2に結合する抗体を有効成分として含有する」とは、抗HS6ST2抗体を主要な活性成分として含むという意味であり、抗HS6ST2抗体の含有率を制限するものではない。
 さらに、本発明は細胞傷害性物質が結合したHS6ST2タンパク質を有効成分として含有する医薬組成物を提供する。また、本発明は細胞傷害性物質が結合したHS6ST2タンパク質を有効成分として含有する細胞増殖抑制剤、特に抗癌剤を提供する。本発明の細胞増殖抑制剤および抗癌剤は、癌を罹患している対象または罹患している可能性がある対象に投与されることが好ましい。
 本発明において、「細胞傷害性物質が結合したHS6ST2タンパク質を有効成分として含有する」とは、細胞障害性物質が結合したHS6ST2タンパク質を主要な活性成分として含むという意味であり、細胞傷害性物質が結合したHS6ST2タンパク質の含有率を制限するものではない。
 本発明の医薬組成物が対象とする疾患が癌の場合、対象となる癌は特に限定されないが、肺腺癌、肺癌、肝臓癌、卵巣癌、肺扁平上皮癌であることが好ましい。癌は原発病巣および転移病巣のいずれであってもよい。
 本発明の医薬組成物は、経口、非経口投与のいずれかによって患者に投与することができる。好ましくは非経口投与である。係る投与方法としては具体的には、注射投与、経鼻投与、経肺投与、経皮投与などが挙げられる。注射投与の例としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などによって本発明の医薬組成物が全身または局部的に投与できる。また、患者の年齢、症状により適宜投与方法を選択することができる。投与量としては、例えば、一回の投与につき体重1 kgあたり0.0001 mgから1000 mgの範囲で投与量が選択できる。あるいは、例えば、患者あたり0.001から100000 mg/bodyの範囲で投与量が選択できる。しかしながら、本発明の医薬組成物はこれらの投与量に制限されるものではない。
 本発明の医薬組成物は、常法に従って製剤化することができ(例えば、Remington's Pharmaceutical Science, latest edition, Mark Publishing Company, Easton, U.S.A)、医薬的に許容される担体や添加物を共に含むものであってもよい。例えば界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等が挙げられる。更にこれらに制限されず、その他常用の担体が適宜使用できる。具体的には、軽質無水ケイ酸、乳糖、結晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアセタールジエチルアミノアセテート、ポリビニルピロリドン、ゼラチン、中鎖脂肪酸トリグリセライド、ポリオキシエチレン硬化ヒマシ油60、白糖、カルボキシメチルセルロース、コーンスターチ、無機塩類等を担体として挙げることができる。
HS6ST2発現細胞に傷害を引き起こす方法又は細胞の増殖を抑制する方法
 また、本発明は、HS6ST2発現細胞とHS6ST2タンパク質に結合する抗体とを接触させることによりHS6ST2発現細胞に傷害を引き起こす方法又は細胞の増殖を抑制する方法を提供する。
 本発明の方法において用いられる抗体は、特に限定されないが、例えば上述の抗体を用いることが可能である。抗HS6ST2抗体が結合する細胞はHS6ST2が発現している細胞であれば特に限定されない。本発明における好ましいHS6ST2発現細胞は癌細胞である。より好ましくは、肺腺癌細胞、肺癌細胞、肝臓癌細胞、卵巣癌細胞、肺扁平上皮癌細胞である。本発明の方法は、これらの癌の、原発病巣および転移病巣のいずれに対しても適用することができる。
 本発明において「接触」は、例えば、試験管内で培養しているHS6ST2発現細胞の培養液に抗体を添加することにより行われる。また本発明において「接触」は更に、HS6ST2発現細胞を体内に移植した非ヒト動物や内在的にHS6ST2を発現する癌細胞を有する動物に投与することによっても行われる。
 抗HS6ST2抗体の接触によってHS6ST2発現細胞に引き起こされた細胞傷害を評価又は測定する方法として、以下の方法が好適に使用される。試験管内において該細胞傷害活性を評価又は測定する方法としては、上記の抗体依存性細胞介在性細胞傷害(antibody-dependent cell-mediated cytotoxicity:ADCC)活性、補体依存性細胞傷害(complement-dependent cytotoxicity:CDC)活性などの測定法を挙げることができる。抗HS6ST2抗体がADCC活性を有するか否か、又はCDC活性を有するか否かは公知の方法により測定することができる(例えば、Current protocols in Immunology, Chapter 7. Immunologic studies in humans, Editor, John E, Coligan et al., John Wiley & Sons, Inc.,(1993)等)。活性の測定に際しては、対照抗体として抗HS6ST2抗体と同一のアイソタイプを有する抗体で該細胞傷害活性を有しない結合抗体を、抗HS6ST2抗体と同様に使用して、抗HS6ST2抗体が対照抗体よりも強い細胞傷害活性を示すことにより活性を判定することができる。
 抗体のアイソタイプは、その抗体のアミノ酸配列のH鎖定常領域の配列で規定される。生体内においては、抗体産生B細胞の成熟化の際に起こる染色体上の遺伝子組み換えにより生じるクラススイッチによって抗体のアイソタイプが最終的に決定される。アイソタイプの相違が抗体の生理的・病理的機能の相違に反映される。具体的には、例えば、細胞傷害活性の強度は抗原の発現量と共に、抗体のアイソタイプによっても影響されることが知られている。従って、上記記載の細胞傷害活性の測定に際しては、対照として用いられる抗体は被験抗体と同一のアイソタイプを用いることが好ましい。
 また、生体内で細胞傷害活性を評価、あるいは測定するために、例えばHS6ST2発現癌細胞を非ヒト被検動物の皮内又は皮下に移植後、当日又は翌日から毎日又は数日間隔で被験抗体を静脈又は腹腔内に投与する。腫瘍の大きさを経日的に測定することにより細胞傷害活性を判定することができる。試験管内での評価と同様に同一のアイソタイプを有する対照抗体を投与し、抗HS6ST2抗体投与群における腫瘍の大きさが対照抗体投与群における腫瘍の大きさよりも有意に小さいことにより細胞傷害活性を有すると判定することができる。非ヒト被検動物としてマウスを用いる場合には、胸腺を遺伝的に欠損してそのTリンパ球の機能を欠失したヌード(nu/nu)マウスを好適に用いることができる。当該マウスを使用することにより、投与された抗体による細胞傷害活性の評価・測定に当たって被検動物中のTリンパ球の関与を除くことができる。
癌の診断方法
 また、本発明はHS6ST2タンパク質またはHS6ST2タンパク質をコードする遺伝子を検出することを特徴とする癌の診断方法を提供する。HS6ST2は種々の癌組織あるいは癌細胞株において顕著な発現亢進が確認されている。したがって、HS6ST2は、癌を特異的に検出するためのマーカーとして有用である。
 したがって、本発明は以下の工程を含む癌の診断方法を提供する:
(a)被験者から採取された試料を提供する工程、
(b) (a)の試料に含まれるHS6ST2タンパク質又はHS6ST2遺伝子を検出する工程。
 本発明の方法の一つの態様においては、試料中のHS6ST2タンパク質を検出することにより癌の診断が行われる。HS6ST2タンパク質の検出はHS6ST2タンパク質を認識する抗体を用いて行われることが好ましい。
 本発明の診断方法の具体例の一つとして、以下の工程を含む癌の診断方法を挙げることができる。
(a) 被検者から採取された試料を提供する工程;
(b) 採取された試料に含まれるHS6ST2タンパク質を、HS6ST2タンパク質に結合する抗体を用いて検出する工程。
 本発明において検出とは、定量的または定性的な検出を含む。例えば、定性的な検出としては、次のような測定を挙げることができる。
・単にHS6ST2タンパク質が存在するか否かの測定
・HS6ST2タンパク質が一定の量以上存在するか否かの測定
・HS6ST2タンパク質の量を他の試料(例えば、コントロール試料など)と比較する測定など
 一方、定量的な検出とは、HS6ST2タンパク質の濃度の測定、HS6ST2タンパク質の量の測定などを挙げることができる。
 本発明における被検試料は、HS6ST2タンパク質が含まれる可能性のある試料であれば特に制限されない。具体的には、哺乳類などの生物の体から採取された試料が好ましい。さらに好ましい試料は、ヒトから採取された試料である。被検試料の具体的な例としては、例えば、血液、間質液、血漿、血管外液、脳脊髄液、滑液、胸膜液、血清、リンパ液、唾液、尿、組織などが例示できる。好ましい試料は、生物の体から採取された組織若しくは細胞が固定化された標本又は細胞の培養液などの被検試料から得られる試料である。
 本発明によって診断される癌は、特に制限されることはなく如何なる癌でもよい。具体的には、肺腺癌、肺癌、肝臓癌、卵巣癌、肺扁平上皮癌などを挙げることができる。本発明においては、これらの癌の原発病巣、および転移病巣のいずれをも診断することができる。
 本発明においては、被検試料中にタンパク質が検出された場合に、そのレベルを指標として癌が診断される。具体的には、陰性コントロールまたは健常者と比較して被検試料中に検出されるHS6ST2タンパク質の量が多い場合に、被検者が癌である、または将来癌を羅患する可能性が高いことが示される。すなわち本発明は、次の工程を含む癌の診断方法に関する。
(1) 被検者から採取された生体試料中のHS6ST2発現レベルを検出する工程、および
(2) (1)で検出されたHS6ST2の発現レベルが、対照と比較して高い場合に被検者が癌を有することが示される工程。
 本発明において、対照とは、比較の基準となる試料をいい、陰性コントロールや健常者の生体試料が含まれる。陰性コントロールは、健常者の生体試料を採取し、必要に応じて混合することによって得ることができる。対照のHS6ST2の発現レベルは、被検者の生体試料におけるHS6ST2の発現レベルと平行して検出することができる。あるいは、予め、多数の健常者の生体試料におけるHS6ST2の発現レベルを検出し、健常者における標準的な発現レベルを統計学的に決定することができる。具体的には、たとえば、平均値±2×標準偏差(S.D.)、あるいは平均値±3×標準偏差(S.D.)を標準値として用いることもできる。統計学的に、平均値±2×標準偏差(S.D.)は80%の、また平均値±3×標準偏差(S.D.)は90%の健常者の値を含む。
 あるいは、対照におけるHS6ST2の発現レベルを、ROC曲線を利用して設定することができる。ROC曲線(receiver operating characteristic curve;受信者操作特性曲線)は、縦軸に検出感度を、横軸に擬陽性率(すなわち"1-特異度")を示すグラフである。本発明においては、生体試料中のHS6ST2の発現レベルを判定するための基準値を連続的に変化させたときの、感度と擬陽性率の変化をプロットすることによって、ROC曲線を得ることができる。
 なおROC曲線を得るための「基準値」は、統計学的な解析のために一時的に利用される数値である。ROC曲線を得るための「基準値」は、一般的には、選択しうる全ての基準値をカバーできる範囲内で、連続的に変化させられる。たとえば、解析される集団のHS6ST2の測定値の最小値と最大値の間で、基準値を変化させることができる。
 得られたROC曲線に基づいて、所望の検出感度、並びに精度を期待できる標準値を選択することができる。ROC曲線などによって統計学的に設定された標準値は、カットオフ値(cut-off value)とも呼ばれる。カットオフ値に基づく癌の検出方法においては、上記工程(2)において、(1)で検出されたHS6ST2の発現レベルが、カットオフ値と比較される。そして、カットオフ値よりも(1)で検出されたHS6ST2の発現レベルが高いときに、被検者の癌が検出される。
 本発明において、HS6ST2の発現レベルは、任意の方法によって決定することができる。具体的には、HS6ST2のmRNAの量、HS6ST2タンパク質の量、そしてHS6ST2タンパク質の生物学的な活性を評価することによって、HS6ST2の発現レベルを知ることができる。HS6ST2のmRNAやタンパク質の量は、本明細書に記載したような方法によって決定することができる。
 本発明においては、特に好適な被検者はヒトである。なおヒト以外の動物を被検者とするときは、当該動物種のHS6ST2タンパク質が検出される。
 被検試料に含まれるHS6ST2タンパク質の検出方法は、特に限定されないが、抗HS6ST2抗体を用いた、以下に例示されるような免疫学的方法により検出することが好ましい。
ラジオイムノアッセイ(RIA)、
エンザイムイムノアッセイ(EIA)、
蛍光イムノアッセイ(FIA)、
発光イムノアッセイ(LIA)、
免疫沈降法(IP)、
免疫比濁法(TIA)、
ウエスタンブロット(WB)、
免疫組織化学(IHC)法、
免疫拡散法(SRID)
 これらの手法の中で、免疫組織化学(IHC)法は、癌に羅患した患者から取得した組織若しくは細胞を固定化した切片上でHS6ST2タンパク質を検出する工程を含み、癌の診断方法として好ましい免疫学的アッセイ法の一つである。免疫組織化学(IHC)法などの上述した免疫学的方法は当業者に公知の方法である。
 すなわち、HS6ST2は、癌細胞において特異的に発現が増強している膜タンパク質であることから、抗HS6ST2抗体によって、癌細胞、あるいは癌組織を検出することができる。上記の免疫組織学的な解析によって、生体から採取された細胞や組織に含まれる癌細胞が検出される。
 別の好ましい態様では、生体内の癌組織を抗HS6ST2抗体によって検出することもできる。すなわち本発明は、(1)放射性同位元素等の標識物質で標識されたHS6ST2タンパク質に結合する抗体を被検者に投与する工程と、(2)該標識物質の集積を検出する工程を含む癌の検出方法に関する。生体内に投与した抗体を追跡するために、抗体は、検出可能に標識することができる。たとえば蛍光物質や発光物質、あるいは放射性同位元素で標識された抗体の生体における挙動を追跡することができる。蛍光物質や発光物質で標識された抗体は、内視鏡や腹腔鏡を利用して観察することができる。放射性同位元素は、その放射活性を追跡することによって、抗体の局在を画像化することができる。本発明において、生体内における抗HS6ST2抗体の局在は、癌細胞の存在を表している。
 生体内の癌を検出するために抗体を標識する放射性同位元素として、陽電子放出核種を利用することができる。たとえば18F、55Co、64Cu、66Ga、68Ga、76Br、89Zr、および124Iのような陽電子放出核種で抗体を標識することができる。これらの陽電子放出核種による抗HS6ST2抗体の標識には、公知の方法(Acta Oncol. 32, 825-830, 1993)を利用することができる。
 陽電子放出核種で標識された抗HS6ST2抗体がヒトや動物に投与された後に、PET(ポジトロン断層撮影装置)により、その放射性核種が放射する放射線が体外から計測され、コンピュータートモグラフィーの手法で画像に変換される。PETは、薬物の体内挙動などに関するデータを非侵襲的に得るための装置である。PETによって、放射強度をシグナル強度として定量的に画像化することができる。上記のようにPETを使用することによって、患者から試料を採取することなく特定の癌で高発現する抗原分子が検出できる。抗HS6ST2抗体は、上記の核種の他に11C、13N、15O、18F、45Ti等の陽電子放出核種を用いた短寿命核種によって放射標識することもできる。
