WO2010064283A1 - 進行方向ベクトルの信頼度判定方法および信頼度判定装置 - Google Patents

進行方向ベクトルの信頼度判定方法および信頼度判定装置 Download PDF

Info

Publication number
WO2010064283A1
WO2010064283A1 PCT/JP2008/003635 JP2008003635W WO2010064283A1 WO 2010064283 A1 WO2010064283 A1 WO 2010064283A1 JP 2008003635 W JP2008003635 W JP 2008003635W WO 2010064283 A1 WO2010064283 A1 WO 2010064283A1
Authority
WO
WIPO (PCT)
Prior art keywords
reliability
direction vector
coordinates
traveling direction
target
Prior art date
Application number
PCT/JP2008/003635
Other languages
English (en)
French (fr)
Inventor
恒川潤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2009539959A priority Critical patent/JP4919116B2/ja
Priority to PCT/JP2008/003635 priority patent/WO2010064283A1/ja
Priority to US12/669,047 priority patent/US8154437B2/en
Priority to DE112008004067T priority patent/DE112008004067B4/de
Publication of WO2010064283A1 publication Critical patent/WO2010064283A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the present invention relates to a method for determining a reliability of a traveling direction vector and a reliability determining apparatus, and more particularly, by calculating the reliability of a traveling direction vector of another vehicle, thereby improving the reliability of collision prediction and taking safety measures.
  • the present invention relates to a reliability determination method and a reliability determination apparatus for a traveling direction vector that can reduce unnecessary operations of the apparatus.
  • This pre-crash safety system calculates the risk that another vehicle will collide with the host vehicle based on the radar device that acquires the position coordinate and relative speed of the other vehicle and the movement history of the position coordinate.
  • an electronic control unit ECU
  • the ECU calculates a traveling direction vector based on the movement history of the position coordinates of the other vehicle.
  • FIG. 7 is a diagram illustrating an example of a method of calculating the traveling direction vector.
  • the position coordinates K acquired by the radar apparatus are plotted according to the order of acquisition. Thereby, the movement history of the position coordinates is plotted.
  • a linear function approximation is performed on the movement history of the position coordinates using, for example, the least square method. Thereby, the traveling direction vector 10 is generated.
  • the position coordinates K acquired by the radar device include a normal recognition coordinate K1, a first extrapolated coordinate K2, and a second extrapolated coordinate K3, as illustrated in FIG. 7A. Note that the ratio and arrangement of the numbers of the normal recognition coordinates K1, the first extrapolation coordinates K2, and the second extrapolation coordinates K3 shown in FIG. 7A are examples, and are limited to this example. is not.
  • the normal recognition coordinates K1 are position coordinates that are normally recognized by the radar apparatus.
  • the direction in which the target (hereinafter referred to as other vehicle) is located with respect to the own vehicle and the distance between the other vehicle and the own vehicle are required.
  • the direction in which the other vehicle is located is represented by, for example, an angle ⁇ formed by a straight line connecting the other vehicle and the host vehicle and the traveling direction of the host vehicle.
  • the normal recognition coordinates K1 can be calculated based on these measured values of distance and direction.
  • R C ( ⁇ f U + ⁇ f D ) / (8f m ⁇ F) (1)
  • C speed of light
  • ⁇ f U beat frequency in the upstream section of the modulated wave (eg, triangular wave)
  • ⁇ f D beat frequency in the downstream section of the modulated wave
  • f m repetition frequency of the modulated wave
  • ⁇ F amplitude of the modulated wave
  • the angle ⁇ can be measured by a monopulse method, for example.
  • the angle ⁇ can be calculated using the following equation (2).
  • sin ⁇ 1 ( ⁇ / (2 ⁇ d)) (2)
  • phase difference between reflected waves received by two antennas
  • V ⁇ ( ⁇ f U ⁇ f D ) / 2 (Equation 3)
  • ⁇ f U Beat frequency in the upstream section of the modulated wave (eg, triangular wave)
  • ⁇ f D Beat frequency in the downstream section of the modulated wave
  • the first extrapolated coordinate K2 is a position coordinate estimated by the first extrapolation process.
  • the radar apparatus that periodically detects the target can detect the position coordinate and relative speed of the other vehicle in the previous detection cycle, but the other vehicle in the current detection cycle. This is a process for estimating the current position coordinates and relative speed based on the previously acquired measurement parameter values of the other vehicle when all of the measurement parameters for specifying the position coordinates and relative speed of the vehicle cannot be detected. .
  • the first extrapolation process is performed when the radar apparatus cannot measure both the beat frequency ⁇ f U in the upstream section and the beat frequency ⁇ f D in the downstream section as measurement parameters in the current detection cycle.
  • the beat frequency ⁇ f U of the upstream section and the beat frequency ⁇ f D of the downstream section acquired previously may be actual measured values or estimated values.
  • the first extrapolated coordinate K2 is continuous, or the first extrapolated coordinate K2 and the first The two extrapolated coordinates K3 are continuous.
  • the second extrapolated coordinates are position coordinates estimated by the second extrapolation process.
  • the radar apparatus that periodically detects the target can detect the position coordinate of the other vehicle in the previous detection cycle, but the position coordinate of the other vehicle is detected in the current detection cycle. This is a process of estimating the current position coordinate based on the value of the measurement parameter of the other vehicle acquired previously when a part of the measurement parameter for identifying the vehicle cannot be detected.
  • the second extrapolation process is performed when the radar apparatus cannot measure either the beat frequency ⁇ f U in the upstream section or the beat frequency ⁇ f D in the downstream section as a measurement parameter in the current detection cycle.
  • the beat frequency acquired previously is necessary to compensate for the beat frequency that could not be measured.
  • the beat frequency acquired previously may be an actually measured beat frequency or may be an estimated beat frequency.
  • the second extrapolated coordinate K3 is continuous, or the first extrapolated coordinate K2 and the second extrapolated coordinate K3 are continuous. It will be.
  • FIG. 8 shows the relationship between the normal recognition coordinates, the first extrapolation coordinates, and the second extrapolation coordinates, the direction in which the other vehicle is located, the relative speed with the other vehicle, and the distance with the other vehicle.
  • FIG. A circle indicates that the measurement parameter was normally measured by the radar apparatus.
  • the ⁇ mark indicates that some of the parameters necessary for the radar apparatus to measure the relative speed and distance could not be measured.
  • the cross indicates that all the parameters necessary for the radar apparatus to measure the relative speed and distance could not be measured.
  • the first extrapolated coordinate K2 is calculated because all of the parameters necessary for measuring the distance R and the relative velocity V cannot be measured. This is a case where the beat frequency ⁇ f U in the upstream section and the beat frequency ⁇ f D in the downstream section cannot be measured.
  • the second extrapolated coordinate K3 is calculated because the azimuth ⁇ is measured, but some of parameters necessary for measuring the distance R and the relative velocity V (upbeat beat frequency ⁇ f U Or one of the beat frequencies ⁇ f D in the downstream section) could not be measured.
  • the position coordinates K acquired by the radar device include the normal recognition coordinates K1, the first extrapolated coordinates K2, and the second extrapolated coordinates K3. Since the normal recognition coordinate K1 has high reliability, when the position coordinate group includes only the normal recognition coordinate K1, the traveling direction vector 10 has high reliability. On the other hand, since the first extrapolated coordinate K2 and the second extrapolated coordinate K3 are estimated coordinates, the reliability is low. Therefore, as the ratio of the first extrapolated coordinate K2 and the second extrapolated coordinate K3 in the position coordinate group increases, the reliability of the traveling direction vector 10 decreases. When collision prediction is performed based on the traveling direction vector 10 having low reliability, the possibility of erroneous prediction increases. On the other hand, if the traveling direction vector 10 is generated without using the extrapolated coordinates, the generation of the traveling direction vector 10 and the collision prediction are delayed, and there is a possibility that a collision accident cannot be dealt with in advance.
  • Patent Document 1 discloses a system that obtains position coordinates of another vehicle using a radar device, calculates a traveling direction vector based on a movement history of the position coordinates, and predicts a collision between the other vehicle and the host vehicle. ing. However, since the reliability of the traveling direction vector is not calculated, there is a possibility that even if the possibility of a collision is actually low, an erroneous prediction is made when a collision occurs, and a device for taking safety measures is activated. JP 2007-279892 A
  • the present invention has been made in view of such circumstances, and by calculating the reliability of the traveling direction vector of another vehicle, the reliability of the collision prediction is improved and the unnecessary operation of the device taking the safety measure is reduced. It is an object of the present invention to provide a method for determining the reliability of a traveling direction vector.
  • the first invention is A method of determining the reliability of the traveling direction vector when the traveling direction vector is calculated based on the position coordinates of the target calculated by the radar device, A traveling direction vector calculating step for calculating a traveling direction vector of the target based on the movement history of the position coordinates;
  • the position coordinates include normal recognition coordinates normally recognized by the radar device and estimated coordinates estimated by the radar device, at least one of information on the normal recognition coordinates and information on the estimated coordinates
  • a method of determining the reliability of the traveling direction vector comprising: a reliability calculating step of calculating the reliability of the traveling direction vector based on the one side.
  • the position coordinates include normal recognition coordinates normally recognized by the radar device and estimated coordinates estimated by the radar device, the reliability of the traveling direction vector in the reliability calculation step. Therefore, it is possible to improve the reliability of the collision prediction and reduce the unnecessary operation of the device that takes safety measures.
  • the reliability of the traveling direction vector is calculated based on a ratio of the normal recognition coordinates out of the position coordinates.
  • the reliability calculation step calculates the reliability of the traveling direction vector based on the ratio of the number of points of the normal recognition coordinates out of the number of points of the position coordinates, the reliability of the traveling direction vector is accurate. Can be calculated.
  • the reliability of the traveling direction vector is calculated based on a ratio of the estimated coordinates to the position coordinates.
  • the reliability calculation step calculates the reliability of the traveling direction vector based on the ratio of the estimated coordinates to the position coordinates, the reliability of the traveling direction vector is accurately calculated. Can be calculated.
  • the reliability of the traveling direction vector is calculated based on the number of consecutive points of the estimated coordinates.
  • the reliability calculation step calculates the reliability of the traveling direction vector based on the number of times the estimated coordinate point continues, so that the reliability of the traveling direction vector can be calculated with high accuracy. .
  • the estimated coordinates include the first extrapolated coordinates estimated by the first extrapolation process, In the first extrapolation process, the position coordinates and relative speed of the target are detected in the current detection cycle, even though the radar apparatus has detected the position coordinates and relative speed of the target in the previous detection cycle. When all of the measurement parameters for identifying the target cannot be detected, the current position coordinates and relative speed are estimated based on the previously acquired measurement parameter values of the target.
  • the current position coordinates and relative speed are estimated even when all of the measurement parameters for specifying the position coordinates and relative speed of the target cannot be detected in the current detection cycle. Can do.
  • the reliability of the traveling direction vector is calculated based on a ratio occupied by the first extrapolated coordinates out of the position coordinates.
  • the reliability calculation step calculates the reliability of the traveling direction vector based on the ratio of the number of the first extrapolated coordinates out of the number of the position coordinates, the traveling direction vector is accurately obtained. Can be calculated.
