WO2010061914A1 - ピーク抑圧装置およびピーク抑圧方法 - Google Patents

ピーク抑圧装置およびピーク抑圧方法 Download PDF

Info

Publication number
WO2010061914A1
WO2010061914A1 PCT/JP2009/070032 JP2009070032W WO2010061914A1 WO 2010061914 A1 WO2010061914 A1 WO 2010061914A1 JP 2009070032 W JP2009070032 W JP 2009070032W WO 2010061914 A1 WO2010061914 A1 WO 2010061914A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
signal
value
impulse
input signal
Prior art date
Application number
PCT/JP2009/070032
Other languages
English (en)
French (fr)
Inventor
俊秀 桑原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010540522A priority Critical patent/JPWO2010061914A1/ja
Priority to US13/130,948 priority patent/US20110249768A1/en
Publication of WO2010061914A1 publication Critical patent/WO2010061914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70706Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with means for reducing the peak-to-average power ratio

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2008-304165 (filed on Nov. 28, 2008), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a peak suppressor and a peak suppression method, and more particularly, to a peak suppression (CFR) technique for a modulation signal for communication such as W-CDMA.
  • CFR peak suppression
  • a modulation method such as W-CDMA is widely used.
  • W-CDMA Wideband Code Division Multiple Access
  • These modulation schemes generate high peak power, which is disadvantageous for the power utilization efficiency of the transmission amplifier. Therefore, clipping processing for suppressing peak power may be performed. In this case, since an unnecessary wave outside the band is generated by the clipping process, a process for suppressing the unnecessary wave is performed.
  • Patent Document 1 a reference filter that limits the bandwidth of an input signal, an amplitude control unit that outputs an impulse signal having an amplitude proportional to the excess when the amplitude component of the output signal of the reference filter exceeds a set value, And a subtractor for subtracting the output signal of the amplitude controller from the delayed input signal. Then, a band limiting filter is connected to the output of the subtractor to suppress unwanted waves.
  • a peak suppression signal is generated by multiplying an input signal by a peak suppression rate. Since this process is basically a non-linear process, it causes spectrum degradation. Therefore, it is necessary to suppress unnecessary waves thereafter through a filter.
  • Patent Documents 1 and 2 The entire disclosure of Patent Documents 1 and 2 is incorporated herein by reference. The following analysis is given in the present invention.
  • an object of the present invention is to provide a peak suppression device and a peak suppression method that suppress an increase in circuit scale.
  • a peak suppressor includes a peak determination unit that determines a peak value of a waveform of an input signal, and a peak value and a predetermined value when the absolute value of the peak value is greater than a predetermined value.
  • An impulse signal generator for generating an impulse signal according to the difference; a multiplier for multiplying the generated impulse signal by a predetermined impulse response waveform to generate a peak suppression signal; and a subtractor for subtracting the peak suppression signal from the input signal; .
  • the peak suppression method includes a step of determining a peak value of a waveform of an input signal, and a difference between the peak value and the predetermined value when the absolute value of the peak value is larger than a predetermined value. Generating a corresponding impulse signal; generating a peak suppression signal by multiplying the generated impulse signal by a predetermined impulse response waveform; and subtracting the peak suppression signal from the input signal.
  • an increase in circuit scale can be suppressed.
  • FIG. 1 is a diagram showing a configuration of a base station RF transmitter according to an embodiment of the present invention.
  • the base station RF transmitter includes a baseband signal generator 1, a peak suppressor 2, a predistortion unit 3, a DA converter 4, an up converter 5, and a power amplifier 6.
  • the baseband signal generator 1 outputs a modulated wave signal for communication such as W-CDMA, which becomes a baseband signal, to the peak suppressor 2.
  • the peak suppressor 2 suppresses the peak portion of the waveform of the communication modulated wave signal.
  • the predistortion unit 3 generates a signal having characteristics opposite to the distortion of the amplifier by digital signal processing with respect to the signal whose peak portion is suppressed, performs linearization, and outputs the signal to the DA converter 4.
