WO2010073461A1 - スイッチ装置 - Google Patents

スイッチ装置 Download PDF

Info

Publication number
WO2010073461A1
WO2010073461A1 PCT/JP2009/005818 JP2009005818W WO2010073461A1 WO 2010073461 A1 WO2010073461 A1 WO 2010073461A1 JP 2009005818 W JP2009005818 W JP 2009005818W WO 2010073461 A1 WO2010073461 A1 WO 2010073461A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage value
power supply
voltage
switch
supply unit
Prior art date
Application number
PCT/JP2009/005818
Other languages
English (en)
French (fr)
Inventor
山邉之
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to JP2010543773A priority Critical patent/JP5331822B2/ja
Priority to DE112009004262.7T priority patent/DE112009004262B4/de
Publication of WO2010073461A1 publication Critical patent/WO2010073461A1/ja
Priority to US13/118,476 priority patent/US9136834B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Definitions

  • the present invention relates to a switch device.
  • FETs field effect transistors
  • the switching time of such a switch may be controlled.
  • a drive circuit that can control the switching time of the switch has a complicated configuration.
  • Patent Document 1 describes a drive circuit that controls the switching time of an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • an object of one aspect of the present invention is to provide a switch device that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous specific examples of the present invention.
  • a switch device that switches a connection state between two terminals, the switch that switches a connection state between the two terminals according to a given control voltage, and a first voltage value
  • a first power supply unit that generates a power supply voltage
  • a second power supply unit that generates a power supply voltage of a second voltage value
  • a switching instruction to switch the switch from the first state to the second state
  • the control voltage is changed to the first voltage value by the power generated by the first power supply unit
  • the time change is lower than the time change rate to the first voltage value by the power generated by the second power supply unit.
  • a drive unit that further changes the first voltage value to the second voltage value in the same direction at a rate.
  • FIG. 1 shows a configuration of a switch device 20 according to an embodiment of the present invention.
  • the gate voltage Vgs of the FET 22 is in the range from the third voltage value (V 3 ) to the first voltage value (V 1 )
  • An equivalent circuit is shown.
  • the gate voltage Vgs of the FET 22 is in the range from the first voltage value (V 1 ) to the second voltage value (V 2 ).
  • An equivalent circuit is shown.
  • An example of the time change of the gate voltage Vgs (control voltage) of the FET 22 when the first voltage value (V 1 ) is changed is shown.
  • An example of the time change of the drain-source voltage Vds of the FET 22 when the first voltage value (V 1 ) is changed is shown.
  • An example of the time change of the gate voltage Vgs (control voltage) of the FET 22 when the first voltage value (V 1 ) matches the second voltage value (V 2 ) is shown.
  • An example of a time change of the gate voltage Vgs (control voltage) of the FET 22 when the first voltage value (V 1 ) matches the third voltage value (V 3 ) is shown.
  • FIG. 1 shows a configuration of a switch device 20 according to the present embodiment.
  • the switch device 20 switches the connection state between the two terminals. More specifically, the switch device 20 opens or shorts between the first terminal 12 and the second terminal 14.
  • the switch device 20 includes an FET (field effect transistor) 22, a first power supply unit 24, a second power supply unit 26, a drive unit 28, and a change unit 30.
  • FET field effect transistor
  • the FET 22 switches the connection state between the two terminals (between the first terminal 12 and the second terminal 14) according to the applied control voltage. More specifically, the FET 22 opens or shorts between the two terminals according to the applied control voltage.
  • a switching state of the FET 22 in which one of the two terminals is opened or short-circuited is referred to as a first state
  • a switching state different from the first state of the FET 22 is referred to as a second state.
  • the FET 22 is in the first state when the control voltage having the third voltage value (V 3 ) is applied, and is in the second state when the control voltage having the second voltage value (V 2 ) is applied.
  • the FET 22 has a drain connected to the first terminal 12 and a source connected to the second terminal 14.
  • the FET 22 is supplied with a control voltage between the gate and the source which are the control terminals.
  • Such an FET 22 opens or shorts between the first terminal 12 and the second terminal 14 in accordance with a control voltage applied between the gate and the source.
  • the switch device 20 may include other types of switches instead of the FET 22 as long as the switch device 20 is a switch that switches the connection state between the first terminal 12 and the second terminal 14 in accordance with the applied control voltage. Good.
  • the switch device 20 may be configured to include an IGBT or the like instead of the FET 22.
  • the first power supply unit 24 generates a power supply voltage having a first voltage value (V 1 ).
  • the first power supply unit 24 generates a power supply voltage having a first voltage value (V 1 ) from a first output terminal (a positive terminal in FIG. 1 ).
  • the first voltage value (V 1) it may be a voltage value lower than the third voltage value (V 3), may be a voltage higher than the third voltage value (V 3).
  • the first power supply unit 24 can change the first voltage value (V 1 ) from the outside.
  • the first power supply unit 24 receives data representing the first voltage value (V 1 ) to be generated from the outside, and generates a power supply voltage having a value corresponding to the given data.
  • the second power supply unit 26 generates a power supply voltage having a second voltage value (V 2 ).
  • the second power supply unit 26 generates a power supply voltage having a second voltage value (V 2 ) from a first output terminal (a positive terminal in FIG. 1).
  • the second power supply unit 26, as an example, to generate a power supply voltage of the second output terminal a third voltage value from the (negative terminal in FIG. 1) (V 3). That is, the second output terminal of the second power supply unit 26 generates the same voltage as the second output terminal of the first power supply unit 24.
  • the second voltage value (V 2 ) is a voltage value having the same polarity as the first voltage value (V 1 ) when the third voltage value (V 3 ) is used as a reference (for example, 0 V).
  • the absolute value of the potential difference from the third voltage value (V 3 ) is equal to or greater than the first voltage value (V 1 ). That is, the first voltage value (V 1 ), the second voltage value (V 2 ), and the third voltage value (V 3 ) are V 2 ⁇ V 1 ⁇ V 3 , or V 2 ⁇ V 1 ⁇ V 3. (Where V 2 ⁇ V 3 ).
  • the voltage drop of the power supply voltage generated by the second power supply unit 26 is applied to the FET 22.
  • the second power supply unit 26 generates a voltage value obtained by adding the second voltage value (V 2 ) and the voltage drop.
  • the drive unit 28 receives a control signal representing a switching instruction for switching the FET 22 to the first state or the second state.
  • the drive unit 28 applies a control voltage having a third voltage value (V 3 ) to the FET 22.
  • the driving unit 28 gives the FET 22 a control voltage of the second voltage value (V 2 ).
