WO2010067627A1 - 酸解離性溶解抑止基前駆体、及び酸解離性溶解抑止基を有する環状化合物 - Google Patents

酸解離性溶解抑止基前駆体、及び酸解離性溶解抑止基を有する環状化合物 Download PDF

Info

Publication number
WO2010067627A1
WO2010067627A1 PCT/JP2009/006825 JP2009006825W WO2010067627A1 WO 2010067627 A1 WO2010067627 A1 WO 2010067627A1 JP 2009006825 W JP2009006825 W JP 2009006825W WO 2010067627 A1 WO2010067627 A1 WO 2010067627A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
groups
Prior art date
Application number
PCT/JP2009/006825
Other languages
English (en)
French (fr)
Inventor
柴田充
柏村孝
蓬田知行
石井宏寿
関川将司
塩谷英昭
大和田貴紀
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2010542041A priority Critical patent/JPWO2010067627A1/ja
Publication of WO2010067627A1 publication Critical patent/WO2010067627A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/125Saturated compounds having only one carboxyl group and containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/63Halogen-containing esters of saturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • C07C69/712Ethers the hydroxy group of the ester being etherified with a hydroxy compound having the hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/94Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of polycyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/54Radicals substituted by oxygen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes

Definitions

  • the present invention relates to an acid dissociable, dissolution inhibiting group precursor, and a cyclic compound having an acid dissociable, dissolution inhibiting group. More specifically, the present invention relates to a photoresist base material comprising the above-mentioned cyclic compound used in the fields of electricity and electronics such as semiconductors, optical fields, etc.
  • Lithography using extreme ultraviolet light (Extream Ultra Violet (EUV)) or electron beam is useful as a high productivity, high resolution microfabrication method in the manufacture of semiconductors etc., and develops a high sensitivity, high resolution photoresist used for it It is required to do. It is essential to improve the sensitivity of the photoresist used in these lithography from the viewpoint of productivity of the desired fine pattern, resolution and the like.
  • EUV extreme ultraviolet light
  • electron beam is useful as a high productivity, high resolution microfabrication method in the manufacture of semiconductors etc., and develops a high sensitivity, high resolution photoresist used for it It is required to do. It is essential to improve the sensitivity of the photoresist used in these lithography from the viewpoint of productivity of the desired fine pattern, resolution and the like.
  • a photoresist used at the time of ultrafine processing with extreme ultraviolet light for example, a chemically amplified polyhydroxystyrene-based photoresist used at the time of ultrafine processing with a known KrF laser may be mentioned. It is known that this resist can be microfabricated to about 50 nm. However, with this resist, the most important line edge roughness can be achieved even if high sensitivity and low resist outgas can be realized to some extent by creating a pattern of 50 nm or less, which is the greatest advantage of ultrafine processing with extreme ultraviolet light. Since it was impossible to reduce, it could not be said that the original performance of extreme ultraviolet light was sufficiently extracted. From such a background, it has been required to develop a higher performance photoresist.
  • Patent Document 1 discloses a method using a chemically amplified positive photoresist having a high concentration of a photoacid generator as compared to other resist compounds.
  • a substrate comprising a terpolymer consisting of hydroxystyrene / styrene / t-butyl acrylate, at least about 5% by weight of di (t-butylphenyl) iodonium ortho-tri in total solids
  • the photo acid generator composed of fluoromethyl sulfonate
  • the photoresist composed of tetrabutyl ammonium hydroxide lactate and ethyl lactate
  • Patent Document 2 discloses a calixresorcinarene compound as a high sensitivity and high resolution photoresist material.
  • new low molecular weight organic compounds that are in an amorphous state at room temperature have also been desired.
  • the improvement of various performances, such as the improvement of the etching tolerance which becomes a problem in a semiconductor manufacturing process was calculated
  • the photoresist base material is dissolved in a solvent and advanced to a film forming step in the current semiconductor manufacturing process, high solubility in a coating solvent has been required.
  • Patent Document 3 discloses calixresorcinarene compounds, but these compounds are considered to be partially insufficient in solubility, and their applications as photoresist substrates are not described.
  • Patent Document 4 discloses a specific low molecular weight compound in which basic impurities are reduced, but there are problems such as insufficient solubility or contamination due to outgassing derived from an acid dissociable, dissolution inhibiting group.
  • JP 2002-055457 A Japanese Patent Application Publication No. 2004-191913 U.S. Patent No. 6093 517 JP, 2005-075767, A
  • An object of the present invention is to provide an acid dissociable, dissolution inhibiting group precursor which constitutes a part of a photoresist substrate.
  • An object of the present invention is to provide a photoresist substrate and a photoresist composition which have excellent coating solvent solubility, high transparency, high sensitivity, high microfabrication, high strength and low outgassing.
  • the present invention has been made in view of the above problems, and the problems that arise in ultra-fine processing using conventional photoresists are steric molecular shapes, molecular structures, or photoresist substrates made of conventional polymer compounds, or It was found that the reactivity was based on the structure-based reactivity of the protective group in its molecular structure. Based on this finding, the present inventors found a compound with few problems described above, and completed the present invention.
  • a compound represented by R—X is a group represented by the following formula (1)
  • X is a halogen atom, a hydroxyl group, an aryloxy group, or a (meth) acrylic acid ester group represented by the following formula (5).
  • n is an integer of 0 or 1 respectively.
  • R a represents a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon atom having 3 carbon atoms And a cyclic aliphatic hydrocarbon group of -20 or a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms.
  • R b is a group based on a tertiary carbon having at least one substituent containing a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms
  • the group is based on carbon contained in the cyclic structure of a monocyclic aliphatic ring structure or a bicyclic aliphatic ring structure having 3 to 20 carbon atoms.
  • R b is 1-phenylethyl group, 2-phenylpropan-2-yl group, 2-benzylpropan-2-yl group, diphenylmethyl group, 1-phenylpropyl group, 1,2-diphenylpropyl group, And the groups represented by the following formulas (1001 '), (1003'), (1006 '), (1007') and (1008 ').
  • R c represents a single bond, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted group It is a cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, or a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms.
  • R d is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • X and Y each represent a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, or a phenyl group
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms, and may be partially substituted by cyclic alkyl groups having 3 to 20 carbon atoms.
  • the phenyl group, benzyl group and phenethyl group are a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, carbon A linear alkoxy group of 1 to 10, an alkoxy group having a branch of 3 to 20 carbon atoms, a cyclic alkoxy group of 3 to 20 carbon atoms, a linear haloalkoxy group of 1 to 10 carbon atoms, 3 carbon atoms It may be substituted by a haloalkoxy group having a branch of ⁇ 20 and a cyclic haloalkoxy group having 3 to 20 carbon atoms.
  • n is an integer of 0 to 3.
  • Plural Xs or Ys may be the same or different.
  • R 105 is a phenyl group, and the phenyl group is a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, 3 to 20 carbon atoms Cyclic alkyl group, linear alkoxy group having 1 to 10 carbon atoms, alkoxy group having a branch having 3 to 20 carbon atoms, cyclic alkoxy group having 3 to 20 carbon atoms, linear halo having 1 to 10 carbon atoms
  • the aryl group may be substituted with an alkoxy group, a branched haloalkoxy group having 3 to 20 carbon atoms, or a cyclic haloalkoxy group having 3 to 20 carbon atoms.
  • R 106 , R 107 and R 108 each independently represent a hydrogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, phenyl group, benzyl A group or a phenethyl group,
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms
  • the phenyl group, benzyl group and phenethyl group are a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, carbon A linear alkoxy group of 1 to 10, an alkoxy group having a branch of 3 to 20 carbon atoms, a cyclic alkoxy group of
  • a photoresist base material is provided, which is a polymer obtained by the above-described method, or a polymer obtained by homopolymerization or copolymerization of the above-mentioned compound in which X is an aryloxy group with an aldehyde compound.
  • R is a group represented by the above formula (1)
  • OR b of the formula (1) is a group represented by the formulas (6) to (41) described later and the formulas (101) to (283) described later And any one of the groups represented by the following formulas (43) to (50).
  • the plurality of R may be the same or different.
  • a compound having a phenolic hydroxyl group of 2 or more and 50 or less and a molecular weight of 500 or more and 5000 or less is a group represented by the above formula (1)
  • OR b of formula (1) is Formulas (1001) to (1032) described later, formulas (6) to (41) described later, formulas (43) to (50) described later, and groups represented by formulas (101) to (283) described later
  • a photoresist substrate is provided which is a compound having a group attached thereto.
  • a photoresist base material which is a compound represented by the following formulas (51), (55) and (57), having a phenolic hydroxyl group of 2 to 50 and a molecular weight of 500 to 5000. Is provided.
  • R ′ represents a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted group
  • any of the groups represented by R 1 represents a hydrogen atom, a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon atom having 3 carbon atoms
  • R 2 represents a hydrogen atom, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, and 3 to 20 carbon atoms It is a cyclic aliphatic hydrocarbon group, an aromatic group having 6 to 10 carbon atoms, a group containing an oxygen atom, or an acid dissociable, dissolution inhibiting group OR.
  • Ar is a combination of two or more selected from a substituted or unsubstituted arylene group having 6 to 10 carbon atoms and a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, or selected from an alkylene group and an ether bond A combination of one or more of the above and a substituted or unsubstituted C.sub.6-10 arylene group,
  • the substituent in the case of having a substituent is a bromine atom, a fluorine atom, a nitrile group or an alkyl group having 1 to 10 carbon atoms.
  • R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted group Cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, alkoxy group, alkoxyalkyl group, carboxy group, silyl group, and these groups and divalent groups A bonded group or an acid dissociable, dissolution inhibiting group OR, The divalent group is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, an ester bond, a carbonic ester bond, an ether bond, two or more selected from these groups Is a bonded group, or one
  • R 4 and R 5 each represent a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Or an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a combination of two or more of these groups.
  • a 1 is a group obtained by combining two or more groups selected from an alkylene group, an ether bond and an alkylene group, or a group obtained by combining one or more alkylene groups and one or more ether bonds.
  • R x is an integer of 1 to 5
  • y is an integer of 0 to 3
  • z is an integer of 0 to 4.
  • the plurality of R ′, R 1 , R 2 , R 3 , R 4 , R 5 , Ar, A 1 , x, y and z may be the same or different. Any one or more of R 1 , R 2 and R 3 is an acid dissociable, dissolution inhibiting group OR.
  • R is a group represented by the formula (1).
  • R ′ represents a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted group Or a cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, a group obtained by combining two or more of these groups, or a group represented by the following formula (56) It is a group.
  • R 1 represents a hydrogen atom, a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon atom having 3 carbon atoms
  • the divalent group is selected from a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstituted silylene oxy group, an ester bond, a carbonic acid ester bond, an ether bond, and these groups Or two or more bonded groups,
  • R 2 represents a hydrogen atom, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, and 3 to 20 carbon atoms It is a cyclic aliphatic hydrocarbon group, an aromatic group having 6 to 10 carbon atoms, a group containing an oxygen atom, or an acid dissociable, dissolution inhibiting group OR.
  • Ar is selected from a group in which two or more groups selected from a substituted or unsubstituted arylene group having 6 to 10 carbon atoms and a substituted or unsubstituted arylene group having 6 to 10 carbons are combined, an alkylene group and an ether bond And a substituted or unsubstituted arylene group having 6 to 10 carbon atoms in combination;
  • the substituent in the case of having a substituent is a bromine atom, a fluorine atom, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
  • R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted group Cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, alkoxy group, alkoxyalkyl group, carboxy group, silyl group, and these groups and divalent groups A bonded group or an acid dissociable, dissolution inhibiting group OR, The divalent group is selected from a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, an ester bond, a carbonic ester bond, or an ether bond, and these groups 2 One or more groups selected from the above, or
  • R 4 and R 5 each represents a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Or an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a combination of two or more of these groups.
  • x is an integer of 1 to 5
  • y is an integer of 0 to 3
  • z is an integer of 0 to 4.
  • R ′ The plurality of R ′, R 1 , R 2 , R 3 , R 4 , R 5 , Ar, x, y and z may be the same or different. Any one or more of R 1 , R 2 and R 3 is an acid dissociable, dissolution inhibiting group OR.
  • R is a group represented by the formula (1).
  • R ′ is any one of groups represented by the following formulas (58) to (60).
  • R 1 represents hydrogen, a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon atom having 3 to 6 carbon atoms 20 cyclic aliphatic alkoxy groups, substituted or unsubstituted aryloxy groups having 6 to 10 carbon atoms, alkoxyalkyloxy groups, siloxy groups, or groups in which these groups and a divalent group are bonded,
  • the divalent group is selected from a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstituted silylene oxy group, an ester bond, a carbonic acid ester bond, an ether bond
  • R 2 represents a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aliphatic hydrocarbon group having a branch having 3 to 12 carbon atoms, and a cyclic group having 3 to 20 carbon atoms And an aliphatic hydrocarbon group, an aromatic group having 6 to 10 carbon atoms, or a group containing an oxygen atom.
  • Ar is a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, a combination of two or more substituted or unsubstituted arylene groups having 6 to 10 carbon atoms, one or more groups selected from an alkylene group and an ether bond And a substituted or unsubstituted arylene group having 6 to 10 carbon atoms in combination with
  • the substituent in the case of having a substituent is a bromine atom, a fluorine atom, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
  • R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted group A cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, an alkoxy group, an alkoxyalkyl group, a carboxy group, a silyl group, or a group thereof and a divalent group Is a bonded group, or an acid dissociable, dissolution inhibiting group OR,
  • the divalent group is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, an ester bond, a carbonic ester bond, an ether
  • R 4 and R 5 each represent a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Or an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a combination of two or more of these groups.
  • a 1 is a group combining two or more selected from an alkylene group, an ether bond and an alkylene group, or a group combining one or more alkylene groups and one or more selected from an ether bond.
  • R 1 , R 2 , R 3 , R 4 , R 5 , Ar, A 1 , x, y and z may be the same or different.
  • R 3 is an acid dissociable, dissolution inhibiting group OR.
  • R is a group represented by the formula (1).
  • a compound represented by the following formula (2001) is provided.
  • X a is a halogen atom.
  • R 201 , R 202 and R 203 each independently represent a hydrogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, phenyl group, benzyl A group or a phenethyl group, R 202 and R 203 may, together with the carbon to which they are attached, form a cyclic alkyl group of 3 to 20 carbon atoms,
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms,
  • the linear and branched alkyl groups may be partially substituted by cyclic alkyl groups having 3 to 20 carbon atoms,
  • the phenyl group, benzyl group and phenethyl group are
  • Each X is one of the following structures.
  • R 204 , R 205 and R 206 each represents a hydrogen atom, a linear alkyl group having 1 to 10 carbon atoms, an alkyl group having a carbon number of 3 to 20, and a cyclic ring having 3 to 20 carbon atoms
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms
  • the phenyl group, benzyl group and phenethyl group are a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, and a cyclic alkyl group having 3 to 20 carbon atoms, C1-C10 linear alkoxy group, C3-C20 branched alkoxy
  • n represents the number of substituents X, and is any integer of 1, 2 and 3.
  • A is any of the following divalent groups: In left-right asymmetric A, the left bond is attached to the benzene ring moiety. (Wherein, R 204 , R 205 and R 206 are as defined above.
  • Y represents a hydrogen atom, a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, or 1 to 10 carbon atoms
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms. ))
  • a photoresist substrate which is a compound represented by the following formulas (2003) and (2006).
  • Y represents a hydrogen atom, a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, carbon A linear alkoxy group of 1 to 10, a branched alkoxy group of 3 to 20 carbon atoms, a cyclic alkoxy group of 3 to 20 carbon atoms, a linear haloalkoxy group of 1 to 10 carbon atoms, and 3 to 20 carbon atoms A branched haloalkoxyl group and a cyclic haloalkoxy group having 3 to 20 carbon atoms,
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms.
  • n represents the number of substituents Y, and is an integer of 0, 1, 2, or 3.
  • R 1 represents a hydrogen atom, a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon atom having 3 carbon atoms And a cyclic aliphatic alkoxy group of -20, or a substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms.
  • R 2 represents a hydrogen atom, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, and 3 to 20 carbon atoms It is a cyclic aliphatic hydrocarbon group and an aromatic group having 6 to 10 carbon atoms.
  • R 3 is a group represented by the following formula (2004) or a group represented by the following formula (2005). (Wherein, R 201 , R 202 , R 203 and A are the same as in the above formula (2001).
  • p represents the length of a methylene chain and the number of CH 2 , and is an integer of 1, 2, or 3.
  • m represents the length of a methylene chain and the number of CH 2 and is an integer of 0, 1, 2, or 3.
  • X represents a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, an alkyl group having a branch having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, a phenyl group or a benzyl group , Phenethyl group, or the following structure, (Wherein, R 204 , R 205 and R 206 are the same as in the above formula (2001).)
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms,
  • the phenyl group, the benzyl group and the phenethyl group are a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, an alkyl group having a branch
  • a thin film comprising the above photoresist substrate, a photoresist composition comprising the above photoresist substrate and a solvent, a microfabrication method using the photoresist composition, and the microfabrication method
  • the manufactured semiconductor device is provided.
  • an acid dissociable, dissolution inhibiting group precursor which constitutes a part of a photoresist substrate.
  • a photoresist substrate and a photoresist composition which are excellent in coating solvent solubility, high in transparency, high in sensitivity, high in fine processability, high in strength, and low outgassing.
  • the acid dissociable, dissolution inhibiting group precursor shown above is not only a raw material of a photoresist base material, but also a raw material of an additive which is constituted as a photoresist such as a photoacid generator, a quencher, a surfactant, etc. It can also be used as a raw material for an antireflective film etc.
  • FIG. 10 shows the 1 H-NMR spectrum of the cyclic compound precursor (3) produced in Production Example 3.
  • the acid dissociable, dissolution inhibiting group precursor of the present invention (hereinafter sometimes referred to as the first acid dissociable, dissolution inhibiting group precursor of the present invention) is a compound represented by R—X, wherein R is A group represented by the following formula (1), and X is a halogen atom, a hydroxyl group, an aryloxy group, or a (meth) acrylic acid ester group represented by the following formula (5).
  • n is an integer of 0 or 1 respectively.
  • R a represents a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon atom having 3 carbon atoms And a cyclic aliphatic hydrocarbon group of -20 or a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms.
  • R b is a group based on a tertiary carbon having at least one substituent containing a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms
  • the group is based on carbon contained in the cyclic structure of a monocyclic aliphatic ring structure or a bicyclic aliphatic ring structure having 3 to 20 carbon atoms.
  • R b is 1-phenylethyl group, 2-phenylpropan-2-yl group, 2-benzylpropan-2-yl group, diphenylmethyl group, 1-phenylpropyl group, 1,2-diphenylpropyl group, And the groups represented by the following formulas (1001 '), (1003'), (1006 '), (1007') and (1008 ').
  • R c represents a single bond, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted group It is a cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, or a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms.
  • R d is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • X and Y each represent a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, or a phenyl group
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms, and may be partially substituted by cyclic alkyl groups having 3 to 20 carbon atoms.
  • the phenyl group, benzyl group and phenethyl group are a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, carbon A linear alkoxy group of 1 to 10, an alkoxy group having a branch of 3 to 20 carbon atoms, a cyclic alkoxy group of 3 to 20 carbon atoms, a linear haloalkoxy group of 1 to 10 carbon atoms, 3 carbon atoms It may be substituted by a haloalkoxy group having a branch of ⁇ 20 and a cyclic haloalkoxy group having 3 to 20 carbon atoms.
  • n is an integer of 0 to 3.
  • Plural Xs or Ys may be the same or different. )
  • R 105 is a phenyl group
  • the phenyl group is a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, 3 to 20 carbon atoms Cyclic alkyl group, linear alkoxy group having 1 to 10 carbon atoms, alkoxy group having a branch having 3 to 20 carbon atoms, cyclic alkoxy group having 3 to 20 carbon atoms, linear halo having 1 to 10 carbon atoms
  • the aryl group may be substituted with an alkoxy group, a branched haloalkoxy group having 3 to 20 carbon atoms, or a cyclic haloalkoxy group having 3 to 20 carbon atoms.
  • R 106 , R 107 and R 108 each independently represent a hydrogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, phenyl group, benzyl A group or a phenethyl group,
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms
  • the phenyl group, benzyl group and phenethyl group are a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, carbon A linear alkoxy group of 1 to 10, an alkoxy group having a branch of 3 to 20 carbon atoms, a cyclic alkoxy group of
  • the aromatic moiety is a monocyclic aromatic structure or a bicyclic aromatic structure, and is a bifunctional monocyclic or bicyclic aromatic It is also good.
  • the aromatic moiety is a multi-ring functional aromatic structure, it may have a plurality of R in the above formula (1).
  • the aryloxy group is formed including one or more aryloxy group structures, whether it is a polymer having an aryloxy group structure as a partial structure or a polymer containing an aryloxy group structure as a part of a monomer structure. Or a cyclic compound.
  • the aryloxy group may have one or more R in the above formula (1).
  • the (meth) acrylic acid ester group may be a polymer containing a (meth) acrylic acid ester group structure as a part of the monomer structure.
  • the (meth) acrylic ester group is a polymer, it may have one or a plurality of R in the above formula (1).
  • R b is a group based on a tertiary carbon having at least one substituent containing a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms” means that the tertiary carbon of R b is It means binding to oxygen.
  • Acid dissociable, dissolution inhibiting group precursor of the present invention is preferably any one of groups OR b is represented by the following formula (1001) - (1032).
  • the acid dissociable, dissolution inhibiting group precursor of the present invention is a group represented by formulas (1001), (1003), (1006), (1007) or (1008), and R 101 and R 102 are groups. Both groups are hydrogen and do not include groups where m is 0.
  • R 101 , R 102 , R 103 and R 104 each independently represent a hydrogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl having 3 to 20 carbon atoms
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms, and may be partially substituted by cyclic alkyl groups having 3 to 20 carbon atoms.
  • the phenyl group, benzyl group and phenethyl group are a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, carbon A linear alkoxy group of 1 to 10, an alkoxy group having a branch of 3 to 20 carbon atoms, a cyclic alkoxy group of 3 to 20 carbon atoms, a linear haloalkoxy group of 1 to 10 carbon atoms, 3 carbon atoms It may be substituted by a haloalkoxy group having a branch of ⁇ 20 and a cyclic haloalkoxy group having 3 to 20 carbon atoms.
  • R 101 and R 102 and R 103 and R 104 may form a cyclic alkyl group having 3 to 20 carbon atoms together with the carbon to which they are bonded.
  • Examples of the cyclic alkyl group include cyclopropyl group, cyclopentyl group, cyclohexyl group and adamantyl group.
  • R 105 represents a phenyl group, which is a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl group having 3 to 20 carbon atoms
  • R 106 , R 107 and R 108 each independently represent a hydrogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, phenyl group, benzyl A group or a phenethyl group,
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms
  • the phenyl group, benzyl group and phenethyl group are a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, carbon A linear alkoxy group of 1 to 10, an alkoxy group having a branch of 3 to 20 carbon atoms, a cyclic alkoxy group of
  • any two or three of R 106 , R 107 and R 108 may form a C 3-20 cyclic alkyl group together with the carbon to which they are attached.
  • the cyclic alkyl group include cyclopropyl group, cyclopentyl group, cyclohexyl group and adamantyl group.
  • R 109 and R 110 each independently represent a hydrogen atom, a linear alkyl group having 1 to 10 carbon atoms, an alkyl group having a branch having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, or one or more of them And an ether bond, an ester bond or a single bond is a combined group of
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms.
  • R 111 and R 112 together with the carbon to which they are attached form a cyclic alkyl group of 3 to 20 carbon atoms.
  • the cyclic alkyl group having 3 to 20 carbon atoms is, for example, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group or an adamantyl group.
  • R 113 represents a hydrogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, a phenyl group, a benzyl group, a phenethyl group, Or one or more of these groups in combination with an ether bond, an ester bond or a single bond, which is a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, or 3 to 6 carbon atoms
  • the group may be substituted with a linear haloalkoxy group having 1 to 10
  • X, Y and Z each represents a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl group having 3 to 20 carbon atoms, phenyl group, benzyl A group, a phenethyl group, or the following structure:
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms, and may be partially substituted by cyclic alkyl groups having 3 to 20 carbon atoms.
  • the phenyl group, benzyl group and phenethyl group are a halogen atom, a hydroxy group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, carbon A linear alkoxy group of 1 to 10, an alkoxy group having a branch of 3 to 20 carbon atoms, a cyclic alkoxy group of 3 to 20 carbon atoms, a linear haloalkoxy group of 1 to 10 carbon atoms, 3 carbon atoms It may be substituted by a haloalkoxy group having a branch of ⁇ 20 and a cyclic haloalkoxy group having 3 to 20 carbon atoms.
  • R 105 R 106 , R 107 and R 108 are as defined above
  • n represents the number of substituents X, Y or Z and is an integer of 0 to 3.
  • the plurality X, Y or Z may be the same or different.
  • m is the number of methylene in the methylene (CH 2 ) chain and is an integer of 0 to 2;
  • a 1 represents the following divalent group: In left-right asymmetric A 1 , the left bond is attached to the benzene ring moiety.
  • a 2 represents the following divalent group:
  • a 3 represents the following divalent radicals.
  • a 4 represents the following divalent group:
  • Acid dissociable, dissolution inhibiting group precursor of the present invention is preferably one of the groups OR b is represented by the following formula (6) to (41) and (101) to (283).
  • the acid dissociable, dissolution inhibiting group precursor of the present invention can be produced, for example, by the following production method 1 or production method 2.
  • Production method 1 The starting alcohol R b -OH and, for example, bromoacetic acid (A1) are stirred in methylene chloride as a solvent in the presence of 4-dimethylaminopyridine, and at 0 ° C., the dehydration condensation agent dicyclohexylcarbodiimide is slowly added. Then, it is made to react by stirring at 0 ° C. while cooling in an ice bath. The resulting white solid (ureacylated dicyclohexylcarbodiimide) is removed by filtration, post-treatment and purification are carried out to obtain an acid dissociable, dissolution inhibiting group precursor, a bromoacetic acid ester (B). (In the formula, X is Br.)
  • Production method 2 The raw material alcohol R b -OH and, for example, bromoacetic acid bromide (A2) are cooled to 0 ° C. in dehydrated tetrahydrofuran, dehydrated pyridine is added dropwise, and the mixture is reacted by raising the temperature to room temperature and stirring. Post-treatment and purification are carried out to obtain a bromoacetic acid ester (B) which is an acid dissociable, dissolution inhibiting group precursor. (In the formula, X is Br.)
  • solvents are not limited thereto, and other solvents may be used if the reactant and the raw materials are dissolved. Examples of other solvents include halogen-containing solvents and oxygen-containing solvents.
  • dicyclohexyl carbodiimide is used as a dehydration condensation agent in the above-mentioned production method 1, the present invention is not limited to this, and other conventionally known condensation agents may be used.
  • the reaction temperature is preferably ⁇ 100 ° C. to 100 ° C., particularly preferably ⁇ 50 ° C. to 50 ° C.
  • the photoresist base material of the present invention is a polymer having a structure represented by the following formula (42), homopolymerization of an acid dissociable, dissolution inhibiting group precursor RX in which X is a (meth) acrylate group or A polymer obtained by copolymerization using 2 or more and 5 or less, or a polymer obtained by homopolymerization or copolymerization of an acid dissociable, dissolution inhibiting group precursor R-X wherein X is an aryloxy group with an aldehyde compound It is.
  • R is a group represented by the formula (1)
  • OR b of the formula (1) is represented by the formulas (6) to (41) and the formulas (101) to (279) And any of the groups represented by the following formulas (43) to (50).
  • the plurality of R may be the same or different.
  • the molecular weight of the polymer obtained by polymerizing the acid dissociable, dissolution inhibiting group precursor RX in which X is an aryloxy group or copolymerized with an aldehyde compound is the molecular weight excluding R. It is usually 5,000 to 100,000.
  • m is an integer of 50 to 1000, for example.
  • aldehyde compounds used for copolymerization include formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, alkoxybenzaldehyde, formylbenzoic acid, and formylbenzoic acid ester.
  • the photoresist base material of the present invention is a group represented by the above formula (1) in a compound having a phenolic hydroxyl group of 2 or more and 50 or less and a molecular weight of 500 or more and 5000 or less.
  • OR b is any one of the groups represented by the above formulas (1001) to (1030), the above formulas (6) to (41), the above formulas (43) to (50), and the above formulas (101) to (279) It is a compound to which a group which is Thus, R of the acid dissociable, dissolution inhibiting group precursor RX of the present invention can function as an acid dissociable, dissolution inhibiting group.
  • the photoresist base material of the present invention is preferably a compound represented by the following formula (51).
  • R ′ represents a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted group
  • any of the groups represented by R 1 represents a hydrogen atom, a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or un
  • R 2 represents a hydrogen atom, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, and 3 to 20 carbon atoms It is a cyclic aliphatic hydrocarbon group, an aromatic group having 6 to 10 carbon atoms, a group containing an oxygen atom, or an acid dissociable, dissolution inhibiting group OR.
  • Ar is selected from a group combining two or more groups selected from a substituted or unsubstituted arylene group having 6 to 10 carbon atoms and a substituted or unsubstituted arylene group having 6 to 10 carbons, an alkylene group and an ether bond A combination of one or more and a substituted or unsubstituted arylene group having 6 to 10 carbon atoms,
  • the substituent in the case of having a substituent is a bromine atom, a fluorine atom, a nitrile group or an alkyl group having 1 to 10 carbon atoms.
  • R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted group Cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, alkoxy group, alkoxyalkyl group, carboxy group, silyl group, and these groups and divalent groups A bonded group or an acid dissociable, dissolution inhibiting group OR, The divalent group is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, an ester bond, a carbonic ester bond, an ether bond, two or more selected from these groups Is a bonded group, or one
  • R 4 and R 5 each represent a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Or an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a combination of two or more of these groups.
  • a 1 is a group in which two or more groups selected from an alkylene group, an ether bond and an alkylene group are combined, or a group in which one or more alkylene groups and one or more ether bonds are combined.
  • x is an integer of 1 to 5
  • y is an integer of 0 to 3
  • z is an integer of 0 to 4.
  • the plurality of R ′, R 1 , R 2 , R 3 , R 4 , R 5 , Ar, A 1 , x, y and z may be the same or different. Any one or more of R 1 , R 2 and R 3 is an acid dissociable, dissolution inhibiting group OR. )
  • the photoresist base material of the present invention is preferably a compound represented by the following formula (55).
  • R ′ represents a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted group Or a cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, a group obtained by combining two or more of these groups, or a group represented by the following formula (56) It is a group.
  • R 1 represents a hydrogen atom, a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon atom having 3 carbon atoms
  • the divalent group is selected from a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstituted silylene oxy group, an ester bond, a carbonic acid ester bond, an ether bond, and these groups Or two or more bonded groups,
  • R 2 represents a hydrogen atom, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, and 3 to 20 carbon atoms It is a cyclic aliphatic hydrocarbon group, an aromatic group having 6 to 10 carbon atoms, a group containing an oxygen atom, or an acid dissociable, dissolution inhibiting group OR.
  • Ar is selected from a group in which two or more groups selected from a substituted or unsubstituted arylene group having 6 to 10 carbon atoms and a substituted or unsubstituted arylene group having 6 to 10 carbons are combined, an alkylene group and an ether bond And a substituted or unsubstituted arylene group having 6 to 10 carbon atoms in combination;
  • the substituent in the case of having a substituent is a bromine atom, a fluorine atom, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
  • R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted group Cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, alkoxy group, alkoxyalkyl group, carboxy group, silyl group, and these groups and divalent groups A bonded group or an acid dissociable, dissolution inhibiting group OR, The divalent group is selected from a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, an ester bond, a carbonic ester bond, or an ether bond, and these groups 2 One or more groups selected from the above, or
  • R 4 and R 5 each represents a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Or an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a combination of two or more of these groups.
  • x is an integer of 1 to 5
  • y is an integer of 0 to 3
  • z is an integer of 0 to 4.
  • the plurality of R ′, R 1 , R 2 , R 3 , R 4 , R 5 , Ar, x, y and z may be the same or different. Any one or more of R 1 , R 2 and R 3 is an acid dissociable, dissolution inhibiting group OR. )
  • the photoresist base material of the present invention is preferably a compound represented by the following formula (57).
  • R ′ is any one of groups represented by the following formulas (58) to (60).
  • R 1 represents hydrogen, a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon atom having 3 to 6 carbon atoms 20 cyclic aliphatic alkoxy groups, substituted or unsubstituted aryloxy groups having 6 to 10 carbon atoms, alkoxyalkyloxy groups, siloxy groups, or groups in which these groups and a divalent group are bonded,
  • the divalent group is selected from a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstit
  • R 2 represents a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aliphatic hydrocarbon group having a branch having 3 to 12 carbon atoms, and a cyclic group having 3 to 20 carbon atoms And an aliphatic hydrocarbon group, an aromatic group having 6 to 10 carbon atoms, or a group containing an oxygen atom.
  • Ar is a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, a combination of two or more substituted or unsubstituted arylene groups having 6 to 10 carbon atoms, one or more groups selected from an alkylene group and an ether bond And a substituted or unsubstituted arylene group having 6 to 10 carbon atoms in combination with
  • the substituent in the case of having a substituent is a bromine atom, a fluorine atom, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
  • R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted group A cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, an alkoxy group, an alkoxyalkyl group, a carboxy group, a silyl group, or a group thereof and a divalent group Is a bonded group, or an acid dissociable, dissolution inhibiting group OR,
  • the divalent group is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, an ester bond, a carbonic ester bond, an ether
  • R 4 and R 5 each represent a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Or an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a combination of two or more of these groups.
  • a 1 is a group combining two or more selected from an alkylene group, an ether bond and an alkylene group, or a group combining one or more alkylene groups and one or more selected from an ether bond.
  • R x is an integer of 1 to 5
  • y is an integer of 0 to 3
  • z is an integer of 0 to 4.
  • the plurality of R ′, R 1 , R 2 , R 3 , R 4 , R 5 , Ar, A 1 , x, y and z may be the same or different.
  • R 3 is an acid dissociable, dissolution inhibiting group OR.
  • one of two R 1 present on the same aromatic ring is a hydroxyl group, and the other is a hydroxyl group or a substituted or unsubstituted carbon number 1 -20 linear alkoxy group, substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, substituted or unsubstituted cyclic aliphatic alkoxy group having 3 to 20 carbon atoms, or substituted or unsubstituted carbon atom having 6 carbon atoms It contains an aromatic ring which is an aryloxy group of ⁇ 10.
  • R in the acid dissociable, dissolution inhibiting group OR is a group represented by the above formula (1).
  • OR b of OR is any of the groups represented by the above formulas (1001) to (1030).
  • OR b of OR is preferably any of the groups represented by the above formulas (6) to (41), the above formulas (43) to (50), and the above formulas (101) to (279). is there.
  • Another acid dissociable, dissolution inhibiting group precursor of the present invention (hereinafter sometimes referred to as the second acid dissociable, dissolution inhibiting group precursor of the present invention) is a compound represented by the following formula (2001) .
  • X a is a halogen atom.
  • R 201 , R 202 and R 203 each independently represent a hydrogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, phenyl group, benzyl A group or a phenethyl group, R 202 and R 203 may, together with the carbon to which they are attached, form a cyclic alkyl group of 3 to 20 carbon atoms,
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms,
  • the linear and branched alkyl groups may be partially substituted by a cyclic alkyl group having 3 to 20 carbon atoms (eg, cyclopropyl group, cyclopentyl group, cyclohexyl group, and adamantyl group).
  • the phenyl group, benzyl group and phenethyl group are a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, carbon A linear alkoxy group of 1 to 10, a branched alkoxy group of 3 to 20 carbon atoms, a cyclic alkoxy group of 3 to 20 carbon atoms, a linear haloalkoxy group of 1 to 10 carbon atoms, and 3 to 20 carbon atoms It may be substituted with a branched haloalkoxyl group or a cyclic haloalkoxy group having 3 to 20 carbon atoms.
  • Each X is one of the following structures.
  • R 204 , R 205 and R 206 each represents a hydrogen atom, a linear alkyl group having 1 to 10 carbon atoms, an alkyl group having a carbon number of 3 to 20, and a cyclic ring having 3 to 20 carbon atoms
  • the phenyl group, benzyl group and phenethyl group are a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, and a cyclic alkyl group having 3 to 20 carbon atoms, C1-C10 linear alkoxy group, C3-C20 branched alkoxy group, C3-C20 cyclic alkoxy
  • two X bonded to adjacent carbons of a benzene ring may be taken together to form the following divalent group.
  • N represents the number of substituents X, and is any integer of 1, 2 and 3.
  • A is any of the following divalent groups: In left-right asymmetric A, the left bond is attached to the benzene ring moiety.
  • R 204 , R 205 and R 206 are as defined above.
  • Y represents a hydrogen atom, a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, or 1 to 10 carbon atoms
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms.
  • X in formula (2001) is preferably any one of the following structures.
  • the second acid dissociable, dissolution inhibiting group precursor of the present invention is preferably a compound represented by the following formula (2002).
  • Xa is a halogen atom.
  • OR b is any one of the above formulas (146) to (153), (155) to (200), (202) to (214), (216) to (228) and the following formulas (2010) to (2036) It is. )
  • the second acid dissociable, dissolution inhibiting group precursor of the present invention can be produced by the same process as the first acid dissociable, dissolution inhibiting group precursor.
  • the photoresist base material of the present invention is a compound represented by the following formula (2003).
  • Y represents a hydrogen atom, a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, carbon A linear alkoxy group of 1 to 10, a branched alkoxy group of 3 to 20 carbon atoms, a cyclic alkoxy group of 3 to 20 carbon atoms, a linear haloalkoxy group of 1 to 10 carbon atoms, and 3 to 20 carbon atoms A branched haloalkoxyl group and a cyclic haloalkoxy group having 3 to 20 carbon atoms,
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms.
  • n represents the number of substituents Y, and is an integer of 0, 1, 2, or 3.
  • R 1 represents a hydrogen atom, a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon atom having 3 carbon atoms And a cyclic aliphatic alkoxy group of -20, or a substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms.
  • R 2 represents a hydrogen atom, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, and 3 to 20 carbon atoms It is a cyclic aliphatic hydrocarbon group and an aromatic group having 6 to 10 carbon atoms.
  • R 3 is a group represented by the following formula (2004) or a group represented by the following formula (2005). (Wherein, R 201 , R 202 , R 203 and A are the same as in the above formula (2001).
  • p represents the length of a methylene chain and the number of CH 2 , and is an integer of 1, 2, or 3.
  • m represents the length of a methylene chain and the number of CH 2 and is an integer of 0, 1, 2, or 3.
  • X represents a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, an alkyl group having a branch having 3 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, a phenyl group or a benzyl group , Phenethyl group, or the following structure, (Wherein, R 204 , R 205 and R 206 are the same as in the above formula (2001).)
  • the linear, branched and cyclic alkyl groups may be partially or completely substituted by halogen atoms,
  • the phenyl group, the benzyl group and the phenethyl group are a halogen atom, a hydroxyl group, a linear alkyl group having 1 to 10 carbon atoms, an alkyl group having a branch
  • the photoresist base material of the present invention is a compound represented by the following formula (2006). (Wherein, R 1 , R 2 , R 3 , Y and n are the same as in the above formula (2003)).
  • the photoresist base material which is a compound represented by the above formula (2003), is preferably a group in which R 3 is each represented by the following formula (2007).
  • R 3 is each represented by the following formula (2007).
  • OR b is a group represented by the formulas (6) to (14), (17), (18), (20) to (23), (34) to (39), (101) to (110), (113) to (115), (121) to (271), (2010) to (2036) and any of the groups represented by the following formulas (2037) and (2038).
  • the photoresist base material of the present invention is obtained by condensation reaction of the acid dissociable, dissolution inhibiting group precursor of the present invention in the presence of a conventionally known inorganic base, organic base and the like. Specifically, the photoresist base material of the present invention can be produced by the method described in Japanese Patent Application No. 2007-301839.
  • the photoresist composition of the present invention comprises the photoresist substrate of the present invention.
  • the content of the photoresist base material of the present invention is preferably 50 to 99.9% by weight, more preferably 75 to 95% by weight in the whole composition excluding the solvent.
  • the photoresist substrate of the present invention may be a single type of compound or a mixture of two or more types.
  • Examples of the solvent used for the photoresist composition of the present invention include ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and the like Ethylene glycol monoalkyl ethers; propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate (PGMEA) and propylene glycol monoethyl ether acetate; propylene glycols such as propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether Monoalkyl ethers; methyl lactate, ethyl lactate ( L) Lactate esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl propionate (PE) and the like
  • the amount of components other than the solvent in the composition is preferably an amount suitable to form the desired photoresist layer thickness. Specifically, 0.1 to 50% by weight of the total weight of the photoresist composition is generally used, but it can be specified according to the type of substrate or solvent to be used or the desired thickness of the photoresist layer, etc. .
  • the solvent is preferably blended in an amount of 50 to 99.9% by weight based on the total composition.
  • the photoresist composition of the present invention does not require any additives, particularly when the molecules of the substrate contain chromophores that are active to EUV and / or electron beam and show the ability as a photoresist alone.
  • a photoacid generator PAG
  • PAG photoacid generator
  • the photoacid generator is not particularly limited, and those suggested as an acid generator for a chemically amplified resist can be used.
  • Examples of such an acid generator include onium salt-based acid generators such as iodonium salts and sulfonium salts, oxime sulfonate-based acid generators, bisalkyl or bisarylsulfonyldiazomethanes, and diazomethanes such as poly (bissulfonyl) diazomethanes.
  • onium salt-based acid generators such as iodonium salts and sulfonium salts, oxime sulfonate-based acid generators, bisalkyl or bisarylsulfonyldiazomethanes, and diazomethanes such as poly (bissulfonyl) diazomethanes.
  • a wide variety of materials are known, such as acid generators, nitrobenzyl sulfonate-based acid generators,
  • an acid generator represented by the following formula (a-0) can be exemplified.
  • R 51 represents a linear, branched or cyclic alkyl group, or a linear, branched or cyclic fluorinated alkyl group
  • R 52 represents a hydrogen atom, a hydroxyl group, a halogen atom, a linear or A branched alkyl group, a linear or branched halogenated alkyl group, or a linear or branched alkoxy group
  • R 53 is an aryl group which may have a substituent
  • u '' Is an integer of 1 to 3.
  • R 51 represents a linear, branched or cyclic alkyl group, or a linear, branched or cyclic fluorinated alkyl group.
  • the linear or branched alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms.
  • the cyclic alkyl group preferably has 4 to 12 carbon atoms, more preferably 5 to 10 carbon atoms, and most preferably 6 to 10 carbon atoms.
  • the fluorinated alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms.
  • the fluorination ratio of fluorinated alkyl group (the ratio of the number of substituted fluorine atoms to the number of all hydrogen atoms in the alkyl group) is preferably 10 to 100%, more preferably 50 to 100%, particularly hydrogen It is preferable to replace all the atoms with fluorine atoms because the strength of the acid increases.
  • R 51 is most preferably a linear alkyl group or a fluorinated alkyl group.
  • R 52 is a hydrogen atom, a hydroxyl group, a halogen atom, a linear, branched or cyclic alkyl group, a linear or branched halogenated alkyl group, or a linear or branched alkoxy group.
  • examples of the halogen atom include a fluorine atom, a bromine atom, a chlorine atom and an iodine atom, and a fluorine atom is preferable.
  • the alkyl group is linear or branched, and the carbon number thereof is preferably 1 to 5, more preferably 1 to 4, and most preferably 1 to 3.
  • the halogenated alkyl group is a group in which part or all of hydrogen atoms in the alkyl group are substituted with a halogen atom.
  • the alkyl group here, those similar to the "alkyl group" in the aforementioned R 52 can be mentioned.
  • a halogen atom to substitute the thing similar to what was demonstrated about the said "halogen atom" is mentioned.
  • the alkoxy group is linear or branched, and the carbon number thereof is preferably 1 to 5, more preferably 1 to 4, and most preferably 1 to 3.
  • R 52 is preferably a hydrogen atom.
  • R 53 is an aryl group which may have a substituent, and examples of the structure of the basic ring (parent ring) from which the substituent is removed include a naphthyl group, a phenyl group, an anthracenyl group and the like, and the effects of the present invention
  • a phenyl group is preferable from the viewpoint of absorption of exposure light such as ArF excimer laser and the like.
  • the substituent include a hydroxyl group and a lower alkyl group (a linear or branched chain, preferably having 5 or less carbon atoms, particularly preferably a methyl group), and the like.
  • the aryl group of R 53 is more preferably one having no substituent.
  • U ′ ′ is an integer of 1 to 3, preferably 2 or 3, and particularly preferably 3.
  • Preferred examples of the acid generator represented by the formula (a-0) include those represented by the following chemical formulas.
  • the acid generator represented by formula (a-0) can be used alone or in combination of two or more.
  • Examples of the onium salt-based acid generator other than the acid generator represented by the formula (a-0) include compounds represented by the following formula (a-1) or (a-2). [Wherein, R 1 ′ ′ to R 3 ′ ′, R 5 ′ ′, R 6 ′ ′ each independently represents a substituted or unsubstituted aryl group or alkyl group; R 4 ′ ′ is linear, branched or cyclic At least one of R 1 ′ ′ to R 3 ′ ′ represents an aryl group, and at least one of R 5 ′ ′ and R 6 ′ ′ represents an aryl group.]
  • R 1 ′ ′ to R 3 ′ ′ each independently represent a substituted or unsubstituted aryl group or an alkyl group. At least one of R 1 ′ ′ to R 3 ′ ′ represents a substituted or unsubstituted aryl group. Of R 1 ′ ′ to R 3 ′ ′, two or more are preferably substituted or unsubstituted aryl groups, and most preferably all of R 1 ′ ′ to R 3 ′ ′ are substituted or unsubstituted aryl groups.
  • the aryl group for R 1 ′ ′ to R 3 ′ ′ is not particularly limited, and is, for example, an aryl group having a carbon number of 6 to 20, and in the aryl group, a part or all of the hydrogen atoms thereof are an alkyl group or alkoxy It may or may not be substituted with a group, a halogen atom or the like.
  • the aryl group is preferably an aryl group having a carbon number of 6 to 10 because it can be synthesized inexpensively. Specifically, examples include a phenyl group and a naphthyl group.
  • the alkyl group which is a substituent of the aryl group is preferably an alkyl group having 1 to 5 carbon atoms, and most preferably a methyl group, an ethyl group, a propyl group, an n-butyl group or a tert-butyl group.
  • the alkoxy group which is a substituent of the aryl group is preferably an alkoxy group having 1 to 5 carbon atoms, and most preferably a methoxy group or an ethoxy group.
  • a halogen atom which is a substituent of the said aryl group a fluorine atom is preferable.
  • the alkyl group for R 1 ′ ′ to R 3 ′ ′ is not particularly limited, and examples thereof include a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. From the viewpoint of excellent resolution, the carbon number is preferably 1 to 5. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, cyclopentyl group, hexyl group, cyclohexyl group, nonyl group, decanyl group and the like can be mentioned. Preferred are methyl groups because they are excellent in resolution and can be synthesized inexpensively. Among these, it is most preferable that all of R 1 ′ ′ to R 3 ′ ′ are phenyl groups.
  • R 4 ′ ′ represents a linear, branched or cyclic alkyl group or a fluorinated alkyl group.
  • the linear or branched alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms.
  • the cyclic alkyl group is a cyclic group as represented by R 1 ′ ′ and preferably has 4 to 15 carbon atoms, more preferably 4 to 10 carbon atoms, and 6 carbon atoms. Most preferably, it is ⁇ 10.
  • the fluorinated alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms. Also.
  • the fluorination ratio (proportion of fluorine atom in the alkyl group) of the fluorinated alkyl group is preferably 10 to 100%, more preferably 50 to 100%, and in particular all hydrogen atoms replaced with fluorine atoms Because the strength of the acid becomes strong, it is preferable.
  • R 4 ′ ′ is most preferably a linear or cyclic alkyl group or a fluorinated alkyl group.
  • R 5 ′ ′ and R 6 ′ ′ each independently represent a substituted or unsubstituted aryl group or an alkyl group. At least one of R 5 ′ ′ and R 6 ′ ′ represents a substituted or unsubstituted aryl group. It is preferred that all of R 5 ′ ′ and R 6 ′ ′ be a substituted or unsubstituted aryl group. Examples of the substituted or unsubstituted aryl group of R 5 ′ ′ to R 6 ′ ′ include the same as the substituted or unsubstituted aryl group of R 1 ′ ′ to R 3 ′ ′.
  • Examples of the alkyl group of R 5 ′ ′ to R 6 ′ ′ include the same as the alkyl group of R 1 ′ ′ to R 3 ′ ′. Among these, it is most preferable that all of R 5 ′ ′ to R 6 ′ ′ be a phenyl group.
  • R 4 ′ ′ in the formula (a-2) the same ones as R 4 ′ ′ in the above formula (a-1) can be mentioned.
  • onium salt-based acid generator represented by the formulas (a-1) and (a-2) include trifluoromethanesulfonate or nonafluorobutanesulfonate of diphenyliodonium, bis (4-tert-butylphenyl) iodonium Trifluoromethanesulfonate or nonafluorobutanesulfonate, Triphenylsulfonium trifluoromethanesulfonate, its heptafluoropropanesulfonate or its nonafluorobutanesulfonate, tri (4-methylphenyl) sulfonium trifluoromethanesulfonate, its heptafluoropropane sulfonate or its Nonafluorobutanesulfonate, trifluoromethanesulfonate of dimethyl (4-hydroxynaphthyl) sulfonium, heptafluoropeptide thereof Pan
  • onium salts in which the anion moiety of these onium salts is replaced by methanesulfonate, n-propanesulfonate, n-butanesulfonate, or n-octanesulfonate can be used.
  • an onium salt-based acid generator in which the anion moiety is replaced with the anion moiety represented by the following formula (a-3) or (a-4) in the formula (a-1) or (a-2) is also used.
  • (Cation part is the same as (a-1) or (a-2)).
  • X represents an alkylene group having 2 to 6 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom
  • Y" and Z each independently represent at least one hydrogen atom as a fluorine atom
  • X ′ ′ is a linear or branched alkylene group in which at least one hydrogen atom is substituted with a fluorine atom, and the alkylene group has 2 to 6 carbon atoms, preferably 3 to 5 carbon atoms, Preferably it is carbon number 3.
  • Y ′ ′ and Z ′ ′ each independently represents a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and the alkyl group has 1 to 10 carbon atoms, preferably It has 1 to 7 carbon atoms, more preferably 1 to 3 carbon atoms.
  • the carbon number of the alkylene group of X ′ ′ or the carbon number of the alkyl group of Y ′ ′ and Z ′ ′ is preferably as small as possible because the solubility in the resist solvent is also good within the range of the above carbon number.
  • the proportion of fluorine atoms in the alkylene group or alkyl group, ie, the fluorination ratio, is preferably 70 to 100%, more preferably 90 to 100%, and most preferably all.
  • the hydrogen atom of is a perfluoroalkylene group or a perfluoroalkyl group substituted by a fluorine atom.
  • compounds represented by the following formulas (40) to (45) can also be used as photoacid generators.
  • Q is an alkylene group, an arylene group or an alkoxylene group
  • R 15 is an alkyl group, an aryl group, a halogen substituted alkyl group or a halogen substituted aryl group.
  • the compound represented by the above formula (40) is N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (trifluoro) Methylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthylimide, N- (10-camphorsulfonyloxy) succinimide, N- (10-camphorsulfonyloxy) phthalimide, N- (10-camphorsulfonyloxy) diphenylmaleimide, N- (10-camphorsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide, N- 10-camphorsulfony
  • R 16 which may be the same or different, each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, and an optionally substituted It is a heteroaryl group or an optionally substituted aralkyl group.
  • the compound represented by the formula (41) is diphenyldisulfone, di (4-methylphenyl) disulfone, dinaphthyldisulfone, di (4-tert-butylphenyl) disulfone, di (4-hydroxyphenyl) disulfone, At least one selected from the group consisting of (3-hydroxynaphthyl) disulfone, di (4-fluorophenyl) disulfone, di (2-fluorophenyl) disulfone and di (4-trifluoromethylphenyl) disulfone preferable.
  • R 17 s may be the same or different, and each independently represent an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, and an optionally substituted It is a heteroaryl group or an optionally substituted aralkyl group.
  • the compound represented by the above formula (42) is ⁇ - (methylsulfonyloxyimino) -phenylacetonitrile, ⁇ - (methylsulfonyloxyimino) -4-methoxyphenylacetonitrile, ⁇ - (trifluoromethylsulfonyloxyimino) -phenyl Acetonitrile, ⁇ - (trifluoromethylsulfonyloxyimino) -4-methoxyphenylacetonitrile, ⁇ - (ethylsulfonyloxyimino) -4-methoxyphenylacetonitrile, ⁇ - (propylsulfonyloxyimino) -4-methylphenylacetonitrile and ⁇ It is preferable that it is at least one selected from the group consisting of-(methylsulfonyloxyimino) -4-bromophenylacetonitrile.
  • R 18, which may be the same or different, is independently a halogenated alkyl group having one or more chlorine atoms and one or more bromine atoms.
  • the number of carbon atoms in the halogenated alkyl group is preferably 1 to 5.
  • each of R 19 and R 20 independently represents an alkyl group having 1 to 3 carbon atoms, such as methyl, ethyl, n-propyl or isopropyl, cyclopentyl or cyclohexyl And the like, an alkoxy group having 1 to 3 carbon atoms such as methoxy, ethoxy, propoxy and the like, or an aryl group such as phenyl, toluyl and naphthyl, preferably 6 to 6 carbon atoms. 10 aryl group.
