JP2008182381A - 高速ゲート駆動回路 - Google Patents

高速ゲート駆動回路 Download PDF

Info

Publication number
JP2008182381A
JP2008182381A JP2007013214A JP2007013214A JP2008182381A JP 2008182381 A JP2008182381 A JP 2008182381A JP 2007013214 A JP2007013214 A JP 2007013214A JP 2007013214 A JP2007013214 A JP 2007013214A JP 2008182381 A JP2008182381 A JP 2008182381A
Authority
JP
Japan
Prior art keywords
turn
gate
voltage
power supply
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007013214A
Other languages
English (en)
Inventor
Yuji Oyama
裕二 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2007013214A priority Critical patent/JP2008182381A/ja
Publication of JP2008182381A publication Critical patent/JP2008182381A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

【課題】ターンオン、又はターンオフ時に、ゲートに一時的に高い電圧を印加してスレッショルド電圧付近のミラー期間を高速で通過させ、高速でターンオン又はターンオフさせる。オン又はオフ保持中は適正なバイアス電圧を印加する。
【解決手段】定格ゲート電圧内の電圧のオン保持用電源1と、該オン保持用電源1から定格ゲート電圧を越える電圧を生成するターンオン用昇圧回路と、該ターンオン用昇圧回路により充電されるターンオン用コンデンサ6を有し、ターンオン直前までに前記ターンオン用昇圧回路により前記ターンオン用コンデンサ6を昇圧充電し、前記コンデンサの電荷を半導体スイッチング素子のゲートに印加して高速ターンオンし、ターンオン後は前記オン保持用電源1でオン状態を保持する。
【選択図】図1

