WO2010074039A1 - エチレン/テトラフルオロエチレン共重合体の造粒方法 - Google Patents

エチレン/テトラフルオロエチレン共重合体の造粒方法 Download PDF

Info

Publication number
WO2010074039A1
WO2010074039A1 PCT/JP2009/071259 JP2009071259W WO2010074039A1 WO 2010074039 A1 WO2010074039 A1 WO 2010074039A1 JP 2009071259 W JP2009071259 W JP 2009071259W WO 2010074039 A1 WO2010074039 A1 WO 2010074039A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
etfe
tetrafluoroethylene copolymer
tetrafluoroethylene
granulating
Prior art date
Application number
PCT/JP2009/071259
Other languages
English (en)
French (fr)
Inventor
茂 相田
篤志 辻
章夫 小川
俊之 千坂
順平 野村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to RU2011131061/05A priority Critical patent/RU2531305C2/ru
Priority to CN2009801531467A priority patent/CN102264806B/zh
Priority to JP2010544059A priority patent/JP5644503B2/ja
Priority to EP09834840.2A priority patent/EP2371880B1/en
Publication of WO2010074039A1 publication Critical patent/WO2010074039A1/ja
Priority to US13/163,800 priority patent/US8292203B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom

Definitions

  • the present invention relates to a method for producing a granulated product of ethylene / tetrafluoroethylene copolymer.
  • ETFE Ethylene / tetrafluoroethylene copolymer
  • ETFE Ethylene / tetrafluoroethylene copolymer
  • the handling property of ETFE obtained by polymerization is improved, and when ETFE is formed into pellets by melt extrusion molding, The conveyance piping to the extruder is not easily blocked by ETFE.
  • ETFE is pulverized and processed into a fine powder having a desired particle diameter
  • the granulated ETFE is preferable because of its excellent handling properties.
  • ETFE As a granulation method of ETFE, a copolymerization method such as solution polymerization or suspension polymerization is used to copolymerize ethylene and tetrafluoroethylene, and other comonomer as required, and then purge unreacted monomer gas, followed by A method of obtaining an ETFE granulated product by granulating an ETFE slurry is known (see Patent Document 1).
  • the ETFE granulated product In order to produce the ETFE granulated product efficiently and at low cost, it is preferable to transfer the ETFE slurry from the polymerization tank to the granulation tank with the pressure of the monomer gas because a transfer pump or the like is not required.
  • a transfer pump or the like is not required.
  • an ETFE oligomer may be generated in the granulation tank.
  • the properties of ETFE may not be sufficient.
  • the ETFE granulated material contains ETFE fine particles, which may cause the piping to be blocked.
  • An object of the present invention is to provide a method for granulating ETFE, which is required to be developed based on the above-described background, and has a low content of ETFE oligomer and excellent handling properties.
  • the present invention provides an ETFE granulation method having the following constitution.
  • ETFE granulation method in which ETFE slurry is stirred together with water at a granulation temperature of 10 to 130 ° C. and agglomeration time of 30 to 240 minutes in the presence of ethylene and tetrafluoroethylene.
  • a method for granulating ETFE comprising: [2] The above slurry contains a polymerization medium, and the polymerization medium is at least one selected from the group consisting of fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorinated hydrocarbons, alcohols and hydrocarbons. 1] Granulation method of ETFE.
  • the ETFE is a repeating unit based on tetrafluoroethylene, a repeating unit based on ethylene, and CH 2 ⁇ CX (CF 2 ) n Y (where X and Y are each independently a hydrogen atom or a fluorine atom, n is an integer of 2 to 8.)
  • the repeating unit based on the compound represented by formula (4) is used, and the repeating unit based on tetrafluoroethylene / the repeating unit based on ethylene (molar ratio) is 80/20 to 20/80.
  • the content of repeating units based on the compound represented by CH 2 ⁇ CX (CF 2 ) n Y is 0.01 to 20 mol% in all the repeating units of the ETFE [1]
  • the ETFE granulated product produced by the ETFE granulation method of the present invention has a low content of ETFE oligomer, is excellent in physical properties such as moldability, mechanical strength, and electrical insulation, and is further included in the ETFE granulated product. Since the content of ETFE fine particles is small, the handling property is also excellent.
  • the ETFE slurry used in the ETFE granulation method of the present invention includes ETFE slurry produced by various methods such as suspension polymerization, solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization, solution polymerization.
  • the ETFE slurry produced by (1) is more preferred, and the ETFE slurry produced by solution polymerization is most preferred.
  • the ETFE slurry refers to a slurry in which ETFE is dissolved or swollen and suspended in the polymerization medium.
  • the ETFE slurry used in the present invention is a mixture of a radical polymerization initiator, a chain transfer agent for adjusting the molecular weight, and the like, in the presence of a polymerization medium, with stirring at a predetermined temperature for a predetermined time, with ethylene, tetrafluoroethylene. And what is obtained by polymerizing another monomer as needed is preferable.
  • ETFE contains a repeating unit based on ethylene (hereinafter sometimes referred to as “E”) and a repeating unit based on tetrafluoroethylene (hereinafter sometimes referred to as “TFE”), and the content ratio thereof. (Molar ratio) is preferably 80/20 to 20/80, more preferably 70/30 to 30/70, and most preferably 60/40 to 40/60.
  • the molar ratio of (repeating unit based on E) / (repeating unit based on TFE) is extremely large, the heat resistance, weather resistance, chemical resistance, chemical solution permeation prevention, etc. of the ETFE may be reduced. If the molar ratio is extremely small, mechanical strength, melt moldability, and the like may decrease. When in this range, the ETFE is excellent in heat resistance, weather resistance, chemical resistance, chemical penetration prevention, mechanical strength, melt moldability, and the like.
  • ETFE may contain a repeating unit based on one or more other monomers within a range not impairing its essential characteristics, in addition to the repeating unit based on E and the repeating unit based on TFE.
  • ⁇ -olefins such as propylene and butene; CH 2 ⁇ CX (CF 2 ) n Y (where X and Y are each independently a hydrogen atom or a fluorine atom, and n is from 2 to 8)
  • FAE a compound represented by the general formula CH 2 ⁇ CX (CF 2 ) n Y
  • X and Y are each independently a hydrogen atom or a fluorine atom, and n is an integer of 2 to 8). It is a compound represented. If n in the formula is less than 2, the properties of ETFE may be insufficient (for example, occurrence of stress cracks in the ETFE formed body). On the other hand, if n in the formula exceeds 8, the point of polymerization reactivity May be disadvantageous.
  • the content of the repeating unit based on FAE in ETFE is preferably 0.01 to 20 mol%, more preferably 0.1 to 15 mol% in all repeating units of the ETFE. More preferably, it is 10 mol%.