  • L 19 and L 20 are each independently an organic group having a 1,2-naphthoquinone diazide group.
  • organic group having a 1,2-naphthoquinonediazide group examples include 1,2-naphthoquinonediazide-4-sulfonyl group, 1,2-naphthoquinonediazide-5-sulfonyl group, 1,2-naphthoquinonediazide-
  • 1,2-quinonediazide sulfonyl group such as a 6-sulfonyl group can be mentioned as a preferable one.
  • 1,2-naphthoquinonediazide-4-sulfonyl group and 1,2-naphthoquinonediazide-5-sulfonyl group are preferable.
  • J 19 represents a single bond, a polymethylene group having 1 to 4 carbon atoms, a cycloalkylene group, a phenylene group, a group represented by the following formula (44a), or a group having a carbonyl bond, an ester bond, an amide bond or an ether bond.
  • Y 19 each independently represents a hydrogen atom, an alkyl group or an aryl group
  • X 20 each independently represents a group represented by the following formula (45a).
  • Z 22 is each independently an alkyl group, a cycloalkyl group or an aryl group
  • R 22 is each independently an alkyl group, a cycloalkyl group or an alkoxy group
  • r is 0 to 3 It is an integer.
  • Other acid generators include bis (p-toluenesulfonyl) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) ) Diazomethane, bis (isopropylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, 1,3-bis (cyclohexylsulfonylazomethylsulfonyl) propane, 1,4 -Bis (phenylsulfonylazomethylsulfonyl) butane, 1,6
  • photoacid generators particularly preferred are compounds capable of generating an organic sulfonic acid by the action of an actinic ray or radiation.
  • the amount of PAG is 0 to 40% by weight, preferably 5 to 30% by weight, more preferably 5 to 20% by weight, based on the total composition excluding the solvent.
  • an acid diffusion control agent having the function of controlling the diffusion of an acid generated from an acid generator by radiation irradiation in a resist film to prevent an undesirable chemical reaction in an unexposed area.
  • a photoresist composition having the function of controlling the diffusion of an acid generated from an acid generator by radiation irradiation in a resist film to prevent an undesirable chemical reaction in an unexposed area.
  • the storage stability of the photoresist composition is improved by using such an acid diffusion control agent.
  • the resolution is improved, and the line width change of the resist pattern due to the change of the drawing time before the electron beam irradiation and the drawing time after the electron beam irradiation can be suppressed, and the process stability is extremely excellent.
  • an acid diffusion control agent for example, monoalkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, etc .; diethylamine, di-n-propylamine, di-amine -Dialkylamines such as n-heptylamine, di-n-octylamine and dicyclohexylamine; trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-hexylamine, tri-n-pentylamine , Trialkylamines such as tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri-n-decanylamine, tri-n-dodecylamine, etc .; diethanolamine, triethanolamine, diisopropanol
  • the blending amount of the quencher is 0 to 40% by weight, preferably 0.01 to 15% by weight, based on the total composition excluding the solvent.
  • additives which are optionally miscible, for example, an additional resin for improving the performance of the resist film, a surfactant for improving the coating property, a dissolution controlling agent, a sensitizer and a plasticizer Stabilizers, colorants, antihalation agents, dyes, pigments and the like can be added as appropriate.
  • the dissolution controlling agent is a component having the function of lowering the solubility and making the dissolution rate at the time of development appropriate when the solubility of the cyclic compound in the alkali developer is too high.
  • the dissolution control agent for example, aromatic hydrocarbons such as naphthalene, phenanthrene, anthracene, acenaphthene and the like; ketones such as acetophenone, benzophenone and phenylnaphthyl ketone; sulfones such as methyl phenyl sulfone, diphenyl sulfone and dinaphthyl sulfone Can be mentioned. Furthermore, for example, bisphenols into which an acid dissociable functional group is introduced, tris (hydroxyphenyl) methane into which a t-butyl carbonyl group is introduced, and the like can also be mentioned.
  • aromatic hydrocarbons such as naphthalene, phenanthrene, anthracene, acenaphthene and the like
  • ketones such as acetophenone, benzophenone and phenylnaphthyl ketone
  • dissolution controlling agents can be used alone or in combination of two or more.
  • the compounding quantity of a dissolution control agent is suitably adjusted according to the kind of cyclic compound to be used, 0 to 50 weight% of the solid component total weight is preferable, 0 to 40 weight% is more preferable, and 0 to 30 weight%. Is more preferred.
  • the sensitizer absorbs the energy of the irradiated radiation and transfers the energy to the acid generator, thereby increasing the amount of acid generation, and improving the apparent sensitivity of the resist. is there.
  • a sensitizer for example, benzophenones, biacetyls, pyrenes, phenothiazines, fluorenes and the like can be mentioned, but there is no particular limitation. These sensitizers can be used alone or in combination of two or more.
  • the blending amount of the sensitizer is preferably 0 to 50% by weight, more preferably 0 to 20% by weight, and still more preferably 0 to 10% by weight based on the total weight of the solid components.
  • the surfactant is a component having the function of improving the coatability and striation of the photoresist composition of the present invention, the developability as a resist, and the like.
  • any of anionic, cationic, nonionic or amphoteric surfactants can be used.
  • nonionic surfactants are preferred.
  • the nonionic surfactant has high affinity with the solvent used for the photoresist composition and is more effective.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyethylene glycol and the like, and the following trade names are F-top (manufactured by Gemco) , Megafac (made by Dainippon Ink and Chemicals, Inc.), Florard (made by Sumitomo 3M), Asahi Guard, Surfron (above, made by Asahi Glass), Pepole (made by Toho Chemical Industry), KP (made by Shin-Etsu Chemical Co., Ltd.) Although each series products, such as Polyflow (made by Kyoeisha Yuka Chemical Co., Ltd.), can be mentioned, limitation in particular is not carried out.
  • the content of the surfactant is preferably 0 to 2% by weight, more preferably 0 to 1% by weight, and still more preferably 0 to 0.1% by weight, based on the total weight of the solid components.
  • the latent image in the exposed area can be visualized to reduce the influence of halation at the time of exposure. Furthermore, the adhesion to the substrate can be improved by blending an adhesion promoter.
  • An organic carboxylic acid or phosphorus oxo acid or a derivative thereof is added as an optional component for the purpose of preventing sensitivity deterioration when compounding an acid diffusion control agent, and improving the resist pattern shape, shelf stability, etc. be able to.
  • these compounds can also be used together with an acid diffusion control agent, and may be used independently.
  • the organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are preferable.
  • Examples of phosphorus oxo acids or derivatives thereof include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid such as phosphoric acid diphenyl ester or derivatives thereof such as phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid di- Phosphonic acids such as n-butyl ester, phenyl phosphonic acid, phosphonic acid diphenyl ester, phosphonic acid dibenzyl ester or derivatives thereof, phosphinic acid, derivatives such as phosphinic acid such as phenyl phosphinic acid and derivatives thereof Among these, phosphonic acid is particularly preferred.
  • the photoresist composition of the present invention is applied onto a substrate such as a silicon wafer, a gallium arsenide wafer, or a wafer coated with aluminum by spin coating, cast coating, roll coating, etc.
  • a resist film is formed by applying by
  • a surface treatment agent may be applied in advance on the substrate.
  • silane coupling agents such as hexamethylenedisilazane (hydrolyzable polymerizable silane coupling agent having a polymerizable group etc.), anchor coating agent or base agent (polyvinyl acetal, acrylic resin, vinyl acetate)
  • anchor coating agent polyvinyl acetal, acrylic resin, vinyl acetate
  • base agent polyvinyl acetal, acrylic resin, vinyl acetate
  • a protective film may be formed on the resist film in order to prevent the penetration of amines and the like floating in the air.
  • the acid generated in the resist film by radiation reacts with a compound that reacts with the acid such as amine suspended as an impurity in the air to be inactivated, and the resist image is degraded and sensitivity Can be prevented from falling.
  • Water-soluble and acidic polymers are preferable as materials for the protective film. For example, polyacrylic acid, polyvinyl sulfonic acid and the like can be mentioned.
  • the heating temperature varies depending on the composition of the photoresist composition and the like, but it is preferably 20 to 250 ° C., more preferably 40 to 150 ° C.
  • the resist film is exposed to a desired pattern by radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray.
  • the exposure conditions and the like are appropriately selected according to the composition and the like of the photoresist composition.
  • the post-exposure heating temperature (PEB) varies depending on the composition of the photoresist composition and the like, but is preferably 20 to 250 ° C., more preferably 40 to 150 ° C.
  • the exposed resist film is developed with an alkaline developer to form a predetermined resist pattern.
  • the alkali developing solution include alkalis such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), choline, etc.
  • An aqueous alkaline solution is used, preferably 1 to 10% by weight, more preferably 1 to 5% by weight, in which one or more of the compounds are dissolved.
  • An appropriate amount of an alcohol such as methanol, ethanol, isopropyl alcohol or the like, or the surfactant can be added to the alkali developer. Among these, it is particularly preferable to add 10 to 30% by weight of isopropyl alcohol.
  • the developing solution which consists of such alkaline aqueous solution generally, it wash
  • the resist film is exposed to a desired pattern by radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray.
  • the dissociative dissolution inhibiting group is detached or its structure is changed, it becomes dissolved in an alkali developer.
  • it is preferable that the unexposed part of the pattern does not dissolve in the alkaline developer.
  • the insolubility in an alkaline developer can not be generally specified because the preferred insolubility differs depending on the development conditions such as the size of the pattern to be formed and the type of alkaline developer used, but 2.38% tetra
  • the non-dissolution property represented by the developer dissolution rate of a thin film made of a photoresist substrate is preferably less than 1 nanometer / second, and preferably 0.5 nanometer / second. Less than a second is particularly preferred.
  • post-baking may be performed after the alkali development, or an organic or inorganic antireflective film may be provided between the resist film and the substrate.
  • the patterned wiring board can be obtained by etching.
  • the etching can be performed by a known method such as dry etching using a plasma gas, wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution or the like.
  • plating treatment such as copper plating, solder plating, nickel plating, gold plating and the like can also be performed.
  • the residual resist pattern after etching can be peeled off with an aqueous solution that is strongly alkaline from an organic solvent or an alkaline developer.
  • the organic solvent include PGMEA, PGME, EL, acetone, tetrahydrofuran and the like
  • the strongly alkaline aqueous solution include, for example, 1 to 20% by weight sodium hydroxide aqueous solution and 1 to 20% by weight potassium hydroxide aqueous solution Can be mentioned.
  • a peeling method an immersion method, a spray system, etc. are mentioned, for example.
  • the wiring substrate on which the resist pattern is formed may be a multilayer wiring substrate and may have a small diameter through hole.
  • a metal may be vacuum deposited, and then the resist pattern may be eluted with a solution, that is, a wiring substrate may be formed by a lift-off method.
  • a semiconductor device can be manufactured by a microfabrication method using the photoresist composition of the present invention.
  • the semiconductor device can be provided in various devices such as television sets, mobile phones, electronic products such as computers (electronic devices), displays, and automobiles that control computers.
  • the compound of the present invention can be used to produce various molded articles (thin films, films, thin plates, fibers, etc. formed on a substrate such as a silicon wafer) by a known molding method.
  • injection molding method injection molding method, injection compression molding method, extrusion molding method, blow molding method, pressure molding method, transfer molding method, spin coating method, spray coating method, casting method, evaporation method, thermal CVD method, plasma A CVD method, a plasma polymerization method, etc. may be mentioned, and these molding methods can be appropriately selected according to the form and performance of the desired product.
  • a thin film is obtained by the above method using the compound of the present invention, and the obtained thin film is cured by heat, ultraviolet light, deep ultraviolet light, vacuum ultraviolet light, extreme ultraviolet light, electron beam, plasma, X ray, etc. Reaction).
  • the compound of the present invention When the compound of the present invention is formed into a thin film by a spin coating method or the like, the compound of the present invention can be dissolved in an organic solvent and used as a paint.
  • Organic solvents include chloroform, dichloromethane, 1,1,2,2-tetrachloroethane, dichloroethane, dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylacetamide, dimethylsulfoxide (DMSO), anisole, acetophenone, benzonitrile, nitrobenzene, propylene glycol methyl ether acetate, propylene glycol monomethyl ether, tetrahydrofuran (THF), cyclohexanone, methyl ethyl ketone, acetone and the like.
  • DMF dimethylformamide
  • NMP N-methylpyrrolidone
  • DMSO dimethylacetamide
  • anisole anisole
  • acetophenone benzonitrile
  • nitrobenzene propylene glycol methyl ether acetate
  • the concentration of the compound of the present invention in the paint may be appropriately adjusted in consideration of the viscosity of the paint, the method of forming a thin film, and the like.
  • the thickness of the thin film is not particularly limited, but generally 10 nm to 10 ⁇ m or so is suitably used.
  • the film thickness of the thin film can be measured by optical film thickness measurement using an ellipsometer, reflection optical film thickness meter or the like, or mechanical film thickness measurement using a stylus film thickness measuring instrument or AFM.
  • the thin film of the present invention is used not only as a photoresist thin film but also as optical thin films for various optical information processing devices such as optical lenses, optical fibers, optical waveguides and photonic crystals, interlayer insulating films for semiconductors, protective films for semiconductors, etc. It is useful as a thin film for ULSI devices, a liquid crystal display, a liquid crystal projector, a plasma display, an EL display, a thin film for image display devices such as an LED display, a thin film used for a CMOS image sensor, a CCD image sensor and the like.
  • these thin films are semiconductor devices such as CPU, DRAM, flash memory, small electronic circuit devices for information processing, electronic circuit devices such as electronic circuit devices for high frequency communication, image display devices, devices for optical information processing, devices for optical communication And other members, surface protective films, and heat-resistant films.
  • these acid dissociable, dissolution inhibiting group precursors are other acids It can be prepared in the same manner as the dissociative dissolution inhibiting group precursor.
  • Production method 1 Raw material alcohol (60 mmol), 6.39 g (46 mmol) of bromoacetic acid and 0.56 g (4.6 mmol) of 4-dimethylaminopyridine are charged into a 200 mL three-necked flask under a nitrogen atmosphere, and 60 ml of methylene chloride as a solvent It was additionally stirred to dissolve and the reaction mixture was cooled to 0 ° C. with an ice bath. Subsequently, 10.0 g (48 mmol) of dicyclohexylcarbodiimide was dissolved in 40 ml of methylene chloride and this solution was added slowly so that the temperature of the reaction mixture did not exceed 5 ° C.
  • Production method 2 The raw material alcohol (60 mmol) and 7.8 ml (90 mmol) of bromoacetic acid bromide were dissolved in 100 ml of dehydrated tetrahydrofuran in a 200 mL three-necked flask under a nitrogen atmosphere, and the reaction mixture was cooled to 0 ° C. with an ice bath. After 9.6 ml (120 mmol) of dehydrated pyridine was dropped to this solution, the temperature was raised to room temperature and stirring was performed for 30 hours.
  • Example 39 In a stream of nitrogen, 10 g (71.97 mmol) of bromoacetic acid and 9.9 ml (108.5 mmol) of 3,4-dihydro-2H-pyran are dissolved in 20 ml of dehydrated dichloromethane and cooled to 0 ° C. in an ice bath It cooled. To this was added 1.8 g (7.1 mmol) of p-toluenesulfonic acid pyridinium salt, and the mixture was stirred for 1 hour, warmed to room temperature, and further stirred for 3 hours.
  • Example 40 Using the prepared bromoacetic acid ester (B-21), the hydroboration reaction was carried out by a conventional method to obtain a bromoacetic acid ester (B-40).
  • Example 41 Using the prepared bromoacetic acid ester (B-22), the hydroboration reaction was carried out by a conventional method to obtain a bromoacetic acid ester (B-41).
  • Example 42 Using prepared bromoacetic acid ester (B-22), m-perbenzoic acid was reacted according to a conventional method to obtain bromoacetic acid ester (B-42).
  • Example 43 The prepared bromoacetic acid ester (B-22) was used to react with osmium tetraoxide according to a conventional method to obtain a bromoacetic acid ester (B-43).
  • Example 44 The prepared bromoacetic acid ester (B-14) was used to react with osmium tetraoxide according to a conventional method to obtain a bromoacetic acid ester (B-44).
  • the flask was put on an oil bath, heated to 80 ° C. (inside of flask), and reacted for 3 hours. After the heating was stopped and the inside of the reaction flask was cooled to about room temperature, the solid produced by the reaction was filtered and washed with a small amount of ethanol. The resulting solid was transferred to a 200 to 300 ml beaker, 100 ml of deionized water was added, and the mixture was stirred for about 10 minutes with a magnetic stirrer. After stirring, it was filtered again and washed with deionized water. The same operation was repeated one more time, and after confirming that the filtrate was neutral, it was dried under vacuum for 16 hours.
  • cyclic compound precursor (1) which is a calixresorcinarene derivative (yield: 1.73 g (1 .79 mmol) yield: 14%).
  • Production Example 2 A cyclic compound precursor (2) which is a calix resorcinarene derivative was prepared in the same manner as in Production Example 1 except that m-bromo-p-carboxymethyloxybenzaldehyde was used instead of p-formylbenzoic acid. Rate: 36%).
  • the reaction solution was cooled to ⁇ 78 ° C., and the precipitated solid was washed with 80 ml of dichloromethane, 200 ml of water and ethanol to give an intermediate (methyl ester) in a yield of 20.5 g (94% yield). Then, under nitrogen flow, 0.8 g (0.74 mmol) of the obtained intermediate, 0.74 g (18.5 mmol) of sodium hydroxide and 10 ml of water were added, and the mixture was heated and stirred at 90 ° C. for 5 hours Then it was allowed to cool. The reaction solution was acidified with dilute aqueous hydrochloric acid solution, and the precipitated white precipitate was separated by filtration and washed with water, to obtain 0.68 g of a cyclic compound precursor (3) (yield 90%).
  • Example 45 In a 200 mL three-necked flask equipped with a nitrogen introduction thermometer, a thermometer, and a Dimroth's fridge, 2.42 g (2.5 mmol) of the cyclic compound precursor (1) synthesized in Production Example 1, bromoacetic acid ester ( B-12) Charge 3.23 g (12 mmol), anhydrous sodium carbonate, 1.06 g (10 mmol) and sodium iodide, 0.15 g (1 mmol), N, N-dimethylformamide (for organic synthesis, sum 25 ml of Photopure Chemical Industries, Ltd.) was added and stirred, and nitrogen was introduced to form a nitrogen atmosphere.
  • the flask was put on an oil bath, heated to 60 ° C. (reaction solution temperature), and reacted for 3 hours. After heating was stopped and cooled to about room temperature, the contents of the flask were diluted by adding them little by little to 250 ml of deionized water. After stirring for about 10 minutes with a magnetic stirrer, the resulting pale yellow solid was filtered and washed with deionized water. After confirming that the washing solution was neutral, it was dried under vacuum for 16 hours. The obtained 4.34 g of pale yellow solid was purified by silica gel column chromatography to obtain 2.02 g of a white solid compound (C-1) (1.17 mmol, yield: 47%).
  • Example 46 instead of the cyclic compound precursor (1), the cyclic compound precursor (2) synthesized in Preparation Example 2 is used, and in place of the bromoacetic acid ester (B-12), a bromoacetic acid ester (B-3) A white solid, compound (C-2), was obtained in the same manner as in Example 45 except using (yield: 2.68 g (1.27 mmol) yield: 51%).
  • Example 47 The cyclic compound precursor (3) synthesized in Preparation Example 3 is used instead of the cyclic compound precursor (1), and the bromoacetic acid ester (B-33) is used instead of the bromoacetic acid ester (B-12) Except that, the compound (C-3) as a white solid was obtained in the same manner as in Example 45 (yield: 2.29 g (1.32 mmol) yield: 53%).
  • Example 48 A compound (C-4) was obtained as a white solid in the same manner as in Example 45 except that bromoacetic acid ester (B-32) was used instead of bromoacetic acid ester (B-12) (yield: 2 .86 g (1.53 mmol) yield: 61%).
  • Example 49 A compound (C-5) was obtained as a white solid in the same manner as in Example 45 except that bromoacetic acid ester (B-35) was used instead of bromoacetic acid ester (B-12) (yield: 3 .13 g (1.86 mmol) yield: 75%).
  • Example 50 A white solid compound (C-6) was obtained in the same manner as in Example 45 except that bromoacetic acid ester (B-33) was used instead of bromoacetic acid ester (B-12) (yield: 2. 80 g (1.68 mmol) yield: 67%).
  • Example 51 A white solid compound (C-7) was obtained in the same manner as in Example 45 except that bromoacetic acid ester (B-2) was used instead of bromoacetic acid ester (B-12) (yield: 3.3. 73 g (2.17 mmol) yield: 87%).
  • Example 52 A compound (C-8) was obtained as a white solid in the same manner as in Example 45 except that bromoacetic acid ester (B-31) was used instead of bromoacetic acid ester (B-12) (yield: 2 .45 g (1.42 mmol) yield: 57%).
  • Example 53 A compound (C-9) was obtained as a white solid in the same manner as in Example 45 except that bromoacetic acid ester (B-17) was used instead of bromoacetic acid ester (B-12) (yield: 2 .75 g (1.59 mmol) yield: 64%).
  • Example 54 A compound (C-10) was obtained as a white solid in the same manner as in Example 46 except that bromoacetic acid ester (B-36) was used instead of bromoacetic acid ester (B-3) (yield: 2 .69 g (1.24 mmol) yield: 50%).
  • Example 55 A compound (C-11) was obtained as a white solid (yield: 3) in the same manner as in Example 46 except that bromoacetic acid ester (B-35) was used instead of bromoacetic acid ester (B-3). .25 g (1.54 mmol) yield: 62%).
  • Example 56 A compound (C-12) was obtained as a white solid in the same manner as in Example 46 except that bromoacetic acid ester (B-33) was used instead of bromoacetic acid ester (B-3) (yield: 3 .13 g (1.48 mmol) yield: 59%).
  • Example 57 A compound (C-13) was obtained as a white solid in the same manner as in Example 46 except that bromoacetic acid ester (B-31) was used instead of bromoacetic acid ester (B-3) (yield: 2 .17 g (1.00 mmol) yield: 40%).
  • Example 58 A compound (C-14) was obtained as a white solid in the same manner as in Example 47 except that bromoacetic acid ester (B-35) was used instead of bromoacetic acid ester (B-33) (yield: 2) .69 g (1.55 mmol) yield: 62%).
  • Example 59 A compound (C-15) was obtained as a white solid in the same manner as in Example 47 except that bromoacetic acid ester (B-3) was used instead of bromoacetic acid ester (B-33) (yield: 1 .69 g (0.98 mmol) yield: 39%).
  • Example 60 A compound (C-16) was obtained as a white solid in the same manner as in Example 47 except that bromoacetic acid ester (B-12) was used instead of bromoacetic acid ester (B-33) (yield: 3 20 g (1.80 mmol) yield: 72%).
  • Example 61 A compound (C-17) was obtained as a white solid in the same manner as in Example 45 except that bromoacetic acid ester (B-26) was used instead of bromoacetic acid ester (B-12) (yield: 2 .91 g (1.63 mmol) yield: 65%).
  • Example 62 A compound (C-18) was obtained as a white solid in the same manner as in Example 45 except that bromoacetic acid ester (B-27) was used instead of bromoacetic acid ester (B-12) (yield: 2.10 g (1.18 mmol) yield: 47%).
  • Example 63 A compound (C-19) was obtained as a white solid in the same manner as in Example 45 except that bromoacetic acid ester (B-28) was used instead of bromoacetic acid ester (B-12) (yield: 1) .57 g (0.85 mmol) yield: 34%).
  • Example 64 A compound (C-20) was obtained as a white solid in the same manner as in Example 47 except that bromoacetic acid ester (B-17) was used instead of bromoacetic acid ester (B-33) (yield: 2 .72 g (1.52 mmol) yield: 61%).
  • Example 65 A compound (C-21) was obtained as a white solid in the same manner as in Example 47 except that bromoacetic acid ester (B-29) was used instead of bromoacetic acid ester (B-33) (yield: 3) .37 g (1.80 mmol) yield: 72%).
  • Example 66 A compound (C-22) was obtained as a white solid in the same manner as in Example 47 except that bromoacetic acid ester (B-30) was used instead of bromoacetic acid ester (B-33) (yield: 2) .62 g (1.40 mmol) yield: 56%).
  • Example 67 A compound (C-23) was obtained in the same manner as in Example 47 except that a bromoacetic acid ester (B-31) was used instead of the bromoacetic acid ester (B-33) (yield: 1.61 g (0%). .90 mmol) yield: 36%).
  • Example 68 A compound (C-24) was obtained as a white solid (yield: 3) in the same manner as in Example 47 except that bromoacetic acid ester (B-26) was used instead of bromoacetic acid ester (B-33). .27 g (1.78 mmol) yield: 71%).
  • Example 69 A compound (C-25) was obtained as a white solid in the same manner as in Example 47 except that bromoacetic acid ester (B-28) was used instead of bromoacetic acid ester (B-33) (yield: 1 .90 g (1.00 mmol) yield: 40%).
  • Comparative Example 1 A compound (C-26) was obtained in the same manner as in Example 45 except that tert-butyl bromoacetate was used instead of the bromoacetic acid ester (B-12).
  • Comparative example 2 A compound (C-27) was obtained in the same manner as in Example 46 except that tert-butyl bromoacetate was used instead of the bromoacetic acid ester (B-3).
  • Example 70 A photoresist solution was prepared by the following method, and a pattern was formed on a silicon wafer using an electron beam.
  • a photoresist base 87 parts by weight of the compound (C-1) was used, 20 parts by weight of triphenylsulfonium nonafluorobutanesulfonate as PAG, and 3 parts by weight of tri n-octylamine as a quencher. It was dissolved in propylene glycol monomethyl ether so that the concentration of these solid components would be 2.5% by weight, and a photoresist solution using compound (C-1) as a substrate was prepared.
  • the prepared photoresist solution was spin-coated on a HMDS (hexamethylpyridine) treated silicon wafer, and a thin film was formed by heating at 100 ° C. for 90 seconds.
  • the substrate having the thin film is drawn using an electron beam drawing apparatus (acceleration voltage: 50 kV), baked at 100 ° C. for 60 seconds, and then 60 with a 2.38 wt% aqueous solution of tetrabutylammonium hydroxide. It was developed for a second, washed with pure water for 60 seconds, and then dried with a nitrogen stream.
  • Table 4 shows the results of resolution (half pitch) and sensitivity (necessary electron beam dose amount) when producing a line / space pattern with a size of 1/1 obtained from the observation result by a scanning electron microscope. From Table 4, it was confirmed that the compound (C-1) had preferable performance as a photoresist. The results were identical even if 1,4-diazabicyclo (2,2,2) octane was used instead of tri-n-octylamine as the quencher.
  • the substrate having the produced photoresist thin film was irradiated with EUV light (wavelength: 13.5 nm) using an EUV exposure apparatus instead of the electron beam drawing apparatus. Then, the pattern was formed by baking for 90 seconds at 100 ° C. and rinsing for 30 seconds with a 2.38% by weight aqueous solution of tetramethylammonium hydroxide for 30 seconds with ion exchange water. When observed with a scanning electron microscope, it was observed that the resolution was the same as in the case of the electron beam drawing apparatus.
  • Examples 71 to 82 A photoresist solution was prepared and evaluated in the same manner as in Example 70 except that the compounds shown in Tables 4 and 5 were used as a photoresist base instead of the compound (C-1). The results are shown in Table 4.
  • Comparative Examples 3 and 4 A photoresist solution was prepared and evaluated in the same manner as in Example 70, except that Compound (C-26) and Compound (C-27) were used as the photoresist base instead of Compound (C-1). did. As a result, when development processing is carried out with a 2.38% by weight aqueous solution of tetrabutylammonium for 60 seconds, all thin films are dissolved, and a fine pattern can not be obtained at all. Compound (C-26) and compound (C-27) Both were not usable as photoresist substrates.
  • THF dehydrated tetrahydrofuran
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-45 was used, to obtain a dissociative dissolution inhibiting group precursor (B-45) which is a bromoacetic acid ester (yield: 99) %).
  • the structure of bromoacetic acid ester (B-45) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent-weighted DMSO: ppm
  • 1.483 (3H, d), 3.746 (3H, s), 4.145 (2H, s), 5.810 (1H) , Q), 6.923 (2H, d), 7.322 (2H, d)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-47 was used, to obtain a dissociative dissolution inhibiting group precursor (B-47) which is a bromoacetic acid ester (yield 90%) ).
  • the structure of bromoacetic acid ester (B-47) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent-weighted DMSO: ppm
  • 1 H-NMR internal standard tetramethylsilane: solvent-weighted DMSO: ppm
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-13 was used, to obtain a dissociative dissolution inhibiting group precursor (B-13) which is a bromoacetic acid ester (yield 99%) ).
  • the structure of bromoacetic acid ester (B-13) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent-weighted DMSO: ppm
  • 1.999-2.055 (1 H, m), 2.423-2.510 (1 H, m), 2.872-2. 905 (1 H, m), 2. 933 3.031 (1 H, m), 4. 150 (2 H, s), 6. 166 (1 H, q), 7.221-7. 384 (4 H, m)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-48 was used, to obtain a dissociative dissolution inhibiting group precursor (B-48) which is a bromoacetic acid ester (yield 96%) ).
  • the structure of bromoacetic acid ester (B-48) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent-weighted DMSO: ppm
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-49 was used, to obtain a dissociative dissolution inhibiting group precursor (B-49) which is a bromoacetic acid ester (yield 99%) ).
  • the structure of bromoacetic acid ester (B-49) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent-weighted DMSO: ppm
  • 1 H-NMR internal standard tetramethylsilane: solvent-weighted DMSO: ppm
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-51 was used, to obtain a dissociative dissolution inhibiting group precursor (B-51) which is a bromoacetic acid ester (yield 98%) ).
  • the structure of bromoacetic acid ester (B-51) was confirmed by 1 H-NMR.
  • ⁇ 1 > H-NMR internal standard tetramethylsilane: solvent weight DMSO: ppm
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-54 was used, to obtain a dissociative dissolution inhibiting group precursor (B-54) which is a bromoacetic acid ester (yield 81%) ).
  • the structure of bromoacetic acid ester (B-54) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3: ppm): 0.954 (3H, t), 1.286 (3H, t), 1.864-1.934 (1H, m), 1 .975-2.090 (1 H, m), 2.690 (2 H, q), 4. 100 (2 H, dd), 5.759 (1 H, q), 7. 266 (4 H, dd)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-55 was used, to obtain a dissociative dissolution inhibiting group precursor (B-55) which is a bromoacetic acid ester (yield 99%) ).
  • B-55 a dissociative dissolution inhibiting group precursor which is a bromoacetic acid ester (yield 99%) ).
  • the structure of bromoacetic acid ester (B-55) was confirmed by 1 H-NMR.
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-56 was used, to obtain a dissociative dissolution inhibiting group precursor (B-56) which is a bromoacetic acid ester (yield 99%) ).
  • the structure of bromoacetic acid ester (B-56) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3: ppm): 1.816-1.853 (1 H, m), 1.919-2.057 (3 H, m), 2. 659-2. 721 (1 H, m), 2. 733-2. 827 (1 H, m), 3. 788 (3 H, s), 3. 50 (2 H, s), 6. 004 (1 H, t), 6.810 -6.849 (2H, m), 7.055 (1 H, d)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-57 was used, to obtain a dissociative dissolution inhibiting group precursor (B-57) which is a bromoacetic acid ester (yield 99%) ).
  • the structure of bromoacetic acid ester (B-57) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3: ppm): 1.829-2.058 (4 H, m), 2.512-2.573 (1 H, m), 2.816-2. 883 (1 H, m), 3.831 (3 H, s), 3.8 39 (2 H, s), 6.034 (1 H, t), 6. 06 (1 H, d), 6. 914 (1 H, d) ), 7.181 (1 H, t)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-58 was used, to obtain a dissociative dissolution inhibiting group precursor (B-58) which is a bromoacetic acid ester (yield 98%) ).
  • the structure of bromoacetic acid ester (B-58) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3: ppm): 2.088-2.150 (1H, m), 2.180-2.266 (1H, m), 3.857 (2H, 2H, s), 4.196-4.260 (1 H, m), 4.301-4. 349 (1 H, m), 5.932 (1 H, t), 6.812 (1 H, d), 7.185 -7.215 (1 H, m), 7.281 (1 H, d)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-59 was used, to obtain a dissociative dissolution inhibiting group precursor (B-59) which is a bromoacetic acid ester (yield 96%) ).
  • the structure of bromoacetic acid ester (B-59) was confirmed by 1 H-NMR.
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-60 was used, to obtain a dissociative dissolution inhibiting group precursor (B-60) which is a bromoacetic acid ester (yield 92%) ).
  • the structure of bromoacetic acid ester (B-60) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3: ppm): 0.817 (3 H, d), 1.007 (3 H, d), 2.095-2.199 (1 H, m), 3 .842 (2H, dd), 5.495 (1 H, d), 7.257-7.360 (5 H, m)
  • Example 101 A cyclic compound precursor (3) synthesized in Preparation Example 3 (2.13 g (2.08 mmol)) was charged in a 300 ml four-necked flask equipped with a nitrogen inlet and a thermometer, and dehydrated N-methylpyrrolidone (NMP) (Manufactured by Wako Pure Chemical Industries, Ltd.) and stirred, and nitrogen was introduced to form a nitrogen atmosphere. The mixture was stirred at room temperature for 30 minutes, and after confirming that the cyclic compound precursor (3) had completely dissolved, triethylamine, 1,44 ml (10.4 mmol, manufactured by Aldrich) was added.
  • NMP N-methylpyrrolidone
  • Example 102 The same operation as in Example 101 was carried out except using (B-45) as the bromoacetic acid ester, to obtain a compound (C-29) as a photoresist base (yield: 61%).
  • Example 103 The same operation as in Example 101 was carried out except using (B-46) as the bromoacetic acid ester, to obtain a compound (C-30) as a photoresist base (yield: 71%).
  • Example 104 The same operation as in Example 101 was performed, except that (B-47) was used as the bromoacetic acid ester, to obtain a compound (C-31) as a photoresist base material (yield: 68%).
  • Example 105 The same operation as in Example 101 was carried out except using (B-13) as the bromoacetic acid ester, to obtain a compound (C-32) as a photoresist base (yield: 85%).
  • Example 106 The same operation as in Example 101 was performed, except that (B-48) was used as a bromoacetic acid ester, to obtain a compound (C-33) as a photoresist base material (yield: 81%).
  • Example 107 The same operation as in Example 101 was performed, except that (B-49) was used as the bromoacetic acid ester, to obtain a compound (C-34) as a photoresist base material (yield: 73%).
  • Example 108 The same operation as in Example 101 was carried out except using (B-50) as the bromoacetic acid ester, to obtain a compound (C-35) as a photoresist base (yield: 75%).
  • Example 109 The same operation as in Example 101 was carried out except using (B-51) as the bromoacetic acid ester, to obtain a compound (C-36) as a photoresist base (yield: 63%).
  • Example 110 The same procedure as in Example 101 was carried out except using cyclic compound precursor (1) and (B-51) as the bromoacetic acid ester, to obtain compound (C-37) as a photoresist base Obtained (yield: 69%).
  • Example 111 The same operation as in Example 101 was performed, except that (B-52) was used as the bromoacetic acid ester, to obtain a compound (C-38) as a photoresist base material (yield: 82%).
  • Example 112 The same operation as in Example 101 was performed, except that (B-53) was used as a bromoacetic acid ester, to obtain a compound (C-39) as a photoresist base material (yield: 72%).
  • Example 113 The same operation as in Example 101 was performed, except that (B-54) was used as a bromoacetic acid ester, to obtain a compound (C-40) which is a photoresist base material (yield: 83%).
  • Example 114 The same operation as in Example 101 was performed, except that (B-55) was used as a bromoacetic acid ester, to obtain a compound (C-41) as a photoresist base material (yield: 71%).
  • Example 115 A compound (C-42) which is a photoresist base is carried out in the same manner as in Example 101 except that the cyclic compound precursor (1) is used and (B-23) is used as a bromoacetic acid ester. Obtained (yield: 72%).
  • Example 116 The same operation as in Example 101 was carried out except using (B-56) as the bromoacetic acid ester, to obtain a compound (C-43) which is a photoresist base material (yield: 76%).
  • Example 117 The same operation as in Example 101 was performed, except that (B-57) was used as a bromoacetic acid ester, to obtain a compound (C-44) as a photoresist base material (yield: 74%).
  • Example 118 The same operation as in Example 101 was carried out except using (B-58) as the bromoacetic acid ester, to obtain a compound (C-45) as a photoresist base (yield: 81%).
  • Example 119 The same operation as in Example 101 was carried out except using (B-59) as the bromoacetic acid ester, to obtain a compound (C-46) as a photoresist base (yield: 76%).
  • Example 120 The same operation as in Example 101 was performed, except that (B-60) was used as a bromoacetic acid ester, to obtain a photoresist base compound (C-47) (yield: 78%).
  • Example 121 The same procedure as in Example 101 was carried out except using cyclic compound precursor (1) and using (B-29) as a bromoacetic acid ester, to obtain a compound (C-48) as a photoresist base Obtained (yield: 59%).
  • Example 122 A compound (C-49) which is a photoresist base is carried out in the same manner as in Example 101 except that the cyclic compound precursor (1) is used and (B-30) is used as a bromoacetic acid ester. Obtained (yield: 77%).
  • Example 123 The same procedure as in Example 101 was carried out except that the cyclic compound precursor (1) was used and (B-3) was used as the bromoacetic acid ester, to give a compound (C-50) as a photoresist base Obtained (yield: 72%).
  • Example 124 The same operation as in Example 101 was carried out except using (B-27) as the bromoacetic acid ester, to obtain a compound (C-51) which is a photoresist base material (yield: 81%).
  • Example 126 Synthesis of 1- (4-hydroxybutyl) cyclohexylbromoacetate (126) Under a nitrogen stream, 6.56 g (0.27 mol) of magnesium and 70 ml of dehydrated tetrahydrofuran were added to a 1 L round bottom flask. After 0.2 ml of dibromoethane was added to activate the magnesium, a solution of 13.7 ml (0.135 mol) of 4-bromo 1-butene in dehydrated tetrahydrofuran (150 ml) was gradually added dropwise. After completion of the dropwise addition, the mixture was stirred for 3 hours and then ice cooled.
  • Example 127 Synthesis of 1- (2- (oxiran-2-yl) ethyl) cyclohexylbromoacetate (127) Under a nitrogen stream, 3.5 g (12.72 mmol) of 1- (3-butenyl) cyclohexylbromoacetate obtained in Example 2 was dissolved in 150 ml of dehydrated dichloromethane and ice-cooled. After 4.7 g (19.8 mmol) of m-perbenzoic acid (purity about 70%) was gradually added, the temperature was raised to room temperature and stirring was carried out for 8 hours as it was.
  • m-perbenzoic acid purity about 70%
  • Example 128 Synthesis of 1-isopropylcyclohexylbromoacetate (128) Under a nitrogen stream, 20 g (117.4 mmol) of 1-isopropylcyclohexanol was dissolved in dehydrated tetrahydrofuran and cooled to -60.degree. After 17.8 ml (140.8 mmol) of dimethylaniline was added, 12.2 ml (140.88 mmol) of bromoacetic acid bromide was added dropwise. After completion of the dropwise addition, the temperature was raised to room temperature and stirring was continued for 30 hours. The extraction was performed by adding hexane and a saturated aqueous solution of sodium hydrogen carbonate.
  • Example 129 Synthesis of 1-phenyl-2- (1-adamantyl) ethyl bromoacetate (129) Under a nitrogen stream, 300 ml of dehydrated tetrahydrofuran was added to 11.1 g (57.1 mmol) of 1-adamantane acetic acid, and the mixture was cooled to 0 ° C. After dropwise addition of 100 ml of a 1.15 mol / l cyclohexane / ether solution of phenyllithium, the temperature was raised to room temperature and stirring was further performed for 8 hours. Water was added to the reaction solution, extraction was performed with ethyl acetate, and the organic layer was separated.
  • Example 130 Synthesis of 1-phenyl-2- (1-adamantylacetoxy) ethyl bromoacetate (130) Under a nitrogen stream, 8.65 g (62.61 mmol) of phenylethylene glycol was dissolved in 50 ml of dehydrated tetrahydrofuran solution, cooled to ⁇ 78 ° C., and 13.8 ml (62.61 mmol) of triethylamine was added. To this, 12.44 g (62.61 mmol) of 1-adamantane carbonyl chloride 100 ml of a tetrahydrofuran solution was added dropwise, then the temperature was raised to room temperature and stirring was carried out for 6 hours as it was.
  • Example 131 Synthesis of 1- (4-Carboxy-1-adamantyl) phenylethylbromoacetate (131) Under a nitrogen stream, 10 g (50.33 mmol) of 4-hydroxypropiophenone and 7.6 g (50.6 mmol) of 1-adamantane carbonyl chloride were dissolved in a dehydrated tetrahydrofuran solution and ice cooled. After dropwise addition of 8.5 ml (60.98 mmol) of triethylamine, the temperature was raised to room temperature and stirring was carried out for 8 hours as it was. Ethyl acetate and water were added to the reaction solution, and the organic layer was extracted and partitioned.
  • Example 133 Synthesis of Photoresist Base (133) A photoresist group was prepared by the same method as Example 132 except that 3.2 g of 1- (4-hydroxybutyl) cyclohexylbromoacetate (126) obtained in Example 126 was used. Obtained wood (133). The structure of the obtained compound was confirmed by 1 H-NMR. 1 H-NMR: 1.1-1.65 (m, 48 H), 1.7-1.9 (m, 8 H), 2.0-2.2 (m, 8), 3.41 (m, 8) 8H), 3.45 to 3.7 (m, 12H), 4.35 (1H), 4.85 (m, 8H), 5.1 to 5.25, 5.51 to 5.71, 6. 15-6.4, 6.5 (12 H), 6.6-6.8 (8 H), 7.4-7.7 (8 H), 8.9-9.1, 9.2 (4 H) ( (CD 3 ) 2 SO)
  • Example 134 Synthesis of Photoresist Base (134) Same as Example 132 except that 3.5 g of 1- (2- (oxiran-2-yl) ethyl) cyclohexylbromoacetate (127) obtained in Example 127 was used. A photoresist base (134) was obtained by the method of The structure of the obtained compound was confirmed by 1 H-NMR.
  • Example 135 Synthesis of Photoresist Base (135) A photoresist base (135) was prepared in the same manner as Example 132 except that 3.5 g of 1-isopropylcyclohexylbromoacetate (128) obtained in Example 128 was used. Obtained. The structure of the obtained compound was confirmed by 1 H-NMR. 1 H-NMR: 0.87 (24 H), 1.1-1.7 (36 H), 2.1 (8 H), 3.4-3.7 (12 H), 4.83 (8 H), 5. 1-5.25, 5.4, 5.51-5.7, 6.05, 6.15-6.4, 6.5 (12H), 6.6-6.8 (8H), 7. 4-7.7 (8H), 8.9-9.1, 9.2 (4H) ((CD 3 ) 2 SO)
  • Example 136 Synthesis of Photoresist Base (136)
  • a photoresist was prepared by the same method as in Example 132 except that 3.5 g of 1-phenyl-2- (1-adamantyl) ethylbromoacetate (129) obtained in Example 129 was used.
  • a substrate (136) was obtained.
  • the structure of the obtained compound was confirmed by 1 H-NMR.
  • Example 137 Synthesis of Photoresist Base (137) A photo light was prepared by the same method as in Example 132 except that 3.5 g of 1-phenyl-2- (1-adamantylacetoxy) ethyl bromoacetate (130) obtained in Example 130 was used. The resist base material (137) was obtained. The structure of the obtained compound was confirmed by 1 H-NMR.
  • Example 138 Synthesis of photoresist base material (138) A photo light was prepared by the same method as in Example 132 except that 3.5 g of 1- (4-carboxy-1-adamantyl) phenylethyl bromoacetate (131) obtained in Example 131 was used. A resist base (138) was obtained. The structure of the obtained compound was confirmed by 1 H-NMR. 1 H-NMR: 0.85 (12 H), 1.6 to 2.1 (m, 60 H), 3.45 to 3.7 (m, 16 H), 4.8 to 5.05 (m, 8 H) , 5.1-5.25, 5.51-5.7, 5.7-5.8, 6.15-6. 39, 6.12-6.4, 6.5 (12 H), 6. 6-6.8 (8 H), 7.08 (8 H), 7.4 (8 H), 7.4-7.6 (8 H), 8.9-9.1, 9.2 (4 H) ( CD 3 ) 2 SO)
  • Example 139 Synthesis of 1-isopropylcyclooctyl bromoacetate (139) Under a nitrogen stream, 30 g (176.2 mmol) of 1-isopropylcyclooctanol was dissolved in 500 ml of dehydrated tetrahydrofuran and cooled to -60.degree. After 17.1 ml (211.5 mmol) of pyridine was added, 22.9 ml (264.3 mmol) of bromoacetic acid bromide was added dropwise. After completion of the dropwise addition, the temperature was raised to room temperature and stirring was continued for 30 hours.
  • Example 140 Synthesis of Photoresist Base (140) A photoresist base (140) was obtained by the same method as Example 132 except that 3.5 g of 1-isopropylcyclooctylbromoacetate (139) obtained in Example 139 was used. The The structure of the obtained compound was confirmed by 1 H-NMR. 1 H-NMR: 0.87 (24 H), 1.3-1.9 (52 H), 2.1 (8 H), 3.4-3.7 (12 H), 4.79 (8 H), 5. 1-5.3, 5.4, 5.5-5.7, 6.05, 6.15-6.4, 6.5 (12 H), 6.6-6.8 (8 H), 7. 4-7.7 (8H), 8.9-9.1, 9.2 (4H) ((CD 3 ) 2 SO)
  • Evaluation example 1 A photoresist solution consisting of a substrate, PAG, quencher and solvent was prepared and a pattern was formed on a silicon wafer using an electron beam. 77 parts by weight of each of the compounds obtained in Examples 101 to 140 were used as a substrate, 20 parts by weight of triphenylsulfonium nonafluorobutanesulfonate was used as PAG, and 3 parts by weight of tri n-octylamine as quencher. . The solid components were dissolved in propylene glycol monomethyl ether so as to have a concentration of 2.5% by weight.
  • Photoresist solutions containing the compounds of Examples 101 to 140 are each spin-coated on a hexamethyldisilazane (HMDS) -treated silicon wafer, and the thin film is prebaked (pre-exposure bake) at 100 ° C. It formed. Subsequently, the substrate having the thin film is drawn using an electron beam drawing apparatus (acceleration voltage: 50 kV), and after PEB (post exposure bake) at 100 ° C., tetrabutyl ammonium hydroxide having a concentration of 2.38% by weight It was developed with an aqueous solution for 60 seconds, washed with pure water for 60 seconds, and then dried with a nitrogen stream.
  • HMDS hexamethyldisilazane
  • Table 1 shows the results of resolution (half pitch) and sensitivity (necessary electron beam dose amount) when producing a line / space pattern with a size of 1/1 obtained from the observation result by a scanning electron microscope. The results were identical even if 1,4-diazabicyclo (2,2,2) octane was used instead of tri-n-octylamine as the quencher.
  • the substrate having the photoresist thin film described above was irradiated with EUV light (wavelength: 13.5 nm) using an EUV exposure apparatus instead of the electron beam drawing apparatus. Thereafter, the same post-processing operation as in the electron beam drawing was performed. When observed with a scanning electron microscope, it was observed that the resolution was the same as in the case of electron beam drawing.
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol represented by A-100 was used, to obtain a dissociative dissolution inhibiting group precursor (B-100) which is a bromoacetic acid ester (yield 99%) ).
  • B-100 a dissociative dissolution inhibiting group precursor which is a bromoacetic acid ester (yield 99%) ).
  • the structure of bromoacetic acid ester (B-100) was confirmed by 1 H-NMR.
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-101 was used, to obtain a dissociative dissolution inhibiting group precursor (B-101) which is a bromoacetic acid ester (yield 93%) ).
  • the structure of bromoacetic acid ester (B-101) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 1.539 (3H, d), 3.820 (2H, s), 5.029 (4H, s), 5.838 ( 1H, q), 6.557 (1H, s), 6. 597 (2H, s), 7.309-7.427 (10H, m)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-102 was used, to obtain a dissociative dissolution inhibiting group precursor (B-102) which is a bromoacetic acid ester (yield 89%) ).
  • the structure of bromoacetic acid ester (B-102) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (weight DMSO: ppm): 1.544 (3H, d), 4.210 (2H, d), 5.916 (1H, q), 7.372 ( 1H, t), 7.450-7.501 (4H, m), 7. 674 (4H, d)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-103 was used, to obtain a dissociative dissolution inhibiting group precursor (B-103) which is a bromoacetic acid ester (yield 95%) )
  • the structure of bromoacetic acid ester (B-103) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 2.189-2.224 (1 H, m), 2.554-2.611 (1 H, m), 2.878-2 .955 (1 H, m), 3.115-3. 195 (1 H, m), 3.836 (2 H, s), 6.254 (1 H, q), 7. 150-7.176 (1 H, m) ), 7.270 (1H, d), 7.332 (1H, d), 7.512 (2H, t), 7.619-7.659 (1H, m), 8. 196 (2H, d)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-104 was used, to obtain a dissociative dissolution inhibiting group precursor (B-104) which is a bromoacetic acid ester (yield 98%) ).
  • the structure of bromoacetic acid ester (B-104) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 1.351 (9 H, s), 2.151-2.217 (1 H, m), 2.518-2.575 (1 H) , M), 2.839-2.912 (1 H, m), 3.071-3.130 (1 H, m), 3.835 (2 H, s), 6. 221 (1 H, q), 6. 976-7.001 (1 H, m), 7. 110 (1 H, d), 7. 267 (1 H, d)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-105 was used, to obtain a dissociative dissolution inhibiting group precursor (B-105) which is a bromoacetic acid ester (yield 99%) ).
  • the structure of bromoacetic acid ester (B-105) was confirmed by 1 H-NMR.
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-106 was used, to obtain a dissociative dissolution inhibiting group precursor (B-106) which is a bromoacetic acid ester (yield 98%) ).
  • the structure of bromoacetic acid ester (B-106) was confirmed by 1 H-NMR.
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-107 was used, to obtain a dissociative dissolution inhibiting group precursor (B-107) which is a bromoacetic acid ester (yield 99%) ).
  • the structure of bromoacetic acid ester (B-107) was confirmed by 1 H-NMR.
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-108 was used, to obtain a dissociative dissolution inhibiting group precursor (B-108) which is a bromoacetic acid ester (yield 96%) ).
  • the structure of bromoacetic acid ester (B-108) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 1.572 (3H, d), 2.299 (3H, s), 3.832 (2H, s), 5.933 (1H, q), 7.083 (2H, d), 7.384 (2H) , D)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-109 was used, to obtain a dissociative dissolution inhibiting group precursor (B-109) which is a bromoacetic acid ester (yield 98%) ).
  • the structure of bromoacetic acid ester (B-109) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 2.154-2.219 (1H, m), 2.293 (3H, s), 2.479-2.570 (1H) , M), 2.855-2.928 (1 H, m), 3.093-3. 171 (1 H, m), 3.812 (2 H, s), 6. 205 (1 H, q), 6. 917-6.941 (1 H, m), 7.00 2 (1 H, s), 7. 433 (1 H, d)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-110 was used, to obtain a dissociative dissolution inhibiting group precursor (B-110) which is a bromoacetic acid ester (yield 91%) ).
  • the structure of bromoacetic acid ester (B-110) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 0.997-1.046 (2H, m), 1.143-1.184 (2H, m), 1.818-1 .857 (1 H, m), 2.154-2.229 (1 H, m), 2.495-2.553 (1 H, m), 2.845-2.943 (1 H, m), 3. 124 -3.188 (1H, m), 3.815 (2H, s), 6.209 (1 H, q), 6.924-6.950 (1 H, m), 7.013 (1 H, s), 7. 426 (1 H, d)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-111 was used, to obtain a dissociative dissolution inhibiting group precursor (B-111) which is a bromoacetic acid ester (yield 93%) ).
  • the structure of bromoacetic acid ester (B-111) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 1.265 (3 H, t), 2.178-2.213 (1 H, m), 2.501-2.616 (3 H) , M), 2.855-2.93 (1 H, m), 3.093-3.189 (1 H, m), 3. 819 (2 H, s), 6. 214 (1 H, q), 6. 915-1.941 (1 H, m), 7.00 2 (1 H, s), 7. 433 (1 H, d)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-112 was used, to obtain a dissociative dissolution inhibiting group precursor (B-112) which is a bromoacetic acid ester (yield 96%) ).
  • the structure of bromoacetic acid ester (B-112) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 2.150-2.216 (1H, m), 2.285 (3H, s), 2.516-2.589 (1H) , M), 2.836-2. 909 (1 H, m), 3.064-3. 142 (1 H, m), 3. 2020 (2 H, s), 6. 216 (1 H, q), 7. 010-7.035 (1 H, m), 7.153 (1 H, s), 7. 270 (1 H, d)
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-113 was used, to obtain a dissociative dissolution inhibiting group precursor (B-113) which is a bromoacetic acid ester (yield 91%) ).
  • the structure of bromoacetic acid ester (B-113) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 1.813-1.866 (1H, m), 1.935-2.072 (3H, m), 2.734-2 889 (2H, m), 3.830 (2H, s), 6.023 (1 H, t), 6.871 (1 H, s), 6. 905 (1 H, d), 7. 1414 (1 H, s).
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 1.813-1.866 (1H, m), 1.935-2.072 (3H,
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-114 was used, to obtain a dissociative dissolution inhibiting group precursor (B-114) which is a bromoacetic acid ester (yield 94%) ).
  • the structure of bromoacetic acid ester (B-114) was confirmed by 1 H-NMR.
  • Example 83 The same procedure as in Example 83 was performed, except that the raw material alcohol shown by A-115 was used, to obtain a dissociative dissolution inhibiting group precursor (B-115) which is a bromoacetic acid ester (yield: 88%) ).
  • the structure of bromoacetic acid ester (B-115) was confirmed by 1 H-NMR.
  • 1 H-NMR internal standard tetramethylsilane: solvent (CDCl 3 : ppm): 1.490-1.935 (18H, m), 2.301 (2H, s), 3.812 (1H, s), 4.037 (1 H, s), 4.573 (2 H, s), 5.865-5.948 (1 H, m), 6.891 (2 H, d), 7. 299 (2 H, d)
  • N N-dimethylaminopyridine, 0.77 g (6.3 mmol) was charged, and 200 ml of methylene chloride was added and stirred to dissolve completely.
  • nitrogen is introduced to make the inside of the reaction vessel into a nitrogen atmosphere, and the reaction vessel is cooled by an ice salt bath to a temperature of 0 ° C.
  • the ethyl acetate layer is washed twice with deionized water, once with saturated aqueous sodium bicarbonate solution, and once with saturated brine, and dried over anhydrous sodium sulfate, and then ethyl acetate is distilled off under reduced pressure. I removed it.
  • the obtained oil was purified by silica gel column chromatography to obtain 11.6 g (41 mmol: oil) of a target dissociative dissolution inhibiting group precursor (B-116) which is a bromoacetic acid ester (yield 65) %).
  • Example 158 The same operation as in Example 101 was carried out except using (B-100) as the bromoacetic acid ester, to obtain a compound (C-100) as a photoresist base (yield: 61%).
  • Example 159 The same operation as in Example 101 was carried out except using (B-101) as the bromoacetic acid ester, to obtain a compound (C-101) as a photoresist base material (yield: 71%).
  • Example 160 The same operation as in Example 101 was carried out except using (B-102) as the bromoacetic acid ester, to obtain a compound (C-102) as a photoresist base (yield: 68%).
  • Example 161 The same operation as in Example 101 was performed, except that (B-103) was used as the bromoacetic acid ester, to obtain a compound (C-103) as a photoresist base material (yield: 85%).
  • Example 162 The same operation as in Example 101 was performed, except that (B-104) was used as a bromoacetic acid ester, to obtain a compound (C-104) as a photoresist base material (yield: 77%).
  • Example 163 The same operation as in Example 101 was performed, except that (B-105) was used as a bromoacetic acid ester, to obtain a compound (C-105) as a photoresist base material (yield: 81%).
  • Example 164 A compound (C-106) which is a photoresist base was obtained by the same procedure as in Example 101 except that the cyclic compound precursor (1) was used and (B-103) was used as a bromoacetic acid ester. Obtained (yield: 78%).
  • Example 165 A compound (C-107) which is a photoresist base was obtained by the same procedure as in Example 101 except that the cyclic compound precursor (1) was used and (B-104) was used as a bromoacetic acid ester. Obtained (yield: 76%).
  • Example 166 A compound (C-108) which is a photoresist base was obtained by the same procedure as in Example 101 except that the cyclic compound precursor (1) was used and (B-105) was used as a bromoacetic acid ester. Obtained (yield: 73%).
  • Example 167 The same operation as in Example 101 was performed, except that (B-106) was used as a bromoacetic acid ester, to obtain a photoresist base compound (C-109) (yield: 69%).
  • Example 168 The same operation as in Example 101 was performed, except that the cyclic compound (1) was used and (B-106) was used as a bromoacetic acid ester, to obtain a compound (C-110) as a photoresist base material. (Yield: 72%).
  • Example 169 The same operation as in Example 101 was performed, except that (B-107) was used as a bromoacetic acid ester, to obtain a compound (C-111) as a photoresist base material (yield: 79%).
  • Example 170 A compound (C-112) which is a photoresist base is carried out in the same manner as in Example 101 except that the cyclic compound precursor (1) is used and (B-107) is used as a bromoacetic acid ester. Obtained (yield: 88%).
  • Example 171 The same operation as in Example 101 was carried out except using (B-108) as the bromoacetic acid ester, to obtain a compound (C-113) as a photoresist base (yield: 63%).
  • Example 172 The same operation as in Example 101 was performed, except that (B-109) was used as a bromoacetic acid ester, to obtain a compound (C-114) as a photoresist base material (yield: 85%).
  • Example 173 The same operation as in Example 101 was performed except that (B-110) was used as a bromoacetic acid ester, to obtain a compound (C-115) as a photoresist base material (yield: 75%).
  • Example 174 The same operation as in Example 101 was carried out except using (B-111) as the bromoacetic acid ester, to obtain a compound (C-116) as a photoresist base (yield: 79%).
  • Example 175 The same operation as in Example 101 was carried out except using (B-112) as the bromoacetic acid ester, to obtain a compound (C-117) which is a photoresist base material (yield: 72%).
  • Example 176 The same operation as in Example 101 was performed, except that (B-114) was used as the bromoacetic acid ester, to obtain a compound (C-118) as a photoresist base (yield: 67%).
  • Example 177 The same operation as in Example 101 was performed, except that (B-113) was used as the bromoacetic acid ester, to obtain a compound (C-119) which is a photoresist base material (yield: 66%).
  • Example 178 A compound (C-120) as a photoresist base was prepared by the same procedure as in Example 101 except that the cyclic compound precursor (1) was used and (B-115) was used as a bromoacetic acid ester. Obtained (yield: 61%).
  • Example 179 The same operation as in Example 101 was performed, except that (B-115) was used as a bromoacetic acid ester, to obtain a compound (C-121) as a photoresist base material (yield: 59%).
  • Example 180 The cyclic compound precursor (3), 3.12 g (3.04 mmol) was charged into a 200 ml three-necked flask equipped with a nitrogen introduction thermometer, a thermometer and a Dimroth condenser, and nitrogen was introduced to form a nitrogen atmosphere, 40 ml of N-methylpyrrolidone (for organic synthesis, dehydrating solvent: Wako Pure Chemical Industries, Ltd.) was added and stirred.
  • N-methylpyrrolidone for organic synthesis, dehydrating solvent: Wako Pure Chemical Industries, Ltd.
  • bromoacetic acid ester (B-116), 3.8 g (13.4 mmol) and 1,8-diazabicyclo [5,4,0] undec-7-ene, 4.0 ml (26.9 mmol) are added, The mixture was heated in an oil bath at 90 ° C. for reaction for 3 hours. After the reaction, the reaction mixture was diluted with 600 ml of deionized water and extracted with ethyl acetate. The ethyl acetate layer was washed twice with deionized water and once with saturated brine, and then dried over anhydrous sodium sulfate.
  • Example 181 The cyclic compound precursor (1) was charged with 1.94 g (3.04 mmol) of a cyclic compound precursor (1) in a 200 ml three-necked flask equipped with a nitrogen introduction thermometer, a thermometer and a Dimroth condenser, and nitrogen was introduced to form a nitrogen atmosphere. 40 ml of N-methylpyrrolidone (for organic synthesis, dehydrating solvent: Wako Pure Chemical Industries, Ltd.) was added and stirred.
  • N-methylpyrrolidone for organic synthesis, dehydrating solvent: Wako Pure Chemical Industries, Ltd.
  • bromoacetic ester (B-116), 2.83 g (10 mmol) and 1,8-diazabicyclo [5,4,0] undec-7-ene, 4.30 ml (29 mmol) are added, and the oil at 90 ° C. It heated by bath and made it react for 3 hours. After the reaction, the reaction mixture was diluted with 600 ml of deionized water and extracted with ethyl acetate. The ethyl acetate layer was washed twice with deionized water and once with saturated brine, and then dried over anhydrous sodium sulfate.
  • the acid dissociable, dissolution inhibiting group precursor of the present invention can be suitably used as a photoresist substrate or composition, in particular, a photoresist substrate or composition for extreme ultraviolet light and / or electron beam.
  • the photoresist and the photoresist composition of the present invention are suitably used in the fields of electricity and electronics such as semiconductor devices, and in the field of optics.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Epoxy Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