Description

本発明は、MOSFET等の絶縁ゲート構造を持つ半導体スイッチの高速ゲート駆動回路に関するものである。
MOSFETやIGBTなどの絶縁ゲート構造を持つ半導体スイッチング素子は、電圧駆動型の素子であるため、バイポーラトランジスタなどの電流駆動型の素子に比べて駆動電力が小さく、マイクロエレクトロニクスからパワーエレクトロニクスまで幅広い分野で広く利用されている。
これらの絶縁ゲート型素子は、ゲートが他の端子に対して絶縁物で絶縁されており、ゲート端子からみると等価的にコンデンサが形成されている。図5は絶縁ゲート型素子の例としてMOSFETの等価回路を示したものである。ゲート端子からみると内部配線等に存在する寄生抵抗Rgと、ゲート−ソース間容量Cgs、ゲート−ドレイン間容量CgdとによりCR回路が形成されており、ゲート駆動回路はこれらのゲート容量を充放電させるための回路となる。
図6は従来のMOSFETゲート駆動回路を示す図である。ゲートドライブ用電源31に、直列接続したオン用スイッチ7とオフ用スイッチ8を並列に接続し、オン用スイッチ7とオフ用スイッチ8の接続点に駆動対象となるFET9のゲートを、ゲートドライブ用電源31の負極端子にFET9のソースをそれぞれ接続する。FET9をターンオンさせる場合、タイミング制御回路32のON指令信号をOFF→ONに変化させることで、タイミング制御回路32はオフ用スイッチ8を開き、オン用スイッチ7を閉じる信号を出力する。これによりゲートドライブ用電源31の電圧でゲート容量を充電しターンオンさせる。ターンオフさせる場合、それぞれのスイッチをターンオン時とは逆に動作させ、ゲート容量の電荷をゲート→オフ用スイッチ8→ソースの経路で放電させてターンオフさせる。通常のゲート駆動回路では、ゲートドライブ用電源31の電圧は、FETのデータシートで規定されたゲート電圧絶対最大定格以内で選択される。また、ゲート電圧の振動を抑制する目的で、ゲート駆動回路とFETのゲート間に直列にゲート抵抗RGを挿入することもある。
図7は従来のMOSFETゲート駆動回路による駆動波形例である。前記図6のタイミング制御回路32のON指令信号をOFF→ONに変化させると、FET9のゲート容量をゲートドライブ用電源31で充電し始める。このとき、ゲート−ソース間電圧VGSは、スレッショルド電圧VGS(th)まで、ゲート容量と寄生抵抗Rgの時定数で上昇する。VGSがVGS(th)まで達すると、FET9はターンオン動作を開始し、ドレイン電流Iが流れ始める。ターンオン動作が始まると、ミラー効果によるゲート容量の増加分を充電し続け、再びVGSが上昇し始めるとターンオン動作が終了しオン状態が保持される。次にオフ動作は、オフ用スイッチ8が閉じゲート容量の放電が始まるとVGSが下降し始め、VGS(th)に達するとターンオフ動作が始まる。再びVGSが下降し始めるとターンオフ動作が完了し、オフ状態が保持される。
従来のゲート駆動回路では、前記のとおりON指令信号をOFF→ONに変化させてから実際にターンオン動作を始めるまでの遅延時間td(ON)と、ターンオンが始まりドレイン電流が飽和するまでの上昇時間trという2段階の遅れが生じる。また、ターンオフの場合も同様で、ON指令信号をON→OFFに変化させると、実際にターンオフ動作が始まるまでの遅延時間td(OFF)と、ターンオフ動作が始まりドレイン電流Iが消失するまでの下降時間tfという遅れが生じる。これらの遅れ時間は、半導体スイッチング素子のゲート容量、寄生抵抗Rg、振動抑制用ゲート抵抗RGの各要素による時定数と、ゲートドライブ電源20の電圧、およびミラー効果に影響するドレイン−ソース間電圧VDSに依存する。
遅れ時間を短縮するには、これら遅れ要因を改善すればよいが、ゲート容量に関わる時定数については素子の製造プロセス等に依存するもので、回路設計者やユーザーにとっては改善不可能な領域である。また、ゲートドライブ電源31の電圧を上げれば、スレッショルド電圧を通過するまでの時間を短縮でき効果があるが、その上限は素子のデータシートで規定されたゲート電圧の絶対最大定格までである。絶対最大定格以上の電圧を選択した場合は、FETのオン保持中は定常的にゲートに過電圧が印加されることとなり現実的ではない。このように、従来のゲート駆動回路においてスイッチングの遅れ時間を短縮し、高速動作させることについては制約があった。
特許文献1では、前記図6のゲート駆動回路の低消費電力化に関する方法を開示している。特許文献1の発明では、前記図6のオン用スイッチ7とオフ用スイッチ8に相当するスイッチにFETなどの電圧駆動型素子を用い、これらのスイッチのバイアス電圧をターンオン(またはオフ)動作時とオン(またはオフ)保持期間とで変化させ、ゲート駆動回路の低消費電力化を図るものである。すなわち、駆動対象の半導体スイッチ素子のゲートを充放電する期間は、駆動用FETのバイアス電圧を高くしオン抵抗の低い領域で使用し、オン・オフ保持期間はゲート電流がほとんど流れず、多少のオン抵抗増加は影響がないので、バイアス電圧を低くして使用することで低消費電力化を図る。
特開2002−165435号公報
前記特許文献1による方法においても、図6のゲート駆動用電源31に相当する電源の電圧は、駆動対象の半導体スイッチのゲート電圧絶対最大定格以下で選択せざるを得ず、ゲート駆動回路の低消費電力化に貢献できても、駆動対象の半導体スイッチ素子を高速でスイッチングさせることは期待できない。