  • the content of FAE is less than the above value, the stress crack resistance of the molded body formed from ETFE may be reduced, and a fracture phenomenon such as cracking may occur under stress. In some cases, the mechanical strength of the ETFE decreases.
  • Examples of the polymerization medium used for producing the ETFE slurry include organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorinated hydrocarbons, alcohols and hydrocarbons.
  • the polymerization medium is preferably at least one selected from the group consisting of fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorinated hydrocarbons, alcohols and hydrocarbons.
  • the polymerization medium include perfluorocarbons such as n-perfluorohexane, n-perfluoroheptane, perfluorocyclobutane, perfluorocyclohexane, perfluorobenzene; 1,1,2,2-tetrafluorocyclobutane, CF 3 CFHCF 2 CF 2 CF 3 , CF 3 (CF 2 ) 4 H, CF 3 CF 2 CFHCF 2 CF 3 , CF 3 CFHCCFHCF 2 CF 3 , CF 2 HCFHCF 2 CF 2 CF 3 , CF 3 (CF 2 ) 5 H , CF 3 CH (CF 3) CF 2 CF 2 CF 3, CF 3 CF (CF 3) CFHCF 2 CF 3, CF 3 CF (CF 3) CFHCFHCF 3, CF 3 CH (CF 3) CFHCF 2 CF 3, CF 3 CH (CF 3) CFHCF 2 CF 3, CF 3
  • chain transfer agent examples include methanol, ethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoropropanol, 1,1,1,3,3,3-hexafluoroisopropanol, , 2,3,3,3-pentafluoropropanol, etc .; 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-1-fluoroethane, etc.
  • Hydrochlorinated hydrocarbons such as n-pentane, n-hexane, n-heptane and cyclohexane; Hydrofluorocarbons such as CF 2 H 2 ; Ketones such as acetone; Mercaptans such as methyl mercaptan; And esters such as ethyl acetate; ethers such as diethyl ether and methyl ethyl ether;
  • fluorinated chlorinated hydrocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane have a small chain transfer coefficient and can be used as a polymerization medium.
  • the radical polymerization initiator is preferably a radical polymerization initiator having a half-life of 10 hours at a temperature of 0 to 100 ° C., more preferably a radical polymerization initiator having a temperature of 20 to 90 ° C.
  • Specific examples include azo compounds such as azobisisobutyronitrile; peroxydicarbonates such as diisopropylperoxydicarbonate; tert-butylperoxypivalate, tert-butylperoxyisobutylene.
  • -Peroxyesters such as tert-butylperoxyacetate; non-fluorinated diacyl peroxides such as isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide, lauroyl peroxide; (Z (CF 2 ) p COO) 2 (wherein Z is a hydrogen atom, a fluorine atom or a chlorine atom, and p is an integer of 1 to 10), etc .; perfluoro tert-butyl peroxide; potassium persulfate Inorganic peroxides such as sodium persulfate and ammonium persulfate; It is.
  • the polymerization conditions during the production of ETFE are not particularly limited, and the polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 90 ° C.
  • the polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa.
  • the polymerization time is preferably 1 to 30 hours, more preferably 2 to 20 hours.
  • the concentration of ETFE contained in the slurry obtained by polymerization is preferably 50 to 200 g / L (polymerization medium), more preferably 100 to 180 g / L (polymerization medium). When the concentration of ETFE is lower than this range, the yield of the granulated product per batch decreases, and the productivity decreases.
  • the concentration is higher than this range, ETFE fine particles are likely to be generated, and the ETFE granulated product is likely to contain ETFE fine particles.
  • the productivity of the ETFE granulated product is excellent, ETFE fine particles are hardly generated, and the ETFE granulated product is less likely to contain ETFE fine particles.
  • the slurry of ETFE in the granulation method of the present invention is produced by various polymerization methods, and then passed through a pipe together with unreacted monomers such as ethylene and tetrafluoroethylene contained in the ETFE slurry, from the polymerization tank to the granulation tank. It is preferable to be transported to.
  • a predetermined amount of water as a dispersion medium for the ETFE granulated product is added to the ETFE slurry, and then the ETFE slurry and water are heated in the granulation tank with stirring, such as ethylene and tetrafluoroethylene.
  • the powdered ETFE is preferably granulated while distilling volatile components such as a monomer, a polymerization medium and a chain transfer agent.
  • the granulation tank is controlled so that the pressure in the granulation tank is constant. It is preferable to granulate while continuously distilling and collecting the components. Monomers such as ethylene and tetrafluoroethylene and the polymerization medium distilled from the granulation tank are preferably recovered through a heat exchanger and a dehydration tower and then collected in a gas holder and a polymerization medium tank for reuse.
  • the granulation temperature is preferably 10 to 130 ° C, more preferably 20 to 110 ° C.
  • the granulation temperature is lower than the above range, it takes time to distill off the gaseous monomers of ethylene and tetrafluoroethylene and the polymerization medium, and the amount of ETFE oligomer produced increases.
  • the granulation temperature is higher than the above range, water existing as a dispersion medium for the ETFE granulated product evaporates.
  • the gaseous monomer and the polymerization medium can be distilled out in a short time while dispersing the ETFE slurry in water, so that the ETFE having a small content of ETFE oligomer and a uniform particle system is available. A granulated product can be produced.
  • the granulation time of the slurry is preferably 30 to 240 minutes, more preferably 60 to 200 minutes, and further preferably 80 to 150 minutes.
  • the granulation time is shorter than the above range, the gaseous monomer and the polymerization medium are rapidly distilled, so it is necessary to increase the capacity of the heating device for the granulation tank and the device for liquefying the distilled monomer and the polymerization medium. Occurs. If the granulation time is longer than the above range, the amount of ETFE oligomer produced in the granulation tank increases, the production process becomes longer, and the production efficiency is lowered.
  • the granulation time refers to the time from the start of distillation of ethylene and tetrafluoroethylene monomers and the polymerization medium in the granulation tank to the end of distillation.
  • the rotation speed of the stirring blade used for stirring is preferably 30 to 500 rpm, more preferably 50 to 500 rpm, and most preferably 80 to 250 rpm.
  • the rotational speed is slower than the above range, the slurry is not sufficiently stirred, and a granulated product having a uniform particle size cannot be obtained.
  • the stirring rotation speed is faster than the above range, the particle diameter of the granulated product becomes small.
  • an ETFE granulated product having a small particle diameter of less than 0.15 mm, a uniform particle diameter, and excellent handling can be produced.
  • the stirring blade is preferably an anchor blade or a disk turbine blade. These stirring blades may be used in combination, or a plurality of stirring blades may be used. In order to obtain a good stirring state, it is also preferable to use a baffle plate.