 R-Xで表される化合物であって、Rが下記式(1)で表される基であり、Xがハロゲン原子、水酸基、アリーロキシ基、又は下記式(5)で表される(メタ)アクリル酸エステル基である化合物。

Description

酸解離性溶解抑止基前駆体、及び酸解離性溶解抑止基を有する環状化合物
 本発明は、酸解離性溶解抑止基前駆体、及び酸解離性溶解抑止基を有する環状化合物に関する。さらに詳しくは、半導体等の電気・電子分野や光学分野等で用いられる上記環状化合物からなるフォトレジスト基材、特に超微細加工用フォトレジスト基材に関する。
 極端紫外光(Extream Ultra Violet、EUV)又は電子線によるリソグラフィーは、半導体等の製造において、高生産性、高解像度の微細加工方法として有用であり、それに用いる高感度、高解像度のフォトレジストを開発することが求められている。これらリソグラフィーにおいて使用するフォトレジストは、所望する微細パターンの生産性、解像度等の観点から、その感度を向上させることが欠かせない。
 極端紫外光による超微細加工の際に用いられるフォトレジストとしては、例えば、公知のKrFレーザーによる超微細加工の際に用いられていた化学増幅型ポリヒドロキシスチレン系フォトレジストが挙げられる。このレジストでは、50nm程度までの微細加工が可能であることが知られている。しかし、このレジストでは、極端紫外光による超微細加工の最大のメリットである50nm以細のパターンを作成すると、高感度、低レジストアウトガスをある程度まで実現できたとしても、最も重要なラインエッジラフネスを低減させることが不可能であるため、極端紫外光本来の性能を十分に引き出しているとは言えなかった。このような背景から、より高性能のフォトレジストを開発することが求められていた。
 この求めに応じ、例えば特許文献1は、他のレジスト化合物と比較して、光酸発生剤が高濃度である化学増幅ポジ型フォトレジストを用いる方法を開示している。しかし、この方法では、実施例において、ヒドロキシスチレン/スチレン/t-ブチルアクリレートからなるターポリマーからなる基材、全固形分中の少なくとも約5重量%のジ(t-ブチルフェニル)ヨードニウムオルト-トリフルオロメチルスルフォネートからなる光酸発生剤、テトラブチルアンモニウムヒドロキシド乳酸塩及び乳酸エチルからなるフォトレジストに関して、極端紫外光を用いた場合の作成ライン幅等の具体的結果が例示されていなかった。従って、これらの結果については、ラインエッジラフネスの観点から、電子線を用いた場合で例示された100nmまでの加工が限界であると考えられた。これは基材として用いる高分子化合物の集合体又は各々の高分子化合物分子が示す立体的形状が大きく、該作製ライン幅及びその表面粗さに影響を及ぼすことがその主原因と推定される。
 特許文献2は、高感度、高解像度のフォトレジスト材料としてカリックスレゾルシナレン化合物を開示している。しかしながら、さらに、室温にてアモルファス状態である新規な低分子有機化合物が求められていた。この際、半導体製造工程で問題となるエッチング耐性の向上等、諸性能の向上が並行して求められていた。また、フォトレジスト基材は現行の半導体製造工程では、溶媒に溶解させて製膜工程に進めるため、塗布溶媒に対する高い溶解性が求められていた。
 特許文献3は、カリックスレゾルシナレン化合物を開示しているが、これら化合物は一部溶解性が不十分と考えられる上、フォトレジスト基材としての用途が記載されていない。
 また、特許文献4は、塩基性不純物を低減した特定の低分子化合物を開示しているが、溶解性が不十分であったり、酸解離性溶解抑止基由来のアウトガスによる汚染等の問題があった。
特開2002-055457号公報 特開2004-191913号公報 米国特許6093517号 特開2005-075767号公報
 本発明は、フォトレジスト基材の一部を構成する酸解離性溶解抑止基前駆体を提供することを目的とする。
 本発明は、塗布溶媒溶解性に優れ、高透明性、高感度、高微細加工性、高強度、低アウトガス性であるフォトレジスト基材及びフォトレジスト組成物を提供することを目的とする。
 本発明は上述の問題に鑑みなされたものであり、従来のフォトレジストを用いた超微細加工において生ずる問題は、従来の高分子化合物からなるフォトレジスト基材の立体的分子形状、分子構造、又はその分子構造中における保護基の構造に基づく反応性に起因することを突き止めた。この知見に基づき、本発明者等は上記問題の少ない化合物を見出し、本発明を完成させた。
 本発明によれば、R-Xで表される化合物であって、
 Rが下記式(1)で表される基であり、
 Xがハロゲン原子、水酸基、アリーロキシ基、又は下記式(5)で表される(メタ)アクリル酸エステル基である化合物が提供される。
Figure JPOXMLDOC01-appb-C000001
(上記式(1)において、
 nは、それぞれ0又は1の整数である。
 Rは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。
 Rは、置換もしくは無置換の炭素数6~10の芳香族基を含む置換基を少なくとも1つ有する三級炭素を基点とする基、置換もしくは無置換の炭素数6~10の芳香族基を含む置換基を少なくとも1つ有する二級炭素を基点とする基、置換もしくは無置換の炭素数6~10の芳香族基を含む置換基を有する一級炭素を基点とする基、置換もしくは無置換の炭素数3~20の単環状脂肪族構造あるいは複環状脂肪族構造の環状構造に含まれる炭素を基点とする基である。但し、Rは、1-フェニルエチル基、2-フェニルプロパン-2-イル基、2-ベンジルプロパン-2-イル基、ジフェニルメチル基、1-フェニルプロピル基、1,2-ジフェニルプロピル基、及び下記式(1001’)、(1003’)、(1006’)、(1007’)及び(1008’)で表される基ではない。
 Rは、単結合、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。)
Figure JPOXMLDOC01-appb-C000002
(上記式(5)において、
 Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。)
Figure JPOXMLDOC01-appb-C000003
(式中、X及びYはそれぞれ、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基又は炭素数3~20の環状アルキル基、フェニル基、ベンジル基、フェネチル基、又は以下の構造であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、また、炭素数3~20の環状アルキル基によって部分的に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 nは0~3の整数である。複数のX又はYは同じであっても異なってもよい。)
Figure JPOXMLDOC01-appb-C000004
(式中、R105はフェニル基であり、このフェニル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基又は炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 R106,R107及びR108は、それぞれ水素原子、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 さらに、R106,R107,R108の内のいずれか2つもしくは3つは、それぞれ、これらが結合している炭素とともに、炭素数3~20の環状アルキル基を形成してもよい。)
 本発明によれば、下記式(42)で表される構造を有する重合体、Xが(メタ)アクリル酸エステル基である上記の化合物を単独重合もしくは2種以上5種以下用いて共重合して得られる重合体、又はXがアリーロキシ基である上記の化合物を単独重合もしくはアルデヒド化合物と共重合して得られる重合体であるフォトレジスト基材が提供される。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは前記式(1)で表される基であって、式(1)のORが後述する式(6)~(41)及び後述する式(101)~(283)で表される基、及び下記式(43)~(50)で表される基のいずれかである。
 複数のRはそれぞれ同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000006
 本発明によれば、フェノール性水酸基を2以上50以下有し、分子量が500以上5000以下である化合物に、前記式(1)で表される基であって、式(1)のORが後述する式(1001)~(1032)、後述する式(6)~(41)、後述する式(43)~(50)、及び後述する式(101)~(283)で表される基のいずれかである基が結合した化合物であるフォトレジスト基材が提供される。
 本発明によれば、フェノール性水酸基を2以上50以下有し、分子量が500以上5000以下である、下記式(51),(55),(57)で表される化合物であるフォトレジスト基材が提供される。
Figure JPOXMLDOC01-appb-C000007
(式中、
 R’は、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、これら基のうち2以上を組み合わせた基、又は下記式(52)~(54)で表される基のいずれかである。
 Rは、それぞれ水素原子、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルキロキシ基、シロキシ基、これらの基と二価の基とが結合した基、又は酸解離性溶解抑止基ORであり、
 前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 Rは、それぞれ水素原子、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基、酸素原子を含む基、又は酸解離性溶解抑止基ORである。
Figure JPOXMLDOC01-appb-C000008
 Arは、置換もしくは無置換の炭素数6~10のアリーレン基と置換もしくは無置換の炭素数6~10のアリーレン基から選択される基2以上を組み合わせた基、又はアルキレン基及びエーテル結合から選択される1以上と置換もしくは無置換の炭素数6~10のアリーレン基を組み合わさせた基であり、
 置換基を有する場合の置換基は、臭素原子、フッ素原子、ニトリル基又は炭素数1~10のアルキル基である。
 Rは、それぞれ水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、これらの基と二価の基が結合した基、又は酸解離性溶解抑止基ORであり、
 前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 R及びRは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれら基のうち2以上を組み合わせた基である。
 Aはアルキレン基、エーテル結合及びアルキレン基から選択される基を2以上組み合わせた基、又はアルキレン基1以上及びエーテル結合1以上を組み合わせた基である。
 xは1~5の整数であり、yは0~3の整数であり、zは0~4の整数である。
 複数のR’、R、R、R、R、R、Ar、A、x、y及びzは、それぞれ同じであっても異なっていてもよい。
 R、R及びRのいずれか1以上が、酸解離性溶解抑止基ORである。
 Rは前記式(1)で表される基である。)
Figure JPOXMLDOC01-appb-C000009
(式中、
 R’は、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、これら基のうち2以上を組み合わせた基、又は下記式(56)で表される基である。
 Rは、それぞれ水素原子、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルキロキシ基、シロキシ基、これらの基と二価の基とが結合した基、又は酸解離性溶解抑止基ORであって、
 前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 Rは、それぞれ水素原子、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基、酸素原子を含む基、又は酸解離性溶解抑止基ORである。
Figure JPOXMLDOC01-appb-C000010
 Arは、置換もしくは無置換の炭素数6~10のアリーレン基、及び置換もしくは無置換の炭素数6~10のアリーレン基から選択される基を2以上組み合わせた基、アルキレン基及びエーテル結合から選択される1以上と置換もしくは無置換の炭素数6~10のアリーレン基を組み合わせた基であり、
 置換基を有する場合の置換基は、臭素原子、フッ素原子、ニトリル基、又は炭素数1~10のアルキル基である。
 Rは、それぞれ水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、これらの基と二価の基が結合した基、又は酸解離性溶解抑止基ORであり、
 前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、エステル結合、炭酸エステル結合、又はエーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 R、Rは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれら基のうち2以上を組み合わせた基である。
 xは1~5の整数であり、yは0~3の整数であり、zは0~4の整数である。
 複数のR’、R、R、R、R、R、Ar、x、y及びzは、それぞれ同じであっても異なっていてもよい。
 R、R及びRのいずれか1以上が酸解離性溶解抑止基ORである。
 Rは前記式(1)で表される基である。)
Figure JPOXMLDOC01-appb-C000011
(式中、
 R’は、それぞれ下記式(58)~(60)で表される基のいずれかである。
 Rは、それぞれ水素、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルキロキシ基、シロキシ基、又はこれらの基と二価の基とが結合した基であり、
 前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 Rは、それぞれRで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐を有する脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基又は酸素原子を含む基である。
Figure JPOXMLDOC01-appb-C000012
 Arは、置換もしくは無置換の炭素数6~10のアリーレン基、置換もしくは無置換の炭素数6~10のアリーレン基を2以上組み合わせた基、アルキレン基及びエーテル結合から選択される1以上の基と置換もしくは無置換の炭素数6~10のアリーレン基が組み合わせた基であり、
 置換基を有する場合の置換基は、臭素原子、フッ素原子、ニトリル基、又は炭素数1~10のアルキル基である。
 Rは、それぞれ水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、又はこれらの基と二価の基が結合した基、又は酸解離性溶解抑止基ORであり、
 前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 R及びRは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれら基のうち2以上を組み合わせた基である。
 Aは、アルキレン基、エーテル結合及びアルキレン基から選択される2以上を組み合わせた基、又はアルキレン基1以上及びエーテル結合から選択される1以上を組み合わせた基である。
 xは1~5の整数であり、yは0~3整数であり、zは0~4の整数である。
 複数のR、R、R、R、R、Ar、A、x、y及びzは、それぞれ同じであっても異なっていてもよい。
 Rの1以上が酸解離性溶解抑止基ORである。
 Rは前記式(1)で表される基である。)
 本発明によれば、下記式(2001)で表される化合物が提供される。
Figure JPOXMLDOC01-appb-C000013
(式中、Xはハロゲン原子である。
 R201、R202及びR203は、それぞれ水素原子、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
 R202及びR203は、これらが結合している炭素と共に、炭素数3~20の環状アルキル基を形成してもよく、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
 前記直鎖状及び分岐アルキル基は、炭素数3~20の環状アルキル基によって部分的に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 Xは、それぞれ以下の構造のいずれかである。
Figure JPOXMLDOC01-appb-C000014
(式中、R204、R205及びR206は、それぞれ水素原子、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよく、
 さらに、R204、R205及びR206の内のいずれか2つもしくは3つは一緒になって、これらが結合している炭素と共に、炭素数3~20の環状アルキル基を形成してもよい。)
 さらに、ベンゼン環の隣り合う炭素に結合した2つのXは、一緒になって以下の2価の基となってもよい。
Figure JPOXMLDOC01-appb-C000015
 nは、置換基Xの数を表し、1、2及び3のいずれかの整数である。
 Aは、以下の2価の基のいずれかである。左右非対称なAにおいては、左の結合がベンゼン環部分に結合する。
Figure JPOXMLDOC01-appb-C000016
(式中、R204、R205及びR206は、前記と同じである。
 Yは、水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、又は炭素数3~20の環状ハロアルコキシ基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよい。))
 本発明によれば、下記式(2003)、(2006)で表される化合物であるフォトレジスト基材が提供される。
Figure JPOXMLDOC01-appb-C000017
(式中、Yは、それぞれ水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよい。
 nは、置換基Yの数を表し、0,1,2,3のいずれかの整数である。
 Rは、それぞれ水素原子、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、又は置換もしくは無置換の炭素数6~10のアリーロキシ基である。
 Rは、それぞれ水素原子、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基である。
 Rは、それぞれ下記式(2004)で表される基、又は下記式(2005)で表される基である。
Figure JPOXMLDOC01-appb-C000018
(式中、R201、R202、R203及びAは、前記式(2001)と同様である。
 pはメチレン鎖の長さ、CHの数を表し、1,2,3のいずれかの整数である。
 mはメチレン鎖の長さ、CHの数を表し、0,1,2,3のいずれかの整数である。
 Xは、それぞれハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、フェネチル基、又は下記構造であり、
Figure JPOXMLDOC01-appb-C000019
(式中、R204、R205及びR206は、前記式(2001)と同様である。)
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 さらにXは、ベンゼン環の隣り合う炭素に結合した2つのXが一緒になって以下の2価の基となってもよい。
Figure JPOXMLDOC01-appb-C000020
 nは、置換基Xの数を表し、0,1,2,3のいずれかの整数である。)
Figure JPOXMLDOC01-appb-C000021
(式中、R、R、R、Y及びnは、前記式(2003)と同様である。)
 本発明によれば、上記のフォトレジスト基材を含む薄膜、上記のフォトレジスト基材及び溶剤を含有するフォトレジスト組成物、このフォトレジスト組成物を用いた微細加工方法、及びこの微細加工方法により作製した半導体装置が提供される。
 本発明によれば、フォトレジスト基材の一部を構成する酸解離性溶解抑止基前駆体を提供することができる。
 本発明によれば、塗布溶媒溶解性に優れ、高透明性、高感度、高微細加工性、高強度、低アウトガス性であるフォトレジスト基材及びフォトレジスト組成物を提供することができる。
 さらに、上記に示す酸解離性溶解抑止基前駆体は、フォトレジスト基材の原料のみならず、光酸発生剤、クエンチャー、界面活性剤等のフォトレジストとして構成される添加剤の原料及び光反射防止膜等の原料としても活用することができる。
製造例3で製造した環状化合物前駆体(3)のH-NMRスペクトルである。
 本発明の酸解離性溶解抑止基前駆体(以下、本発明の第1の酸解離性溶解抑止基前駆体と言う場合がある)は、R-Xで表される化合物であって、Rが下記式(1)で表される基であり、Xがハロゲン原子、水酸基、アリーロキシ基、又は下記式(5)で表される(メタ)アクリル酸エステル基である。
Figure JPOXMLDOC01-appb-C000022
(上記式(1)において、
 nは、それぞれ0又は1の整数である。
 Rは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。
 Rは、置換もしくは無置換の炭素数6~10の芳香族基を含む置換基を少なくとも1つ有する三級炭素を基点とする基、置換もしくは無置換の炭素数6~10の芳香族基を含む置換基を少なくとも1つ有する二級炭素を基点とする基、置換もしくは無置換の炭素数6~10の芳香族基を含む置換基を有する一級炭素を基点とする基、置換もしくは無置換の炭素数3~20の単環状脂肪族構造あるいは複環状脂肪族構造の環状構造に含まれる炭素を基点とする基である。但し、Rは、1-フェニルエチル基、2-フェニルプロパン-2-イル基、2-ベンジルプロパン-2-イル基、ジフェニルメチル基、1-フェニルプロピル基、1,2-ジフェニルプロピル基、及び下記式(1001’)、(1003’)、(1006’)、(1007’)及び(1008’)で表される基ではない。
 Rは、単結合、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。)
Figure JPOXMLDOC01-appb-C000023
(上記式(5)において、
 Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。)
Figure JPOXMLDOC01-appb-C000024
(式中、X及びYはそれぞれ、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基又は炭素数3~20の環状アルキル基、フェニル基、ベンジル基、フェネチル基、又は以下の構造であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、また、炭素数3~20の環状アルキル基によって部分的に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 nは0~3の整数である。複数のX又はYは同じであっても異なってもよい。)
Figure JPOXMLDOC01-appb-C000025
(式中、R105はフェニル基であり、このフェニル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基又は炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 R106,R107及びR108は、それぞれ水素原子、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 さらに、R106,R107,R108の内のいずれか2つもしくは3つは、それぞれ、これらが結合している炭素とともに、炭素数3~20の環状アルキル基を形成してもよい。)
 Xがアリーロキシ基の場合、その芳香族部位は、単環式芳香族構造であっても、複環式芳香族構造であっても、複官能性単環式又は複環式芳香族であってもよい。芳香族部位が複環能性芳香族構造の場合は、上記式(1)中のRを複数有していてもよい。
 アリーロキシ基は、アリーロキシ基構造を部分構造として有する重合体であっても、アリーロキシ基構造をモノマー構造の一部として含む重合体であっても、アリーロキシ基構造を1つ又は複数を含んで形成される環状化合物であってもよい。
 アリーロキシ基が重合体である場合は、上記式(1)中のRを1つ有していても良く、複数有していてもよい。
 Xが(メタ)アクリル酸エステル基の場合は、(メタ)アクリル酸エステル基は、(メタ)アクリル酸エステル基構造をモノマー構造の一部として含む重合体であってもよい。
 (メタ)アクリル酸エステル基が重合体である場合は、上記式(1)中のRを1つ有していてもよく、複数有していてもよい。
 尚、例えば「Rは、置換もしくは無置換の炭素数6~10の芳香族基を含む置換基を少なくとも1つ有する三級炭素を基点とする基」とは、Rの三級炭素が酸素と結合することを意味する。
 本発明の酸解離性溶解抑止基前駆体は、好ましくはORが下記式(1001)~(1032)で表される基のいずれかである。しかし、本発明の酸解離性溶解抑止基前駆体は、式(1001)、(1003)、(1006)、(1007)又は(1008)で表される基であって、R101,R102が共に水素であり、mが0である基は含まない。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 式中、R101,R102,R103及びR104は、それぞれ水素原子、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、また、炭素数3~20の環状アルキル基によって部分的に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 さらに、R101とR102、及びR103とR104は、それぞれ、これらが結合している炭素とともに、炭素数3~20の環状アルキル基を形成してもよい。環状アルキル基として、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基やアダマンチル基が挙げられる。
 R105はフェニル基であり、このフェニル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基又は炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 R106,R107及びR108は、それぞれ水素原子、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 さらに、R106,R107,R108の内のいずれか2つもしくは3つは、それぞれ、これらが結合している炭素とともに、炭素数3~20の環状アルキル基を形成してもよい。環状アルキル基として、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基やアダマンチル基が挙げられる。
 R109,R110は、それぞれ水素原子、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、又はこれら1以上の基と、エーテル結合、エステル結合又は単結合が、組み合わさった基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよい。
 R111とR112は、これらが結合している炭素とともに、炭素数3~20の環状アルキル基を形成する。炭素数3~20の環状アルキル基は、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基やアダマンチル基である。
 R113は水素原子、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、フェネチル基、又はこれら1以上の基と、エーテル結合、エステル結合又は単結合が、組み合わさった基であり、これらはハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 X、Y及びZはそれぞれ、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基又は炭素数3~20の環状アルキル基、フェニル基、ベンジル基、フェネチル基、又は以下の構造であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、また、炭素数3~20の環状アルキル基によって部分的に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000030
(式中、R105106,R107,R108は、前記と同じである。)
 nは、置換基X、Y又はZの数を表し、0~3の整数である。複数のX、Y又はZは同じであっても異なってもよい。
 mは、メチレン(CH)鎖のメチレンの数であり、0~2の整数である。
 Aは以下の2価の基を表す。左右非対称なAにおいては、左の結合がベンゼン環部分に結合する。
Figure JPOXMLDOC01-appb-C000031
 Aは以下の2価の基を表す。
Figure JPOXMLDOC01-appb-C000032
 Aは以下の2価の基を表す。
Figure JPOXMLDOC01-appb-C000033
 Aは以下の2価の基を表す。
Figure JPOXMLDOC01-appb-C000034
 本発明の酸解離性溶解抑止基前駆体は、好ましくはORが下記式(6)~(41)及び(101)~(283)で表される基のいずれかである。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 本発明の酸解離性溶解抑止基前駆体は、例えば以下の製法1又は製法2により製造することができる。
製法1
 原料アルコールR-OHと、例えばブロモ酢酸(A1)を4-ジメチルアミノピリジン存在下、溶媒として塩化メチレン中で撹拌し、0℃で、脱水縮合剤であるジシクロヘキシルカルボジイミドをゆっくりと加える。その後、氷浴で冷却したまま、0℃で撹拌して反応させる。生じた白色固体(ジシクロヘキシルカルボジイミドの尿素化体)をろ過して除去し、後処理、精製を行い、酸解離性溶解抑止基前駆体であるブロモ酢酸エステル(B)が得られる。
Figure JPOXMLDOC01-appb-C000052
(式中、XはBrである。)
製法2
 原料アルコールR-OHと、例えばブロモ酢酸ブロミド(A2)を脱水テトラヒドロフラン中で0℃に冷却し、脱水ピリジンを滴下した後、室温まで昇温し撹拌して反応させる。後処理、精製を行い、酸解離性溶解抑止基前駆体であるブロモ酢酸エステル体(B)が得られる。
Figure JPOXMLDOC01-appb-C000053
(式中、XはBrである。)
 上記製法1及び2において、溶媒としてテトラヒドロフラン及び塩化メチレンをそれぞれ用いているがこれらに限定されず、反応剤、原料が溶解すれば他の溶媒を用いてもよい。
 他の溶媒としては、例えば含ハロゲン溶媒や含酸素溶媒が挙げられる。
 上記製法1及び2において、反応剤の塩基として-ジメチルアミノピリジン及びピリジンをそれぞれ用いているがこれらに限定されず、他の有機塩基、無機塩基を用いてもよい。
 上記製法1において、脱水縮合剤としてジシクロヘキシルカルボジイミドを用いているがこれに限定されず、他の従来公知の縮合剤をもちいてもよい。
 反応温度は、好ましくは-100℃~100℃であり、特に好ましくは-50℃~50℃である。
 本発明のフォトレジスト基材は、下記式(42)で表される構造を有する重合体、Xが(メタ)アクリル酸エステル基である酸解離性溶解抑止基前駆体R-Xを単独重合もしくは2種以上5種以下用いて共重合して得られる重合体、又はXがアリーロキシ基である酸解離性溶解抑止基前駆体R-Xを単独重合もしくはアルデヒド化合物と共重合して得られる重合体である。
Figure JPOXMLDOC01-appb-C000054
(式中、Rは前記式(1)で表される基であって、式(1)のORが前記式(6)~(41)及び前記式(101)~(279)で表される基、及び下記式(43)~(50)で表される基のいずれかである。
 複数のRはそれぞれ同一でも異なってもよい。)
Figure JPOXMLDOC01-appb-C000055
 式(42)で表される構造を有する重合体、Xが(メタ)アクリル酸エステル基である酸解離性溶解抑止基前駆体R-Xを単独重合もしくは2種以上5種以下用いて共重合して得られる重合体、及びXがアリーロキシ基である酸解離性溶解抑止基前駆体R-Xを単独重合もしくはアルデヒド化合物と共重合して得られる重合体の分子量は、Rを除いた分子量で通常5000~100000である。
 また、式(42)において、mは例えば50~1000の整数である。
 共重合に用いるアルデヒド化合物としては、例えばホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、アルコキシベンズアルデヒド、ホルミル安息香酸、及びホルミル安息香酸エステルが挙げられる。
 本発明のフォトレジスト基材は、フェノール性水酸基を2以上50以下有し、分子量が500以上5000以下である化合物に、前記式(1)で表される基であって、式(1)のORが前記式(1001)~(1030)、前記式(6)~(41)、前記式(43)~(50)、及び前記式(101)~(279)で表される基のいずれかである基が結合した化合物である。
 このように、本発明の酸解離性溶解抑止基前駆体R-XのRは、酸解離性溶解抑止基として機能できる。
 本発明のフォトレジスト基材は、好ましくは下記式(51)で表される化合物である。
Figure JPOXMLDOC01-appb-C000056
(式中、
 R’は、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、これら基のうち2以上を組み合わせた基、又は下記式(52)~(54)で表される基のいずれかである。
 Rは、それぞれ水素原子、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルキロキシ基、シロキシ基、これらの基と二価の基とが結合した基、又は酸解離性溶解抑止基ORであり、
 前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 Rは、それぞれ水素原子、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基、酸素原子を含む基、又は酸解離性溶解抑止基ORである。
Figure JPOXMLDOC01-appb-C000057
 Arは、置換もしくは無置換の炭素数6~10のアリーレン基と置換もしくは無置換の炭素数6~10のアリーレン基から選択される基2以上を組み合わせた基、アルキレン基及びエーテル結合から選択される1以上と置換もしくは無置換の炭素数6~10のアリーレン基を組み合わさせた基であり、
 置換基を有する場合の置換基は、臭素原子、フッ素原子、ニトリル基又は炭素数1~10のアルキル基である。
 Rは、それぞれ水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、これらの基と二価の基が結合した基、又は酸解離性溶解抑止基ORであり、
 前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 R及びRは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれら基のうち2以上を組み合わせた基である。
 Aはアルキレン基、エーテル結合及びアルキレン基から選択される基を2以上組み合わせた基、又はアルキレン基1以上とエーテル結合1以上を組み合わせた基である。
 xは1~5の整数であり、yは0~3の整数であり、zは0~4の整数である。
 複数のR’、R、R、R、R、R、Ar、A、x、y及びzは、それぞれ同じであっても異なっていてもよい。
 R、R及びRのいずれか1以上が、酸解離性溶解抑止基ORである。)
 本発明のフォトレジスト基材は、好ましくは下記式(55)で表される化合物である。
Figure JPOXMLDOC01-appb-C000058
(式中、
 R’は、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、これら基のうち2以上を組み合わせた基、又は下記式(56)で表される基である。
 Rは、それぞれ水素原子、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルキロキシ基、シロキシ基、これらの基と二価の基とが結合した基、又は酸解離性溶解抑止基ORであって、
 前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 Rは、それぞれ水素原子、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基、酸素原子を含む基、又は酸解離性溶解抑止基ORである。
Figure JPOXMLDOC01-appb-C000059
 Arは、置換もしくは無置換の炭素数6~10のアリーレン基、及び置換もしくは無置換の炭素数6~10のアリーレン基から選択される基を2以上組み合わせた基、アルキレン基及びエーテル結合から選択される1以上と置換もしくは無置換の炭素数6~10のアリーレン基を組み合わせた基であり、
 置換基を有する場合の置換基は、臭素原子、フッ素原子、ニトリル基、又は炭素数1~10のアルキル基である。
 Rは、それぞれ水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、これらの基と二価の基が結合した基、又は酸解離性溶解抑止基ORであり、
 前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、エステル結合、炭酸エステル結合、又はエーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 R、Rは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれら基のうち2以上を組み合わせた基である。
 xは1~5の整数であり、yは0~3の整数であり、zは0~4の整数である。
 複数のR’、R、R、R、R、R、Ar、x、y及びzは、それぞれ同じであっても異なっていてもよい。
 R、R及びRのいずれか1以上が酸解離性溶解抑止基ORである。)
 本発明のフォトレジスト基材は、好ましくは下記式(57)で表される化合物である。
Figure JPOXMLDOC01-appb-C000060
(式中、
 R’は、それぞれ下記式(58)~(60)で表される基のいずれかである。
 Rは、それぞれ水素、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルキロキシ基、シロキシ基、又はこれらの基と二価の基とが結合した基であり、
 前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 Rは、それぞれRで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐を有する脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基又は酸素原子を含む基である。
Figure JPOXMLDOC01-appb-C000061
 Arは、置換もしくは無置換の炭素数6~10のアリーレン基、置換もしくは無置換の炭素数6~10のアリーレン基を2以上組み合わせた基、アルキレン基及びエーテル結合から選択される1以上の基と置換もしくは無置換の炭素数6~10のアリーレン基が組み合わせた基であり、
 置換基を有する場合の置換基は、臭素原子、フッ素原子、ニトリル基、又は炭素数1~10のアルキル基である。
 Rは、それぞれ水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、又はこれらの基と二価の基が結合した基、又は酸解離性溶解抑止基ORであり、
 前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
 R及びRは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれら基のうち2以上を組み合わせた基である。
 Aは、アルキレン基、エーテル結合及びアルキレン基から選択される2以上を組み合わせた基、又はアルキレン基1以上及びエーテル結合から選択される1以上を組み合わせた基である。
 xは1~5の整数であり、yは0~3整数であり、zは0~4の整数である。
 複数のR’、R、R、R、R、R、Ar、A、x、y及びzは、それぞれ同じであっても異なっていてもよい。
 Rの1以上が酸解離性溶解抑止基ORである。)
 上記式(57)で表されるフォトレジスト基材は、好ましくは同一芳香環上に存在する2つのRのうち、一方が水酸基であり、他方が、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、又は置換もしくは無置換の炭素数6~10のアリーロキシ基である芳香環を含む。
 上記式(51)~(57)において、酸解離性溶解抑止基ORのRは、上記式(1)で表される基である。ORのORは、好ましくは、上記式(1001)~(1030)で表される基のいずれかである。また、ORのORは、好ましくは、上記式(6)~(41)、上記式(43)~(50)、及び上記式(101)~(279)で表される基のいずれかである。
 本発明の他の酸解離性溶解抑止基前駆体(以下、本発明の第2の酸解離性溶解抑止基前駆体と言う場合がある)は、下記式(2001)で表される化合物である。
Figure JPOXMLDOC01-appb-C000062
(式中、Xはハロゲン原子である。
 R201、R202及びR203は、それぞれ水素原子、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
 R202及びR203は、これらが結合している炭素と共に、炭素数3~20の環状アルキル基を形成してもよく、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
 前記直鎖状及び分岐アルキル基は、炭素数3~20の環状アルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、及びアダマンチル基)によって部分的に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 Xは、それぞれ以下の構造のいずれかである。
Figure JPOXMLDOC01-appb-C000063
(式中、R204、R205及びR206は、それぞれ水素原子、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよく、
 さらに、R204、R205及びR206の内のいずれか2つもしくは3つは一緒になって、これらが結合している炭素と共に、炭素数3~20の環状アルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、及びアダマンチル基)を形成してもよい。)
 さらに、ベンゼン環の隣り合う炭素に結合した2つのXは、一緒になって以下の2価の基となってもよい。
Figure JPOXMLDOC01-appb-C000064
 nは、置換基Xの数を表し、1、2及び3のいずれかの整数である。
 Aは、以下の2価の基のいずれかである。左右非対称なAにおいては、左の結合がベンゼン環部分に結合する。
Figure JPOXMLDOC01-appb-C000065
(式中、R204、R205及びR206は、前記と同じである。
 Yは、水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、又は炭素数3~20の環状ハロアルコキシ基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよい。))
 式(2001)のXは、好ましくはそれぞれ下記構造のいずれかである。
Figure JPOXMLDOC01-appb-C000066
 本発明の第2の酸解離性溶解抑止基前駆体は、好ましくは下記式(2002)で表される化合物である。
Figure JPOXMLDOC01-appb-C000067
(式中、Xaはハロゲン原子である。
 ORは、前記式(146)~(153)、(155)~(200)、(202)~(214)、(216)~(228)及び下記式(2010)~(2036)のいずれかである。)
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
 本発明の第2の酸解離性溶解抑止基前駆体は、第1の酸解離性溶解抑止基前駆体と同様の製法により製造することができる。
 本発明のフォトレジスト基材は、下記式(2003)で表される化合物である。
Figure JPOXMLDOC01-appb-C000072
(式中、Yは、それぞれ水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基であり、
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよい。
 nは、置換基Yの数を表し、0,1,2,3のいずれかの整数である。
 Rは、それぞれ水素原子、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、又は置換もしくは無置換の炭素数6~10のアリーロキシ基である。
 Rは、それぞれ水素原子、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基である。
 Rは、それぞれ下記式(2004)で表される基、又は下記式(2005)で表される基である。
Figure JPOXMLDOC01-appb-C000073
(式中、R201、R202、R203及びAは、前記式(2001)と同様である。
 pはメチレン鎖の長さ、CHの数を表し、1,2,3のいずれかの整数である。
 mはメチレン鎖の長さ、CHの数を表し、0,1,2,3のいずれかの整数である。
 Xは、それぞれハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、フェネチル基、又は下記構造であり、
Figure JPOXMLDOC01-appb-C000074
(式中、R204、R205及びR206は、前記式(2001)と同様である。)
 前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
 前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
 さらにXは、ベンゼン環の隣り合う炭素に結合した2つのXが一緒になって以下の2価の基となってもよい。
Figure JPOXMLDOC01-appb-C000075
 nは、置換基Xの数を表し、0,1,2,3のいずれかの整数である。)
 本発明のフォトレジスト基材は、下記式(2006)で表される化合物である。
Figure JPOXMLDOC01-appb-C000076
(式中、R、R、R、Y及びnは、前記式(2003)と同様である。)
 上記式(2003)で表される化合物であるフォトレジスト基材は、好ましくはRが、それぞれ下記式(2007)で表される基である。
Figure JPOXMLDOC01-appb-C000077
(式中、pはメチレン鎖、CHの数を表し、1,2,3のいずれかの整数である。
 ORは、前記式(6)~(14),(17),(18),(20)~(23),(34)~(39),(101)~(110),(113)~(115),(121)~(271)、(2010)~(2036)並びに下記式(2037)及び(2038)のいずれかの基である。)
Figure JPOXMLDOC01-appb-C000078
 本発明のフォトレジスト基材は、本発明の酸解離性溶解抑止基前駆体を、従来公知の無機塩基、有機塩基等の存在下において縮合反応させることにより得られる。具体的には、本発明のフォトレジスト基材は、特願2007-301839号に記載の方法により製造することができる。
 本発明のフォトレジスト組成物は本発明のフォトレジスト基材を含む。本発明のフォトレジスト基材の含有量は、溶剤を除く全組成物中で好ましくは50~99.9重量%であり、より好ましくは75~95重量%である。
 本発明のフォトレジスト基材として用いる場合において、本発明のフォトレジスト基材は、1種類の化合物でもよく、2種以上の混合物でもよい。
 本発明のフォトレジスト組成物に使用される溶剤としては、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル(EL)等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸エチル(PE)等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン等の環状エーテル類、γ-ブチロラクトン等のラクトン類等を挙げることができるが、特に限定はされない。これらの溶剤は、単独で又は2種以上を使用することができる。
 組成物中の溶剤以外の成分、即ちフォトレジスト固形分の量は所望のフォトレジスト層の膜厚を形成するために適する量とするのが好ましい。具体的にはフォトレジスト組成物の全重量の0.1~50重量%が一般的であるが、用いる基材や溶剤の種類、あるいは、所望のフォトレジスト層の膜厚等に合わせて規定できる。溶剤は全組成物中好ましくは50~99.9重量%配合する。
 本発明のフォトレジスト組成物は、基材の分子が、EUV及び/又は電子線に対して活性なクロモフォアを含み単独でフォトレジストとしての能力を示す場合には特に添加剤は必要としないが、フォトレジストとしての性能(感度)を増強する必要がある場合は、必要に応じて、クロモフォアとして光酸発生剤(PAG)等を含むことが一般的である。
 光酸発生剤としては、特に限定されず、化学増幅型レジスト用の酸発生剤として提案されているものを使用することができる。
 このような酸発生剤としては、ヨードニウム塩やスルホニウム塩等のオニウム塩系酸発生剤、オキシムスルホネート系酸発生剤、ビスアルキル又はビスアリールスルホニルジアゾメタン類、ポリ(ビススルホニル)ジアゾメタン類等のジアゾメタン系酸発生剤、ニトロベンジルスルホネート系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤等多種のものが知られている。
 オニウム塩系酸発生剤としては、下記式(a-0)で表される酸発生剤が例示できる。
Figure JPOXMLDOC01-appb-C000079
[式中、R51は、直鎖、分岐鎖又は環状のアルキル基、又は直鎖、分岐鎖又は環状のフッ素化アルキル基を表し;R52は、水素原子、水酸基、ハロゲン原子、直鎖又は分岐鎖状のアルキル基、直鎖又は分岐鎖状のハロゲン化アルキル基、又は直鎖又は分岐鎖状のアルコキシ基であり;R53は置換基を有していてもよいアリール基であり;u’’は1~3の整数である。]
 式(a-0)において、R51は、直鎖、分岐鎖又は環状のアルキル基、又は直鎖、分岐鎖又は環状のフッ素化アルキル基を表す。
 前記直鎖又は分岐鎖状のアルキル基としては、炭素数1~10であることが好ましく、炭素数1~8であることがさらに好ましく、炭素数1~4であることが最も好ましい。
 前記環状のアルキル基としては、炭素数4~12であることが好ましく、炭素数5~10であることがさらに好ましく、炭素数6~10であることが最も好ましい。
 前記フッ素化アルキル基としては、炭素数1~10であることが好ましく、炭素数1~8であることがさらに好ましく、炭素数1~4であることが最も好ましい。また、フッ化アルキル基のフッ素化率(アルキル基中全水素原子の個数に対する置換したフッ素原子の個数の割合)は、好ましくは10~100%、さらに好ましくは50~100%であり、特に水素原子を全てフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
 R51は、直鎖状アルキル基又はフッ素化アルキル基であることが最も好ましい。
 R52は、水素原子、水酸基、ハロゲン原子、直鎖、分岐鎖又は環状のアルキル基、直鎖、又は分岐鎖状のハロゲン化アルキル基、又は直鎖又は分岐鎖状のアルコキシ基である。
 R52において、ハロゲン原子としては、フッ素原子、臭素原子、塩素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 R52において、アルキル基は、直鎖又は分岐鎖状であり、その炭素数は好ましくは1~5、より好ましくは1~4、最も好ましくは1~3である。
 R52において、ハロゲン化アルキル基は、アルキル基中の水素原子の一部又は全部がハロゲン原子で置換された基である。ここでのアルキル基は、前記R52における「アルキル基」と同様のものが挙げられる。置換するハロゲン原子としては上記「ハロゲン原子」について説明したものと同様のものが挙げられる。ハロゲン化アルキル基において、水素原子の全個数の50~100%がハロゲン原子で置換されていることが望ましく、全て置換されていることがより好ましい。
 R52において、アルコキシ基としては、直鎖状又は分岐鎖状であり、その炭素数は好ましくは1~5、より好ましくは1~4、最も好ましくは1~3である。
 R52は、これらの中でも水素原子が好ましい。
 R53は置換基を有していてもよいアリール基であり、置換基を除いた基本環(母体環)の構造としては、ナフチル基、フェニル基、アントラセニル基等が挙げられ、本発明の効果やArFエキシマレーザー等の露光光の吸収の観点から、フェニル基が望ましい。
 置換基としては、水酸基、低級アルキル基(直鎖又は分岐鎖状であり、その好ましい炭素数は5以下であり、特にメチル基が好ましい)等を挙げることができる。
 R53のアリール基としては、置換基を有しないものがより好ましい。
 u’’は1~3の整数であり、2又は3であることが好ましく、特に3であることが望ましい。
 式(a-0)で表される酸発生剤の好ましいものとしては、以下の化学式で表されるものを挙げることができる。
Figure JPOXMLDOC01-appb-C000080
 式(a-0)で表される酸発生剤は1種又は2種以上混合して用いることができる。
 式(a-0)で表される酸発生剤の他のオニウム塩系酸発生剤としては、例えば下記式(a-1)又は(a-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000081
[式中、R”~R”,R”,R”は、それぞれ独立に、置換又は無置換のアリール基又はアルキル基を表し;R”は、直鎖、分岐又は環状のアルキル基又はフッ素化アルキル基を表し;R”~R”のうち少なくとも1つはアリール基を表し、R”及びR”のうち少なくとも1つはアリール基を表す。]
 式(a-1)中、R”~R”はそれぞれ独立に置換又は無置換のアリール基又はアルキル基を表す。R”~R”のうち、少なくとも1つは置換又は無置換のアリール基を表す。R”~R”のうち、2以上が置換又は無置換のアリール基であることが好ましく、R”~R”の全てが置換又は無置換のアリール基であることが最も好ましい。
 R”~R”のアリール基としては、特に制限はなく、例えば、炭素数6~20のアリール基であって、該アリール基は、その水素原子の一部又は全部がアルキル基、アルコキシ基、ハロゲン原子等で置換されていてもよく、されていなくてもよい。アリール基としては、安価に合成可能なことから、炭素数6~10のアリール基が好ましい。具体的には、たとえばフェニル基、ナフチル基が挙げられる。
