WO2010062155A1 - Mezcla cementante con propiedades fisicoquímicas y bacteriológicas significativamente mejoradas que contiene dopamelanina, sus precursores, sus análogos o sus derivados como aditivo - Google Patents

Mezcla cementante con propiedades fisicoquímicas y bacteriológicas significativamente mejoradas que contiene dopamelanina, sus precursores, sus análogos o sus derivados como aditivo Download PDF

Info

Publication number
WO2010062155A1
WO2010062155A1 PCT/MX2008/000165 MX2008000165W WO2010062155A1 WO 2010062155 A1 WO2010062155 A1 WO 2010062155A1 MX 2008000165 W MX2008000165 W MX 2008000165W WO 2010062155 A1 WO2010062155 A1 WO 2010062155A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
dopamelanin
concrete
additive
water
Prior art date
Application number
PCT/MX2008/000165
Other languages
English (en)
French (fr)
Inventor
Arturo Solis Herrera
Original Assignee
Arturo Solis Herrera
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arturo Solis Herrera filed Critical Arturo Solis Herrera
Priority to EA201190052A priority Critical patent/EA021885B1/ru
Priority to PCT/MX2008/000165 priority patent/WO2010062155A1/es
Priority to DK08878471.5T priority patent/DK2371781T3/da
Priority to EP08878471.5A priority patent/EP2371781B1/en
Priority to US13/126,753 priority patent/US8691891B2/en
Publication of WO2010062155A1 publication Critical patent/WO2010062155A1/es
Priority to HRP20131187AT priority patent/HRP20131187T1/hr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/128Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/123Amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2092Resistance against biological degradation

Definitions

  • the present invention relates to the preparation of a cementitious mixture with significantly better physical (mechanical), bacteriological and physicochemical properties than conventional mixtures; because this mixture has as an additive dopamelanin, and / or its precursors, and / or its analogues, and / or its derivatives.
  • Conventional concrete is produced by mixing three essential components, cement, water and aggregates, to which a fourth component is eventually incorporated, which is generically designated as an additive although another component is air.
  • the concrete is composed of the 4 most abundant substances in the earth's crust (silicates, aluminates, iron and calcium compounds).
  • cement one of the components of concrete was used since the early 1800s and, since then, Portland cement has become the most used cement in the world.
  • cementing agents can be hydraulic when they set and harden by chemically reacting with water or they can be aerial cementing when they only set and harden in contact with air.
  • the affinity of the cementitious matrix with the aggregates and its ability to work together depends on the physical and chemical characteristics of the cement, the mineralogical and petrographic composition of the rocks that constitute the aggregates, and the shape, maximum size and texture superficial of these.
  • the material used in the preparation of the concrete affects the ease with which it can be emptied and with which the finish can be given; It also influences the time it takes to harden, the resistance that can be acquired, and how well it fulfills the functions for which it was prepared.
  • each of the cement components contributes to their particular properties and characteristics.
  • the different types and types of cement influence cohesion and manageability, settling and bleeding, setting time, mechanical resistance acquisition, hardened heat generation, sulfate attack resistance, The dimensional stability (volumetric changes), in the chemical stability (cement-aggregate reactions).
  • the influence of cement is fundamental, while in others it is of little importance because there are other factors that also influence and whose effects are more notable.
  • Water has two different applications as a concrete component, one internal when it is used in the mixture and another external when the concrete is "cured" with it. Although in these applications the characteristics of the water have effects of different importance on the concrete, it is desirable that water of the same quality be used in both cases.
  • the quality requirements of the mixing water for concrete have no obligatory relationship with the bacteriological aspect (as is the case with drinking water), but basically refer to its physicochemical characteristics and its effects on the behavior and properties of the concrete .
  • the undesirable effects that arise from the use of inappropriate water can occur in the short term (they are related to the setting time and initial resistances), in the medium term (with resistances after 28 days or more) and in the long term (they may consist of sulfate attack, alkali-aggregate reaction and corrosion of reinforcing steel).
  • the amount of water necessary for hardening has a maximum proportion of 40% with respect to the amount of cement.
  • the supplementary or extra water that can be in a proportion of up to 30% more, is not fixed and occupies in the hardened cementitious mixture a certain volume in the form of capillary pores. The greater the existence of excess water there will be more capillaries in the cement paste.
  • the capillaries are so numerous that they are joined together forming a permeable network.
  • the first 20 g are chemically fixed
  • the next 20 g are fixed by adsorption and the remaining 30 g are free in the network of capillaries
  • Aggregates in conventional hydraulic concrete mixtures usually represent approximately 60% to 75% of the absolute volume of all components; hence the remarkable influence that the characteristics and properties of the aggregates exert on those of the corresponding concrete.
  • materials that accompany the aggregates with some frequency for example: undesirable fines (silt and clay), organic matter (humus, fragments of roots and plants, and pieces of wood), among others .
  • the additive is a material other than water and aggregates in hydraulic cement and reinforcing fibers, which is added to the stir immediately before or during mixing (American Institute of Concrete or ACI 116 (26)). That is, the concrete additives are used with the fundamental purpose of suitably modify the behavior of concrete in fresh state, and / or induce or enhance certain v desirable properties in the hardened concrete, Io will mean a lower cost by saving of energy, for example, increasing the characteristics of defense against freezing and thawing, retarding or acceleration in the setting time, obtaining very high resistance, to name a few.
  • Some components of the cementitious mixtures may be organic, may contain N in their structures, fatty acids, be thermoplastic which in general increase the tensile strength, flexibility, etc., as shown by patents or patent applications: MX / A / 2004 / 010631, WO2006 / 1 16387 A2, MX230744, MX221807, MX167038, PA / A / 2006/005553, JP2004231497, JP2001213649, KR20010027978, ES2,030,845, JP1 1107459, RU2275342.
  • Some cementitious mixtures have elements to prevent corrosion (MX154260, MX 187569, PA / a / 2006/005091, JP2004231497).
  • many other cementitious mixtures have described (GB 2,398,296, JP2004224647, USRE37.655, MX / PA / A / 2002/012612,
  • the additives can be nanoparticles (US 2008/0242769 A1), they can be antimicrobial (US 2008/0242769 A1), they can be granular, polymeric, water soluble; which are added in order to avoid contamination, increase flexibility, sound insulation, increase adhesiveness, among others (MX 238915, JP8059325, ES2135634, CH679665, DE3436215, DE3143071, US3042608, US6902002).
  • Other additives are made from waste materials (KR20030088716, ES2152197, DE19728164)
  • Ia dopamelanin and / or its precursors, and / or its analogues, and / or its derivatives taking advantage of the peculiar characteristics of this component.
  • Melanin has chemical, biochemical, and electronic properties that have not been elucidated, detected, understood, or predicted in its entirety, but one of them is that it generates oxygen and molecular hydrogen from the photolysis of water, that is, it dissociates the water, using light as energy source, based on the following reaction:
  • the concrete will have a greater amount of oxygen and molecular hydrogen as well as energy and high-energy electrons to carry out the various chemical reactions that occur daily in all the compounds, of which the concrete It is not the exception.
  • the present invention aims to present a new mixture of concrete with increased strength, flexibility (ductility), compactness and corrosion resistance properties significantly.
  • the qualities of the cementitious mixture itself that are associated with the properties and characteristics have been analyzed of the additive used in the present invention.
  • the internal structure of the new cementitious mixture has an increased density (due to the increase in molecular attraction) and greater homogeneity, which increases its flexibility and avoids the areas of failure during the process of setting; These characteristics are related to the ability of the additive to reduce air bubbles immersed in the mixture and molecular repulsions, in addition the ability to combine (as a ligand) of the additive facilitates the molecular approach.
  • the consistency of the cementitious mixture is softer and significantly more moldable, manageable and therefore, more workable.
  • the new cementitious mixture has corrosion resistance properties due to the antioxidant property of the additive.
  • the presence of the additive inhibits the growth of microorganisms, due to the presence of molecular oxygen from the activity of dopamelanin on water molecules (especially anaerobic microorganisms are inhibited) whereby the mixture can be used in humid areas.
  • attack of the various xenobiotic substances that enter the structure and that come from any of the known or not known sources of harmful or dangerous substances are absorbed or adsorbed and then gradually released in a modified way to a greater or lesser extent depending decade substance, of its structure / activity relationship, of the presence of sulfhydryls, among others.
  • the greater stability of the cementitious mixture presented by this invention is also due to the damping or intrinsic buffer property of dopamelanin, avoiding the action of the acidic or alkaline media or of the temperature which prevents deterioration of the mixture and possibly the collapse of the structure as a whole.
  • a more complete mixture is that which has the activity of dopamelanin that produces not only greater availability of oxygen but also of molecular hydrogen and high energy electrons coupled with its ability to absorb a large amount and diversity of compounds, What allows a greater efficiency of the structure generated by the new mixture to respond expeditiously to the different type requests (insults, sudden changes, attacks) environmental, daily, extraordinary or circumstantial, result of the forces or changes in the same (moments) that lead to the deterioration of structures related to age; that is, that the structure formed from a mixture with a greater amount of dopamelanin will have a greater ability to tolerate biochemical and physical insult compared to a concrete with a smaller amount of the additive.
  • the touch is a more "cold” concrete.
  • Its increased workability allows finer, more precise finishes; with greater adaptability to the formwork or mold that is used for casting, since it is easier for them to copy the shape of the mold or formwork, with less added process, for example vibrated.
  • the phenomenon known as "bleeding" separation of the paste and stone aggregates
  • the mixture has an increased adhesiveness, which, in the case of finishes, allows to apply a more uniform, more aesthetic layer, more pleasant to the eye and touch, with much less effort or work by the staff.
  • This cementitious mixture possesses is that in the case of buildings related to gamma-ray emission (nuclear power plants for example), the mixture is capable of absorbing said radiation, due to the presence of dopamelanin, therefore, apart of having walls with a thickness less than 50%, in comparison to the walls constructed with the conventional mixture, the isolation of said lethal radiations is much more effective.
  • the structure / activity relationship of the concrete / additive interface allows it to be used as self-leveling concrete, which, in the case of extensions such as pavements, means significant savings in the labor required for its best finish, which, in the In case of melanin, it would be significantly lower.
  • dopamelanin its precursors, its analogues or its derivatives are used in a cementitious mixture as an additive that provides notable characteristics such as: a) Anticorrosive:
  • the advantages provided by the additive in the cementitious mixture is that it allows the construction of: a) Masonry joints. b) Deep foundations. c) Elements exposed to high environmental humidity or that are submerged in aqueous media. d) Shear walls in masonry buildings. e) Concrete elements of buildings where there are high demands for displacement (seismic zones). f) Elements that require capricious forms and fine finishes.
  • the new fresh cementitious mixture reaches a higher density, is more homogeneous, more stable, is more flexible, has greater moldability, better workability; and remarkably, these characteristics, manifest much faster than in the conventional mixture, that is, its setting is accelerated in a remarkable way, thanks to the greater availability of energy that hydrogen carries, resulting from the dissociation of water by the Ia Dopamelanin, which allows the chemical reactions that make up the whole (of the concrete), to happen in a significantly more efficient way, given the greater availability of hydrogen and therefore its valuable energy load, remember that hydrogen is the carrier of energy that nature uses most in the Universe, and this compared to conventional mixing, for example, there is much less energy loss in the form of heat.
  • the present invention claims a cementing composition
  • a cementing composition comprising dopamelanin and / or its precursors and / or its analogs as an additive in a maximum percentage of 30% of the cement, said additive replaces the water of the capillary networks;
  • said cementitious mixture has a water / cement ratio of 0.2 to 0.4, and may optionally contain gravel and sand in different proportions;
  • said cementing mixture generates strong chemical bonds (given the greater availability of energy carried by hydrogen), and an increased resistance to corrosion, at least 28% and an elastic resistance of the concrete increased, at least 50%, its cracking at an early age is very small or practically zero.
  • dopamelanin and / or its precursors and / or its analogs as an additive of a cementitious mixture that replaces the proportion of capillary water in the cementitious mixture.
  • dopamelanin and / or its precursors and / or its analogues in aqueous solution, at least 3% as an agent for setting and curing the concrete, which significantly improves the ductility, resistance and corrosion of the cementitious mixture.
  • the physicochemical and bacteriological properties of concrete significantly increase.
  • a cementitious mixture was made with the additive dopamelanin, said additive is chemically synthesized in opaque black color, with a completely liquid consistency that was synthesized with the highest standards of quality and similarity to the organic compound.
  • the additive was applied by replacing the portion of water in the mixture, without altering the water / cement ratio that was previously calculated, for the required strength of the mixture. Compression tests were performed on mortar tiles and bending test tests on cementitious mixtures with dopamelanin and samples without dopamelanin.
  • Compression tests on cement tiles were performed on an average of three specimens tested for cement that possessed dopamelanin and an average of two specimens tested for cement without dopamelanin.
  • dopamelanin cement has a maximum strength of 326.14 kg / cm 2
  • cement without dopamelanin has a maximum resistance of 274.69 kg / cm 2
  • the cement with dopamelanin supports at least 25% more maximum load applied with respect to cement without dopamelanin and the resistance increases at least 28% with respect to cement without dopamelanin
  • Cement with dopamelanin a maximum applied load of 163.69 kgf, that is, supported at least 30% more maximum load applied with respect to cement without dopamelanin.
  • cracking at an early age is very small or virtually nil, compared to conventional cement. From the process of implementing the mixtures, the difference between the two is easily discernible, since the mixture with dopamelanin tends to stabilize rapidly, compared to the mixture with water, since the latter, to resemble the stability of the mixture with dopamelanin , requires approximately 20% more cement. This increase in setting speed is a characteristic that has relevant practical applications, for example, when applied in areas with high relative humidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

