WO2010066151A1 - 等离子体加工设备 - Google Patents

等离子体加工设备 Download PDF

Info

Publication number
WO2010066151A1
WO2010066151A1 PCT/CN2009/074532 CN2009074532W WO2010066151A1 WO 2010066151 A1 WO2010066151 A1 WO 2010066151A1 CN 2009074532 W CN2009074532 W CN 2009074532W WO 2010066151 A1 WO2010066151 A1 WO 2010066151A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
electrode plate
capacitor
plasma processing
electrode
Prior art date
Application number
PCT/CN2009/074532
Other languages
English (en)
French (fr)
Inventor
韦刚
Original Assignee
北京北方微电子基地设备工艺研究中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方微电子基地设备工艺研究中心有限责任公司 filed Critical 北京北方微电子基地设备工艺研究中心有限责任公司
Priority to US13/127,665 priority Critical patent/US8547021B2/en
Priority to SG2011041431A priority patent/SG171466A1/en
Publication of WO2010066151A1 publication Critical patent/WO2010066151A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes

Definitions

  • the present invention relates to the field of plasma processing technology, and in particular, to a plasma processing apparatus. Background technique
  • plasma processing equipment is widely used in the manufacturing process of integrated circuits or photovoltaic cells.
  • the development of plasma processing equipment suitable for etching, deposition or other processes is critical to the development of integrated circuit or photovoltaic cell fabrication processes.
  • CCP Capacitively Coupled Plasma
  • Figure 1 shows a parallel plate capacitive coupling type PECVD that is common in actual production.
  • the PECVD apparatus includes: a reaction chamber 80, a power source 10 outside the reaction chamber 80, and a matching coupling device (not shown), an upper electrode 20 located in the reaction chamber 80 and connected to the power source 10, and a ground electrode 30 in the reaction chamber 80.
  • the upper electrode plate 20 has a dense air inlet hole 40, and the reaction chamber 80 has an exhaust port 50 below it, and the substrate to be processed is placed on the ground electrode 30.
  • the process gas is introduced into the reaction chamber 80 from the intake hole 40 under a proper degree of vacuum, and the process gas is excited by the power source between the upper electrode 20 and the ground electrode 30 to generate the plasma 60, the plasma 60 and the lining.
  • the bottom reacts, and the reaction product is deposited on the substrate to form a film, and the exhaust gas generated by the reaction is discharged from the exhaust port 50.
  • the commonly used parallel plate type CCP device can produce a relatively uniform plasma compared to other plasma devices (such as electron cyclotron resonance plasma, inductively coupled plasma devices), with the size of the reaction chamber, the electrode
  • the parallel plate type CCP equipment will have obvious standing wave effect and edge effect, and the effect of the standing wave effect and the edge effect on the uniformity of the generated plasma Larger, there is usually a phenomenon that the plasma density of the center of the electrode plate is high and the edge plasma density is low, which in turn affects the uniformity of the plasma processing process.
  • the problem addressed by the present invention is to provide a plasma processing apparatus which is capable of obtaining a uniform plasma distribution and improving the uniformity of the plasma processing process results.
  • the present invention provides a plasma processing apparatus comprising: a first electrode plate and a second electrode plate disposed opposite to each other, a matching device, a power distribution device, and a power supply device;
  • the first electrode plate includes at least two mutually insulated sub-electrode plates,
  • the power supply device is connected to the power distribution device by the matching device,
  • the power distribution device is coupled to the first electrode plate for inputting and distributing power of the power supply device to the respective sub-electrode plates, the power distribution device including at least a capacitor and/or an inductor.
  • the power distribution device includes at least two distribution units that are respectively connected to the respective sub-electrode plates in the same number as the number of the sub-electrode plates.
  • the individual distribution units may be the same or different, and the distribution unit comprises a capacitor and/or an inductance.
  • the inductor is a tunable inductor.
  • the capacitor is a tunable capacitor.
  • the at least two sub-electrode plates are a first sub-electrode plate and a second sub-electrode plate
  • the power distribution device includes a first capacitor and a second capacitor
  • the matching device is directly connected to the first sub-electrode plate.
  • the second capacitor is connected in parallel with the second sub-electrode plate and then connected in series with the first capacitor to the matching device.
  • the at least two sub-electrode plates represent N sub-electrode plates.
  • the power distribution device includes M capacitors, and the M-th capacitor is connected in parallel with the N-th sub-electrode plate and then connected in series with the M-1 capacitor to form an N-1th.
  • the capacitor is a tunable capacitor.
  • the electrode plates are juxtaposed in the plane, symmetrically distributed in the center, axially symmetrically distributed or concentrically nested.
  • the shapes of the at least two sub-electrode plates may be the same or different, and the sub-electrode plates are rectangular, square, circular or elliptical.
  • the power distribution device in the plasma processing apparatus includes at least two distribution units, the first electrode plate includes at least two sub-electrode plates, and each of the distribution units is connected in parallel with a corresponding sub-electrode plate, and each of the sub-electrode plates They are insulated from each other.
  • the power supply device is connected to the power distribution device through the matching device, and the power of the power supply device is distributed into a plurality of portions corresponding to the number of the sub-electrode plates of the first electrode plate, and the power of each portion is separately input to the corresponding portion.
  • the sub-electrode plate obtains an independent electric field distribution between each sub-electrode plate and the second electrode plate, thereby controlling the plasma density and intensity generated under each sub-electrode plate, thereby realizing adjustment of the process result to obtain a uniform process result.
  • the power distribution device is composed of a combination of capacitors and/or inductors. When the RF current flows, the capacitors and inductors do not consume energy like the resistors, and the efficiency of coupling the RF power to the electrodes can be ensured.
  • Figure 1 is a schematic view of a parallel plate capacitive coupling type PECVD apparatus
  • FIG. 2 is a schematic view of a plasma processing apparatus in the first embodiment
  • Figure 3 is a bottom view of the first electrode plate of Figure 2;
  • FIG. 4 is a circuit schematic diagram of the plasma processing apparatus of Figure 2;
  • FIG. 5 is a schematic circuit diagram of another plasma processing apparatus in the first embodiment
  • FIG. 6 is a circuit schematic diagram of the plasma processing apparatus in the second embodiment
  • FIG. 7 is a schematic circuit diagram of another plasma processing apparatus in the second embodiment
  • FIG. 8 is a bottom view of the first electrode plate of FIG. 7;
  • FIG. 9 is a schematic view of another first electrode plate in the second embodiment. detailed description
  • the present invention provides a plasma processing apparatus.
  • the apparatus has a first electrode plate including at least two sub-electrode plates, and power of a power supply device is input and distributed to the respective sub-electrode plates through a power distribution device connected to the first electrode plate, thereby being capable of suppressing standing waves Effect and edge effects, achieve a uniform plasma distribution, and improve the uniformity of the plasma processing process.
  • FIG. 2 is a schematic structural view of a plasma processing apparatus in the embodiment