  • the DA converter 4 converts the linearized signal into an analog signal.
  • the up-converter 5 up-converts an analog signal into an RF signal.
  • the power amplifier 6 amplifies the upconverted signal and outputs it as a radio signal to the outside.
  • FIG. 2 is a diagram showing the configuration of the peak suppressor according to the embodiment of the present invention.
  • the peak suppressor 2 includes a peak determination unit 11 that determines the peak value of the waveform of the input signal IN, and the difference between the peak value and the predetermined value when the absolute value of the peak value is greater than a predetermined value (peak suppression setting value A).
  • An impulse signal generator 12 for generating an impulse signal according to the frequency
  • a multiplier 13 for generating a peak suppression signal by multiplying the generated impulse signal by a predetermined impulse response waveform
  • a subtraction unit for subtracting the peak suppression signal from the input signal 14.
  • the subtraction unit 14 outputs the subtraction result as an output signal OUT.
  • the peak determination unit 11 determines, as a peak value, a value at which the absolute value of the waveform of the input signal is the largest within a predetermined time width.
  • the predetermined impulse response waveform preferably has a series of coefficients corresponding to the band of the input signal.
  • coefficients consist of a plurality of sets corresponding to a plurality of bands of the input signal, respectively, and one of the plurality of sets can be selected from the outside.
  • the peak suppressor 2 includes a coefficient setting unit 15, which selects an impulse response waveform having a coefficient corresponding to the band of the input signal based on the coefficient selection signal (tap select signal) SL. This is given to the multiplier 13.
  • the impulse response waveform that becomes the peak suppression signal waveform is a waveform that is stored in advance in a memory or the like.
  • the peak suppression signal is calculated by simply multiplying the peak suppression signal waveform by a constant value calculated from the difference between the peak suppression setting value A and the peak signal of the waveform of the input signal IN. Since the peak suppression signal is band-limited, there is no need to filter again. For this reason, a filter for performing band limitation is unnecessary, and the circuit scale can be suppressed.
  • a peak when a spectrum out of band is included in a waveform once peak-suppressed, a peak may be reproduced when a band-limiting filter is applied to the peak-suppressed waveform. If the peak is suppressed by deforming the waveform and then smoothed by a filter, the peak corresponding to the peak may be reproduced.
  • the peak suppressor 2 of the present invention as long as the peaks are not continuous, the peak suppression becomes a target value. For this reason, in order to suppress the peak as intended, it is not necessary to use a multistage configuration, and the configuration of the apparatus is simplified.
  • the conventional problem is solved in that a complicated filter is not required and that the peak suppression effect is almost as set.
  • FIG. 3 is a block diagram showing the configuration of the peak suppressor according to the first embodiment of the present invention. 3, the same reference numerals as those in FIG. 2 represent the same items.
  • the peak determination unit 11 inputs complex signal data, which is an input signal IN (value xn), via the delay circuit 21 and the absolute value circuit 22 in the impulse signal generation unit 12 and compares them with the set clipping level A. . More specifically, the peak determination unit 11 determines that the input signal xn is larger than the temporally preceding and succeeding signals xn ⁇ 1, xn ⁇ 2, xn + 1, and xn + 2 and has a clipping level A (peak suppression setting value A). If it is higher, 1 is output, otherwise 0 is output.
  • the comparison target may be a waveform within a predetermined time width.
  • the impulse signal generator 12 includes a delay circuit 21, an absolute value circuit 22, a subtractor 23, a divider 24, and multipliers 25 and 26.
  • the delay circuit 21 delays the input signal IN and outputs it to the absolute value circuit 22 and the multiplier 25.
  • the absolute value circuit 22 calculates the absolute value of the output value of the delay circuit 21 and outputs the absolute value to the subtracter 23, the divider 24, and the peak determination unit 11.
  • the subtracter 23 subtracts the clipping level A from the output of the absolute value circuit 22 and outputs the subtraction result to the divider 24.