 医療用サイクロトロンによる上記核種を用いた短寿命核種の生産、短寿命放射標識化合物の製造技術等に関する研究開発が進められている。これらの技術により抗HS6ST2抗体が種々の放射性同位元素によって標識することができる。患者に投与された抗HS6ST2抗体は、各部位の病理組織に対する抗HS6ST2抗体の特異性に従って原発巣及び転移巣に集積する。抗HS6ST2抗体が陽電子放出核種で標識されていれば、その放射活性を検出することにより該原発巣および転移巣の存在が放射活性の局在によって検出される。該診断用途に用いる場合には25-4000 keVのガンマ粒子又は陽電子放射量の活性値が適切に使用できる。また、適切な核種を選択して、さらに大量に投与すれば治療効果も期待できる。放射線による抗癌作用を得るためには、70-700 keVのガンマ粒子または陽電子放射量値を与える核種を使用できる。
 本発明の方法の別の態様においては、HS6ST2の遺伝子の発現を検出する。本発明において検出される遺伝子は特に限定されないが、mRNAが好ましい。本発明において検出とは、定量的または定性的な検出を含む。例えば、定性的な検出として、次のような測定操作を挙げることができる。
・単にHS6ST2のmRNAが存在するか否かの測定、
・HS6ST2のmRNAが一定の量以上存在するか否かの測定、
・HS6ST2のmRNAの量を他の試料(例えば、コントロール試料など)と比較する測定など
 一方、定量的な検出とは、HS6ST2のmRNAの濃度の測定、HS6ST2のmRNAの量の測定などを挙げることができる。
 本発明における被検試料としては、HS6ST2のmRNAが含まれる可能性のある任意の試料を利用することができる。哺乳類などの生物の体から採取された試料が好ましく、さらに好ましくはヒトから採取された試料である。被検試料の具体的な例としては、例えば、血液、間質液、血漿、血管外液、脳脊髄液、滑液、胸膜液、血清、リンパ液、唾液、尿、組織などが例示できる。好ましい試料は生物の体から採取された組織若しくは細胞が固定化された標本又は細胞の培養液などの、被検試料から得られる試料も本発明の被検試料に含まれる。
 生物の体から採取された組織、若しくは細胞が固定化された標本、又は細胞の培養液などの、被検試料から得られる試料を用いる場合にはインシトゥーハイブリダイゼーション法が好適に用いられる。インシトゥーハイブリダイゼーション法は、細胞や組織内の特定のDNAやRNAの有無若しくは分布およびその発現の強弱を確認する手法として発展してきた。原理としては細胞内の特定の核酸配列に対して相補的な塩基配列を有するプローブ核酸が特異的に複合体を形成する性質を利用したものである。当該プローブに予め放射性同位元素(RI)や抗原物質(ハプテン)等を標識しておくことにより、当該標識の検出を通じてハイブリダイゼーションした箇所が識別可能となることから、インシトゥーハイブリダイゼーション法は細胞内DNAやRNAなどの検出等に用いられている。プローブの標識としては好適にはRIによる標識を用いることができる。更に好適な例としては、非放射性物質のビオチンやジゴキシゲニン等のハプテン等を利用した蛍光標識を用いることができる。特に好適な例としてはFISHと呼ばれる蛍光インシトゥーハイブリダイゼーション(fluorescence in situ hibridization)による検出法が用いられる。
 診断される癌は、特に制限されない。具体的には、肺腺癌、肺癌、肝臓癌、卵巣癌、肺扁平上皮癌などを挙げることができる。本発明においては、これらの癌の原発病巣、および転移病巣のいずれをも診断することができる。
 本発明においてはHS6ST2遺伝子を発現する任意の動物種を被検者とすることができる。特に好適な被検者はヒトである。なおヒト以外の動物種を被検者とするときには、当該動物種のHS6ST2の遺伝子が検出される。
 以下に検出方法の具体的な態様を記載する。まず、被検者から試料を調製する。次いで、該試料に含まれるHS6ST2のmRNAを検出する。本発明においては、mRNAから合成したcDNAを検出することもできる。本発明においては、被検試料中にHS6ST2のmRNAやHS6ST2をコードするcDNAが検出された場合、癌の可能性があると判定される。たとえば、陰性コントロールまたは健常者と比較して、被検試料中に検出されるHS6ST2のmRNAやHS6ST2をコードするcDNAの量が多い場合に、被検者が癌である、または将来癌を羅患する可能性が高いことが示される。
 mRNAを検出する方法は、公知である。具体的には、例えばノーザンブロッティング法、RT-PCR法、DNAアレイ法等を本発明に利用することができる。
 上記した本発明の検出方法は、種々の自動検査装置を用いて自動化することもできる。自動化することによって、短時間に多数の試料を検査することができる。
試薬、キット
 本発明は、被検試料中のHS6ST2タンパク質を検出するための試薬を含む、癌の診断のための診断薬またはキットも提供する。本発明の診断薬は、少なくとも抗HS6ST2抗体を含む。
 本発明の癌の診断用試薬と、HS6ST2の検出に用いられるその他の要素を組み合わせることによって、癌の診断のためのキットとすることができる。すなわち本発明は、HS6ST2に結合する抗体と、該抗体とHS6ST2との結合を検出する試薬を含み、さらにHS6ST2を含む生体試料からなる対照試料を含んでいてもよい、癌の診断のためのキットに関する。本発明のキットには、更に測定操作を説明するための指示書をキットに添付することもできる。
 次に実施例を挙げて本発明をより具体的に説明するが、以下の実施例は本発明の単なる例示を示すものであり、本発明の範囲を何ら限定するものではない。
 実施例1:Human Exon 1.0 ST ArrayによるHS6ST2 mRNAの発現解析
 Human Exon 1.0 ST Array (Affymetrix) を用いてHS6ST2 mRNAの臨床癌、癌細胞株および各種正常組織における発現を解析した。Human Exon 1.0 ST Arrayでは各遺伝子の各エクソンに少なくとも一つのプローブセットが設定されていることから、一遺伝子について複数のプローブセットの発現データを得ることができる。従って、基本的に一遺伝子につき一つのプローブセットしかなかったこれまでのAffymetrix社の発現アレイと比較して、発現データの信頼性が上がると考えられる。
 サンプルには41例の肺腺癌摘出組織の腫瘍部、13例の小細胞肺癌摘出組織の腫瘍部、2例の肺腺癌摘出組織の正常部、10例の大腸癌摘出組織の正常部、1例の乳癌摘出組織の正常部、24種類の肺腺癌細胞株、1種類の大細胞肺癌細胞株、2種類の肺扁平上皮癌細胞株、5種類の小細胞肺癌細胞株、89種類の肺癌以外の癌細胞株、および69種類の正常組織由来のtotal RNAを使用した。癌細胞株はATCC、JCRBまたは理研から購入し、正常組織由来のtotal RNAはClontech、Ambion、Stratagene、Cell Applications、Panomics、ChemiconおよびBiochain Instituteから購入した。臨床癌摘出組織(インフォームドコンセント取得済み)の腫瘍部、正常部および癌細胞株については、Trizol (Invitrogen)を用いて製品添付の方法に従ってtotal RNAを精製した。発現解析にはtotal RNA 1μgを用い、GeneChip Whole Transcript (WT) Sense Target Labeling Assay Manual (Affymetrix)に準じて実施した。データの数値化にはExACT (Exon Array Computational Tool)ソフトウェア (Affymetrix)を用いた。
 HS6ST2に対するHuman Exon 1.0 ST Arrayのコアプローブセットはエクソン1に一つ(プローブセットID; 4022257)、エクソン2に五つ(4022252, 4022253, 4022254, 4022255, 4022256)、エクソン3に一つ(4022247)、エクソン4に一つ(4022221)、エクソン5に二つ(4022212, 4022213)、エクソン6に七つ(4022194, 4022195, 4022196, 4022197, 4022198, 4022199, 1022200)、設定されている。複数のコアプローブセットが設定されているエクソンについては、そのエクソンのすべてのコアプローブセットの数値の平均値をそのエクソンの発現データとした。なおプローブセットID4022253はすべてのサンプルで負の数値を示したことから信頼性に欠けると判断し、データ解析から除外した。正常組織の発現データを図1A、図1Bに、肺癌細胞株と肺癌摘出組織の腫瘍部の発現データを図2A、図2Bに、肺癌以外の癌細胞株の発現データを図3A、図3Bに示した。
 発現データから判断すると、エクソン1と2は発現していないか、もしくはプローブセットが機能していないと考えられた。エクソン4と5は既に報告されているように(Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-O-sulphotransferase-2 having different expression patterns and properties. Biochem J. 2003. 371:131)、脳でのみ発現していると考えられた。従ってエクソン3と6の発現データに着目したところ、正常組織では脳、卵巣、胎盤および腎臓で発現しているものの、それと同等以上の発現が肺腺癌摘出組織の腫瘍部、小細胞肺癌摘出組織の腫瘍部、肺腺癌細胞株、および大細胞肺癌細胞株で観察された。特に肺腺癌では高い頻度で高発現しており、HS6ST2が肺腺癌の治療標的分子もしくは診断マーカーとなりうることが示された。
 実施例2:HS6ST2に対する抗体の作製
 2-1. HS6ST2のクローニング
 実施例1に示した通り、癌細胞で発現するのはHS6ST2のエクソン4と5が欠失したバリアントと考えられた。このバリアントの遺伝子配列はRefSeqにNM_147175として登録されている。またUniProtにはそのアミノ酸配列がQ96MM7-1として登録されている。一方Q96MM7-1の1-146番目のアミノ酸が欠失したバリアントがQ96MM7-2として登録されている。Q96MM7-2はエクソン3の11番目の塩基から翻訳が開始されるタンパクに相当する。実施例1に示したようにHuman Exon 1.0 ST Arrayではエクソン1と2の発現が確認できなかったこと、最初にクローニングされたHS6ST2はQ96MM7-2に相当するアミノ酸配列であったことから(Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-O-sulphotransferase-2 having different expression patterns and properties. Biochem J. 2003. 371:131)、Q96MM7-2がドミナントに発現していると考えられた。そこでQ96MM7-2をHS6ST2_N-shortと名付け、そのクローニングを行った。まず癌細胞株HuH6 (理化学研究所)からTrizol (Invitrogen)を用いて製品添付の方法に従ってtotal RNAを抽出し、さらにSuperScript III Reverse Transcriptase (Invitrogen)を用いて製品添付の方法に従ってcDNAを作製した。このcDNAをテンプレートとして、配列番号1で表されるプライマー(HS6ST2_N-shortの5’末端配列)、配列番号2で表されるプライマー(HS6ST2_N-shortのストップコドンを除く3’末端配列)を用いてPCR増幅を行い、増幅産物をTOPO TA Cloning Kit (Invitrogen)を用いてTOPOベクターにクローニングした(TOPO_HS6ST2_N-short)。PCR増幅にはPyrobest DNA Polymerase (タカラバイオ)を用い、3μLの10×Pyrobest buffer II、3μLのdNTP mixture、3μLのHuH6 cDNA、1μLの配列番号1のプライマー(50μM)、1μLの配列番号2のプライマー(50μM)、0.5μLのPyrobest DNA Polymerase、18.5μLのヌクレアーゼフリー水を含む溶液を調製し、94℃ 1分、(94℃ 30秒、62℃ 30秒、72℃ 1.5分)×35サイクルで増幅を行った。このPCR産物1μLをテンプレートとして同様にPCR再増幅を行った。TOPO_HS6ST2_N-shortの配列をシークエンスしRefSeq Accession No. NM_147175と同じであることを確認した。
 2-2. HS6ST2_N-short発現CHO細胞株の作製
 HS6ST2_N-short cDNAを哺乳動物細胞用発現ベクター(pMCDN2_ctV5)にクローニングした。pMCDN2_ctV5発現ベクターはマウスCMVプロモーター(GenBank Accession No. U68299)による制御下で発現誘導が可能で、かつネオマイシン耐性遺伝子が組み込まれたベクターである。また挿入した目的遺伝子の3’側にV5タグ配列が付加される。V5タグとは抗V5抗体(Invitrogen)によって認識される、GKPIPNPLLGLDSTの14アミノ酸から成る配列である。pMCDN2_ctV5発現ベクターのEcoRI認識配列-Kozak配列-開始コドン-マルチクローニングサイト(NheI、SalI、NotI)-V5タグ配列-ストップコドンの配列を配列番号3に示す。配列番号4で表されるプライマー(EcoRI認識配列-Kozak配列-HS6ST2_N-shortの5’末端配列)および配列番号5で表されるプライマー(NotI認識配列-HS6ST2_N-shortのストップコドンを除く3’末端配列)を用い、TOPO_HS6ST2_N-shortをテンプレートとしてPCR増幅を行った。増幅断片をEcoRI、NotIで消化し、pMCDN2_ctV5のEcoRI、NotIサイトにクローニングした(pMCDN2_HS6ST2_N-short_ctV5)。pMCDN2_HS6ST2_N-short_ctV5の開始コドンからストップコドンまでの塩基配列を配列番号6に、アミノ酸配列を配列番号7に示す。
 pMCDN2_HS6ST2_N-short_ctV5をPvuI消化したものをエレクトロポレーション法によりCHO細胞DG44株に導入した。500μg/mL Geneticin (Invitrogen)により導入細胞株を選抜することにより、C末端V5タグ付加HS6ST2_N-short定常発現CHO細胞株(HS6ST2_N-short_ctV5_CHO)を樹立した。培養には500μg/mL Geneticin、HT supplement (Invitrogen)、penicillin/streptomycin (Invitrogen)を含むCHO-S-SFM II培地(Invitrogen) (以下CHO培地と称する)を用いた。
 2-3. DNA免疫用発現ベクターの作製