La presente invención se refiere a una composición cementante que comprende dopamelanina, sus precursores y/o sus análogos como aditivo en un porcentaje máximo del 30% del cemento, dicho aditivo sustituye al agua de las redes de capilares; dicha mezcla cementante posee una relación agua/cemento de 0.2 a 0.4, opcionalmente, puede contener diferentes proporciones de arena y grava, dicha mezcla cementante posee fuertes enlaces químicos, una resistencia incrementada a la corrosión, al menos del 28% y una resistencia elástica del concreto incrementada, al menos del 50%, su agrietamiento en edades tempranas es muy pequeño o prácticamente nulo. También la presente solicitud se refiere al uso de la dopamelanina y/o sus precursores y/o sus análogos como aditivo de una mezcla cementante que sustituye a la proporción de agua de capilar en la mezcla cementante. O bien el uso de la dopamelanina y/o sus precursores y/o sus análogos en solución acuosa, al menos del 3%, como agente para fraguar y curar el concreto, que mejora significativamente la ductilidad, resistencia y la corrosión de la mezcla cementante, es decir, mejora significativamente las propiedades fisicoquímicas y bacteriológicas del concreto, siendo de especial interés el notable incremento en lo relacionado a resistencia a compresión, ductilidad o desplazamientos relativos sufriendo menor daño en comparación a la mezcla con agua; también incrementa significativamente la estabilidad volumétrica del concreto desde edades tempranas; así como incrementa su resistencia a la corrosión, lo cual es inclusive transmitido a los elementos metálicos embebidos en su interior, pues de hecho, los protege significativamente del deterioro.