  • FIG. 3 is a bottom view of the first electrode plate of FIG. 2
  • FIG. Circuit schematic of a plasma processing equipment is a schematic structural view of a plasma processing apparatus in the embodiment
  • the plasma processing apparatus in this embodiment includes: a reaction chamber 7, a first electrode plate 3 and a second electrode plate 4 disposed in the reaction chamber 7 and disposed opposite to each other, and the first electrode
  • the matching device 8, the power distribution device 9, the power supply device 1, the vacuum obtaining device (not shown), the gas input device, and the like (not shown) are connected to the board 3.
  • the first electrode plate 3 includes two sub-electrode plates 31 and sub-electrode plates insulated from each other.
  • the number of sub-electrode plates included in the first electrode plate 3 may not be limited to two as described in the embodiment, but may be more.
  • the power supply unit 1 is connected to the power distribution unit 9 via the matching unit 8.
  • the power supply device 1 in this embodiment may be one of a radio frequency power source, a low frequency power source, and a high frequency power source.
  • the power distribution device 9 is connected to the first electrode plate 3 for inputting and distributing the power of the power supply device 1 to the two sub-electrode plates 31, 32.
  • the power distribution device 9 includes two distribution units, each of which is separately connected to one of the sub-electrode plates as described above, and each of the distribution units may be identical.
  • the power distribution device 9 includes the same number of distribution units as the number of sub-electrode plates included in the first electrode plate 3, that is, when the first electrode plate 3 includes the sub-electrode plates. When the number is more than two, the number of distribution units included in the power distribution device 9 is correspondingly more than two and equal to the number of sub-electrode plates included in the first electrode plate 3.
  • the first electrode plate 3 is located at the upper portion of the reaction chamber 7, so it is also referred to as the upper electrode; and the second electrode plate 4 is connected to the ground through the outer casing of the reaction chamber 7, so it is also referred to as a ground electrode.
  • the matching device 8, the power distribution device 9 and the power supply device 1 are usually located outside the reaction chamber 7, and the vacuum obtaining device obtains and maintains an appropriate degree of vacuum inside the reaction chamber 7 during plasma processing, and the gas input device is used to process the gas It is input into the reaction chamber 7.
  • the reaction chamber 7 also has an exhaust port 6, and the intake holes 5 of the reaction chamber 7 are distributed on the first electrode plate 3.
  • a substrate to be processed (not shown) is located above the second electrode plate 4 and faces the first electrode plate 3.
  • the process gas is introduced into the reaction chamber 7 from the air inlet hole 5, and the process gas is excited by the power source between the first electrode plate 3 and the second electrode plate 4 to generate a plasma, and the plasma reacts with the substrate.
  • the reaction product is deposited on the substrate to form a film, and the exhaust gas generated by the reaction is discharged from the exhaust port 6.
  • the first sub-electrode plate 31 is a rectangular frame
  • the second sub-electrode plate 32 is also rectangular in shape and is disposed inside the rectangular frame of the first sub-electrode plate 31, that is, two sub-pieces.
  • the electrode plates 31 and 32 are arranged in a concentric nesting manner, and the second sub-electrode plate 32 is located in the hollow region of the first sub-electrode plate 31, and has a certain gap between the inner and outer two sub-electrode plates 31 and 32, and mutual insulation.
  • the distribution unit is a capacitor
  • the power distribution device 9 includes a capacitor C1 and a capacitor C2.
  • Each capacitor is respectively connected to a sub-electrode plate of the first electrode plate 3, that is, The capacitor C1 is connected to the first sub-electrode plate 31, and the capacitor C2 is connected to the second sub-electrode plate 32.
  • Each capacitor and the corresponding sub-electrode form a distribution branch, and each of the distribution branches is Parallel form.
  • the power outputted by the power supply device 1 is impedance-matched by the matching device 8 and then input to the power distribution device 9, and the input power is distributed by the capacitor C1 and the capacitor C2 in the power distribution device 9, and then input to the first sub-child respectively.
  • the electrode plate 31 and the second sub-electrode plate 32 By distributing the power of the power supply device 1 and inputting it to the two sub-electrode plates 31, 32 of the first electrode plate 3, it is possible to have different electric field intensity distributions at the periphery and the center of the first electrode plate 3, avoiding the large-area electrode plates.
  • the edge effect and standing wave effect of the electric field distribution enable the plasma processing apparatus to obtain a uniform plasma distribution during the process and improve the uniformity of plasma processing.
  • a plate and two distribution units it may also include more than two distribution units and sub-electrode plates, that is, the power distribution device includes at least two distribution units, and the first electrode plate includes at least two sub-electrode plates Each of the distribution units is connected in parallel with the corresponding sub-electrode plates, and the respective sub-electrode plates are insulated from each other.
  • the power supply device is connected to the power distribution device through the matching device, and the power of the power source is distributed by the power distribution device into a plurality of portions corresponding to the number of the sub-electrode plates of the first electrode plate, and the power of each portion is separately input to the corresponding portion.
  • the sub-electrode plate which obtains an independent electric field distribution between each of the sub-electrode plates and the second electrode plate, thereby controlling the plasma generated under each sub-electrode plate provides a uniform plasma distribution by the PECVD apparatus provided by the close-in embodiment. Further, the uniformity of the film deposited can be improved.
  • the capacitors C1 and C2 in the power distribution device used in the above embodiment are adjustable capacitors, so that the power applied to each of the sub-electrode plates can be adjusted by adjusting the capacitance value connected to each of the sub-electrode plates.
  • the intensity and density of the plasma generated by each of the sub-electrode plates are adjusted to improve the uniformity of the plasma obtained by capacitive coupling discharge of the entire first electrode plate, thereby improving the uniformity of the plasma processing process results.
  • the two sub-electrode plates 31, 32 have through holes 5, and each sub-port
  • the through holes on the electrode plates are the same in size, shape, or distribution density.
  • the size, shape, or distribution density of the through holes on different sub-electrode plates may be different.
  • the distribution units in the power distribution device are all capacitors.
  • the distribution unit may also be an inductor.
  • FIG. 5 a schematic diagram of the circuit principle of the plasma processing apparatus when the capacitance in the distribution unit is replaced by an inductance is shown. 5 is different from the plasma processing apparatus shown in FIG. 4 in that: the distribution unit is an inductor, and the power distribution device 91 includes an inductor L1 and an inductor L2; each inductor is respectively connected to a sub-electrode plate of the first electrode plate.
  • the inductor L1 is connected to the first sub-electrode plate 31, and the inductor L2 is connected to the second sub-electrode plate 32; each inductor and the corresponding sub-electrode plate form a distribution branch, and each of the distribution branches is between It is in the form of parallel.