 前記アリール基の置換基であるアルキル基としては、炭素数1~5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n‐ブチル基、tert‐ブチル基が最も好ましい。
 前記アリール基の置換基であるアルコキシ基としては、炭素数1~5のアルコキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
 前記アリール基の置換基であるハロゲン原子としては、フッ素原子が好ましい。
 R”~R”のアルキル基としては、特に制限はなく、例えば炭素数1~10の直鎖状、分岐状又は環状のアルキル基等が挙げられる。解像性に優れる点から、炭素数1~5であることが好ましい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ノニル基、デカニル基等が挙げられ、解像性に優れ、また安価に合成可能なことから好ましいものとして、メチル基を挙げることができる。
 これらの中で、R”~R”は全てフェニル基であることが最も好ましい。
 R”は、直鎖、分岐又は環状のアルキル基又はフッ素化アルキル基を表す。
 前記直鎖又は分岐のアルキル基としては、炭素数1~10であることが好ましく、炭素数1~8であることがさらに好ましく、炭素数1~4であることが最も好ましい。
 前記環状のアルキル基としては、前記R”で示したような環式基であって、炭素数4~15であることが好ましく、炭素数4~10であることがさらに好ましく、炭素数6~10であることが最も好ましい。
 前記フッ素化アルキル基としては、炭素数1~10であることが好ましく、炭素数1~8であることがさらに好ましく、炭素数1~4であることが最も好ましい。また。該フッ化アルキル基のフッ素化率(アルキル基中のフッ素原子の割合)は、好ましくは10~100%、さらに好ましくは50~100%であり、特に水素原子を全てフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
 R”としては、直鎖又は環状のアルキル基、又はフッ素化アルキル基であることが最も好ましい。
 式(a-2)中、R”及びR”はそれぞれ独立に置換又は無置換のアリール基又はアルキル基を表す。R”及びR”のうち、少なくとも1つは置換又は無置換のアリール基を表す。R”及びR”の全てが置換又は無置換のアリール基であることが好ましい。
 R”~R”の置換又は無置換のアリール基としては、R”~R”の置換又は無置換のアリール基と同様のものが挙げられる。
 R”~R”のアルキル基としては、R”~R”のアルキル基と同様のものが挙げられる。
 これらの中で、R”~R”は全てフェニル基であることが最も好ましい。
 式(a-2)中のR”としては上記式(a-1)のR”と同様のものが挙げられる。
 式(a-1)、(a-2)で表されるオニウム塩系酸発生剤の具体例としては、ジフェニルヨードニウムのトリフルオロメタンスルホネート又はノナフルオロブタンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムのトリフルオロメタンスルホネート又はノナフルオロブタンスルホネート、トリフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、トリ(4-メチルフェニル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、ジメチル(4-ヒドロキシナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、モノフェニルジメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、ジフェニルモノメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、(4-メチルフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、(4-メトキシフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、トリ(4-tert-ブチル)フェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、ジフェニル(1-(4-メトキシ)ナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート等が挙げられる。また、これらのオニウム塩のアニオン部がメタンスルホネート、n-プロパンスルホネート、n-ブタンスルホネート、n-オクタンスルホネートに置き換えたオニウム塩も用いることができる。
 また、前記式(a-1)又は(a-2)において、アニオン部を下記式(a-3)又は(a-4)で表されるアニオン部に置き換えたオニウム塩系酸発生剤も用いることができる(カチオン部は(a-1)又は(a-2)と同様)。
Figure JPOXMLDOC01-appb-C000082
[式中、X”は、少なくとも1つの水素原子がフッ素原子で置換された炭素数2~6のアルキレン基を表し;Y”,Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された炭素数1~10のアルキル基を表す。]
 X”は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状又は分岐状のアルキレン基であり、該アルキレン基の炭素数は2~6であり、好ましくは炭素数3~5、最も好ましくは炭素数3である。
 Y”,Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された直鎖状又は分岐状のアルキル基であり、該アルキル基の炭素数は1~10であり、好ましくは炭素数1~7、より好ましくは炭素数1~3である。
 X”のアルキレン基の炭素数又はY”,Z”のアルキル基の炭素数は、上記炭素数の範囲内において、レジスト溶剤への溶解性も良好である等の理由により、小さいほど好ましい。
 また、X”のアルキレン基又はY”,Z”のアルキル基において、フッ素原子で置換されている水素原子の数が多いほど、酸の強度が強くなり、また200nm以下の高エネルギー光や電子線に対する透明性が向上するので好ましい。該アルキレン基又はアルキル基中のフッ素原子の割合、即ちフッ素化率は、好ましくは70~100%、さらに好ましくは90~100%であり、最も好ましくは、全ての水素原子がフッ素原子で置換されたパーフルオロアルキレン基又はパーフルオロアルキル基である。
 本発明において、光酸発生剤として以下の式(40)~(45)で示される化合物も使用できる。
Figure JPOXMLDOC01-appb-C000083
 式(40)中、Qはアルキレン基、アリーレン基又はアルコキシレン基であり、R15はアルキル基、アリール基、ハロゲン置換アルキル基又はハロゲン置換アリール基である。
 前記式(40)で示される化合物は、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルイミド、N-(10-カンファースルホニルオキシ)スクシンイミド、N-(10-カンファースルホニルオキシ)フタルイミド、N-(10-カンファースルホニルオキシ)ジフェニルマレイミド、N-(10-カンファースルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(10-カンファースルホニルオキシ)ナフチルイミド、N-(n-オクタンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(n-オクタンスルホニルオキシ)ナフチルイミド、N-(p-トルエンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(p-トルエンスルホニルオキシ)ナフチルイミド、N-(2-トリフルオロメチルベンゼンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(2-トリフルオロメチルベンゼンスルホニルオキシ)ナフチルイミド、N-(4-トリフルオロメチルベンゼンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(4-トリフルオロメチルベンゼンスルホニルオキシ)ナフチルイミド、N-(パーフルオロベンゼンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(パーフルオロベンゼンスルホニルオキシ)ナフチルイミド、N-(1-ナフタレンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-ナフタレンスルホニルオキシ)ナフチルイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ナフチルイミド、N-(パーフルオロ-n-オクタンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エンー2,3-ジカルボキシイミド及びN-(パーフルオロ-n-オクタンスルホニルオキシ)ナフチルイミドからなる群から選択される少なくとも一種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000084
 式(41)中、R16は、同一でも異なっていてもよく、それぞれ独立に、任意に置換された直鎖、分枝又は環状アルキル基、任意に置換されたアリール基、任意に置換されたヘテロアリール基又は任意に置換されたアラルキル基である。
 前記式(41)で示される化合物は、ジフェニルジスルフォン、ジ(4-メチルフェニル)ジスルフォン、ジナフチルジスルフォン、ジ(4-tert-ブチルフェニル)ジスルフォン、ジ(4-ヒドロキシフェニル)ジスルフォン、ジ(3-ヒドロキシナフチル)ジスルフォン、ジ(4-フルオロフェニル)ジスルフォン、ジ(2-フルオロフェニル)ジスルフォン及びジ(4-トルフルオロメチルフェニル)ジスルフォンからなる群から選択される少なくとも一種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000085
 式(42)中、R17は、同一でも異なっていてもよく、それぞれ独立に、任意に置換された直鎖、分枝又は環状アルキル基、任意に置換されたアリール基、任意に置換されたヘテロアリール基又は任意に置換されたアラルキル基である。
 前記式(42)で示される化合物は、α-(メチルスルホニルオキシイミノ)-フェニルアセトニトリル、α-(メチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(トリフルオロメチルスルホニルオキシイミノ)-フェニルアセトニトリル、α-(トリフルオロメチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(エチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(プロピルスルホニルオキシイミノ)-4-メチルフェニルアセトニトリル及びα-(メチルスルホニルオキシイミノ)-4-ブロモフェニルアセトニトリルからなる群から選択される少なくとも一種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000086
 式(43)中、R18は、同一でも異なっていてもよく、それぞれ独立に、1以上の塩素原子及び1以上の臭素原子を有するハロゲン化アルキル基である。ハロゲン化アルキル基の炭素原子数は1~5が好ましい。
Figure JPOXMLDOC01-appb-C000087
 式(44)及び(45)中、R19及びR20はそれぞれ独立に、メチル基、エチル基、n-プロピル基、イソプロピル基等の炭素原子数1~3のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、メトキシ基、エトキシ基、プロポキシ基等の炭素原子数1~3のアルコキシ基、又はフェニル基、トルイル基、ナフチル基等のアリール基であり、好ましくは、炭素原子数6~10のアリール基である。
 L19及びL20はそれぞれ独立に1,2-ナフトキノンジアジド基を有する有機基である。1,2-ナフトキノンジアジド基を有する有機基としては、具体的には、1,2-ナフトキノンジアジド-4-スルホニル基、1,2-ナフトキノンジアジド-5-スルホニル基、1,2-ナフトキノンジアジド-6-スルホニル基等の1,2-キノンジアジドスルホニル基を好ましいものとして挙げることができる。特に、1,2-ナフトキノンジアジド-4-スルホニル基及び1,2-ナフトキノンジアジド-5-スルホニル基が好ましい。
 pは1~3の整数、qは0~4の整数、かつ1≦p+q≦5である。
 J19は単結合、炭素原子数1~4のポリメチレン基、シクロアルキレン基、フェニレン基、下記式(44a)で表わされる基、カルボニル結合、エステル結合、アミド結合又はエーテル結合を有する基である。
 Y19はそれぞれ独立に水素原子、アルキル基又はアリール基であり、X20は、それぞれ独立に下記式(45a)で示される基である。
Figure JPOXMLDOC01-appb-C000088
 式(45a)中、Z22はそれぞれ独立に、アルキル基、シクロアルキル基又はアリール基であり、R22はそれぞれ独立に、アルキル基、シクロアルキル基又はアルコキシ基であり、rは0~3の整数である。
 その他の酸発生剤として、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルフェニルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、1,3-ビス(シクロヘキシルスルホニルアゾメチルスルホニル)プロパン、1,4-ビス(フェニルスルホニルアゾメチルスルホニル)ブタン、1,6-ビス(フェニルスルホニルアゾメチルスルホニル)ヘキサン、1,10-ビス(シクロヘキシルスルホニルアゾメチルスルホニル)デカン等のビススルホニルジアゾメタン類、2-(4-メトキシフェニル)-4,6-(ビストリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシナフチル)-4,6-(ビストリクロロメチル)-1,3,5-トリアジン、トリス(2,3-ジブロモプロピル)-1,3,5-トリアジン、トリス(2,3-ジブロモプロピル)イソシアヌレート等のハロゲン含有トリアジン誘導体等が挙げられる。
 これらの光酸発生剤の中で、特に好ましくは活性光線又は放射線の作用により有機スルホン酸を発生する化合物が好ましい。
 PAGの配合量は、溶剤を除く全組成物中0~40重量%、好ましくは5~30重量%、さらに好ましくは5~20重量%である。
 本発明においては、放射線照射により酸発生剤から生じた酸のレジスト膜中における拡散を制御して、未露光領域での好ましくない化学反応を阻止する作用等を有する酸拡散制御剤(クエンチャー)をフォトレジスト組成物に配合してもよい。この様な酸拡散制御剤を使用することにより、フォトレジスト組成物の貯蔵安定性が向上する。また解像度が向上するとともに、電子線照射前の引き置き時間、電子線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
 このような酸拡散制御剤としては、例えば、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ-n-プロピルアミン、ジ-n-ヘプチルアミン、ジ-n-オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ヘキシルアミン、トリ-n-ペンチルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、トリ-n-ノニルアミン、トリ-n-デカニルアミン、トリ-n-ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ-n-オクタノールアミン、トリ-n-オクタノールアミン等のアルキルアルコールアミン;1,4-ジアザビシクロ[2.2.2]オクタン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の環状アミン等の窒素原子含有塩基性化合物、塩基性スルホニウム化合物、塩基性ヨードニウム化合物等の電子線放射分解性塩基性化合物が挙げられる。酸拡散制御剤は、単独で又は2種以上を使用することができる。
 クエンチャーの配合量は、溶剤を除く全組成物中0~40重量%、好ましくは0.01~15重量%である。
 本発明においては、さらに所望により混和性のある添加剤、例えばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための界面活性剤、溶解制御剤、増感剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料、顔料等を適宜、添加含有させることができる。
 溶解制御剤は、環状化合物のアルカリ現像液に対する溶解性が高すぎる場合に、その溶解性を低下させて現像時の溶解速度を適度にする作用を有する成分である。
 溶解制御剤としては、例えば、ナフタレン、フェナントレン、アントラセン、アセナフテン等の芳香族炭化水素類;アセトフェノン、ベンゾフェノン、フェニルナフチルケトン等のケトン類;メチルフェニルスルホン、ジフェニルスルホン、ジナフチルスルホン等のスルホン類等を挙げることができる。さらに、例えば、酸解離性官能基が導入されたビスフェノール類、t-ブチルカルボニル基が導入されたトリス(ヒドロキシフェニル)メタン等をも挙げることができる。これらの溶解制御剤は、単独で又は2種以上を使用することができる。溶解制御剤の配合量は、使用する環状化合物の種類に応じて適宜調節されるが、固形成分全重量の0~50重量%が好ましく、0~40重量%がより好ましく、0~30重量%がさらに好ましい。
 増感剤は、照射された放射線のエネルギーを吸収して、そのエネルギーを酸発生剤に伝達し、それにより酸の生成量を増加する作用を有し、レジストの見掛けの感度を向上させる成分である。このような増感剤としては、例えば、ベンゾフェノン類、ビアセチル類、ピレン類、フェノチアジン類、フルオレン類等を挙げることができるが、特に限定はされない。これらの増感剤は、単独で又は2種以上を使用することができる。増感剤の配合量は、固形成分全重量の0~50重量%が好ましく、0~20重量%がより好ましく、0~10重量%がさらに好ましい。
 界面活性剤は、本発明のフォトレジスト組成物の塗布性やストリエーション、レジストとしての現像性等を改良する作用を有する成分である。このような界面活性剤としては、アニオン系、カチオン系、ノニオン系あるいは両性のいずれでも使用することができる。これらのうち、ノニオン系界面活性剤が好ましい。ノニオン系界面活性剤は、フォトレジスト組成物に用いる溶剤との親和性がよく、より効果がある。ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等の他、以下商品名で、エフトップ(ジェムコ社製)、メガファック(大日本インキ化学工業社製)、フロラード(住友スリーエム社製)、アサヒガード、サーフロン(以上、旭硝子社製)、ペポール(東邦化学工業社製)、KP(信越化学工業社製)、ポリフロー(共栄社油脂化学工業社製)等の各シリーズ製品を挙げることができるが、特に限定はされない。界面活性剤の配合量は、固形成分全重量の0~2重量%が好ましく、0~1重量%がより好ましく、0~0.1重量%がさらに好ましい。
 また、染料あるいは顔料を配合することにより、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和できる。さらに、接着助剤を配合することにより、基板との接着性を改善することができる。
 酸拡散制御剤を配合した場合の感度劣化を防ぎ、またレジストパターン形状、引き置き安定性等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキソ酸又はその誘導体を含有させることができる。尚、これらの化合物は、酸拡散制御剤と併用することもできるし、単独で用いてもよい。有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が好適である。リンのオキソ酸又はその誘導体としては、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステル等のリン酸又はそれらのエステル等の誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸又はそれらのエステル等の誘導体、ホスフィン酸、フェニルホスフィン酸等のホスフィン酸及びそれらのエステル等の誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。
 レジストパターンを形成するには、まず、シリコンウェハー、ガリウムヒ素ウェハー、アルミニウムで被覆されたウェハー等の基板上に本発明のフォトレジスト組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。
 必要に応じて、基板上に表面処理剤を予め塗布してもよい。表面処理剤としては、例えばヘキサメチレンジシラザン等のシランカップリング剤(重合性基を有する加水分解重合性シランカップリング剤等)、アンカーコート剤又は下地剤(ポリビニルアセタール、アクリル系樹脂、酢酸ビニル系樹脂、エポキシ樹脂、ウレタン樹脂等)、これらの下地剤と無機微粒子とを混合したコーティング剤が挙げられる。
 必要に応じて、大気中に浮遊するアミン等が侵入するのを防ぐために、レジスト膜に保護膜を形成してもよい。保護膜を形成することにより、放射線によりレジスト膜中に発生した酸が、大気中に不純物として浮遊しているアミン等の酸と反応する化合物と反応して失活し、レジスト像が劣化し感度が低下することを防止できる。保護膜用の材料としては水溶性かつ酸性のポリマーが好ましい。例えば、ポリアクリル酸、ポリビニルスルホン酸等が挙げられる。
 高精度の微細パターンを得るため、また露光中のアウトガスを低減するため、放射線照射前(露光前)に加熱するのが好ましい。その加熱温度は、フォトレジスト組成物の配合組成等により変わるが、20~250℃が好ましく、より好ましくは40~150℃である。
 次いで、KrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、フォトレジスト組成物の配合組成等に応じて適宜選定される。本発明においては、高精度の微細パターンを安定して形成するために、放射線照射後(露光後)に加熱するのが好ましい。露光後加熱温度(PEB)は、フォトレジスト組成物の配合組成等により変わるが、20~250℃が好ましく、より好ましくは40~150℃である。
 次いで、露光されたレジスト膜をアルカリ現像液で現像することにより、所定のレジストパターンを形成できる。前記アルカリ現像液としては、例えば、モノ-、ジ-あるいはトリアルキルアミン類、モノ-、ジ-あるいはトリアルカノールアミン類、複素環式アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等のアルカリ性化合物の1種以上を溶解した、好ましくは1~10重量%、より好ましくは1~5重量%のアルカリ性水溶液を使用する。アルカリ現像液には、メタノール、エタノール、イソプロピルアルコール等のアルコール類や前記界面活性剤を適量添加することもできる。これらのうちイソプロピルアルコールを10~30重量%添加することが特に好ましい。尚、このようなアルカリ性水溶液からなる現像液を用いた場合は、一般に、現像後水で洗浄する。
 酸解離性溶解抑止基を有する環状化合物をフォトレジスト基材として用いる場合は、KrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により、レジスト膜を所望のパターンに露光することにより、酸解離性溶解抑止基が脱離ないし構造が変化することにより、アルカリ現像液に溶解するようになる。一方、パターンの露光されていない部分はアルカリ現像液に溶解しないことが好ましい。
 アルカリ現像液に対する非溶解性については、形成するパターンのサイズ、使用するアルカリ現像液の種類等の現像条件により、好ましい非溶解性が異なるため一概に規定することはできないが、2.38%テトラメチルアンモニウムヒドロキシド水溶液をアルカリ現像液として用いる場合、フォトレジスト基材からなる薄膜の現像液溶解速度で表される非溶解性としては、1ナノメートル/秒未満が好ましく、0.5ナノメートル/秒未満が特に好ましい。
 尚、場合によっては上記アルカリ現像後、ポストベーク処理を行ってもよいし、基板とのレジスト膜の間には有機系又は無機系の反射防止膜を設けてもよい。
 レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングは、プラズマガスを使用するドライエッチング、アルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等を用いるウェットエッチング等公知の方法で行うことができる。レジストパターンを形成した後、銅めっき、はんだめっき、ニッケルめっき、金めっき等のめっき処理を行うこともできる。
 エッチング後の残留レジストパターンは、有機溶剤やアルカリ現像液より強アルカリ性の水溶液で剥離することができる。上記有機溶剤としては、PGMEA、PGME、EL、アセトン、テトラヒドロフラン等が挙げられ、強アルカリ水溶液としては、例えば、1~20重量%の水酸化ナトリウム水溶液、及び1~20重量%の水酸化カリウム水溶液が挙げられる。剥離方法としては、例えば、浸漬方法、スプレイ方式等が挙げられる。またレジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。
 本発明のフォトレジスト組成物を用いてレジストパターンを形成した後、金属を真空蒸着し、その後レジストパターンを溶液で溶離する方法、即ちリフトオフ法により配線基板を形成することもできる。
 本発明のフォトレジスト組成物を用いて微細加工方法により、半導体装置を作製できる。この半導体装置は、テレビ受像機、携帯電話、コンピュータ等の電気製品(電子機器)、ディスプレイ、コンピュータ制御する自動車等の様々な装置に備えることができる。
 本発明の化合物は公知の成形方法によって各種成形品(シリコンウェハ等の基板に形成した薄膜、フィルム、薄板、ファイバー等)を製造することができる。
 成形方法としては、射出成型法、射出圧縮成型法、押出成型法、ブロー成型法、加圧成型法、トランスファー成型法、スピンコーティング法、スプレーコーティング法、キャスト法、蒸着法、熱CVD法、プラズマCVD法、プラズマ重合法等が挙げられ、これら成形方法を所望の製品の形態、性能に応じて適宜選択できる。
 また、本発明の化合物を用いて上記の方法により薄膜を得て、得られた薄膜を熱、紫外線、深紫外線、真空紫外線、極端紫外線、電子線、プラズマ、X線等により硬化(環化付加反応)させてもよい。
 スピンコーティング法等により本発明の化合物を薄膜に形成する場合、本発明の化合物を有機溶媒に溶解させて塗料として用いることができる。
 有機溶媒としては、クロロホルム、ジクロロメタン、1,1,2,2-テトラクロロエタン、ジクロロエタン、ジクロロベンゼン、トリクロロベンゼン、テトラクロロベンゼン、ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、ジメチルアセトアミド、ジメチルスルホキシド(DMSO)、アニソール、アセトフェノン、ベンゾニトリル、ニトロベンゼン、プロピレングリコールメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、テトラヒドロフラン(THF)、シクロヘキサノン、メチルエチルケトン、アセトン等が挙げられる。
 塗料中における本発明の化合物の濃度は、塗料の粘度や薄膜形成方法等を考慮して適宜調製すればよい。
 薄膜の厚さは特に限定されないが、一般に10nm~10μm程度のものが好適に使用される。薄膜の膜厚は、エリプソメータ、反射光学式膜厚計等による光学的膜厚測定、触針式膜厚測定器やAFM等による機械的膜厚測定が可能である。
 本発明の薄膜は、フォトレジスト薄膜としての用途の他、光学レンズ、光ファイバー、光導波路、フォトニック結晶等の種々の光情報処理装置向け光学薄膜、半導体用層間絶縁膜、半導体用保護膜等のULSI装置向け薄膜、液晶ディスプレー、液晶プロジェクター、プラズマディスプレー、ELディスプレー、LEDディスプレー等の画像表示装置向け薄膜、CMOSイメージセンサ、CCDイメージセンサ等に使用される薄膜として有用である。さらにこれら薄膜は、CPU、DRAM、フラッシュメモリ等の半導体装置、情報処理用小型電子回路装置、高周波通信用電子回路装置等の電子回路装置、画像表示装置、光情報処理用装置、光通信用装置等の部材、表面保護膜、耐熱膜において利用することもできる。
 以下、本発明を実施例を基に詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。
[酸解離性溶解抑止基前駆体の製造]
実施例1~38
 表1~3に示す条件で、下記式(A-1)~(A~38)で表される原料アルコールを用いて、下記製法1又は2により、ブロモ酢酸エステルである下記酸解離性溶解抑止基前駆体(B-1)~(B-38)をそれぞれ調製した。また、得られた酸解離性溶解抑止基前駆体の構造をH-NMRで確認した。結果を表1~3に示す。
 尚、表1~3において、酸解離性溶解抑止基前駆体(B-1)、(B-4)~(B-11)、(B-13)~(B-15)、(B-18)~(B-21)、(B-23)~(B-25)及び(B-38)については収率等の記載はないが、これら酸解離性溶解抑止基前駆体は、他の酸解離性溶解抑止基前駆体と同様に調製できる。
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
製法1:
 窒素雰囲気下、200mL三口フラスコに原料アルコール(60ミリモル)、ブロモ酢酸6.39g(46ミリモル)、及び4-ジメチルアミノピリジン0.56g(4.6ミリモル)を仕込み、溶媒として塩化メチレン60ミリリットルを加えて撹拌し溶解させ、反応混合物を氷浴で0℃に冷却した。続いて、ジシクロヘキシルカルボジイミド10.0g(48ミリモル)を塩化メチレン40ミリリットルで溶かして、この溶液を反応混合物の温度が5℃を超えない程度にゆっくりと加えた。氷浴で冷却したまま、0℃で3時間撹拌して反応させた後、生じた白色固体(ジシクロヘキシルカルボジイミドの尿素化体)をろ過して除去し、塩化メチレンで洗浄した。ろ液と洗浄液を集め、飽和炭酸水素ナトリウム水溶液、脱イオン水(2回)飽和食塩水の順で洗浄した後に、得られた有機層を無水硫酸マグネシウムで乾燥し、ろ過後、減圧下溶媒を留去した。残渣をカラムクロマトグラフィーにより精製し、ブロモ酢酸エステルである酸解離性溶解抑止基前駆体を得た。
製法2:
 窒素雰囲気下、200mL三口フラスコに原料アルコール(60ミリモル)、ブロモ酢酸ブロミド7.8ミリリットル(90ミリモル)を脱水テトラヒドロフラン100ミリリットルに溶解させ、反応混合物を氷浴で0℃に冷却した。この溶液に脱水ピリジン9.6ミリリットル(120ミリモル)を滴下した後、室温まで昇温し30時間攪拌を行った。窒素気流下加圧ろ過により不溶物を除去し、ろ液に飽和炭酸水素ナトリウム水溶液を加えて、中和洗浄した後、有機層を分離、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をカラムクロマトグラフィーにより精製し、ブロモ酢酸エステルである酸解離性溶解抑止基前駆体を得た。
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
(式(B-1)~(B-38)中のXはいずれもBrである。)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
実施例39
 窒素気流下、ブロモ酢酸10g(71.97ミリモル)、3,4-ジヒドロ-2H-ピラン9.9ミリリットル(108.5ミリモル)を脱水ジクロロメタン20ミリリットルに溶解し、氷浴中にて0℃まで冷却した。これにp-トルエンスルホン酸ピリジニウム塩1.8g(7.1ミリモル)を加え1時間攪拌後、室温まで昇温し、さらに3時間攪拌した。反応溶液を飽和炭酸水素ナトリウムで洗浄した後、有機層を無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去し、ブロモ酢酸エステル(B-39)12.1g(72.0%)を得た。
 尚、ブロモ酢酸エステル(B-39)の構造はH-NMRにより確認した。
Figure JPOXMLDOC01-appb-C000095
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl3:ppm):
1.45-1.92(m,6H),3.68-3.80(m,1H),3.87(s,2H),3.83-3.98(m,1H),6.07(1H)
実施例40
 調製したブロモ酢酸エステル(B-21)を用いて、定法によりヒドロホウ素化反応を行い、ブロモ酢酸エステル(B-40)を得た。
Figure JPOXMLDOC01-appb-C000096
実施例41
 調製したブロモ酢酸エステル(B-22)を用いて、定法によりヒドロホウ素化反応を行い、ブロモ酢酸エステル(B-41)を得た。
Figure JPOXMLDOC01-appb-C000097
実施例42
 調製したブロモ酢酸エステル(B-22)を用いて、定法によりm-過安息香酸を反応させ、ブロモ酢酸エステル(B-42)を得た。
Figure JPOXMLDOC01-appb-C000098
実施例43
 調製したブロモ酢酸エステル(B-22)を用いて、定法により四酸化オスミウムを反応させ、ブロモ酢酸エステル(B-43)を得た。
Figure JPOXMLDOC01-appb-C000099
実施例44
 調製したブロモ酢酸エステル(B-14)を用いて、定法により四酸化オスミウムを反応させ、ブロモ酢酸エステル体(B-44)を得た。
Figure JPOXMLDOC01-appb-C000100
[環状化合物前駆体の合成]
製造例1
 窒素導入菅、温度計、メカニカルスターラー及びジムロート氏冷却菅を備えた容量300mlの4口フラスコに、5.51gのレゾルシノール(50ミリモル:和光純薬工業製)、p-ホルミル安息香酸7.51g(50ミリモル:和光純薬工業製)を仕込み、エタノール40mlを加えて撹拌し、窒素を導入して窒素雰囲気とした。続いて滴下ロートから、濃塩酸10mlを、フラスコ内部の温度が35℃を超えない程度にゆっくりと加えた。濃塩酸滴下終了後、フラスコをオイルバスにつけて80℃(フラスコ内部)に加熱し3時間反応させた。加熱を停止して、反応フラスコ内部を室温程度に冷却した後に、反応で生成した固体を、ろ過し、少量のエタノールで洗浄した。得られた固体を、200~300mlのビーカーに移し、脱イオン水100mlを加え、マグネチックスターラーで10分間程度撹拌した。撹拌の後、再びろ過し、脱イオン水で洗浄した。同じ操作をもう一度繰り返し、ろ液が中性であることを確認した後に真空下で16時間乾燥させた。得られた6.41gの白色の結晶体を300mlのナスフラスコに仕込み、80mlのN,N-ジメチルホルムアミド(DMF)を加え、マグネチックスターラーで撹拌しながら65℃のオイルバスで加熱して完全に溶かした。
 この溶液を一晩放置した後に、撹拌しながらアセトンを少量ずつ、濁りが消えなくなるまで加え、その後1日放置した。得られた結晶をろ過して取り出し、少量のアセトンで洗浄し、真空下で16時間乾燥させ、カリックスレゾルシナレン誘導体である環状化合物前駆体(1)を得た(収量:1.73g(1.79ミリモル)収率:14%)。
Figure JPOXMLDOC01-appb-C000101
 環状化合物前駆体(1)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):5.49(2H,s),5.58(4H,s),6.14(2H,s),6.34(2H,s),6.40(2H,s),6.70(8H,d),7.47(8H,d),8.58(4H,s),8.77(4H,s),12.26(4H,bs)
製造例2
 p-ホルミル安息香酸の代わりに、m-ブロモ-p-カルボキシメチロキシベンズアルデヒドを用いた以外は製造例1と同様にしてカリックスレゾルシナレン誘導体である環状化合物前駆体(2)を調製した(収率:36%)。
Figure JPOXMLDOC01-appb-C000102
 環状化合物前駆体(2)の構造は1H-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):
4.662(8H,s),5.152(2H,s),5.405(4H,s),6.139(2H,s),6.161(2H,s),6.318(2H,s),6.444(8H,s),6.704(4H,s),8.647(4H,s),8.710(4H,s)
製造例3
 窒素気流下、容量200ミリリットルの丸底フラスコに、3-メトキシフェノール10.0g(81ミリモル)、4-ホルミル安息香酸メチル13.2g(80.6ミリモル)、脱水ジクロロメタン100ミリリットルを加え、-78℃に冷却した。この混合物に対して、3フッ化ホウ素エーテル付加体30.8ミリリットル(250ミリモル)を滴下した後、室温まで昇温して8時間撹拌を継続した。反応溶液を-78℃まで冷却し、析出した固体をジクロロメタン80ミリリットル、水200ミリリットル、エタノールで洗浄し、中間体(メチルエステル体)を収量20.5g(収率94%)で得た。次いで、窒素気流下、得られた中間体0.8g(0.74ミリモル)、水酸化ナトリウム0.74g(18.5ミリモル)、水10ミリリットルを加え、90℃、5時間加熱撹拌を行った後、放冷した。希塩酸水溶液を加え反応溶液を酸性にし、析出した白色沈殿をろ別し水洗することにより、環状化合物前駆体(3)を0.68g(収率90%)得た。
Figure JPOXMLDOC01-appb-C000103
 環状化合物前駆体(3)の構造はH-NMRにより確認した。得られたチャートを図1に示す。
[フォトレジスト基材の合成]
実施例45
 窒素導入菅、温度計、及びジムロート氏冷却菅を備えた容量200mlの三口フラスコに、製造例1で合成した環状化合物前駆体(1)、2.42g(2.5ミリモル)、ブロモ酢酸エステル(B-12)3.23g(12ミリモル)、無水炭酸ナトリウム、1.06g(10ミリモル)及びヨウ化ナトリウム、0.15g(1ミリモル)を仕込み、N,N-ジメチルホルムアミド(有機合成用、和光純薬工業製)25ミリリットルを加えて撹拌し、窒素を導入して窒素雰囲気とした。続いて、フラスコをオイルバスにつけて60℃(反応液温度)に加熱し3時間反応させた。加熱を停止して、室温程度に冷却した後に、フラスコの内容物を250ミリリットルの脱イオン水に、少しずつ加えて希釈した。マグネチックスターラーで10分間程度撹拌した後、生成した淡黄色固体をろ過し、脱イオン水で洗浄した。洗浄液が中性であることを確認した後に真空下で16時間乾燥させた。得られた4.34gの淡黄色固体をシリカゲルカラムクロマトグラフで精製して、白色固体である化合物(C-1)を2.02g得た(1.17ミリモル、収率:47%)。
Figure JPOXMLDOC01-appb-C000104
 フォトレジスト基材である化合物(C-1)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.708-1.962(16H,m),2.668-2.750(8H,m),4.850(8H,s),5.171(2H,s),5.591(4H,s),5.947(4H,t),6.181(2H,s),6.279(2H,s),6.405(2H,s),6.728(8H,d),7.096-7.233(16H,m),7.505(8H,d),8.663(4H,s),8.834(4H,s)
実施例46
 環状化合物前駆体(1)の代わりに、製造例2で合成した環状化合物前駆体(2)を使用し、ブロモ酢酸エステル体(B-12)の代わりに、ブロモ酢酸エステル体(B-3)を使用した以外は、実施例45と同様にして、白色固体である化合物(C-2)を得た(収量:2.68g(1.27ミリモル)収率:51%)。
Figure JPOXMLDOC01-appb-C000105
 フォトレジスト基材である化合物(C-2)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.463(12H,d),2.267(12H,s),4.807(8H,s),4.892(8H,s),5.181(2H,s),5.465(4H,s),5.846-5.869(4H,m),6.181(2H,s),6.206(2H,s),6.355(2H,s),6.452(4H,s),6.517-6.547(4H,m),6.740(4H,s),7.155(8H,d),7.250(8H,d),8.622(4H,s),8.674(4H,s)
実施例47
 環状化合物前駆体(1)の代わりに、製造例3で合成した環状化合物前駆体(3)を使用し、ブロモ酢酸エステル(B-12)の代わりに、ブロモ酢酸エステル(B-33)を使用した以外は、実施例45と同様にして白色固体である化合物(C-3)を得た(収量:2.29g(1.32ミリモル)収率:53%)。
Figure JPOXMLDOC01-appb-C000106
 フォトレジスト基材である化合物(C-3)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):0.793-0.864(12H,m),1.802-1.860(8H,m),3.535-3.596(12H,m),4.936(8H,dd),5.182(2H,s),5.632(4H,s),5.722(4H,t),6.230(2H,t),6.318(2H,s),6.494(2H,s),6.652-6.717(8H,m),7.296-7.354(20H,m),7.465-7.527(8H,m),8.990(2H,s),9.145(2H,s)
実施例48
 ブロモ酢酸エステル(B-12)の代わりに、ブロモ酢酸エステル(B-32)を使用した他は、実施例45と同様にして白色固体である化合物(C-4)を得た(収量:2.86g(1.53ミリモル)収率:61%)。
Figure JPOXMLDOC01-appb-C000107
 フォトレジスト基材である化合物(C-4)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):5.031(8H,s),5.140(2H,s),5.583(4H,s),6.179(2H,s),6.273(2H,s),6.384(2H,s),6.722(8H,d),7.255-7.387(40H,m),7.494(8H,d),8.823(4H,s),8.946(4H,s)
実施例49
 ブロモ酢酸エステル(B-12)の代わりに、ブロモ酢酸エステル(B-35)を使用した他は、実施例45と同様にして白色固体である化合物(C-5)を得た(収量:3.13g(1.86ミリモル)収率:75%)。
Figure JPOXMLDOC01-appb-C000108
 フォトレジスト基材である化合物(C-5)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):3.742(12H,s),4.866(8H,s),5.111(8H,s),5.184(2H,s),5.585(4H,s),6.175(2H,s),6.276(2H,s),6.398(2H,s),6.730(8H,d),6.891(8H,d),7.300(8H,d),7.495(8H,d),8.656(4H,s),8.823(4H,s)
実施例50
 ブロモ酢酸エステル(B-12)の代わりに、ブロモ酢酸エステル(B-33)を使用した他は実施例45と同様にして白色固体である化合物(C-6)を得た(収量:2.80g(1.68ミリモル)収率:67%)。
Figure JPOXMLDOC01-appb-C000109
 フォトレジスト基材である化合物(C-6)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):0.797-0.869(12H,m),1.784-1.879(8H,m),4.931(8H,dd),5.147(2H,s),5.588(4H,s),5.729(4H,t),6.181(2H,s),6.275(2H,s),6.394(2H,s),6.728(8H,d),7.299-7.387(20H,m),7.496(8H,d),8.661(4H,s),8.814(4H,s)
実施例51
 ブロモ酢酸エステル(B-12)の代わりに、ブロモ酢酸エステル(B-2)を使用した他は実施例45と同様にして白色固体である化合物(C-7)を得た(収量:3.73g(2.17ミリモル)収率:87%)。
Figure JPOXMLDOC01-appb-C000110
 フォトレジスト基材である化合物(C-7)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):0.499-0.618(16H,m),1.308-1.382(4H,m),4.977(8H,dd),5.178(2H,s),5.277(4H,d),5.612(4H,s),6.202(2H,s),6.301(2H,s),6.418(2H,s),6.750(8H,d),7.322-7.437(20H,m),7.519(8H,d),8.684(4H,s),8.837(4H,s)
実施例52
 ブロモ酢酸エステル(B-12)の代わりに、ブロモ酢酸エステル(B-31)を使用した他は、実施例45と同様にして白色固体である化合物(C-8)を得た(収量:2.45g(1.42ミリモル)収率:57%)。
Figure JPOXMLDOC01-appb-C000111
 フォトレジスト基材である化合物(C-8)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.392(24H,s),3.020(8H,s),4.732(8H,s),5.195(2H,s),5.605(4H,s),6.185(2H,s),6.296(2H,s),6.408(2H,s),6.745(8H,d),7.160-7.249(20H,m),7.522(8H,d),8.650(4H,s),8.818(4H,s)
実施例53
 ブロモ酢酸エステル(B-12)の代わりに、ブロモ酢酸エステル(B-17)を使用した他は、実施例45と同様にして白色固体である化合物(C-9)を得た(収量:2.75g(1.59ミリモル)収率:64%)。
Figure JPOXMLDOC01-appb-C000112
 フォトレジスト基材である化合物(C-9)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.955-2.188(8H,m),4.168-4.276(8H,m),4.877(8H,s),5.203(2H,s),5.622(4H,s),6.208(2H,s),6.307(2H,s),6.428(2H,s),6.752(8H,d),6.802-6.877(8H,m),7.188-7.223(8H,m),7.523(8H,d),8.684(4H,s),8.846(4H,s)
実施例54
 ブロモ酢酸エステル(B-3)の代わりに、ブロモ酢酸エステル(B-36)を使用した他は、実施例46と同様にして白色固体である化合物(C-10)を得た(収量:2.69g(1.24ミリモル)収率:50%)。
Figure JPOXMLDOC01-appb-C000113
 フォトレジスト基材である化合物(C-10)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):4.837(8H,s),4.912(8H,s),5.079(8H,s),5.195(2H,s),5.476(4H,s),5.996(8H,s),6.186(2H,s),6.214(2H,s),6.367(2H,s),6.473(4H,d),6.552(4H,d),6.747(4H,s),6.880(8H,s),6.945(4H,s),8.614(4H,s),8.659(4H,s)
実施例55
 ブロモ酢酸エステル(B-3)の代わりに、ブロモ酢酸エステル(B-35)を使用した他は、実施例46と同様にして白色固体である化合物(C-11)を得た(収量:3.25g(1.54ミリモル)収率:62%)。
Figure JPOXMLDOC01-appb-C000114
 フォトレジスト基材である化合物(C-11)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):3.736(12H,s),4.826(8H,s),4.909(8H,s),5.108(8H,s),5.197(2H,s),5.474(4H,s),6.181(2H,s),6.213(2H,s),6.363(2H,s),6.471(4H,d),6.547(4H,d),6.747(4H,s),6.918(8H,d),7.310(8H,d),8.602(4H,s),8.642(4H,s)
実施例56
 ブロモ酢酸エステル(B-3)の代わりに、ブロモ酢酸エステル(B-33)を使用した他は、実施例46と同様にして白色固体である化合物(C-12)を得た(収量:3.13g(1.48ミリモル)収率:59%)。
Figure JPOXMLDOC01-appb-C000115
 フォトレジスト基材である化合物(C-12)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):0.791-0.833(12H,m),1.786-1.834(8H,m),4.855(8H,s),4.895(8H,s),5.175(2H,s),5.463(4H,s),5.707(4H,t),6.178(2H,s),6.200(2H,s),6.347(2H,s),6.468(4H,d),6.541(4H,d),6.735(4H,s),7.290-7.371(20H,m),8.628(4H,s),8.633(4H,s)
実施例57
 ブロモ酢酸エステル(B-3)の代わりに、ブロモ酢酸エステル(B-31)を使用した他は、実施例46と同様にして白色固体である化合物(C-13)を得た(収量:2.17g(1.00ミリモル)収率:40%)。
Figure JPOXMLDOC01-appb-C000116
 フォトレジスト基材である化合物(C-13)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.384(24H,s),3.047(8H,s),4.656(8H,s),4.912(8H,s),5.199(2H,s),5.475(4H,s),6.181(2H,s),6.215(2H,s),6.362(2H,s),6.489(4H,d),6.569(4H,d),6.751(4H,s),7.179-7.290(20H,m),8.591(4H,s),8.624(4H,s)
実施例58
 ブロモ酢酸エステル(B-33)の代わりに、ブロモ酢酸エステル(B-35)を使用した他は、実施例47と同様にして白色固体である化合物(C-14)を得た(収量:2.69g(1.55ミリモル)収率:62%)。
Figure JPOXMLDOC01-appb-C000117
 フォトレジスト基材である化合物(C-14)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):3.530-3.598(12H,m),3.742(12H,s),4.872(8H,s),5.109(8H,s),5.212(2H,t),5.641(4H,s),6.225(2H,t),6.322(2H,s),6.508(2H,s),6.662-6.727(8H,m),6.902(8H,d),7.297(8H,d),7.471-7.534(8H,m),9.008(2H,s),9.189(2H,s)
実施例59
 ブロモ酢酸エステル(B-33)の代わりに、ブロモ酢酸エステル(B-3)を使用した他は、実施例47と同様にして白色固体である化合物(C-15)を得た(収量:1.69g(0.98ミリモル)収率:39%)。
Figure JPOXMLDOC01-appb-C000118
 フォトレジスト基材である化合物(C-15)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.479(12H,d),2.279(12H,s),3.530-3.595(12H,m),4.882(8H,s),5.210(2H,t),5.642(4H,s),6.235(2H,t),6.325(2H,s),6.505(2H,s),6.660-6.724(8H,m),7.147(8H,d),7.241(8H,d),7.467-7.530(8H,m),8.996(2H,s),9.149(2H,s)
実施例60
 ブロモ酢酸エステル(B-33)の代わりに、ブロモ酢酸エステル(B-12)を使用した他は、実施例47と同様にして白色固体である化合物(C-16)を得た(収量:3.20g(1.80ミリモル)収率:72%)。
Figure JPOXMLDOC01-appb-C000119
 フォトレジスト基材である化合物(C-16)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.703-1.730(8H,m),1.901-1.935(8H,m),2.671-2.700(8H,m),3.538-3.620(12H,m),4.864(8H,s),5.210(2H,t),5.658(4H,s),5.943(4H,d),6.240(2H,t),6.340(2H,s),6.527(2H,s),6.671-6.735(8H,m),7.110-7.232(16H,m),7.490-7.555(8H,m),9.019(2H,s),9.183(2H,s)
実施例61
 ブロモ酢酸エステル(B-12)の代わりに、ブロモ酢酸エステル(B-26)を使用した他は、実施例45と同様にして白色固体である化合物(C-17)を得た(収量:2.91g(1.63ミリモル)収率:65%)。
Figure JPOXMLDOC01-appb-C000120
 フォトレジスト基材である化合物(C-17)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.467(24H,s),1.977-2.019(8H,m),2.576-2.618(8H,m),4.759(8H,s),5.176(2H,s),5.597(4H,s),6.190(2H,s),6.287(2H,s),6.398(2H,s),6.729(8H,d),7.102-7.167(12H,m),7.212-7.249(8H,m),7.513(8H,d),8.661(4H,s),8.811(4H,s)
実施例62
 ブロモ酢酸エステル(B-12)の代わりに、ブロモ酢酸エステル(B-27)を使用した他はは、実施例45と同様にして白色固体である化合物(C-18)を得た(収量:2.10g(1.18ミリモル)収率:47%)。
Figure JPOXMLDOC01-appb-C000121
 フォトレジスト基材である化合物(C-18)の構造は1H-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):0.864(12H,t),1.288(12H,s),1.645-1.733(4H,m),1.822-1.912(4H,m),2.992(4H,d),3.124(4H,d),4.760(8H,s),5.177(2H,s),5.602(4H,s),6.185(2H,s),6.291(2H,s),6.407(2H,s),6.742(8H,d),7.159-7.205(12H,m),7.233-7.267(8H,m),7.524(8H,d),8.665(4H,s),8.833(4H,s)
実施例63
 ブロモ酢酸エステル(B-12)の代わりに、ブロモ酢酸エステル(B-28)を使用した他は、実施例45と同様にして白色固体である化合物(C-19)を得た(収量:1.57g(0.85ミリモル)収率:34%)。
Figure JPOXMLDOC01-appb-C000122