Description

Mezcla cementante con propiedades fisicoquímicas y bacteriológicas significativamente mejoradas que contiene dopamelanina, sus precursores, sus análogos o sus derivados como aditivo.
DESCRIPCIÓN CAMPO DE LA INVENCIÓN La presente invención se refiere a Ia elaboración de una mezcla cementante con significativamente mejores propiedades físicas (mecánicas), bacteriológicas y fisicoquímicas que las mezclas convencionales; debido a que esta mezcla tiene como aditivo dopamelanina, y/o sus precursores, y/o sus análogos, y/o sus derivados.
ANTECEDENTES
El concreto convencional se produce mediante Ia mezcla de tres componentes esenciales, cemento, agua y agregados, a los cuales eventualmente se incorpora un cuarto componente que genéricamente se designa como aditivo aunque otro componente es el aire. Químicamente, el concreto está compuesto por las 4 sustancias más abundantes en Ia corteza terrestre (silicatos, aluminatos, hierro y compuestos de calcio).
Cabe aclarar que el cemento, uno de los componentes del concreto fue utilizado desde los inicios de 1800 y, desde entonces, el cemento portland se ha convertido en el cemento más usado en el mundo. Los cementantes pueden ser hidráulicos cuando fraguan y endurecen al reaccionar químicamente con el agua o pueden ser cementantes aéreos cuando solamente fraguan y endurecen en contacto con el aire.
En ambos tipos de mezclas cementantes, las características iniciales deseables de Ia mezcla o concreto fresco son: plasticidad, moldeabilidad y fácil compactibilidad pero gradualmente esta mezcla se tornará rígida adquiriendo el aspecto, comportamiento y propiedades de un cuerpo sólido formando el concreto endurecido. Consecuentemente con ello, el comportamiento mecánico de este material y su durabilidad en el servicio que proporcionan dependen de tres aspectos básicos:
1. Las características, composición y propiedades de Ia matriz cementante, endurecida, Io que implica Ia selección de un cementante apropiado, el empleo de una relación agua/cemento conveniente de 0.2 a 0.4 y el uso eventual de un aditivo necesario, con todo Io cual debe resultar potencialmente asegurada Ia calidad.
2. La calidad propia de los agregados, de acuerdo a las funciones que desempeñará Ia estructura, para que no representen el punto débil en el comportamiento del concreto y en su capacidad para resistir adecuadamente y por largo tiempo a las condiciones de exposición y servicio a que esté sometido.
3. La afinidad de Ia matriz cementante con los agregados y su capacidad para trabajar en conjunto, depende de las características físicas y químicas del cementante, Ia composición mineralógica y petrográfica de las rocas que constituyen los agregados, y Ia forma, tamaño máximo y textura superficial de éstos.
Además de las características físicas que contribuyen a Ia calidad intrínseca del concreto y que pueden ser cuantificadas, incluyen: su resistencia mecánica, su elasticidad, sus propiedades térmicas, su tamaño máximo de partícula, etc. las cuales permiten establecer Ia calidad del cementante según normas nacionales e internacionales (ASTM International) correspondientes. Esto es, el material que se utilice en Ia preparación del concreto afecta Ia facilidad con que pueda vaciarse y con Ia que se Ie pueda dar el acabado; también influye en el tiempo que tarde en endurecer, Ia resistencia que pueda adquirir, y Io bien que cumpla las funciones para las que fue preparado.
La manera en que contribuyen cada uno de los componentes de los cementantes en sus propiedades y características particulares se mencionan enseguida. Los diferentes tipos y clases de cemento influyen en Ia cohesión y manejabilidad, en el asentamiento y sangrado, en el tiempo de fraguado, en Ia adquisición de resistencia mecánica, en Ia generación de calor endurecido, en Ia resistencia al ataque de los sulfatos, en Ia estabilidad dimensional (cambios volumétricos), en Ia estabilidad química (reacciones cemento-agregados). En algunos aspectos Ia influencia del cemento es fundamental, en tanto que en otros resulta de poca importancia porque existen otros factores que también influyen y cuyos efectos son más notables. El agua tiene dos diferentes aplicaciones como componente del concreto, una interna cuando es empleada en Ia mezcla y otra externa cuando el concreto se "cura" con ella. Aunque en estas aplicaciones las características del agua tienen efectos de diferente importancia sobre el concreto, es deseable que se emplee agua de Ia misma calidad en ambos casos. Los requisitos de calidad del agua de mezclado para concreto no tienen ninguna relación obligada con el aspecto bacteriológico (como es el caso de las aguas potables), sino que básicamente se refieren a sus características fisicoquímicas y a sus efectos sobre el comportamiento y las propiedades del concreto. En tanto que, los efectos indeseables que se presentan por el uso de agua inadecuada se pueden presentar a corto plazo (se relacionan con el tiempo de fraguado y las resistencias iniciales), a mediano plazo (con las resistencias posteriores a 28 días o más) y a largo plazo (pueden consistir en el ataque de sulfatos, Ia reacción álcali-agregado y Ia corrosión del acero de refuerzo). La cantidad de agua necesaria para el endurecimiento, tiene una proporción máxima del 40% respecto a Ia cantidad de cemento. El agua suplementaria o extra que puede estar en una proporción hasta de un 30% más, no está fijada y ocupa en Ia mezcla cementante endurecida cierto volumen en forma de poros capilares. Cuanto mayor sea Ia existencia de agua en exceso habrá mayor cantidad de capilares en Ia pasta de cemento. Cuando Ia cantidad total de capilares corresponde a una relación agua/cemento (a/c) = 0.7, los capilares son tan numerosos que están unidos entre sí formando una red permeable. En consecuencia, si se agregan 70 g de agua a 100 g de cemento (a/c = 0,7), los primeros 20 g son fijados químicamente, los 20 g siguientes son fijados por adsorción y los 30 g restantes quedan libres en Ia red de capilares.
Los agregados en las mezclas de concreto hidráulico convencional suelen representar entre 60% y 75%, aproximadamente, del volumen absoluto de todos los componentes; de ahí Ia notable influencia que las características y propiedades de los agregados ejercen en las del correspondiente concreto. Existen diversos materiales que con cierta frecuencia acompañan a los agregados, y cuya presencia es inconveniente, por ejemplo: los finos indeseables (limo y arcilla), Ia materia orgánica (humus, fragmentos de raíces y plantas, y trozos de madera), entre otras.
El aditivo es un material distinto al agua y los agregados en el cemento hidráulico y las fibras de refuerzo, el cual se añade a Ia revoltura inmediatamente antes o durante el mezclado (Instituto Americano del Concreto o ACI 116(26),). Es decir, los aditivos para el concreto se utilizan con el propósito fundamental de modificar convenientemente el comportamiento del concreto en estado fresco, y/o de inducir o mejorar determinadas v propiedades deseables en el concreto endurecido, Io que significará un menor costo por el ahorro de energía, por ejemplo aumentando las características de defensa contra el congelamiento y el deshielo, el retardo o Ia aceleración en el tiempo de fraguado, Ia obtención de muy alta resistencia, por mencionar algunos. Algunos componentes de las mezclas cementantes pueden ser orgánicos, pueden contener N en sus estructuras, ácidos grasos, ser termoplásticos que en general aumentan Ia fuerza tensora, su flexibilidad, etc, como Io muestran las patentes o solicitudes de patente: MX/A/2004/010631 , WO2006/1 16387 A2, MX230744, MX221807, MX167038, PA/A/2006/005553, JP2004231497, JP2001213649, KR20010027978, ES2,030,845, JP1 1107459, RU2275342. Algunas mezclas cementantes poseen elementos para evitar Ia corrosión (MX154260, MX 187569, PA/a/2006/005091 , JP2004231497). Además, muchas otras mezclas cementantes han sido descritas (GB 2,398,296, JP2004224647, USRE37.655, MX/PA/A/2002/012612,
US6,755,907, DE4324190, JP2003107025, JP4292447, JP9296033, MX 191331 , PA/a/1999/008311 , MX160941 , PA/a/1999/02182, PA/a/1996/05755, MX 241331 , PA/a/1998/09713, PA/a/1998/09713, MX 253295, MX/A/2008/003801 , WO1995/13995, WO01/14277)
Los aditivos pueden ser nanopartículas (US 2008/0242769 A1 ), pueden ser antimicrobianos (US 2008/0242769 A1), pueden ser granulares, poliméricos, solubles en agua; los cuales se adicionan con Ia finalidad de evitar contaminaciones, incrementar Ia flexibilidad, el aislamiento al sonido, aumentar Ia adhesividad, entre otras (MX 238915, JP8059325, ES2135634, CH679665, DE3436215, DE3143071 , US3042608, US6902002). Otros aditivos están elaborados con materiales de desecho (KR20030088716, ES2152197, DE19728164)