  • the inductor L1 and the inductor L2 are adjustable inductors.
  • the power applied to each of the sub-electrode plates can also be adjusted to adjust the intensity and density of the plasma generated by each of the sub-electrode plates, thereby The uniformity of the plasma obtained by capacitive coupling discharge of the entire first electrode plate is improved, thereby improving the uniformity of the plasma processing result.
  • the distribution unit is not limited to the above-described form, but may also include both a capacitor and an inductor, and each of the distribution units may be the same or different.
  • the distribution unit having other circuit components obtained by those skilled in the art according to the basic idea of the present invention is regarded as the protection scope of the present invention as long as the object of the present invention can be achieved.
  • the first electrode plate given in the above embodiment includes two sub-electrode plates, which are not limited thereto, and may have two or more sub-electrode plates.
  • the distribution unit in the power distribution device is also two or more. .
  • Embodiment 2 A second embodiment of the plasma processing apparatus provided by the present invention will be described in detail below with reference to the accompanying drawings.
  • Embodiment 2 A second embodiment of the plasma processing apparatus provided by the present invention will be described in detail below with reference to the accompanying drawings.
  • FIG. 6 is a circuit schematic diagram of a plasma processing apparatus provided in Embodiment 2.
  • the plasma processing apparatus provided in the second embodiment is substantially similar to the plasma processing apparatus provided in the first embodiment, and the first electrode plate also includes a first sub-electrode plate 31 and a second
  • the sub-electrode plate 32 is different from the two embodiments in that the power distribution device 92 includes a first capacitor C1 and a second capacitor C2, and the matching device 8 is directly connected to the first sub-electrode plate 31.
  • the second capacitor C2 is connected in parallel with the second sub-electrode plate 32 and then connected in series with the first capacitor C1 and then connected to the matching device 8.
  • a parallel branch corresponding to the second sub-electrode plate 32 and the second capacitor C2 is connected to the first capacitor C1 to form a series circuit A, which is further connected in parallel with the first sub-electrode plate 31.
  • Embodiment 3 A plasma processing apparatus according to a third embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
  • the first electrode plate in the plasma processing apparatus includes three sub-electrode plates, that is, a first sub-electrode plate 31', a second sub-electrode plate 32', and a third sub-electrode plate 33';
  • the power distribution device 9' in the processing device includes a first capacitor C1, a second capacitor C2, a third capacitor C3, and a fourth capacitor C4.
  • the first electrode plate in the third embodiment adds a sub-electrode plate
  • the power distribution device 9' adds a third capacitor C3 and a fourth capacitor C4, and
  • the fourth capacitor C4 is connected in parallel with the third sub-electrode plate 33' and then connected in series with the third capacitor C3 to form a series circuit B.
  • the series circuit B is further connected in parallel with the second electrode plate 32'.
  • the capacitor in the embodiment is a tunable capacitor, and the power applied to each sub-electrode plate can be adjusted by adjusting the capacitance of the capacitor (for example, capacitors C1, C2, C3, C4, etc.), thereby further improving The uniformity of the plasma generated by the capacitive coupling discharge improves the uniformity of the plasma processing results.
  • the capacitors described above can also be replaced by inductors or by a combination of inductors and capacitors.
  • the shapes of the first sub-electrode plate 31', the second sub-electrode plate 32' and the third sub-electrode plate 33' described in this embodiment they may be circularly nested, for example, as shown in FIG.
  • the concentric circular sub-electrode plates (the first sub-electrode plate 31', the second sub-electrode plate 32', and the third sub-electrode plate 33) are nested one on another, radially arranged according to the radius, and the smallest radius
  • the electrode plate 33' is located at the center position, half
  • the circular sub-electrode plate 31' having the largest diameter is located at the outermost position.
  • the distribution density of the through holes on the three sub-electrode plates is different, and the rule of gradually increasing from the inside to the outside is exhibited, that is, the distribution density of the through holes on the third sub-electrode plate 33' at the center position is the lowest, at the outermost periphery.
  • the distribution of the through holes on the first sub-electrode plate 31' at the position is the highest, and the distribution density of the through holes on the second sub-electrode plate 32' between the two is between the first sub-electrode plate 31' and the third sub- Between the electrode plates 33'.
  • the shape of the sub-electrode plate is not limited to the shapes in the above embodiments, and may be rectangular, square, circular, elliptical or a combination thereof, or other based on the present invention. Equivalent substitutions and obvious variations made by the mind.
  • the distribution density of the through holes on each of the sub-electrode plates may be the same or different.
  • the distribution of the through holes on the intermediate sub-electrode plates is relatively sparse, and the through-holes of the peripheral sub-electrode plates are densely distributed.
  • the apertures and shapes of the through holes on the respective sub-electrode plates may be the same or different.
  • the shape, pore size and distribution density of the vias are related to the selection of the input power of each sub-supply and can be obtained by a limited number of tests.
  • the formula may be a parallel distribution, a central symmetric distribution, an axisymmetric distribution or a concentric nested distribution, or other equivalent substitutions and obvious variations based on the idea of the present invention.
  • a parallel distribution a central symmetric distribution, an axisymmetric distribution or a concentric nested distribution, or other equivalent substitutions and obvious variations based on the idea of the present invention.
  • the power arranging device has a distribution unit corresponding to each of the four sub-electrode plates.
  • the number of sub-electrode plates included in the first electrode plate may not be limited to two or three as described in the foregoing embodiments, but may be more, that is,
  • the first electrode plate may include N sub-electrode plates, and N is an integer greater than or equal to 3.
  • each of the sub-electrode plates may be respectively connected with different gas input passages, respectively controlling the flow rate of the gas flowing out of each sub-electrode plate to adjust the gas field distribution of the process gas above the substrate, thereby adjusting the plasma distribution, and Further improve the uniformity of the plasma processing process results.
  • the foregoing embodiment describes the plasma processing apparatus provided by the present invention by taking a PECVD apparatus as an example, but in practical applications, the foregoing first electrode plate includes at least two sub-electrode plates and the power distribution device connects the at least Such a structure of two sub-electrode plates can also be applied to other plasma processing apparatuses such as etching apparatuses, and such plasma processing apparatuses are also considered as the protection scope of the present invention. That is, the above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention in any way.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