解決しようとする問題点は、ゲートドライブ用電源の電圧を高くすればするほど、ゲートのスレッショルド電圧を通過するまでの時間が短くなり高速スイッチングを実現できるが、絶対最大定格以上の電圧を選択すると、オンまたはオフ保持中は定常的にゲートに過電圧が印加されるため、その上限は絶対最大定格以内で制限されるという点である。
本発明は、上記課題を解決するために、請求項1記載の高速ゲート駆動回路は、定格ゲート電圧内の電圧のオン保持用電源と、該オン保持用電源から定格ゲート電圧を越える電圧を生成するターンオン用昇圧回路と、該ターンオン用昇圧回路により充電されるターンオン用コンデンサを有し、ターンオン直前までに前記ターンオン用昇圧回路により前記ターンオン用コンデンサを昇圧充電し、前記コンデンサの電荷を半導体スイッチング素子のゲートに印加して高速ターンオンし、ターンオン後は前記オン保持用電源でオン状態を保持する事を特徴とする。
請求項2記載の高速ゲート駆動回路は、定格ゲート電圧内の電圧のオフ保持用電源と、該オフ保持用電源から定格ゲート電圧を越える電圧を生成するターンオフ用昇圧回路と、該ターンオフ用昇圧回路により充電されるターンオフ用コンデンサを有し、オン期間中に前記ターンオフ用昇圧回路により前記ターンオフ用コンデンサを昇圧充電し、前記ターンオフ用コンデンサの電荷を前記半導体スイッチング素子のゲートに印加して高速ターンオフし、ターンオフ後は前記オフ保持用電源でオフ状態を保持する事を特徴とする。
本発明の高速ゲート駆動回路は、ターンオン(オフ)時に昇圧回路で高電圧に充電したコンデンサの電荷を駆動対象のゲート容量に流し込むことにより、スレッショルド電圧を高速で通過させる事ができるため、高速でターンオン(オフ)でき、その後は絶対最大定格内のゲート電圧でオン(オフ)状態を保持するため、ゲートに定常的に過電圧を印加しなくてもよいという利点がある。
ターンオン(オフ)時に、ゲートのスレッショルド電圧を高速で通過させるという目的と、オン(オフ)保持中はゲートに過電圧を印加しないという目的を、従来のゲート駆動回路に若干の回路を追加することで実現した。
図1は、本発明の請求項1による高速ゲート駆動回路の実施例を示す図である。図1の回路は、駆動対象のFET9と、ターンオン時において一時的に絶対最大定格以上の正バイアス電圧をFET9のゲートに供給するターンオン回路と、オン保持中において絶対最大定格内の正バイアス電圧を供給するオン保持回路と、FET9のゲート容量を充放電させる充放電用スイッチ群と、これらスイッチのタイミング制御を行うタイミング制御回路から構成される。
ターンオン回路は、オフ保持中にタイミング制御回路10の信号により昇圧用スイッチ3を閉じて、オン保持用電源1から昇圧用インダクタ2にエネルギーを溜め、適当なタイミングで昇圧用スイッチ3を開き、ターンオン用コンデンサ6をオン保持用電源1より高電圧に充電し、ON指令信号のタイミングでオン用スイッチ7を介してFET9のゲート容量を充電する回路である。オン保持回路は絶対最大定格内に設定したオン保持用電源1から、オン保持用ダイオード5を介してターンオン用コンデンサ6を充電し、この電圧がFET9のスレッショルド電圧以下に低下することを防止している。ゲートの充放電用スイッチ群は、オン用スイッチ7とオフ用スイッチ8とからなり、図6の同符号のものと同一の動作をするものである。
図2は図1の高速ゲート駆動回路の動作タイミングを示すチャートである。図2を用いて図1の回路の動作を詳細に説明する。
図2のON指令信号は正論理信号で図1のタイミング制御回路10に入力される信号である。図2のSCH1、S、Sは、それぞれ図1の昇圧用スイッチ3、オン用スイッチ7、オフ用スイッチ8の状態を示すものであり、正論理で動作するものである。図2のVC1は図1のターンオン用コンデンサ6の電圧を示すものであり、電圧レベルVD2はターンオン回路にて昇圧された電圧を示し、VD1は同じくオン保持用電源1の電圧を示す。図2のVGSは、図1のFET9のゲート−ソース間電圧を示すものであり、電圧レベルは前記のVC1と同一である。図2のFETは、図1のFET9の状態を示すものである。
オン保持中にON指令信号を1→0に変化させると、Sがオン→オフになりわずかに遅れてSがオフ→オンになる。これにより図1のFET9はゲート容量の電荷を引き抜かれVGSが0Vになりターンオフする。その後、図1のタイミング制御回路10からの信号によりSCHがオフ→オンされ、オン保持用電源1→昇圧用インダクタ2→昇圧用スイッチ3の閉回路ができインダクタの電流が上昇する。適当なタイミングでSCHをオン→オフにすると、昇圧用インダクタ2のエネルギーが昇圧用ダイオード4を通りターンオン用コンデンサ6へ転送され、高電圧に充電される。所望のタイミングでON指令信号を0→1へ変化させると、Sがオン→オフになり、わずかに遅れてSがオフ→オンになり図1のターンオン用コンデンサ6の電荷がFET9のゲートへ転送され始め、VGSの電圧が急激に上昇しFET9を高速にターンオンさせる。この際、図1のターンオン用コンデンサ6の充電電荷(VD2とCの積)とFET9のゲート総電荷量を同程度〜2倍程度に設定すると、電荷の転送に伴いVC1は低下し、VD1を下回るとオン保持用ダイオード5が導通し、VGSをVD1に保持するためオン状態が維持される。