Particularmente, en esta solicitud de patente se emplea como aditivo Ia dopamelanina, y/o sus precursores, y/o sus análogos, y/o sus derivados aprovechando las características peculiares de este componente.
Recordemos las extraordinarias propiedades de Ia melanina y del melanocito en relación al agua (Ia melanina, en presencia de luz, disocia el agua); las cuales se empezaron a vislumbrar hace relativamente poco tiempo, pues las publicaciones en que se llamaba Ia atención al respecto iniciaron alrededor de 1996. Se ha propuesto desde 1997 (Solís Herrera 1997), utilizar las insólitas capacidades de Ia molécula melanina, para diversos procesos industriales, tales como Ia generación de energía renovable, para fines medicinales, y en este documento se propone Ia utilización de Ia misma para mejorar las cualidades del concreto en los procesos de curado, mejorando las características físicas de resistencia, flexibilidad sin disminuir severamente sus capacidades mecánicas (ductilidad) y resistencia a Ia corrosión causantes de pérdida de adherencia acero-concreto y diámetro nominal en el acero de refuerzo, que en muchos de los casos es causante en mayor o menor grado, en forma directa o indirecta de colapsos.
La melanina posee propiedades químicas, bioquímicas, y electrónicas que no han sido dilucidadas, detectadas, comprendidas, ni predichas en su totalidad, pero una de ellas es que genera oxígeno e hidrógeno molecular a partir de Ia fotolisis del agua, esto es, disocia el agua, utilizando como fuente de energía Ia luz, en base a Ia siguiente reacción:
2H2O <->2H2 + O2+ 4 e "
Por Io que, a mayor cantidad de melanina, el concreto dispondrá de mayor cantidad de oxígeno e hidrógeno molecular así como energía y electrones de alta energía para llevar a cabo las diversas reacciones químicas que ocurren cotidianamente en todos los compuestos, de los cuales el concreto no es Ia excepción.
OBJETIVO DE LA INVENCIÓN Considerando que el concreto es Ia segunda sustancia más utilizada por el hombre después del agua, Ia presente invención tiene como objetivo presentar una nueva mezcla de concreto con propiedades de resistencia, flexibilidad (ductilidad), compactibilidad y resistencia a Ia corrosión incrementadas significativamente.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En base a Ia experiencia de fabricación de mezclas de concreto con Ia dopamelanina, y/o sus precursores, y/o sus análogos, y/o sus derivados se han analizado las cualidades de Ia mezcla cementante mismas que están asociadas con las propiedades y características del aditivo empleado en Ia presente invención. Las estructura interna de Ia nueva mezcla cementante tiene una densidad incrementada (por el aumento de Ia atracción molecular) y una mayor homogeneidad, Io que aumenta su flexibilidad y evita las zonas de fallas durante el proceso de fraguado; estas características se relacionan con Ia capacidad del aditivo para disminuir las burbujas de aire inmersas en Ia mezcla y las repulsiones moleculares, además Ia capacidad de combinación (como ligando) del aditivo facilita Ia aproximación molecular. Por otra parte, Ia consistencia de Ia mezcla cementante es más suave y significativamente más moldeable, manejable y por Io tanto, más trabajable.
Otras características dependientes de Ia estructura interna de Ia mezcla cementante son el incremento de Ia resistencia, Ia flexibilidad (ductilidad) y Ia resistencia a Ia corrosión; las que se deben al tamaño de Ia molécula del aditivo (estimado en millones de daltons), y Ia presencia de cargas, por Io que el aditivo se puede diluir en el agua en diversas concentraciones, pero inclusive en concentraciones menores al 3% del peso volumétrico (peso/volumen). Estas características presentes en Ia nueva mezcla son importantes en el ramo de Ia construcción, por ejemplo, por Ia demanda de respuesta sísmica para los diversos estados de servicio a que esté sometida Ia estructura, permitiendo utilizar elementos estructurales más esbeltos pero más dúctiles, con menores cuantías de acero de refuerzo (varillas por ejemplo), Io que conlleva a disminución de los costos y a Ia posibilidad de construir claros más amplios con menos elementos estructurales (como las columnas). La nueva mezcla cementante posee propiedades de resistencia a Ia corrosión debidas a Ia propiedad antioxidante del aditivo. Asimismo, Ia presencia del aditivo inhibe el crecimiento de microorganismos, por Ia presencia del oxígeno molecular proveniente de Ia actividad de Ia dopamelanina sobre las moléculas de agua (especialmente se inhiben microorganismos anaeróbicos) por Io que Ia mezcla se puede emplear en zonas húmedas. Además, el ataque de las diversas substancias xenobióticas que ingresan a Ia estructura y que provienen de alguna de las fuentes conocidas o no, de substancias dañinas o peligrosas, son absorbidas o adsorbidas y luego son liberadas paulatinamente de manera modificada en mayor o menor grado dependiendo de cada substancia, de su relación estructura/actividad, de Ia presencia de sulfhidrilos, entre otras.
La mayor estabilidad de Ia mezcla cementante que presenta esta invención también se debe a Ia propiedad amortiguadora o de buffer intrínseca de Ia dopamelanina, evitando Ia acción de los medios ácidos o alcalinos o de Ia temperatura Io que evita el deterioro de Ia mezcla y eventualmente el colapso de Ia estructura en su conjunto. Por otro lado, resulta una mezcla más completa aquella que posee Ia actividad de Ia dopamelanina que produce no sólo mayor disponibilidad de oxígeno sino también de hidrógeno molecular y de electrones de alta energía aunado con su capacidad para absorber una gran cantidad y diversidad de compuestos, Io que permite una mayor eficiencia de Ia estructura generada por Ia nueva mezcla para responder en forma expedita ante los diferentes solicitaciones de tipo (insultos, cambios bruscos, ataques) ambiental, cotidianos, extraordinarios o circunstanciales, resultado de las fuerzas o de los cambios en las mismas (momentos) que conllevan al deterioro de las estructuras relacionadas con Ia edad; es decir, que Ia estructura formada a partir de una mezcla con mayor cantidad de dopamelanina tendrá una mayor capacidad de tolerancia al insulto bioquímico y físico en comparación a un concreto con menor cantidad del aditivo. Otras características diferentes a los concretos descritos en el arte previo se han observado en el nuevo, por ejemplo, en cuanto a Ia apariencia de Ia mezcla, su color es más obscuro, pero de apariencia agradable. Es notable, que los concretos elaborados con el aditivo no tienen olor, en contraste con los convencionales, Io cual puede explicarse porque Ia dopamelanina forma enlace covalentes con los tioles, que son una de las moléculas que más comúnmente se relacionan con compuestos aromáticos. Por otra parte, y Ia reacción exotérmica usual en los concretos, perceptible ya en el momento de aplicarlos, en el concreto con melanina los cambios de temperatura son mucho menos marcados, es decir; Ia reacciones son más estables, porque pierden menos energía en forma de calor, pues Ia dopamelanina permite que una mayor cantidad de energía se utilice en Ia formación de enlaces químicos de diversos tipos. por Io que al tacto es un concreto más "frió". Su trabajabilidad incrementada permite acabados más finos, precisos; con mayor adaptabilidad a Ia cimbra o molde que se utilice para su colado, pues es más fácil que copien Ia forma del molde o cimbra, con menor proceso añadido, por ejemplo vibrado. El fenómeno conocido como "sangrado", (segregación de Ia pasta y los agregados pétreos) disminuye drásticamente cuando utilizamos el aditivo, debido a que los procesos de vibrado se presentan en menor cantidad y frecuencia que un concreto convencional. La mezcla posee una adhesividad incrementada, Io que, en el caso de acabados, permite aplicar una capa más uniforme, más estética, más agradable a Ia vista y al tacto, con mucho menos esfuerzo o trabajo por parte del personal. Una de las aplicaciones que posee esta mezcla cementante es que en el caso de edificios relacionados con emisión de rayos gamma (centrales nucleares por ejemplo), Ia mezcla es capaz de absorber dichas radiaciones, debido a Ia presencia de dopamelanina, por Io que, aparte de tener muros con un espesor menor al 50%, en comparación a los muros construidos con Ia mezcla convencional, el aislamiento de dichas radiaciones letales es mucho más efectivo. La relación estructura/actividad de Ia interfase concreto/aditivo, permite utilizarlo como concreto autonivelante, Io que, en el caso de extensiones tales como pavimentos, significa un ahorro importante en Ia mano de obra requerida para su mejor acabado, Io que, en el caso de Ia melanina, sería significativamente menor. En relación a Ia exposición al sol, tenemos que las estructuras construidas con Ia nueva mezcla cementante, al momento del curado, tendrán una temperatura más uniforme, a pesar de las diferencias en Ia cantidad de irradiación solar recibidas en relación a áreas expuestas a mayor o menor cantidad de sol. La reacción química tiene menores diferencias de temperatura dentro de Ia mezcla de concreto generando una estructura mucho más adecuada para Ia finalidad para Ia que se calcula. La estabilidad química que confiere Ia dopamelanina al concreto también tiene ventajas en el caso del fraguado porque Ia temperatura de fraguado es más estable, es decir, las ventajas se presentan desde el inicio de Ia mezcla cuando se agrega el aditivo, y también cuando se agrega en el curado, (humectación externa) con Ia finalidad de que su grado de humedad disminuya de forma más paulatina, Io que se traduce en mejores propiedades del concreto endurecido.