等离子体加工设备
技术领域
本发明涉及等离子体加工技术领域, 特别涉及一种等离子体加工设备。 背景技术
随着等离子体技术的不断发展, 等离子体加工设备广泛地被应用于集成 电路或光伏电池的制造工艺中。 适用于刻蚀、 沉积或其他工艺的等离子体加 工设备的研发对于集成电路或光伏电池制造工艺的发展来说是至关重要的。
目前在集成电路或光伏电池产业中, 通常釆用平行板电容耦合等离子体
( Capacitively Coupled Plasma, CCP )加工设备。 这种设备产生等离子体的 原理非常简单, 通常情况是在其中一个电极板上加载射频功率, 另一电极板 接地, CCP的产生和维持主要依靠位于两个电极板间的射频电场。
例如, 图 1就示出一种在实际生产中常见的平行板电容耦合型 PECVD
( Plasma Enhanced Chemical Vapor Deposition , 等离子体增强化学气相沉积 ) 设备。 该 PECVD设备包括: 反应室 80、 反应室 80外的电源 10和匹配耦合 装置 (图未示)、 位于反应室 80内且与电源 10连接的上电极 20、 和反应室 80内的接地电极 30。 所述上电极板 20中具有密布的进气孔 40, 反应室 80 的下方具有排气口 50, 待处理的衬底置于接地电极 30上。
PECVD设备工作时, 在适当的真空度下, 工艺气体从进气孔 40导入反 应室 80内,工艺气体在上电极 20与接地电极 30之间受电源激励产生等离子 体 60, 等离子体 60与衬底发生反应, 反应生成物沉积在衬底上生成薄膜, 而反应产生的废气由排气口 50排出。
然而目前,随着集成电路或光伏电池产业对产率的要求不断提高,也即, 在保证刻蚀或沉积工艺质量的前提下,相同的时间内需要生产出更多的产品。 为适应这一要求, 设备生产厂商不断增大等离子体设备的尺寸, 从而在一次 工艺中能够加工更大面积的晶片, 以提高设备的产率。
尽管通常所釆用的平行板型 CCP设备相对其他等离子体设备(如电子 回旋共振等离子体、 感应耦合等离子体设备) 而言, 能够产生相对比较均匀 的等离子体, 但是随着反应室尺寸、 电极板面积的增加, 尤其是在电源的频 率较高时, 这种平行板型 CCP设备会出现比较明显的驻波效应和边缘效应, 此驻波效应和边缘效应对产生的等离子体的均匀性影响较大, 通常会出现电 极板中心等离子体密度高, 边缘等离子体密度低的现象, 进而会影响等离子 体加工工艺结果的均匀性。 发明内容
本发明解决的问题是提供一种等离子体加工设备, 其能够获得均匀的等 离子体分布, 改善等离子体加工工艺结果的均匀性。
为解决上述问题, 本发明提供一种等离子体加工设备, 包括: 相对设置 的第一电极板和第二电极板, 匹配装置, 功率分配装置和电源装置;
所述第一电极板包括至少两个相互绝缘的子电极板,
所述电源装置通过所述匹配装置与所述功率分配装置连接,
所述功率分配装置与所述第一电极板连接, 用于将电源装置的功率输入 并分配到所述各个子电极板, 所述功率分配装置至少包括电容和 /或电感。
所述功率分配装置包括与所述子电极板数量相同、 分别单独连接各个子 电极板的至少两个分配单元。
所述各个分配单元可以相同或不同, 所述分配单元包括电容和 /或电感。 所述电感为可调电感。
所述电容为可调电容。
所述至少两个子电极板为第一子电极板、 第二子电极板, 所述功率分配 装置包括第一电容、第二电容,所述匹配装置与所述第一子电极板直接连接, 所述第二电容与所述第二子电极板并联后再与所述第一电容串联连接到所述 匹配装置。
所述至少两个子电极板表示 N个子电极板,相应地, 所述功率分配装置 包括 M个电容, 第 M电容与第 N子电极板并联后再与第 M-1电容串联形成 第 N-1串联电路, 所述第 N-1串联电路再与第 N-1子电极板并联再与第 M-2 电容并联, 而后与第 M-3电容串联形成第 N-2串联电路; 以此类推, 直至前 述所有电容和子电极板所形成的串联电路与第 2子电极板并联再与第 2电容 并联, 而后与第 1电容串联形成第 1 串联电路, 并且该串联电路再与第 1子 电极板并联而连接至匹配装置, 其中, M=2 ( N-1 ), N为大于等于 3的整数。
所述电容为可调电容。 电极板的平面内并列分布、 中心对称分布、 轴对称分布或同心嵌套式分布。
所述至少两个子电极板的形状可以相同也可以不同, 所述子电极板为矩 形、 正方形、 圓形或椭圓形。
上述技术方案具有以下优点:
所述等离子体加工设备中的功率分配装置包括至少两个分配单元、 所述 第一电极板包括至少两个子电极板, 各个分配单元与对应的子电极板连接后 并联在一起, 各个子电极板间彼此绝缘。 此时, 电源装置通过匹配装置连接 到功率分配装置, 通过功率分配装置电源的功率被分配成与第一电极板的子 电极板数量对应的若干个部分, 每一部分的功率都单独输入到对应的子电极 板, 在每个子电极板和第二电极板之间获得独立的电场分布, 进而控制每一 个子电极板下方产生的等离子体密度和强度, 从而实现对工艺结果进行调节 以获取均匀的工艺结果。 另外功率分配装置是由一些电容和 /或电感组合而 成, 当射频电流流过时, 电容和电感不会像电阻一样消耗能量, 可以保证射 频功率耦合到电极的效率。 附图说明
通过附图所示, 本发明的上述及其它目的、 特征和优势将更加清晰。 在 全部附图中相同的附图标记指示相同的部分。 并未刻意按实际尺寸等比例缩 放绘制附图, 重点在于示出本发明的主旨。
图 1一种平行板电容耦合型 PECVD设备的示意图;
图 2为实施例一中等离子体加工设备的示意图;
图 3为图 2中第一电极板的仰视图;
图 4为图 2中等离子体加工设备的电路原理图;
图 5为实施例一中另一等离子体加工设备的电路原理示意图; 图 6为实施例二中等离子体加工设备的电路原理图;
图 7为实施例二中另一等离子体加工设备的电路原理示意图; 图 8为图 7中第一电极板的仰视图;
图 9为实施例二中另一第一电极板的示意图。 具体实施方式
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图 对本发明的具体实施方式做详细的说明。 下文中, 结合示意图详述本发明实 施例时, 为便于说明, 表示装置结构的剖面图会不依一般比例作局部放大, 而且所述示意图只是示例, 其在此不应限制本发明保护的范围。 此外, 在实 际制作中应包含长度、 宽度及深度的三维空间尺寸。
为突出本发明的特点, 附图中没有给出与本发明的发明点必然直接相关 的部分, 例如, 真空获得装置、 气体输入装置等。
在下面的描述中阐述了很多具体细节以便于充分理解本发明, 但是本发 明还可以釆用其他不同于在此描述的其它方式来实施, 因此本发明不受下面 公开的具体实施例的限制。