図1、図2の実施例では、ターンオン用コンデンサの容量を適切に設定することにより、一時的にゲート−ソース間に高い正バイアス電圧を印加することで高速ターンオンを実現し、なおかつターンオン後は適切なオン保持電圧を印加できるものである。高速ターンオンを実現することで、駆動対象のFET等のターンオン損失が低減でき、またパルスパワー電源などパルス電圧の高速立上りを要求される用途において、実用上大いに役立つ。
図3は本発明の請求項2による高速ゲート駆動回路の実施例を示す図である。図3は実施例1の回路に請求項2の実施例を追加したものであり、ターンオンとターンオフを高速化するための高速ゲート駆動回路である。
図3の回路は、駆動対象のFET9と、ターンオン時において一時的に絶対最大定格以上の正バイアス電圧をFET9のゲートに供給するターンオン回路と、オン保持中において絶対最大定格内の正バイアス電圧を供給するオン保持回路と、ターンオフ時において一時的に絶対最大定格以上の逆バイアス電圧をFET9のゲートに供給するターンオフ回路と、オフ保持中に絶対最大定格内の逆バイアス電圧を供給するオフ保持回路と、FET9のゲート容量を充放電させる充放電用スイッチ群と、これらスイッチのタイミング制御を行うタイミング制御回路から構成される。
ターンオン回路の昇圧用インダクタ2、昇圧用スイッチ3、昇圧用ダイオード4、ターンオン用コンデンサ6、オン用スイッチ7、オン保持回路のオン保持用電源1、オン保持用ダイオード5の各部品は実施例1の図1と同一であり、動作も同一なので説明を省略する。ターンオフ回路は、オン保持中にタイミング制御回路27の信号により昇圧用スイッチ23を閉じて、オフ保持用電源21から昇圧用インダクタ22にエネルギーを溜め、適当なタイミングで昇圧用スイッチ23を開き、ターンオフ用コンデンサ26をオフ保持用電源21より高電圧に充電し、ON指令信号のタイミングでオフ用スイッチ8を介してFET9のゲート容量を放電・負電圧に充電する回路である。オフ保持回路は絶対最大定格内に設定したオフ保持用電源21から、オフ保持用ダイオード25を介してターンオフ用コンデンサ26を充電し、この電圧がFET9のスレッショルド電圧以下に低下することを防止している。ゲートの充放電用スイッチ群は、オン用スイッチ7とオフ用スイッチ8とからなり、図6の同符号のものと同一の動作をするものである。
図4は図3の高速ゲート駆動回路の動作タイミングを示すチャートである。図4を用いて図3の回路の動作を詳細に説明する。
図4のON指令信号、SCH1、S、S、VC1は、実施例1の図2の記号と同一であり、SCH2は図3の充電スイッチ24の状態を示すものである。図4のVC2は、図3のターンオフ用コンデンサ27の電圧を示すものであり、電圧レベルVD4、VD3はそれぞれ図3のターンオフ用電源22、オフ保持用電源21の電圧を示す。図4のVGSはFET10のゲート−ソース間電圧を示すものであり、電圧レベルVD2、VD1はそれぞれターンオン用電源2、オン保持用電源1の電圧である。図4のFETは、図3のFET10の状態を示すものである。
ターンオン直後、図3のタイミング制御回路27からの信号によりSCH2がオフ→オンされ、オフ保持電源21→昇圧用インダクタ22→昇圧用スイッチ23の閉回路ができインダクタの電流が上昇する。その後適当なタイミングでSCH2をオン→オフにすると、昇圧用インダクタ22のエネルギーが昇圧用ダイオード24を通りターンオフ用コンデンサ26へ転送され、高電圧に充電される。所望のタイミングでON指令信号を1→0へ変化させると、Sがオン→オフになり、わずかに遅れてSがオフ→オンになり図3のターンオフ用コンデンサ26の電荷がFET9へ転送され始め、VGSの電圧が急激に下降し、FET9を高速にターンオフさせる。この際、図3のターンオフ用コンデンサ26の充電電荷(VD4とCの積)とFET9のゲート総電荷量を同程度〜2倍程度に設定すると、電荷の転送に伴いVC2は低下し、VD3を下回るとオフ保持用ダイオード25が導通し、VGSを−VD3に保持するためオフ状態が維持される。
図3、図4の実施例では、ターンオフ用コンデンサの容量を適切に設定することにより、一時的にゲート−ソース間に高い逆バイアス電圧を印加することで高速ターンオフを実現し、なおかつターンオフ後は適切なオフ保持電圧を印加できるものである。高速ターンオフを実現することで、駆動対象のFET等のターンオフ損失が低減でき、実用上大いに役立つ。
インバータ等のスイッチング素子駆動用に適用することで、スイッチング損失を低減できる。また、パルスパワー電源等のパルスの高速立上りを要求される装置のスイッチング素子駆動方法として適用しても有効である。
請求項1の高速ゲート駆動回路の実施例を示した回路図である。(実施例1) 図1の回路の動作タイミングを示したチャートである。(実施例1) 請求項2の高速ゲート駆動回路の実施例を示した回路図である。(実施例2) 図3の回路の動作タイミングを示したチャートである。(実施例2) MOSFETの等価回路を示した図である。 従来のゲート駆動回路を示した回路図である。 従来のゲート駆動波形例を示した図ある。
符号の説明
1 オン保持用電源
2 昇圧用インダクタ
3 昇圧用スイッチ
4 昇圧用ダイオード
5 オン保持用ダイオード
6 ターンオン用コンデンサ
7 オン用スイッチ
8 オフ用スイッチ
9 FET
10 タイミング制御回路
21 オフ保持用電源
22 昇圧用インダクタ
23 昇圧用スイッチ
24 昇圧用ダイオード
25 オフ保持用ダイオード
26 ターンオフ用コンデンサ
27 タイミング制御回路
31 ゲートドライブ電源
32 タイミング制御回路