  • the divider 24 divides the output of the subtractor 23 by the output of the absolute value circuit 22 and outputs the division result to the multiplier 25.
  • the multiplier 25 calculates xn ⁇ (
  • the multiplier 26 multiplies the division result of the multiplier 25 by the output of the peak determination unit 11 to generate an impulse signal at the peak position of the original complex signal.
  • the generated impulse signal has a magnitude that exceeds the clipping level A with respect to the amplitude, and is the same as the original peak signal with respect to the phase.
  • the multiplier 13 multiplies the impulse signals output from the impulse signal generator 12 by the multipliers M0 to M2n with the outputs of the tap coefficient units A0 to A2n represented by complex numbers, respectively.
  • Each tap coefficient can be selected by a selector signal SL and can be combined.
  • the subtracting unit 14 multiplies the tap coefficient, then arranges the signals in time series to generate a waveform, and subtracts the generated waveform from the waveform of the original input signal IN.
  • the input signal IN is passed through the flip-flops T1 to T2n (delay line), and subtracters S0 to S2n are provided at the input terminals of the flip-flops T1 to T2n and the output terminal of the flip-flop T2n, respectively.
  • the subtracters S0 to S2n subtract a signal (impulse response signal) multiplied by a tap coefficient from the input signal IN and the output signals of the flip-flops T1 to T2n.
  • the signal multiplied by the output of the tap coefficient unit An at the center of the tap coincides with the same timing as the peak position of the input signal IN, that is, the subtractor Sn performs subtraction. Keep a delay.
  • the delay time of the delay circuit 21 is set so as to correspond to the delay times of the flip-flops T1 to Tn.
  • the coefficient setting unit 15 as shown in FIG. 4, four types of tap coefficients are prepared so as to correspond to the four-wave composite signal, and are selected by the switch SW operated by the coefficient selection signal SL.
  • the tap outputs selected by the switch SW are combined, and are further normalized and output so that the median value (maximum value) of the tap becomes 1.
  • the tap coefficient Aj_a corresponds to a band-limited impulse signal in the band shown in FIG. Specifically, it is obtained by applying an appropriate window function to the waveform obtained by performing inverse FFT on the band of FIG. 5 in the frequency domain, and corresponds to each point of the impulse response waveform shown in FIG. Note that fs is a sampling frequency.
  • the tap coefficient Aj_b corresponds to the band-limited impulse in the band shown in FIG. 7, and corresponds to each point of the impulse response waveform shown in FIG.
  • the tap coefficient Aj_c corresponds to a band-limited impulse in the band shown in FIG. 9, and corresponds to each point of the impulse response waveform shown in FIG.
  • the tap coefficient Aj_d corresponds to a band-limited impulse in the band shown in FIG. 11, and corresponds to each point of the impulse response waveform shown in FIG.
  • Each waveform is standardized to be 1 at the center of the tap. The frequency characteristics obtained by applying FFT to these signals have a slightly wider band due to the influence of the window function, and are as shown in FIG.
  • the peak suppressor of this embodiment performs peak suppression by subtracting the impulse response signal generated by the multiplier 13 from the original input signal IN, it is possible to suppress unnecessary signals from being generated outside the band due to peak suppression. Is done.
  • the signal for peak suppression if the amplitude of the original input signal IN is x, an impulse signal of x ⁇ (
  • the median value of the tap coefficient is 1, so that the amplitude of the output signal OUT becomes equal to the clipping level A at the point where it reaches the furniture peak. Will fall.
  • FIG. 14 is a block diagram showing the configuration of the peak suppressor according to the second embodiment of the present invention.
  • the peak suppressor shown in FIG. 2 is connected in series in two stages, and the process is repeated.
  • the peak suppressor shown in FIG. 2 when the signal generated for peak suppression is subtracted from the original input signal IN, depending on the waveform of the input signal IN, the amplitudes of the preceding and succeeding signals are increased in reverse. The possibility of generating a large peak remains. For this reason, the peak suppression effect can be more reliably performed by connecting a plurality of stages of peak suppression devices in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