如前所述, 随着衬底加工和处理面积的增大, 现有等离子体加工设备面 临着诸如大面积刻蚀或沉积等工艺的工艺结果均匀性问题。 并且, 随着反应 室尺寸、 电极板面积的增加, 尤其是电源的频率较高时, 釆用现有等离子体 加工设备时会出现比较明显的驻波效应和边缘效应, 此驻波效应和边缘效应 对产生的等离子体的均匀性影响较大, 通常会出现电极板中心等离子体密度 高, 边缘等离子体密度低的现象, 进而会影响等离子体加工工艺结果的均匀 性。 基于此, 本发明提供一种等离子体加工设备。 所述设备具有包括至少两 个子电极板的第一电极板, 通过与所述第一电极板连接的功率分配装置将电 源装置的功率输入并分配到所述各个子电极板, 从而能够抑制驻波效应和边 缘效应, 获得均匀的等离子体分布, 并提高等离子体加工工艺的均匀性。
以下以 PECVD设备为例并结合附图介绍本发明所述等离子体加工设备 的具体实施方式。
实施例一
请一并参阅图 2、 图 3和图 4, 其中, 图 2为本实施例中等离子体加工 设备的结构示意图, 图 3为图 2中第一电极板的仰视图, 图 4为图 2中等离 子体加工设备的电路原理图。
如图 2所示, 本实施例中的等离子体加工设备包括: 反应室 7、 位于所 述反应室 7中并相对设置的第一电极板 3和第二电极板 4、 与所述第一电极 板 3连接的匹配装置 8、 功率分配装置 9、 电源装置 1、 真空获得装置(图中 未示出) 以及气体输入装置等(图中未示出)。
其中, 所述第一电极板 3包括两个相互绝缘的子电极板 31和子电极板
32 (见图 3 )。 可以理解, 在实际应用中, 第一电极板 3所包含的子电极板的 数量可以不局限于本实施例中所述的两个, 而是也可以为更多个。
所述电源装置 1通过所述匹配装置 8与所述功率分配装置 9连接。 本实 施例中电源装置 1可以为射频电源、 低频电源和高频电源中的一种。
所述功率分配装置 9与所述第一电极板 3连接, 用于将电源装置 1的功 率输入并分配到所述两个子电极板 31、 32。 本实施例中, 功率分配装置 9包括两个分配单元, 其中每一个分配单元 均单独连接如前所述的一个子电极板, 并且各个分配单元可以相同。 同样可 以理解的是, 功率分配装置 9所包含的分配单元的数量与第一电极板 3所包 含的子电极板的数量相同, 也就是说, 当第一电极板 3所包含的子电极板的 数量多于两个时, 功率分配装置 9所包含的分配单元的数量也相应地多于两 个并且与第一电极板 3所包含的子电极板的数量相等。
所述第一电极板 3位于反应室 7的上部, 故其也称为上电极; 而第二电 极板 4通过反应室 7的外壳与大地接通, 故其也称为接地电极。 匹配装置 8、 功率分配装置 9和电源装置 1通常位于反应室 7的外部, 真空获得装置使反 应室 7内部在等离子体加工过程中获得并保持适当的真空度, 气体输入装置 用于将工艺气体输入进反应室 7中。
反应室 7还具有排气口 6,反应室 7的进气孔 5分布在第一电极板 3上。 待加工的衬底(图中未示出)位于所述第二电极板 4之上并朝向第一电极板 3。 等离子体加工过程中, 工艺气体从进气孔 5导入反应室 7内, 工艺气体在 第一电极板 3与第二电极板 4之间受电源激励产生等离子体, 等离子体与衬 底发生反应, 反应生成物沉积在衬底上生成薄膜, 而反应产生的废气由排气 口 6排出。
如图 3所示, 本实施例中, 第一子电极板 31为矩形框, 第二子电极板 32的形状同样为矩形并且置于第一子电极板 31的矩形框内部, 即, 两个子 电极板 31、 32的排布方式为同心嵌套式, 第二子电极板 32位于第一子电极 板 31的空心区域内, 内外两个子电极板 31、 32之间具有一定的间隙, 并且 相互绝缘。
如图 4所示, 本实施例中, 所述分配单元为电容, 所述功率分配装置 9 包括电容 Cl、 电容 C2; 每一个电容分别与第一电极板 3的一个子电极板相 连, 也即, 所述电容 C1与第一子电极板 31连接、 电容 C2与第二子电极板 32连接; 各电容与对应的子电极组成一个分配支路, 每一个分配支路之间是 并联的形式。
可见, 电源装置 1输出的功率, 经由匹配装置 8进行电路阻抗匹配后输 入到功率分配装置 9, 通过功率分配装置 9中的电容 C1和电容 C2对输入功 率进行分配, 而后分别输入到第一子电极板 31和第二子电极板 32。 通过将 电源装置 1的功率进行分配并输入到第一电极板 3的两个子电极板 31、 32, 可以使第一电极板 3的外围和中央具有不同的电场强度分布, 避免大面积电 极板的电场分布的边缘效应和驻波效应, 从而使该等离子体加工设备在工艺 过程中能够获得均匀的等离子体分布, 改善等离子体加工的均匀性。 极板和两个分配单元的情况, 也可以包括两个以上的分配单元和子电极板, 也即, 所述功率分配装置包括至少两个分配单元、 所述第一电极板包括至少 两个子电极板, 各个分配单元与对应的子电极板连接后并联在一起, 各个子 电极板间彼此绝缘。
此时, 电源装置通过匹配装置连接到功率分配装置, 通过功率分配装置 将电源的功率分配成与第一电极板的子电极板数量对应的若干个部分, 每一 部分的功率都单独输入到对应的子电极板, 在每个子电极板和第二电极板之 间获得独立的电场分布, 从而控制每一个子电极板下方产生的等离子体的密 施例提供的 PECVD设备能够获得均匀的等离子体分布, 进而可提高沉积所 得薄膜的均匀性。
优选的, 上述实施例所釆用的功率分配装置中的电容 Cl、 C2为可调电 容, 这样可以通过调节连接在每一个子电极板上的电容值, 来调节加载到每 个子电极板的功率,从而调节每个子电极板所产生的等离子体的强度和密度, 以便提高整个第一电极板容性耦合放电所获得的等离子体的均匀性, 进而改 善等离子体加工工艺结果的均匀性。
此外, 如图 3所示, 所述两个子电极板 31、 32上具有通孔 5 , 且每个子 电极板上的通孔的大小、 形状或分布密度相同。 当然, 在实际应用中, 不同 子电极板上的通孔的大小、 形状或分布密度可以不同。
以上实施例中, 所述功率分配装置中的分配单元均为电容, 实际上, 所 述分配单元也可以为电感。 如图 5所示, 其中就示出了以电感替代分配单元 中的电容时的等离子体加工设备的电路原理示意图。 图 5与图 4所示的等离 子体加工设备的区别在于: 所述分配单元为电感,所述功率分配装置 91包括 电感 Ll、 电感 L2; 每一个电感分别与第一电极板的一个子电极板相连, 也 即,所述电感 L1与第一子电极板 31连接、电感 L2与第二子电极板 32连接; 各电感与对应的子电极板组成一个分配支路, 每一个分配支路之间是并联的 形式。 优选的, 所述电感 Ll、 电感 L2为可调电感。