  • a seventh invention is the fifth or sixth invention, wherein In the reliability calculation step, the reliability of the traveling direction vector is calculated based on the number of consecutive points of the first extrapolated coordinate.
  • the reliability calculation step calculates the reliability of the traveling direction vector based on the number of consecutive points of the first extrapolated coordinate, the reliability of the traveling direction vector is calculated with high accuracy. can do.
  • the estimated coordinates include the second extrapolated coordinates estimated by the second extrapolation process, In the second extrapolation process, the position coordinate and relative speed of the target are detected in the current detection cycle even though the radar apparatus can detect the position coordinate and relative speed of the target in the previous detection cycle. This is a process for estimating the current position coordinates and relative velocity based on the previously acquired measurement parameter values of the target when some of the measurement parameters for identifying the target cannot be detected. .
  • the current position coordinates and relative speed are estimated even when some of the measurement parameters for specifying the position coordinates and relative speed of the target cannot be detected in the current detection cycle. be able to.
  • the reliability of the traveling direction vector is calculated based on a ratio of the second extrapolated coordinates out of the position coordinates.
  • the reliability calculation step calculates the reliability of the traveling direction vector based on the ratio of the second extrapolated coordinates out of the position coordinates, the traveling direction vector is accurately obtained. Can be calculated.
  • the reliability of the traveling direction vector is calculated based on the number of consecutive points of the second extrapolated coordinate.
  • the reliability calculation step calculates the reliability of the traveling direction vector based on the number of consecutive points of the second extrapolated coordinate, the reliability of the traveling direction vector is accurately calculated. can do.
  • the estimated coordinates include the first extrapolated coordinates estimated by the first extrapolation process and the second extrapolated coordinates estimated by the second extrapolation process,
  • the first extrapolation process the position coordinates and relative speed of the target are detected in the current detection cycle, even though the radar apparatus has detected the position coordinates and relative speed of the target in the previous detection cycle.
  • the second extrapolation process specifies the position coordinates and relative speed of the target in the current detection cycle even though the radar apparatus has detected the position coordinates of the target in the previous detection cycle. When a part of the measurement parameters for the target cannot be detected, this is a process for estimating the current position coordinates and the relative velocity based on the previously obtained measurement parameter values of the target.
  • the position coordinates and relative speed of the target when all the measurement parameters for specifying the position coordinates and relative speed of the target cannot be detected in the current detection cycle, or in the current detection cycle, the position coordinates and relative speed of the target are detected. In any case where a part of the measurement parameters for specifying can not be detected, the current position coordinates and relative velocity can be estimated.
  • the measurement parameters for specifying the position coordinates and relative velocity of the target are the beat frequency in the upstream section and the beat frequency in the downstream section of the modulated wave. To do.
  • the position coordinate and the relative velocity in the current detection cycle based on the beat frequency in the upstream section and the beat frequency in the downstream section of the modulated wave previously acquired.
  • the advancing direction vector calculating step calculates the advancing direction vector of the target based on the movement history of the normal recognition coordinates.
  • the calculation of the traveling direction vector is highly reliable. This can be done based on normal recognition coordinates.
  • the fourteenth invention is An apparatus for determining the reliability of the traveling direction vector when the traveling direction vector is calculated based on the position coordinates of the target calculated by the radar apparatus, A traveling direction vector calculation unit that calculates a traveling direction vector of the target based on the movement history of the position coordinates; When the position coordinates include normal recognition coordinates normally recognized by the radar device and estimated coordinates estimated by the radar device, at least one of information on the normal recognition coordinates and information on the estimated coordinates A traveling direction vector reliability determination apparatus comprising: a reliability calculating unit that calculates the reliability of the traveling direction vector based on one side.
  • the reliability calculation unit determines the reliability of the traveling direction vector. Therefore, it is possible to improve the reliability of the collision prediction and reduce the unnecessary operation of the device that takes safety measures.
  • the present invention by calculating the reliability of the traveling direction vector of the other vehicle, it is possible to increase the reliability of the collision prediction and reduce the unnecessary operation of the device taking the safety measure.
  • FIG. 1 is a block diagram illustrating an example of a reliability determination apparatus that implements the first embodiment of the reliability determination method for a traveling direction vector.
  • FIG. 2 is a diagram illustrating a positional relationship between the host vehicle and another vehicle in the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a method of calculating a traveling direction vector in the first embodiment.
  • FIG. 4 is a diagram illustrating an example of the reliability determination of the traveling direction vector in the first embodiment.
  • FIG. 5 is a diagram illustrating another example of the reliability determination of the traveling direction vector in the first embodiment.
  • FIG. 6 is a block diagram illustrating another example of a reliability determination device that implements the first embodiment of the reliability determination method for a traveling direction vector.
  • FIG. 1 is a block diagram illustrating an example of a reliability determination apparatus that implements the first embodiment of the reliability determination method for a traveling direction vector.
  • FIG. 2 is a diagram illustrating a positional relationship between the host vehicle and another vehicle in the first embodiment.
  • FIG. 7 is a diagram illustrating an example of a method of calculating the traveling direction vector.
  • FIG. 8 shows the relationship between the normal recognition coordinates, the first extrapolation coordinates, and the second extrapolation coordinates, the direction in which the other vehicle is located, the relative speed with the other vehicle, and the distance with the other vehicle.
  • FIG. 8 shows the relationship between the normal recognition coordinates, the first extrapolation coordinates, and the second extrapolation coordinates, the direction in which the other vehicle is located, the relative speed with the other vehicle, and the distance with the other vehicle.
  • Travel direction vector reliability determination device 2 Radar device 3 Other vehicle (target) 4 traveling direction vector 5 traveling direction vector calculating unit 6 reliability calculating unit 7 first group 8 second group 9 own vehicle 11 pre-crash safety system 12 electronic control unit (ECU) 13 Collision prediction device 14 Control device P Position coordinate P1 Normal recognition coordinate P2 Estimated coordinate P21 First extrapolation coordinate P22 Second extrapolation coordinate R Distance V Relative speed ⁇ Direction where other vehicle is located
  • FIG. 1 is a block diagram illustrating an example of a reliability determination apparatus that implements the traveling direction vector reliability determination method according to the first embodiment.
  • the reliability determination apparatus forms part of a pre-crash safety system.
  • FIG. 2 is a diagram illustrating a positional relationship between the host vehicle and another vehicle.
  • FIG. 3 is a diagram illustrating an example of a method of calculating the traveling direction vector.
  • the pre-crash safety system 11 acquires the position coordinate P and the relative speed V of the other vehicle 3 (see FIG. 2) with the radar device 2, and based on the movement history of the position coordinate P (see FIG. 3), the other vehicle 3 In this system, the degree of risk of collision with the vehicle 9 is calculated, and if it is determined that the degree of danger is high, appropriate safety measures are taken.
  • the pre-crash safety system 11 calculates the risk of the other vehicle 3 colliding with the host vehicle 9 based on the radar device 2 that acquires the position coordinate P and the relative speed V of the other vehicle 3 and the movement history of the position coordinate P.
  • an electronic control unit (ECU) 12 which takes safety measures such as causing the seat belt to perform a tightening operation or causing the brake to perform a braking operation.
  • the ECU 12 calculates the traveling direction vector 4 (see FIG. 3) based on the movement history of the position coordinates P of the other vehicle 3. A method for calculating the traveling direction vector 4 will be described later.
  • ECU12 is provided with the reliability determination apparatus 1, the collision prediction apparatus 13, and the control apparatus 14 which concern on 1st Embodiment.
  • the reliability determination device 1 determines the reliability of the traveling direction vector 4 when the traveling direction vector 4 is calculated based on the position coordinates P of a target (hereinafter referred to as another vehicle) 3 calculated by the radar device 2. Determine.
  • the collision prediction device 13 performs a collision prediction based on the traveling direction vector 4 when the reliability calculated by the reliability determination device 1 is equal to or greater than a predetermined threshold.
  • the control device 14 performs control for taking the corresponding safety measures.
  • the radar device 2 acquires the position coordinate P and the relative speed V of the other vehicle 3 (see FIG. 2A).
  • the relative speed V is a relative speed of the other vehicle 3 with respect to the host vehicle 9.
  • Perimeter monitoring by the radar device 2 may be performed by one radar device 2 (see FIG. 2B), may be performed by two radar devices 2 (see FIG. 1), or three. You may carry out with the above radar apparatus 2 (refer FIG.2 (C)).
  • a reference numeral 15 in FIGS. 2B and 2C indicates a monitoring area by each radar apparatus 2.
  • the position coordinates P acquired by the radar device 2 include normal recognition coordinates P1 and estimated coordinates P2, as illustrated in FIG.
  • the estimated coordinate P2 includes a first extrapolated coordinate P21 and a second extrapolated coordinate 22.
  • positioning of the number of the normal recognition coordinate P1, the 1st extrapolation coordinate P21, and the 2nd extrapolation coordinate P22 which are shown by FIG. 3 are examples, Comprising: It is not restricted to this example.
  • the normal recognition coordinates P1 are position coordinates that are normally recognized by the radar apparatus 2.
  • the direction ⁇ in which the other vehicle 3 is located with respect to the own vehicle 9 and the distance R between the other vehicle 3 and the own vehicle 9 are required (see FIG. 2A).
  • the direction ⁇ in which the other vehicle 3 is located is represented by, for example, an angle ⁇ formed by a straight line connecting the other vehicle 3 and the host vehicle 9 and the traveling direction of the host vehicle 9. Based on these measured values, the normal recognition coordinates P1 can be calculated.
  • the type of the radar apparatus 2 is not particularly limited, but for example, FM-CW radar can be adopted.
  • FM-CW radar is used as the radar device 2
  • the distance R to the other vehicle 3 can be obtained from the following equation (1).
  • R C ( ⁇ f U + ⁇ f D ) / (8f m ⁇ F) (1)
  • C speed of light
  • ⁇ f U beat frequency in the upstream section of the modulated wave (eg triangular wave)
  • ⁇ f D beat frequency in the downstream section of the modulated wave
  • f m repetition frequency of the modulated wave
  • ⁇ F amplitude of the modulated wave
  • V ⁇ ( ⁇ f U ⁇ f D ) / 2 (2)
  • ⁇ f U Beat frequency in the upstream section of the modulated wave (eg, triangular wave)
  • ⁇ f D Beat frequency in the downstream section of the modulated wave
  • the angle ⁇ can be measured by a monopulse method, for example.
  • the angle ⁇ can be calculated using the following equation (3).
  • sin ⁇ 1 ( ⁇ / (2 ⁇ d)) (3)
  • phase difference between reflected waves received by two antennas
  • the first extrapolated coordinate P21 is a position coordinate estimated by the first extrapolation process.
  • the radar apparatus 2 that periodically performs target detection can detect the position coordinate P and the relative speed V of the other vehicle 3 in the previous detection cycle, but the current detection cycle. If all of the measurement parameters for specifying the position coordinate P and relative speed V of the other vehicle 3 cannot be detected, the current position coordinate P based on the previously obtained measurement parameter value of the other vehicle 3. And the relative speed V is estimated.