 ピーク抑圧処理に係る回路規模の増大を抑える。入力信号の波形のピーク値を判定するピーク判定部と、ピーク値の絶対値が所定値より大きい場合にピーク値と所定値との差分に応じたインパルス信号を発生させるインパルス信号発生部と、発生したインパルス信号に所定のインパルス応答波形を乗算してピーク抑圧信号を生成する乗算部と、ピーク抑圧信号を入力信号から差し引く減算部と、を備える。

Description

ピーク抑圧装置およびピーク抑圧方法
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2008-304165号(2008年11月28日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、ピーク抑圧装置およびピーク抑圧方法に係り、特に、W-CDMA等の通信用変調波信号に対するピーク抑圧(Crest Factor Reduction、CFR)技術に係る。
 高速無線伝送を実現する通信方式として、W-CDMAなどの変調方式が広く用いられている。これらの変調方式では、高いピーク電力が生じ、送信アンプの電力利用効率にとっては不利となる。そこで、ピーク電力を抑圧するクリッピング処理が行われることがある。この場合、クリッピング処理によって帯域外の不要波が発生するので、不要波を抑圧する処理がなされる。
 例えば、特許文献1では、入力信号を帯域制限する参照フィルタと、参照フィルタの出力信号の振幅成分が設定値を超過した場合に超過分に比例する振幅を有するインパルス信号を出力する振幅制御部と、遅延させた入力信号から振幅制御部の出力信号を減算する減算器を備えている。そして減算器の出力には帯域制限フィルタを接続することで、不要波を抑圧する。
 また、特許文献2では、入力信号にピーク抑圧率をかけてピーク抑圧信号を生成している。この処理は基本的に非線形処理であるためスペクトラムの劣化を招く。したがって、その後にフィルタを通して不要波を抑圧する必要がある。
特開2004-179813号公報 特開2008-047959号公報
 上記特許文献1及び2の全開示内容はその引用をもって本書に繰込み記載する。以下の分析は本発明において与えられる。
 従来のクリッピング処理(ピーク抑圧処理)では、帯域外の不要波を抑圧するためにフィルタを設ける。その際に、もとの入力信号に影響を与え、EVM(Error Vector Magnitude)の劣化が生じる可能性がある。もとの入力信号に影響のないように、急峻なフィルタを作ろうとすれば、回路規模が増大するという問題が生じる。
 したがって、本発明の目的は、回路規模の増大を抑えたピーク抑圧装置及びピーク抑圧方法を提供することにある。
 本発明の1つのアスペクト(側面)に係るピーク抑圧装置は、入力信号の波形のピーク値を判定するピーク判定部と、ピーク値の絶対値が所定値より大きい場合にピーク値と所定値との差分に応じたインパルス信号を発生させるインパルス信号発生部と、発生したインパルス信号に所定のインパルス応答波形を乗算してピーク抑圧信号を生成する乗算部と、ピーク抑圧信号を入力信号から差し引く減算部と、を備える。
 本発明の他のアスペクト(側面)に係るピーク抑圧方法は、入力信号の波形のピーク値を判定するステップと、ピーク値の絶対値が所定値より大きい場合にピーク値と所定値との差分に応じたインパルス信号を発生させるステップと、発生したインパルス信号に所定のインパルス応答波形を乗算してピーク抑圧信号を生成するステップと、ピーク抑圧信号を入力信号から差し引くステップと、を含む。
 本発明によれば、回路規模の増大を抑えられる。
本発明の実施形態に係る基地局用RF送信部の構成を示す図である。 本発明の実施形態に係るピーク抑圧装置の構成を示す図である。 本発明の第1の実施例に係るピーク抑圧装置の構成を示すブロック図である。 本発明の第1の実施例に係る係数設定部の構成を示すブロック図である。 第1の係数群に対応する帯域を示す図である。 第1の係数群に対応するインパルス応答波形を示す図である。 第2の係数群に対応する帯域を示す図である。 第2の係数群に対応するインパルス応答波形を示す図である。 第3の係数群に対応する帯域を示す図である。 第3の係数群に対応するインパルス応答波形を示す図である。 第4の係数群に対応する帯域を示す図である。 第4の係数群に対応するインパルス応答波形を示す図である。 4つのインパルス応答波形の周波数特性を示す図である。 本発明の第2の実施例に係るピーク抑圧装置の構成を示すブロック図である。
 図1は、本発明の実施形態に係る基地局用RF送信部の構成を示す図である。基地局用RF送信部は、ベースバンド信号発生器1、ピーク抑圧装置2、プリディストーション部3、DA変換器4、アップコンバータ5、パワーアンプ6を備える。