 HS6ST2_N-short cDNAを哺乳動物細胞用発現ベクター(pMC)にクローニングした。pMCはマウスCMVプロモーターによる制御下で発現誘導が可能なベクターである。配列番号4で表されるプライマーおよび配列番号8で表されるプライマー(SalI認識配列-ストップコドン-HS6ST2_N-shortのストップコドンを除く3’末端配列)を用い、pMCDN2_HS6ST2_N-short_ctV5をテンプレートとしてPCR増幅を行った。増幅断片をEcoRI、SalIで消化し、pMCのEcoRI、SalIサイトにクローニングした(pMC_HS6ST2_N-short)。
 2-4. 可溶型HS6ST2タンパクの作製
 HS6ST2_N-shortのN末端から膜貫通領域(8-23番目のLLLALVMLFLFAVIVLの16アミノ酸)までを削除し、代わりにepidermal growth factor receptor (EGFR, RefSeq Accession No. NM_005228)のシグナル配列(MRPSGTAGAALLALLAALCPASRAの24アミノ酸配列)を付加し、さらにC末端にはFLAGタグ配列(抗FLAG抗体により認識されるDYKDDDDKの8アミノ酸からなる配列)を付加したタンパクである分泌型HS6ST2 (sHS6ST2_FLAG)の発現ベクターを作製した。配列番号9で表されるプライマー(EGFRシグナル配列の3’末端配列-HS6ST2_N-shortの膜貫通領域以降の配列)および配列番号10で表されるプライマー(NotI認識配列-ストップコドン-FLAGタグ配列- HS6ST2_N-shortのストップコドンを除く3’末端配列)を用い、pMCDN2_HS6ST2_N-short_ctV5をテンプレートとしてPCR増幅を行った。このPCR産物をテンプレートとして、配列番号11で表されるプライマー(EcoRI認識配列-Kozak配列-EGFRシグナル配列の5’末端配列)および配列番号10で表されるプライマーを用いてPCR増幅を行った。増幅断片をEcoRI、NotIで消化し、pMCDN2のEcoRI、NotIサイトにクローニングした(pMCDN2_sHS6ST2_FLAG)。pMCDN2はマウスCMVプロモーターによる制御下で発現誘導が可能で、かつネオマイシン耐性遺伝子が組み込まれたベクターである。pMCDN2_sHS6ST2_FLAGの開始コドンからストップコドンまでの塩基配列を配列番号12に、アミノ酸配列を配列番号13に示す。
 pMCDN2_sHS6ST2_FLAGをPvuI消化したものをエレクトロポレーション法によりCHO細胞DG44株に導入した。Geneticin (500μg/mL)により導入細胞株を選抜することにより、sHS6ST2_FLAG定常発現CHO細胞株(sHS6ST2_FLAG_CHO)を樹立した。培養にはCHO培地を用いた。
 樹立したsHS6ST2_FLAG_CHO細胞の培養上清からsHS6ST2_FLAGを精製した。培養上清を抗FLAG抗体結合アフィニティゲル(Sigma)にアプライし、結合バッファー(50 mM Tris HCl, pH7.6, 150 mM NaCl)にて洗浄後、溶出バッファー(0.1 M glycine HCl, pH3.5)で溶出した。溶出液はただちに中和バッファー(1M Tris HCl, pH8.0)で中和した後、PD10 column (GE Healthcare)を用いてDulbecco’s phosphate-buffered saline (PBS、Invitrogen)に置換した。精製したsHS6ST2_FLAGの濃度はDC Protein Assay Kit I (Bio-Rad)を用い、製品添付の方法に従って測定した。スタンダードには添付のウシγグロブリンを用いた。
 2-5. 抗HS6ST2抗体の作製
 BALB/cマウス(メス、6週令、日本チャールス・リバー)に対し、Helios Gene Gun (Bio-Rad)を用いて製品添付の方法により1週間に2回、合計11回のDNA免疫を行った。DNA免疫にはpMC_HS6ST2_N-short発現ベクターを用いた。DNA免疫に引き続きフロイントコンプリートアジュバント(Becton Dickinson)にてエマルジョン化したsHS6ST2_FLAG 40μgを皮下に投与した。2週間後にフロイントインコンプリートアジュバント(Becton Dickinson)にてエマルジョン化したsHS6ST2_FLAG 40μgを皮下に投与した。さらに1週間後にsHS6ST2_FLAG 50μgを尾静脈内に投与した。三日後に脾臓細胞を摘出し、マウスミエローマ細胞株P3-X63Ag8U1 (P3U1、ATCC)と2:1になるよう混合し、PEG1500 (ロシュ・ダイアグノスティックス株式会社)を徐々に加えハイブリドーマを作製した。RPMI1640培地(Invitrogen)を加え遠心後、上清を除去することによりPEG1500を除去した。次にHAT培地(10% fetal bovine serum (FBS)、penicillin-streptomycin、1×HAT media supplement (Sigma)、0.5×BM-Condimed H1 Hybridoma Cloning Supplement (ロシュ・ダイアグノスティックス)を含むRPMI1640培地)に懸濁し、96ウェルプレート8枚にP3U1細胞が1×105個/ウェルになるように播種した。これを37℃、5% CO2インキュベーターにて7日間培養後、培養上清を用いてスクリーニングを行った。スクリーニングは、培養上清に含まれる抗体のHS6ST2_N-short_ctV5_CHO細胞および親株CHO細胞に対する結合をフローサイトメーター(FACS Calibur、Becton Dickinson)を用いて測定することにより行った。HS6ST2_N-short_ctV5_CHO細胞に特異的に結合したハイブリドーマについては培養を継続し、同様な方法で再度スクリーニングを行った後、限界希釈法によりモノクローン化を行った。以上により、HS6ST2に特異的に結合する抗体としてクローンA1、A6、A10を樹立した。
 続いて二回目の免疫を行った。BALB/cマウス(メス、6週令)にフロイントコンプリートアジュバントにてエマルジョン化したsHS6ST2_FLAG 100μgを皮下に投与した。15日後および23日後にフロイントインコンプリートアジュバントにてエマルジョン化したsHS6ST2_FLAG 50μgを皮下に投与した。1匹については最後の免疫の1日後にsHS6ST2_FLAG 50μgを尾静脈内に投与し、その3日後にハイブリドーマを作製した。別の1匹については最後の免疫の36日後にsHS6ST2_FLAG 50μgを尾静脈内に投与し、その3日後にハイブリドーマを作製した。同様にスクリーニングを行い、HS6ST2に特異的に結合する抗体としてクローンB5、B6、C8、C10を樹立した。
 これらのハイブリドーマをFBSの代わりにUltra Low IgG FBS (Invitrogen)を含むHAT培地にて培養し、その培養上清からHiTrap ProteinG HP 1mLカラム(GE Healthcare)を用いて抗体を精製した。精製抗体についてIsoStrip (Roche)を用いてアイソタイピングを行ったところ、いずれもマウスIgG1であった。抗体濃度はDC Protein Assay Kit I (Bio-Rad)を用いて測定した。スタンダードには添付のウシγグロブリンを用いた。上述の抗体精製、アイソタイピングおよび抗体濃度測定は製品添付の方法に従って実施した。
 実施例3:抗HS6ST2抗体のマウスHS6ST2への結合の評価
 3-1. マウスHS6ST2のクローニング
 マウスHS6ST2はtranscript variant 1 (NM_001077202)およびtranscript variant 2 (NM_015819)の2種類のバリアントがRefSeqに登録されている。N末端146アミノ酸およびエクソン4、5が欠失している、HS6ST2_N-shortに相当するバリアントはtranscript variant 2である。そこでtranscript variant 2をマウスHS6ST2 (mHS6ST2)とし、クローニングを行った。Marathon-Ready mouse spleen cDNA (Clontech)をテンプレートとして、配列番号14で表されるプライマー(EcoRI認識配列-Kozak配列-mHS6ST2の5’末端配列)、配列番号15で表されるプライマー(NotI認識配列-mHS6ST2の3’末端配列)を用いてPCR増幅を行い、増幅産物をpGEM-T Easy Vector Systems (Promega)を用いてpGEM-T Easyベクターにクローニングした(pGEM-T_mHS6ST2)。PCR増幅にはKOD Plus Ver.2 (東洋紡)を用い、5μLの10×KOD Plus Ver.2 buffer、5μLのdNTP mixture、4μLの25 mM MgSO4、1.5μLの配列番号14のプライマー (10μM)、1.5μLの配列番号15のプライマー (10μM)、4μLのmouse spleen cDNA、1μLのKOD Plus Polymerase、28μLのヌクレアーゼフリー水を含む溶液を調製し、94℃ 2分、(98℃ 10秒、72℃ 30秒、68℃ 3分)×5サイクル、(98℃ 10秒、70℃ 30秒、68℃ 3分)×5サイクル、(98℃ 10秒、68℃ 3分)×27サイクルで増幅を行った。pGEM-T_mHS6ST2の配列をシークエンスしtranscript variant 2 (RefSeq Accession No. NM_015819)と同じであることを確認した。
 3-2. mHS6ST2発現CHO細胞株の作製
 mHS6ST2 cDNAを哺乳動物細胞用発現ベクター(pMCDN2_ntHA)にクローニングした。pMCDN2_ntHAはマウスCMVプロモーターによる制御下で発現誘導が可能で、かつネオマイシン耐性遺伝子が組み込まれたベクターである。挿入した目的遺伝子の5’側にHAタグ配列が付加される。HAタグ配列とはインフルエンザのヘマグルチニンタンパク質由来のHAエピトープ配列 (YPYDVPDYA)であり、HA特異的抗体により認識される。pMCDN2_ntHA発現ベクターのEcoRI認識配列-Kozak配列-開始コドン-HAタグ配列-マルチクローニングサイト(NheI、SalI、NotI)-ストップコドンの配列を配列番号16に示す。配列番号17で表されるプライマー(NheI認識配列-mHS6ST2の開始コドンを除く5’末端配列)および配列番号15で表されるプライマーを用い、pGEM-T_mHS6ST2をテンプレートとしてPCR増幅を行った。増幅断片をNheI、NotIで消化し、pMCDN2_ntHAのNheI、NotIサイトにクローニングした(pMCDN2_mHS6ST2_ntHA)。
 続いてmHS6ST2 cDNAを哺乳動物細胞用発現ベクター(pMCDN2_ctV5)にクローニングした。配列番号17で表されるプライマーおよび配列番号18で表されるプライマー(NotI認識配列-mHS6ST2のストップコドンを除く3’末端配列)を用い、pMCDN2_mHS6ST2_ntHAをテンプレートとしてPCR増幅を行った。増幅断片をNheI、NotIで消化し、pMCDN2_ctV5のNheI、NotIサイトにクローニングした(pMCDN2_mHS6ST2_ctV5)。pMCDN2_mHS6ST2_ctV5の開始コドンからストップコドンまでの塩基配列を配列番号19に、アミノ酸配列を配列番号20に示す。
 pMCDN2_mHS6ST2_ctV5をPvuI消化したものをエレクトロポレーション法によりCHO細胞DG44株に導入した。Geneticin (500μg/mL)により導入細胞株を選抜することにより、C末端V5タグ付加mHS6ST2定常発現CHO細胞株(mHS6ST2_ctV5_CHO)を樹立した。培養にはCHO培地を用いた。
 3-3. 抗HS6ST2抗体のmHS6ST2への結合の評価
 実施例2で作製した抗HS6ST2抗体のmHS6ST2に対する結合をフローサイトメトリーにて評価した。細胞にはmHS6ST2_ctV5_CHOおよび陽性対照としてHS6ST2_N-short_ctV5_CHO、陰性対照としてCHO細胞DG44株を用いた。
 0.5%ウシ血清アルブミンおよび0.1% NaN3を含むPBS (FACS buffer)に懸濁した5×104個の細胞を96ウェルU底プレート(Becton Dickinson)に分注し、最終濃度が2μg/mLとなるように抗HS6ST2抗体もしくは陰性対照としてマウスIgG1 (mIgG1, BD Biosciences Pharmingen)を添加した。氷上で1時間反応後、FACS bufferにより細胞を洗浄した。次に2次抗体としてFITC標識抗マウス抗体(Goat F(ab’)2 Fragment Anti-mouse IgG (H+L)-FITC, Beckman Coulter)を加え、氷上で1時間反応させた。FACS bufferにより細胞を洗浄後、propidium iodide (PI) 10μg/mL (Sigma)を加えたFACS bufferに細胞を懸濁し、フローサイトメーター(FACS Calibur, Becton Dickinson)にて測定した。測定データはCELLQuestソフトウェア(Becton Dickinson)を用いて解析し、PI陰性である生細胞集団についてFITC蛍光強度のgeo-mean値を算出した。
 クローンA6、C8、C10はmHS6ST2_ctV5_CHOに結合し、クローンA1、A10、B5、B6は結合しなかった(図4)。いずれの抗体もHS6ST2_N-short_ctV5_CHOには結合した。親株であるCHO細胞DG44株には結合しなかった。
 次に、一次抗体の濃度を10μg/mLから公比5にて6段階希釈したところ、抗HS6ST2抗体A6とC8はmHS6ST2_ctV5_CHO、HS6ST2_N-short_ctV5_CHOに同程度に結合した(図5)。以上から抗HS6ST2抗体A6、C8、C10はmHS6ST2に結合し、A1、A10、B5、B6は結合しないことが明らかとなった。またA6とC8はHS6ST2とmHS6ST2に同程度に結合することが示された。
 実施例4:抗HS6ST2抗体のエピトープの解析
 実施例2で作製した抗HS6ST2抗体のエピトープを解析するため、HS6ST2_N-shortの膜貫通領域(8-23番目のLLLALVMLFLFAVIVLの16アミノ酸)より後ろを三分割し、それぞれglutathione S-transferase (GST)融合タンパクを作製した。GST_HS6ST2_NはHS6ST2_N-shortの24-175番目のアミノ酸配列、GST_HS6ST2_midは166-317番目のアミノ酸配列、GST_HS6ST2_Cは308-459番目のアミノ酸配列に加え、N末端にGST、C末端にHisタグを付加したタンパクである。Hisタグは6個の連続したヒスチジン残基からなるタグペプチドである。