 フォトレジスト基材である化合物(C-19)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):0.844(12H,m),1.410(12H,s),1.689-2.088(16H,m),2.476-2.566(8H,m),4.759(8H,s),5.136(2H,s),5.578(4H,s),6.175(2H,s),6.265(2H,s),6.380(2H,s),6.712(8H,d),7.112-7.163(12H,m),7.214-7.250(8H,m),7.494(8H,d),8.653(4H,s),8.803(4H,s)
実施例64
 ブロモ酢酸エステル(B-33)の代わりに、ブロモ酢酸エステル(B-17)を使用した他は、実施例47と同様にして白色固体である化合物(C-20)を得た(収量:2.72g(1.52ミリモル)収率:61%)。
Figure JPOXMLDOC01-appb-C000123
 フォトレジスト基材である化合物(C-20)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.945-2.188(8H,m),3.537-3.560(12H,m),4.015-4.233(8H,m),4.873(8H,s),5.210(2H,t),5.651(4H,s),5.929(4H,s),6.240(2H,t),6.333(2H,s),6.517(2H,s),6.685-6.738(8H,m),6.797-6.877(8H,m),7.211-7.249(8H,m),7.481-7.544(8H,m),9.010(2H,s),9.188(2H,s)
実施例65
 ブロモ酢酸エステル(B-33)の代わりに、ブロモ酢酸エステル(B-29)を使用した他は、実施例47と同様にして白色固体である化合物(C-21)を得た(収量:3.37g(1.80ミリモル)収率:72%)。
Figure JPOXMLDOC01-appb-C000124
 フォトレジスト基材である化合物(C-21)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.581(12H,d),3.532-3.548(12H,m),4.972(8H,s),5.201(2H,t),5.640(4H,s),6.073(4H,q),6.238(2H,t),6.327(2H,s),6.512(2H,s),6.677-6.723(8H,m),7.494-7.516(20H,m),7.832-7.880(16H,m),9.012(2H,s),9.157(2H,s)
実施例66
 ブロモ酢酸エステル(B-33)の代わりに、ブロモ酢酸エステル(B-30)を使用した他は、実施例47と同様にして白色固体である化合物(C-22)を得た(収量:2.62g(1.40ミリモル)収率:56%)。
Figure JPOXMLDOC01-appb-C000125
 フォトレジスト基材である化合物(C-22)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.634(12H,d),3.524-3.575(12H,m),4.961(8H,s),5.188(2H,t),5.633(4H,s),6.211(2H,t),6.319(2H,s),6.485(2H,s),6.622-6.712(12H,m),7.461-7.587(24H,m),7.875(4H,d),7.954(4H,d),8.086(4H,d),8.990(2H,s),9.144(2H,s)
実施例67
 ブロモ酢酸エステル(B-33)の代わりに、ブロモ酢酸エステル(B-31)を使用した他は、実施例47と同様にして化合物(C-23)を得た(収量:1.61g(0.90ミリモル)収率:36%)。
Figure JPOXMLDOC01-appb-C000126
 フォトレジスト基材である化合物(C-23)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.399(24H,s),3.055(8H,s),3.514-3.604(12H,m),4.730(8H,s),5.213(2H,t),5.633-5.651(4H,m),6.227(2H,t),6.321(2H,s),6.514(2H,s),6.673-6.739(8H,m),7.155-7.245(20H,m),7.491-7.556(8H,m),9.152(2H,s),9.161(2H,s)
実施例68
 ブロモ酢酸エステル(B-33)の代わりに、ブロモ酢酸エステル(B-26)を使用した他は、実施例47と同様にして白色固体である化合物(C-24)を得た(収量:3.27g(1.78ミリモル)収率:71%)。
Figure JPOXMLDOC01-appb-C000127
 フォトレジスト基材である化合物(C-24)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):1.465(24H,s),1.945-2.012(8H,m),2.544-2.588(8H,m),3.514-3.590(12H,m),4.767(8H,s),5.215(2H,t),5.625-5.647(4H,m),6.238(2H,t),6.334(2H,s),6.511(2H,s),6.667-6.730(8H,m),7.085-7.224(20H,m),7.495-7.558(8H,m),9.006(2H,s),9.149(2H,s)
実施例69
 ブロモ酢酸エステル(B-33)の代わりに、ブロモ酢酸エステル(B-28)を使用した他は、実施例47と同様にして白色固体である化合物(C-25)を得た(収量:1.90g(1.00ミリモル)収率:40%)。
Figure JPOXMLDOC01-appb-C000128
 フォトレジスト基材である化合物(C-25)の構造はH-NMRにより確認した。得られたH-NMRのスペクトルデータを以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(CDSO:ppm):0.853(12H,t),1.421(12H,s),1.698-2.112(16H,m),2.529-2.572(8H,m),3.516-3.596(12H,m),4.776(8H,s),5.198(2H,t),5.643-5.652(4H,m),6.248(2H,t),6.333(2H,s),6.502(2H,s),6.662-6.727(8H,m),7.135-7.233(20H,m),7.488-7.555(8H,m),9.002(2H,s),9.157(2H,s)
比較例1
 ブロモ酢酸エステル(B-12)の代わりにブロモ酢酸tert-ブチルを使用した他は実施例45と同様にして、化合物(C-26)を得た。
Figure JPOXMLDOC01-appb-C000129
比較例2
 ブロモ酢酸エステル体(B-3)の代わりにブロモ酢酸tert-ブチルを用いた他は、実施例46と同様にして化合物(C-27)を得た。
Figure JPOXMLDOC01-appb-C000130
実施例70
 下記方法でフォトレジスト溶液を調製し、電子線を使用してシリコンウェハにパターンを形成した。
 フォトレジスト基材として、化合物(C-1)を87重量部使用し、PAGとしてトリフェニルスルホニウムノナフルオロブタンスルホネート20重量部、クエンチャーとしてトリn-オクチルアミン3重量部を使用した。これらの固体成分の濃度が2.5重量%となるようにプロピレングリコールモノメチルエーテルに溶解させ、化合物(C-1)を基材として用いたフォトレジスト溶液を調製した。
 次に、調製したフォトレジスト溶液を、HMDS(ヘキサメチルジンラザン)処理を施したシリコンウェハ上にスピンコートし、100℃で90秒加熱することにより薄膜を形成させた。次いで、この薄膜を有する基板に対して電子線描画装置(加速電圧50kV)を用いて描画し、100℃で60秒ベークした後、濃度が2.38重量%のテトラブチルアンモニウムヒドロキシド水溶液で60秒間現像処理し、純水にて60秒洗浄、その後、窒素気流により乾燥した。走査型電子顕微鏡による観察結果から得られた、サイズが1/1のライン/スペースパターンを作製した際の解像度(ハーフピッチ)と感度(必要な電子線ドーズ量)の結果を表4に記す。
 表4より、化合物(C-1)はフォトレジストとしての性能が好ましいことを確認した。
 尚、クエンチャーとしてトリn-オクチルアミンの代わりに1,4-ジアザビシクロ(2,2,2)オクタンを用いても結果は同一であった。
 作製したフォトレジスト薄膜を有する基板に対して、電子線描画装置に替えてEUV露光装置を用いてEUV光(波長:13.5nm)を照射した。その後、100℃で90秒ベークし、2.38重量%の水酸化テトラメチルアンモニウム水溶液で30秒間、イオン交換水で30秒間リンスすることでパターンを形成した。走査型電子顕微鏡にて観察したところ、電子線描画装置の場合と同様の解像度であることが観察された。
実施例71~82
 化合物(C-1)の代わりに、フォトレジスト基材として表4及び表5に示す化合物を用いた他は実施例70と同様にして、フォトレジスト溶液を調製し、評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
比較例3及び4
 化合物(C-1)の代わりに、フォトレジスト基材として化合物(C-26)及び化合物(C-27)をそれぞれ用いた他は実施例70と同様にして、フォトレジスト溶液を調製し、評価した。その結果、2.38重量%のテトラブチルアンモニウム水溶液で60秒間現像処理を行うと薄膜が全て溶解してしまい、微細パターンが全く得られず、化合物(C-26)及び化合物(C-27)は共にフォトレジスト基材として使用できなかった。
[酸解離性溶解抑止基前駆体の製造]
実施例83
Figure JPOXMLDOC01-appb-C000131
 A-23で示される原料アルコール、5.0g(30ミリモル)及び、ピリジン2.7ml(33ミリモル)を200mlの三口フラスコに仕込み、脱水テトラハイドロフラン(THF)40mlを加えて溶かした。窒素を導入して窒素雰囲気とし、氷・食塩水浴を用いて、-5℃まで冷却した。続いて、ブロモ酢酸ブロミド、2.9ml(33ミリモル)を脱水テトラハイドロフラン(THF)10mlで希釈して、反応フラスコ中にゆっくりと30分間かけて滴下した。冷却したまま、さらに3時間攪拌して反応させた。反応終了後、脱イオン水、50mlを加えて反応を停止し、反応液に酢酸エチルを加えて抽出した。有機層を脱イオン水、次いで飽和炭酸水素ナトリウムで洗浄した後、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去し、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-23)8.44g(収率98%)を得た。
 ブロモ酢酸エステル(B-23)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.989-2.078(1H,m),2.351-2.388(1H,m),2.989-3.033(1H,m),3.131-3.170(1H,m),4.187(2H,dd),5.965(1H,t),7.059-7.305(4H,m)
実施例84
Figure JPOXMLDOC01-appb-C000132
 A-45で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-45)を得た(収率:99%)。
 ブロモ酢酸エステル(B-45)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.483(3H,d),3.746(3H,s),4.145(2H,s),5.810(1H,q),6.923(2H,d),7.322(2H,d)
実施例85
Figure JPOXMLDOC01-appb-C000133
 A-46で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-46)を得た(収率:98%)。
 ブロモ酢酸エステル(B-46)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.490(3H,d),3.740(3H,s),3.760(3H,s),4.164(2H,dd),5.781(1H,q),6.896-6.988(3H,m)
実施例86
Figure JPOXMLDOC01-appb-C000134
 A-47で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-47)を得た(収率90%)。
 ブロモ酢酸エステル(B-47)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.465(3H,d),4.156(2H,dd),5.771(1H,q),6.010(2H,s),6.876(2H,dd),6.963(1H,m)
実施例87
Figure JPOXMLDOC01-appb-C000135
 A-13で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-13)を得た(収率99%)。
 ブロモ酢酸エステル(B-13)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.999-2.055(1H,m),2.423-2.510(1H,m),2.872-2.905(1H,m),2.993-3.031(1H,m),4.150(2H,s),6.166(1H,q),7.221-7.384(4H,m)
実施例88
Figure JPOXMLDOC01-appb-C000136
 A-48で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-48)を得た(収率96%)。
 ブロモ酢酸エステル(B-48)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.989-2.055(1H,m),2.445-2.518(1H,m),2.784-2.819(1H,m),2.908-2.944(1H,m),3.725(3H,s),4.159(2H,s),6.124(1H,q),6.891-6.918(2H,m)、7.218(1H,d)
実施例89
Figure JPOXMLDOC01-appb-C000137
 A-49で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-49)を得た(収率99%)。
 ブロモ酢酸エステル(B-49)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.439(3H,d),4.143(2H,dd),4.213(4H,s),5.726(1H,q),6.803-6.895(3H,m)
実施例90
Figure JPOXMLDOC01-appb-C000138
 A-50で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-50)を得た(収率96%)。
 ブロモ酢酸エステル(B-50)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):2.496-2.537(1H,m),2.654-2.690(1H,m),3.584-3.653(1H,m),3.693-3.750(1H,m),4.240(2H,s),6.124(1H,q),7.538(1H,d),7.648-7.719(2H,m),7.874(1H,d)
実施例91
Figure JPOXMLDOC01-appb-C000139
 A-51で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-51)を得た(収率98%)。
 ブロモ酢酸エステル(B-51)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.547-1.655(2H,m),1.777-1.988(4H,m),2.700-2.760(1H,m),2.942-3.005(1H,m),4.279(2H,dd),5.875(1H,d),7.142-7.205(2H,m),7.285-7.310(1H,m)
実施例92
Figure JPOXMLDOC01-appb-C000140
 A-52で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-52)を得た(収率99%)。
 ブロモ酢酸エステル(B-52)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.504(3H,d),4.182(2H,dd),5.856(1H,q),6.974-7.033(4H,m),7.139-7.178(1H,m),7.376-7.431(4H,m)
実施例93
Figure JPOXMLDOC01-appb-C000141
 A-53で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-53)を得た(収率93%)。
 ブロモ酢酸エステル(B-53)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):2.135-2.168(1H、m),2.493-2.539(1H,m),4.202(2H,d),5.401(1H,d),6.249(1H,q),6.900(1H,d),6.956-6.996(1H,m),7.239-7.290(2H,m),7.362-7.500(5H,m)
実施例94
Figure JPOXMLDOC01-appb-C000142
 A-54で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-54)を得た(収率81%)。
 ブロモ酢酸エステル(B-54)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl3:ppm):0.954(3H,t),1.286(3H,t),1.864-1.934(1H,m),1.975-2.090(1H,m),2.690(2H,q),4.100(2H,dd),5.759(1H,q),7.266(4H,dd)
実施例95
Figure JPOXMLDOC01-appb-C000143
 A-55で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-55)を得た(収率99%)。
 ブロモ酢酸エステル(B-55)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):0.872(3H,t),1.231-1.349(2H,m),1.701-1.759(1H,m),1.820-1.864(1H,m),4.194(2H,s),5.719(1H,q),7.293-7.390(5H,m)
実施例96
Figure JPOXMLDOC01-appb-C000144
 A-56で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-56)を得た(収率99%)。
 ブロモ酢酸エステル(B-56)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl3:ppm):1.816-1.853(1H,m),1.919-2.057(3H,m),2.659-2.721(1H,m),2.773-2.827(1H,m),3.778(3H,s),3.850(2H,s),6.004(1H,t),6.810-6.849(2H,m),7.055(1H,d)
実施例97
Figure JPOXMLDOC01-appb-C000145
 A-57で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-57)を得た(収率99%)。
 ブロモ酢酸エステル(B-57)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl3:ppm):1.829-2.058(4H,m),2.512-2.573(1H,m),2.816-2.883(1H,m),3.831(3H,s),3.839(2H,s),6.034(1H,t),6.806(1H,d),6.914(1H,d),7.181(1H,t)
実施例98
Figure JPOXMLDOC01-appb-C000146
 A-58で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-58)を得た(収率98%)。
 ブロモ酢酸エステル(B-58)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl3:ppm):2.088-2.150(1H,m),2.180-2.266(1H,m),3.857(2H,s),4.196-4.260(1H,m),4.301-4.349(1H,m),5.932(1H,t),6.812(1H,d),7.185-7.215(1H,m),7.281(1H,d)
実施例99
Figure JPOXMLDOC01-appb-C000147
 A-59で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-59)を得た(収率96%)。
 ブロモ酢酸エステル(B-59)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl3:ppm):2.047-2.135(1H,m),2.185-2.251(1H,m),2.266(3H,s),3.854(2H,s),4.181-4.239(1H,m),4.245-4.322(1H,m),5.958(1H,t),6.774(1H,d),7.054-7.080(2H,m)
実施例100
Figure JPOXMLDOC01-appb-C000148
 A-60で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-60)を得た(収率92%)。
 ブロモ酢酸エステル(B-60)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl3:ppm):0.817(3H,d),1.007(3H,d),2.095-2.199(1H,m),3.842(2H,dd),5.495(1H,d),7.257-7.360(5H,m)
[フォトレジスト基材の合成]
実施例101
 窒素導入菅および温度計を備えた容量300mlの4口フラスコに、製造例3で合成した環状化合物前駆体(3)、2.13g(2.08ミリモル)を仕込み、脱水N-メチルピロリドン(NMP,和光純薬工業製)40mlを加えて撹拌し、窒素を導入して窒素雰囲気とした。室温で30分間攪拌して、環状化合物前駆体(3)が完全に溶解したのを確認した後に、トリエチルアミン、1,44ml(10.4ミリモル、アルドリッチ製)を加えた。さらに10分間攪拌した後に、上記の実施例で合成したブロモ酢酸エステル(B-23)、4.78g(16.6ミリモル)を脱水N-メチルピロリドン(NMP,和光純薬工業製)20mlで溶かして加えた。さらに10分間攪拌した後に、1,8-ジアザビシクロ[5.4.0]ウンデカー7-エン(DBU,和光純薬工業製)、0.31ml(2.08ミリモル)を加えた。さらに室温で16時間攪拌して反応させた。反応終了後、反応混合物を600mlの脱イオン水に加えて希釈し、酢酸エチルで抽出した。有機層を、脱イオン水で3回、飽和食塩水で1回洗浄し、硫酸マグネシウムを加えて乾燥させた後、減圧下で溶媒を除去した。得られた黄白色の固体に酢酸エチル50mlを加えて完全に溶かし、150mlのn-ヘキサン中にゆっくりと加えて希釈し、結晶を析出させた。析出した結晶をろ過して取り出し、n-ヘキサンで洗浄後、真空下で乾燥させ、フォトレジスト基材である化合物(C-28)を得た(収量:2.84g(1.54ミリモル)収率:74%)。
Figure JPOXMLDOC01-appb-C000149
 化合物(C-28)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):1.977-2.086(4H,m),2.311-2.395(4H,m),2.876-2.965(4H,m),3.064-3.155(4H,m),3.545-3.620(12H,m),4.883(8H,s),5.224(2H,t),5.666(4H,t),6.014(4H,s),6.208-2.276(2H,m),6.346(2H,s),6.530(2H,s),6.679-6.744(8H,m),7.035-7.290(16H,m),7.494-7.558(8H,m),9.040(2H,s),9.195(2H,s)
実施例102
 ブロモ酢酸エステルとして(B-45)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-29)を得た(収率:61%)。
Figure JPOXMLDOC01-appb-C000150
 化合物(C-29)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.466(12H,d),3.523-3.578(12H,m),3.720(12H,s),4.844(8H,s),5.198(2H,t),5.616(4H,s),5.850(4H,q),6.199(2H,t),6.305(2H,s),6.484(2H,s),6.656-6.702(8H,m),6.885(8H,d),7.286(8H,d),7.462-7.485(8H,m),9.011(2H,s),9.165(2H,s)
実施例103
 ブロモ酢酸エステルとして(B-46)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-30)を得た(収率:71%)。
Figure JPOXMLDOC01-appb-C000151
 化合物(C-30)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.472(12H,d),3.541-3.659(24H,m),3.630(12H,s),4.881(8H,s),5.188(2H,t),5.636(4H,s),5.844(4H,q),6.233(2H,t),6.326(2H,s),6.499(2H,s),6.653-6.721(8H,m),6.888(12H,s),7.466-7.511(8H,m),9.027(2H,s),9.157(2H,s)
実施例104
 ブロモ酢酸エステルとして(B-47)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-31)を得た(収率:68%)。
Figure JPOXMLDOC01-appb-C000152
 化合物(C-31)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.470(12H,d),3.532-3.613(12H,m),4.879(8H,s),5.174(2H,t),5.616(4H,s),5.833(4H,q),6.001(8H,s),6.194(2H,t),6.318(2H,s),6.495(2H,s),6.666-6.727(8H,m),6.855(8H,s),6.957(4H,s),7.471-7.532(8H,m),9.071(2H,s),9.209(2H,s)
実施例105
 ブロモ酢酸エステルとして(B-13)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-32)を得た(収率:85%)。
Figure JPOXMLDOC01-appb-C000153
 化合物(C-32)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.933-2.070(4H,m),2.365-2.477(4H,m),2.755-2.846(4H,m),2.949-3.056(4H,m),3.537-3.614(12H,m),4.844(8H,s),5.237(2H,t),5.649(4H,s),6.200(4H,s),6.223(2H,t),6.334(2H,s),6.520(2H,s),6.668-6.733(8H,m),7.184-7.345(16H,m),7.484-7.548(8H,m),9.019(2H,s),9.182(2H,s)
実施例106
 ブロモ酢酸エステルとして(B-48)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-33)を得た(収率:81%)。
Figure JPOXMLDOC01-appb-C000154
 化合物(C-33)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.925-2.033(4H,m),2.433-2.494(4H,m),2.680-2.733(4H,m),2.830-2.905(4H,m),3.464-3.3.586(12H,m),3.632(12H,d)、4.845(8H,s),5.204(2H,t),5.640(4H,s),6.126(4H,s),6.216(2H,t),6.326(2H,s),6.510(2H,s),6.658-6.724(8H,m),7.849(8H,s),7.156(4H,s),7.478-7.569(8H,m),9.032(2H,s),9.185(2H,s)
実施例107
 ブロモ酢酸エステルとして(B-49)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-34)を得た(収率:73%)。
Figure JPOXMLDOC01-appb-C000155
 化合物(C-34)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.456(12H,d),3.482-3.553(12H,m),4.214(16H,s),4.870(8H,s),5.195(2H,t),5.638(4H,s),5.796(4H,q),6.209(2H,t),6.325(2H,s),6.505(2H,s),6.657-6.793(8H,m),6.819(8H,s),6.876(4H,s),7.481-7.562(8H,m),9.013(2H,s),9.165(2H,s)
実施例108
 ブロモ酢酸エステルとして(B-50)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-35)を得た(収率:75%)。
Figure JPOXMLDOC01-appb-C000156
 化合物(C-35)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):2.433-2.567(4H,m),2.652-2.725(4H,m),3.465-3.693(20H,m),4.953(8H,s),5.200(2H,t),5.655(4H,s),6.176(4H,s),6.223(2H,t),6.334(2H,s),6.518(2H,s),6.685-6.730(8H,m),7.490-7.602(20H,m),7.820(4H,s),9.022(2H,s),9.180(2H,s)
実施例109
 ブロモ酢酸エステルとして(B-51)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-36)を得た(収率:63%)。
Figure JPOXMLDOC01-appb-C000157
 化合物(C-36)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.446-1.886(24H,m),2.658-2.680(4H,m),2.843-2.898(4H,m),3.482-3.584(12H,m),4.990(8H,s),5.180(2H,t),5.631(4H,s),5.916(4H,s),6.210(2H,t),6.315(2H,s),6.492(2H,s),6.651-6.717(8H,m),7.112-7.153(12H,m),7.247-7.262(4H,m),7.476-7.568(8H,m),9.039(2H,s),9.179(2H,s)
実施例110
 環状化合物前駆体(1)を使用し、ブロモ酢酸エステルとして(B-51)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-37)を得た(収率:69%)。
Figure JPOXMLDOC01-appb-C000158
 化合物(C-37)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.420-1.898(24H,m),2.632-2.677(4H,m),2.843-2.865(4H,m),4.973(8H,s),5.140(2H,s),5.571(4H,s),5.898(4H,s),6.163(2H,s),6.264(2H,s),6.380(2H,s),6.703-6.723(8H,m),7.108-7.124(12H,m),7.245(4H,s),7.484-7.596(8H,m),8.714(4H,s),8.857(4H,s)
実施例111
 ブロモ酢酸エステルとして(B-52)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-38)を得た(収率:82%)。
Figure JPOXMLDOC01-appb-C000159
 化合物(C-38)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):1.497(12H,d),3.513-3.601(12H,m),4.895(8H,s),5.185(2H,t),5.635(4H,s),5.913(4H,q),6.214(2H,t),6.314(2H,s),6.500(2H,s),6.671-6.717(8H,m),6.949-7.005(16H,m),7.131-7.165(4H,m),7.361-7.398(16H,m),7.461-7.504(8H,m),9.001(2H,s),9.155(2H,s)
実施例112
 ブロモ酢酸エステルとして(B-53)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-39)を得た(収率:72%)。
Figure JPOXMLDOC01-appb-C000160
 化合物(C-39)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):2.033-2.143(4H,m),2.468-2.505(4H,m),3.476-3.601(12H,m),4.932(8H,dd),5.200(2H,s),5.357(4H,d)、5.651(4H,s),6.233(2H,t),6.289(4H,t),6.328(2H,s),6.513(2H,s),6.685-6.734(8H,m),6.864(8H,d),7.172-7.235(8H,m),7.343-7.432(20H,m),7.501-7.565(8H,m),9.040(2H,s),9.202(2H,s)
実施例113
 ブロモ酢酸エステルとして(B-54)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-40)を得た(収率:83%)。
Figure JPOXMLDOC01-appb-C000161
 化合物(C-40)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):0.847(12H,t),1.164(12H,t),1.762-1.853(8H,m),2.495-2.612(8H,m),3.545-3.610(12H,m),4.931(8H,dd),5.185(2H,s),5.651(4H,s),5.699(4H,t),6.214(2H,t),6.336(2H,s),6.500(2H,s),6.686-6.733(8H,m),7.227(16H,dd),7.480-7.543(8H,m),9.021(2H,s),9.198(2H,s)
実施例114
 ブロモ酢酸エステルとして(B-55)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-41)を得た(収率:71%)。
Figure JPOXMLDOC01-appb-C000162
 化合物(C-41)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒重DMSO:ppm):0.870(12H,t),1.253-1.295(8H,m),1.740-1.831(8H,m),3.471-3.576(12H,m),4.926(8H,dd),5.165(2H,t),5.627(4H,s),5.786(4H,t),6.222(2H,t),6.315(2H,s),6.486(2H,s),6.645-6.708(8H,m),7.311-7.357(20H,m),7.453-7.565(8H,m),9.007(2H,s),9.154(2H,s)
実施例115
 環状化合物前駆体(1)を使用し、ブロモ酢酸エステルとして(B-23)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-42)を得た(収率:72%)。
Figure JPOXMLDOC01-appb-C000163
 化合物(C-42)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):1.955-2.098(4H,m),2.298-2.375(4H,m),2.877-2.956(4H,m),3.054-3.133(4H,m),4.860(8H,s),5.161(2H,s),5.579(4H,s),5.994(4H,s),6.170(2H,s),6.265(2H,s),6.390(2H,s),6.708-6.742(8H,m),7.009-7.275(16H,m),7.482-7.571(8H,m),8.665(4H,s),8.829(4H,s)
実施例116
 ブロモ酢酸エステルとして(B-56)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-43)を得た(収率:76%)。
Figure JPOXMLDOC01-appb-C000164
 化合物(C-43)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):1.687-1.989(16H,m),2.493-2.615(8H,m),3.469-3.671(24H,m),4.857(8H,s),5.224(2H,t),5.643(4H,s),5.893(4H,s),6.208-6.276(2H,m),6.328(2H,s),6.516(2H,s),6.661-6.826(16H,m),7.001-7.034(4H,m),7.478-7.542(8H,m),9.011(2H,s),9.234(2H,s)
実施例117
 ブロモ酢酸エステルとして(B-57)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-44)を得た(収率:74%)。
Figure JPOXMLDOC01-appb-C000165
 化合物(C-44)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):1.711-1.989(16H,m),2.395-2.639(8H,m),3.471-3.613(12H,m),3.769(12H,s),4.853(8H,s),5.235(2H,s),5.646(4H,s),5.918(4H,s),6.218-6.286(2H,m),6.328(2H,s),6.517(2H,s),6.680-6.728(8H,m),6.812-6.845(8H,m),7.095-7.107(4H,m),7.520-7.583(8H,m),9.019(2H,s),9.184(2H,s)
実施例118
 ブロモ酢酸エステルとして(B-58)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-45)を得た(収率:81%)。
Figure JPOXMLDOC01-appb-C000166
 化合物(C-45)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):1.989-2.155(8H,m),3.468-3.618(12H,m),4.019-4.046(4H,m),4.257-4.312(4H,m),4.894(8H,s),5.211(2H,s),5.649(4H,s),5.909(4H,s),6.211-6.296(2H,m),6.329(2H,s),6.513(2H,s),6.666-6.733(8H,m),6.827-6.860(4H,m),7.240-7.329(8H,m),7.483-7.548(8H,m),9.017(2H,s),9.172(2H,s)
実施例119
 ブロモ酢酸エステルとして(B-59)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-46)を得た(収率:76%)。
Figure JPOXMLDOC01-appb-C000167
 化合物(C-46)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):1.988-2.165(8H,m),2.145(12H,s),3.471-3.614(12H,m),4.001-4.037(4H,m),4.188-4.297(4H,m),4.871(8H,s),5.201(2H,s),5.651(4H,s),5.874(4H,s),6.221-6.291(2H,m),6.331(2H,s),6.512(2H,s),6.684-6.727(12H,m),7.018(8H,s),7.477-7.569(8H,m),9.017(2H,s),9.176(2H,s)
実施例120
 ブロモ酢酸エステルとして(B-60)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-47)を得た(収率:78%)。
Figure JPOXMLDOC01-appb-C000168
 化合物(C-47)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):0.788(12H,d),0.890(12H,d),2.049-2.099(4H,m),3.454-3.596(12H,m),4.946(8H,dd),5.165(2H,s),5.556(4H,d),5.625(4H,s),6.172-6.288(2H,m),6.313(2H,s),6.488(2H,s),6.647-6.713(8H,m),7.300-7.354(20H,m),7.462-7.566(8H,m),8.966(2H,s),9.156(2H,s)
実施例121
 環状化合物前駆体(1)を使用し、ブロモ酢酸エステルとして(B-29)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-48)を得た(収率:59%)。
Figure JPOXMLDOC01-appb-C000169
 化合物(C-48)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):1.572(12H,d),4.957(8H,s),5.161(2H,s),5.582(4H,s),6.073(4H,q),6.172(2H,s),6.273(2H,s),6.378(2H,s),6.722(8H,d),7.490-7.511(20H,m),7.826-7.902(16H,m),8.653(4H,s),8.794(4H,s)
実施例122
 環状化合物前駆体(1)を使用し、ブロモ酢酸エステルとして(B-30)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-49)を得た(収率:77%)。
Figure JPOXMLDOC01-appb-C000170
 化合物(C-49)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):1.633(12H,d),4.966(8H,s),5.172(2H,s),5.604(4H,s),6.198(2H,s),6.292(2H,s),6.396(2H,s),6.643(4H,q),6.734(8H,d),7.470-7.532(20H,m),7.589(4H,d),7.877(4H,d),7.954(4H,d),8.088(4H,d),8.668(4H,s),8.808(4H,s)
実施例123
 環状化合物前駆体(1)を使用し、ブロモ酢酸エステルとして(B-3)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-50)を得た(収率:72%)。
Figure JPOXMLDOC01-appb-C000171
 化合物(C-50)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):1.468(12H,d),2.283(12H,s),4.873(8H,s),5.147(2H,s),5.572(4H,s),5.871(4H,q),6.168(2H,s),6.262(2H,s),6.383(2H,s),6.717(8H,d),7.152(8H,d),7.253(8H,d),7.481(8H,d),8.661(4H,s),8.820(4H,s)
実施例124
 ブロモ酢酸エステルとして(B-27)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-51)を得た(収率:81%)。
Figure JPOXMLDOC01-appb-C000172
 化合物(C-51)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒:重DMSO:ppm):0.851(12H,t),1.274(12H,s),1.643-1.885(8H,m),3.029(8H,dd),3.512-3.640(12H,m),4.757(8H,s),5.198(2H,s),5.644(4H,s),6.248(2H,t),6.319(2H,s),6.508(2H,s),6.682-6.730(8H,m),7.142-7.233(16H,m),7.489-7.555(8H,m),9.019(2H,s),9.188(2H,s)
[酸解離性溶解抑止基前駆体の製造]
実施例125
1-フェネチルシクロヘキシルブロモアセテート(125)の合成
Figure JPOXMLDOC01-appb-C000173
 窒素気流下、1L丸底フラスコにマグネシウム6.56g(0.27mol)、脱水テトラヒドロフラン70mlを加えた。ジブロモエタン0.2mlを加えマグネシウムを活性化した後、1―ブロモ-2-フェニルエタン25g(0.14mol)の脱水テトラヒドロフラン溶液(100ml)を徐々に滴下した。滴下終了後3時間攪拌を行った後氷冷した。この反溶液にシクロヘキサノン12.7ml(0.12mol)の脱水テトラヒドロフラン溶液(150ml)を滴下した。滴下終了後、室温まで昇温し8時間攪拌をおこなった。反応溶液を窒素気流下加圧ろ過し、ろ液を氷冷した後、水300mlを加えた後、有機層を分離した。分離した有機層に無水硫酸マグネシウムを加え乾燥した後、減圧下溶媒を留去した。残渣にヘキサンを加えた後-20℃に冷却し1-フェネチルシクロヘキサノールを白色の結晶として得た(収量:17.9g 収率:71.8%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.21-1.71(m,10H),1.82(m,2H),2.75(m,2H),7.15-7.37(m,5H)(CDCl3)
 窒素気流下、1-フェネチルシクロヘキサノール5g(24.5mmol)、ブロモ酢酸ブロミド3.20ml(36.70mmol)を脱水テトラヒドロフラン60mlに溶解し氷冷した。この溶液に脱水ピリジン3.92ml(48.9mol)を滴下した後、室温まで昇温し30時間攪拌を行った。窒素気流下加圧ろ過し、ろ液に飽和炭酸水素ナトリウム水溶液を加え、洗浄した後、有機層を分離、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣を中性シリカゲルカラム(展開溶媒:ヘキサン)で精製することにより1-フェネチルシクロヘキシルブロモアセテート(125)を得た(収量:4.1g 収率:51.5%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.2-1.68(m,8H),2.19-2.36(m,4H),2.6-2.7(m,2H),3.72(s,2H),7.11-7.32(m,5H)(CDCl3)
実施例126
1-(4-ヒドロキシブチル)シクロへキシルブロモアセテート(126)の合成
Figure JPOXMLDOC01-appb-C000174
 窒素気流下、1L丸底フラスコにマグネシウム6.56g(0.27mol)、脱水テトラヒドロフラン70mlを加えた。ジブロモエタン0.2mlを加えマグネシウムを活性化した後、4-ブロモ1-ブテン13.7ml(0.135mol)の脱水テトラヒドロフラン溶液(150ml)を徐々に滴下した。滴下終了後3時間攪拌を行った後氷冷した。この反溶液にシクロヘキサノン12.7ml(0.12mol)の脱水テトラヒドロフラン溶液(50ml)を滴下した。滴下終了後、室温まで昇温し8時間攪拌を行った。反応溶液を窒素気流下加圧ろ過し、ろ液を氷冷した後、水300mlを加えた後、有機層を分離した。分離した有機層に無水硫酸マグネシウムを加え乾燥した後、減圧下溶媒を留去した。残渣を減圧蒸留することにより1-(3-ブテニル)シクロヘキサノールを無色オイルとして得た(収量:9.0g 収率:47.8%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.19-1.65(m,12H),2.08-2.20(m,2H),4.85-5.10(m,2H),5.75-5.91(m,1H)(CDCl3)
 窒素気流下、1-(3-ブテニル)シクロヘキサノール5g(32.4mmol)、ブロモ酢酸ブロミド4.23ml(48.6mmol)を脱水テトラヒドロフラン60mlに溶解し氷冷した。この溶液に脱水ピリジン5.12ml(64.8mol)を滴下した後、室温まで昇温し30時間攪拌を行った。窒素気流下加圧ろ過し、ろ液に飽和炭酸水素ナトリウム水溶液を加洗浄した後、有機層を分離、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣を中性シリカゲルカラム(展開溶媒:ヘキサン)で精製することにより1-(3-ブテニル)シクロヘキシル2-ブロモアセテートを得た(収量:4.2g 収率:47.1%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.35-1.63(m,8H),1.92-2.09(m,4H),2.15-2.30(m,2H),3.75(s,2H),4.91-5.09(m,2 H),5.71-5.89(m,1H)(CDCl3)
 窒素気流下、1-(3-ブテニル)シクロヘキシルブロモアセテート4g(14.53mmol)を脱水テトラヒドロフランに溶解し-78℃に冷却した。9-BBNテトラヒドロフラン0.5mol/l溶液34.8ml(17.44mmol)を加え室温で2時間攪拌を行った。氷冷後、水8ml、35%過酸化水素水溶液12mlを加え更に攪拌を行った。反応混合物にエーテルを加え抽出した後、無水硫酸マグネシウムで乾燥後溶媒を留去した。残渣を中性シリカゲルカラムで精製することにより1-(4-ヒドロキシブチル)シクロへキシルブロモアセテート(126)を得た(収量:7.3g 収率:68.5%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.2-1.7(m,10H),1.8-2.0(m,10H),2.1-2.3(m,2H),3.64(t,2H),3.79(s,2H)(CDCl3)
実施例127
1-(2-(オキシラン-2-イル)エチル)シクロへキシルブロモアセテート(127)の合成
Figure JPOXMLDOC01-appb-C000175
 窒素気流下、実施例2で得た、1-(3-ブテニル)シクロヘキシルブロモアセテート3.5g(12.72mmol)を脱水ジクロロメタン150mlに溶解し氷冷した。m-過安息香酸(純度約70%)4.7g(19.8mmol)を徐々に加えた後、室温まで昇温しそのまま8時間攪拌を行った。飽和亜硫酸ナトリウム水溶液を加え攪拌した後、飽和炭酸水溶液で洗浄、有機層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し1-(2-(オキシラン-2-イル)エチル)シクロへキシルブロモアセテート(127)を定量的に得た(収量:3.7g)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.1-1.7(m,10H),1.8-2.3(m,4H),2.45(1H),2.72(1H),2.89(1H)3.75(s,2H)(CDCl3)
実施例128
1-イソプロピルシクロへキシルブロモアセテート(128)の合成
Figure JPOXMLDOC01-appb-C000176
 窒素気流下、1-イソプロピルシクロヘキサノール20g(117.4mmol)を脱水テトラヒドロフランに溶解し-60℃に冷却した。ジメチルアニリン17.8ml(140.8mmol)を加えた後、ブロモ酢酸ブロミド12.2ml(140.88mmol)を滴下した。滴下終了後、室温まで昇温し、そのまま30時間攪拌を行った。ヘキサン、飽和炭酸水素ナトリウム水溶液を加え抽出を行った。有機層を分離し、無水硫酸マグネシウムで乾燥、減圧下溶媒を留去した。残渣を中性シリカゲルカラムで精製し、1-イソプロピルシクロへキシルブロモアセテート(128)を得た(収量:5.18g 収率:18%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:0.89(d,6H),1.1-1.7(m,8H),2.20(2H),2.65(qui,1H),3.82(s,2H)(CDCl3)
実施例129
1-フェニル-2-(1-アダマンチル)エチルブロモアセテート(129)の合成
Figure JPOXMLDOC01-appb-C000177
 窒素気流下、1-アダマンタン酢酸11.1g(57.1mmol)に脱水テトラヒドロフラン300mlを加え0℃に冷却した。フェニルリチウム1.15mol/lシクロへキサン/エーテル溶液100mlを滴下した後、室温まで昇温しさらに8時間攪拌を行った。反応溶液に水を加え酢酸エチルで抽出、有機層を分離した。無水硫酸マグネシウムで乾燥を行った後、減圧下溶媒を留去し、残渣をシリカゲルカラムで精製することにより1-アダマンチルメチルフェニルケトンを得た(収量:8.91g 収率:61.3%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.63(m,12H),1.94(m3H),2.72(s,2H),7.45(m,2H), 7.6(m,1H),7.95(m,2H)(CDCl3)
 窒素気流下、1-アダマンチルメチルフェニルケトン7.4g(29.9mmol)を脱水テトラヒドロフラン溶液150mlに溶解し-78℃に冷却した。水素化ジイソブチルアルミニウム1.04mol/lへキサン溶液33.5ml(34.9mmol)を滴下した後、室温まで昇温、そのまま3時間攪拌を行った。反応混合物を氷冷水に投入後、希塩酸を加え酢酸エチルで抽出を行った。無水硫酸マグネシウムで有機層を乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムで精製することにより、1-フェニル-2-(1-アダマンチル)エチル-1-オール得た(収量:6.9g 収率:90.1%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.5-1.75,1.9-2.0(m,15H),4.87(m,2H),7.3(m,5H)(CDCl3)