  • the value of the measurement parameter of the other vehicle 3 acquired previously is, for example, the value of the measurement parameter acquired in the previous detection cycle.
  • the value of the measurement parameter acquired in the previous detection cycle may be a value acquired by actual measurement or a value acquired by estimation.
  • the measurement parameters for specifying the position coordinate P and the relative velocity V of the other vehicle 3 are the beat frequency ⁇ f U in the upstream section of the modulated wave (for example, the triangular wave) and the downstream section. Beat frequency ⁇ f D.
  • the position coordinate P n of the current detection cycle is calculated according to, for example, the following equations (4) and (5). can do.
  • X n is the X direction component of P n
  • X n-1 is the X direction component of P n-1
  • Y n is the Y direction component of P n
  • Y n-1 is P n-1 Is the Y direction component.
  • Vx n ⁇ 1 is the X direction component of the relative speed in the previous detection cycle
  • Vy n ⁇ 1 is the Y direction component of the relative speed in the previous detection cycle.
  • ⁇ t is the time of the detection cycle.
  • Xn Xn-1 + Vxn -1 * [Delta] t Equation (4)
  • Y n Y n ⁇ 1 + Vy n ⁇ 1 ⁇ ⁇ t (5)
  • the X direction component of the relative speed V n of this detection cycle is Vx n
  • the Y direction component is Vy n
  • the X direction component of the relative speed V n ⁇ 1 of the previous detection cycle is Vx n ⁇ 1
  • the Y direction component is Vy n
  • the relative speed V n of the current detection cycle can be calculated, for example, according to the following equations (6) and (7).
  • Vx n Vx n ⁇ 1 Expression (6)
  • Vy n Vy n-1 Expression (7)
  • the second extrapolated coordinate P22 is a position coordinate estimated by the second extrapolation process.
  • the radar apparatus 2 that periodically performs target detection can detect the position coordinate P and the relative speed V of the other vehicle 3 in the previous detection cycle, but this detection cycle.
  • the current position coordinates based on the value of the measurement parameter of the other vehicle 3 acquired previously. This is processing for estimating P and relative velocity V.
  • the value of the measurement parameter of the other vehicle 3 acquired previously is, for example, the value of the measurement parameter acquired in the previous detection cycle.
  • the value of the measurement parameter acquired in the previous detection cycle may be a value acquired by actual measurement or a value acquired by estimation.
  • the measurement parameters for specifying the position coordinate P and the relative velocity V of the other vehicle 3 are the beat frequency ⁇ f U in the upstream section of the modulated wave (for example, the triangular wave) and the downstream section. Beat frequency ⁇ f D.
  • the position coordinate P n of the current detection cycle can be estimated as follows, for example.
  • the parameters that could not be measured are the measurement parameters acquired in the previous detection cycle.
  • the distance R and the relative velocity V can be calculated. It is assumed that the direction ⁇ can be detected in the current detection cycle. If the distance R and the azimuth ⁇ are calculated, the second extrapolated coordinate P22 in the current detection cycle can be calculated based on these values.
  • the reliability determination device 1 includes a traveling direction vector calculation unit 5 and a reliability calculation unit 6.
  • the traveling direction vector calculation unit 5 calculates the traveling direction vector 4 of the other vehicle 3 based on the movement history of the position coordinates P.
  • the calculation method of the traveling direction vector 4 is not particularly limited, but can be calculated as follows, for example.
  • the position coordinates P acquired by the radar apparatus 2 are plotted according to the acquired order.
  • the position coordinate P having a large variation is excluded from the data for calculating the traveling direction vector 4.
  • the position coordinates P are divided into two groups, that is, the first group 7 in the early order of acquisition and the second group 8 in the late order of acquisition.
  • the center of gravity position Pa of the first group 7 and the center of gravity position Pb of the second group 8 are calculated, and a vector passing through the center of gravity position Pa and the center of gravity position Pb is used as the traveling direction.
  • Vector 4 is assumed.
  • the direction of the traveling direction vector 4 is set so as to be directed from the gravity center position Pa to the gravity center position Pb.
  • the number of points of the position coordinate P is a detection cycle for a predetermined period retroactively from the current detection cycle. The number of times is not particularly limited.
  • the reliability calculation unit 6 includes information on the normal recognition coordinate P1 and The reliability of the traveling direction vector 4 is calculated based on at least one of the information regarding the estimated coordinates P2.
  • the reliability calculation unit 6 can calculate the reliability of the traveling direction vector 4 based on the ratio of the points of the normal recognition coordinates P1 among the points of the position coordinates P (Calculation Example 1).
  • the ratio of the number of points of the normal recognition coordinates P1 to the number of points of the position coordinates P is information regarding the normal recognition coordinates P1.
  • the number of points of the position coordinate P is a detection cycle for a predetermined period retroactively from the current detection cycle. The number of times is not particularly limited.
  • the reliability calculation unit 6 can calculate the reliability of the traveling direction vector 4 based on the ratio of the number of estimated coordinates P2 out of the number of position coordinates P (Calculation Example 2).
  • the ratio of the number of estimated coordinates P2 out of the number of position coordinates P is information regarding the estimated coordinates P2.
  • the estimated coordinate P2 includes a first extrapolated coordinate P21 and a second extrapolated coordinate P22.
  • the reliability calculation unit 6 can calculate the reliability of the traveling direction vector 4 based on the number of consecutive points of the estimated coordinates P2 (Calculation Example 3).
  • the reliability calculation part 6 can calculate the reliability of the advancing direction vector 4 based on the ratio which the score of the 1st extrapolation coordinate P21 accounts among the scores of the position coordinate P (calculation example 4). .
  • the reliability calculation unit 6 can calculate the reliability of the traveling direction vector 4 based on the number of consecutive points of the first extrapolated coordinate P21 (Calculation Example 5).
  • the reliability calculation part 6 can calculate the reliability of the advancing direction vector 4 based on the ratio which the score of the 2nd extrapolation coordinate P22 accounts among the scores of the position coordinate P (calculation example 6). .
  • the reliability calculation unit 6 can calculate the reliability of the traveling direction vector 4 based on the number of consecutive points of the second extrapolated coordinate P22 (Calculation Example 7).
  • calculation examples 1 to 7 may be employed independently, but two or more calculation examples may be arbitrarily combined from these calculation examples.
  • the reliability calculation unit 6 stores the N position coordinates P acquired by the radar device 2 through detection for the past N cycles in a memory (step S ⁇ b> 1).
  • the reliability calculation unit 6 calculates the traveling direction vector 4 based on the stored N position coordinates P (step S2).
  • the reliability of the traveling direction vector 4 is initialized (step S3). In step 3, the reliability is set to 100%, for example.
  • the reliability calculation unit 6 determines whether m or more first extrapolation coordinates P21 (m is an arbitrary integer between 1 and N) are included in the N position coordinates P (step S4). ).
  • step S4 When m or more first extrapolated coordinates P21 are included (YES in step S4), the reliability of the traveling direction vector 4 is subtracted by a predetermined value (step S5).
  • the predetermined value to be subtracted is not particularly limited, but 20% is subtracted, for example.
  • the process proceeds to step S6.
  • step S ⁇ b> 6 the reliability calculation unit 6 determines whether or not the first extrapolated coordinate P ⁇ b> 21 that continues r times (r is an arbitrary integer not less than 1 and not more than N) among the N position coordinates P is included. To do.
  • the reliability of the traveling direction vector 4 is subtracted by a predetermined value (step S7), and the process ends.
  • the predetermined value to be subtracted is not particularly limited. For example, 10% is subtracted.
  • the reliability determination is as follows. That is, when m or more first extrapolated coordinates P21 are included in N position coordinates P and the first extrapolated coordinates P21 continued r times are included, the reliability is 70%. In addition, when m or more first extrapolated coordinates P21 are included in the N position coordinates P and the first extrapolated coordinates P21 consecutive r times are not included, the reliability is 80%. In addition, when the N position coordinates P do not include m or more first extrapolated coordinates P21 and the first extrapolated coordinates P21 that continue r times are included, the reliability is 90%. Further, when the N position coordinates P do not include m or more first extrapolated coordinates P21 and do not include the first extrapolated coordinates P21 consecutive r times, the reliability is 100%.
  • the reliability determination shown in FIG. 5 is the same as the example shown in FIG. 4 from step S1 to step S7, and is different from the example shown in FIG. 4 in that steps S8 to S11 are added.
  • steps S1 to S7 is omitted, and only steps S8 to S11 are described.
  • step S ⁇ b> 8 the reliability calculation unit 6 has N position coordinates P and n second extrapolation coordinates P ⁇ b> 22 (n is an arbitrary integer from 1 to N) or more. Determine whether it is included.
  • n or more second extrapolated coordinates P22 are included (YES in step S8)
  • the reliability of the traveling direction vector 4 is subtracted by a predetermined value (step S9).
  • the predetermined value to be subtracted is not particularly limited. For example, 20% is subtracted.
  • the process proceeds to step S10.
  • step S10 the reliability calculation unit 6 determines whether or not the second extrapolated coordinate P22 that is s times (s is an arbitrary integer not less than 1 and not more than N) among the N position coordinates P is included. To do.
  • the reliability of the traveling direction vector 4 is subtracted by a predetermined value (step S11), and the process is terminated.
  • the predetermined value to be subtracted is not particularly limited, but for example, 10% is subtracted.
  • the process ends.
  • the above is another example of the reliability determination of the traveling direction vector 4.
  • the reliability determination is It becomes as follows.
  • m or more first extrapolated coordinates P21 are included in the N position coordinates P, and the first extrapolated coordinates P21 continued r times in the N position coordinates P, and N
  • n or more second extrapolated coordinates P22 are included in the position coordinates P and the second extrapolated coordinates P22 continued s times are included, the reliability is 40%.
  • first extrapolated coordinates P21 are included in the N position coordinates P
  • first extrapolated coordinates P21 that are consecutive r times are included in the N position coordinates P
  • second extrapolated coordinates P22 are not included in the position coordinates P, and the second extrapolated coordinates P22 consecutive s times are not included, the reliability is 70%.
  • the reliability of the traveling direction vector 4 of the other vehicle 3 can be calculated. If the reliability is higher than a predetermined threshold, the device that takes safety measures is operated based on the collision prediction result between the other vehicle 3 and the own vehicle 9, and if the reliability is lower than the predetermined threshold, the other vehicle 3 and the own vehicle The process of canceling the collision prediction result of the vehicle 9 and not performing the operation of the device taking the safety measure can be performed. As a result, the reliability of the collision prediction can be improved, and the unnecessary operation of the device taking safety measures can be reduced.
  • the radar device 2 and the ECU 12 are arranged separately, but the ECU 12 may be arranged in the radar device 2 as shown in FIG. 6.
  • the traveling direction vector calculation unit 5 calculates the traveling direction vector 4 based on the movement history of the normal recognition coordinates P1, the first extrapolated coordinates P21, and the second extrapolated coordinates P22.
  • the traveling direction vector may be calculated based on the movement history of the normal recognition coordinates P1 without using the first extrapolation coordinates P21 and the second extrapolation coordinates P22.
  • the traveling direction vector may be calculated based on the movement history of either the first extrapolated coordinate P21 or the second extrapolated coordinate P22 and the normal recognition coordinate P1.
  • the determination of the reliability can be performed in the same procedure as, for example, steps S3 to S7 in FIG. 4 and steps S3 to S11 in FIG.
  • the present invention is applicable to a vehicle or the like equipped with a pre-crash safety system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