 GST_HS6ST2_Nを作製するため、HS6ST2_N-shortの24-175番目のアミノ酸配列に相当するcDNAをGST融合タンパク発現ベクター(pGEX-6P-1、GE Healthcare)にクローニングした。配列番号21で表されるプライマー(EcoRI認識配列-HS6ST2_N-shortの24-175番目のアミノ酸配列の5’末端配列)および配列番号22で表されるプライマー(NotI認識配列-ストップコドン-Hisタグ配列- HS6ST2_N-shortの24-175番目のアミノ酸配列の3’末端配列)を用い、pMCDN2_HS6ST2_N-short_ctV5をテンプレートとしてPCR増幅を行った。増幅産物をEcoRI、NotIで消化し、pGEX-6P-1のEcoRI、NotIサイトにクローニングした(pGEX_GST_HS6ST2_N)。同様にしてGST_HS6ST2_midを配列番号23、配列番号24で表されるプライマーを用いて、GST_HS6ST2_Cを配列番号25、配列番号26で表されるプライマーを用いてそれぞれクローニングした(pGEX_GST_HS6ST2_mid、pGEX_GST_HS6ST2_C)。
 次に、GST_HS6ST2_Cの配列を二分割し、それぞれについてGST融合タンパクを作製した。GST_HS6ST2_C1は308-393番目のアミノ酸配列、GST_HS6ST2_C2は379-459番目のアミノ酸配列に加え、N末端にGST、C末端にHisタグを付加したタンパクである。GST_HS6ST2_C1は配列番号25、配列番号27で表されるプライマーを用いてクローニングした(pGEX_GST_HS6ST2_C1)。GST_HS6ST2_C2は配列番号26、配列番号28で表されるプライマーを用いてクローニングした(pGEX_GST_HS6ST2_C2)。
 BL21 (DE3) Competent Cells (タカラバイオ)を用いてGST_HS6ST2_N、GST_HS6ST2_mid、GST_HS6ST2_C、GST_HS6ST2_C1およびGST_HS6ST2_C2を発現させ、whole cell lysateをSDS-PAGE電気泳動後、PVDFメンブレン(Immobilon-P、Millipore)にトランスファーし、抗HS6ST2抗体でウェスタンブロットを行った。抗HS6ST2抗体は10μg/mL、二次抗体(HRP-anti mIgG、GE Healthcare)は3000倍希釈で用い、ECL Western Blotting Detection Reagents (GE Healthcare)を用いて検出した。その結果、抗HS6ST2抗体A1、A10、B5、B6、C8はGST_HS6ST2_C2に結合し、A6はGST_HS6ST2_C1、C10はGST_HS6ST2_Nに結合した。従って抗HS6ST2抗体A1、A10、B5、B6、C8はHS6ST2_N-shortの379-459番目のアミノ酸配列、A6は308-393番目のアミノ酸配列、C10は24-175番目のアミノ酸配列に結合することが明らかとなった。
 実施例5:抗HS6ST2抗体のantibody-dependent cellular cytotoxicity (ADCC)活性の評価
 実施例2で作製した抗HS6ST2抗体のADCC活性を測定した。標的細胞にはHS6ST2_N-short_ctV5_CHO細胞を用いた。1×106個のHS6ST2_N-short_ctV5_CHO細胞をChromium-51 (GE Healthcare)存在下で1時間培養した。洗浄後CHO培地で2×105個/mLに調製し、96ウェルプレートに50μL/ウェル加えた。次にCHO培地で4μg/mLに調製した抗HS6ST2抗体もしくは陰性対照としてmIgG1 (BD Biosciences Pharmingen)を50μL/ウェル加えた。室温にて15分間静置後、CHO培地で5×105/mLに調製したエフェクター細胞を100μL/ウェル加えた。エフェクター細胞にはマウスFc-ガンマ受容体3 (RefSeq Accession No. NM_010188)の細胞外領域およびヒトガンマ鎖(RefSeq Accession No. NM_004106)の膜貫通領域と細胞内領域を含むキメラタンパク質をNK-92細胞(ATCC)に強制発現させた組換え細胞(特願2007-20155、WO2008/093688)を用いた。プレートを37℃、5% CO2インキュベーターにて4時間培養後、100μL/ウェルの培養上清を回収しガンマカウンター(1480 WIZARD 3’’、Wallac)を用いて放射活性(cpm)を測定し、以下の式を用いて特異的クロム遊離率(%)を求めた。
 特異的クロム遊離率(%) = (A-C)×100/(B-C)
 ここで、Aは各ウェルにおける放射活性、Bは終濃度1% Nonidet P-40で細胞を溶解させたウェルの放射活性の平均値、Cは標的細胞のみを添加したウェルの放射活性の平均値である。B、Cはtriplicate、その他はduplicateで行い、特異的クロム遊離率の平均値と標準偏差を算出した。
 その結果、抗HS6ST2抗体A6、B5、B6、C8がADCC活性を有することが明らかとなった(図6)。
 実施例6:Mab-ZAPを用いた抗HS6ST2抗体の抗腫瘍活性の評価
 実施例2で作製した抗HS6ST2抗体のイムノトキシンとしてのポテンシャルをMab-ZAP (Advanced Targeting Systems)を用いて評価した。Mab-ZAPはヤギ抗マウスIgG抗体にサポリン(saporin)が標識された抗体である。サポリンはリボソームにおけるタンパク質合成を阻害する毒素である。細胞表面上の抗原に結合するマウス抗体とMab-ZAPを同時に培養系に添加すると、そのマウス抗体が細胞内に取り込まれる場合にはMab-ZAPも同時に細胞内に取り込まれ細胞の増殖を抑制する。
 標的細胞にはHS6ST2_N-short_ctV5_CHO細胞を用いた。CHO培地で1×105個/mLに調製したHS6ST2_N-short_ctV5_CHO細胞を96ウェルプレートに50μL/ウェル播種し、37℃、5% CO2インキュベーターにて培養した。翌日抗HS6ST2抗体とMab-ZAPを添加し100μL/ウェルとし、さらに2日間培養した。抗HS6ST2抗体は終濃度20 ng/mL、Mab-ZAPは終濃度100 ng/mLとした。陰性対照としてmIgG1 (BD Biosciences Pharmingen)を用いた。培養後、生細胞測定試薬SF (ナカライテスク)を10μL/ウェル添加し、さらに1.5時間培養した後、450 nm-655 nmの吸光度を測定した。実験はduplicateで行い、吸光度の平均値と標準偏差を算出した。
 C10を除く全ての抗HS6ST2抗体はMab-ZAP存在下で細胞増殖を抑制した(図7)。特にB5、B6、C8は強い効果を示し、HS6ST2を標的としたイムノトキシンが抗腫瘍剤として有用であることが示された。
 実施例7:HS6ST2バリアントに対する結合活性の評価
 7-1. HS6ST2バリアントのクローニング
 HS6ST2にはN末端アミノ酸配列が長いバリアント(UniProt Q96MM7-1, RefSeq Accession No. NM_147175)が存在する。このバリアントをHS6ST2_N-longと名付け、実施例2で作製した抗HS6ST2抗体が結合することを確認した。
 HS6ST2_N-shortのオープンリーディングフレームには、5’末端近辺にNheI認識配列が存在する。そこでこのNheI認識配列から下流側はすでにクローニングされているHS6ST2_N-shortの配列を用いることとし、それより上流側のHS6ST2_N-longの配列を新たにクローニングした。まず癌細胞株HuH6 (理化学研究所)からTrizol (Invitrogen)を用いて製品添付の方法に従ってtotal RNAを抽出し、さらにSuperScript III Reverse Transcriptase (Invitrogen)を用いて製品添付の方法に従ってcDNAを作製した。このcDNAをテンプレートとして、配列番号29で表されるプライマー(HS6ST2_N-longの5’-UTR配列)、配列番号30で表されるプライマー(HS6ST2_N-shortのNheI認識配列より下流側の配列)を用いてPCR増幅を行い、増幅産物をpGEM-T Easy Vector Systems (Promega)を用いてpGEM-T Easyベクターにクローニングした(pGEM-T_HS6ST2_N)。PCR増幅にはKOD Plus Ver.2 (東洋紡)を用い、5μLの10×KOD Plus Ver.2 buffer、5μLのdNTP mixture、3μLの25 mM MgSO4、1μLの配列番号29のプライマー(10μM)、1μLの配列番号30のプライマー(10μM)、2μLのHuH6 cDNA、1μLのKOD Plus Polymerase、33μLのヌクレアーゼフリー水を含む溶液を調製し、94℃ 2分、(94℃ 30秒、58℃ 30秒、68℃ 1分)×35サイクル、68℃ 3分で増幅を行った。pGEM-T_HS6ST2_Nの配列をシークエンスしRefSeq Accession No. NM_147175の該当部分の配列と同じであることを確認した。
 pGEM-T_HS6ST2_Nをテンプレートとして、配列番号31で表されるプライマー(EcoRI認識配列-Kozak配列-HS6ST2_N-longの5’末端配列)および配列番号30で表されるプライマーを用いてPCR増幅を行い、増幅産物をTOPO TA Cloning Kit (Invitrogen)を用いてTOPOベクターにクローニングした(TOPO_HS6ST2_N)。TOPO_HS6ST2_NをEcoRI、NheIで消化し、pMCDN2_HS6ST2_N-short_ctV5のEcoRI、NheIサイトにクローニングし、C末端V5タグ付加HS6ST2_N-long発現ベクターを作製した(pMCDN2_HS6ST2_N-long_ctV5)。pMCDN2_HS6ST2_N-long_ctV5の開始コドンからストップコドンまでの塩基配列を配列番号32に、アミノ酸配列を配列番号33に示す。
 7-2. HS6ST2_N-long発現CHO細胞株の作製
 pMCDN2_HS6ST2_N-long_ctV5をPvuI消化したものをエレクトロポレーション法によりCHO細胞DG44株に導入した。Geneticin (500μg/mL)により導入細胞株を選抜することにより、C末端V5タグ付加HS6ST2_N-long定常発現CHO細胞株(HS6ST2_N-long_ctV5_CHO)を樹立した。培養にはCHO培地を用いた。
 7-3. 抗HS6ST2抗体のHS6ST2_N-longへの結合の評価
 実施例2で作製した抗HS6ST2抗体のHS6ST2_N-longに対する結合活性をフローサイトメトリーにて評価した。細胞にはHS6ST2_N-long_ctV5_CHO細胞および陽性対照としてHS6ST2_N-short_ctV5_CHO細胞を用い、実施例3と同様の方法で行った。一次抗体は10μg/mLの濃度で用いた。
 その結果、いずれの抗体もHS6ST2_N-short_ctV5_CHO細胞とHS6ST2_N-long_ctV5_CHO細胞に同程度に結合したことから、二つのバリアントを同様に認識することが明らかとなった(図8)。
 実施例8:癌細胞株におけるHS6ST2の発現解析
 8-1. フローサイトメトリーによるHS6ST2の発現解析
 実施例2で作製した抗HS6ST2抗体を用いて、癌細胞株の細胞膜上におけるHS6ST2の発現をフローサイトメトリーを用いて評価した。一次抗体には抗HS6ST2抗体B6または陰性対照mIgG1 (BD Biosciences Pharmingen)、細胞にはHuman Exon 1.0 ST ArrayにてHS6ST2の発現が最も高かった肺腺癌細胞株ABC-1および肝臓癌細胞株HuH6を用いた(実施例1)。フローサイトメトリーは実施例3と同様に行い、一次抗体は10μg/mLの濃度で用いた。その結果、いずれの細胞でも細胞膜上にHS6ST2の発現が確認された(図9)。
 8-2. ウェスタンブロットによるHS6ST2検出系の確立
 実施例2で作製した抗HS6ST2抗体を用いたウェスタンブロットを検討した。まず1×106個のHS6ST2_N-short_ctV5_CHO細胞およびHS6ST2_N-long_ctV5_CHO細胞をPBSで洗浄後、100μLのlysis buffer (50 mM Tris-HCl, pH7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, Protease Inhibitor Cocktail (Sigma))で溶解しwhole cell lysateを調製した。これをN-Glycosidase F (PNGaseF, New England Biolabs)を用いて処理することによりN型糖鎖を除去した。サンプルをMultigel II Mini (8/16、コスモバイオ)にてSDS-PAGE電気泳動後、PVDFメンブレン(Immobilon-P, Millipore)に転写し、抗HS6ST2抗体C10または抗V5タグ抗体(Invitrogen)を用いてウェスタンブロットを行った。抗HS6ST2抗体C10は5μg/mL、抗V5タグ抗体は5000倍希釈にて用い、室温にて1時間反応させた。二次抗体にはHRP標識抗マウスIgG抗体(GE Healthcare)を用い、室温にて1時間反応させた。最後にECL Western Blotting Detection Reagents (GE Healthcare)を用いて発色させ、X線フィルムに露光することによりバンドを検出した。
 アミノ酸配列から推定した分子量はHS6ST2_N-short_ctV5、HS6ST2_N-long_ctV5それぞれ55kDa、71kDaである。N-Glycosidase FによりN型糖鎖を除去することにより、この推定分子量の大きさのバンドが確認された(図10A)。また抗HS6ST2抗体C10は抗V5タグ抗体と同様なバンドを示したことから、ウェスタンブロットに使用できることが確認された。
 次にHS6ST2_N-short_ctV5_CHO細胞およびHS6ST2_N-long_ctV5_CHO細胞の培養上清中に分泌された可溶型HS6ST2をウェスタンブロットにより検出した。HS6ST2_N-short_ctV5_CHO細胞およびHS6ST2_N-long_ctV5_CHO細胞の培養上清をN-Glycosidase Fにて処理し、抗HS6ST2抗体C10および抗V5タグ抗体でウェスタンブロットを行ったところ、50-60kDa付近にバンドが確認された(図10B)。HS6ST2_N-shortとHS6ST2_N-longで分子量が同じであったことから、両者とも同じ部位で切断されたことが考えられた。また分泌されることから膜貫通領域(HS6ST2_N-shortではN末端から8-23番目、HS6ST2_N-longでは154-169番目のLLLALVMLFLFAVIVLの16アミノ酸)より下流側が切断される可能性が考えられた。なおHS6ST1でも膜貫通領域の下流側が切断されることが知られている(Molecular characterization and expression of heparan-sulfate 6-sulfotransferase. J Biol Chem. 1998. 273:9208)。
 8-3. ウェスタンブロットによるHS6ST2の発現解析