 窒素気流下、1-フェニル-2-(1-アダマンチル)エチル-2-オール3.4g(13.29mmol)を脱水テトラヒドロフランに溶解し氷冷した。ピリジン1.29ml(13.29mmol)を加えた後、ブロモ酢酸ブロミド1.74ml(13.29mmol)を滴下した後、室温まで昇温、3時間攪拌を行った。反応混合物に飽和炭酸水素ナトリウム水溶液、酢酸エチルを加え抽出を行い、有機層を分離した。無水硫酸マグネシウムを加え有機層を乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクカラムで精製することにより、1-フェニル-2-(1-アダマンチル)エチルブロモアセテート(129)を得た(収量:3.5g 収率:69.7%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.5-1.75,1.9-2.0(m,15H),3.80(s,2H),5.95(2H),7.3(m,5H)(CDCl3)
実施例130
1-フェニル-2-(1-アダマンチルアセトキシ)エチルブロモアセテート(130)の合成
Figure JPOXMLDOC01-appb-C000178
 窒素気流下、フェニルエチレングリコール8.65g(62.61mmol)を脱水テトラヒドロフラン溶液50mlに溶解し-78℃に冷却し、トリエチルアミン13.8ml(62.61mmol)を加えた。これに、1-アダマンタンカルボニルクロリド12.44g(62.61mmol)テトラヒドロフラン溶液100mlを滴下した後、室温まで昇温、そのまま6時間攪拌を行った。反応溶液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出を行い有機層を分離した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下溶媒を留去した。残渣をシリカゲルカラムで精製し、1-フェニル-2-(1-アダマンチルアセトキシ)エチル-1-オールを得た(収量:6.2g 収率:33%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.7(m,6H),1.85(m,6H),2.0(m,3H),4.2(1H,m),4.3(m,1H),4.95(m,1H)7.4(m,5H)(CDCl3)
 窒素気流下、1-フェニル-2-(1-アダマンチルアセトキシ)エチル-1-オール6.2g(20.7mol)を脱水テトラヒドロフランに溶解し氷冷した。ピリジン2.0ml(20.7mml)を加えた後、ブロモ酢酸ブロミド2.71ml(20.7mmol)を滴下した後、室温まで昇温、そのまま11時間攪拌を行った。反応混合物に飽和炭酸水溶液、酢酸エチルを加え分液し、有機層を無水硫酸マグネシウムで乾燥した。減圧下有機溶媒を留去した後、残渣をシリカゲルカラムで精製し、1-フェニル-2-(1-アダマンチルアセトキシ)エチルブロモアセテート(130)を得た(収量:8.07g 収率:92.5%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.7(m,6H),1.85(m,6H),2.0(m3H),3.89(s,2H),4.35(m,2H),6.10(1H),7.4(m,5H)(CDCl3)
実施例131
1-(4-カルボキシ-1-アダマンチル)フェニルエチルブロモアセテート(131)の合成
Figure JPOXMLDOC01-appb-C000179
 窒素気流下、4-ヒドロキシプロピオフェノン10g(50.33mmol)、1-アダマンタンカルボニルクロリド7.6g(50.6mmol)を脱水テトラヒドロフラン溶液に溶解し氷冷した。トリエチルアミン8.5ml(60.98mmol)を滴下した後、室温まで昇温し、そのまま8時間攪拌をおこなった。反応溶液に酢酸エチル、水を加え有機層を抽出し分液した。無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムで精製し1-(4-カルボキシ-1-アダマンチル)フェニルエチルケトンを得た(収量:14.5g 収率:92.1%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.21(t,3H),1.79(m,6H),2.1(m,9H),3.00(q,2H),7.15(2H),8.01(2H)(CDCl3)
 窒素気流下、リチウムアルミニウムトリスブトキシヒドリド6.31g(24.8mmol)を脱水テトラヒドロフラン60mlに加え氷冷した。1-(4-カルボキシ-1-アダマンチル)フェニルエチルケトン5.44g(17.41mmol)テトラヒドロフラン溶液50mlを滴下した後、室温で8時間攪拌を行った。反応物を氷冷水に投入し、希塩酸を加え弱酸性とし酢酸エチルで抽出後、飽和炭酸水素ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムで精製し1-(4-カルボキシ-1-アダマンチル)フェニルエチル-2-オールを得た(収量:2.94g 収率:53.5%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:0.91(t,3H),1.8(m,6H),2.1(m,9H),4.6(m,1H),7.0(2H),7.35(2H)(CDCl3)
 窒素気流下、1-(4-カルボキシ-1-アダマンチル)フェニルエチル-2-オール2.94g(9.33mmol)を脱水テトラヒドロフラン50mlに溶解し氷冷した。ピリジン1.22ml(9.33mmol)を加えた後、ブロモ酢酸ブロミド2.71ml(9.33mmol)を滴下した後、室温まで昇温、そのまま11時間攪拌を行った。反応混合物に飽和炭酸水溶液、酢酸エチルを加え分液し、有機層を無水硫酸マグネシウムで乾燥した。減圧下有機溶媒を留去した後、残渣をシリカゲルカラムで精製し、1-(4-カルボキシ-1-アダマンチル)フェニルエチルブロモアセテート(131)を得た(収量:3.01g 収率:75.8%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:0.90(t,3H),1.7-2.1(m,17H),3.83(s,2H),7.05(2H),7.38(2H)(CDCl3)
[フォトレジスト基材の合成]
実施例132
フォトレジスト基材(132)の合成
 窒素気流下、特願2008-316145、製造例3記載の環状化合物前駆体(3)1.67g(1.634mmol)を脱水N-メチルピロリドン50mlに溶解し、トリエチルアミン1.14ml(8.17mmol)を加えた。実施例125で得た1-フェネチルシクロヘキシルブロモアセテート(125)2.66g(8.17mmol)/5ml脱水N-メチルピロリドン溶液を滴下した後、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン0.36ml(2.451mmol)を加えそのまま8時間攪拌を行った。反応混合物に酢酸エチル、水を加え抽出を行った。有機層を無水硫酸マグネシウムにより乾燥、減圧下溶媒を留去した。残渣に酢酸エチルを加え溶解した後、ヘキサンを加えることによりフォトレジスト基材(132)を白色粉体として得た(収量:2.1g 収率:65.0%)。
Figure JPOXMLDOC01-appb-C000180
 得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.15-1.70(m,32H),2.0-2.3(m,16H),2.6(m,8),3.4-3.7(m,12H),4.85(m,8H),5.1-5.21,5.51-5.71,6.15-6.4,6.5(12H),6.6-6.8(8H),7.1-7.35(20H),7.5-7.7(8H),8.9-9.1,9.2(4H)((CDSO)
実施例133
フォトレジスト基材(133)の合成
 実施例126で得た1-(4-ヒドロキシブチル)シクロへキシルブロモアセテート(126)3.2gを使用した以外は実施例132と同様の方法によりフォトレジスト基材(133)を得た。
Figure JPOXMLDOC01-appb-C000181
 得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.1-1.65(m,48H),1.7-1.9(m,8H),2.0-2.2(m,8),3.41(m,8H),3.45-3.7(m,12H),4.35(1H),4.85(m,8H),5.1-5.25,5.51-5.71,6.15-6.4,6.5(12H),6.6-6.8(8H),7.4-7.7(8H),8.9-9.1,9.2(4H)((CDSO)
実施例134
フォトレジスト基材(134)の合成
 実施例127で得た1-(2-(オキシラン-2-イル)エチル)シクロへキシルブロモアセテート(127)3.5gを使用した以外は実施例132と同様の方法によりフォトレジスト基材(134)を得た。
Figure JPOXMLDOC01-appb-C000182
 得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.1-1.6(m,40H),1.8-2.0(m,8H),2.0-2.2(8H),2.41(1H),2.65(1H),2.83(1H),3.4-3.65(12H),4.81(8H),5.1-5.25,5.39,5.5-5.7,6.03,6.15-6.38,6.50(12H),6.61-6.79(2H),7.41-7.63(8H),8.90-9.1,9.1-9.2(4H)((CDSO)
実施例135
フォトレジスト基材(135)の合成
 実施例128で得た1-イソプロピルシクロへキシルブロモアセテート(128)3.5gを使用した以外は実施例132と同様の方法によりフォトレジスト基材(135)を得た。
Figure JPOXMLDOC01-appb-C000183
 得られた化合物の構造をH-NMRにより確認した。
H-NMR:0.87(24H),1.1-1.7(36H),2.1(8H),3.4-3.7(12H),4.83(8H),5.1-5.25,5.4,5.51-5.7,6.05,6.15-6.4,6.5(12H),6.6-6.8(8H),7.4-7.7(8H),8.9-9.1,9.2(4H)((CDSO)
実施例136
フォトレジスト基材(136)の合成
 実施例129で得た1-フェニル-2-(1-アダマンチル)エチルブロモアセテート(129)3.5gを使用した以外は実施例132と同様の方法によりフォトレジスト基材(136)を得た。
Figure JPOXMLDOC01-appb-C000184
 得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.4-2.0(m,68H),3.45-3.7(m,16H),4.75-4.95(m,8H),5.1-5.25,5.51-5.71,5.85-6.0,6.15-6.4,6.5(12H),6.6-6.8(8H),7.25-7.4(20H),7.4-7.7(8H),8.9-9.1,9.2(4H)((CDSO)
実施例137
フォトレジスト基材(137)の合成
 実施例130で得た1-フェニル-2-(1-アダマンチルアセトキシ)エチルブロモアセテート(130)3.5gを使用した以外は実施例132と同様の方法によりフォトレジスト基材(137)を得た。
Figure JPOXMLDOC01-appb-C000185
 得られた化合物の構造をH-NMRにより確認した。
H-NMR:1.5-2.0(m,60H),3.45-3.7(m,16H),4.31(8H),4.97(m,8H),5.1-5.25,5.51-5.7,6.0-6.12,6.12-6.4,6.5(12H),6.6-6.8(8H),7.3-7.5(16H),7.5-7.65(8H),8.9-9.1,9.2(4H)((CDSO)
実施例138
フォトレジスト基材(138)の合成
 実施例131で得た1-(4-カルボキシ-1-アダマンチル)フェニルエチルブロモアセテート(131)3.5gを使用した以外は実施例132と同様の方法によりフォトレジスト基材(138)を得た。
Figure JPOXMLDOC01-appb-C000186
 得られた化合物の構造をH-NMRにより確認した。
H-NMR:0.85(12H),1.6-2.1(m,60H),3.45-3.7(m,16H),4.8-5.05(m,8H),5.1-5.25,5.51-5.7,5.7-5.8,6.15-6.39,6.12-6.4,6.5(12H),6.6-6.8(8H),7.08(8H),7.4(8H),7.4-7.6(8H),8.9-9.1,9.2(4H)((CDSO)
[酸解離性溶解抑止基前駆体の製造]
実施例139
1-イソプロピルシクロオクチルブロモアセテート(139)の合成
Figure JPOXMLDOC01-appb-C000187
 窒素気流下、1-イソプロピルシクロオクタノール30g(176.2mmol)を脱水テトラヒドロフラン500mlに溶解し-60℃に冷却した。ピリジン17.1ml(211.5mmol)を加えた後、ブロモ酢酸ブロミド22.9ml(264.3mmol)を滴下した。滴下終了後、室温まで昇温し、そのまま30時間攪拌を行った。ヘキサン、飽和炭酸水素ナトリウム水溶液を加え抽出を行った。有機層を分離し、無水硫酸マグネシウムで乾燥、減圧下溶媒を留去した。残渣を中性シリカゲルカラムで精製し、1-イソプロピルシクロオクチルブロモアセテート(139)を得た(収量:18.4g 収率:35.8%)。得られた化合物の構造をH-NMRにより確認した。
H-NMR:0.85(d,6H),1.3-1.8(m,12H),2.05-2.2(2H),2.5(qui,1H),3.72(s,2H)(CDCl3)
[フォトレジスト基材の合成]
実施例140
フォトレジスト基材(140)の合成
 実施例139で得た1-イソプロピルシクロオクチルブロモアセテート(139)3.5gを使用した以外は実施例132と同様の方法によりフォトレジスト基材(140)を得た。
Figure JPOXMLDOC01-appb-C000188
 得られた化合物の構造をH-NMRにより確認した。
H-NMR:0.87(24H),1.3-1.9(52H),2.1(8H),3.4-3.7(12H),4.79(8H),5.1-5.3,5.4,5.5-5.7,6.05,6.15-6.4,6.5(12H),6.6-6.8(8H),7.4-7.7(8H),8.9-9.1,9.2(4H)((CDSO)
評価例1
 基材、PAG、クエンチャー、溶剤からなるフォトレジスト溶液を作製し、電子線を使用してシリコンウェハにパターンを形成した。
 基材として、実施例101-140で得た化合物を、それぞれ77重量部使用し、PAGとしてトリフェニルスルホニウムノナフルオロブタンスルホネートを20重量部、クエンチャーとしてトリn-オクチルアミン3重量部を使用した。これらの固体成分の濃度が2.5重量%となるようにプロピレングリコールモノメチルエーテルに溶解させた。
 実施例101-140の化合物を含むフォトレジスト溶液を、それぞれ、ヘキサメチルジシラザン(HMDS)処理を施したシリコンウェハ上にスピンコートし、100℃にてプリベーク(露光前ベーク)することにより薄膜を形成した。次いで、この薄膜を有する基板に対して電子線描画装置(加速電圧50kV)を用いて描画し、100℃でPEB(露光後ベーク)した後、濃度が2.38重量%のテトラブチルアンモニウムヒドロキシド水溶液で60秒間現像処理し、純水にて60秒洗浄、その後、窒素気流により乾燥した。走査型電子顕微鏡による観察結果から得られた、サイズが1/1のライン/スペースパターンを作製した際の解像度(ハーフピッチ)と感度(必要な電子線ドーズ量)の結果を表1に記す。尚、クエンチャーとしてトリn-オクチルアミンの代わりに1,4-ジアザビシクロ(2,2,2)オクタンを用いても結果は同一であった。
 上記のフォトレジスト薄膜を有する基板に対して、電子線描画装置に替えてEUV露光装置を用いてEUV光(波長:13.5nm)を照射した。その後、電子線描画時と同様の後処理操作を行った。走査型電子顕微鏡にて観察したところ、電子線描画の場合と同様の解像度であることが観察された。
Figure JPOXMLDOC01-appb-T000006
[酸解離性溶解抑止基前駆体の製造]
実施例141
Figure JPOXMLDOC01-appb-C000189
 A-100で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-100)を得た(収率99%)。
 ブロモ酢酸エステル(B-100)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):0.941(3H,t),1.844-2.019(2H,m),3.853(2H,s),5.741(1H,t),7.212(2H,d),7.411(2H,d),7.516(2H,t),7.644(1H,t),8.198(2H,d)
実施例142
Figure JPOXMLDOC01-appb-C000190
 A-101で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-101)を得た(収率93%)。
 ブロモ酢酸エステル(B-101)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):1.539(3H,d),3.820(2H,s),5.029(4H,s),5.838(1H,q),6.557(1H,s),6.597(2H,s),7.309-7.427(10H,m)
実施例143
Figure JPOXMLDOC01-appb-C000191
 A-102で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-102)を得た(収率89%)。
 ブロモ酢酸エステル(B-102)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.544(3H,d),4.210(2H,d),5.916(1H,q),7.372(1H,t),7.450-7.501(4H,m),7.674(4H,d)
実施例144
Figure JPOXMLDOC01-appb-C000192
 A-103で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-103)を得た(収率95%)
 ブロモ酢酸エステル(B-103)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):2.189-2.224(1H,m),2.554-2.611(1H,m),2.878-2.955(1H,m),3.115-3.195(1H,m),3.836(2H,s),6.254(1H,q),7.150-7.176(1H,m),7.270(1H,d),7.332(1H,d),7.512(2H,t),7.619-7.659(1H,m),8.196(2H,d)
実施例145
Figure JPOXMLDOC01-appb-C000193
 A-104で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-104)を得た(収率98%)。
 ブロモ酢酸エステル(B-104)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):1.351(9H,s),2.151-2.217(1H,m),2.518-2.575(1H,m),2.839-2.912(1H,m),3.071-3.130(1H,m),3.835(2H,s),6.221(1H,q),6.976-7.001(1H,m)、7.110(1H,d),7.267(1H,d)
実施例146
Figure JPOXMLDOC01-appb-C000194
 A-105で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-105)を得た(収率99%)。
 ブロモ酢酸エステル(B-105)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):2.066-2.152(1H,m),3.088-3.163(1H,m),3.879(2H,s),4.316(1H,t),6.328(1H,t),7.026(1H,t),7.166-7.337(7H,m),7.439(1H,t)
実施例147
Figure JPOXMLDOC01-appb-C000195
 A-106で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-106)を得た(収率98%)。
 ブロモ酢酸エステル(B-106)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):1.319(6H,d),2.116-2.171(1H,m),2.493-2.550(1H,m),2.782-2.854(1H,m),3.011-3.069(1H,m),3.829(2H,s),4.479-4.540(1H,m),6.210(1H,q),6.845-6.872(1H,m)、6.934(1H,d),7.160(1H,d)
実施例148
Figure JPOXMLDOC01-appb-C000196
 A-107で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-107)を得た(収率99%)。
 ブロモ酢酸エステル(B-107)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):1.492(9H,s),2.461-2.512(1H,m),2.524-2.833(1H,m),3.873(2H,s),3.933(1H,q),6.214(1H,q),4.316(1H,t),7.295-7.411(3H,m),7.489(1H,d)
実施例149
Figure JPOXMLDOC01-appb-C000197
 A-108で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-108)を得た(収率96%)。
 ブロモ酢酸エステル(B-108)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):
1.572(3H,d),2.299(3H,s),3.832(2H,s),5.933(1H,q),7.083(2H,d),7.384(2H,d)
実施例150
Figure JPOXMLDOC01-appb-C000198
 A-109で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-109)を得た(収率98%)。
 ブロモ酢酸エステル(B-109)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):2.154-2.219(1H,m),2.293(3H,s),2.479-2.570(1H,m),2.855-2.928(1H,m),3.093-3.171(1H,m),3.812(2H,s),6.205(1H,q),6.917-6.941(1H,m),7.002(1H,s),7.433(1H,d)
実施例151
Figure JPOXMLDOC01-appb-C000199
 A-110で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-110)を得た(収率91%)。
 ブロモ酢酸エステル(B-110)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):0.997-1.046(2H,m),1.143-1.184(2H,m),1.818-1.857(1H,m),2.154-2.229(1H,m),2.495-2.553(1H,m),2.845-2.943(1H,m),3.124-3.188(1H,m),3.815(2H,s),6.209(1H,q),6.924-6.950(1H,m),7.013(1H,s),7.426(1H,d)
実施例152
Figure JPOXMLDOC01-appb-C000200
 A-111で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-111)を得た(収率93%)。
 ブロモ酢酸エステル(B-111)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):1.265(3H,t),2.178-2.213(1H,m),2.501-2.616(3H,m),2.855-2.935(1H,m),3.093-3.189(1H,m),3.819(2H,s),6.214(1H,q),6.915-6.941(1H,m),7.002(1H,s),7.433(1H,d)
実施例153
Figure JPOXMLDOC01-appb-C000201
 A-112で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-112)を得た(収率96%)。
 ブロモ酢酸エステル(B-112)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):2.150-2.216(1H,m),2.285(3H,s),2.516-2.589(1H,m),2.836-2.909(1H,m),3.064-3.142(1H,m),3.820(2H,s),6.216(1H,q),7.010-7.035(1H,m),7.153(1H,s),7.270(1H,d)
実施例154
Figure JPOXMLDOC01-appb-C000202
 A-113で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-113)を得た(収率91%)。
 ブロモ酢酸エステル(B-113)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):1.813-1.866(1H,m),1.935-2.072(3H,m),2.734-2.889(2H,m),3.830(2H,s),6.023(1H,t),6.871(1H,s),6.905(1H,d),7.314(1H,d)
実施例155
Figure JPOXMLDOC01-appb-C000203
 A-114で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-114)を得た(収率94%)。
 ブロモ酢酸エステル(B-114)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):1.828-1.868(1H,m),1.910-2.033(3H,m),2.310(3H,s),2.472-2.538(1H,m),2.690-2.758(1H,m),4.053(2H,s),6.029-6.087(1H,m),6.988-7.021(1H,m),7.206-7.260(2H,m)
実施例156
Figure JPOXMLDOC01-appb-C000204
 A-115で示される原料アルコールを用いた以外は、実施例83と同様の操作を行って、ブロモ酢酸エステルである解離性溶解抑止基前駆体(B-115)を得た(収率88%)。
 ブロモ酢酸エステル(B-115)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):1.490-1.935(18H,m),2.301(2H,s),3.812(1H,s),4.037(1H,s),4.573(2H,s),5.865-5.948(1H,m),6.891(2H,d),7.299(2H,d)
実施例157
Figure JPOXMLDOC01-appb-C000205
 窒素導入菅、温度計、マグネティックスターラーを備えた容量500mlの三口フラスコに、A-116で示される原料アルコール、8.42g(63mmol)、4-ブロモ-n-酪酸、11.0g(66mmol)、N,N-ジメチルアミノピリジン、0.77g(6.3mmol)を仕込み、塩化メチレン200mlを加えて攪拌し、完全に溶かした。続いて窒素を導入して反応容器内を窒素雰囲気とした上で、アイスサルトバスで冷却して、0℃以下とし、1-エチル‐3-(3-ジメチルアミノプロパンカルボジイミド)塩酸塩(EDCI)、13.8g(72mmol)を固体のまま少しずつ、温度が5℃を超えない程度にゆっくりと加えた。その後、アイスサルトバスで冷却したまま1時間、さらに冷却を止め、ゆっくりと室温付近に温度を上昇させてから16時間攪拌して反応させた。
 反応終了後、減圧下で、塩化メチレンを留去して除き、残渣に酢酸エチルと脱イオン水を加えて溶かして取り出し、酢酸エチル層を分離した。酢酸エチル層を、脱イオン水で2回、飽和重炭酸ナトリウム水溶液で1回、飽和食塩水で1回洗浄し、さらに無水硫酸ナトリウムで乾燥させた後、減圧下で酢酸エチルを留去して除いた。得られた油状物をシリカゲルカラムクロマトグラフィーで精製し、目的のブロモ酢酸エステルである解離性溶解抑止基前駆体(B-116)、11.6g(41mmol:油状物)を得た(収率65%)。
 ブロモ酢酸エステル(B-116)の構造をH-NMRにより確認した。
H-NMR(内部標準テトラメチルシラン:溶媒(CDCl:ppm):2.063-2.128(1H,m),2.160-2.211(2H,m),2.456-2.529(3H,m),2.855-2.916(1H,m),3.072-3.110(1H,m),3.433-3.601(2H,m),6.216(1H,q),7.215-7.295(2H,m),7.395(1H,d)
[フォトレジスト基材の合成]
実施例158
 ブロモ酢酸エステルとして(B-100)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-100)を得た(収率:61%)。
Figure JPOXMLDOC01-appb-C000206
 化合物(C-100)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):0.861(12H,t),1.856(8H,q),3.401-3.580(12H,m),4.977(8H,q),5.195(2H,t),5.632(4H,s),5.782(4H,t),6.199(2H,t),6.313(2H,s),6.522(2H,s),6.677-6.722(8H,m),7.270-7.300(8H,m),7.450-7.632(24H,m),7.749(4H,t),8.126(8H,d),9.001(2H,s),9.165(2H,s)
実施例159
 ブロモ酢酸エステルとして(B-101)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-101)を得た(収率:71%)。
Figure JPOXMLDOC01-appb-C000207
 化合物(C-101)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.431(12H,d),3.417-3.565(12H,m),4.900(8H,s),5.029(16H,s),5.200(2H,t),5.633(4H,s),5.792(4H,d),6.243(2H,t),6.302(2H,s),6.488(2H,s),6.582-6.702(20H,m),7.285-7.404(40H,m),7.4473-7.525(8H,m),9.006(2H,s),9.151(2H,s)
実施例160
 ブロモ酢酸エステルとして(B-102)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-102)を得た(収率:68%)。
Figure JPOXMLDOC01-appb-C000208
 化合物(C-102)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):
1.516(12H,t),3.423-3.567(12H,m),4.934(8H,s),5.199(2H,s),5.628(4H,s),5.950(4H,q),6.204(2H,t),6.303(2H,s),6.487(2H,s),6.653-6.718(8H,m),7.352(4H,t),7.419-7.534(24H,m),7.605-7.626(16H,m),9.028(2H,s),9.175(2H,s)
実施例161
 ブロモ酢酸エステルとして(B-103)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-103)を得た(収率:85%)。
Figure JPOXMLDOC01-appb-C000209
 化合物(C-103)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.977-2.098(4H,m),2.422-2.510(4H,m),2.766-2.846(4H,m),2.949-3.006(4H,m),3.468-3.580(12H,m),4.866(8H,s),5.237(2H,t),5.635(4H,s),6.202(4H,s),6.223(2H,t),6.317(2H,s),6.496(2H,s),6.612-6.757(8H,m),7.196-7.238(8H,m),7.336(4H,t),7.471-7.605(16H,m),7.741(4H,q),8.096(8H,d),9.003(2H,s),9.155(2H,s)
実施例162
 ブロモ酢酸エステルとして(B-104)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-104)を得た(収率:77%)。
Figure JPOXMLDOC01-appb-C000210
 化合物(C-104)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.275(36H,s),1.955-2.069(4H,m),2.422-2.510(4H,m),2.743-2.845(4H,m),2.898-2.990(4H,m),3.484-4.037(12H,m),4.864(8H,s),5.217(2H,t),5.648(4H,s),6.178(4H,s),6.223(2H,t),6.329(2H,s),6.512(2H,s),6.664-6.728(8H,m),7.004-7.060(8H,m),7.298(4H,d),7.479-7.539(8H,m),9.053(2H,s),9.193(2H,s)
実施例163
 ブロモ酢酸エステルとして(B-105)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-105)を得た(収率:81%)。
Figure JPOXMLDOC01-appb-C000211
 化合物(C-105)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.890-2.008(4H,m),3.002-3.036(4H,m),3.476-3.588(12H,m),4.318(4H,t),4.957(8H,s),5.223(2H,t),5.642(4H,s),6.233(2H,t),6.279(4H,s),6.324(2H,s),6.504(2H,s),6.676-6.725(8H,m),6.879(4H,d),7.133-7.245(28H,m),7.364(4H,d),7.483-7.548(8H,m),9.107(2H,s),9.155(2H,s)
実施例164
 環状化合物前駆体(1)を使用し、ブロモ酢酸エステルとして(B-103)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-106)を得た(収率:78%)。
Figure JPOXMLDOC01-appb-C000212
 化合物(C-106)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.945-2.105(4H,m),2.436-2.545(4H,m),2.735-2.846(4H,m),2.949-3.054(4H,m),4.855(8H,s),5.169(2H,t),5.589(4H,s),6.187(4H,s),6.198(2H,s),6.271(2H,s),6.396(2H,s),6.710(8H,d),7.184-7.344(20H,m),7.476(8H,d),7.577(8H,t),7.722(4H,t),8.077-8.114(8H,m),8.693(4H,s),8.847(4H,s)
実施例165
 環状化合物前駆体(1)を使用し、ブロモ酢酸エステルとして(B-104)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-107)を得た(収率:76%)。
Figure JPOXMLDOC01-appb-C000213
 化合物(C-107)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.233-1.280(36H,m),1.945-2.076(4H,m),2.375-2.565(4H,m),2.767-2.867(4H,m),2.898-3.015(4H,m),4.835(8H,s),5.179(2H,d),5.579(4H,s),6.144(2H,s),6.169(4H,s),6.269(2H,s),6.388(2H,s),6.716(8H,d),6.976-7.072(8H,m),7.269-7.299(4H,m),7.489(8H,d),8.696(4H,s),8.843(4H,s)
実施例166
 環状化合物前駆体(1)を使用し、ブロモ酢酸エステルとして(B-105)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-108)を得た(収率:73%)。
Figure JPOXMLDOC01-appb-C000214
 化合物(C-108)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.915-2.008(4H,m),2.955-3.067(4H,m),4.304(4H,t),4.951(8H,q),5.233(2H,s),5.626(4H,s),6.211(2H,s),6.304(4H,s),6.320(2H,s),6.430(2H,s),6.753(8H,d),6.889(4H,d),7.135-7.250(28H,m),7.380(4H,d),7.536(8H,d),8.724(4H,s),8.879(4H,s)
実施例167
 ブロモ酢酸エステルとして(B-106)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-109)を得た(収率:69%)。
Figure JPOXMLDOC01-appb-C000215
 化合物(C-109)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.159-1.214(24H,m),1.944-2.055(4H,m),2.412-2.509(4H,m),2.698-2.766(4H,m),2.833-2.975(4H,m),3.469-3.612(12H,m),4.366-4.479(4H,m),4.839(8H,s),5.225(2H,t),5.648(4H,s),6.128(4H,s),6.223(2H,t),6.331(2H,s),6.518(2H,s),6.668-6.733(8H,m),6.821-6.846(8H,m),7.488(4H,d),7.478-7.543(8H,m),9.047(2H,s),9.193(2H,s)
実施例168
 環状化合物(1)を使用し、ブロモ酢酸エステルとして(B-106)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-110)を得た(収率:72%)。
Figure JPOXMLDOC01-appb-C000216
 化合物(C-110)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.166-1.220(24H,m),1.922-2.012(4H,m),2.345-2.509(4H,m),2.670-2.734(4H,m),2.833-2.935(4H,m),4.422-4.488(4H,m),4.825(8H,s),5.188(2H,t),5.584(4H,s),6.127(4H,s),6.171(2H,s),6.268(2H,s),6.390(2H,s),6.718(8H,d),6.807-6.847(8H,m),7.120-7.147(4H,m),7.489(8H,d),8.671(4H,s),8.827(4H,s)
実施例169
 ブロモ酢酸エステルとして(B-107)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-111)を得た(収率:79%)。
Figure JPOXMLDOC01-appb-C000217
 化合物(C-111)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.406(36H,s),2.155-2.298(4H,m),2.665-2.798(4H,m),3.491-3.614(12H,m),3.969(4H,t),4.910(8H,s),5.228(2H,t),5.653(4H,s),6.163(4H,s),6.267(2H,t),6.333(2H,s),6.528(2H,s),6.697-6.746(8H,m),7.250-7.429(16H,m),7.515-7.573(8H,m),8.997(2H,s),9.188(2H,s)
実施例170
 環状化合物前駆体(1)を使用し、ブロモ酢酸エステルとして(B-107)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-112)を得た(収率:88%)。
Figure JPOXMLDOC01-appb-C000218
 化合物(C-112)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.403(36H,s),2.135-2.311(4H,m),2.683-2.811(4H,m),3.943(4H,t),4.878(8H,s),5.195(2H,s),5.586(4H,s),6.131(2H,s),6.147(4H,s),6.282(2H,s),6.402(2H,s),6.732(8H,d),7.236-7.412(16H,m),7.523(8H,d),8.716(4H,s),8.874(4H,s)
実施例171
 ブロモ酢酸エステルとして(B-108)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-113)を得た(収率:63%)。
Figure JPOXMLDOC01-appb-C000219
 化合物(C-113)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.504(12H,d),2.251(12H,s),3.476-3.601(12H,m),4.895(8H,s),5.198(2H,t),5.620(4H,s),5.913(4H,d),6.208(2H,t),6.307(2H,s),6.491(2H,s),6.649-6.712(8H,m),7.093(8H,d),7.406(8H,d),7.460-7.523(8H,m),9.042(2H,s),9.185(2H,s)
実施例172
ブロモ酢酸エステルとして(B-109)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-114)を得た(収率:85%)。
Figure JPOXMLDOC01-appb-C000220
 化合物(C-114)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.976-2.106(4H,m),2.268(12H,s),2.434-2.520(4H,m),2.800-2.838(4H,m),2.934-2.992(4H,m),3.479-3.620(12H,m),4.853(8H,s),5.231(2H,t),5.658(4H,s),6.175(4H,s),6.237(2H,t),6.341(2H,s),6.528(2H,s),6.680-6.744(8H,m),6.944(4H,d),7.041(4H,s),7.369(4H,d),7.497-7.593(8H,m),9.019(2H,s),9.182(2H,s)
実施例173
 ブロモ酢酸エステルとして(B-110)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-115)を得た(収率:75%)。
Figure JPOXMLDOC01-appb-C000221
 化合物(C-115)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.003-1.087(16H,m),1.877-1.916(4H,m),1.980-2.090(4H,m),2.426-2.531(4H,m),2.765-2.838(4H,m),2.921-3.021(4H,m),3.537-3.615(12H,m),4.834(8H,s),5.239(2H,t),5.652(4H,s),6.167(4H,s),6.237(2H,t),6.333(2H,s),6.522(2H,s),6.673-6.736(8H,m),6.944(4H,d),7.039(4H,s),7.339-7.367(4H,m),7.489-7.553(8H,m),9.010(2H,s),9.173(2H,s)
実施例174
 ブロモ酢酸エステルとして(B-111)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-116)を得た(収率:79%)。
Figure JPOXMLDOC01-appb-C000222
 化合物(C-116)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.109-1.155(12H,m),1.966-2.103(4H,m),2.434-2.520(4H,m),2.572-2.628(8H,m),2.755-2.838(4H,m),2.920-2.998(4H,m),3.470-3.614(12H,m),4.846(8H,s),5.231(2H,t),5.646(4H,s),6.170(4H,s),6.237(2H,t),6.329(2H,s),6.517(2H,s),6.688-6.734(8H,m),6.938(4H,d),7.037(4H,s),7.363(4H,d),7.486-7.550(8H,m),9.019(2H,s),9.182(2H,s)
実施例175
 ブロモ酢酸エステルとして(B-112)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-117)を得た(収率:72%)。
Figure JPOXMLDOC01-appb-C000223
 化合物(C-117)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):2.013-2.117(4H,m),2.223(12H,s),2.434-2.520(4H,m),2.767-2.842(4H,m),2.915-2.971(4H,m),3.470-3.612(12H,m),4.855(8H,s),5.237(2H,t),5.659(4H,s),6.176(4H,s),6.233(2H,t),6.337(2H,s),6.525(2H,s),6.679-6.741(8H,m),7.051(4H,d),7.085(4H,s),7.302(4H,d),7.490-7.553(8H,m),9.018(2H,s),9.179(2H,s)
実施例176
 ブロモ酢酸エステルとして(B-114)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-118)を得た(収率:67%)。
Figure JPOXMLDOC01-appb-C000224
 化合物(C-118)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.717-1.931(16H,m),2.294(12H,s),2.355-2.648(8H,m),3.480-3.615(12H,m),4.878(8H,s),5.200(2H,t),5.661(4H,s),5.982(4H,s),6.230(2H,t),6.346(2H,s),6.533(2H,s),6.699-6.747(8H,m),7.022-7.076(4H,m),7.181-7.256(8H,m),7.520-7.587(8H,m),9.029(2H,s),9.189(2H,s)
実施例177
 ブロモ酢酸エステルとして(B-113)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-119)を得た(収率:66%)。
Figure JPOXMLDOC01-appb-C000225
 化合物(C-119)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.720(8H,t),1.902(8H,t),2.261(12H,s),2.671-2.695(8H,m),3.469-3.613(12H,m),4.856(8H,s),5.232(2H,q),5.646(4H,s),5.946(4H,s),6.230(2H,t),6.328(2H,s),6.516(2H,s),6.668-6.730(8H,m),6.877-6.917(8H,m),7.270(4H,d),7.486-7.550(8H,m),9.003(2H,s),9.166(2H,s)
実施例178
 環状化合物前駆体(1)を使用し、ブロモ酢酸エステルとして(B-115)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-120)を得た(収率:61%)。
Figure JPOXMLDOC01-appb-C000226
 化合物(C-120)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.468-1.928(72H,m)2.200(8H,s),4.759(8H,s),5.185(2H,t),5.586(4H,s),5.874(4H,q),6.214(2H,t),6.268(2H,s),6.500(2H,s),6.723(8H,d),6.897-6.913(8H,m),7.298-7.325(8H,m),7.492(8H,d),98.640(4H,s),8.640(4H,s)
実施例179
 ブロモ酢酸エステルとして(B-115)を使用した以外は、実施例101と同様の操作を行って、フォトレジスト基材である化合物(C-121)を得た(収率:59%)。
Figure JPOXMLDOC01-appb-C000227
 化合物(C-121)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.468-1.916(72H,m)2.194(8H,s),3.432-3.586(12H,m),4.761(8H,s),5.185(2H,t),5.630(4H,s),5.859(4H,q),6.210(2H,t),6.345(2H,s),6.512(2H,s),6.650-6.716(8H,m),6.889-6.922(8H,m),7.296-7.340(8H,m),7.440-7.587(8H,m),8.994(2H,s),9,158(2H,s)
実施例180
 窒素導入菅、温度計およびジムロート冷却菅を備えた容量200mlの三口フラスコに、環状化合物前駆体(3)、3.12g(3.04mmol)を仕込み、窒素を導入して窒素雰囲気とした後、N‐メチルピロリドン40ml(有機合成用、脱水溶媒:和光純薬工業)を加えて攪拌した。続いて、ブロモ酢酸エステル(B-116)、3.8g(13.4mmol)及び1,8-ジアザビシクロ[5,4,0]ウンデカ‐7‐エン、4.0ml(26.9mmol)を加え、90℃のオイルバスで加熱して3時間反応させた。反応後、反応混合物を600mlの脱イオン水に加えて希釈し、酢酸エチルで抽出した。酢酸エチル層を、脱イオン水で2回、飽和食塩水で1回洗浄した後、無水硫酸ナトリウムで乾燥させた。減圧下で酢酸エチル留去して除いた後、得られた油状物をシリカゲルカラムクロマトグラフィーで精製して、目的のフォトレジスト基材である化合物(C-122)、1.10g(0.60mmol)を得た(収率:20%)。
Figure JPOXMLDOC01-appb-C000228
 化合物(C-122)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.882-2.055(12H,m),2.377-2.411(4H,m),2.450-2.504(8H,m),2.766-2.859(4H,m),2.934-3.033(4H,m),3.514-3.580(12H,m),4.241(8H,t),5.250(2H,t),5.637(4H,s),6.106-6.130(4H,m),6.254(2H,t),6.312(2H,s),6.512(2H,s),6.624-6.695(8H,m),7.181(4H,q),7.279(4H,d),7.319(4H,d),7.439-7.500(8H,m),8.953(2H,s),9.123(2H,s)
実施例181
 窒素導入菅、温度計およびジムロート冷却菅を備えた容量200mlの三口フラスコに、環状化合物前駆体(1)、1.94g(3.04mmol)を仕込み、窒素を導入して窒素雰囲気とした後、N‐メチルピロリドン40ml(有機合成用、脱水溶媒:和光純薬工業)を加えて攪拌した。続いて、ブロモ酢酸エステル(B-116)、2.83g(10mmol)及び1,8-ジアザビシクロ[5,4,0]ウンデカ‐7‐エン、4.30ml(29mmol)を加え、90℃のオイルバスで加熱して3時間反応させた。反応後、反応混合物を600mlの脱イオン水に加えて希釈し、酢酸エチルで抽出した。酢酸エチル層を、脱イオン水で2回、飽和食塩水で1回洗浄した後、無水硫酸ナトリウムで乾燥させた。減圧下で酢酸エチル留去して除いた後、得られた油状物をシリカゲルカラムクロマトグラフィーで精製して、目的のフォトレジスト基材である化合物(C-123)、0.67g(0.38mmol)を得た(収率:19%)。
Figure JPOXMLDOC01-appb-C000229
 化合物(C-123)の構造はH-NMRにより確認した。結果を以下に示す。
H-NMR(内部標準テトラメチルシラン:溶媒(重DMSO:ppm):1.958-2.013(12H,m),2.370-2.423(4H,m),2.456-2.501(8H,m),2.747-2.865(4H,m),2.935-3.045(4H,m),4.234(8H,t),5.227(2H,t),5.586(4H,s),6.107-6.141(4H,m),6.169(2H,s),6.297(2H,s),6.403(2H,s),6.698(8H,d),7.197(4H,q),7.288(4H,d),7.348(4H,d),7.463(8H,d),8.598(4H,s),8.763(4H,s)
 本発明の酸解離性溶解抑止基前駆体は、フォトレジスト基材又は組成物、特に極端紫外光用及び/又は電子線用フォトレジスト基材又は組成物に好適に使用できる。本発明のフォトレジスト及びフォトレジスト組成物は、半導体装置等の電気・電子分野や光学分野等において好適に用いられる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (27)