这样, 通过调节连接在每一个子电极板上的电感值, 也可以实现对加载 到每个子电极板的功率进行调节, 以便对每个子电极板所产生的等离子体的 强度和密度进行调节, 从而提高整个第一电极板容性耦合放电所获得的等离 子体的均匀性, 进而改善等离子体加工工艺结果的均匀性。
可以理解的是, 在实际应用中, 所述分配单元并不局限于上面所述的形 式,而是也可以既包括电容又包括电感, 而且各个分配单元可以相同或不同。 本领域内技术人员根据本发明的基本思想而获得的具有其他电路组成形式的 分配单元, 只要能够实现本发明的目的, 都视为本发明的保护范围。
以上实施例中给出的第一电极板包括两个子电极板, 实际并不限于此, 也可以具有两个以上子电极板, 相应的, 所述功率分配装置中的分配单元也 为两个以上。
下面结合附图详细介绍本发明提供的等离子体加工设备的第二实施例。 实施例二
图 6为实施例二提供的等离子体加工设备的电路原理图。
如图 6所示, 实施例二提供的等离子体加工设备与实施例一所提供的等 离子体加工设备基本相似, 所述第一电极板同样包括第一子电极板 31、 第二 子电极板 32, 但是两个实施例的区别在于: 所述功率分配装置 92包括第一 电容 Cl、 第二电容 C2, 所述匹配装置 8与所述第一子电极板 31直接连接, 所述第二电容 C2与所述第二子电极板 32并联后再与所述第一电容 C1串联, 而后连接到所述匹配装置 8。
相当于第二子电极板 32和第二电容 C2的并联支路与第一电容 C1连接 组成串联电路 A, 该串联电路 A再与所述第一子电极板 31并联。
下面结合附图详细介绍本发明第三实施例提供的等离子体加工设备。 实施例三
请参阅图 7, 其中示出了实施例三提供的等离子体加工设备的电路原理 图。 如图所示, 该等离子体加工设备中的第一电极板包括三个子电极板, 即 第一子电极板 31'、第二子电极板 32'和第三子电极板 33'; 该等离子体加工设 备中的功率分配装置 9'包括第一电容 Cl、第二电容 C2、第三电容 C3和第四 电容 C4。
与图 6所示第二实施例相比, 第三实施例中的第一电极板增加一个子电 极板, 相应的, 功率分配装置 9'增加了第三电容 C3和第四电容 C4, 并且第 四电容 C4与第三子电极板 33'并联后再与所述第三电容 C3 串联以组成串联 电路 B , 所述串联电路 B再与所述第二电极板 32'并联。
优选的, 本实施例中的所述电容为可调电容, 可以通过调节电容(例如 电容 Cl、 C2、 C3、 C4等) 的电容值, 来调节加载到每个子电极板的功率, 从而进一步改善容性耦合放电所产生的等离子体的均勾性, 进而提高等离子 体加工工艺结果的均勾性。 当然以上所述的电容也可以用电感替代, 也可以 用电感和电容的组合替代。
至于本实施例中所述的第一子电极板 31'、 第二子电极板 32'和第三子电 极板 33'形状, 其可以为圓形嵌套式, 例如图 8所示, 三个同心的圓形子电极 板(第一子电极板 31'、第二子电极板 32'和第三子电极板 33,)相互嵌套设置, 按照半径的大小放射状排列,半径最小的圓形子电极板 33'位于中央位置,半 径最大的圓形子电极板 31 '位于最外围位置。并且,三个子电极板上的通孔的 分布密度不同, 呈现由内到外逐渐增大的规则, 即, 处于中心位置的第三子 电极板 33'上的通孔分布密度最低, 处于最外围位置的第一子电极板 31 '上的 通孔分布密度最高,而位于二者之间的第二子电极板 32'上的通孔分布密度介 于第一子电极板 31 '和第三子电极板 33'之间。
需要指出的是, 在实际应用中, 子电极板的形状并不局限于以上几个实 施例中的形状, 其可以为矩形、 正方形、 圓形、 椭圓形或其组合, 或者其他 基于本发明的思想所作的等同替代和明显变型。 并且, 各个子电极板上的通 孔的分布密度可以相同, 也可以不同, 优选的, 中间的子电极板上的通孔分 布相对较疏, 外围的子电极板的通孔分布较密。 各个子电极板上通孔的孔径 和形状可以相同, 也可以不同。 总之, 通孔的形状、 孔径大小及分布密度与 各个子电源的输入功率的选择有关, 可以通过有限次的试验获得。
而且,
式, 可以为并列分布、 中心对称分布、 轴对称分布或同心嵌套式分布, 或者 其他基于本发明的思想所作的等同替代和明显变型。 例如, 图 9所示, 四个 矩形的子电极板并列分布, 各个子电极板之间具有间隙并且彼此绝缘, 相应 地, 功率配置装置中具有与四个子电极板分别对应的分配单元。
还需要指出的是, 在实际应用中, 第一电极板所包含的子电极板的数量 可以不局限于前述实施例中所述的两个或者三个,而是也可以为更多个, 即, 第一电极板可以包含 N个子电极板, N为大于等于 3的整数。 相应地, 所述 功率分配装置可以包括 N个电容,其中每一个电容均单独连接一个子电极板, 如实施例一所示的那样; 当然, 类似于第二和第三实施例, 所述功率分配装 置也可以包括 M个电容, M=2 ( N-1 ), N为大于等于 3的整数, 其中, 第 M 电容与第 N子电极板并联后再与第 M-1电容串联形成第 N-1串联电路,所述 第 N-1 串联电路再与第 N-1子电极板并联再与第 M-2电容并联, 而后与第 M-3电容串联形成第 N-2串联电路; 以此类推, 直至前述所有电容和子电极 板所形成的串联电路与第 2子电极板并联再与第 2电容并联, 而后与第 1电 容串联形成第 1串联电路, 并且该串联电路再与第 1子电极板并联而连接至 匹配装置。 可见, 每个子电极板都对应一个该子电极板和两个电容组成的混 联电路。
此外, 所述各个子电极板还可以分别连接不同的气体输入通路, 分别控 制各个子电极板流出的气体流量, 以调整工艺气体在衬底上方的气场分布, 进而调整等离子体的分布, 并进一步提高等离子体加工工艺结果的均匀性。
可以理解的是, 上述实施例以 PECVD设备为例对本发明提供的等离子 体加工设备进行了说明, 但是在实际应用中, 前述第一电极板包括至少两个 子电极板并且功率分配装置连接所述至少两个子电极板这样的结构, 也可以 适用于诸如刻蚀设备等的其他等离子体加工设备, 而这样的等离子体加工设 备也视为本发明的保护范围。 也就是说, 以上所述, 仅是本发明的较佳实施 例而已, 并非对本发明作任何形式上的限制。
还可以理解的是, 虽然本发明已以较佳实施例披露如上, 然而上述实施 例并非用以限定本发明。 对于任何熟悉本领域的技术人员而言, 在不脱离本 发明技术方案范围情况下, 都可利用上述揭示的技术内容对本发明技术方案 作出许多可能的变动和修饰, 或修改为等同变化的等效实施例。 因此, 凡是 未脱离本发明技术方案的内容, 依据本发明的技术实质对以上实施例所做的 任何简单修改、 等同变化及修饰, 均仍属于本发明技术方案保护的范围内。