Claims (2)

  1. MOSFET等の絶縁ゲート構造を持つ半導体スイッチング素子を駆動するゲート駆動回路において、定格ゲート電圧内の電圧のオン保持用電源と、該オン保持用電源から該定格ゲート電圧を越える電圧を生成するターンオン用昇圧回路と、該ターンオン用昇圧回路により充電されるターンオン用コンデンサを有し、ターンオン直前までに前記ターンオン用昇圧回路により該ターンオン用コンデンサを昇圧充電し、前記ターンオン用コンデンサの電荷を前記半導体スイッチング素子のゲートに印加して高速ターンオンし、ターンオン後は前記オン保持用電源でオン状態を保持することを特徴とする高速ゲート駆動回路。
  2. MOSFET等の絶縁ゲート構造を持つ半導体スイッチング素子を駆動するゲート駆動回路において、定格ゲート電圧内の電圧のオフ保持用電源と、該オフ保持用電源から該定格ゲート電圧を越える電圧を生成するターンオフ用昇圧回路と、該ターンオフ用昇圧回路により充電されるターンオフ用コンデンサを有し、オン期間中に前記ターンオフ用昇圧回路により該ターンオフ用コンデンサを昇圧充電し、前記ターンオフ用コンデンサの電荷を前記半導体スイッチング素子のゲートに印加して高速ターンオフし、ターンオフ後は前記オフ保持用電源でオフ状態を保持することを特徴とする高速ゲート駆動回路。
JP2007013214A 2007-01-24 2007-01-24 高速ゲート駆動回路 Pending JP2008182381A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013214A JP2008182381A (ja) 2007-01-24 2007-01-24 高速ゲート駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013214A JP2008182381A (ja) 2007-01-24 2007-01-24 高速ゲート駆動回路

Publications (1)

Publication Number Publication Date
JP2008182381A true JP2008182381A (ja) 2008-08-07

Family

ID=39725961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013214A Pending JP2008182381A (ja) 2007-01-24 2007-01-24 高速ゲート駆動回路

Country Status (1)