  • the drive unit 28 changes the control voltage as follows in response to receiving a switching instruction to switch the FET 22 from the first state to the second state. That is, in this case, the drive unit 28 changes the control voltage from the third voltage value (V 3 ) to the first voltage value (V 1 ) by the power generated by the first power supply unit 24, and then the second power supply. the power section 26 occurs, the change in the same direction to the first voltage value (V 1), further changing the first voltage value from (V 1) to a second voltage value (V 2). Further, in this case, the drive unit 28 sets the control voltage at the first voltage value (V 3 ) at a time change rate lower than the time change rate from the third voltage value (V 3 ) to the first voltage value (V 1 ). 1 ) to the second voltage value (V 2 ).
  • the drive unit 28 includes, as an example, a first transistor 32, a second transistor 34, an input switch 36, a diode 38, and a resistor 40.
  • the first transistor 32 has a collector connected to the first output terminal of the first power supply unit 24 and an emitter connected to the gate of the FET 22. The first transistor 32 is turned on when the first output terminal of the second power supply unit 26 is connected to the base, and is turned off when the second output terminal of the second power supply unit 26 is connected to the base. .
  • the collector of the second transistor 34 is connected to the second output terminals of the first power supply unit 24 and the second power supply unit 26, and the emitter is connected to the gate of the FET 22.
  • the second transistor 34 is turned off when the first output terminal of the second power supply unit 26 is connected to the base, and turned on when the second output terminal of the second power supply unit 26 is connected to the base.
  • the input switch 36 receives a control signal.
  • the input switch 36 connects the second output terminal of the second power supply unit 26 to the bases of the first transistor 32 and the second transistor 34 when a control signal for switching the FET 22 in the first state is given.
  • the input switch 36 connects the first output terminal of the second power supply unit 26 to the bases of the first transistor 32 and the second transistor 34 when a control signal for switching the FET 22 to the second state is given.
  • the diode 38 is provided between the first output terminal of the first power supply unit 24 and the collector of the first transistor 32.
  • the diode 38 prevents a backflow current to the first power supply unit 24 when the gate voltage of the FET 22 exceeds the first voltage value (V 1 ). That is, the diode 38 functions as a current blocking unit that blocks a backflow current from the first output terminal of the second power supply unit 26 to the first output terminal of the first power supply unit 24.
  • the resistor 40 is provided between the first output terminal of the second power supply unit 26 and the base of the first transistor 32.
  • the resistor 40 is provided between the first output terminal of the second power supply unit 26 and the control terminal of the FET 22 when the power supply voltage generated from the first output terminal of the second power supply unit 26 is applied to the gate of the FET 22. It functions as a provided resistor.
  • Such a resistor 40 can make the output resistance of the second power supply unit 26 larger than the output resistance of the first power supply unit 24. If the output resistance inside the second power supply unit 26 is larger than the output resistance of the first power supply unit 24, the drive unit 28 may be configured without the resistor 40.
  • the drive unit 28 When such a drive unit 28 receives a control signal indicating an instruction to set the FET 22 in the first state, the first transistor 32 is turned off and the second transistor 34 is turned on. The first power supply unit 24 and the second output terminal of the second power supply unit 26 can be connected. Therefore, in this case, the drive unit 28 can apply the control voltage of the third voltage value (V 3 ) to the gate of the FET 22 to put the FET 22 in the first state.
  • a drive unit 28 when such a drive unit 28 receives a control signal indicating an instruction to set the FET 22 in the second state, the first transistor 32 is turned on and the second transistor 34 is turned off, and thus the drive unit 28 is a control terminal of the FET 22.
  • the gate and the first output terminal of the second power supply unit 26 that generates the second voltage value (V 2 ) can be connected. Therefore, in this case, the drive unit 28 can apply the control voltage of the second voltage value (V 2 ) to the gate of the FET 22 to place the FET 22 in the second state. Details of the operation of the drive unit 28 in response to receiving a switching instruction for switching the FET 22 from the first state to the second state will be described with reference to FIGS. 2 and 3.
  • the changing unit 30 is designated with a switching time by a user or the like.
  • the changing unit 30 changes the value of the power supply voltage (first voltage value (V 1 )) generated by the first power supply unit 24 according to the designated switching time.
  • the changing unit 30 changes the power supply voltage of the first voltage value (V 1 ) generated by the first power supply unit 24 from the third voltage value (V 3 ) to the second voltage value according to the designated switching time. Change within the range up to (V 2 ).
  • FIG. 2 shows a case where the first transistor 32 is on and the second transistor 34 is off, and the gate voltage Vgs of the FET 22 is in the range from the third voltage value (V 3 ) to the first voltage value (V 1 ).
  • An equivalent circuit of the drive unit 28 is shown.
  • the driving unit 28 When receiving the control signal for instructing the FET 22 to be in the first state, the driving unit 28 turns off the first transistor 32 and turns on the second transistor 34 to control the third voltage value (V 3 ). Is applied to the gate of the FET 22.
  • the driving unit 28 receives a switching instruction to switch the FET 22 from the first state to the second state, the driving unit 28 turns on the first transistor 32 from the state where the first transistor 32 is turned off and the second transistor 34 is turned on. The second transistor 34 is changed to an off state.
  • the gate voltage Vgs is the third voltage value (V 3 ). is there.
  • the diode 38 is turned on, and the first output terminal of the first power supply unit 24 and the gate terminal of the FET 22 are turned on. Are connected. Further, the output resistance of the first power supply unit 24 is lower than the output resistance of the second power supply unit 26.
  • the drive unit 28 when receiving a switching instruction to switch the FET 22 from the first state to the second state, the drive unit 28 is within the range of the gate voltage Vgs from the third voltage value (V 3 ) to the first voltage value (V 1 ). Supplies the power source current output from the first power source unit 24 to the gate capacitor 50 via the diode 38, and supplies almost no power source current output from the second power source unit 26 to the gate capacitor 50. That is, the drive unit 28 applies the power supply voltage generated by the first power supply unit 24 to the FET 22 as a control voltage (gate voltage Vgs).
  • the drive unit 28 changes the control voltage to the third voltage value (V 3) by the power generated by the first power supply unit 24 in response to receiving the switching instruction to switch the FET 22 from the first state to the second state. ) To the first voltage value (V 1 ).