他車両の進行方向ベクトルの信頼度を算出することにより、衝突予測の信頼性を高めて、安全措置を採る装置の不要動作を低減することができる進行方向ベクトルの信頼度判定方法を提供する。進行方向ベクトルの信頼度判定方法は、レーダ装置によって算出された物標の位置座標に基づいて進行方向ベクトルが算出された際に当該進行方向ベクトルの信頼度を判定する方法であって、前記位置座標の移動履歴に基づき前記物標の進行方向ベクトルを算出する進行方向ベクトル算出ステップと、前記位置座標が、前記レーダ装置によって正常に認識された正常認識座標と、前記レーダ装置によって推定された推定座標とを含む場合に、前記正常認識座標に関する情報と前記推定座標に関する情報の少なくともいずれか一方に基づいて前記進行方向ベクトルの信頼度を算出する信頼度算出ステップとを備える。

Description

進行方向ベクトルの信頼度判定方法および信頼度判定装置
 本発明は、進行方向ベクトルの信頼度判定方法および信頼度判定装置に関し、より詳しくは、他車両の進行方向ベクトルの信頼度を算出することにより、衝突予測の信頼性を高めて、安全措置を採る装置の不要動作を低減することができる進行方向ベクトルの信頼度判定方法および信頼度判定装置に関する。
 近年、レーダ装置で他車両の位置座標および相対速度を取得し、当該位置座標の移動履歴に基づき、他車両が自車両に衝突する危険度を算出し、危険度が高いと判定された場合には、相応の安全措置を採るプリクラッシュセーフティシステムが開発されている。
 このプリクラッシュセーフティシステムは、他車両の位置座標および相対速度を取得するレーダ装置と、当該位置座標の移動履歴に基づき、他車両が自車両に衝突する危険度を算出し、危険度が高いと判定された場合には、シートベルトに緊締動作を行わせたり、ブレーキに制動動作を行わせたりする電子制御装置(ECU)とを備えている。他車両が自車両に衝突する危険度を算出するために、ECUは、他車両の位置座標の移動履歴に基づき、進行方向ベクトルを算出する。
 進行方向ベクトルの算出方法について、図7を参照しつつ説明する。
 図7は、進行方向ベクトルの算出方法の一例を示す図である。
 図7(A)に示されるように、まず、レーダ装置が取得した位置座標Kを取得の順序に従ってプロットする。これにより、位置座標の移動履歴がプロットされる。次に、図7(B)に示されるように、位置座標の移動履歴について、例えば最小二乗法を用いて一次関数近似を行う。これにより、進行方向ベクトル10が生成される。
 レーダ装置が取得した位置座標Kには、図7(A)に例示されるように、正常認識座標K1と、第1の外挿座標K2と、第2の外挿座標K3とが含まれる。なお、図7(A)に示される正常認識座標K1、第1の外挿座標K2、および第2の外挿座標K3の数の割合および配置は、一例であって、この例に限られるものではない。
 正常認識座標K1は、レーダ装置によって正常に認識された位置座標である。
 正常認識座標K1を算出するためには、物標(以下、他車両と称する)が自車両に対して位置する方位および当該他車両と自車両との距離が必要である。他車両が位置する方位は、例えば、他車両と自車両を結ぶ直線と、自車両の進行方向とがなす角度θで表される。これら距離および方位の各測定値に基づいて、正常認識座標K1を算出することができる。
 レーダ装置として、FM-CWレーダを用いる場合、他車両との距離Rは、以下の式(1)から求めることができる。
R=C(Δf+Δf)/(8fΔF)  ・・・式(1)
 ここで、各文字が表す意味は以下の通りである。
C:光速、Δf:変調波(例えば三角波)の上り区間のビート周波数、Δf:変調波の下り区間のビート周波数、f:変調波の繰り返し周波数、ΔF:変調波の振幅
 上記角度θは、例えばモノパルス方式で測角することができる。この場合、角度θは、以下の式(2)を用いて算出することができる。
θ=sin-1(λφ/(2πd))  ・・・式(2)
 ここで、各文字が表す意味は以下の通りである。
λ:送信波の波長、d:2つのアンテナの間隔、φ:2つのアンテナで受信した反射波の位相差
 レーダ装置として、FM-CWレーダを用いる場合、他車両との相対速度Vは、以下の式(3)から求めることができる。
V=±(Δf-Δf)/2  ・・・式(3)
 ここで、各文字が表す意味は以下の通りである。
Δf:変調波(例えば三角波)の上り区間のビート周波数、Δf:変調波の下り区間のビート周波数
 第1の外挿座標K2は、第1の外挿処理によって推定された位置座標である。第1の外挿処理は、周期的に物標検知を行うレーダ装置が、以前の検知サイクルで他車両の位置座標および相対速度を検知できたにも拘わらず、今回の検知サイクルで当該他車両の位置座標および相対速度を特定するための測定パラメータの全部を検知できない場合に、以前に取得された当該他車両の測定パラメータの値に基づいて今回の位置座標および相対速度を推定する処理である。
 第1の外挿処理は、今回の検知サイクルで、測定パラメータとして上り区間のビート周波数Δfおよび下り区間のビート周波数Δfの双方をレーダ装置が測定できない場合に行われる。以前に取得された上り区間のビート周波数Δfおよび下り区間のビート周波数Δfは、実測値であってもよいし、或いは、推定値であってもよい。以前に取得された上り区間のビート周波数Δfおよび下り区間のビート周波数Δfが推定値である場合、第1の外挿座標K2が連続したり、或いは、第1の外挿座標K2と第2の外挿座標K3が連続することになる。
 第2の外挿座標は、第2の外挿処理によって推定された位置座標である。第2の外挿処理は、周期的に物標検知を行うレーダ装置が、以前の検知サイクルで他車両の位置座標を検知できたにも拘わらず、今回の検知サイクルで当該他車両の位置座標を特定するための測定パラメータの一部を検知できない場合に、以前に取得された当該他車両の測定パラメータの値に基づいて今回の位置座標を推定する処理である。
 第2の外挿処理は、今回の検知サイクルで、測定パラメータとして上り区間のビート周波数Δfまたは下り区間のビート周波数Δfのいずれか一方をレーダ装置が測定できない場合に行われる。第2の外挿処理によって位置座標および相対速度を推定するためには、測定できなかった方のビート周波数を補うために、以前に取得されたビート周波数が必要である。以前に取得されたビート周波数は、実測されたビート周波数であってもよいし、或いは、推定されたビート周波数であってもよい。以前に取得されたビート周波数が、推定されたビート周波数である場合、第2の外挿座標K3が連続したり、或いは、第1の外挿座標K2と第2の外挿座標K3が連続することになる。
 図8は、正常認識座標、第1の外挿座標、および第2の外挿座標と、他車両が位置する方位、当該他車両との相対速度、および当該他車両との距離の関係を示す図である。○印は、測定パラメータがレーダ装置によって正常に測定されたことを示している。△印は、レーダ装置が相対速度および距離を測定するのに必要なパラメータの一部が測定できなかったことを示している。×印は、レーダ装置が相対速度および距離を測定するのに必要なパラメータの全部が測定できなかったことを示している。
 図8に示されるように、第1の外挿座標K2が算出されるのは、方位θを測定することができず、かつ、距離Rおよび相対速度Vを測定するのに必要なパラメータの全部(上り区間のビート周波数Δfおよび下り区間のビート周波数Δf)を測定できなかった場合である。また、第2の外挿座標K3が算出されるのは、方位θは測定されているが、距離Rおよび相対速度Vを測定するのに必要なパラメータの一部(上り区間のビート周波数Δfまたは下り区間のビート周波数Δfのいずれか一方)が測定できなかった場合である。
 以上説明したように、レーダ装置が取得する位置座標Kには、正常認識座標K1、第1の外挿座標K2、および第2の外挿座標K3が含まれる。正常認識座標K1は信頼性が高いため、位置座標群が正常認識座標K1のみからなる場合は、進行方向ベクトル10の信頼性も高い。一方、第1の外挿座標K2および第2の外挿座標K3は推定座標であるため、信頼性が低い。従って、位置座標群において第1の外挿座標K2および第2の外挿座標K3が占める割合が多くなるにつれて、進行方向ベクトル10の信頼性が低くなる。信頼性が低い進行方向ベクトル10に基づいて衝突予測を行った場合、誤った予測をする可能性が高くなる。その一方で、外挿座標を用いずに進行方向ベクトル10を生成すると、進行方向ベクトル10の生成および衝突予測が遅れてしまい、衝突事故に事前対処できない可能性がある。
 特許文献1には、レーダ装置で他車両の位置座標を取得し、当該位置座標の移動履歴に基づいて進行方向ベクトルを算出して、他車両と自車両との衝突予測を行うシステムが開示されている。しかしながら、進行方向ベクトルの信頼度を算出していないため、実際には衝突の可能性が低い場合でも衝突すると誤った予測を行い、安全措置を採る装置が作動してしまう可能性があった。
特開2007-279892号公報
 本発明は、このような実情に鑑みてなされたもので、他車両の進行方向ベクトルの信頼度を算出することにより、衝突予測の信頼性を高めて、安全措置を採る装置の不要動作を低減することができる進行方向ベクトルの信頼度判定方法の提供を目的とする。
 第1の発明は、
 レーダ装置によって算出された物標の位置座標に基づいて進行方向ベクトルが算出された際に当該進行方向ベクトルの信頼度を判定する方法であって、
 上記位置座標の移動履歴に基づき上記物標の進行方向ベクトルを算出する進行方向ベクトル算出ステップと、
 上記位置座標が、上記レーダ装置によって正常に認識された正常認識座標と、上記レーダ装置によって推定された推定座標とを含む場合に、上記正常認識座標に関する情報と上記推定座標に関する情報の少なくともいずれか一方に基づいて上記進行方向ベクトルの信頼度を算出する信頼度算出ステップとを備えた、進行方向ベクトルの信頼度判定方法である。
 第1の発明によれば、位置座標が、レーダ装置によって正常に認識された正常認識座標と、レーダ装置によって推定された推定座標とを含む場合に、信頼度算出ステップで進行方向ベクトルの信頼度が算出されるので、衝突予測の信頼性を高めて、安全措置を採る装置の不要動作を低減することができる。
 第2の発明は、第1の発明において、
 上記信頼度算出ステップは、上記位置座標の点数のうち上記正常認識座標の点数が占める割合に基づいて、上記進行方向ベクトルの信頼度を算出することを特徴とする。
 第2の発明によれば、信頼度算出ステップは、位置座標の点数のうち正常認識座標の点数が占める割合に基づいて進行方向ベクトルの信頼度を算出するので、精度良く進行方向ベクトルの信頼度を算出することができる。
 第3の発明は、第1の発明において、
 上記信頼度算出ステップは、上記位置座標の点数のうち上記推定座標の点数が占める割合に基づいて、上記進行方向ベクトルの信頼度を算出することを特徴とする。
 第3の発明によれば、信頼度算出ステップは、位置座標の点数のうち推定座標の点数が占める割合に基づいて進行方向ベクトルの信頼度を算出するので、精度良く進行方向ベクトルの信頼度を算出することができる。
 第4の発明は、第1の発明において、
 上記信頼度算出ステップは、上記推定座標の点が連続する回数に基づいて、上記進行方向ベクトルの信頼度を算出することを特徴とする。
 第4の発明によれば、信頼度算出ステップは、推定座標の点が連続する回数に基づいて進行方向ベクトルの信頼度を算出するので、精度良く進行方向ベクトルの信頼度を算出することができる。
 第5の発明は、第1の発明において、
 上記推定座標は、第1の外挿処理によって推定された第1の外挿座標を含み、
 上記第1の外挿処理は、上記レーダ装置が、以前の検知サイクルで物標の位置座標および相対速度を検知できたにも拘わらず、今回の検知サイクルで当該物標の位置座標および相対速度を特定するための測定パラメータの全部を検知できない場合に、以前に取得された当該物標の測定パラメータの値に基づいて今回の位置座標および相対速度を推定する処理であることを特徴とする。
 第5の発明によれば、今回の検知サイクルで物標の位置座標および相対速度を特定するための測定パラメータの全部を検知できない場合であっても、今回の位置座標および相対速度を推定することができる。
 第6の発明は、第5の発明において、
 上記信頼度算出ステップは、上記位置座標の点数のうち上記第1の外挿座標の点数が占める割合に基づいて、上記進行方向ベクトルの信頼度を算出することを特徴とする。
 第6の発明によれば、信頼度算出ステップは、位置座標の点数のうち第1の外挿座標の点数が占める割合に基づいて進行方向ベクトルの信頼度を算出するので、精度良く進行方向ベクトルの信頼度を算出することができる。