 肺腺癌細胞株および卵巣癌細胞株におけるHS6ST2の発現とその分子量、および培養上清中への分泌を、抗HS6ST2抗体C10を用いたウェスタンブロットにより測定した。肺腺癌細胞株A549、ABC-1 (以上JCRB Cell Bank)、NCI-H441、NCI-H1781 (以上ATCC)、卵巣癌細胞株OVMANA (JCRB Cell Bank)から調製したwhole cell lysateをN-Glycosidase Fにて処理しウェスタンブロットを行った。Whole cell lysateのタンパク濃度はDC Protein Assay Kit I (Bio-Rad)にて測定し、A549は10μg/レーン、その他は15μg/レーンになるように泳動した。その結果、肺腺癌細胞株ABC-1、NCI-H441、NCI-H1781および卵巣癌細胞株OVMANAでHS6ST2が発現していた(図11A)。いずれもN-Glycosidase F処理後の分子量が50-60kDaであったことから、N-shortバリアントであると考えられた。なおA549は実施例1でHS6ST2を発現していないことを確認した細胞株であり、陰性対照として用いた。
 次にこれらの細胞の培養上清中のHS6ST2を測定した。培養上清を0.22μmでろ過後、Amicon Ultra (10kDaカット、Millipore)を用いて50倍濃縮しウェスタンブロットに用いた(図11B)。なおFBSに含まれるタンパクが影響するため、10 cmシャーレに培養した癌細胞株をFBSを含まない培地(5 mL)で一晩培養し、その培養上清を用いた。その結果、癌細胞株の培養上清中に可溶型HS6ST2が検出され、可溶型HS6ST2が癌の診断マーカーになりうることが示された。なお、培養上清を回収した後の細胞をlysis bufferで溶解し、タンパク濃度をDC Protein Assay Kit I (Bio-Rad)で測定したところ、シャーレ当たりのタンパク量はA549、ABC-1、NCI-H441、NCI-1781、OVMANAそれぞれ1.4、2.1、1.8、1.9、2.0 mgであり、ほぼ同程度の細胞数であることを確認した。
 実施例9:可溶型HS6ST2のヘパラン硫酸への結合と抗HS6ST2抗体の抗腫瘍効果
 9-1. 可溶型HS6ST2のヘパラン硫酸への結合
 細胞から分泌された可溶型HS6ST2が細胞膜上のヘパラン硫酸に結合することを確認した。まず細胞膜上のヘパラン硫酸の発現を実施例3と同様にフローサイトメトリーにて検討した。細胞には肺腺癌細胞株A549、ABC-1、NCI-H441、NCI-H1781、卵巣癌細胞株OVMANAおよびCHO細胞DG44株を用いた。一次抗体には抗ヘパラン硫酸抗体(HepSS-1、生化学バイオビジネス)および陰性対照としてマウスIgM (mIgM、BD Biosciences Pharmingen)を20μg/mL (NCI-H441、NCI-H1781)または40μg/mL (A549、ABC-1、OVMANA、DG44)の濃度で用いた。その結果A549、ABC-1およびDG44がヘパラン硫酸を発現することが確認された(図12)。
 次に、細胞膜上のヘパラン硫酸を酵素により分解し、可溶型HS6ST2の細胞への結合を検討した。1×106個のDG44細胞を1 mU/mLのheparinase、heparitinase Iおよびheparitinase II (いずれも生化学バイオビジネス)、HT supplement、penicillin/streptomycinを含むCHO-S-SFM II培地3 mL中で37℃、2時間培養した。Heparinase、heparitinase Iおよびheparitinase IIはヘパラン硫酸を特異的に分解する酵素である。酵素処理した細胞ではヘパラン硫酸の発現が大きく減少した(図13A)。
 続いて、可溶型HS6ST2 (sHS6ST2_FLAG)のDG44細胞への結合を検討した。DG44細胞を酵素処理後、FACS bufferにて50μg/mLに調製したsHS6ST2_FLAGと4℃にて3時間反応させた。洗浄後、実施例3と同様にフローサイトメトリー解析を行った。一次抗体には抗HS6ST2抗体C8および陰性対照としてmIgG1 (BD Biosciences Pharmingen)を用いた。その結果sHS6ST2_FLAGは酵素処理しないDG44細胞には結合したが酵素処理したDG44細胞にはほとんど結合せず、sHS6ST2_FLAGがヘパラン硫酸に特異的に結合することが示された(図13B)。
 9-2. 癌細胞への可溶型HS6ST2の結合とMab-ZAPを用いた抗腫瘍活性の評価
 ヘパラン硫酸の発現量が高かった肺腺癌細胞株A549へのsHS6ST2_FLAGの結合を評価した。A549細胞を100, 20, 4, 0.8, 0μg/mLのsHS6ST2_FLAGと氷上にて2時間反応させた後、フローサイトメトリー解析を行ったところ、濃度依存的にsHS6ST2_FLAGが結合した(図14A)。
 次に、A549細胞に結合したsHS6ST2_FLAGを標的とした、Mab-ZAP存在下での抗HS6ST2抗体の抗腫瘍活性を測定した。A549細胞を10%FBSおよびpenicillin/streptomycinを含むDMEM培地(Invitrogen)にて1×104個/mLの濃度に調製し、96ウェルプレートに50μL/ウェルずつ播種した。この時、50μg/mLのsHS6ST2_FLAGを含むウェルと含まないウェルを作製した。37℃、5% CO2インキュベーターで1日間培養後、培養上清を除去し、抗HS6ST2抗体C8およびMab-ZAPを添加し100μL/ウェルとした。C8は終濃度500, 100, 20, 4, 0 ng/mL、Mab-ZAPは終濃度500 ng/mLとした。さらに3日間培養後、生細胞測定試薬SF (ナカライテスク)を10μL/ウェル添加し4時間培養した後、450 nm-655 nmの吸光度を測定した。実験はduplicateで行い、吸光度の平均値と標準偏差を算出した。その結果、sHS6ST2_FLAGを結合させた細胞では抗HS6ST2抗体C8により濃度依存的に増殖が抑制された(図14B)。以上から、可溶型HS6ST2を標的として抗HS6ST2抗体が抗腫瘍効果を示すことが確認された。
 実施例10:ELISAによる可溶型HS6ST2の測定
 実施例8にて癌細胞株が可溶型HS6ST2を分泌し、癌の診断マーカーになる可能性が考えられたため、可溶型HS6ST2を検出するELISA系を構築した。抗体には抗HS6ST2抗体A6、B5、C8を用いた。B5とC8はHS6ST2_N-shortの379-459番目のアミノ酸配列に結合し、A6は308-393番目のアミノ酸配列に結合する(実施例4)。またC8はmHS6ST2に結合するがB5は結合しない(実施例3)。従って三者の結合部位は異なると考えられた。
 まず、Biotin Protein Labeling Kit (Roche)を用いて製品添付の方法に従って抗HS6ST2抗体B5、C8をビオチン標識した(B5-biotin、C8-biotin)。ビオチン標識した抗体の濃度はDC Protein Assay Kit I (Bio-Rad)を用いて測定した。抗HS6ST2抗体A6をcoating buffer (0.1M NaHCO3, pH9.6, 0.02% NaN3)で5μg/mLに調製し、ELISA用96ウェルプレート(F96 Cert. Maxisorp, Nunc)に100μL/ウェルずつ添加した。室温にて1時間静置することによりプレートに抗体を結合させた。上清を除去後、dilution buffer (50 mM Tris-HCl, pH8.1, 150 mM NaCl, 1 mM MgCl2, 0.05% Tween20, 1% ウシ血清アルブミン, 0.02% NaN3)を200μL/ウェルずつ添加し、室温にて1時間静置することによりブロッキングを行った。上清を除去後、サンプルを50μL/ウェルずつ添加し、室温にて1時間反応させた。サンプルには肺腺癌細胞株ABC-1の培養上清、および10%FBSを添加したRPMI1640培地で500倍に希釈したHS6ST2_N-short_ctV5_CHO細胞の培養上清を用いた。プレートをrinse buffer (50 mM Tris-HCl, pH7.6, 150 mM NaCl, 0.05% Tween20)で3回洗浄後、3μg/mL B5-biotinおよび3μg/mL C8-biotinを含むdilution bufferを100μL/ウェルずつ添加し、室温にて1時間反応させた。プレートをrinse bufferで3回洗浄後、dilution bufferで1000倍希釈したストレプトアビジン標識アルカリフォスファターゼ(ZyMax Streptavidin-AP, Invitrogen)を100μL/ウェルずつ添加し、室温にて1時間反応させた。プレートをrinse bufferで3回洗浄後、ELISA Amplification System (Invitrogen)を用いて製品添付の方法に従って発色させ、495 nmの吸光度を測定した。検量線には10%FBS-RPMI1640培地で希釈したsHS6ST2_FLAGを用いた。ELISAの結果、肺腺癌細胞株ABC-1およびHS6ST2_N-short_ctV5_CHO細胞の培養上清中の可溶型HS6ST2濃度は、それぞれ9.5 ng/mL、1.8μg/mLであった。検量線を図15に示す。
 癌の診断マーカーとしては、末梢血を用いて測定できることが好ましい。血中にはヘパラン硫酸が存在するため(Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62:5210 (2002), Serum and urinary concentrations of heparan sulfate in patients with diabetic nephropathy. Kidney Int 56:650 (1999), Isolation and characterization of glycosaminoglycans in human plasma. J Clin Invest 76:1984 (1985))、可溶型HS6ST2が血中のヘパラン硫酸に結合しELISAでの検出を阻害する可能性が考えられた。そこでヒト血清またはヘパラン硫酸存在下でELISAを検討した。Dilution buffer、100μg/mLヘパラン硫酸(生化学バイオビジネス)を添加したdilution buffer、またはヒト血清(コスモバイオ)を用いてsHS6ST2_FLAGを1μg/mLに調製し、室温にて1時間静置した。次にdilution bufferを用いて100 ng/mLから公比10にて4段階希釈しELISAで測定したところ、ヘパラン硫酸やヒト血清存在下でも発色が確認された(図16)。以上から、樹立したELISA系はヒト血清の影響を受けないことが示された。
 実施例11:免疫組織化学染色による肺癌におけるHS6ST2の発現解析
 HS6ST2遺伝子の発現が肺腺癌で亢進していたことから(実施例1)、肺癌におけるHS6ST2タンパクの発現を免疫組織化学染色により解析した。各検体より4% paraformaldehyde固定AMeX包埋パラフィンブロックを作製し、5μmの薄切切片を作製した。これらの切片についてVentana HX Discovery System (Ventana Medical Systems)を用いて下記のように免疫組織化学的に染色した。各切片を脱パラフィン後に洗浄し、Cell Conditioner #1 (Ventana Medical Systems)を用いて100℃にて30分間加熱処理後、内因性peroxidaseの除去のため3.0% hydrogen peroxide solution (Inhibitor D、Ventana Medical Systems)を用いて37℃にて4分間反応させた。洗浄後、非特異的反応の除去のためProtein Block (Dako)を加え、室温にて30分間反応させた。洗浄後、一次抗体として25μg/mLの抗HS6ST2抗体C10を加え室温にて2時間反応させた。洗浄後、二次抗体(Ventana Universal Secondary Antibody、Ventana Medical Systems)を加え、室温にて30分間反応させた。洗浄後、非特異的反応の除去のためBlocker D (Ventana Medical Systems)にて室温にて2分間反応させ、続いてstreptavidin horseradish peroxidase (Ventana Medical Systems)を加え、37℃にて16分間反応させた。洗浄後、diaminobenzidine (DAB map solution、Ventana Medical Systems)とhydrogen peroxide solution (DAB map solution、Ventana Medical Systems)を混和させて加え、基質の発色のため42℃にて8分間反応させた。さらにCopper sulfate solution (Ventana Medical Systems)にて発色の増感を行った。洗浄後、ヘマトキシリンにて核染を行い、脱水、透徹、封入を行った。
 免疫組織化学染色の結果、臨床肺腺癌サンプルでは10例中10例、臨床肺扁平上皮癌サンプルでは8例中8例で細胞質および細胞膜に陽性反応が観察された。肺の正常組織ではマクロファージおよび気管支上皮細胞に細胞質および細胞膜の陽性反応が観察された。肺の血管内皮細胞では細胞質に陽性反応が観察された。肺以外の正常臓器(精巣、子宮内膜、皮膚、卵巣、心臓、膀胱、肝臓、大脳皮質、子宮頸部、脾臓、骨髄、胸腺、リンパ節、副腎、甲状腺、脳下垂体、すい臓、乳房、胃、大腸、腎臓、前立腺)では、皮膚の上皮細胞、脳下垂体の腺細胞(glandular cell)、および腎臓の尿細管上皮(tubular epithelium)において細胞質に陽性反応が観察された(図17)。以上から、臨床肺腺癌および臨床肺扁平上皮癌では非常に高い頻度でHS6ST2が細胞膜に存在し、抗体医薬の標的分子として有望であると考えられた。肺のマクロファージおよび気管支上皮細胞はヘパラン硫酸を発現することが知られており(Heterogeneity of heparan sulfates in human lung. Am J Respir Cell Mol Biol. 2004. 30:166)、癌細胞から分泌された可溶型HS6ST2が結合した可能性も考えられた。
 実施例12:抗HS6ST2抗体の可変領域遺伝子配列の決定
 実施例2にて作製した抗HS6ST2抗体の可変領域の核酸配列およびアミノ酸配列を決定した。それぞれの抗体を産生するハイブリドーマ細胞1×106個からTrizol (Invitrogen)を用いて製品添付の方法に従ってtotal RNAを精製した。Total RNA 1μgを使用し、SMART RACE cDNA Amplification Kit (Clontech)、マウスIgG1定常領域配列に相補的な合成オリゴヌクレオチドMHC-IgG1 (配列番号34)、およびマウスκ鎖定常領域配列に相補的な合成オリゴヌクレオチドMLC-kappa (配列番号35)を用い、抗体のH鎖、L鎖cDNAの上述オリゴヌクレオチド配列に相当する位置から5’-cDNA末端までの配列をPCR増幅した。増幅産物をpGEM-T Easy Vector Systems (Promega)を用いてpGEM-T Easyベクターにクローニングし、cDNA配列を決定した。下表に各抗体の可変領域配列の配列番号をまとめた。
Figure JPOXMLDOC01-appb-T000001
 またこれらの可変領域のCDRのアミノ酸配列を下表に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (13)