  • the content of ethylene and tetrafluoroethylene, which are monomers contained in the ETFE slurry at the start of granulation, is preferably 0.01 to 0.5 Nm 3 / L (polymerization medium), and 0.02 to 0.2 Nm 3 / L. (Polymerization medium) is more preferable. If the content of the monomer contained in the ETFE slurry is less than the above range, it takes time to distill and recover the monomer from the granulation tank. When the amount of the monomer contained in the ETFE slurry is larger than the above range, the amount of the ETFE oligomer generated in the granulation step increases.
  • the content of the monomer contained in the ETFE slurry is within the above range, it is preferable because an ETFE granulated product having a low ETFE oligomer content can be produced in a short time.
  • the molar ratio of coexisting ethylene and tetrafluoroethylene is preferably in the range of 40/60 to 98/2, more preferably in the range of 55/45 to 97/3, and 65/35 to 97/3. A range is further preferred.
  • the ETFE oligomer content contained in the ETFE granulated product obtained by the granulation method of the present invention is preferably 0.23 mass% or less, and more preferably 0.20 mass% or less.
  • an ETFE oligomer means what is extracted by the measuring method of ETFE oligomer content described in the Example.
  • the average particle size of the ETFE granulated product obtained by the granulation method of the present invention is preferably 0.5 to 5 mm, more preferably 1 to 3 mm.
  • the content of ETFE fine particles having a particle diameter of less than 0.15 mm contained in the ETFE granulated product obtained by the granulation method of the present invention is preferably 0.3% by mass or less, and more preferably 0.2% by mass or less. .
  • blocking may occur when the ETFE granulated product is transferred by piping or fed from a hopper to an extruder.
  • volume flow rate of the ETFE in the present invention Is preferably 0.01 ⁇ 1000 mm 3 / sec, more preferably 0.1 ⁇ 500 mm 3 / sec, and most preferably 1 ⁇ 200 mm 3 / sec .
  • the Q value is an index representing the melt fluidity of the fluorinated copolymer and is a measure of the molecular weight. When the Q value is large, the molecular weight is small, and when the Q value is small, the molecular weight is large.
  • ETFE oligomer content (% by mass) 30 g of ETFE formed into a pellet and 300 g of 1,3-dichloro-1,1,2,2,3-pentafluoropropane (Asahi Glass Co., Ltd., R-225cb, hereinafter referred to as R-225cb) It put in the pressure vessel which has a PTFE (polytetrafluoroethylene) inner cylinder, and heated the pressure vessel in 150 degreeC oven for 12 hours.
  • PTFE polytetrafluoroethylene
  • the pressure vessel taken out from the oven is cooled to room temperature, the mixture of ETFE and R-225cb is filtered, R-225cb contained in the filtrate is completely evaporated by a rotary evaporator, and the mass of the extracted ETFE oligomer is measured. did.
  • Stress crack resistance test After the coated wire was heat treated in an oven heated to 195 ° C. for 96 hours, the wire was fixed in a state where the wire was wound more than 8 turns, and the crack generation state when heat treated in an oven heated to 200 ° C. for 1 hour was confirmed. Five electric wires were evaluated for each lot.
  • the slurry contains 0.089 Nm 3 of ethylene and tetrafluoroethylene monomer and 127 g of ETFE per liter of polymerization medium (total amount of CF 3 (CF 2 ) 5 H and R-225cb). It was.
  • the slurry was transferred to an 850 liter granulation tank, 340 L of water was added, the disk turbine blade was heated at 40 to 104 ° C. while stirring while rotating at 100 rpm, and polymerization was performed over 95 minutes. The medium and residual monomer were distilled off and ETFE was granulated. Next, water and ETFE granulated material were separated using a mesh-like wire mesh. Next, the ETFE granulated product was transferred to a vacuum dryer and dried at 130 ° C. for 4.5 hours, and 32 kg of ETFE granulated product 1 was obtained.
  • the volume flow rate was 4.4 mm 3 / sec
  • the melting point was 264 ° C.
  • the average particle size was 1.6 mm
  • the ETFE fine particle content was 0.14% by mass.
  • the ETFE granulated product 1 was formed into pellets with a single screw extruder to obtain ETFE pellets 1. It was 0.17 mass% when the ETFE oligomer content of the ETFE pellet 1 was measured. Moreover, the electric wire which coat
  • Example 2 Granulation was carried out in the same manner as in Example 1 except that the time for distilling the polymerization medium and the residual monomers of ethylene and tetrafluoroethylene out of the granulation tank was 115 minutes, and 32 kg of ETFE granulated product 2 was obtained. .
  • the molar flow rate was 3.4 mm 3 / sec, the melting point was 264 ° C., the average particle size was 1.7 mm, and the ETFE fine particle content was 0.06% by mass.
  • the ETFE granulated product 2 was formed into pellets with a single screw extruder to obtain ETFE pellets 2. It was 0.18 mass% when the ETFE oligomer content of the ETFE pellet 2 was measured.
  • Example 3 Granulation was carried out in the same manner as in Example 1 except that the time for distilling the polymerization medium and the residual monomers of ethylene and tetrafluoroethylene from the granulation tank was 147 minutes, and 32 kg of ETFE granulated product 3 was obtained. .
  • the ETFE granulated product 3 was formed into pellets with a single screw extruder to obtain ETFE pellets 3. It was 0.18 mass% when ETFE oligomer content of the ETFE pellet 3 was measured.
  • ETFE granulated product 4 is obtained by granulating in the same manner as in Example 1 except that the time for distilling the polymerization medium and the residual monomers of ethylene and tetrafluoroethylene from the granulation tank is 80 minutes. Moreover, the ETFE granulated material 4 is shape
  • Example 1 Polymerization was performed in the same manner as in Example 1, and the resulting ETFE2 slurry was granulated over 262 minutes to remove the polymerization medium and residual monomers of ethylene and tetrafluoroethylene. Subsequently, it dried similarly to Example 1, and 32 kg of ETFE granulated material 5 was obtained.
  • the ETFE granulated product 5 was formed into pellets with a single screw extruder, and ETFE pellets 5 were obtained. It was 0.26 mass% when the ETFE oligomer content of the ETFE pellet 5 was measured. Moreover, the electric wire which coat
  • the ETFE granulation method of the present invention is excellent in productivity, and the obtained ETFE granulated product has a low ETFE oligomer content, and the molded product is excellent in heat resistance. Moreover, since the granulated product has a low content of ETFE fine particles, it is excellent in handling properties. Therefore, the ETFE granulated product of the present invention can be used in fields where excellent heat resistance is required in addition to the use of ordinary ETFE granulated products.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2008-335047 filed on Dec. 26, 2008 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 エチレン/テトラフルオロエチレン共重合体オリゴマーの含有量が少なく、ハンドリング性に優れるETFEの造粒物の製造方法を提供する。 エチレン/テトラフルオロエチレン共重合体の造粒方法であって、エチレン及びテトラフルオロエチレンの共存下に、エチレン/テトラフルオロエチレン共重合体のスラリーを水と共に、造粒温度10~130℃で、造粒時間30~240分間撹拌して造粒することを特徴とするエチレン/テトラフルオロエチレン共重合体の造粒方法。