  1.  R-Xで表される化合物であって、
     Rが下記式(1)で表される基であり、
     Xがハロゲン原子、水酸基、アリーロキシ基、又は下記式(5)で表される(メタ)アクリル酸エステル基である化合物。
    Figure JPOXMLDOC01-appb-C000230
    (上記式(1)において、
     nは、それぞれ0又は1の整数である。
     Rは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。
     Rは、置換もしくは無置換の炭素数6~10の芳香族基を含む置換基を少なくとも1つ有する三級炭素を基点とする基、置換もしくは無置換の炭素数6~10の芳香族基を含む置換基を少なくとも1つ有する二級炭素を基点とする基、置換もしくは無置換の炭素数6~10の芳香族基を含む置換基を有する一級炭素を基点とする基、置換もしくは無置換の炭素数3~20の単環状脂肪族構造あるいは複環状脂肪族構造の環状構造に含まれる炭素を基点とする基である。但し、Rは、1-フェニルエチル基、2-フェニルプロパン-2-イル基、2-ベンジルプロパン-2-イル基、ジフェニルメチル基、1-フェニルプロピル基、1,2-ジフェニルプロピル基、及び下記式(1001’)、(1003’)、(1006’)、(1007’)及び(1008’)で表される基ではない。
     Rは、単結合、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。)
    Figure JPOXMLDOC01-appb-C000231
    (上記式(5)において、
     Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。)
    Figure JPOXMLDOC01-appb-C000232
    (式中、X及びYはそれぞれ、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基又は炭素数3~20の環状アルキル基、フェニル基、ベンジル基、フェネチル基、又は以下の構造であり、
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、また、炭素数3~20の環状アルキル基によって部分的に置換されていてもよく、
     前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
     nは0~3の整数である。複数のX又はYは同じであっても異なってもよい。)
    Figure JPOXMLDOC01-appb-C000233
    (式中、R105はフェニル基であり、このフェニル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基又は炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
     R106,R107及びR108は、それぞれ水素原子、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
     前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
     さらに、R106,R107,R108の内のいずれか2つもしくは3つは、それぞれ、これらが結合している炭素とともに、炭素数3~20の環状アルキル基を形成してもよい。)
  2.  下記式(2001)で表される化合物。
    Figure JPOXMLDOC01-appb-C000234
    (式中、Xはハロゲン原子である。
     R201、R202及びR203は、それぞれ水素原子、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
     R202及びR203は、これらが結合している炭素と共に、炭素数3~20の環状アルキル基を形成してもよく、
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
     前記直鎖状及び分岐アルキル基は、炭素数3~20の環状アルキル基によって部分的に置換されていてもよく、
     前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
     Xは、それぞれ以下の構造のいずれかである。
    Figure JPOXMLDOC01-appb-C000235
    (式中、R204、R205及びR206は、それぞれ水素原子、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
     前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよく、
     さらに、R204、R205及びR206の内のいずれか2つもしくは3つは一緒になって、これらが結合している炭素と共に、炭素数3~20の環状アルキル基を形成してもよい。)
     さらに、ベンゼン環の隣り合う炭素に結合した2つのXは、一緒になって以下の2価の基となってもよい。
    Figure JPOXMLDOC01-appb-C000236
     nは、置換基Xの数を表し、1、2及び3のいずれかの整数である。
     Aは、以下の2価の基のいずれかである。左右非対称なAにおいては、左の結合がベンゼン環部分に結合する。
    Figure JPOXMLDOC01-appb-C000237
    (式中、R204、R205及びR206は、前記と同じである。
     Yは、水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、又は炭素数3~20の環状ハロアルコキシ基であり、
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよい。))
  3.  ORが下記式(1001)~(1032)で表される基のいずれかである請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000238
    Figure JPOXMLDOC01-appb-C000239
    Figure JPOXMLDOC01-appb-C000240
    Figure JPOXMLDOC01-appb-C000241
    (式中、R101,R102,R103及びR104は、それぞれ水素原子、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、また、炭素数3~20の環状アルキル基によって部分的に置換されていてもよく、
     前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
     さらに、R101とR102、及びR103とR104は、それぞれ、これらが結合している炭素とともに、炭素数3~20の環状アルキル基を形成してもよい。
     R105はフェニル基であり、このフェニル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基又は炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
     R106,R107及びR108は、それぞれ水素原子、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、又はフェネチル基であり、
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
     前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
     さらに、R106,R107,R108の内のいずれか2つもしくは3つは、それぞれ、これらが結合している炭素とともに、炭素数3~20の環状アルキル基を形成してもよい。
     R109,R110は、それぞれ水素原子、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、又はこれら1以上の基と、エーテル結合、エステル結合又は単結合が、組み合わさった基であり、
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよい。
     R111とR112は、これらが結合している炭素とともに、炭素数3~20の環状アルキル基を形成し、
     R113は水素原子、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、フェネチル基、又はこれら1以上の基と、エーテル結合、エステル結合又は単結合が、組み合わさった基であり、これらはハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
     X、Y及びZはそれぞれ、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基又は炭素数3~20の環状アルキル基、フェニル基、ベンジル基、フェネチル基、又は以下の構造であり、
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、また、炭素数3~20の環状アルキル基によって部分的に置換されていてもよく、
     前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシ基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐を有するアルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状のハロアルコキシ基、炭素数3~20の分岐を有するハロアルコキシ基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000242
    (式中、R105106,R107,R108は、前記と同じである。)
     nは0~3の整数である。複数のX、Y又はZは同じであっても異なってもよい。
     mは0~2の整数である。
     Aは以下の2価の基を表す。左右非対称なAにおいては、左の結合がベンゼン環部分に結合する。
    Figure JPOXMLDOC01-appb-C000243
     Aは以下の2価の基を表す。
    Figure JPOXMLDOC01-appb-C000244
     Aは以下の2価の基を表す。
    Figure JPOXMLDOC01-appb-C000245
     Aは以下の2価の基を表す。
    Figure JPOXMLDOC01-appb-C000246
  4.  ORが下記式(6)~(41)及び(101)~(283)で表される基のいずれかである請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000247
    Figure JPOXMLDOC01-appb-C000248
    Figure JPOXMLDOC01-appb-C000249
    Figure JPOXMLDOC01-appb-C000250
    Figure JPOXMLDOC01-appb-C000251
    Figure JPOXMLDOC01-appb-C000252
    Figure JPOXMLDOC01-appb-C000253
    Figure JPOXMLDOC01-appb-C000254
    Figure JPOXMLDOC01-appb-C000255
    Figure JPOXMLDOC01-appb-C000256
    Figure JPOXMLDOC01-appb-C000257
    Figure JPOXMLDOC01-appb-C000258
    Figure JPOXMLDOC01-appb-C000259
    Figure JPOXMLDOC01-appb-C000260
    Figure JPOXMLDOC01-appb-C000261
    Figure JPOXMLDOC01-appb-C000262
    Figure JPOXMLDOC01-appb-C000263
  5.  下記式(42)で表される構造を有する重合体、Xが(メタ)アクリル酸エステル基である請求項1、3及び4のいずれかに記載の化合物を単独重合もしくは2種以上5種以下用いて共重合して得られる重合体、又はXがアリーロキシ基である請求項1、3及び4のいずれかに記載の化合物を単独重合もしくはアルデヒド化合物と共重合して得られる重合体であるフォトレジスト基材。
    Figure JPOXMLDOC01-appb-C000264
    (式中、Rは前記式(1)で表される基であって、式(1)のORが前記式(6)~(41)及び前記式(101)~(283)で表される基、及び下記式(43)~(50)で表される基のいずれかである。
     複数のRはそれぞれ同一でも異なってもよい。)
    Figure JPOXMLDOC01-appb-C000265
  6.  フェノール性水酸基を2以上50以下有し、分子量が500以上5000以下である化合物に、前記式(1)で表される基であって、式(1)のORが前記式(1001)~(1032)、前記式(6)~(41)、前記式(43)~(50)、及び前記式(101)~(283)で表される基のいずれかである基が結合した化合物であるフォトレジスト基材。
  7.  フェノール性水酸基を2以上50以下有し、分子量が500以上5000以下である、下記式(51)で表される化合物であるフォトレジスト基材。
    Figure JPOXMLDOC01-appb-C000266
    (式中、
     R’は、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、これら基のうち2以上を組み合わせた基、又は下記式(52)~(54)で表される基のいずれかである。
     Rは、それぞれ水素原子、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルキロキシ基、シロキシ基、これらの基と二価の基とが結合した基、又は酸解離性溶解抑止基ORであり、
     前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
     Rは、それぞれ水素原子、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基、酸素原子を含む基、又は酸解離性溶解抑止基ORである。
    Figure JPOXMLDOC01-appb-C000267
     Arは、置換もしくは無置換の炭素数6~10のアリーレン基と置換もしくは無置換の炭素数6~10のアリーレン基から選択される基2以上を組み合わせた基、又はアルキレン基及びエーテル結合から選択される1以上と置換もしくは無置換の炭素数6~10のアリーレン基を組み合わさせた基であり、
     置換基を有する場合の置換基は、臭素原子、フッ素原子、ニトリル基又は炭素数1~10のアルキル基である。
     Rは、それぞれ水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、これらの基と二価の基が結合した基、又は酸解離性溶解抑止基ORであり、
     前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
     R及びRは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれら基のうち2以上を組み合わせた基である。
     Aはアルキレン基、エーテル結合及びアルキレン基から選択される基を2以上組み合わせた基、又はアルキレン基1以上及びエーテル結合1以上を組み合わせた基である。
     xは1~5の整数であり、yは0~3の整数であり、zは0~4の整数である。
     複数のR’、R、R、R、R、R、Ar、A、x、y及びzは、それぞれ同じであっても異なっていてもよい。
     R、R及びRのいずれか1以上が、酸解離性溶解抑止基ORである。
     Rは前記式(1)で表される基である。)
  8.  フェノール性水酸基を2以上50以下有し、分子量が500以上5000以下である、下記式(55)で表される化合物であるフォトレジスト基材。
    Figure JPOXMLDOC01-appb-C000268
    (式中、
     R’は、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、これら基のうち2以上を組み合わせた基、又は下記式(56)で表される基である。
     Rは、それぞれ水素原子、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルキロキシ基、シロキシ基、これらの基と二価の基とが結合した基、又は酸解離性溶解抑止基ORであって、
     前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
     Rは、それぞれ水素原子、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基、酸素原子を含む基、又は酸解離性溶解抑止基ORである。
    Figure JPOXMLDOC01-appb-C000269
     Arは、置換もしくは無置換の炭素数6~10のアリーレン基、及び置換もしくは無置換の炭素数6~10のアリーレン基から選択される基を2以上組み合わせた基、アルキレン基及びエーテル結合から選択される1以上と置換もしくは無置換の炭素数6~10のアリーレン基を組み合わせた基であり、
     置換基を有する場合の置換基は、臭素原子、フッ素原子、ニトリル基、又は炭素数1~10のアルキル基である。
     Rは、それぞれ水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、これらの基と二価の基が結合した基、又は酸解離性溶解抑止基ORであり、
     前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、エステル結合、炭酸エステル結合、又はエーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
     R、Rは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれら基のうち2以上を組み合わせた基である。
     xは1~5の整数であり、yは0~3の整数であり、zは0~4の整数である。
     複数のR’、R、R、R、R、R、Ar、x、y及びzは、それぞれ同じであっても異なっていてもよい。
     R、R及びRのいずれか1以上が酸解離性溶解抑止基ORである。
     Rは前記式(1)で表される基である。)
  9.  フェノール性水酸基を2以上50以下有し、分子量が500以上5000以下である、下記式(57)で表される化合物であるフォトレジスト基材。
    Figure JPOXMLDOC01-appb-C000270
    (式中、
     R’は、それぞれ下記式(58)~(60)で表される基のいずれかである。
     Rは、それぞれ水素、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルキロキシ基、シロキシ基、又はこれらの基と二価の基とが結合した基であり、
     前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
     Rは、それぞれRで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐を有する脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基又は酸素原子を含む基である。
    Figure JPOXMLDOC01-appb-C000271
     Arは、置換もしくは無置換の炭素数6~10のアリーレン基、置換もしくは無置換の炭素数6~10のアリーレン基を2以上組み合わせた基、アルキレン基及びエーテル結合から選択される1以上の基と置換もしくは無置換の炭素数6~10のアリーレン基が組み合わせた基であり、
     置換基を有する場合の置換基は、臭素原子、フッ素原子、ニトリル基、又は炭素数1~10のアルキル基である。
     Rは、それぞれ水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、又はこれらの基と二価の基が結合した基、又は酸解離性溶解抑止基ORであり、
     前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、エステル結合、炭酸エステル結合、エーテル結合、これらの基から選択される2以上が結合した基、又はこれらの基から選択される1以上と、これらの結合から選択される1以上が結合した基である。
     R及びRは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれら基のうち2以上を組み合わせた基である。
     Aは、アルキレン基、エーテル結合及びアルキレン基から選択される2以上を組み合わせた基、又はアルキレン基1以上及びエーテル結合から選択される1以上を組み合わせた基である。
     xは1~5の整数であり、yは0~3整数であり、zは0~4の整数である。
     複数のR、R、R、R、R、Ar、A、x、y及びzは、それぞれ同じであっても異なっていてもよい。
     Rの1以上が酸解離性溶解抑止基ORである。
     Rは前記式(1)で表される基である。)
  10.  同一芳香環上に存在する2つのRのうち、一方が水酸基であり、他方が、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、又は置換もしくは無置換の炭素数6~10のアリーロキシ基である芳香環を含む請求項9に記載のフォトレジスト基材。
  11.  前記式(1)のORが前記式(1001)~(1032)、前記式(6)~(41)、前記式(43)~(50)、及び前記式(101)~(283)で表される基のいずれかである請求項7~10のいずれかに記載のフォトレジスト基材。
  12.  請求項5~11のいずれかに記載のフォトレジスト基材を含む薄膜。
  13.  請求項5~11のいずれかに記載のフォトレジスト基材及び溶剤を含有するフォトレジスト組成物。
  14.  請求項13に記載のフォトレジスト組成物を用いた微細加工方法。
  15.  請求項14に記載の微細加工方法により作製した半導体装置。
  16.  Xが、それぞれ以下の構造のいずれかである請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000272
  17.  下記式(2002)で表される請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000273
    (式中、Xaはハロゲン原子である。
     ORは、前記式(146)~(153)、(155)~(200)、(202)~(214)、(216)~(228)及び下記式(2010)~(2036)のいずれかである。)
    Figure JPOXMLDOC01-appb-C000274
    Figure JPOXMLDOC01-appb-C000275
    Figure JPOXMLDOC01-appb-C000276
    Figure JPOXMLDOC01-appb-C000277
  18.  下記式(2003)で表される化合物。
    Figure JPOXMLDOC01-appb-C000278
    (式中、Yは、それぞれ水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基であり、
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよい。
     nは、置換基Yの数を表し、0,1,2,3のいずれかの整数である。
     Rは、それぞれ水素原子、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状脂肪族アルコキシ基、又は置換もしくは無置換の炭素数6~10のアリーロキシ基である。
     Rは、それぞれ水素原子、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基である。
     Rは、それぞれ下記式(2004)で表される基、又は下記式(2005)で表される基である。
    Figure JPOXMLDOC01-appb-C000279
    (式中、R201、R202、R203及びAは、前記式(2001)と同様である。
     pはメチレン鎖の長さ、CHの数を表し、1,2,3のいずれかの整数である。
     mはメチレン鎖の長さ、CHの数を表し、0,1,2,3のいずれかの整数である。
     Xは、それぞれハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、フェニル基、ベンジル基、フェネチル基、又は下記構造であり、
    Figure JPOXMLDOC01-appb-C000280
    (式中、R204、R205及びR206は、前記式(2001)と同様である。)
     前記直鎖状、分岐及び環状アルキル基は、ハロゲン原子によって部分的あるいは完全に置換されていてもよく、
     前記フェニル基、ベンジル基及びフェネチル基は、ハロゲン原子、ヒドロキシル基、炭素数1~10の直鎖状のアルキル基、炭素数3~20の分岐を有するアルキル基、炭素数3~20の環状アルキル基、炭素数1~10の直鎖状アルコキシ基、炭素数3~20の分岐アルコキシ基、炭素数3~20の環状アルコキシ基、炭素数1~10の直鎖状ハロアルコキシ基、炭素数3~20の分岐ハロアルコキシル基、炭素数3~20の環状ハロアルコキシ基で置換されていてもよい。
     さらにXは、ベンゼン環の隣り合う炭素に結合した2つのXが一緒になって以下の2価の基となってもよい。
    Figure JPOXMLDOC01-appb-C000281
     nは、置換基Xの数を表し、0,1,2,3のいずれかの整数である。)
  19.  請求項18に記載の化合物であるフォトレジスト基材。
  20.  下記式(2006)で表される化合物。
    Figure JPOXMLDOC01-appb-C000282
    (式中、R、R、R、Y及びnは、前記式(2003)と同様である。)
  21.  請求項20に記載の化合物であるフォトレジスト基材。
  22.  Rが、それぞれ下記式(2007)で表される基である請求項18に記載の化合物。
    Figure JPOXMLDOC01-appb-C000283
    (式中、pはメチレン鎖、CHの数を表し、1,2,3のいずれかの整数である。
     ORは、前記式(6)~(14),(17),(18),(20)~(23),(34)~(39),(101)~(110),(113)~(115),(121)~(271)、(2010)~(2036)並びに下記式(2037)及び(2038)のいずれかの基である。)
    Figure JPOXMLDOC01-appb-C000284
  23.  請求項22に記載の化合物であるフォトレジスト基材。
  24.  請求項19、21及び23のいずれかに記載のフォトレジスト基材を含む薄膜。
  25.  請求項19、21及び23のいずれかに記載のフォトレジスト基材及び溶剤を含有するフォトレジスト組成物。
  26.  請求項25に記載のフォトレジスト組成物を用いる微細加工方法。
  27.  請求項26に記載の微細加工方法により作製した半導体装置。
PCT/JP2009/006825 2008-12-11 2009-12-11 酸解離性溶解抑止基前駆体、及び酸解離性溶解抑止基を有する環状化合物 WO2010067627A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542041A JPWO2010067627A1 (ja) 2008-12-11 2009-12-11 酸解離性溶解抑止基前駆体、及び酸解離性溶解抑止基を有する環状化合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008316145 2008-12-11
JP2008-316145 2008-12-11
JP2009-140594 2009-06-11
JP2009140594 2009-06-11