 ベースバンド信号発生器1は、ベースバンド信号となるW-CDMA等の通信用変調波信号をピーク抑圧装置2に出力する。ピーク抑圧装置2は、通信用変調波信号の波形のピーク部分を抑圧する。プリディストーション部3は、ピーク部分の抑圧された信号に対し、アンプの歪みと逆の特性をもつ信号をデジタル信号処理で生成し線形化を行い、DA変換器4に出力する。DA変換器4は、線形化された信号をアナログ信号に変換する。アップコンバータ5は、アナログ信号をRF信号にアップコンバートする。パワーアンプ6は、アップコンバートされた信号を増幅し、無線信号として外部に出力する。
 図2は、本発明の実施形態に係るピーク抑圧装置の構成を示す図である。ピーク抑圧装置2は、入力信号INの波形のピーク値を判定するピーク判定部11と、ピーク値の絶対値が所定値(ピーク抑圧設定値A)より大きい場合にピーク値と所定値との差分に応じたインパルス信号を発生させるインパルス信号発生部12と、発生したインパルス信号に所定のインパルス応答波形を乗算してピーク抑圧信号を生成する乗算部13と、ピーク抑圧信号を入力信号から差し引く減算部14と、を備える。減算部14は、減算結果を出力信号OUTとして出力する。
 また、ピーク判定部11は、入力信号の波形の絶対値が所定の時間幅内で最も大きくなる値をピーク値として判定することが好ましい。
 さらに、所定のインパルス応答波形は、入力信号の帯域に対応した一連の係数を有することが好ましい。このような係数は、入力信号の複数の帯域にそれぞれ対応した複数組からなり、複数組の一つを外部から選択可能とされる。すなわち、ピーク抑圧装置2は、係数設定部15を備え、係数設定部15は、入力信号の帯域に応じた係数を有するインパルス応答波形を係数選択信号(タップセレクト信号)SLに基づいて選択して乗算部13に与える。このように、ピーク抑圧信号波形となるインパルス応答波形は、あらかじめメモリ等に保持されたものを使う。ピーク抑圧信号波形に、ピーク抑圧設定値Aと入力信号INの波形のピーク信号の差から計算される一定値を乗算するだけでピーク抑圧信号を算出する。ピーク抑圧信号は帯域制限されているので、再度フィルタリングする必要がない。このため、帯域制限を行うフィルタが不要であって回路規模を抑えることができる。
 従来技術によれば、例えば一度ピーク抑圧した波形に帯域外のスペクトラムが含まれていた場合、ピーク抑圧した波形に帯域制限フィルタをかけると、ピークが再生する場合がある。波形を変形させてピークを抑圧した後、フィルタによって平滑化すると、ピークにあたる山の部分が再生してしまう虞がある。これに対し、本発明のピーク抑圧装置2では、ピークが連続しない限りは、ピークの抑圧は狙い通りの値になる。このため、ピークを狙い通り抑圧するために多段の構成にする必要が少なく装置の構成が簡単になる。
 以上のように本発明のピーク抑圧装置2によれば、複雑なフィルタが必要でない点、また、ピークの抑圧効果がほぼ設定値どおりになるという点で、従来の問題を解決している。
 図3は、本発明の第1の実施例に係るピーク抑圧装置の構成を示すブロック図である。図3において、図2と同一の符号は同一物を表す。
 ピーク判定部11は、入力信号IN(値xn)である複素信号データを、インパルス信号発生部12中の遅延回路21および絶対値回路22を介して入力し、設定されたクリッピングレベルAと比較する。より具体的には、ピーク判定部11は、入力信号xnが時間的に前後の信号xn-1、xn-2、xn+1、xn+2と比較して大きくかつ、クリッピングレベルA(ピーク抑圧設定値A)より高い場合には、1を出力し、それ以外は0を出力する。なお、ここでは前後の2つの信号と比較しているが、これに限定されず比較対象を所定の時間幅内の波形としてよい。
 インパルス信号発生部12は、遅延回路21、絶対値回路22、減算器23、除算器24、乗算器25、26を備える。遅延回路21は、入力信号INを遅延し、絶対値回路22および乗算器25に出力する。絶対値回路22は、遅延回路21の出力の値の絶対値を求め、減算器23、除算器24、ピーク判定部11に出力する。減算器23は、絶対値回路22の出力からクリッピングレベルAを減算し、減算結果を除算器24に出力する。除算器24は、減算器23の出力を絶対値回路22の出力で除算し、除算結果を乗算器25に出力する。
 上述のような回路構成において、乗算器25は、入力信号IN(値xn)に対して、xn・(|xn|-A)/|xn|を計算する。乗算器26は、乗算器25の除算結果にピーク判定部11の出力を乗算し、元の複素信号のピークの位置に、インパルス信号を発生させる。発生したインパルス信号は、振幅に関してクリッピングレベルAを超えた分の大きさを持ち、位相に関して元のピーク信号と同じになる。