  • FIG. 3 shows a case where the first transistor 32 is on and the second transistor 34 is off, and the gate voltage Vgs of the FET 22 is in the range from the first voltage value (V 1 ) to the second voltage value (V 2 ).
  • An equivalent circuit of the drive unit 28 is shown. Subsequently, when charge is accumulated in the gate capacitance 50 of the FET 22 and the gate voltage Vgs of the FET 22 reaches the first voltage value (V 1 ), the diode 38 is turned off and the first output terminal of the first power supply unit 24 is connected to the first output terminal. The gate terminal of the FET 22 is opened.
  • the drive unit 28 when receiving a switching instruction to switch the FET 22 from the first state to the second state, the drive unit 28 is within the range of the gate voltage Vgs from the first voltage value (V 1 ) to the second voltage value (V 2 ). Supplies the power supply current output from the second power supply unit 26 to the gate capacitor 50 via the base-emitter diode component 52 of the first transistor 32. That is, the power supply voltage generated by the second power supply unit 26 is applied to the FET 22 as a control voltage (gate voltage Vgs). As a result, the drive unit 28 changes the gate voltage Vgs (control voltage) of the FET 22 according to the power generated by the second power supply unit 26 in response to the switching instruction to switch the FET 22 from the first state to the second state. Further, it is possible to further change from the first voltage value (V 1 ) to the second voltage value (V 2 ) in the same direction as the change from the third voltage value (V 3 ) to the first voltage value (V 1 ). .
  • the drive unit 28 uses the supply current to the gate capacitor 50 in the range from the first voltage value (V 1 ) to the second voltage value (V 2 ), and the gate voltage Vgs is equal to the third voltage value (V 1 ).
  • the current is made smaller than the supply current to the gate capacitor 50 in the range from V 3 ) to the first voltage value (V 1 ).
  • the drive unit 28 sets the time change rate from the first voltage value (V 1 ) to the second voltage value (V 2 ) of the gate voltage Vgs (control voltage) of the FET 22 as the third voltage value (V 3 ). To the first voltage value (V 1 ).
  • the drive unit 28 can apply the control voltage of the second voltage value (V 2 ) to the gate of the FET 22.
  • FIG. 4 shows an example of a temporal change in the gate voltage Vgs (control voltage) of the FET 22 when the first voltage value (V 1 ) is changed.
  • FIG. 5 shows an example of the time change of the drain-source voltage Vds of the FET 22 when the first voltage value (V 1 ) is changed.
  • A indicates an example in which the first voltage value (V 1 ) is set to a value closer to the second voltage value (V 2 ).
  • B shows an example in which the first voltage value (V 1 ) is set to a value farther from the second voltage value (V 2 ) than in the case of A.
  • the changing unit 30 changes the power supply voltage of the first voltage value (V 1 ) generated by the first power supply unit 24 in a range from the third voltage value (V 3 ) to the second voltage value (V 2 ). Can do.
  • the control voltage is generated using the power supply voltage generated by the first power supply unit 24 having a high current supply capability.
  • the rate of change increases. Therefore, when the first voltage value (V 1 ) is set to a value closer to the second voltage value (V 2 ), the switching time of the FET 22 is shortened. That is, the switching time of the FET 22 becomes shorter as the first voltage value (V 1 ) is set closer to the second voltage value (V 2 ).
  • the changing unit 30 changes the first voltage value (V 1 ) to a value closer to the second voltage value (V 2 ) when the switching time is shortened. Further, the changing unit 30, when a longer switching time changes the first voltage value to the farther the value from the second voltage value (V 2). Thereby, the change part 30 can adjust the switching time in the case of changing FET22 from a 1st state to a 2nd state according to the designated switching time.
  • FIG. 6 shows an example of the time change of the gate voltage Vgs (control voltage) of the FET 22 when the first voltage value (V 1 ) matches the second voltage value (V 2 ).
  • FIG. 7 shows an example of the time change of the gate voltage Vgs (control voltage) of the FET 22 when the first voltage value (V 1 ) matches the third voltage value (V 3 ).
  • the changing unit 30 may make the power supply voltage of the first voltage value (V 1 ) generated by the first power supply unit 24 coincide with the second voltage value (V 2 ).
  • the drive unit 28 uses almost the power generated by the second power supply unit 26 as the gate voltage Vgs (control voltage) of the FET 22.
  • the power generated by the first power supply unit 24 can be changed from the third voltage value (V 3 ) to the second voltage value (V 2 ).
  • the changing unit 30 may make the power supply voltage of the first voltage value (V 1 ) generated by the first power supply unit 24 coincide with the third voltage value (V 3 ).
  • the drive unit 28 does not use the power generated by the first power supply unit 24 as the gate voltage Vgs (control voltage) of the FET 22.
  • the power generated by the second power supply unit 26 can be changed from the third voltage value (V 3 ) to the second voltage value (V 2 ).
  • the changing unit 30 may change the time rate of change of the first voltage value of the control voltage from (V 1) to a second voltage value (V 2). For example, when the switching time is shortened, the changing unit 30 reduces the output resistance (for example, the resistor 40) of the second power supply unit 26 to reduce the second voltage value from the first voltage value (V 1 ). Increase the rate of time change until (V 2 ). In addition, when changing the switching time, the changing unit 30 increases the output resistance of the second power supply unit 26, for example, from the first voltage value (V 1 ) to the second voltage value (V 2 ). Reduce the rate of time change.
  • the switching time of the switch can be controlled with a simple configuration. More specifically, according to the switch device 20, the switching time when the FET 22 is switched from the first state to the second state can be controlled to a specified time.
  • the first power supply unit 24 generates a power supply voltage having a first voltage value (V 1 ) exceeding the second voltage value (V 2 ) and within a rated range of the gate voltage of the FET 22. It may be a variable voltage power supply capable of That is, when the second voltage value (V 2 ) is higher than the third voltage value (V 3 ), the first power supply unit 24 has a first voltage higher than the second voltage value (V 2 ) and lower than the gate voltage rating. It may be a variable voltage power supply capable of generating a power supply voltage having a voltage value (V 1 ).
  • the first power supply unit 24 has a first voltage lower than the second voltage value (V 2 ) and equal to or higher than the gate voltage rating. It may be a variable voltage power supply capable of generating a power supply voltage having a voltage value (V 1 ).
  • the changing unit 30 changes the first voltage value (V 1 ) from the third voltage value (V 3 ) to the rated voltage of the gate voltage exceeding the second voltage value (V 2 ). Thereby, the change part 30 can change switching time in the wider range.
  • Second terminal 20
  • Switch device 22
  • first power supply unit 26
  • second power supply unit 28
  • drive unit 30
  • change unit 32
  • first transistor 34 second transistor 36
  • resistor 50
  • gate capacitance 52