Description

エチレン/テトラフルオロエチレン共重合体の造粒方法
 本発明は、エチレン/テトラフルオロエチレン共重合体の造粒物の製造方法に関する。
 エチレン/テトラフルオロエチレン共重合体(以下、ETFEともいう。)は、耐熱性、耐薬品性、電気絶縁性、難燃性、耐候性及び成形加工性に優れており、航空機や原子力発電所、自動車、産業用ロボットに使われる電線の絶縁被覆材料として使用されている。
 溶液重合や懸濁重合といった重合方法で得られるETFEを造粒すると、重合で得られたETFEのハンドリング性が向上し、溶融押出成形にてETFEをペレット状に成形する際に、配管輸送時や押出機への搬送配管がETFEにより閉塞しにくくなる。また、ETFEを粉砕して所望の粒子径を有するファインパウダーに加工する際にも、造粒されたETFEはハンドリング性に優れるので好ましい。
 ETFEの造粒方法としては、溶液重合や懸濁重合といった重合方法でエチレンとテトラフルオロエチレン、必要に応じてその他のコモノマーを共重合した後に、未反応のモノマーガスをパージ(purge)し、続いてETFEのスラリーを造粒してETFE造粒物を得る方法が公知である(特許文献1を参照)。
 ETFE造粒物を効率的且つ低コストで製造するためには、重合槽からETFEスラリーをモノマーガスの圧力で造粒槽に移送することが、移送ポンプ等の設備が不要であるので好ましい。
 しかしながら、造粒槽においてエチレン/テトラフルオロエチレンのモノマーガスの共存下に、該モノマーガスと重合媒体を回収しながらETFEを造粒すると、造粒槽内でETFEオリゴマーが生成する場合があり、ETFEの用途によっては、ETFEの特性が充分でない場合があった。また、造粒条件によってはETFE造粒物にETFE微粒子が含有されるので、配管を閉塞させる場合があった。
特許第3500655号公報
 本発明の目的は、上記のような背景のもとに開発が要請されている、ETFEオリゴマーの含有量が少なく、ハンドリング性に優れるETFEの造粒方法を提供することである。
 本発明は、以下の構成を有するETFEの造粒方法を提供する。
 [1]ETFEの造粒方法であって、エチレン及びテトラフルオロエチレンの共存下に、ETFEのスラリーを水と共に、造粒温度10~130℃で、造粒時間30~240分間撹拌して造粒することを特徴とするETFEの造粒方法。
 [2]前記スラリーが、重合媒体を含有し、該重合媒体が、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール及び炭化水素からなる群から選ばれる少なくとも1種である上記[1]に記載のETFEの造粒方法。
 [3]前記ETFEの造粒方法により得られた、造粒物に含まれるETFEオリゴマーの量が0.23質量%以下である、上記[1]又は[2]に記載のETFEの造粒方法。
 [4]前記撹拌に用いる撹拌翼の回転数が30~500rpmで撹拌する上記[1]~[3]のいずれかに記載のETFEの造粒方法。
 [5]前記スラリーに含まれるETFEの濃度が、50~200g/L(重合媒体)である上記[1]~[4]のいずれかに記載のETFEの造粒方法。
 [6]造粒開始時のETFEのスラリーに共存するエチレン及びテトラフルオロエチレンの合計量が、0.01~0.5Nm3/L(重合媒体)である上記[1]~[5]のいずれかに記載のETFEの造粒方法。
 [7]撹拌に用いる撹拌翼がアンカー翼またはディスクタービン翼である上記[1]~[6]のいずれかに記載のETFEの造粒方法。
 [8]前記ETFEの造粒方法により得られた、ETFE造粒物に含まれる粒子径が0.15mm未満であるETFE微粒子の含有量が0.3質量%以下である上記[1]~[7]のいずれかに記載のETFEの造粒方法。
 [9]前記造粒物の平均粒子径が、0.5~5mmである上記[1]~[8]のいずれかに記載のETFEの造粒方法。
 [10]前記ETFEが、テトラフルオロエチレンに基づく繰返し単位、エチレンに基づく繰返し単位及びCH=CX(CFY(ここで、X及びYはそれぞれ独立に水素原子又はフッ素原子であり、nは2~8の整数である。)で表される化合物に基づく繰返し単位を含有し、テトラフルオロエチレンに基づく繰返し単位/エチレンに基づく繰返し単位(モル比)が、80/20~20/80であり、CH=CX(CFYで表される化合物に基づく繰返し単位の含有量が、該ETFEの全繰返し単位中において、0.01~20モル%である、上記[1]~[9]のいずれかに記載のETFEの造粒方法。
 本発明のETFEの造粒方法によって製造されたETFE造粒物は、ETFEオリゴマーの含有量が少なく、成形性、機械的強度、電気絶縁性等の物性に優れ、さらにETFE造粒物に含まれるETFE微粒子の含有量が少ないのでハンドリング性にも優れる。
 本発明のETFEの造粒方法において用いられる、ETFEスラリーとしては、懸濁重合、溶液重合、乳化重合、塊状重合等の各種方法で製造された、ETFEスラリーが挙げられ、懸濁重合、溶液重合で製造されたETFEスラリーがより好ましく、溶液重合で製造されたETFEスラリーが最も好ましい。ここで、ETFEスラリーとは、ETFEが重合媒体に溶解、又は、膨潤して懸濁した状態にあるものをいう。
 本発明に用いられるETFEスラリーは、重合媒体の存在下に、ラジカル重合開始剤、分子量を調節するための連鎖移動剤等とともに、所定の温度で、所定時間、撹拌下に、エチレン、テトラフルオロエチレン、及び、必要に応じて、その他のモノマーを重合させて得られるものが好ましい。
 ETFEとしては、エチレン(以下、「E」と称する場合がある。)に基づく繰返し単位とテトラフルオロエチレン(以下、「TFE」と称する場合がある。)に基づく繰返し単位を含有し、その含有比(モル比)が80/20~20/80が好ましく、70/30~30/70がより好ましく、60/40~40/60が最も好ましい。
 (Eに基づく繰返し単位)/(TFEに基づく繰返し単位)のモル比が極端に大きいと、当該ETFEの耐熱性、耐候性、耐薬品性、薬液透過防止性等が低下する場合があり、一方、当該モル比が極端に小さいと、機械的強度、溶融成形性等が低下する場合がある。この範囲にあると、当該ETFEが、耐熱性、耐候性、耐薬品性、薬液透過防止性、機械的強度、溶融成形性等に優れたものとなる。
 また、ETFEには、上記Eに基づく繰返し単位及びTFEに基づく繰返し単位に加えて、その本質的な特性を損なわない範囲で他のモノマーの一種類以上に基づく繰返し単位を含んでもよい。
 他のモノマーとしては、プロピレン、ブテン等のα-オレフィン類;CH=CX(CFY(ここで、X及びYはそれぞれ独立に水素原子又はフッ素原子であり、nは2~8の整数である。)で表される化合物;フッ化ビニリデン(VDF)、フッ化ビニル(VF)、トリフルオロエチレン、ヘキサフルオロイソブチレン(HFIB)等の不飽和基に水素原子を有するフルオロオレフィン;ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)、パーフルオロ(ブチルビニルエーテル)(PBVE)、その他パーフルオロ(アルキルビニルエーテル)(PAVE)等の不飽和基に水素原子を有しないフルオロオレフィン(ただし、TFEを除く。)、CF=CFOCFCF=CF、CF=CFO(CFCF=CF等の不飽和結合を有するパーフルオロビニルエーテル類;ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)(PDD)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等の脂肪族環構造を有する含フッ素モノマー類等が挙げられる。他のモノマーは1種又は2種以上を用いることができる。
 これら他のモノマーとしては、なかでも、前記一般式CH=CX(CFYで表される化合物(以下、「FAE」という。)を使用することが好ましい。FAEは、上記のとおり、一般式CH=CX(CFY(ここで、X及びYはそれぞれ独立に水素原子又はフッ素原子であり、nは2~8の整数である。)で表される化合物である。式中のnが2未満であるとETFEの特性が不十分(例えば、ETFE形成体のストレスクラック発生等)となる場合があり、一方、式中のnが8を超えると重合反応性の点で不利になる場合がある。