Country Link
JP (1) JP2008182381A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119184A (ja) * 2008-11-12 2010-05-27 Toyota Motor Corp 半導体駆動装置
JP2011067031A (ja) * 2009-09-18 2011-03-31 Mitsuba Corp 車両用電源装置
JP5331822B2 (ja) * 2008-12-26 2013-10-30 株式会社アドバンテスト スイッチ装置
CN104113312A (zh) * 2013-04-16 2014-10-22 富鼎先进电子股份有限公司 栅极电压产生电路
WO2015072098A1 (ja) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 ゲート駆動回路およびそれを用いた電力変換装置
KR20150099567A (ko) * 2012-12-26 2015-08-31 알레그로 마이크로시스템스, 엘엘씨 개선된 스위칭 지연을 갖는 출력 드라이버 및 관련 방법들
JP2018121386A (ja) * 2017-01-23 2018-08-02 株式会社デンソー 駆動装置
JP2019103147A (ja) * 2017-11-28 2019-06-24 株式会社Ihi 電力変換器
JP2021125921A (ja) * 2020-02-03 2021-08-30 富士電機株式会社 ゲート駆動装置およびスイッチング装置
CN114826231A (zh) * 2022-06-24 2022-07-29 深圳市时代速信科技有限公司 场效应晶体管驱动电路及电子设备
US11451225B2 (en) 2020-03-13 2022-09-20 Aptiv Technologies Limited Apparatus for driving a switching device and method of using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119184A (ja) * 2008-11-12 2010-05-27 Toyota Motor Corp 半導体駆動装置
JP5331822B2 (ja) * 2008-12-26 2013-10-30 株式会社アドバンテスト スイッチ装置
US9136834B2 (en) 2008-12-26 2015-09-15 Advantest Corporation Switching apparatus
JP2011067031A (ja) * 2009-09-18 2011-03-31 Mitsuba Corp 車両用電源装置
KR102020775B1 (ko) * 2012-12-26 2019-11-04 알레그로 마이크로시스템스, 엘엘씨 개선된 스위칭 지연을 갖는 출력 드라이버 및 관련 방법들
KR20150099567A (ko) * 2012-12-26 2015-08-31 알레그로 마이크로시스템스, 엘엘씨 개선된 스위칭 지연을 갖는 출력 드라이버 및 관련 방법들
JP2016507955A (ja) * 2012-12-26 2016-03-10 アレグロ・マイクロシステムズ・エルエルシー 改善されたスイッチング遅延を有する出力ドライバおよび関連する方法
CN104113312A (zh) * 2013-04-16 2014-10-22 富鼎先进电子股份有限公司 栅极电压产生电路
WO2015072098A1 (ja) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 ゲート駆動回路およびそれを用いた電力変換装置
US9660511B2 (en) 2013-11-13 2017-05-23 Panasonic Intellectual Property Management Co., Ltd. Gate driver circuit and power conversion apparatus using same
JPWO2015072098A1 (ja) * 2013-11-13 2017-03-16 パナソニックIpマネジメント株式会社 ゲート駆動回路およびそれを用いた電力変換装置
JP2018121386A (ja) * 2017-01-23 2018-08-02 株式会社デンソー 駆動装置
JP2019103147A (ja) * 2017-11-28 2019-06-24 株式会社Ihi 電力変換器
JP2021125921A (ja) * 2020-02-03 2021-08-30 富士電機株式会社 ゲート駆動装置およびスイッチング装置
JP7443795B2 (ja) 2020-02-03 2024-03-06 富士電機株式会社 ゲート駆動装置およびスイッチング装置
US11451225B2 (en) 2020-03-13 2022-09-20 Aptiv Technologies Limited Apparatus for driving a switching device and method of using the same
CN114826231A (zh) * 2022-06-24 2022-07-29 深圳市时代速信科技有限公司 场效应晶体管驱动电路及电子设备

Similar Documents

Publication Publication Date Title
JP4804142B2 (ja) 高速ゲート駆動回路
JP2008182381A (ja) 高速ゲート駆動回路
US7602229B2 (en) High frequency control of a semiconductor switch
US7459945B2 (en) Gate driving circuit and gate driving method of power MOSFET
US7551004B2 (en) Inverter apparatus with improved gate drive for power MOSFET
US9705489B2 (en) Cascode transistor circuit
US9083333B2 (en) Switching circuit
JP6356718B2 (ja) 半導体装置
US20080197904A1 (en) Circuit Arrangement for Switching a Load
US9831856B2 (en) Electronic drive circuit and method
CN110365324B (zh) 一种功率管栅极驱动电路
US20200313537A1 (en) Gate Drive Circuit
JP5991939B2 (ja) 半導体デバイス駆動回路および半導体デバイス駆動装置
JP2020127145A (ja) ブリッジ出力回路、電源装置及び半導体装置
KR20060059996A (ko) 제어 회로 및 공진 드라이버 회로 동작 방법
CN111917403A (zh) 用于降低死区时间效率低下的栅极驱动器电路
US10931278B2 (en) Driving circuit of switching transistor
US20120126861A1 (en) Load driving circuit
JP2009153315A (ja) 電力変換装置
JP4830829B2 (ja) 絶縁ゲートトランジスタの駆動回路
JP2009219017A (ja) 負荷制御装置、及びその入力パルスの生成方法
JP2002044940A (ja) Mosスイッチング回路
JP7366678B2 (ja) ドライブ装置、半導体装置及び電子機器
WO2023032413A1 (ja) 半導体装置
JP2008259031A (ja) 負荷駆動装置