 第7の発明は、第5または第6の発明において、
 上記信頼度算出ステップは、上記第1の外挿座標の点が連続する回数に基づいて、上記進行方向ベクトルの信頼度を算出することを特徴とする。
 第7の発明によれば、信頼度算出ステップは、第1の外挿座標の点が連続する回数に基づいて進行方向ベクトルの信頼度を算出するので、精度良く進行方向ベクトルの信頼度を算出することができる。
 第8の発明は、第1の発明において、
 上記推定座標は、第2の外挿処理によって推定された第2の外挿座標を含み、
 上記第2の外挿処理は、上記レーダ装置が、以前の検知サイクルで物標の位置座標および相対速度を検知できたにも拘わらず、今回の検知サイクルで当該物標の位置座標および相対速度を特定するための測定パラメータの一部を検知できない場合に、以前に取得された当該物標の測定パラメータの値に基づいて今回の位置座標および相対速度を推定する処理であることを特徴とする。
 第8の発明によれば、今回の検知サイクルで物標の位置座標および相対速度を特定するための測定パラメータの一部を検知できない場合であっても、今回の位置座標および相対速度を推定することができる。
 第9の発明は、第8の発明において、
 上記信頼度算出ステップは、上記位置座標の点数のうち上記第2の外挿座標の点数が占める割合に基づいて、上記進行方向ベクトルの信頼度を算出することを特徴とする。
 第9の発明によれば、信頼度算出ステップは、位置座標の点数のうち第2の外挿座標の点数が占める割合に基づいて進行方向ベクトルの信頼度を算出するので、精度良く進行方向ベクトルの信頼度を算出することができる。
 第10の発明は、第8または第9の発明において、
 上記信頼度算出ステップは、上記第2の外挿座標の点が連続する回数に基づいて、上記進行方向ベクトルの信頼度を算出することを特徴とする。
 第10の発明によれば、信頼度算出ステップは、第2の外挿座標の点が連続する回数に基づいて進行方向ベクトルの信頼度を算出するので、精度良く進行方向ベクトルの信頼度を算出することができる。
 第11の発明は、第1の発明において、
 上記推定座標は、第1の外挿処理によって推定された第1の外挿座標と、第2の外挿処理によって推定された第2の外挿座標とを含み、
 上記第1の外挿処理は、上記レーダ装置が、以前の検知サイクルで物標の位置座標および相対速度を検知できたにも拘わらず、今回の検知サイクルで当該物標の位置座標および相対速度を特定するための測定パラメータの全部を検知できない場合に、以前に取得された当該物標の測定パラメータの値に基づいて今回の位置座標および相対速度を推定する処理であり、
 上記第2の外挿処理は、上記レーダ装置が、以前の検知サイクルで物標の位置座標を検知できたにも拘わらず、今回の検知サイクルで当該物標の位置座標および相対速度を特定するための測定パラメータの一部を検知できない場合に、以前に取得された当該物標の測定パラメータの値に基づいて今回の位置座標および相対速度を推定する処理であることを特徴とする。
 第11の発明によれば、今回の検知サイクルで物標の位置座標および相対速度を特定するための測定パラメータの全部を検知できない場合、または、今回の検知サイクルで物標の位置座標および相対速度を特定するための測定パラメータの一部を検知できない場合のいずれであっても、今回の位置座標および相対速度を推定することができる。
 第12の発明は、第5または第8の発明において、
 上記レーダ装置がFM-CWレーダである場合、上記物標の位置座標および相対速度を特定するための測定パラメータは、変調波の上り区間のビート周波数および下り区間のビート周波数であることを特徴とする。
 第12の発明によれば、以前に取得された、変調波の上り区間のビート周波数および下り区間のビート周波数に基づいて今回の検知サイクルにおける位置座標および相対速度を推定することができる。
 第13の発明は、第1乃至第12のいずれかの発明において、
 上記進行方向ベクトル算出ステップは、上記正常認識座標の移動履歴に基づき上記物標の進行方向ベクトルを算出することを特徴とする。
 第13の発明によれば、レーダ装置が算出した物標の位置座標に、正常認識座標と推定座標の双方が含まれている場合であっても、進行方向ベクトルの算出は、信頼性の高い正常認識座標に基づいて行うことができる。
 第14の発明は、
 レーダ装置によって算出された物標の位置座標に基づいて進行方向ベクトルが算出された際に当該進行方向ベクトルの信頼度を判定する装置であって、
 上記位置座標の移動履歴に基づき上記物標の進行方向ベクトルを算出する進行方向ベクトル算出部と、
 上記位置座標が、上記レーダ装置によって正常に認識された正常認識座標と、上記レーダ装置によって推定された推定座標とを含む場合に、上記正常認識座標に関する情報と上記推定座標に関する情報の少なくともいずれか一方に基づいて上記進行方向ベクトルの信頼度を算出する信頼度算出部とを備えた、進行方向ベクトルの信頼度判定装置である。
 第14の発明によれば、位置座標が、レーダ装置によって正常に認識された正常認識座標と、レーダ装置によって推定された推定座標とを含む場合に、信頼度算出部で進行方向ベクトルの信頼度が算出されるので、衝突予測の信頼性を高めて、安全措置を採る装置の不要動作を低減することができる。
 本発明によれば、他車両の進行方向ベクトルの信頼度を算出することにより、衝突予測の信頼性を高めて、安全措置を採る装置の不要動作を低減することができる。
図1は、進行方向ベクトルの信頼度判定方法の第1実施形態を実現する信頼度判定装置の一例を示すブロック図である。 図2は、第1実施形態における自車両と他車両の位置関係を示す図である。 図3は、第1実施形態における進行方向ベクトルの算出方法の一例を示す図である。 図4は、第1実施形態における進行方向ベクトルの信頼度判定の一例を示す図である。 図5は、第1実施形態における進行方向ベクトルの信頼度判定の他の例を示す図である。 図6は、進行方向ベクトルの信頼度判定方法の第1実施形態を実現する信頼度判定装置の他の例を示すブロック図である。 図7は、進行方向ベクトルの算出方法の一例を示す図である。 図8は、正常認識座標、第1の外挿座標、および第2の外挿座標と、他車両が位置する方位、当該他車両との相対速度、および当該他車両との距離の関係を示す図である。
符号の説明
 1  進行方向ベクトルの信頼度判定装置
 2  レーダ装置
 3  他車両(物標)
 4  進行方向ベクトル
 5  進行方向ベクトル算出部
 6  信頼度算出部
 7  第1のグループ
 8  第2のグループ
 9  自車両
 11  プリクラッシュセーフティシステム
 12  電子制御装置(ECU)
 13  衝突予測装置
 14  制御装置
 P  位置座標
 P1  正常認識座標
 P2  推定座標
 P21  第1の外挿座標
 P22  第2の外挿座標
 R  距離
 V  相対速度
 θ  他車両が位置する方位
 (第1実施形態)
 本発明の第1実施形態について、図面を参照しつつ説明する。
 図1は、第1実施形態に係る進行方向ベクトルの信頼度判定方法を実現する信頼度判定装置の一例を示すブロック図である。図1においては、信頼度判定装置はプリクラッシュセーフティシステムの一部を構成している。図2は、自車両と他車両の位置関係を示す図である。図3は、進行方向ベクトルの算出方法の一例を示す図である。
 図1に示されるプリクラッシュセーフティシステム11は、自車両9に搭載される。プリクラッシュセーフティシステム11は、レーダ装置2で他車両3(図2参照)の位置座標Pおよび相対速度Vを取得し、位置座標Pの移動履歴(図3参照)に基づき、他車両3が自車両9に衝突する危険度を算出し、危険度が高いと判定された場合には、相応の安全措置を採るシステムである。このプリクラッシュセーフティシステム11は、他車両3の位置座標Pおよび相対速度Vを取得するレーダ装置2と、位置座標Pの移動履歴に基づき、他車両3が自車両9に衝突する危険度を算出し、危険度が高いと判定された場合には、シートベルトに緊締動作を行わせたり、ブレーキに制動動作を行わせるといった安全措置を採る電子制御装置(ECU)12とを備えている。他車両3が自車両9に衝突する危険度を算出するために、ECU12は、他車両3の位置座標Pの移動履歴に基づき、進行方向ベクトル4(図3参照)を算出する。進行方向ベクトル4の算出方法については後述する。
 ECU12は、第1実施形態に係る信頼度判定装置1と、衝突予測装置13と、制御装置14とを備えている。
 信頼度判定装置1は、レーダ装置2によって算出された物標(以下、他車両と称する)3の位置座標Pに基づいて進行方向ベクトル4が算出された際に当該進行方向ベクトル4の信頼度を判定する。
 衝突予測装置13は、信頼度判定装置1で算出された信頼度が所定の閾値以上である場合に、進行方向ベクトル4に基づいて衝突予測を行う。
 制御装置14は、衝突予測装置13が、他車両3と自車両9が衝突すると判定した場合に、上記した相応の安全措置を採るための制御を行う。
 レーダ装置2は、他車両3の位置座標Pおよび相対速度Vを取得する(図2(A)参照)。相対速度Vは、自車両9に対する他車両3の相対速度である。レーダ装置2による周辺監視は、1個のレーダ装置2で行ってもよいし(図2(B)参照)、2個のレーダ装置2(図1参照)で行ってもよいし、或いは3個以上のレーダ装置2で行ってもよい(図2(C)参照)。図2(B)(C)における符号15は、各レーダ装置2による監視領域を示している。
 レーダ装置2が取得する位置座標Pには、図3に例示されるように、正常認識座標P1と、推定座標P2とが含まれる。推定座標P2には、第1の外挿座標P21と、第2の外挿座標22とが含まれる。なお、図3に示される正常認識座標P1、第1の外挿座標P21、および第2の外挿座標P22の数の割合および配置は、一例であって、この例に限られるものではない。
 正常認識座標P1は、レーダ装置2によって正常に認識された位置座標である。
 正常認識座標P1を算出するためには、他車両3が自車両9に対して位置する方位θおよび当該他車両3と自車両9との距離Rが必要である(図2(A)参照)。他車両3が位置する方位θは、例えば、他車両3と自車両9を結ぶ直線と、自車両9の進行方向とがなす角度θで表される。これらの測定値に基づいて、正常認識座標P1を算出することができる。
 レーダ装置2の種類は、特に限定されるものではないが、例えば、FM-CWレーダを採用することができる。
 レーダ装置2として、FM-CWレーダを用いた場合、他車両3との距離Rは、以下の式(1)から求めることができる。
R=C(Δf+Δf)/(8fΔF)  ・・・式(1)
 ここで、各文字が表す意味は以下の通りである。
C:光速、Δf:変調波(例えば三角波)の上り区間のビート周波数、Δf:変調波の下り区間のビート周波数、f:変調波の繰り返し周波数、ΔF:変調波の振幅
 レーダ装置2として、FM-CWレーダを用いる場合、他車両3との相対速度Vは、以下の式(2)から求めることができる。
V=±(Δf-Δf)/2  ・・・式(2)
 ここで、各文字が表す意味は以下の通りである。
Δf:変調波(例えば三角波)の上り区間のビート周波数、Δf:変調波の下り区間のビート周波数
 上記角度θは、例えばモノパルス方式で測角することができる。この場合、角度θは、以下の式(3)を用いて算出することができる。
θ=sin-1(λφ/(2πd))  ・・・式(3)
 ここで、各文字が表す意味は以下の通りである。
λ:送信波の波長、d:2つのアンテナの間隔、φ:2つのアンテナで受信した反射波の位相差
 第1の外挿座標P21は、第1の外挿処理によって推定された位置座標である。
 第1の外挿処理は、周期的に物標検知を行うレーダ装置2が、以前の検知サイクルで他車両3の位置座標Pおよび相対速度Vを検知できたにも拘わらず、今回の検知サイクルで当該他車両3の位置座標Pおよび相対速度Vを特定するための測定パラメータの全部を検知できない場合に、以前に取得された当該他車両3の測定パラメータの値に基づいて今回の位置座標Pおよび相対速度Vを推定する処理である。以前に取得された当該他車両3の測定パラメータの値は、例えば、前回の検知サイクルで取得された測定パラメータの値である。前回の検知サイクルで取得された測定パラメータの値は、実測によって取得した値であってもよいし、或いは、推定によって取得した値であってもよい。レーダ装置2がFM-CWレーダである場合、他車両3の位置座標Pおよび相対速度Vを特定するための測定パラメータは、変調波(例えば三角波)の上り区間のビート周波数Δfおよび下り区間のビート周波数Δfである。