Landscapes

  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

 2つの端子間の接続状態を切り替えるスイッチ装置であって、与えられる制御電圧に応じて2つの端子間の接続状態を切り替えるスイッチと、第1電圧値の電源電圧を発生する第1電源部と、第2電圧値の電源電圧を発生する第2電源部と、スイッチを第1状態から第2状態へ切り替える切替指示を受けたことに応じて、制御電圧を、第1電源部が発生した電力により第1電圧値まで変化させた後、第2電源部が発生した電力により、第1電圧値までの時間変化率より低い時間変化率で同方向に、第1電圧値から第2電圧値まで更に変化させる駆動部と、を備えるスイッチ装置を提供する。

Description

スイッチ装置
 本発明は、スイッチ装置に関する。
 従来、電界効果トランジスタ(FET)等の電圧制御型のスイッチが知られている。このようなスイッチは、ターンオンおよびターンオフにおいて所定のスイッチング時間を要する。
日本国特許第3941309号明細書
 ところで、デバイスを試験する試験装置の分野においては、このようなスイッチのスイッチング時間を制御する場合がある。しかし、このようなスイッチのスイッチング時間を制御できる駆動回路は構成が複雑であった。
 例えば、特許文献1には、IGBT(Insulated Gate Bipolar Transistor)のスイッチング時間を制御する駆動回路が記載されている。しかし、特許文献1に記載の駆動回路では、コレクタ電圧等が所定の電圧に達したことを検出して駆動電圧を上昇させなければならなく、構成が複雑であった。
 そこで本発明の1つの側面においては、上記の課題を解決することのできるスイッチ装置を提供することを目的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
 本発明の第1の態様によると、2つの端子間の接続状態を切り替えるスイッチ装置であって、与えられる制御電圧に応じて前記2つの端子間の接続状態を切り替えるスイッチと、第1電圧値の電源電圧を発生する第1電源部と、第2電圧値の電源電圧を発生する第2電源部と、前記スイッチを第1状態から第2状態へ切り替える切替指示を受けたことに応じて、前記制御電圧を、前記第1電源部が発生した電力により前記第1電圧値まで変化させた後、前記第2電源部が発生した電力により、前記第1電圧値までの時間変化率より低い時間変化率で同方向に、前記第1電圧値から第2電圧値まで更に変化させる駆動部と、を備えるスイッチ装置を提供する。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本発明の実施形態に係るスイッチ装置20の構成を示す。 第1トランジスタ32がオンおよび第2トランジスタ34がオフであって、FET22のゲート電圧Vgsが第3電圧値(V)から第1電圧値(V)までの範囲の場合における駆動部28の等価回路を示す。 第1トランジスタ32がオンおよび第2トランジスタ34がオフであって、FET22のゲート電圧Vgsが第1電圧値(V)から第2電圧値(V)までの範囲の場合における駆動部28の等価回路を示す。 第1電圧値(V)を変化させた場合の、FET22のゲート電圧Vgs(制御電圧)の時間変化の一例を示す。 第1電圧値(V)を変化させた場合の、FET22のドレイン-ソース間電圧Vdsの時間変化の一例を示す。 第1電圧値(V)が第2電圧値(V)に一致する場合の、FET22のゲート電圧Vgs(制御電圧)の時間変化の一例を示す。 第1電圧値(V)が第3電圧値(V)に一致する場合の、FET22のゲート電圧Vgs(制御電圧)の時間変化の一例を示す。
 以下、発明の実施の形態を通じて本発明の(一)側面を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本実施形態に係るスイッチ装置20の構成を示す。スイッチ装置20は、2つの端子間の接続状態を切り替える。より具体的には、スイッチ装置20は、第1端子12と第2端子14との間を開放または短絡する。スイッチ装置20は、FET(電界効果トランジスタ)22と、第1電源部24と、第2電源部26と、駆動部28と、変更部30とを備える。
 FET22は、与えられる制御電圧に応じて2つの端子間(第1端子12と第2端子14との間)の接続状態を切り替える。より具体的には、FET22は、与えられる制御電圧に応じて、2つの端子間を開放または短絡する。
 なお、2つの端子間を開放または短絡のうちの何れか一方の状態にするFET22のスイッチング状態を第1状態といい、FET22の第1状態とは異なるスイッチング状態を第2状態という。FET22は、第3電圧値(V)の制御電圧が与えられた場合には第1状態となり、第2電圧値(V)の制御電圧が与えられた場合には第2状態となる。
 本実施形態においては、FET22は、ドレインが第1端子12に接続され、ソースが第2端子14に接続される。そして、FET22は、制御端であるゲートおよびソース間に制御電圧が与えられる。このようなFET22は、ゲートとソースとの間に与えられる制御電圧に応じて、第1端子12と第2端子14との間を開放または短絡する。
 なお、スイッチ装置20は、与えられる制御電圧に応じて第1端子12と第2端子14との間の接続状態を切り替えるスイッチであれば、FET22に代えて、他の種類のスイッチを備えてもよい。スイッチ装置20は、一例として、FET22に代えて、IGBT等を備える構成であってもよい。
 第1電源部24は、第1電圧値(V)の電源電圧を発生する。第1電源部24は、一例として、第1出力端子(図1中の正側端子)から第1電圧値(V)の電源電圧を発生する。また、第1電源部24は、一例として、第2出力端子(図1中の負側端子)から第3電圧値(V)の電源電圧を発生する。なお、第1電圧値(V)は、第3電圧値(V)より低い電圧値であっても、第3電圧値(V)より高い電圧値であってもよい。
 また、本実施形態においては、第1電源部24は、第1電圧値(V)を外部から変更することができる。第1電源部24は、一例として、発生すべき第1電圧値(V)を表わすデータが外部から与えられ、与えられたデータに応じた値の電源電圧を発生する。
 第2電源部26は、第2電圧値(V)の電源電圧を発生する。第2電源部26は、一例として、第1出力端子(図1中の正側端子)から第2電圧値(V)の電源電圧を発生する。また、第2電源部26は、一例として、第2出力端子(図1中の負側端子)から第3電圧値(V)の電源電圧を発生する。即ち、第2電源部26の第2出力端子は、第1電源部24の第2出力端子と同一電圧を発生する。
 なお、第2電圧値(V)は、第3電圧値(V)を基準とした場合に(例えば0ボルトとした場合)に第1電圧値(V)と同一極性の電圧値であって、第3電圧値(V)からの電位差の絶対値が第1電圧値(V)以上である。即ち、第1電圧値(V)、第2電圧値(V)および第3電圧値(V)は、V≧V≧V、または、V≦V≦Vといった関係となる(ただし、V≠V)。また、駆動部28が、第2電圧値(V)の制御電圧をFET22へ与える時において、当該第2電源部26により発生された電源電圧を電圧降下させてFET22へ与える回路の場合には、第2電源部26は、第2電圧値(V)と当該降下電圧とを加算した電圧値を発生する。