Resumiendo, Ia dopamelanina, sus precursores, sus análogos o sus derivados se usan en una mezcla cementante como un aditivo que proporciona notables características como: a) Anticorrosivo:
S Al aplicarse al concreto previene zonas latentes de oxidación en el acero de refuerzo, por Io que se evitan fallas posteriores de los elementos por cuestiones de intemperismo o corrosión. s Con ello el acero conserva sus propiedades geométricas sin verse afectadas por Ia corrosión provocada por Ia reacción del oxígeno y el acero con sus distintas aleaciones. s Se puede usar en lugares donde Ia exposición a los álcalis y Ia humedad relativa del medio ambiente sea considerada alta. b) Incrementa propiedades mecánicas
^ Al incorporarse a Ia mezcla cemento-arena y cemento grava-arena, genera una reacción exotérmica atemperada, con ello Ia contracción del concreto disminuye considerablemente, y el agrietamiento en edades tempranas es muy pequeño o prácticamente nulo. s Genera enlaces químicos de gran atracción y con ello incrementa su capacidad a compresión, pues su relación de vacíos es bajo, con ello se tiene un elemento más denso, esto es; su densidad y estabilidad volumétrica es significativamente mayor, Io que Ia hace más predecible
/ A su vez incrementa sus propiedades mecánicas ante demandas laterales, aumentando su rango elástico y como consecuencia menores daños en los elementos (ductilidad).
S Disminuye las secciones transversales de los elementos y las cuantías de acero requeridas para ciertas demandas de desplazamiento. S Al colocar una cantidad mayor de aditivo a Ia mezcla en zonas latentes de rótulas plásticas, incrementa su capacidad de rotación y generación de articulaciones para Ia disipación de energía durante un terremoto, c) Mejora los acabados de los elementos s El aditivo dopamelanina, sus precursores, sus análogos o sus derivados, en solución acuosa; al incorporarse a Ia mezcla cemento/arena y cemento/grava/arena, disminuye significativamente, Ia formación de vacíos que usualmente genera Ia mezcla con agua. La textura resultante es agradable a Ia vista. s Requiere de menor vibrado al momento del colado de los elementos con ello se disminuye Ia posible segregación en Ia mezcla y como consecuencia un sangrado en el concreto. Las ventajas que proporciona el aditivo en Ia mezcla cementante es que permite Ia construcción de: a) Juntas de mampostería. b) Cimentaciones profundas. c) Elementos expuestos a altas humedades ambientales o que se encuentren sumergidos en medios acuosos. d) Muros de cortante en edificios de mampostería. e) Elementos de concreto de edificios donde exista altas demandas de desplazamiento (zonas sísmicas). f) Elementos que requieran formas caprichosas y acabados finos.
La nueva mezcla cementante fresca alcanza una mayor densidad, es más homogénea, más estable, es más flexible, tiene mayor moldeabilidad, mejor trabajabilidad; y notablemente, estas características, se manifiestan mucho más rápido que en Ia mezcla convencional, es decir, su fraguado se acelera en forma notable, gracias a Ia mayor disponibilidad de energía que acarrea el hidrógeno, resultado de Ia disociación del agua por parte de Ia dopamelanina, Io que permite que las reacciones químicas que conforman el todo (del concreto), sucedan de una manera significativamente más eficiente, dada Ia mayor disponibilidad de hidrógeno y por ende de su valiosa carga de energía, recordemos que el hidrógeno es el acarreador de energía que más utiliza Ia naturaleza en el Universo, y ello en comparación a Ia mezcla convencional, pues por ejemplo, hay mucho menor pérdida de energía en forma de calor. Estas características producen una mezcla cementante endurecida más firme, con mayor resistencia a Ia corrosión, con mayor inhibición al crecimiento de microorganismos, una temperatura más estable, es capaz de absorber más longitudes de onda de las radiaciones electromagnéticas, inclusive rayos gamma, es de color más obscuro, es inodora y de apariencia y tacto agradable. Lo anterior tiene relación con un comportamiento distinto de las moléculas de agua en presencia de dopamelanina, pues por ejemplo, Ia evaporación se reduce drásticamente. La presente invención reclama una composición cementante que comprende dopamelanina y/o sus precursores y/o sus análogos como aditivo en un porcentaje máximo del 30% del cemento, dicho aditivo sustituye al agua de las redes de capilares; dicha mezcla cementante posee una relación agua/cemento de 0.2 a 0.4 , y opcionalmente puede contener grava y arena en diferentes proporciones; dicha mezcla cementante genera fuertes enlaces químicos (dada Ia mayor disponibilidad de energía acarreada por el hidrógeno), y una resistencia incrementada a Ia corrosión, al menos del 28% y una resistencia elástica del concreto incrementada, al menos del 50%, su agrietamiento en edades tempranas es muy pequeño o prácticamente nulo. También Ia presente solicitud reclama el uso de Ia dopamelanina y/o sus precursores y/o sus análogos como aditivo de una mezcla cementante que sustituye a Ia proporción de agua de capilar en Ia mezcla cementante. O bien el uso de Ia dopamelanina y/o sus precursores y/o sus análogos en solución acuosa, al menos del 3%, como agente para fraguar y curar el concreto, que mejora significativamente Ia ductilidad, resistencia y Ia corrosión de Ia mezcla cementante, en resumen incrementa significativamente las propiedades fisicoquímicas y bacteriológicas el concreto.
EJEMPLOS
Se realizó una mezcla cementante con el aditivo dopamelanina, dicho aditivo es químicamente sintetizado de color negro opaco, de consistencia totalmente líquida que se logró sintetizar con los mayores estándares de calidad y similitud al compuesto orgánico. El aditivo se aplicó sustituyendo Ia porción de agua en Ia mezcla, sin alterar Ia relación agua/cemento que fue calculada previamente, para Ia resistencia requerida de Ia mezcla. Se realizaron pruebas de compresión a losetas de mortero y pruebas de ensayo a Ia flexión a mezclas cementantes con dopamelanina y a muestras sin dopamelanina.
Las pruebas de compresión a losetas de cemento se realizaron a un promedio de tres especímenes ensayados para el cemento que poseía dopamelanina y a un promedio de dos especímenes ensayados para el cemento sin dopamelanina
Figure imgf000015_0001
Los resultados muestran que el cemento con dopamelanina posee una resistencia máxima de 326.14 kg/cm2, en cambio el cemento sin dopamelanina posee una resistencia máxima de 274.69 kg/cm2; el cemento con dopamelanina soporta al menos 25% más de carga máxima aplicada respecto al cemento sin dopamelanina y Ia resistencia se incrementa al menos 28% respecto al cemento sin dopamelanina
Se realizaron pruebas de ensayo a Ia flexión a muestras de cemento con dopamelanina y cemento sin dopamelanina, Ia siguiente tabla muestra un promedio de 4 muestras ensayadas para el cemento con dopamelanina y 3 muestras ensayadas para el cemento sin dopamelanina
Figure imgf000016_0001
El cemento con dopamelanina una carga máxima aplicada de 163.69 kgf, es decir, soportó al menos 30% más de carga máxima aplicada respecto al cemento sin dopamelanina. Además, el agrietamiento en edades tempranas es muy pequeño o prácticamente nulo, en comparación con el cemento convencional. Desde el proceso de implementación de las mezclas, es fácilmente perceptible Ia diferencia entre ambas, pues Ia mezcla con dopamelanina, tiende a estabilizarse rápidamente, en comparación a Ia mezcla con agua, pues esta última, para semejarse a Ia estabilidad de Ia mezcla con dopamelanina, requiere aproximadamente un 20 % más de cemento. Este incremento en Ia velocidad de fraguado, es una característica que tiene aplicaciones prácticas relevantes, por ejemplo, al aplicarlo en zonas con elevada humedad relativa.