 今回の検知サイクルの位置座標をP、前回の検知サイクルの位置座標をPn-1とすると、今回の検知サイクルの位置座標Pは、例えば、以下の式(4)(5)に従って算出することができる。なお、以下の式において、XはPのX方向成分、Xn-1はPn-1のX方向成分、YはPのY方向成分、Yn-1はPn-1のY方向成分である。Vxn-1は前回の検知サイクルにおける相対速度のX方向成分、Vyn-1は前回の検知サイクルにおける相対速度のY方向成分である。Δtは、検知サイクルの時間である。
=Xn-1+Vxn-1×Δt  ・・・式(4)
=Yn-1+Vyn-1×Δt  ・・・式(5)
 また、今回の検知サイクルの相対速度VのX方向成分をVx、Y方向成分をVy、前回の検知サイクルの相対速度Vn-1のX方向成分をVxn-1、Y方向成分をVyn-1とすると、今回の検知サイクルの相対速度Vは、例えば以下の式(6)(7)に従って算出することができる。
Vx=Vxn-1  ・・・式(6)
Vy=Vyn-1  ・・・式(7)
 第2の外挿座標P22は、第2の外挿処理によって推定された位置座標である。
 第2の外挿処理は、周期的に物標検知を行うレーダ装置2が、以前の検知サイクルで他車両3の位置座標Pおよび相対速度Vを検知できたにも拘わらず、今回の検知サイクルで当該他車両3の位置座標Pおよび相対速度Vを特定するための測定パラメータの一部を検知できない場合に、以前に取得された当該他車両3の測定パラメータの値に基づいて今回の位置座標Pおよび相対速度Vを推定する処理である。以前に取得された当該他車両3の測定パラメータの値は、例えば、前回の検知サイクルで取得された測定パラメータの値である。前回の検知サイクルで取得された測定パラメータの値は、実測によって取得した値であってもよいし、或いは、推定によって取得した値であってもよい。レーダ装置2がFM-CWレーダである場合、他車両3の位置座標Pおよび相対速度Vを特定するための測定パラメータは、変調波(例えば三角波)の上り区間のビート周波数Δfおよび下り区間のビート周波数Δfである。
 今回の検知サイクルの位置座標をP、前回の検知サイクルの位置座標をPn-1とすると、今回の検知サイクルの位置座標Pは、例えば、以下のようにして推定することができる。
 今回の検知サイクルにおいて、上り区間のビート周波数Δfまたは下り区間のビート周波数Δfのいずれか一方が測定できなかった場合、その測定できなかったパラメータについて、前回の検知サイクルで取得した測定パラメータの値を上記の式(1)(2)に代入し、測定できたパラメータについては測定値を代入することにより、距離Rおよび相対速度Vを算出することができる。なお、方位θは今回の検知サイクルで検知できているものとする。距離Rと方位θが算出されれば、それらの値に基づいて、今回の検知サイクルにおける第2の外挿座標P22を算出することができる。
 信頼度判定装置1は、進行方向ベクトル算出部5と、信頼度算出部6とを備えている。
 進行方向ベクトル算出部5は、位置座標Pの移動履歴に基づき他車両3の進行方向ベクトル4を算出する。進行方向ベクトル4の算出方法は特に限定されるものではないが、例えば、以下のようにして算出することができる。
 図3(A)に示されるように、まず、レーダ装置2が取得した位置座標Pを、取得した順序に従ってプロットする。次に、図3(B)に示されるように、ばらつきが大きな位置座標Pを、進行方向ベクトル4を算出するためのデータから除外する。次に、図3(C)に示されるように、位置座標Pを、取得した順序の早い第1のグループ7と取得した順序の遅い第2のグループ8の2つに分ける。次に、図3(D)に示されるように、第1のグループ7の重心位置Paと第2のグループ8の重心位置Pbを算出し、重心位置Paと重心位置Pbを通るベクトルを進行方向ベクトル4とする。進行方向ベクトル4の向きは、重心位置Paから重心位置Pbに向くように設定される。なお、位置座標Pの点数は、今回の検知サイクルから遡って所定周期分の検知サイクルが対象となる。その回数は特に限定されない。
 信頼度算出部6は、位置座標Pが、レーダ装置2によって正常に認識された正常認識座標P1と、レーダ装置2によって推定された推定座標P2とを含む場合に、正常認識座標P1に関する情報と推定座標P2に関する情報の少なくともいずれか一方に基づいて進行方向ベクトル4の信頼度を算出する。
 信頼度算出部6は、位置座標Pの点数のうち正常認識座標P1の点数が占める割合に基づいて、進行方向ベクトル4の信頼度を算出することができる(算出例1)。この場合、位置座標Pの点数のうち正常認識座標P1の点数が占める割合が、正常認識座標P1に関する情報である。なお、位置座標Pの点数は、今回の検知サイクルから遡って所定周期分の検知サイクルが対象となる。その回数は特に限定されない。
 また、信頼度算出部6は、位置座標Pの点数のうち推定座標P2の点数が占める割合に基づいて、進行方向ベクトル4の信頼度を算出することができる(算出例2)。この場合、位置座標Pの点数のうち推定座標P2の点数が占める割合が、推定座標P2に関する情報である。推定座標P2には、第1の外挿座標P21と第2の外挿座標P22が含まれる。
 また、信頼度算出部6は、推定座標P2の点が連続する回数に基づいて、進行方向ベクトル4の信頼度を算出することができる(算出例3)。
 また、信頼度算出部6は、位置座標Pの点数のうち第1の外挿座標P21の点数が占める割合に基づいて、進行方向ベクトル4の信頼度を算出することができる(算出例4)。
 また、信頼度算出部6は、第1の外挿座標P21の点が連続する回数に基づいて、進行方向ベクトル4の信頼度を算出することができる(算出例5)。
 また、信頼度算出部6は、位置座標Pの点数のうち第2の外挿座標P22の点数が占める割合に基づいて、進行方向ベクトル4の信頼度を算出することができる(算出例6)。
 また、信頼度算出部6は、第2の外挿座標P22の点が連続する回数に基づいて、進行方向ベクトル4の信頼度を算出することができる(算出例7)。
 なお、本実施形態においては、上記した算出例1~算出例7を単独で採用してもよいが、これら算出例の中から任意に2つ以上の算出例を組み合わせてもよい。
 次に、進行方向ベクトル4の信頼度判定の一例について、図4のフローチャートを参照しつつ説明する。
 図4に示されるように、まず、信頼度算出部6は、レーダ装置2が過去N周期分の検知で取得したN個の位置座標Pをメモリに保存する(ステップS1)。
 次いで、信頼度算出部6は、保存したN個の位置座標Pに基づいて、進行方向ベクトル4を算出する(ステップS2)。
 次いで、進行方向ベクトル4の信頼度を初期化する(ステップS3)。ステップ3において、信頼度は例えば100%に設定される。
 次いで、信頼度算出部6は、N個の位置座標Pに、第1の外挿座標P21がm個(mは1以上N以下の任意の整数)以上含まれるかどうかを判断する(ステップS4)。
 第1の外挿座標P21がm個以上含まれる場合(ステップS4においてYES)、進行方向ベクトル4の信頼度を所定値だけ減算する(ステップS5)。ステップS4において、減算する所定値は特に限定されないが、例えば20%減算する。
 一方、第1の外挿座標P21がm個以上含まれない場合(ステップS4においてNO)、ステップS6に移る。
 ステップS6において、信頼度算出部6は、N個の位置座標Pのうち、r回(rは1以上N以下の任意の整数)連続する第1の外挿座標P21が含まれるかどうかを判断する。
 r回連続する第1の外挿座標P21が含まれる場合(ステップS6においてYES)、進行方向ベクトル4の信頼度を所定値だけ減算し(ステップS7)、処理を終了する。ステップS7において、減算する所定値は特に限定されないが、例えば10%減算する。
 一方、r回連続する第1の外挿座標P21が含まれない場合(ステップS6においてNO)、処理を終了する。
 以上が、進行方向ベクトル4の信頼度判定の一例である。
 上記の如く、ステップS3における減算値を20%とし、ステップS7における減算値を10%とした場合、信頼度判定は以下のようになる。すなわち、N個の位置座標Pに第1の外挿座標P21がm個以上含まれ、かつ、r回連続する第1の外挿座標P21が含まれる場合、信頼度は70%になる。また、N個の位置座標Pに第1の外挿座標P21がm個以上含まれ、かつ、r回連続する第1の外挿座標P21が含まれない場合、信頼度は80%になる。また、N個の位置座標Pに第1の外挿座標P21がm個以上含まれず、かつ、r回連続する第1の外挿座標P21が含まれる場合、信頼度は90%になる。また、N個の位置座標Pに第1の外挿座標P21がm個以上含まれず、かつ、r回連続する第1の外挿座標P21が含まれない場合、信頼度は100%になる。
 次に、進行方向ベクトル4の信頼度判定の他の例について、図5のフローチャートを参照しつつ説明する。
 図5に示される信頼度判定は、ステップS1~ステップS7までは図4に示される例と同じであり、ステップS8~ステップS11が追加されている点が図4に示される例と異なる。以下、ステップS1~ステップS7については説明を省略し、ステップS8~ステップS11についてのみ説明する。
 図5に示されるように、ステップS8において、信頼度算出部6は、N個の位置座標Pに、第2の外挿座標P22がn個(nは1以上N以下の任意の整数)以上含まれるかどうかを判断する。
 第2の外挿座標P22がn個以上含まれる場合(ステップS8においてYES)、進行方向ベクトル4の信頼度を所定値だけ減算する(ステップS9)。ステップS8において、減算する所定値は特に限定されないが、例えば20%減算する。
 一方、第2の外挿座標P22がn個以上含まれない場合(ステップS8においてNO)、ステップS10に移る。
 ステップS10において、信頼度算出部6は、N個の位置座標Pのうち、s回(sは1以上N以下の任意の整数)連続する第2の外挿座標P22が含まれるかどうかを判断する。
 s回連続する第2の外挿座標P22が含まれる場合(ステップS10においてYES)、進行方向ベクトル4の信頼度を所定値だけ減算し(ステップS11)、処理を終了する。ステップS10において、減算する所定値は特に限定されないが、例えば10%減算する。
 一方、s回連続する第2の外挿座標P22が含まれない場合(ステップS10においてNO)、処理を終了する。
 以上が、進行方向ベクトル4の信頼度判定の他の例である。
 上記の如く、ステップS4における減算値を20%とし、ステップS6における減算値を10%とし、ステップS8における減算値を20%とし、ステップS10における減算値を10%とした場合、信頼度判定は以下のようになる。すなわち、N個の位置座標Pに第1の外挿座標P21がm個以上含まれ、かつ、N個の位置座標Pにr回連続する第1の外挿座標P21が含まれ、かつ、N個の位置座標Pに第2の外挿座標P22がn個以上含まれ、かつ、s回連続する第2の外挿座標P22が含まれる場合、信頼度は40%になる。また、N個の位置座標Pに第1の外挿座標P21がm個以上含まれ、かつ、N個の位置座標Pにr回連続する第1の外挿座標P21が含まれ、かつ、N個の位置座標Pに第2の外挿座標P22がn個以上含まれず、かつ、s回連続する第2の外挿座標P22が含まれない場合、信頼度は70%になる。
 以上説明したように、第1実施形態によれば、他車両3の進行方向ベクトル4の信頼度を算出することができる。信頼度が所定の閾値より高ければ、他車両3と自車両9の衝突予測結果に基づいて、安全措置を採る装置の動作を行い、信頼度が所定の閾値より低ければ、他車両3と自車両9の衝突予測結果を取り消し、安全措置を採る装置の動作を行わない、といった処理をすることができる。これにより、衝突予測の信頼性を高めて、安全措置を採る装置の不要動作を低減することができる。
 なお、図1に示される例ではレーダ装置2とECU12を別々に配置したが、図6に示されるように、レーダ装置2内にECU12を配置してもよい。
 また、図3に示される例では、進行方向ベクトル算出部5は、正常認識座標P1、第1の外挿座標P21、および第2の外挿座標P22の移動履歴に基づいて進行方向ベクトル4を算出したが、第1の外挿座標P21および第2の外挿座標P22は用いずに正常認識座標P1の移動履歴に基づいて進行方向ベクトルを算出してもよい。或いは、第1の外挿座標P21または第2の外挿座標P22のいずれか一方と正常認識座標P1の移動履歴に基づいて進行方向ベクトルを算出してもよい。これらいずれの場合においても、信頼度の判定は、例えば図4のステップS3~S7、図5のステップS3~S11と同様の手順で行うことができる。
 本発明は、プリクラッシュセーフティシステムを搭載する車両等において適用可能である。