 駆動部28は、FET22を第1状態または第2状態に切り替える切替指示を表わす制御信号を受け取る。駆動部28は、FET22を第1状態とする制御信号を受けている場合には、FET22に第3電圧値(V)の制御電圧を与える。また、駆動部28は、FET22を第2状態とする制御信号を受けている場合には、FET22に、第2電圧値(V)の制御電圧を与える。
 ここで、駆動部28は、FET22を第1状態から第2状態へ切り替える切替指示を受けたことに応じて、制御電圧を、次のように変化させる。即ち、この場合、駆動部28は、制御電圧を、第1電源部24が発生した電力により第3電圧値(V)から第1電圧値(V)まで変化させた後、第2電源部26が発生した電力により、第1電圧値(V)までの変化と同方向に、第1電圧値(V)から第2電圧値(V)まで更に変化させる。さらに、この場合において、駆動部28は、制御電圧を、第3電圧値(V)から第1電圧値(V)までの時間変化率より低い時間変化率で、第1電圧値(V)から第2電圧値(V)まで変化をさせる。
 駆動部28は、一例として、第1トランジスタ32と、第2トランジスタ34と、入力スイッチ36と、ダイオード38と、抵抗40とを有する。第1トランジスタ32は、コレクタが第1電源部24の第1出力端子に接続され、エミッタがFET22のゲートに接続される。そして、第1トランジスタ32は、ベースに第2電源部26の第1出力端子が接続された場合、オンとなり、ベースに第2電源部26の第2出力端子が接続された場合、オフとなる。
 第2トランジスタ34は、コレクタが第1電源部24および第2電源部26の第2出力端子に接続され、エミッタがFET22のゲートに接続される。第2トランジスタ34は、ベースに第2電源部26の第1出力端子が接続された場合、オフとなり、ベースに第2電源部26の第2出力端子が接続された場合、オンとなる。
 入力スイッチ36は、制御信号を受け取る。入力スイッチ36は、FET22を第1状態とする切替指示の制御信号が与えられると、第1トランジスタ32および第2トランジスタ34のベースに第2電源部26の第2出力端子を接続する。また、入力スイッチ36は、FET22を第2状態とする切替指示の制御信号が与えられると、第1トランジスタ32および第2トランジスタ34のベースに第2電源部26の第1出力端子を接続する。
 ダイオード38は、第1電源部24の第1出力端子と第1トランジスタ32のコレクタとの間に設けられる。ダイオード38は、FET22のゲート電圧が第1電圧値(V)を超えた場合における、第1電源部24への逆流電流を阻止する。即ち、ダイオード38は、第2電源部26の第1出力端子から第1電源部24の第1出力端子への逆流電流を阻止する電流阻止部として機能する。
 抵抗40は、第2電源部26の第1出力端子と、第1トランジスタ32のベースとの間に設けられる。抵抗40は、第2電源部26の第1出力端子から発生された電源電圧がFET22のゲートに印加される場合において、第2電源部26の第1出力端子とFET22の制御端との間に設けられた抵抗として機能する。このような抵抗40は、第1電源部24の出力抵抗よりも、第2電源部26の出力抵抗を大きくすることができる。なお、第2電源部26の内部の出力抵抗が、第1電源部24の出力抵抗よりも大きければ、駆動部28は、抵抗40を有さない構成であってもよい。
 このような駆動部28は、FET22を第1状態とする指示を示す制御信号を受けた場合、第1トランジスタ32がオフ且つ第2トランジスタ34がオンとなるので、FET22の制御端であるゲートと第1電源部24および第2電源部26の第2出力端子とを接続することができる。従って、この場合、駆動部28は、第3電圧値(V)の制御電圧をFET22のゲートに与えて、FET22を第1状態とすることができる。
 また、このような駆動部28は、FET22を第2状態とする指示を示す制御信号を受けた場合、第1トランジスタ32がオン且つ第2トランジスタ34がオフとなるので、FET22の制御端であるゲートと第2電圧値(V)を発生する第2電源部26の第1出力端子とを接続することができる。従って、この場合、駆動部28は、第2電圧値(V)の制御電圧をFET22のゲートに与えて、FET22を第2状態とすることができる。なお、FET22を第1状態から第2状態へ切り替える切替指示を受けたことに応じた駆動部28の動作の詳細については、図2および図3において説明する。
 変更部30は、ユーザ等からスイッチング時間が指定される。変更部30は、指定されたスイッチング時間に応じて、第1電源部24が発生する電源電圧の値(第1電圧値(V))を変更する。変更部30は、一例として、指定されたスイッチング時間に応じて、第1電源部24が発生する第1電圧値(V)の電源電圧を第3電圧値(V)から第2電圧値(V)までの範囲で変更する。なお、変更部30は、第1電源部24が発生する第1電圧値(V)を変更することに代えて、制御電圧の第3電圧値(V)から第1電圧値(V)までの時間変化率、または、制御電圧の第1電圧値(V)から第2電圧値(V)までの時間変化率を変更してもよい。
 図2は、第1トランジスタ32がオンおよび第2トランジスタ34がオフであって、FET22のゲート電圧Vgsが第3電圧値(V)から第1電圧値(V)までの範囲の場合における駆動部28の等価回路を示す。駆動部28は、FET22を第1状態とする指示の制御信号を受けている場合、第1トランジスタ32をオフ且つ第2トランジスタ34をオンの状態として、第3電圧値(V)の制御電圧をFET22のゲートに印加している。そして、駆動部28は、FET22を第1状態から第2状態へ切り替える切替指示を受けた場合、第1トランジスタ32をオフ且つ第2トランジスタ34をオンとしている状態から、第1トランジスタ32をオン且つ第2トランジスタ34をオフの状態に変化させる。
 ここで、第1トランジスタ32がオンおよび第2トランジスタ34がオフに変化した直後においては、FET22のゲート容量50に電荷が蓄積されておらず、ゲート電圧Vgsは第3電圧値(V)である。また、ゲート電圧Vgsが第3電圧値(V)から第1電圧値(V)までの範囲においては、ダイオード38がオンとなり、第1電源部24の第1出力端子とFET22のゲート端子との間は接続される。また、第1電源部24の出力抵抗は第2電源部26の出力抵抗より低い。これにより、FET22のゲート電圧Vgsが第1電圧値(V)より低く、且つ、第1電源部24および第2電源部26がともにFET22のゲートに接続された場合には、第1電源部24の電源電流が支配的にゲート容量50に供給され、第2電源部26の電源電流はほとんどゲート容量50に供給されない。
 従って、FET22を第1状態から第2状態へ切り替える切替指示を受けた場合、ゲート電圧Vgsが第3電圧値(V)から第1電圧値(V)までの範囲においては、駆動部28は、第1電源部24が出力した電源電流をダイオード38を介してゲート容量50に供給して、第2電源部26が出力した電源電流をほとんどゲート容量50に供給しない。即ち、駆動部28は、第1電源部24により発生された電源電圧を制御電圧(ゲート電圧Vgs)としてFET22に印加する。これにより、駆動部28は、FET22を第1状態から第2状態へ切り替える切替指示を受けたことに応じて、制御電圧を、第1電源部24が発生した電力により第3電圧値(V)から第1電圧値(V)まで変化させることができる。
 図3は、第1トランジスタ32がオンおよび第2トランジスタ34がオフであって、FET22のゲート電圧Vgsが第1電圧値(V)から第2電圧値(V)までの範囲の場合における駆動部28の等価回路を示す。続いて、FET22のゲート容量50に電荷が蓄積され、FET22のゲート電圧Vgsが第1電圧値(V)に達すると、ダイオード38は、オフとなり、第1電源部24の第1出力端子とFET22のゲート端子との間は開放される。