  1. HS6ST2タンパク質に結合する抗体。
  2. 細胞傷害活性を有することを特徴とする請求項1に記載の抗体。
  3. 細胞傷害性物質が結合していることを特徴とする請求項1または2に記載の抗体。
  4. ヘパラン硫酸に結合したHS6ST2に結合することを特徴とする請求項1~3のいずれかに記載の抗体。
  5. 細胞膜上に発現したHS6ST2に結合することを特徴とする請求項1~3のいずれかに記載の抗体。
  6. 以下のいずれかに記載の抗体であることを特徴とする請求項1~5のいずれかに記載の抗体:
    (1)配列番号:64に記載のアミノ酸配列を有する重鎖CDR1、配列番号:65に記載のアミノ酸配列を有する重鎖CDR2、配列番号:66に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(A1);
    (2)配列番号:70に記載のアミノ酸配列を有する重鎖CDR1、配列番号:71に記載のアミノ酸配列を有する重鎖CDR2、配列番号:72に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(A6);
    (3)配列番号:76に記載のアミノ酸配列を有する重鎖CDR1、配列番号:77に記載のアミノ酸配列を有する重鎖CDR2、配列番号:78に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(A10);
    (4)配列番号:82に記載のアミノ酸配列を有する重鎖CDR1、配列番号:83に記載のアミノ酸配列を有する重鎖CDR2、配列番号:84に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(B5);
    (5)配列番号:88に記載のアミノ酸配列を有する重鎖CDR1、配列番号:89に記載のアミノ酸配列を有する重鎖CDR2、配列番号:90に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(B6);
    (6)配列番号:94に記載のアミノ酸配列を有する重鎖CDR1、配列番号:95に記載のアミノ酸配列を有する重鎖CDR2、配列番号:96に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(C8);
    (7)配列番号:100に記載のアミノ酸配列を有する重鎖CDR1、配列番号:101に記載のアミノ酸配列を有する重鎖CDR2、配列番号:102に記載のアミノ酸配列を有する重鎖CDR3を含む重鎖可変領域を含む抗体(C10);
    (8)配列番号:67に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:68に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:69に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(A1);
    (9)配列番号:73に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:74に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:75に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(A6);
    (10)配列番号:79に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:80に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:81に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(A10);
    (11)配列番号:85に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:86に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:87に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(B5);
    (12)配列番号:91に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:92に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:93に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(B6);
    (13)配列番号:97に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:98に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:99に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(C8);
    (14)配列番号:103に記載のアミノ酸配列を有する軽鎖CDR1、配列番号:104に記載のアミノ酸配列を有する軽鎖CDR2、配列番号:105に記載のアミノ酸配列を有する軽鎖CDR3を含む軽鎖可変領域を含む抗体(C10);
    (15)(1)の重鎖可変領域と(8)の軽鎖可変領域を含む抗体(A1);
    (16)(2)の重鎖可変領域と(9)の軽鎖可変領域を含む抗体(A6);
    (17)(3)の重鎖可変領域と(10)の軽鎖可変領域を含む抗体(A10);
    (18)(4)の重鎖可変領域と(11)の軽鎖可変領域を含む抗体(B5);
    (19)(5)の重鎖可変領域と(12)の軽鎖可変領域を含む抗体(B6);
    (20)(6)の重鎖可変領域と(13)の軽鎖可変領域を含む抗体(C8);
    (21)(7)の重鎖可変領域と(14)の軽鎖可変領域を含む抗体(C10);
    (22)(1)から(21)のいずれかに記載の抗体において1若しくは複数のアミノ酸が置換、欠失、付加および/または挿入された抗体であって、(1)から(21)のいずれかに記載の抗体と同等の活性を有する抗体;
    (23)(1)から(21)のいずれかに記載の抗体が結合するHS6ST2タンパク質のエピトープと同じエピトープに結合する抗体。
  7. 配列番号:107のアミノ酸配列を有するHS6ST2タンパク質の379番目のアミノ酸から459番目のアミノ酸までの部位、308番目のアミノ酸から393番目のアミノ酸までの部位、または24番目のアミノ酸から175番目のアミノ酸までの部位を認識することを特徴とする請求項1~5のいずれかに記載の抗体。
  8. 請求項1~7のいずれかに記載の抗体を有効成分として含む医薬組成物。
  9. 抗癌剤である請求項8に記載の医薬組成物。
  10. 以下の工程を含む癌の診断方法:
    (a)被験者から採取された試料を提供する工程、
    (b) (a)の試料に含まれるHS6ST2タンパク質又はHS6ST2遺伝子を検出する工程。
  11. 細胞傷害性物質が結合したHS6ST2タンパク質。
  12. 請求項11に記載のHS6ST2タンパク質を有効成分として含む医薬組成物。
  13. 抗癌剤である請求項12に記載の医薬組成物。
PCT/JP2009/071271 2008-12-22 2009-12-22 抗hs6st2抗体及びその用途 WO2010074049A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/998,988 US8846870B2 (en) 2008-12-22 2009-12-22 Anti-HS6ST2 antibodies and uses thereof
JP2010544062A JP5756292B2 (ja) 2008-12-22 2009-12-22 抗hs6st2抗体及びその用途
EP09834850.1A EP2388320B1 (en) 2008-12-22 2009-12-22 Anti-hs6st2 antibodies and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008324883 2008-12-22
JP2008-324883 2008-12-22