 FAEとしては、CH=CF(CFF、CH=CF(CF3F、CH=CF(CF4F、CH=CF(CF5F、CH=CF(CF8F、CH=CF(CFH、CH=CF(CF3H、CH=CF(CF4H、CH=CF(CF5H、CH=CF(CF8H、CH=CH(CFF、CH=CH(CF3F、CH=CH(CF4F、CH=CH(CF5F、CH=CH(CF8F、CH=CH(CFH、CH=CH(CF3H、CH=CH(CF4H、CH=CH(CF5H、CH=CH(CF8H等が挙げられる。FAEは1種又は2種以上を用いることができる。
 なかでも、CH=CH(CFYで表される化合物がより好ましく、その場合、式中のnは、n=2~6であることが、その成形体が耐ストレスラック性に優れるのでさらに好ましく、n=2~4が最も好ましい。
 ETFEにおけるFAEに基づく繰返し単位の含有量は、当該ETFEの全繰返し単位中において、0.01~20モル%であることが好ましく、0.1~15モル%であることがより好ましく、1~10モル%であることがさらに好ましい。FAEの含有量が前記の値未満であると、ETFEから形成される成形体の耐ストレスクラック性が低下し、ストレス下において割れる等の破壊現象が発生する場合があり、前記の値を超えると、当該ETFEの機械的強度が低下する場合がある。
 ETFEスラリーの製造に用いられる、前記重合媒体としては、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒等が挙げられる。
 重合媒体としては、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール及び炭化水素からなる群から選ばれる少なくとも1種であることが好ましい。
 重合媒体の具体例としては、n-パーフルオロヘキサン、n-パーフルオロヘプタン、パーフルオロシクロブタン、パーフルオロシクロヘキサン、パーフルオロベンゼン等のパーフルオロカーボン類;1,1,2,2-テトラフルオロシクロブタン、CF3CFHCFCFCF3、CF3(CF4H、CF3CFCFHCFCF3、CF3CFHCFHCFCF3、CFHCFHCFCFCF3、CF3(CF5H、CF3CH(CF3)CFCFCF3、CF3CF(CF3)CFHCFCF3、CF3CF(CF3)CFHCFHCF3、CF3CH(CF3)CFHCFCF3、CF3CFCHCH3、CF3(CF3CHCH3等のハイドロフルオロカーボン類;CF3CHOCFCFH、CF3(CF3)CFCFOCH3、CF3(CF3OCH3等のハイドロフルオロエーテル類;1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン等のフッ素化塩素化炭化水素が挙げられる。なかでも、CF3(CF5H、CF3CHOCFCFHがより好ましく、CF3(CF5Hが最も好ましい。
 前記連鎖移動剤としては、メタノール、エタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、2,2,3,3,3-ペンタフルオロプロパノール等のアルコール類;1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン等のフッ化塩化炭化水素;n-ペンタン、n-ヘキサン、n-ヘプタン、シクロヘキサン等の炭化水素類;CF等のハイドロフルオロカーボン類;アセトン等のケトン類;メチルメルカプタン等のメルカプタン類;酢酸メチル、酢酸エチル等のエステル類;ジエチルエーテル、メチルエチルエーテル等のエーテル類;等が挙げられる。なお、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン等のフッ素化塩素化炭化水素は、連鎖移動係数が小さいので、重合媒体としても用いることができる。
 前記ラジカル重合開始剤としては、半減期が10時間である温度が、0~100℃であるラジカル重合開始剤が好ましく、20~90℃であるラジカル重合開始剤がより好ましい。
 具体例としては、アゾビスイソブチロニトリル等のアゾ化合物;ジイソプロピルパーオキシジカ-ボネ-ト等のパーオキシジカ-ボネ-ト;tert-ブチルパーオキシピバレ-ト、tert-ブチルパーオキシイソブチレ-ト、tert-ブチルパーオキシアセテ-ト等のパーオキシエステル;イソブチリルパーオキシド、オクタノイルパーオキシド、ベンゾイルパーオキシド、ラウロイルパーオキシド等の非フッ素系ジアシルパーオキシド;(Z(CFCOO)(ここで、Zは水素原子、フッ素原子又は塩素原子であり、pは1~10の整数である。)等の含フッ素ジアシルパーオキシド;パーフルオロtert-ブチルパーオキシド;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物;等が挙げられる。
 ETFE製造時における重合条件は特に限定されず、重合温度は0~100℃が好ましく、20~90℃がより好ましい。重合圧力は0.1~10MPaが好ましく、0.5~3MPaがより好ましい。重合時間は1~30時間が好ましく、2~20時間がより好ましい。
 重合により得られるスラリーに含まれるETFEの濃度としては、50~200g/L(重合媒体)が好ましく、100~180g/L(重合媒体)がより好ましい。ETFEの濃度がこの範囲より低いと、バッチあたりの造粒物の収量が少なくなり、生産性が低下する。濃度がこの範囲より高いと、ETFE微粒子が発生し易く、ETFE造粒物にETFE微粒子が含まれ易い。スラリーに含まれるETFEの濃度が、上記範囲にあると、ETFE造粒物の生産性に優れ、ETFE微粒子が発生しにくく、ETFE造粒物に、ETFE微粒子が含まれにくい。
 本発明の造粒方法におけるETFEのスラリーは、種々の重合方法で製造された後、ETFEスラリーに含有されるエチレン及びテトラフルオロエチレン等の未反応モノマーと一緒に配管を通して、重合槽から造粒槽へ輸送されることが好ましい。造粒槽において、ETFEスラリーに、ETFE造粒物の分散媒となる水を所定量加えた後、造粒槽内でETFEスラリーと水とを撹拌しながら加熱し、エチレン及びテトラフルオロエチレン等のモノマー、重合媒体、連鎖移動剤等の揮発成分を留出させながら、粉体状のETFEが造粒されることが好ましい。
 本発明の造粒方法において、エチレン及びテトラフルオロエチレン等のモノマーや重合媒体等の蒸気により造粒槽内の圧力が上昇するので、造粒槽の圧力が一定となるように造粒槽から前記成分を連続的に留出し、回収しながら造粒することが好ましい。造粒槽から留出したエチレン及びテトラフルオロエチレン等のモノマーや重合媒体は、熱交換器や脱水塔を経由させてからガスホルダーや重合媒体タンクに回収し、再利用することが好ましい。
 本発明の造粒方法において、造粒温度は、10~130℃が好ましく、20~110℃がより好ましい。造粒温度が前記範囲より低いと、エチレン及びテトラフルオロエチレンのガス状モノマーや重合媒体の留出に時間を要し、ETFEオリゴマーの生成量が増加する。造粒温度が前記範囲より高いと、ETFE造粒物の分散媒として存在している水が蒸発する。造粒温度が上記範囲にあると、ETFEスラリーを水中に分散させながらガス状モノマーや重合媒体を短時間で留出させることができるので、ETFEオリゴマー含有量が少なく、且つ均一な粒子系のETFE造粒物を製造することができる。
 スラリーの造粒時間は、30~240分間が好ましく、60~200分間がより好ましく、80~150分間がさらに好ましい。造粒時間を前記範囲よりも短くすると、ガス状モノマーや重合媒体を急激に留出するため、造粒槽の加熱装置や、留出したモノマーや重合媒体を液化する装置の容量を大きくする必要が生じる。造粒時間を前記範囲よりも長くすると、造粒槽内で生成するETFEオリゴマー量が増加したり、製造工程が長くなり生産効率が低下する。造粒時間が上記範囲にあると、経済性に優れた装置を用いて、ETFEオリゴマー含有量の少ないETFE造粒物を効率的に製造できる。なお、造粒時間とは、造粒槽におけるエチレン及びテトラフルオロエチレンのモノマー、並びに重合媒体が留出し始めてから留出の終了までの時間をいう。