Claims (14)

  1.  レーダ装置によって算出された物標の位置座標に基づいて進行方向ベクトルが算出された際に当該進行方向ベクトルの信頼度を判定する方法であって、
     前記位置座標の移動履歴に基づき前記物標の進行方向ベクトルを算出する進行方向ベクトル算出ステップと、
     前記位置座標が、前記レーダ装置によって正常に認識された正常認識座標と、前記レーダ装置によって推定された推定座標とを含む場合に、前記正常認識座標に関する情報と前記推定座標に関する情報の少なくともいずれか一方に基づいて前記進行方向ベクトルの信頼度を算出する信頼度算出ステップとを備えた、進行方向ベクトルの信頼度判定方法。
  2.  前記信頼度算出ステップは、前記位置座標の点数のうち前記正常認識座標の点数が占める割合に基づいて、前記進行方向ベクトルの信頼度を算出することを特徴とする請求項1に記載の進行方向ベクトルの信頼度判定方法。
  3.  前記信頼度算出ステップは、前記位置座標の点数のうち前記推定座標の点数が占める割合に基づいて、前記進行方向ベクトルの信頼度を算出することを特徴とする請求項1に記載の進行方向ベクトルの信頼度判定方法。
  4.  前記信頼度算出ステップは、前記推定座標の点が連続する回数に基づいて、前記進行方向ベクトルの信頼度を算出することを特徴とする請求項1に記載の進行方向ベクトルの信頼度判定方法。
  5.  前記推定座標は、第1の外挿処理によって推定された第1の外挿座標を含み、
     前記第1の外挿処理は、前記レーダ装置が、以前の検知サイクルで物標の位置座標および相対速度を検知できたにも拘わらず、今回の検知サイクルで当該物標の位置座標および相対速度を特定するための測定パラメータの全部を検知できない場合に、以前に取得された当該物標の測定パラメータの値に基づいて今回の位置座標および相対速度を推定する処理であることを特徴とする請求項1に記載の進行方向ベクトルの信頼度判定方法。
  6.  前記信頼度算出ステップは、前記位置座標の点数のうち前記第1の外挿座標の点数が占める割合に基づいて、前記進行方向ベクトルの信頼度を算出することを特徴とする請求項5に記載の進行方向ベクトルの信頼度判定方法。
  7.  前記信頼度算出ステップは、前記第1の外挿座標の点が連続する回数に基づいて、前記進行方向ベクトルの信頼度を算出することを特徴とする請求項5または6に記載の進行方向ベクトルの信頼度判定方法。
  8.  前記推定座標は、第2の外挿処理によって推定された第2の外挿座標を含み、
     前記第2の外挿処理は、前記レーダ装置が、以前の検知サイクルで物標の位置座標および相対速度を検知できたにも拘わらず、今回の検知サイクルで当該物標の位置座標および相対速度を特定するための測定パラメータの一部を検知できない場合に、以前に取得された当該物標の測定パラメータの値に基づいて今回の位置座標および相対速度を推定する処理であることを特徴とする請求項1に記載の進行方向ベクトルの信頼度判定方法。
  9.  前記信頼度算出ステップは、前記位置座標の点数のうち前記第2の外挿座標の点数が占める割合に基づいて、前記進行方向ベクトルの信頼度を算出することを特徴とする請求項8に記載の進行方向ベクトルの信頼度判定方法。
  10.  前記信頼度算出ステップは、前記第2の外挿座標の点が連続する回数に基づいて、前記進行方向ベクトルの信頼度を算出することを特徴とする請求項8または9に記載の進行方向ベクトルの信頼度判定方法。
  11.  前記推定座標は、第1の外挿処理によって推定された第1の外挿座標と、第2の外挿処理によって推定された第2の外挿座標とを含み、
     前記第1の外挿処理は、前記レーダ装置が、以前の検知サイクルで物標の位置座標および相対速度を検知できたにも拘わらず、今回の検知サイクルで当該物標の位置座標および相対速度を特定するための測定パラメータの全部を検知できない場合に、以前に取得された当該物標の測定パラメータの値に基づいて今回の位置座標を推定する処理であり、
     前記第2の外挿処理は、前記レーダ装置が、以前の検知サイクルで物標の位置座標および相対速度を検知できたにも拘わらず、今回の検知サイクルで当該物標の位置座標および相対速度を特定するための測定パラメータの一部を検知できない場合に、以前に取得された当該物標の測定パラメータの値に基づいて今回の位置座標を推定する処理であることを特徴とする請求項1に記載の進行方向ベクトルの信頼度判定方法。
  12.  前記レーダ装置がFM-CWレーダである場合、前記物標の位置座標および相対速度を特定するための測定パラメータは、変調波の上り区間のビート周波数および下り区間のビート周波数であることを特徴とする請求項5または8に記載の進行方向ベクトルの信頼度判定方法。
  13.  前記進行方向ベクトル算出ステップは、前記正常認識座標の移動履歴に基づき前記物標の進行方向ベクトルを算出することを特徴とする、請求項1乃至12いずれか1項に記載の進行方向ベクトルの信頼度判定方法。
  14.  レーダ装置によって算出された物標の位置座標に基づいて進行方向ベクトルが算出された際に当該進行方向ベクトルの信頼度を判定する装置であって、
     前記位置座標の移動履歴に基づき前記物標の進行方向ベクトルを算出する進行方向ベクトル算出部と、
     前記位置座標が、前記レーダ装置によって正常に認識された正常認識座標と、前記レーダ装置によって推定された推定座標とを含む場合に、前記正常認識座標に関する情報と前記推定座標に関する情報の少なくともいずれか一方に基づいて前記進行方向ベクトルの信頼度を算出する信頼度算出部とを備えた、進行方向ベクトルの信頼度判定装置。
PCT/JP2008/003635 2008-12-05 2008-12-05 進行方向ベクトルの信頼度判定方法および信頼度判定装置 WO2010064283A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009539959A JP4919116B2 (ja) 2008-12-05 2008-12-05 進行方向ベクトルの信頼度判定方法および信頼度判定装置
PCT/JP2008/003635 WO2010064283A1 (ja) 2008-12-05 2008-12-05 進行方向ベクトルの信頼度判定方法および信頼度判定装置
US12/669,047 US8154437B2 (en) 2008-12-05 2008-12-05 Traveling direction vector reliability determination method and traveling direction vector reliability determination device
DE112008004067T DE112008004067B4 (de) 2008-12-05 2008-12-05 Fahrtrichtungsvektorzuverlässigkeits-Bestimmungsverfahren und Fahrtrichtungsvektorzuverlässigkeits-Bestimmungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/003635 WO2010064283A1 (ja) 2008-12-05 2008-12-05 進行方向ベクトルの信頼度判定方法および信頼度判定装置