Claims

REIVINDICACIONES
Habiendo descrito suficiente mi invención, considero como una novedad y por Io tanto reclamo como de mi exclusiva propiedad, Io contenido en las siguientes cláusulas: 1.- Composición cementante que comprende dopamelanina, y/o sus precursores y/o sus análogos y/o sus derivados como aditivo en un porcentaje máximo del 30% del cemento, dicho aditivo sustituye al agua de las redes de capilares; dicha mezcla cementante posee una relación agua/cemento de 0.2 a 0.4, y opcionalmente puede contener diferentes proporciones de grava y arena; dicha mezcla cementante genera fuertes enlaces químicos, una resistencia incrementada a Ia corrosión, al menos del 28% y una resistencia elástica del concreto incrementada, al menos del 50%, asimismo, su agrietamiento desde edades tempranas es significativamente menor en comparación al concreto convencional, o prácticamente nulo.
2.- El uso de Ia dopamelanina y/o sus precursores y/o sus análogos y/o sus derivados, como aditivo de una mezcla cementante que sustituye a Ia proporción de agua de capilar en Ia mezcla cementante.
3.- El uso de Ia dopamelanina y/o sus precursores y/o sus análogos y/o sus derivados en solución acuosa, al menos del 3%, como agente para fraguar y curar el concreto, pues incrementa significativamente las propiedades fisicoquímicas y bacteriológicas del concreto,
PCT/MX2008/000165 2008-11-28 2008-11-28 Mezcla cementante con propiedades fisicoquímicas y bacteriológicas significativamente mejoradas que contiene dopamelanina, sus precursores, sus análogos o sus derivados como aditivo WO2010062155A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EA201190052A EA021885B1 (ru) 2008-11-28 2008-11-28 Цементная композиция, которая содержит допа-меланин в качестве добавки, со значительно улучшенными физико-химическими и бактериологическими свойствами
PCT/MX2008/000165 WO2010062155A1 (es) 2008-11-28 2008-11-28 Mezcla cementante con propiedades fisicoquímicas y bacteriológicas significativamente mejoradas que contiene dopamelanina, sus precursores, sus análogos o sus derivados como aditivo
DK08878471.5T DK2371781T3 (da) 2008-11-28 2008-11-28 Cementblanding med betydeligt forbedrede fysisk-kemiske og bakteriologiske egenskaber og indeholdende dopamelanin som additiv
EP08878471.5A EP2371781B1 (en) 2008-11-28 2008-11-28 Cement mixture with significantly improved physico-chemical and bacteriological properties that contains dopamelanin as an additive
US13/126,753 US8691891B2 (en) 2008-11-28 2008-11-28 Cement mixture with significantly improved physicochemical and bacteriological properties that contains dopamelanin, precursors thereof, analogues thereof or derivatives thereof, as an additive
HRP20131187AT HRP20131187T1 (hr) 2008-11-28 2013-12-13 Cementna smjesa sa znaäśajno poboljšanim fizikalno-kemijskim i bakteriološkim svojstvima, koja sadrži dopamelanin kao aditiv

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2008/000165 WO2010062155A1 (es) 2008-11-28 2008-11-28 Mezcla cementante con propiedades fisicoquímicas y bacteriológicas significativamente mejoradas que contiene dopamelanina, sus precursores, sus análogos o sus derivados como aditivo

Publications (1)

Publication Number Publication Date
WO2010062155A1 true WO2010062155A1 (es) 2010-06-03

Family

ID=42225876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2008/000165 WO2010062155A1 (es) 2008-11-28 2008-11-28 Mezcla cementante con propiedades fisicoquímicas y bacteriológicas significativamente mejoradas que contiene dopamelanina, sus precursores, sus análogos o sus derivados como aditivo

Country Status (6)

Country Link
US (1) US8691891B2 (es)
EP (1) EP2371781B1 (es)
DK (1) DK2371781T3 (es)
EA (1) EA021885B1 (es)
HR (1) HRP20131187T1 (es)
WO (1) WO2010062155A1 (es)