 乗算部13は、インパルス信号発生部12が出力するインパルス信号に、複素数によって表されるタップ係数器A0~A2nの出力をそれぞれ乗算器M0~M2nによって複素乗算する。それぞれのタップ係数は、セレクタ信号SLによって選択可能で、合成ができるようになっている。
 減算部14は、タップ係数をかけた後、信号を時系列に並べて波形を生成すると共に、生成した波形を元の入力信号INの波形から差し引く。具体的には、入力信号INをフリップフロップT1~T2n(ディレイライン)に通すと共に、フリップフロップT1~T2nのそれぞれの入力端およびフリップフロップT2nの出力端にそれぞれ減算器S0~S2nを設ける。減算器S0~S2nは、入力信号INおよびフリップフロップT1~T2nの出力信号のそれぞれに対し、タップ係数をかけた信号(インパルス応答信号)を差し引く。この際に、タップの中央のタップ係数器Anの出力が掛け合わされた信号が、入力信号INのピークの位置と同じタイミングに一致するように、すなわち減算器Snで減算がなされるように全体の遅延をあわせておく。具体的には、フリップフロップT1~Tnの遅延時間に相当するように遅延回路21の遅延時間を設定する。
 次に、タップ係数器Aj(j=0~2n)について説明する。ここでは、係数設定部15において、図4に示すように、4波合成信号に対応できるように、タップ係数は、4種類が用意され、係数選択信号SLによって動作するスイッチSWによって選択される。4種類のタップ係数Aj_a、Aj_b、Aj_c、Aj_d(n=0~2n)は、4つのバンド内それぞれに収まるように帯域制限されたインパルス応答信号に対応する。タップ出力は、スイッチSWで選択されたものが合成され、さらに、タップの中央値(最大値)が1になるように規格化されて出力される。
 タップ係数Aj_aは、図5に示す帯域でインパルス信号を帯域制限したものに相当する。具体的には、周波数領域で図5の帯域を逆FFTした波形に対して、適当な窓関数をかけたものであって、図6に示すインパルス応答波形の各点に対応する。なお、fsはサンプリング周波数である。
 同様に、タップ係数Aj_bは、図7に示す帯域でインパルスを帯域制限したものに相当し、図8に示すインパルス応答波形の各点に対応する。また、タップ係数Aj_cは、図9に示す帯域でインパルスを帯域制限したものに相当し、図10に示すインパルス応答波形の各点に対応する。さらに、タップ係数Aj_dは、図11に示す帯域でインパルスを帯域制限したものに相当し、図12に示すインパルス応答波形の各点に対応する。それぞれの波形は、タップ中央で1となるように規格化されている。これらの信号に対してFFTをかけた得た周波数特性は、窓関数の影響で帯域が若干広がり、図13に示すようになる。
 本実施例のピーク抑圧装置は、乗算部13で生成されるインパルス応答信号を元の入力信号INから差し引くことによってピーク抑圧を行うので、ピーク抑圧によって帯域外に不要な信号が発生することが抑制される。ピーク抑圧のための信号は、元の入力信号INの振幅をxとすると、初めにx・(|x|-A)/|x|のインパルス信号をつくり、それに前述のタップ係数をかけることでインパルス応答信号を生成する。生成されたインパルス応答信号は、振幅がクリッピングレベルAを超えた分の大きさを持ち、位相はもとのピーク信号と同じである。そこで、インパルス信号にタップ係数をかけて、もとの信号から差し引くと、タップ係数の中央値は1であるので、出力信号OUTの振幅は、調度ピークにあたる点において、クリッピングレベルAに等しくなるまで落ちることになる。
 図14は、本発明の第2の実施例に係るピーク抑圧装置の構成を示すブロック図である。図14において、図2に示すピーク抑圧装置を2段直列接続して、処理を繰り返し行っている。図2に示すピーク抑圧装置では、ピークの抑圧のために生成した信号を元の入力信号INから差し引く際に、入力信号INの波形によっては前後の信号の振幅を逆に増加させてしまい、新たなピークを発生させる可能性が残される。このため、複数段のピーク抑圧装置を直列接続することで、ピーク抑圧効果をさらに確実に行うことができる。
 なお、本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
1 ベースバンド信号発生器
2 ピーク抑圧装置
3 プリディストーション部
4 DA変換器
5 アップコンバータ
6 パワーアンプ
11 ピーク判定部
12 インパルス信号発生部
13 乗算部
14 減算部
15 係数設定部
21 遅延回路
22 絶対値回路
23、S0~S2n 減算器
24 除算器
25、26、M0~M2n 乗算器
A0~A2n タップ係数器
SW スイッチ
T1~T2n フリップフロップ