Publications (1)

Publication Number Publication Date
WO2010074049A1 true WO2010074049A1 (ja) 2010-07-01

Family

ID=42287658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071271 WO2010074049A1 (ja) 2008-12-22 2009-12-22 抗hs6st2抗体及びその用途

Country Status (4)

Country Link
US (1) US8846870B2 (ja)
EP (1) EP2388320B1 (ja)
JP (1) JP5756292B2 (ja)
WO (1) WO2010074049A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205362A (ja) * 2012-03-29 2013-10-07 Forerunner Pharma Research Co Ltd 大腸癌マーカー、および予後の予測方法
WO2015098112A1 (ja) * 2013-12-27 2015-07-02 独立行政法人医薬基盤研究所 食道がんのマーカーおよびその利用
JP2020531045A (ja) * 2017-07-14 2020-11-05 シートムエックス セラピューティクス,インコーポレイテッド 抗cd166抗体およびその使用
US11753466B2 (en) 2015-05-04 2023-09-12 Cytomx Therapeutics, Inc. Anti-CD166 antibodies, activatable anti-CD166 antibodies, and methods of use thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10676723B2 (en) 2015-05-11 2020-06-09 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
US20220017610A1 (en) * 2018-11-16 2022-01-20 The Brigham And Women`S Hospital, Inc. Antibodies Blocking DLL4-Mediated Notch Signalling
US20220026445A1 (en) * 2018-12-07 2022-01-27 Georgia Tech Research Corporation Antibodies that bind to natively folded myocilin

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2002079255A1 (en) 2001-04-02 2002-10-10 Idec Pharmaceuticals Corporation RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII
WO2003104453A1 (ja) 2002-06-05 2003-12-18 中外製薬株式会社 抗体作製方法
JP2007020155A (ja) 2005-06-08 2007-01-25 Canon Inc 画像処理装置、画像処理方法、プログラム、及び記憶媒体
WO2008093688A1 (ja) 2007-01-30 2008-08-07 Forerunner Pharma Research Co., Ltd. キメラFcγレセプター及び該レセプターを用いたADCC活性測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1295946B1 (en) * 2000-06-29 2007-05-16 Seikagaku Corporation Sulfate transferase and dna encoding this enzyme

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2002079255A1 (en) 2001-04-02 2002-10-10 Idec Pharmaceuticals Corporation RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII
WO2003104453A1 (ja) 2002-06-05 2003-12-18 中外製薬株式会社 抗体作製方法
JP2007020155A (ja) 2005-06-08 2007-01-25 Canon Inc 画像処理装置、画像処理方法、プログラム、及び記憶媒体
WO2008093688A1 (ja) 2007-01-30 2008-08-07 Forerunner Pharma Research Co., Ltd. キメラFcγレセプター及び該レセプターを用いたADCC活性測定方法

Non-Patent Citations (103)