 本発明の造粒方法において、撹拌に用いる撹拌翼の回転数は30~500rpmが好ましく、50~500rpmがより好ましく、80~250rpmが最も好ましい。該回転数が前記範囲よりも遅いと、十分にスラリーが撹拌されず、均一な粒子径の造粒物が得られない。撹拌回転数が前記範囲よりも速いと、造粒物の粒子径が小さくなる。撹拌回転数が上記範囲にあると、粒子径が0.15mm未満であるETFE微粒子の含有量が少なく、粒子径が均一で、ハンドリングに優れたETFE造粒物を製造することができる。
 撹拌翼は、アンカー翼またはディスクタービン翼が好ましい。これらの撹拌翼を併用したり、複数の撹拌翼を使用しても良い。また、良好な撹拌状態を得るために、邪魔板を使用することも好ましい。
 造粒開始時のETFEスラリーに含まれるモノマーであるエチレン及びテトラフルオロエチレンの含有量は、0.01~0.5Nm3/L(重合媒体)が好ましく、0.02~0.2Nm3/L(重合媒体)がより好ましい。ETFEスラリーに含まれるモノマーの含有量が前記範囲よりも少ないと、造粒槽から該モノマーを留出し、回収する工程に時間を要する。ETFEスラリーに含まれる該モノマー量が前記範囲よりも多いと、造粒工程で生成するETFEオリゴマーの量が増加する。ETFEスラリーに含まれるモノマーの含有量が上記範囲にあると、短時間でETFEオリゴマー含有量の少ないETFE造粒物を製造できるので好ましい。
 造粒工程において、共存させるエチレンとテトラフルオロエチレンのモル比は、40/60~98/2の範囲が好ましく、55/45~97/3の範囲がより好ましく、65/35~97/3の範囲がさらに好ましい。
 本発明の造粒方法における、水の含有量は、重合媒体との質量比として、水/重合媒体=90/10~10/90が好ましく、70/30~30/70がより好ましく、60/40~40/60が最も好ましい。この範囲にあると、ETFE造粒に含まれるETFE微粒子の量が少なくなる。
 本発明の造粒方法により得られるETFE造粒物に含まれるETFEオリゴマー含有量は、0.23質量%以下が好ましく、0.20質量%以下がより好ましい。ETFEオリゴマー含有量が前記よりも多いと、押出成形する際、成形体の外観不良が発生したり、得られ成形体の耐ストレスクラック性が低下するので好ましくない。
 なお、本明細書において、ETFEオリゴマーとは、実施例に記載されているETFEオリゴマー含有量の測定方法により抽出されるものをいう。
 本発明の造粒方法により得られるETFE造粒物の平均粒子径は、0.5~5mmが好ましく、1~3mmがより好ましい。
 本発明の造粒方法により得られるETFE造粒物に含まれる、粒子径が0.15mm未満のETFE微粒子の含有量は、0.3質量%以下が好ましく、0.2質量%以下がより好ましい。ETFE微粒子の含有量が0.3質量%よりも多いと、ETFE造粒物を配管で移送したり、ホッパーから押出機へフィード(feed)する際、ブロッキング(Blocking)が発生することがある。
 本発明におけるETFEの容量流速(以下、Q値ともいう。)は、0.01~1000mm3/秒が好ましく、0.1~500mm3/秒がより好ましく、1~200mm3/秒が最も好ましい。Q値は、含フッ素共重合体の溶融流動性を表す指標であり、分子量の目安となる。Q値が大きいと分子量が小さいことを、Q値が小さいと分子量が大きいことを示す。Q値は、島津製作所社製フローテスターを用いて、樹脂の融点より50℃高い温度において、荷重7kg下に直径2.1mm、長さ8mmのオリフィス中に押出すときの含フッ素共重合体の押出し速度である。容量流速が上記範囲にあると、フッ素樹脂は押出し成形性、機械的強度に優れる。
 以下に実施例及び比較例を挙げて本発明を説明するが、本発明はこれらに限定されない。
 実施例における各種物性の測定、評価は、以下のようにして行った。
 [ETFE共重合組成(モル%)]
 FT-IR(フーリエ変換赤外分光光度計)により測定した。
 [容量流速(mm3/秒)]
 島津製作所社製フロ-テスタを用いて、297℃、荷重7kg下に直径2.1mm、長さ8mmのオリフィスからフッ素樹脂を押出すときの押出し速度を測定した。
 [融点(℃)]
 走査型示差熱分析器(SIIナノテクノロジーズ社製、DSC7020)を用いて、空気雰囲気下に300℃まで10℃/分で昇温し、加熱した際の吸熱ピークから求めた。
 [ETFE造粒物の平均粒径]
 ETFE造粒物を目開き2.0mm、1.4mm、1.0mm、0.710mm、0.500mm、0.212mm及び0.150mmの篩にかけ、質量平均値から平均粒子径を算出した。
 [ETFE微粒子の含有量(質量%)]
 ETFE造粒物を目開き0.15mmの篩にかけ、篩を通過したETFE微粒子の質量を測定した。
 [ETFEオリゴマー含有量(質量%)]
 ペレット状に成形したETFEの30g、及び1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(旭硝子社製、R-225cb、以下、R-225cbという。)の300gを、PTFE(ポリテトラフルオロエチレン)製内筒を有する圧力容器に入れ、圧力容器を150℃のオーブンで12時間加熱した。オーブンから取り出した圧力容器を室温まで冷却し、ETFEとR-225cbの混合物をろ過し、ろ液に含まれるR-225cbをロータリーエバポレーターにて完全に蒸発させ、抽出されたETFEオリゴマーの質量を測定した。
 [耐ストレスクラック性試験]
 被覆電線を195℃に加熱したオーブンで96時間熱処理した後、その電線を電線自身に8回転以上巻きつけた状態で固定し、200℃に加熱したオーブンで1時間熱処理した際のクラック発生状況を確認した。各ロット毎に、5本の電線を評価した。
 [実施例1]
 真空引きした430リットルのステンレス鋼製オートクレーブに、CF3(CF5Hの317.2kg、R-225cbの100.5kg、及び(パーフルオロブチル)エチレンの1.24kgを仕込み、撹拌しながら66℃まで昇温し、テトラフルオロエチレン/エチレン=83/17(モル%)の混合ガスを1.5MPaGになるまで導入し、tert-ブチルパーオキシピバレートの1質量%CF(CFH溶液の536gを注入し、重合を開始した。重合中は、圧力が1.5MPaGとなるようにテトラフルオロエチレン/エチレン=54/46(モル%)の混合ガス及び前記混合ガスに対して1.0モル%に相当する量の(パーフルオロブチル)エチレンを連続的に添加した。次いで、テトラフルオロエチレン/エチレン混合ガスの31kgを仕込んだ後にオートクレーブを冷却し、残留モノマーガスの一部をパージし、ETFE1のスラリーを得た。該スラリーは、重合媒体(CF3(CF5HとR-225cbとの合計量)の1リットルに対して0.089Nmのエチレン及びテトラフルオロエチレンのモノマーと127gのETFEを含有していた。
 ついで、該スラリーを850リットルの造粒槽へ移し、340Lの水を加え、ディスクタービン翼を100rpmで回転させて撹拌しながら、40から104℃まで昇温しながら加熱し、95分間かけて重合媒体と残留モノマーを留出させ、ETFEを造粒した。次いで、水とETFE造粒物をメッシュ状の金網を用いて分離した。次いで、ETFE造粒物を真空乾燥機に移送して130℃で4.5時間乾燥し、ETFE造粒物1の32kgが得られた。
 得られたETFE造粒物1は、共重合組成がテトラフルオロエチレンに基く繰返し単位/エチレンに基く繰返し単位/(パーフルオロブチル)エチレンに基く繰返し単位=53.9/45.2/0.9(モル%)であり、容量流速は4.4mm/秒であり、融点は264℃であり、平均粒径は1.6mmであり、ETFE微粒子含有量は0.14質量%であった。
 ETFE造粒物1を単軸押出機にてペレット状に成形し、ETFEペレット1を得た。ETFEペレット1のETFEオリゴマー含有量を測定したところ、0.17質量%であった。また、溶融押出成形によって直径1.8mmの芯線に0.5mmの厚さでETFE1を被覆した電線を成形した。得られた電線の耐ストレスクラック性試験をしたところ、5本のサンプル全てについてクラックの発生はなかった。
 [実施例2]
 造粒槽から重合媒体とエチレン及びテトラフルオロエチレンの残留モノマーを留出させる時間を115分間にした以外は、実施例1と同様に造粒を行い、ETFE造粒物2の32kgが得られた。
 得られたETFE造粒物2は、共重合組成がテトラフルオロエチレンに基く繰返し単位/エチレンに基く繰返し単位/(パーフルオロブチル)エチレンに基く繰返し単位=54.0/45.1/0.9(モル%)であり、容量流速は3.4mm/秒であり、融点は264℃であり、平均粒径は1.7mmであり、ETFE微粒子含有量は0.06質量%であった。