Claims

利 要 求 书
1、 一种等离子体加工设备, 其特征在于, 包括: 相对设置的第一电极 板和第二电极板, 匹配装置, 功率分配装置和电源装置;
所述第一电极板包括至少两个相互绝缘的子电极板,
所述电源装置通过所述匹配装置与所述功率分配装置连接,
所述功率分配装置与所述第一电极板连接, 用于将电源装置的功率输入 并分配到所述各个子电极板, 所述功率分配装置至少包括电容和 /或电感。
2、 根据权利要求 1 所述的等离子体加工设备, 其特征在于, 所述功率 分配装置包括至少两个分配单元, 并且分配单元的数量与所述子电极板的数 量相同, 每一个所述的分配单元均单独连接一个子电极板。
3、 根据权利要求 2所述的等离子体加工设备, 其特征在于, 所述各个 分配单元可以相同或不同, 所述分配单元包括电容和 /或电感。
4、 根据权利要求 1或 3所述的等离子体加工设备, 其特征在于, 所述 电感为可调电感。
5、 根据权利要求 1或 3所述的等离子体加工设备, 其特征在于, 所述 电容为可调电容。
6、 根据权利要求 1 所述的等离子体加工设备, 其特征在于, 所述至少 两个子电极板为第一子电极板、 第二子电极板, 所述功率分配装置包括第一 电容、 第二电容, 所述匹配装置与所述第一子电极板直接连接, 所述第二电 容与所述第二子电极板并联后再与所述第一电容串联连接到所述匹配装置。
7、 根据权利要求 6所述的等离子体加工设备, 其特征在于, 所述至少 两个子电极板表示 N个子电极板, 相应地, 所述功率分配装置包括 M个电 容, 第 M电容与第 N子电极板并联后再与第 M-1电容串联形成第 N-1 串联 电路, 所述第 N-1串联电路再与第 N-1子电极板并联再与第 M-2电容并联, 而后与第 M-3电容串联形成第 N-2串联电路; 以此类推, 直至前述所有电容 和子电极板所形成的串联电路与第 2子电极板并联再与第 2电容并联, 而后 与第 1电容串联形成第 1 串联电路, 并且该串联电路再与第 1子电极板并联 而连接至匹配装置, 其中, M=2 ( N-1 ), N为大于等于 3的整数。
8、 根据权利要求 6或 7所述的等离子体加工设备, 其特征在于, 所述 电容为可调电容。
9、 根据权利要求 1 所述的等离子体加工设备, 其特征在于, 所述至少 两个子电极板釆用下述分布方式: 即, 在平行于所述第二电极板的平面内并 列分布、 中心对称分布、 轴对称分布或同心嵌套式分布。
10、 根据权利要求 1或 9所述的等离子体加工设备, 其特征在于, 所述 至少两个子电极板的形状可以相同也可以不同, 所述子电极板为矩形、 正方 形、 圓形或椭圓形。
PCT/CN2009/074532 2008-12-09 2009-10-20 等离子体加工设备 WO2010066151A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/127,665 US8547021B2 (en) 2008-12-09 2009-10-20 Plasma processing apparatus
SG2011041431A SG171466A1 (en) 2008-12-09 2009-10-20 Plasma processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810224715.XA CN101754564B (zh) 2008-12-09 2008-12-09 等离子体加工设备
CN200810224715.X 2008-12-09

Publications (1)

Publication Number Publication Date
WO2010066151A1 true WO2010066151A1 (zh) 2010-06-17

Family

ID=42242337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074532 WO2010066151A1 (zh) 2008-12-09 2009-10-20 等离子体加工设备

Country Status (5)