Publications (1)

Publication Number Publication Date
WO2010067627A1 true WO2010067627A1 (ja) 2010-06-17

Family

ID=42242619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006825 WO2010067627A1 (ja) 2008-12-11 2009-12-11 酸解離性溶解抑止基前駆体、及び酸解離性溶解抑止基を有する環状化合物

Country Status (2)

Country Link
JP (1) JPWO2010067627A1 (ja)
WO (1) WO2010067627A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765356B2 (en) 2011-09-23 2014-07-01 Dow Global Technologies Llc Calixarene compound and photoresist composition comprising same
US8936900B2 (en) 2011-09-23 2015-01-20 Rohm And Haas Electronic Materials Llc Calixarene and photoresist composition comprising same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2776989A (en) * 1954-03-08 1957-01-08 Rohm & Haas Process of preparing alpha-dichloromethyl benzhydrol esters
JPS4924068B1 (ja) * 1970-08-24 1974-06-20
JPS5495550A (en) * 1977-12-22 1979-07-28 Ciba Geigy Ag Aminoalkoxy derivative of aromatic ketone* photopolymerization initiator and photopolymeric composition containing said derivative
WO1998049900A1 (en) * 1997-05-07 1998-11-12 Emory University Haloisoquinoline carboxamide
JP2002040661A (ja) * 2000-07-24 2002-02-06 Toray Ind Inc ポジ型感放射線性組成物
JP2002174902A (ja) * 2000-12-07 2002-06-21 Toray Ind Inc ポジ型感放射線性組成物
JP2002236358A (ja) * 2001-02-08 2002-08-23 Fuji Photo Film Co Ltd 感放射線性レジスト組成物
JP2003342306A (ja) * 2002-03-18 2003-12-03 Toray Ind Inc レジスト用ポリマーの製造方法、およびポジ型感放射線性組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2776989A (en) * 1954-03-08 1957-01-08 Rohm & Haas Process of preparing alpha-dichloromethyl benzhydrol esters
JPS4924068B1 (ja) * 1970-08-24 1974-06-20
JPS5495550A (en) * 1977-12-22 1979-07-28 Ciba Geigy Ag Aminoalkoxy derivative of aromatic ketone* photopolymerization initiator and photopolymeric composition containing said derivative
WO1998049900A1 (en) * 1997-05-07 1998-11-12 Emory University Haloisoquinoline carboxamide
JP2002040661A (ja) * 2000-07-24 2002-02-06 Toray Ind Inc ポジ型感放射線性組成物
JP2002174902A (ja) * 2000-12-07 2002-06-21 Toray Ind Inc ポジ型感放射線性組成物
JP2002236358A (ja) * 2001-02-08 2002-08-23 Fuji Photo Film Co Ltd 感放射線性レジスト組成物
JP2003342306A (ja) * 2002-03-18 2003-12-03 Toray Ind Inc レジスト用ポリマーの製造方法、およびポジ型感放射線性組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GERARD BELOT ET AL.: "Electroreductive cyclopropylcarbonylation of aromatic ketones and their Schiff bases", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 47, no. 2, 1982, pages 325 - 331 *
TAKAO KIMURA ET AL., JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 43, no. 1, 1986, pages 9 - 14 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765356B2 (en) 2011-09-23 2014-07-01 Dow Global Technologies Llc Calixarene compound and photoresist composition comprising same
US8936900B2 (en) 2011-09-23 2015-01-20 Rohm And Haas Electronic Materials Llc Calixarene and photoresist composition comprising same

Also Published As

Publication number Publication date
JPWO2010067627A1 (ja) 2012-05-17

Similar Documents

Publication Publication Date Title
CN104995559B (zh) 抗蚀剂组合物、抗蚀图案形成方法和用于其的多元酚衍生物
JP5162292B2 (ja) ポジ型レジスト材料およびレジストパターン形成方法
JP5660171B2 (ja) 感放射線性組成物、化合物、化合物の製造方法およびレジストパターン形成方法
JP6103022B2 (ja) 化合物、感放射線性組成物及びレジストパターン形成方法
TWI534531B (zh) 光阻組成物,光阻圖型之形成方法,高分子化合物
JP5354420B2 (ja) 環状化合物、フォトレジスト基材、フォトレジスト組成物、微細加工方法及び半導体装置
TWI601730B (zh) 光阻組成物,光阻圖型之形成方法,新穎化合物,酸產生劑
EP2476662B1 (en) Cyclic compound, process for preparation thereof, radiation-sensitive composition, and method for formation of resist pattern
WO2009119784A1 (ja) 環状化合物、環状化合物の製造方法、環状化合物からなるフォトレジスト基材、フォトレジスト組成物、微細加工方法、半導体装置及び装置
JP2010138109A (ja) 環状化合物及びその製造方法
TWI537682B (zh) 正型光阻組成物、光阻圖型之形成方法
WO2010067627A1 (ja) 酸解離性溶解抑止基前駆体、及び酸解離性溶解抑止基を有する環状化合物
JP5692090B2 (ja) 低分子量ポジ型感放射線性組成物及びレジストパターン形成方法
JP5564883B2 (ja) 溶解抑止剤、ネガ型感放射線性組成物およびレジストパターン形成方法
JP5435995B2 (ja) 環状化合物の製造方法
WO2010067621A1 (ja) 環状化合物及びそれを用いたフォトレジスト組成物
WO2010067622A1 (ja) 立体異性体環状化合物、その製造方法、立体異性体環状化合物を含む組成物及びその製造方法
JP2010285376A (ja) 環状化合物、フォトレジスト基材及びフォトレジスト組成物
JP2009098448A (ja) 極端紫外光用及び/又は電子線用フォトレジスト組成物及びそれを用いた微細加工方法
JP2011153087A (ja) 酸解離性溶解抑止基前駆体、及び酸解離性溶解抑止基を有する環状化合物
TWI479268B (zh) 正型光阻組成物及光阻圖型之形成方法
WO2010143436A1 (ja) 環状化合物、フォトレジスト基材及びフォトレジスト組成物
JP2011173868A (ja) 環状化合物及びそれを用いたネガ型レジスト組成物
JP2010159241A (ja) 立体異性体環状化合物を含む組成物及びその製造方法
TW201726591A (zh) 環狀化合物、其製造方法、含有該環狀化合物之光阻劑組成物及其製造方法、以及使用該組成物之光阻劑圖案形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831733

Country of ref document: EP

Kind code of ref document: A1