 ETFE造粒物2を単軸押出機にてペレット状に成形し、ETFEペレット2を得た。ETFEペレット2のETFEオリゴマー含有量を測定したところ、0.18質量%であった。
 [実施例3]
 造粒槽から重合媒体とエチレン及びテトラフルオロエチレンの残留モノマーを留出させる時間を147分間にした以外は、実施例1と同様に造粒を行い、ETFE造粒物3の32kgが得られた。
 得られたETFE造粒物3は、共重合組成がテトラフルオロエチレンに基く繰返し単位/エチレンに基く繰返し単位/(パーフルオロブチル)エチレンに基く繰返し単位=53.8/45.3/0.9(モル%)であり、容量流速は3.9mm/秒であり、融点は265℃であり、平均粒径は1.1mmであり、ETFE微粒子含有量は0.14質量%であった。
 ETFE造粒物3を単軸押出機にてペレット状に成形し、ETFEペレット3を得た。ETFEペレット3のETFEオリゴマー含有量を測定したところ、0.18質量%であった。
 [実施例4]
 造粒槽から重合媒体とエチレン及びテトラフルオロエチレンの残留モノマーを留出させる時間を80分間にした以外は、実施例1と同様に造粒をして、ETFE造粒物4を得る。
 また、ETFE造粒物4を単軸押出機にてペレット状に成形し、ETFEペレット4を得る。ETFEペレット4のETFEオリゴマー含有量を測定すると、0.16質量%である。
 [比較例1]
 実施例1と同様に重合を行い、得られたETFE2のスラリーを262分間かけて造粒して、重合媒体とエチレン及びテトラフルオロエチレンの残留モノマーを除去した。次いで、実施例1と同様に乾燥し、ETFE造粒物5の32kgが得られた。
 得られたETFE造粒物5の共重合組成はテトラフルオロエチレンに基く繰返し単位/エチレンに基く繰返し単位/(パーフルオロブチル)エチレンに基く繰返し単位=54.2/44.8/1.0(モル%)であり、容量流速は4.2mm/秒であり、融点は263℃であり、平均粒径は1.6mmであり、微粉量は0.37質量%であった。
 ETFE造粒物5を単軸押出機にてペレット状に成形し、ETFEペレット5が得られた。ETFEペレット5のETFEオリゴマー含有量を測定したところ、0.26質量%であった。また、溶融押出成形によって直径1.8mmの芯線に0.5mmの厚さでETFEペレット5を被覆した電線を成形した。得られた電線の耐ストレスクラック性を試験したところ、5本のサンプル全てにクラックが発生した。
 本発明のETFEの造粒方法は、生産性に優れ、得られたETFE造粒物はETFEオリゴマー含有量が少なく、その成形物は耐熱性に優れる。また、該造粒物は、ETFE微粒子の含有量が少ないため、ハンドリング性に優れる。
 従って、本発明のETFE造粒物は、通常のETFE造粒物の用途の他に、優れた耐熱性が要求される分野で用いることができる。
 なお、2008年12月26日に出願された日本特許出願2008-335047号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  エチレン/テトラフルオロエチレン共重合体の造粒方法であって、エチレン及びテトラフルオロエチレンの共存下に、エチレン/テトラフルオロエチレン共重合体のスラリーを水と共に、造粒温度10~130℃で、造粒時間30~240分間撹拌して造粒することを特徴とするエチレン/テトラフルオロエチレン共重合体の造粒方法。
  2.  前記スラリーが、重合媒体を含有し、該重合媒体が、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール及び炭化水素からなる群から選ばれる少なくとも1種である請求項1に記載のエチレン/テトラフルオロエチレン共重合体の造粒方法。
  3.  前記エチレン/テトラフルオロエチレン共重合体の造粒方法により得られた、造粒物に含まれるエチレン/テトラフルオロエチレン共重合体オリゴマーの量が0.23質量%以下である請求項1または2に記載のエチレン/テトラフルオロエチレン共重合体の造粒方法。
  4.  前記撹拌に用いる撹拌翼の回転数が30~500rpmである請求項1~3のいずれかに記載のエチレン/テトラフルオロエチレン共重合体の造粒方法。
  5.  前記スラリーに含まれるエチレン/テトラフルオロエチレン共重合体の濃度が、50~200g/L(重合媒体)である請求項1~4のいずれかに記載のエチレン/テトラフルオロエチレン共重合体の造粒方法。
  6.  造粒開始時のエチレン/テトラフルオロエチレン共重合体のスラリーに共存するエチレン及びテトラフルオロエチレンの合計量が、0.01~0.5Nm/L(重合媒体)である請求項1~5のいずれかに記載のエチレン/テトラフルオロエチレン共重合体の造粒方法。
  7.  撹拌に用いる撹拌翼がアンカー翼またはディスクタービン翼である請求項1~6のいずれかに記載のエチレン/テトラフルオロエチレン共重合体の造粒方法。
  8.  前記エチレン/テトラフルオロエチレン共重合体の造粒方法により得られた、エチレン/テトラフルオロエチレン共重合体造粒物に含まれる粒子径が0.15mm未満であるエチレン/テトラフルオロエチレン共重合体微粒子の含有量が0.3質量%以下である請求項1~7のいずれかに記載のエチレン/テトラフルオロエチレン共重合体の造粒方法。
  9.  前記造粒物の平均粒子径が、0.5~5mmである請求項1~8のいずれかに記載のエチレン/テトラフルオロエチレン共重合体の造粒方法。
  10.  前記エチレン/テトラフルオロエチレン共重合体が、テトラフルオロエチレンに基づく繰返し単位、エチレンに基づく繰返し単位及びCH=CX(CFY(ここで、X及びYはそれぞれ独立に水素原子又はフッ素原子であり、nは2~8の整数である。)で表される化合物に基づく繰返し単位を含有し、テトラフルオロエチレンに基づく繰返し単位/エチレンに基づく繰返し単位(モル比)が、80/20~20/80であり、CH=CX(CFYで表される化合物に基づく繰返し単位の含有量が、該エチレン/テトラフルオロエチレン共重合体の全繰返し単位中において、0.01~20モル%である、請求項1~9のいずれかに記載のエチレン/テトラフルオロエチレン共重合体の造粒方法。
PCT/JP2009/071259 2008-12-26 2009-12-21 エチレン/テトラフルオロエチレン共重合体の造粒方法 WO2010074039A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2011131061/05A RU2531305C2 (ru) 2008-12-26 2009-12-21 Способ гранулирования сополимера этилен/тетрафторэтилен
CN2009801531467A CN102264806B (zh) 2008-12-26 2009-12-21 乙烯-四氟乙烯共聚物的造粒方法
JP2010544059A JP5644503B2 (ja) 2008-12-26 2009-12-21 エチレン/テトラフルオロエチレン共重合体の造粒方法
EP09834840.2A EP2371880B1 (en) 2008-12-26 2009-12-21 Ethylene/tetrafluoroethylene copolymer granulation method
US13/163,800 US8292203B2 (en) 2008-12-26 2011-06-20 Method for granulating ethylene/tetrafluoroethylene copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008335047 2008-12-26
JP2008-335047 2008-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/163,800 Continuation US8292203B2 (en) 2008-12-26 2011-06-20 Method for granulating ethylene/tetrafluoroethylene copolymer