 従って、FET22を第1状態から第2状態へ切り替える切替指示を受けた場合、ゲート電圧Vgsが第1電圧値(V)から第2電圧値(V)までの範囲においては、駆動部28は、第2電源部26が出力した電源電流を、第1トランジスタ32のベースエミッタ間ダイオード成分52を介してゲート容量50に供給する。即ち、第2電源部26により発生された電源電圧を制御電圧(ゲート電圧Vgs)としてFET22に印加する。これにより、駆動部28は、FET22を第1状態から第2状態へ切り替える切替指示を受けたことに応じて、FET22のゲート電圧Vgs(制御電圧)を、第2電源部26が発生した電力により、第3電圧値(V)から第1電圧値(V)までの変化と同方向に、第1電圧値(V)から第2電圧値(V)まで更に変化させることができる。
 さらに、第2電源部26の出力抵抗は、第1電源部24の出力抵抗より高い。従って、駆動部28は、ゲート電圧Vgsが第1電圧値(V)から第2電圧値(V)までの範囲におけるゲート容量50への供給電流を、ゲート電圧Vgsが第3電圧値(V)から第1電圧値(V)までの範囲におけるゲート容量50への供給電流より小さくする。これにより、駆動部28は、FET22のゲート電圧Vgs(制御電圧)の第1電圧値(V)から第2電圧値(V)までの時間変化率を、第3電圧値(V)から第1電圧値(V)までの時間変化率より低くすることができる。
 そして、FET22のゲート容量50に電荷が更に蓄積され、FET22のゲート電圧Vgsが第2電圧値(V)に達すると、FET22のゲート容量50への電荷の蓄積は停止する。これにより、駆動部28は、第2電圧値(V)の制御電圧をFET22のゲートに印加することができる。
 図4は、第1電圧値(V)を変化させた場合の、FET22のゲート電圧Vgs(制御電圧)の時間変化の一例を示す。図5は、第1電圧値(V)を変化させた場合の、FET22のドレイン-ソース間電圧Vdsの時間変化の一例を示す。
 なお、図4および図5において、Aは、第1電圧値(V)が第2電圧値(V)により近い値に設定された例を示す。一方、Bは、第1電圧値(V)が、Aの場合と比較して第2電圧値(V)から遠い値に設定された例を示す。
 変更部30は、第1電源部24が発生する第1電圧値(V)の電源電圧を、第3電圧値(V)から第2電圧値(V)までの範囲で変更することができる。ここで、第1電圧値(V)が第2電圧値(V)により近い値に設定された場合、電流供給能力の高い第1電源部24により発生された電源電圧を用いて制御電圧が変化する割合が大きくなる。従って、第1電圧値(V)が第2電圧値(V)により近い値に設定された場合、FET22のスイッチング時間が短くなる。即ち、FET22のスイッチング時間は、第1電圧値(V)が、第2電圧値(V)により近い値に設定されるほど短くなる。
 従って、変更部30は、スイッチング時間を短くする場合には、第1電圧値(V)を第2電圧値(V)により近い値とするように変更する。また、変更部30は、スイッチング時間を長くする場合には、第1電圧値を第2電圧値(V)からより遠い値とするように変更する。これにより、変更部30は、指定されたスイッチング時間に応じて、FET22を第1状態から第2状態へ変化させる場合におけるスイッチング時間を調整することができる。
 図6は、第1電圧値(V)が第2電圧値(V)に一致する場合の、FET22のゲート電圧Vgs(制御電圧)の時間変化の一例を示す。図7は、第1電圧値(V)が第3電圧値(V)に一致する場合の、FET22のゲート電圧Vgs(制御電圧)の時間変化の一例を示す。
 また、変更部30は、第1電源部24が発生する第1電圧値(V)の電源電圧を、第2電圧値(V)に一致させてもよい。第1電圧値(V)が第2電圧値(V)に一致する場合、駆動部28は、FET22のゲート電圧Vgs(制御電圧)を、第2電源部26が発生した電力をほとんど用いずに、第1電源部24が発生した電力により第3電圧値(V)から第2電圧値(V)まで変化させることができる。このような場合、駆動部28は、図6のtに示されるように、FET22のスイッチング時間を最も短くすることができる。
 また、変更部30は、第1電源部24が発生する第1電圧値(V)の電源電圧を、第3電圧値(V)に一致させてもよい。第1電圧値(V)が第3電圧値(V)に一致する場合、駆動部28は、FET22のゲート電圧Vgs(制御電圧)を、第1電源部24が発生した電力を用いずに、第2電源部26が発生した電力により第3電圧値(V)から第2電圧値(V)まで変化させることができる。このような場合、駆動部28は、図7のt10に示されるように、FET22のスイッチング時間を最も長くすることができる。
 なお、変更部30は、以上に代えて、制御電圧の第3電圧値(V)から第1電圧値(V)までの時間変化率を変更してもよい。より具体的には、変更部30は、スイッチング時間を短くする場合には、例えば第1電源部24の出力抵抗を小さくすることにより、第3電圧値(V)から第1電圧値(V)までの時間変化率を大きくする。また、変更部30は、スイッチング時間を長くする場合には、例えば第1電源部24の出力抵抗を大きくすることにより、第3電圧値(V)から第1電圧値(V)までの時間変化率を小さくする。
 また、変更部30は、制御電圧の第1電圧値(V)から第2電圧値(V)までの時間変化率を変更してもよい。変更部30は、一例として、スイッチング時間を短くする場合には、例えば第2電源部26の出力抵抗(例えば抵抗40)を小さくすることにより、第1電圧値(V)から第2電圧値(V)までの時間変化率を大きくする。また、変更部30は、スイッチング時間を長くする場合には、例えば第2電源部26の出力抵抗を大きくすることにより、第1電圧値(V)から第2電圧値(V)までの時間変化率を小さくする。
 以上のように、スイッチ装置20によれば、簡易な構成でスイッチのスイッチング時間を制御することができる。より詳しくは、スイッチ装置20によれば、FET22を第1状態から第2状態へ切り替える場合におけるスイッチング時間を指定された時間に制御することができる。
 また、変形例として、第1電源部24は、第2電圧値(V)を超える第1電圧値(V)であって、FET22のゲート電圧の定格範囲内の電源電圧を発生することができる可変電圧電源であってもよい。即ち、第2電圧値(V)が第3電圧値(V)より高い場合において、第1電源部24は、第2電圧値(V)より高く、ゲート電圧の定格以下の第1電圧値(V)の電源電圧を発生することができる可変電圧電源であってよい。また、第2電圧値(V)が第3電圧値(V)より低い場合において、第1電源部24は、第2電圧値(V)より低く、ゲート電圧の定格以上の第1電圧値(V)の電源電圧を発生することができる可変電圧電源であってよい。
 このような場合、変更部30は、第1電圧値(V)を、第3電圧値(V)から、第2電圧値(V)を超えたゲート電圧の定格電圧まで変更する。これにより、変更部30は、スイッチング時間をより広い範囲で変更することができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
12 第1端子
14 第2端子
20 スイッチ装置
22 FET
24 第1電源部
26 第2電源部
28 駆動部
30 変更部
32 第1トランジスタ
34 第2トランジスタ
36 入力スイッチ
38 ダイオード
40 抵抗
50 ゲート容量
52 ベースエミッタ間ダイオード成分