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042608A (en) 1961-04-17 1962-07-03 George R Morris Additive for a well servicing composition
DE3143071A1 (de) 1981-10-30 1983-05-11 Basf Ag, 6700 Ludwigshafen Verfahren zum herstellen von blockfesten, in wasser redispergierbaren polymerisat-pulvern durch verspruehen von waessrigen polymerisat-dispersionen
DE3436215A1 (de) 1984-10-03 1986-04-03 Horst Dipl.-Ing. 2000 Hamburg Kempin Verfahren zum verfestigen von betonbauwerken, insbesondere von waenden, pfeilern o.dgl. aus ziegelsplittbeton und ein verfestigungsmittel hierfuer sowie auch zum herstellen von filigranen betonwerkteilen in 2-phasen-mischung
MX154260A (es) 1979-03-06 1987-06-29 Grace W R & Co Composicion de concreto reforzado para inhibir la corrosion de piezas metalicas
MX160941A (es) 1980-08-29 1990-06-21 Rohm & Haas Composicion de concreto que comprende monomeros acrilicos polimerizables
CH679665A5 (en) 1990-08-09 1992-03-31 Holderbank Bauchemie Adhesion promoter and mortar additive
JPH04292447A (ja) 1991-03-19 1992-10-16 Nisshin Steel Co Ltd 柔軟性に優れた複合材料
ES2030845T3 (es) 1988-09-14 1992-11-16 Verein Deutscher Zementwerke E. V. Procedimiento para la obtencion de un hormigon impermeable frente a un liquido organico.
MX167038B (es) 1984-03-30 1993-02-24 Rohm & Haas Composiciones impregnantes para substratos porosos
DE4324190A1 (de) 1993-07-13 1995-01-19 Konrad Schaefer Kunststein, insbesondere Kunststeinplatte für Radwege
WO1995013995A1 (fr) 1993-11-18 1995-05-26 Joseph Davidovits Ciment geopolymere et procedes d'obtention
JPH0859325A (ja) 1994-08-24 1996-03-05 Ajinomoto Co Inc レジンコンクリート組成物
JPH09296033A (ja) 1996-04-30 1997-11-18 Nippon Shokubai Co Ltd レジンコンクリート用樹脂組成物およびレジンコンクリート
WO1998009713A1 (en) 1996-09-03 1998-03-12 Monsanto Company Selective removal and recovery of sulfur dioxide from effluent gases using organic phosphorous solvents
MX9605755A (es) 1994-05-20 1998-05-31 New Jersey Tech Inst Concreto y mortero resistentes a los sulfatos y acidos.
DE19728164A1 (de) 1997-07-02 1999-01-07 Leonhardt Bau Gmbh Verfahren zur Herstellung von Füllstoffen aus hochpolymeren Abfällen und deren Verwendung
JPH11107459A (ja) 1997-10-02 1999-04-20 Tokyo Line Kk 瓦固定材並びにその製造方法
JPH11278893A (ja) * 1998-03-26 1999-10-12 Nippon Preston Kk 廃棄物の再処理方法
ES2135634T3 (es) 1994-08-17 1999-11-01 Glatt Ingtech Gmbh Procedimiento para la preparacion de aditivos granulados para materiales de construccion.
JP2001026474A (ja) * 1999-07-14 2001-01-30 Taiheiyo Cement Corp 高強度コンクリート
ES2152197T1 (es) 1999-04-28 2001-02-01 Irvin G Vincent Plasticos destinados al uso en la construccion.
WO2001014277A2 (de) 1999-08-19 2001-03-01 Schultze Kraft Andreas Oberflächenveredelte betonsteine, verfahren zur herstellung und verwendung derselben
KR20010027978A (ko) 1999-09-17 2001-04-06 이승우 고밀도로 발포가공된 에틸렌비닐아세테이트 합성수지를 이용한 경량벽돌 및 그 제조방법
JP2001213649A (ja) 2000-01-28 2001-08-07 Natl Inst Of Advanced Industrial Science & Technology Meti 腐食防止方法
USRE37655E1 (en) 1997-09-12 2002-04-16 William W. Supplee Additive for, method of adding thereof and resulting cured cement-type concreations for improved heat and freeze-thaw durability
JP2003107025A (ja) 2001-09-28 2003-04-09 Nobuaki Otsuki コンクリート部材中のマクロセル腐蝕速度算定方法
MXPA02012612A (es) 2000-06-21 2003-04-10 Rhodia Chimie Sa Cemento que comprende particulas anisotropicas de polimero, pasta cementosa, mateiral compactado, preparacion y usos.
KR20030059512A (ko) * 2001-12-29 2003-07-10 주식회사 금강고려화학 부산물을 이용한 수지 미장 모르타르 조성물
KR20030088716A (ko) 2002-05-14 2003-11-20 (주)다린테크 아스콘 개질용 첨가재 및 그 제조방법
US6755907B1 (en) 1999-01-26 2004-06-29 Omnova Solutions Inc. Gypsum composition with styrene butadiene latex additive
MX221807B (es) 1998-05-14 2004-07-29 Bouygues Sa Concreto que comprende fibras organicas dispersadas en una matriz de cemento, matriz de cemento de concreto y premezclados.
JP2004224647A (ja) 2003-01-23 2004-08-12 Hinomaru Carbo Techno Co Ltd コンクリート組成物、コンクリート構造体およびコンクリート添加材
GB2398296A (en) 2003-01-23 2004-08-18 Bj Services Co Cement containing a polymer encapsulated expandable material
JP2004231497A (ja) 2003-01-31 2004-08-19 National Institute Of Advanced Industrial & Technology 硬化促進剤及びそれを用いる方法
US6902002B1 (en) 2004-03-17 2005-06-07 Halliburton Energy Services, Inc. Cement compositions comprising improved lost circulation materials and methods of use in subterranean formations
JP2006027995A (ja) * 2004-07-15 2006-02-02 Masao Umemoto コンクリートの表面美観改良方法
RU2275342C2 (ru) 2000-03-18 2006-04-27 Волфф Вальсроде Аг Смесь строительного материала
MXPA04010631A (es) 2004-10-27 2006-05-02 Servicios Condumex Sa Composicion de estucos ceramicos para revestimientos de muros para acabados de ornato y proceso de fabricacion.
MXPA06005553A (es) 2003-12-01 2006-07-25 Grace W R & Co Caldo de gluconato para cemento y mezcla de concreto
WO2006116387A2 (en) 2005-04-25 2006-11-02 Mark Ashley Webb Method for increasing the flexibility of concrete
MXPA06005091A (es) 2003-11-06 2007-04-20 Izrailev Leonid Composicion de aditivo anti-corrosion para composiciones de concreto para uso en estructuras de concreto reforzadas
KR20080032925A (ko) * 2006-10-11 2008-04-16 주식회사 금륜 바텀애시를 이용한 고강도 방수몰탈 조성물
US20080242769A1 (en) 2006-07-14 2008-10-02 Bjorn Birgisson Nanomodified concrete additive and high performance cement paste and concrete therefrom

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0321331D0 (en) * 2003-09-12 2003-10-15 Constr Res & Tech Gmbh Accelerator composition for accelerating setting and/or hardening a cementitious composition
US8586090B2 (en) * 2004-10-05 2013-11-19 Albert Einstein College Of Medicine Of Yeshiva University Melanin nanoshells for protection against radiation and electronic pulses
US20090134007A1 (en) * 2005-06-09 2009-05-28 Arturo Solis Herrera Photo electrochemical procedure to break the water molecule in hydrogen and oxygen using as the main substrate the melanines, their precursors, analogues or derivates