Publications (1)

Publication Number Publication Date
WO2010074039A1 true WO2010074039A1 (ja) 2010-07-01

Family

ID=42287648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071259 WO2010074039A1 (ja) 2008-12-26 2009-12-21 エチレン/テトラフルオロエチレン共重合体の造粒方法

Country Status (6)

Country Link
US (1) US8292203B2 (ja)
EP (1) EP2371880B1 (ja)
JP (1) JP5644503B2 (ja)
CN (1) CN102264806B (ja)
RU (1) RU2531305C2 (ja)
WO (1) WO2010074039A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005743A1 (ja) * 2011-07-05 2013-01-10 旭硝子株式会社 フッ素樹脂ペレットの処理方法
WO2013012036A1 (ja) 2011-07-19 2013-01-24 旭硝子株式会社 エチレン-テトラフルオロエチレン共重合体の粉体の製造方法
WO2014112592A1 (ja) * 2013-01-18 2014-07-24 旭硝子株式会社 エチレン-テトラフルオロエチレン共重合体乾燥物、ペレットおよび成形物の製造方法
JP2019025742A (ja) * 2017-07-28 2019-02-21 Agc株式会社 フッ素樹脂ペレットおよびその製造方法、ならびに電線の製造方法
WO2023033134A1 (ja) * 2021-09-06 2023-03-09 Agc株式会社 精製粉末の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103497270B (zh) * 2013-10-16 2016-08-17 上海三爱富新材料股份有限公司 乙烯/四氟乙烯共聚物浆液的后处理方法
CN105061660B (zh) * 2015-08-05 2018-08-24 上海三爱富新材料科技有限公司 可熔性聚四氟乙烯的制造方法
CN109796708B (zh) * 2019-02-18 2020-05-08 武汉理工大学 一种ptfe基复合介质板用浸渍浆料的物理混合方法及浸渍浆料和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4851084A (ja) * 1971-10-29 1973-07-18
JPS62101632A (ja) * 1985-10-23 1987-05-12 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 溶融処理可能なテトラフルオロエチレン共重合体及びその製造方法
JPH1135694A (ja) * 1997-07-24 1999-02-09 Asahi Glass Co Ltd 含フッ素重合体の造粒方法
JP2000103865A (ja) * 1998-09-30 2000-04-11 Asahi Glass Co Ltd 含フッ素重合体粉末の製造方法
JP3500655B2 (ja) 1993-04-26 2004-02-23 旭硝子株式会社 含フッ素重合体の造粒方法
JP2004168982A (ja) * 2002-11-22 2004-06-17 Asahi Glass Co Ltd 含フッ素重合体及びその製造方法
JP2005029704A (ja) * 2003-07-07 2005-02-03 Asahi Glass Co Ltd 含フッ素共重合体及びその造粒物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD96074A1 (ja) * 1972-04-14 1973-03-12
JPH01135694A (ja) * 1987-11-24 1989-05-29 J M Kikaku:Kk 真空蒸着法による給湿移送ローラーの製造法
DE68929472T2 (de) 1988-04-08 2004-05-13 Stryker Corp., Kalamazoo Biosynthetische knochenbildende Proteine, und sie enthaltende knochenbildende Vorrichtungen
TW384224B (en) * 1994-05-25 2000-03-11 Nano Sys Llc Method of preparing submicron particles of a therapeutic or diagnostic agent
US6518349B1 (en) * 1999-03-31 2003-02-11 E. I. Du Pont De Nemours And Company Sprayable powder of non-fibrillatable fluoropolymer
US6431478B1 (en) * 1999-06-01 2002-08-13 Elan Pharma International Limited Small-scale mill and method thereof
AU2003273132B2 (en) 2002-05-21 2010-03-04 Fire-Trace Usa, Llc Methods and apparatus for extinguishing fires
JP4120527B2 (ja) * 2002-10-04 2008-07-16 旭硝子株式会社 テトラフルオロエチレン/エチレン系共重合体組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4851084A (ja) * 1971-10-29 1973-07-18
JPS62101632A (ja) * 1985-10-23 1987-05-12 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 溶融処理可能なテトラフルオロエチレン共重合体及びその製造方法
JP3500655B2 (ja) 1993-04-26 2004-02-23 旭硝子株式会社 含フッ素重合体の造粒方法
JPH1135694A (ja) * 1997-07-24 1999-02-09 Asahi Glass Co Ltd 含フッ素重合体の造粒方法
JP2000103865A (ja) * 1998-09-30 2000-04-11 Asahi Glass Co Ltd 含フッ素重合体粉末の製造方法
JP2004168982A (ja) * 2002-11-22 2004-06-17 Asahi Glass Co Ltd 含フッ素重合体及びその製造方法
JP2005029704A (ja) * 2003-07-07 2005-02-03 Asahi Glass Co Ltd 含フッ素共重合体及びその造粒物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2371880A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340633B2 (en) 2011-07-05 2016-05-17 Asahi Glass Company, Limited Treatment method for fluororesin pellets
US20140121331A1 (en) * 2011-07-05 2014-05-01 Asahi Glass Company, Limited Treatment method for fluororesin pellets
JPWO2013005743A1 (ja) * 2011-07-05 2015-02-23 旭硝子株式会社 フッ素樹脂ペレットの処理方法
WO2013005743A1 (ja) * 2011-07-05 2013-01-10 旭硝子株式会社 フッ素樹脂ペレットの処理方法
JP2016148057A (ja) * 2011-07-05 2016-08-18 旭硝子株式会社 フッ素樹脂ペレットの処理方法
WO2013012036A1 (ja) 2011-07-19 2013-01-24 旭硝子株式会社 エチレン-テトラフルオロエチレン共重合体の粉体の製造方法
EP2735582A1 (en) * 2011-07-19 2014-05-28 Asahi Glass Company, Limited Method for producing ethylene-tetrafluoroethylene copolymer powder
JPWO2013012036A1 (ja) * 2011-07-19 2015-02-23 旭硝子株式会社 エチレン−テトラフルオロエチレン共重合体の粉体の製造方法
EP2735582A4 (en) * 2011-07-19 2015-04-08 Asahi Glass Co Ltd PROCESS FOR PREPARING AN ETHYLENE TETRAFLUOROETHYLENE COPOLYMER PULVER
US9328178B2 (en) 2011-07-19 2016-05-03 Asahi Glass Company, Limited Method for producing ethylene-tetrafluoroethylene copolymer powder
WO2014112592A1 (ja) * 2013-01-18 2014-07-24 旭硝子株式会社 エチレン-テトラフルオロエチレン共重合体乾燥物、ペレットおよび成形物の製造方法
JP2019025742A (ja) * 2017-07-28 2019-02-21 Agc株式会社 フッ素樹脂ペレットおよびその製造方法、ならびに電線の製造方法
WO2023033134A1 (ja) * 2021-09-06 2023-03-09 Agc株式会社 精製粉末の製造方法

Also Published As

Publication number Publication date
US20110240773A1 (en) 2011-10-06
EP2371880B1 (en) 2014-10-01
CN102264806B (zh) 2013-07-24
JP5644503B2 (ja) 2014-12-24
EP2371880A4 (en) 2012-05-09
CN102264806A (zh) 2011-11-30
US8292203B2 (en) 2012-10-23
RU2531305C2 (ru) 2014-10-20
RU2011131061A (ru) 2013-02-10
JPWO2010074039A1 (ja) 2012-06-14
EP2371880A1 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP5644503B2 (ja) エチレン/テトラフルオロエチレン共重合体の造粒方法
JP5663839B2 (ja) エチレン/テトラフルオロエチレン系共重合体及びその製造方法
JP4357638B2 (ja) 二酸化炭素中でのフルオロポリマーの製造方法
EP1939222B1 (en) Process for producing an aqueous polytetrafluoroethylene emulsion, and polytetrafluoroethylene fine powder and porous material produced from the same
EP2927248B1 (en) Production method for polytetrafluoroethylene aqueous dispersion
RU2441883C2 (ru) Способ получения формуемого из расплава тетрафторэтиленового сополимера
JP6950763B2 (ja) 成形材料の製造方法および成形品の製造方法
WO2004094491A1 (en) Melt-processible thermoplastic fluoropolymers having improved processing characteristics and method of producing same
JP5598476B2 (ja) 含フッ素重合体の製造方法
JP2016148057A (ja) フッ素樹脂ペレットの処理方法
JP2012241128A (ja) フルオロポリマーの製造方法
WO2014112592A1 (ja) エチレン-テトラフルオロエチレン共重合体乾燥物、ペレットおよび成形物の製造方法
EP3342790B1 (en) Method for producing fluorine-containing polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153146.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010544059

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009834840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4525/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011131061

Country of ref document: RU