Claims (9)

  1.  2つの端子間の接続状態を切り替えるスイッチ装置であって、
     与えられる制御電圧に応じて前記2つの端子間の接続状態を切り替えるスイッチと、
     第1電圧値の電源電圧を発生する第1電源部と、
     第2電圧値の電源電圧を発生する第2電源部と、
     前記スイッチを第1状態から第2状態へ切り替える切替指示を受けたことに応じて、前記制御電圧を、前記第1電源部が発生した電力により前記第1電圧値まで変化させた後、前記第2電源部が発生した電力により、前記第1電圧値までの時間変化率より低い時間変化率で同方向に、前記第1電圧値から第2電圧値まで更に変化させる駆動部と、
     を備えるスイッチ装置。
  2.  指定されたスイッチング時間に応じて、前記第1電源部が発生する前記第1電圧値、前記制御電圧の前記第1電圧値までの時間変化率、または、前記制御電圧の前記第1電圧値から前記第2電圧値までの時間変化率を変更する変更部を更に備える
     請求項1に記載のスイッチ装置。
  3.  前記第1電源部は、第1出力端子から前記第1電圧値の電源電圧を発生し、第2出力端子から第3電圧値の電源電圧を発生し、
     前記第2電源部は、第1出力端子から前記第2電圧値の電源電圧を発生し、第2出力端子から前記第3電圧値の電源電圧を発生し、
     前記駆動部は、前記スイッチを第1状態へ切り替える切替指示を受けた場合、前記スイッチの制御端と前記第1電源部および前記第2電源部のそれぞれの第2出力端子とを接続し、前記スイッチを第2状態へ切り替える切替指示を受けた場合、前記スイッチの制御端と前記第1電源部および前記第2電源部のそれぞれの第1出力端子とを接続する
     請求項2に記載のスイッチ装置。
  4.  前記駆動部は、前記第2電源部の第1出力端子から前記第1電源部の第1出力端子への逆流電流を阻止する電流阻止部を有する
     請求項3に記載のスイッチ装置。
  5.  前記駆動部は、前記第2電源部の第1出力端子と前記スイッチの制御端との間に設けられた抵抗を有する
     請求項3から4の何れかに記載のスイッチ装置。
  6.  前記第1電源部は、前記第1電圧値を外部から変更することができ、
     前記変更部は、指定されたスイッチング時間に応じて、前記第1電源部が発生する前記第1電圧値の電源電圧を前記第3電圧値から前記第2電圧値までの範囲で変更する
     請求項3から5の何れかに記載のスイッチ装置。
  7.  前記駆動部は、前記第2電源部の第1出力端子と前記スイッチの制御端との間に設けられた抵抗を有し、
     前記変更部は、指定されたスイッチング時間に応じて、前記抵抗の抵抗値を変更する
     請求項3から4の何れかに記載のスイッチ装置。
  8.  前記スイッチは、電界効果トランジスタであり、
     前記駆動部は、前記制御電圧を前記電界効果トランジスタのゲートに供給する
     請求項1から7の何れかに記載のスイッチ装置。
  9.  2つの端子間の接続状態を切り替えるスイッチ装置であって、
     与えられる制御電圧に応じて前記2つの端子間の接続状態を切り替えるスイッチと、
     前記スイッチを第1状態から第2状態へ切り替える切替指示を受けたことに応じて、前記制御電圧を、第1電圧値の電源電圧を発生する第1電源部が発生した電力により前記第1電圧値まで変化させた後、第2電圧値の電源電圧を発生する第2電源部が発生した電力により、前記第1電圧値までの時間変化率より低い時間変化率で同方向に、前記第1電圧値から第2電圧値まで更に変化させる駆動部と、
     を備えるスイッチ装置。
PCT/JP2009/005818 2008-12-26 2009-11-02 スイッチ装置 WO2010073461A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010543773A JP5331822B2 (ja) 2008-12-26 2009-11-02 スイッチ装置
DE112009004262.7T DE112009004262B4 (de) 2008-12-26 2009-11-02 Schaltvorrichtung
US13/118,476 US9136834B2 (en) 2008-12-26 2011-05-30 Switching apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-334777 2008-12-26
JP2008334777 2008-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/118,476 Continuation US9136834B2 (en) 2008-12-26 2011-05-30 Switching apparatus