* Cited by examiner, † Cited by third party
Title
"Affinity, kinetic, and structural study of the interaction of 3-O-sulfotransferase isoform 1 with heparan sulfate", BIOCHEMISTRY, vol. 45, 2006, pages 5122
"Antibodies A Laboratory Manual.", 1988, COLD SPRING HARBOR LABORATORY
"Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6.O-sulphotransferase-2 having different expression patterns and properties", BIOCHEM J., vol. 371, 2003, pages 131
"Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-0-sulphotransferase-2 having different expression patterns and properties", BIOCHEM J., vol. 371, 2003, pages 131
"Cell surface heparan sulfate proteoglycans", J BIOL CHEM., vol. 267, 1992, pages 9451
"Current protocols in Immunology", 1993, JOHN WILEY & SONS, INC.
"Functions of cell surface heparan sulfate proteoglycans", ANNU REV BIOCHEM., vol. 68, 1999, pages 729 - 777
"Glycosaminoglycans in human lung cancer", CANCER., vol. 48, 1981, pages 2016
"Heparan sulfate is essential to amphiregulin-induced mitogenic signaling by the epidermal growth factor receptor", J BIOL CHEM., vol. 269, 1994, pages 27149
"Heparan sulfate proteoglycan as a plasma membrane carrier", TRENDS BIOCHEM SCI., vol. 28, 2003, pages 145
"Heparan sulfate proteoglycan expression in human lung-cancer cells", INT J CANCER., vol. 74, 1997, pages 335
"Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro", J BIOL CHEM., vol. 273, 1998, pages 51
"Heparan sulfate: growth control with a restricted sequence menu", J CLIN INVEST., vol. 108, 2001, pages 357 - 361
"Heterogeneity of heparan sulfates in human lung", AM J RESPIR CELL MOL BIOL., vol. 30, 2004, pages 166
"Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands", TRAFFIC., vol. 8, 2007, pages 389
"Isolation and characterization of glycosaminoglycans in human plasma", J CLIN INVEST, vol. 76, 1985, pages 1984
"Molecular characterization and expression of heparan-sulfate 6-sulfotransferase", J BIOL CHEM., vol. 273, 1998, pages 9208
"Novel aspects of glypican glycobiology", CELL MOL LIFE SCI., vol. 61, 2004, pages 1016
"Oligosaccharide library-based assessment of heparan sulfate 6-O-sulfotransferase substrate specificity", J BIOL CHEM., vol. 278, 2003, pages 24371
"Purification and characterization of heparan sulfate 6- sulfotransferase from the culture medium of Chinese hamster ovary cells", J BIOL CHEM., vol. 270, 1995, pages 4172
"Regulated diversity of heparan sulfate", J BIOL CHEM., vol. 273, 1998, pages 24979
"Regulation of heparan sulfate 6-O-sulfation by ?-secretase activity", J BIOL CHEM., 2007, pages 282
"Remington's Pharmaceutical Science", MARK PUBLISHING COMPANY
"Serum and urinary concentrations of heparan sulfate in patients with diabetic nephropathy", KIDNEY INT, vol. 56, 1999, pages 650
"Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer", CANCER RES, vol. 62, 2002, pages 5210
"Stem domains of heparan sulfate 6-O.sulfotransferase are required for golgi localization, oligomer formation and enzyme activity", J CELL SCI., vol. 117, 2004, pages 3331
"Structural differences between heparan sulphates of proteoglycan involved in the formation of basement membranes in vivo by Lewis-lung-carcinoma-derived cloned cells with different metastatic potentials", BIOCHEM J., vol. 288, 1992, pages 215
"The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer", J CLIN INVEST., vol. 102, 1998, pages 1662
"The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine", J BIOL CHEM., vol. 275, 2000, pages 2859
ACTA ONCOL., vol. 32, 1993, pages 825 - 830
BACKEN A.C. ET AL: "Heparan sulphate synthetic and editing enzymes in ovarian cancer", BR. J. CANCER, vol. 96, no. 10, 2007, pages 1544 - 1548, XP055037801, DOI: doi:10.1038/sj.bjc.6603747 *
BELYAVSKY, A. ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 2919 - 2932
BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043
BETTER, M., HORWITZ, A. H., METHODS ENZYMOL., vol. 178, 1989, pages 476 - 496
BETTER, M., HORWITZ, A. H., METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496
BIOCHEM J., vol. 371, 2003, pages 131
BIRD, R. E. ET AL., TIBTECH, vol. 9, 1991, pages 132 - 137
BIRD, R. E., WALKER, B. W., TRENDS BIOTECHNOL., vol. 9, 1991, pages 132 - 137
BOLOGNESI A. ET AL., CLIN. EXP. IMMUNOL., vol. 89, 1992, pages 341 - 346
CASELLAS P. ET AL., EUR. J. BIOCHEM., vol. 176, 1988, pages 581 - 588
CELLULAR & MOLECULAR IMMUNOLOGY, vol. 3, 2006, pages 439 - 443
CHIRGWIN, J. M. ET AL., BIOCHEMISTRY, vol. 18, 1979
CHOMCZYNSKI, P. ET AL., ANAL. BIOCHEM., vol. 162, 1987, pages 156 - 159
CO, M. S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976
CO, M.S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976
CUMBER A.J. ET AL., J. IMMUNOL. METHODS, vol. 135, 1990, pages 15 - 24
CURRENT TOPICS IN MICROBIOLOGY AND IMMUNOLOGY, vol. 81, 1978, pages 1 - 7
DALBADIE-MCFARLAND, G. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409 - 6413
DE ST. GROTH, S. F. ET AL., J. IMMUNOL. METHODS, vol. 35, 1980, pages 1 - 21
EBERT, K.M. ET AL., BIO/TECHNOLOGY, vol. 12, 1994, pages 699 - 702
FASEB J., vol. 10, 1996, pages 598 - 614
FASEBJ., vol. 6, 1992, pages 2422 - 2427
FROHMAN, M.A. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 8998 - 9002
FULTON R.J. ET AL., J. BIOL. CHEM., vol. 261, 1986, pages 5314 - 5319
GALFRE, G. ET AL., NATURE, vol. 277, 1979, pages 131 - 133
GHEEITE V. ET AL., J. IMMUNOL. METHODS, vol. 142, 1991, pages 223 - 230
GOICHIRO MIYAKE ET AL: "Heparan Ryusan-O- Ryusan Ten'i Koso-gun (HS2ST, HS6ST) no Hito Sodo Idenshi no Cloning to Gan Soshiki ni Okeru Hatsugen", CANCER SCIENCE, vol. 91, 1 September 2000 (2000-09-01), pages 145 *
HABUCHI H. ET AL: "Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparansulphate 6-0-sulphotransferase-2 having different expression patterns and properties", BIOCHEM. J., vol. 371, 2003, pages 131 - 142, XP002683188, DOI: doi:10.1042/bj20021259 *
HABUCHI H. ET AL: "The occurrence of three isoforms of heparan sulfate 6-0- sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine", J. BIOL. CHEM., vol. 275, no. 4, 2000, pages 2859 - 2868, XP002148154, DOI: doi:10.1074/jbc.275.4.2859 *
HASHIMOTO-GOTOH, T. ET AL., GENE, vol. 152, 1995, pages 271 - 275
HOLLIGER P ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HUDSON ET AL., J IMMUNOL. METHODS, vol. 231, 1999, pages 177 - 189
J BIOL CHEM., vol. 279, 2004, pages 42732
J. IMMUNOL., vol. 123, 1979, pages 1548 - 1550
J. MOL. BIOL., vol. 222, 1991, pages 581 - 597
KOHLER. G., MILSTEIN, C., EUR. J. IMMUNOL., vol. 6, 1976, pages 511 - 519
KOHLER. G., MILSTEIN, C., METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46
KRAMER W, FRITZ HJ, METHODS. ENZYMOL., vol. 154, 1987, pages 350 - 367
KRAMER, W. ET AL., NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441 - 9456
KUNKEL, METHODS ENZYMOL., vol. 85, 1988, pages 2763 - 2766
KUNKEL, TA, PROC NATL ACAD SCI USA., vol. 82, 1985, pages 488 - 492
LAMOYI, E., METHODS ENZYMOL., vol. 121, 1986, pages 652 - 663
LAMOYI, E., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 652 - 663
LANGONE J.J. ET AL., METHODS IN ENZYMOLOGY, vol. 93, 1983, pages 307 - 308
LEI, S. P. ET AL., J. BACTERIOL., vol. 169, 1987, pages 4379
MARGULIES. D.H. ET AL., CELL, vol. 8, 1976, pages 405 - 415
MARK, D. F. ET AL., PROC. NAT1. ACAD. SCI. USA, vol. 81, 1984, pages 5662 - 5666
MIZUSHIMA ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322
MULLIGAN ET AL., NATURE, vol. 277, 1979, pages 108
NATURE MEDICINE, vol. 2, 1996, pages 350 - 353
PLUCKTHUN, A., SKERRA, A., METHODS ENZYMOL., vol. 178, 1989, pages 497 - 515
PROC. NATL. ACAD. SCI. U.S.A, vol. 85, 1988, pages 5879 - 5883
PROTEIN ENGINEERING, vol. 9, no. 3, 1996, pages 299 - 305
ROUSSEAUX, J. ET AL., METHODS ENZYMOL., vol. 121, 1986, pages 663 - 669
ROUSSEAUX, J. ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 663 - 669
SAMBROOK, J ET AL.: "Molecular Cloning", 1989, COLD SPRING HARBOR LAB. PRESS
SATO, K. ET AL., CANCER RES, vol. 53, 1993, pages 851 - 856
See also references of EP2388320A4 *
SHULMAN, M. ET AL., NATURE, vol. 276, 1978, pages 269 - 270
SIVAM G. ET AL., CANCER RES., vol. 47, 1987, pages 3169 - 3173
SKERRA, A., METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496
STIRPE F., BARBIERI L, FEBS 1 LETTER, vol. 195, 1986, pages 1 - 8
STIRPE F., BARBIERI L., FEBS LETTER, vol. 195, 1986, pages 1 - 8
STIRPE, vol. 1-8, 1986, pages 1
THORPE P.E. ET AL., CANCER RES., vol. 47, 1987, pages 5924 - 5931
TROWBRIDGE, I. S., J. EXP. MED., vol. 148, 1978, pages 313 - 323
VANDAMME, A. M. ET AL., EUR. J. BIOCHEM., vol. 192, 1990, pages 767 - 775
WANG, A. ET AL., SCIENCE, vol. 224, pages 1431 - 1433
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
WAWRZYNCZAK E.J. ET AL., BR. J. CANCER, vol. 66, 1992, pages 361 - 366
WAWRZYNCZAK E.J. ET AL., CANCER RES., vol. 50, 1990, pages 7519 - 7562
ZOLLER, M. J., SMITH, M., NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487 - 6500
ZOLLER, MJ, SMITH, M., METHODS ENZYMOL., vol. 100, 1983, pages 468 - 500

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205362A (ja) * 2012-03-29 2013-10-07 Forerunner Pharma Research Co Ltd 大腸癌マーカー、および予後の予測方法
WO2015098112A1 (ja) * 2013-12-27 2015-07-02 独立行政法人医薬基盤研究所 食道がんのマーカーおよびその利用
US11753466B2 (en) 2015-05-04 2023-09-12 Cytomx Therapeutics, Inc. Anti-CD166 antibodies, activatable anti-CD166 antibodies, and methods of use thereof
JP2020531045A (ja) * 2017-07-14 2020-11-05 シートムエックス セラピューティクス,インコーポレイテッド 抗cd166抗体およびその使用

Also Published As

Publication number Publication date
JP5756292B2 (ja) 2015-07-29
EP2388320A4 (en) 2012-11-07
JPWO2010074049A1 (ja) 2012-06-14
EP2388320A1 (en) 2011-11-23
US8846870B2 (en) 2014-09-30
EP2388320B1 (en) 2017-02-15
US20110262929A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
US20210380715A1 (en) Anti-dll3 antibody
JP5986621B2 (ja) 抗gpr49抗体を用いる癌の診断および治療
JP6162864B2 (ja) 抗Desmoglein3抗体を用いる癌の診断および治療
JP5848863B2 (ja) 抗cldn6抗体
JP6104794B2 (ja) 抗itm2a抗体を用いる癌の診断および治療
JP6009733B2 (ja) 抗tm4sf20抗体を用いた癌の診断と治療
JP5756292B2 (ja) 抗hs6st2抗体及びその用途
WO2011105573A1 (ja) 抗icam3抗体およびその用途
JP5801557B2 (ja) 抗lgr7抗体を用いる癌の診断および治療
JP5746018B2 (ja) 抗tmprss11e抗体を用いた癌の診断と治療
JP5618172B2 (ja) 抗prg−3抗体を用いる癌の診断および治療

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010544062

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12998988

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009834850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009834850

Country of ref document: EP