Country Link
US (1) US8547021B2 (zh)
KR (1) KR20110091875A (zh)
CN (1) CN101754564B (zh)
SG (1) SG171466A1 (zh)
WO (1) WO2010066151A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974739A (zh) * 2010-11-19 2011-02-16 理想能源设备有限公司 等离子体增强化学气相沉积装置
CN103026800A (zh) * 2010-07-30 2013-04-03 株式会社普来马特 Rf功率分配装置和rf功率分配方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9530618B2 (en) 2012-07-06 2016-12-27 Infineon Technologies Ag Plasma system, chuck and method of making a semiconductor device
WO2014168876A2 (en) * 2013-04-08 2014-10-16 Perkinelmer Health Sciences, Inc. Capacitively coupled devices and oscillators
CN103681199A (zh) * 2013-12-11 2014-03-26 苏州市奥普斯等离子体科技有限公司 一种真空远区等离子体处理装置
JP2018028109A (ja) * 2014-12-22 2018-02-22 旭硝子株式会社 プラズマcvd装置
CN107301941B (zh) * 2016-04-14 2019-04-23 北京北方华创微电子装备有限公司 等离子体处理设备及其操作方法
CN105931940B (zh) 2016-06-01 2018-09-21 京东方科技集团股份有限公司 一种电感耦合等离子体装置
US10410844B2 (en) * 2016-12-09 2019-09-10 Varian Semiconductor Equipment Associates, Inc. RF clean system for electrostatic elements
CN108271307B (zh) * 2016-12-30 2019-11-05 中微半导体设备(上海)股份有限公司 电感耦合等离子体处理装置与等离子体产生装置
JP7195307B2 (ja) * 2018-05-02 2022-12-23 東京エレクトロン株式会社 上部電極およびプラズマ処理装置
CN109659217A (zh) * 2018-12-18 2019-04-19 沈阳拓荆科技有限公司 用于多等离子处理腔的射频系统
KR20240046497A (ko) * 2021-08-20 2024-04-09 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144079A (ja) * 1999-09-03 2001-05-25 Ulvac Japan Ltd プラズマ処理装置
CN1577730A (zh) * 2003-07-14 2005-02-09 周星工程股份有限公司 使用混合耦合等离子体的装置
US20050031796A1 (en) * 2003-08-07 2005-02-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for controlling spatial distribution of RF power and plasma density
CN1957437A (zh) * 2004-05-28 2007-05-02 拉姆研究有限公司 包括响应dc偏压控制的真空等离子体处理器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488807B1 (en) * 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US5653811A (en) * 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
US20030079983A1 (en) * 2000-02-25 2003-05-01 Maolin Long Multi-zone RF electrode for field/plasma uniformity control in capacitive plasma sources
JP3846881B2 (ja) * 2003-04-04 2006-11-15 日本エー・エス・エム株式会社 プラズマ処理装置及びシリコン酸化膜を形成する方法
JP3759519B2 (ja) * 2003-08-05 2006-03-29 株式会社京三製作所 高周波電力分配装置
KR20080053167A (ko) * 2006-12-08 2008-06-12 주식회사 테스 플라즈마 처리 장치
KR101297711B1 (ko) * 2007-02-09 2013-08-20 한국과학기술원 플라즈마 처리장치 및 플라즈마 처리방법
TW200834671A (en) * 2007-02-12 2008-08-16 Innolux Display Corp Plasma enhanced chemical vapor deposition device
US8317969B2 (en) * 2008-03-25 2012-11-27 Tokyo Electron Limited Plasma processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144079A (ja) * 1999-09-03 2001-05-25 Ulvac Japan Ltd プラズマ処理装置
CN1577730A (zh) * 2003-07-14 2005-02-09 周星工程股份有限公司 使用混合耦合等离子体的装置
US20050031796A1 (en) * 2003-08-07 2005-02-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for controlling spatial distribution of RF power and plasma density
CN1957437A (zh) * 2004-05-28 2007-05-02 拉姆研究有限公司 包括响应dc偏压控制的真空等离子体处理器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026800A (zh) * 2010-07-30 2013-04-03 株式会社普来马特 Rf功率分配装置和rf功率分配方法
US9736919B2 (en) 2010-07-30 2017-08-15 Plasmart, Inc. RF power distribution device and RF power distribution method
CN101974739A (zh) * 2010-11-19 2011-02-16 理想能源设备有限公司 等离子体增强化学气相沉积装置

Also Published As

Publication number Publication date
SG171466A1 (en) 2011-07-28
CN101754564A (zh) 2010-06-23
US20110241547A1 (en) 2011-10-06
CN101754564B (zh) 2014-02-19
US8547021B2 (en) 2013-10-01
KR20110091875A (ko) 2011-08-16

Similar Documents

Publication Publication Date Title
WO2010066151A1 (zh) 等离子体加工设备
JP5749020B2 (ja) Rf電力をプラズマチャンバに結合するための装置
KR102515809B1 (ko) 정전 척들의 전극들의 파라미터들을 설정하고 조정하기 위한 임피던스들을 갖는 튜닝 회로들을 포함하는 rf 튜닝 시스템들
JP5524076B2 (ja) プラズマチャンバへrf電力を結合する装置
JP5231308B2 (ja) プラズマ処理装置
KR101160906B1 (ko) 용량 결합 플라즈마 반응기
US6288493B1 (en) Antenna device for generating inductively coupled plasma
CN101533764B (zh) 喷淋头和基板处理装置
CN103227091B (zh) 等离子体处理装置
US20110192349A1 (en) Phase-Modulated RF Power for Plasma Chamber Electrode
KR101615492B1 (ko) 복합형 플라즈마 반응기
KR101062461B1 (ko) 유도결합형 플라즈마 발생장치의 안테나 및 이를 포함하는 유도결합형 플라즈마 발생장치
KR20120094980A (ko) 플라즈마 처리장치
KR100712124B1 (ko) 용량결합형 플라즈마 처리 장치
KR101200726B1 (ko) 상하 다중 분할 전극이 구비된 플라즈마 반응기
KR20220100020A (ko) 튜닝 회로들에서 주파수 기반 임피던스 조정
JP2022530380A (ja) Rf静電チャックフィルタ回路
KR101585893B1 (ko) 복합형 플라즈마 반응기
US8872428B2 (en) Plasma source with vertical gradient
KR20100026529A (ko) 용량 결합 플라즈마 반응기 및 이를 이용한 플라즈마 처리 방법 및 이것에 의해 제조된 반도체 장치
TW202139786A (zh) 用於在電漿處理裝置中的一邊緣環處操控功率的設備及方法
CN101211687A (zh) 电感耦合线圈及应用该线圈的电感耦合等离子体装置
KR101609319B1 (ko) 복합형 플라즈마 반응기
KR101139824B1 (ko) 대면적의 플라즈마를 발생시키는 플라즈마 반응기
KR20100129369A (ko) 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13127665

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117014434

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09831428

Country of ref document: EP

Kind code of ref document: A1