Publications (1)

Publication Number Publication Date
WO2010073461A1 true WO2010073461A1 (ja) 2010-07-01

Family

ID=42287121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005818 WO2010073461A1 (ja) 2008-12-26 2009-11-02 スイッチ装置

Country Status (5)

Country Link
US (1) US9136834B2 (ja)
JP (1) JP5331822B2 (ja)
DE (1) DE112009004262B4 (ja)
TW (1) TWI492536B (ja)
WO (1) WO2010073461A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393457A (ja) * 1989-09-04 1991-04-18 Toshiba Corp 電圧駆動形素子の駆動回路
JPH03117211A (ja) * 1989-09-29 1991-05-20 Toshiba Corp 半導体素子の駆動回路
JPH11308084A (ja) * 1998-04-20 1999-11-05 Meidensha Corp スイッチング素子のゲート駆動回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3421507B2 (ja) * 1996-07-05 2003-06-30 三菱電機株式会社 半導体素子の駆動回路
JPH10262087A (ja) * 1997-03-19 1998-09-29 Fujitsu Ltd ラインドライバ回路
JP2000134075A (ja) * 1998-08-18 2000-05-12 Pop Denshi Kk スイッチ装置
JP3941309B2 (ja) 1998-12-03 2007-07-04 株式会社日立製作所 電圧駆動形スイッチング素子のゲート駆動回路
JP2000232347A (ja) * 1999-02-08 2000-08-22 Toshiba Corp ゲート回路及びゲート回路制御方法
US7667524B2 (en) * 2004-11-05 2010-02-23 International Rectifier Corporation Driver circuit and method with reduced DI/DT and having delay compensation
JP4768498B2 (ja) * 2006-04-14 2011-09-07 日立コンピュータ機器株式会社 双方向dc−dcコンバータおよびそれを用いた電源装置
JP2008182381A (ja) * 2007-01-24 2008-08-07 Toyo Electric Mfg Co Ltd 高速ゲート駆動回路
JP2009071956A (ja) * 2007-09-12 2009-04-02 Mitsubishi Electric Corp ゲート駆動回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393457A (ja) * 1989-09-04 1991-04-18 Toshiba Corp 電圧駆動形素子の駆動回路
JPH03117211A (ja) * 1989-09-29 1991-05-20 Toshiba Corp 半導体素子の駆動回路
JPH11308084A (ja) * 1998-04-20 1999-11-05 Meidensha Corp スイッチング素子のゲート駆動回路

Also Published As

Publication number Publication date
DE112009004262T5 (de) 2012-03-08
DE112009004262B4 (de) 2015-07-30
JPWO2010073461A1 (ja) 2012-05-31
TW201027913A (en) 2010-07-16
US20110285207A1 (en) 2011-11-24
JP5331822B2 (ja) 2013-10-30
TWI492536B (zh) 2015-07-11
US9136834B2 (en) 2015-09-15

Similar Documents

Publication Publication Date Title
US11171638B2 (en) Electronic apparatus
US8222846B2 (en) Output circuit
JP4804142B2 (ja) 高速ゲート駆動回路
JP2010130822A (ja) 半導体装置
US9154125B2 (en) Method of controlling an IGBT and a gate driver
US10020731B2 (en) Power switch circuit
TW201301758A (zh) 包含常關型及常開型裝置的疊接開關以及包括該等開關的電路
JP2004229057A (ja) ゲートドライブ装置
US9923557B2 (en) Switching circuit and power conversion circuit
JP2009201096A (ja) スイッチ回路
KR20160143909A (ko) Igbt 구동 장치
CN110365324B (zh) 一种功率管栅极驱动电路
KR101952857B1 (ko) 스위칭 회로 및 이를 포함하는 고주파 스위치
JP2017183979A (ja) ゲート駆動回路
JP5405492B2 (ja) スイッチ装置、および試験装置
WO2012115900A2 (en) Driver circuit for a semiconductor power switch
US10666039B2 (en) Electronic fuse circuit, corresponding device and method
US9318973B2 (en) Driving device
JP2016072676A (ja) 半導体リレー
CN116683753A (zh) 开关系统和包括这样的开关系统的电力变换器
JP5331822B2 (ja) スイッチ装置
KR20170104164A (ko) 개선된 시간 응답 특성을 가지는 레벨 시프터 회로 및 그 제어 방법
US10855267B2 (en) Electronic switch and electronic apparatus including the same
CN113647021B (zh) 用于操控换流器的电路装置
US8294506B2 (en) Driving system for switching power supply to reduce switch noise and switching loss

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543773

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112009004262

Country of ref document: DE

Ref document number: 1120090042627

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834278

Country of ref document: EP

Kind code of ref document: A1