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042608A (en) 1961-04-17 1962-07-03 George R Morris Additive for a well servicing composition
MX154260A (es) 1979-03-06 1987-06-29 Grace W R & Co Composicion de concreto reforzado para inhibir la corrosion de piezas metalicas
MX160941A (es) 1980-08-29 1990-06-21 Rohm & Haas Composicion de concreto que comprende monomeros acrilicos polimerizables
DE3143071A1 (de) 1981-10-30 1983-05-11 Basf Ag, 6700 Ludwigshafen Verfahren zum herstellen von blockfesten, in wasser redispergierbaren polymerisat-pulvern durch verspruehen von waessrigen polymerisat-dispersionen
MX167038B (es) 1984-03-30 1993-02-24 Rohm & Haas Composiciones impregnantes para substratos porosos
DE3436215A1 (de) 1984-10-03 1986-04-03 Horst Dipl.-Ing. 2000 Hamburg Kempin Verfahren zum verfestigen von betonbauwerken, insbesondere von waenden, pfeilern o.dgl. aus ziegelsplittbeton und ein verfestigungsmittel hierfuer sowie auch zum herstellen von filigranen betonwerkteilen in 2-phasen-mischung
ES2030845T3 (es) 1988-09-14 1992-11-16 Verein Deutscher Zementwerke E. V. Procedimiento para la obtencion de un hormigon impermeable frente a un liquido organico.
CH679665A5 (en) 1990-08-09 1992-03-31 Holderbank Bauchemie Adhesion promoter and mortar additive
JPH04292447A (ja) 1991-03-19 1992-10-16 Nisshin Steel Co Ltd 柔軟性に優れた複合材料
DE4324190A1 (de) 1993-07-13 1995-01-19 Konrad Schaefer Kunststein, insbesondere Kunststeinplatte für Radwege
WO1995013995A1 (fr) 1993-11-18 1995-05-26 Joseph Davidovits Ciment geopolymere et procedes d'obtention
MX9605755A (es) 1994-05-20 1998-05-31 New Jersey Tech Inst Concreto y mortero resistentes a los sulfatos y acidos.
ES2135634T3 (es) 1994-08-17 1999-11-01 Glatt Ingtech Gmbh Procedimiento para la preparacion de aditivos granulados para materiales de construccion.
JPH0859325A (ja) 1994-08-24 1996-03-05 Ajinomoto Co Inc レジンコンクリート組成物
JPH09296033A (ja) 1996-04-30 1997-11-18 Nippon Shokubai Co Ltd レジンコンクリート用樹脂組成物およびレジンコンクリート
WO1998009713A1 (en) 1996-09-03 1998-03-12 Monsanto Company Selective removal and recovery of sulfur dioxide from effluent gases using organic phosphorous solvents
DE19728164A1 (de) 1997-07-02 1999-01-07 Leonhardt Bau Gmbh Verfahren zur Herstellung von Füllstoffen aus hochpolymeren Abfällen und deren Verwendung
USRE37655E1 (en) 1997-09-12 2002-04-16 William W. Supplee Additive for, method of adding thereof and resulting cured cement-type concreations for improved heat and freeze-thaw durability
JPH11107459A (ja) 1997-10-02 1999-04-20 Tokyo Line Kk 瓦固定材並びにその製造方法
JPH11278893A (ja) * 1998-03-26 1999-10-12 Nippon Preston Kk 廃棄物の再処理方法
MX221807B (es) 1998-05-14 2004-07-29 Bouygues Sa Concreto que comprende fibras organicas dispersadas en una matriz de cemento, matriz de cemento de concreto y premezclados.
US6755907B1 (en) 1999-01-26 2004-06-29 Omnova Solutions Inc. Gypsum composition with styrene butadiene latex additive
ES2152197T1 (es) 1999-04-28 2001-02-01 Irvin G Vincent Plasticos destinados al uso en la construccion.
JP2001026474A (ja) * 1999-07-14 2001-01-30 Taiheiyo Cement Corp 高強度コンクリート
WO2001014277A2 (de) 1999-08-19 2001-03-01 Schultze Kraft Andreas Oberflächenveredelte betonsteine, verfahren zur herstellung und verwendung derselben
KR20010027978A (ko) 1999-09-17 2001-04-06 이승우 고밀도로 발포가공된 에틸렌비닐아세테이트 합성수지를 이용한 경량벽돌 및 그 제조방법
JP2001213649A (ja) 2000-01-28 2001-08-07 Natl Inst Of Advanced Industrial Science & Technology Meti 腐食防止方法
RU2275342C2 (ru) 2000-03-18 2006-04-27 Волфф Вальсроде Аг Смесь строительного материала
MXPA02012612A (es) 2000-06-21 2003-04-10 Rhodia Chimie Sa Cemento que comprende particulas anisotropicas de polimero, pasta cementosa, mateiral compactado, preparacion y usos.
JP2003107025A (ja) 2001-09-28 2003-04-09 Nobuaki Otsuki コンクリート部材中のマクロセル腐蝕速度算定方法
KR20030059512A (ko) * 2001-12-29 2003-07-10 주식회사 금강고려화학 부산물을 이용한 수지 미장 모르타르 조성물
KR20030088716A (ko) 2002-05-14 2003-11-20 (주)다린테크 아스콘 개질용 첨가재 및 그 제조방법
JP2004224647A (ja) 2003-01-23 2004-08-12 Hinomaru Carbo Techno Co Ltd コンクリート組成物、コンクリート構造体およびコンクリート添加材
GB2398296A (en) 2003-01-23 2004-08-18 Bj Services Co Cement containing a polymer encapsulated expandable material
JP2004231497A (ja) 2003-01-31 2004-08-19 National Institute Of Advanced Industrial & Technology 硬化促進剤及びそれを用いる方法
MXPA06005091A (es) 2003-11-06 2007-04-20 Izrailev Leonid Composicion de aditivo anti-corrosion para composiciones de concreto para uso en estructuras de concreto reforzadas
MXPA06005553A (es) 2003-12-01 2006-07-25 Grace W R & Co Caldo de gluconato para cemento y mezcla de concreto
US6902002B1 (en) 2004-03-17 2005-06-07 Halliburton Energy Services, Inc. Cement compositions comprising improved lost circulation materials and methods of use in subterranean formations
JP2006027995A (ja) * 2004-07-15 2006-02-02 Masao Umemoto コンクリートの表面美観改良方法
MXPA04010631A (es) 2004-10-27 2006-05-02 Servicios Condumex Sa Composicion de estucos ceramicos para revestimientos de muros para acabados de ornato y proceso de fabricacion.
WO2006116387A2 (en) 2005-04-25 2006-11-02 Mark Ashley Webb Method for increasing the flexibility of concrete
US20080242769A1 (en) 2006-07-14 2008-10-02 Bjorn Birgisson Nanomodified concrete additive and high performance cement paste and concrete therefrom
KR20080032925A (ko) * 2006-10-11 2008-04-16 주식회사 금륜 바텀애시를 이용한 고강도 방수몰탈 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2371781A4

Also Published As

Publication number Publication date
EP2371781A1 (en) 2011-10-05
EA201190052A1 (ru) 2012-02-28
US8691891B2 (en) 2014-04-08
EP2371781A4 (en) 2012-10-17
HRP20131187T1 (hr) 2014-04-11
EA021885B1 (ru) 2015-09-30
EP2371781B1 (en) 2013-09-18
DK2371781T3 (da) 2014-01-06
US20110207853A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
Izaguirre et al. Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars
Mechtcherine et al. Application of super absorbent polymers (SAP) in concrete construction: state-of-the-art report prepared by Technical Committee 225-SAP
CA2559061A1 (en) Polymer-bioactive ceramic/cement hybrid composite
TW201300346A (zh) 用於減少以波特蘭水泥為主之砂漿及混凝土之收縮裂痕之摻合物
Lokeshwari et al. A review on self-curing concrete
Anagnostopoulos Cement–clay grouts modified with acrylic resin or methyl methacrylate ester: Physical and mechanical properties
Sun et al. Influence of paste thickness on coated aggregates on properties of high-density sulphoaluminate cement concrete
RU2603682C1 (ru) Состав для дорожного строительства
KR100730787B1 (ko) 고침투성의 폴리머 몰탈 조성물 및 그 제조방법
KR100704869B1 (ko) 메타카올린과 실리카흄이 혼합배합된 고성능 숏크리트조성물
Tukimat et al. Fresh and hardened state of polymer modified concrete and mortars–A review
Ouattara Coumoin et al. Effect of SAP on properties of high performance concrete under marine wetting and drying cycles
CN104692751B (zh) 基于水性氟的纤维胶木棒锚固锚杆土遗址灌浆料
Sujitha et al. Influence of nano alumina reinforced superabsorbent polymer on mechanical, durability, microstructural and rheological properties of cementitious materials
Karaman et al. Usage possibilities of diatomite in the concrete production for agricultural buildings
WO2010062155A1 (es) Mezcla cementante con propiedades fisicoquímicas y bacteriológicas significativamente mejoradas que contiene dopamelanina, sus precursores, sus análogos o sus derivados como aditivo
US20080271643A1 (en) Waterproof Cement and Synergic Composition Used to Obtain High Waterproofing
JP2007137744A (ja) 急硬化材および地盤注入材
Sampebulu Increase on strengths of hot weather concrete by self-curing of wet porous aggregate
JP2015000820A (ja) ポリマーセメントモルタル、及びポリマーセメントモルタルを用いた工法
Rashwan et al. Improving of lightweight self-curing concrete properties
Nigam et al. A review on self-curing concrete
Xiong et al. Behavior of water glass–polymer hybrid-modified mortars under flowing sulfuric acid solution environment
Kumar et al. An experimental study of fully replacement of cow dung ash (CDA), alumina and lime for cement
Gopinathan et al. Development of gypsum composite with enhanced mechanical and durable performance using chemical admixture and zeolite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008878471

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13126753

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201190052

Country of ref document: EA