Publications (1)

Publication Number Publication Date
WO2010064283A1 true WO2010064283A1 (ja) 2010-06-10

Family

ID=42232948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003635 WO2010064283A1 (ja) 2008-12-05 2008-12-05 進行方向ベクトルの信頼度判定方法および信頼度判定装置

Country Status (4)

Country Link
US (1) US8154437B2 (ja)
JP (1) JP4919116B2 (ja)
DE (1) DE112008004067B4 (ja)
WO (1) WO2010064283A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024284A1 (ja) * 2012-08-08 2014-02-13 トヨタ自動車株式会社 衝突予測装置
JP2014086045A (ja) * 2012-10-26 2014-05-12 Kddi Corp 端末の位置・方位情報に基づいてpoiを推定するサーバ、システム、プログラム及び方法
CN106056971A (zh) * 2015-04-09 2016-10-26 现代自动车株式会社 用于识别周围车辆的设备和方法
JP2016193672A (ja) * 2015-04-01 2016-11-17 トヨタ自動車株式会社 車両の制御装置
JP2017026555A (ja) * 2015-07-27 2017-02-02 トヨタ自動車株式会社 移動体検出装置及び運転支援装置
CN111257865A (zh) * 2020-02-07 2020-06-09 电子科技大学 一种基于线性伪量测模型的机动目标多帧检测跟踪方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9341705B2 (en) 2008-01-31 2016-05-17 Bae Systems Information And Electronic Systems Integration Inc. Passive ranging of a target
US8081106B2 (en) * 2008-01-31 2011-12-20 Bae Systems Information And Electric Systems Integration Inc. Target ranging using information from two objects
JP5126556B2 (ja) * 2008-12-18 2013-01-23 トヨタ自動車株式会社 レーダーシステム
WO2010073300A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 走行路推定装置、及び当該装置で用いられる走行路推定方法
RU2010124265A (ru) * 2010-06-16 2011-12-27 Алексей Владиславович Жданов (RU) Способ и устройство определения направления начала движения
KR102299446B1 (ko) * 2015-03-25 2021-09-08 현대모비스 주식회사 인식 고장 진단 장치 및 인식 고장 진단 방법
JP7263996B2 (ja) * 2019-09-19 2023-04-25 株式会社デンソー 壁形状計測装置
CN111709082B (zh) * 2020-04-28 2022-06-07 湖南大学 一种高效的汽车侧面碰撞安全可靠性设计优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233813A (ja) * 1991-11-25 1993-09-10 Nec Corp 動画像解析方法
JPH07225275A (ja) * 1994-02-10 1995-08-22 Mitsubishi Electric Corp 車両用距離データ処理装置
JPH10239436A (ja) * 1997-02-21 1998-09-11 Mitsubishi Electric Corp 車間距離検出装置
JP2004110491A (ja) * 2002-09-19 2004-04-08 Nissan Motor Co Ltd 車両用障害物判断装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142520A (ja) * 1997-11-06 1999-05-28 Omron Corp 測距装置の軸調整方法及び軸ずれ検出方法並びに測距装置
US6301530B1 (en) * 1999-06-23 2001-10-09 Honda Giken Kobgyo Kabushiki Kaisha Automatic following travel system
JP3797277B2 (ja) * 2002-06-04 2006-07-12 株式会社村田製作所 レーダ
DE102004037704B4 (de) * 2004-08-04 2014-07-10 Daimler Ag Kraftfahrzeug mit einem präventiv wirkenden Schutzsystem
JP2007279892A (ja) 2006-04-04 2007-10-25 Honda Motor Co Ltd 衝突予知システムの制御装置、衝突予知方法および乗員保護システム
JP2008137396A (ja) 2006-11-29 2008-06-19 Mazda Motor Corp 車両の障害物検知装置
JP2008197720A (ja) 2007-02-08 2008-08-28 Mitsubishi Electric Corp 歩行者警報装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05233813A (ja) * 1991-11-25 1993-09-10 Nec Corp 動画像解析方法
JPH07225275A (ja) * 1994-02-10 1995-08-22 Mitsubishi Electric Corp 車両用距離データ処理装置
JPH10239436A (ja) * 1997-02-21 1998-09-11 Mitsubishi Electric Corp 車間距離検出装置
JP2004110491A (ja) * 2002-09-19 2004-04-08 Nissan Motor Co Ltd 車両用障害物判断装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024284A1 (ja) * 2012-08-08 2014-02-13 トヨタ自動車株式会社 衝突予測装置
JP5835490B2 (ja) * 2012-08-08 2015-12-24 トヨタ自動車株式会社 衝突予測装置
US9440650B2 (en) 2012-08-08 2016-09-13 Toyota Jidosha Kabushiki Kaisha Collision prediction apparatus
JP2014086045A (ja) * 2012-10-26 2014-05-12 Kddi Corp 端末の位置・方位情報に基づいてpoiを推定するサーバ、システム、プログラム及び方法
JP2016193672A (ja) * 2015-04-01 2016-11-17 トヨタ自動車株式会社 車両の制御装置
CN106056971A (zh) * 2015-04-09 2016-10-26 现代自动车株式会社 用于识别周围车辆的设备和方法
JP2017026555A (ja) * 2015-07-27 2017-02-02 トヨタ自動車株式会社 移動体検出装置及び運転支援装置
US10197672B2 (en) 2015-07-27 2019-02-05 Toyota Jidosha Kabushiki Kaisha Moving object detection apparatus and drive support apparatus
CN111257865A (zh) * 2020-02-07 2020-06-09 电子科技大学 一种基于线性伪量测模型的机动目标多帧检测跟踪方法

Also Published As

Publication number Publication date
JPWO2010064283A1 (ja) 2012-04-26
JP4919116B2 (ja) 2012-04-18
US8154437B2 (en) 2012-04-10
DE112008004067T5 (de) 2012-05-10
DE112008004067B4 (de) 2013-05-29
US20110187582A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP4919116B2 (ja) 進行方向ベクトルの信頼度判定方法および信頼度判定装置
JP6270901B2 (ja) Fmcwレーダ装置
EP3151034B1 (en) Automated vehicle radar system to determine yaw-rate of a target vehicle
US11169252B2 (en) Object detection device
US9594166B2 (en) Object detecting apparatus
JP4883246B2 (ja) 物体検出装置及び物体検出方法
JP5910434B2 (ja) 衝突予測装置
JP6622167B2 (ja) 軸ずれ推定装置
US9002630B2 (en) Road shape estimation apparatus
US8847792B2 (en) Object detection apparatus and object detection program
JP2007317018A (ja) 衝突判定装置
US11155272B2 (en) Estimating apparatus
JP5093020B2 (ja) レーダ装置
US20150032363A1 (en) Obstacle determination device
US20150206435A1 (en) Collision determination device and collision determination method
US10578736B2 (en) Object detection apparatus
JP2008195293A (ja) 衝突予測装置
KR20200108464A (ko) 임계적인 횡방향 이동을 검출하는 방법 및 장치
KR101956386B1 (ko) 개선된 충돌 확률 산정 방법을 이용한 후방 충돌 경보 시스템
US20240134035A1 (en) Method for estimating an intrinsic speed of a vehicle
JP2014112348A (ja) 動作解析装置、動作解析システム、および動作解析方法
JP4082286B2 (ja) 前方物体位置検出装置
JP4893395B2 (ja) 進路予測装置及び衝突予測装置
JP4863679B2 (ja) 位置測定装置
JP2010236887A (ja) レーダ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009539959

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12669047

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080040672

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878545

Country of ref document: EP

Kind code of ref document: A1