Claims (7)

  1.  入力信号の波形のピーク値を判定するピーク判定部と、
     前記ピーク値の絶対値が所定値より大きい場合に前記ピーク値と前記所定値との差分に応じたインパルス信号を発生させるインパルス信号発生部と、
     発生した前記インパルス信号に所定のインパルス応答波形を乗算してピーク抑圧信号を生成する乗算部と、
     前記ピーク抑圧信号を前記入力信号から差し引く減算部と、
     を備えることを特徴とするピーク抑圧装置。
  2.  前記ピーク判定部は、前記入力信号の波形の絶対値が所定の時間幅内で最も大きくなる値を前記ピーク値として判定することを特徴とする請求項1記載のピーク抑圧装置。
  3.  前記所定のインパルス応答波形は、前記入力信号の帯域に対応した一連の係数を有することを特徴とする請求項1記載のピーク抑圧装置。
  4.  前記係数は、前記入力信号の複数の帯域にそれぞれ対応した複数組からなり、複数組の一つを外部から選択可能とされることを特徴とする請求項3記載のピーク抑圧装置。
  5.  請求項1乃至4のいずれか一に記載のピーク抑圧装置を多段に直列接続したことを特徴とするピーク抑圧装置。
  6.  請求項1乃至5のいずれか一に記載のピーク抑圧装置を備える送信機。
  7.  入力信号の波形のピーク値を判定するステップと、
     前記ピーク値の絶対値が所定値より大きい場合に前記ピーク値と前記所定値との差分に応じたインパルス信号を発生させるステップと、
     発生した前記インパルス信号に所定のインパルス応答波形を乗算してピーク抑圧信号を生成するステップと、
     前記ピーク抑圧信号を前記入力信号から差し引くステップと、
     を含むことを特徴とするピーク抑圧方法。
PCT/JP2009/070032 2008-11-28 2009-11-27 ピーク抑圧装置およびピーク抑圧方法 WO2010061914A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010540522A JPWO2010061914A1 (ja) 2008-11-28 2009-11-27 ピーク抑圧装置およびピーク抑圧方法
US13/130,948 US20110249768A1 (en) 2008-11-28 2009-11-27 Peak suppression device and peak suppression method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008304165 2008-11-28
JP2008-304165 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010061914A1 true WO2010061914A1 (ja) 2010-06-03

Family

ID=42225784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070032 WO2010061914A1 (ja) 2008-11-28 2009-11-27 ピーク抑圧装置およびピーク抑圧方法

Country Status (4)

Country Link
US (1) US20110249768A1 (ja)
JP (1) JPWO2010061914A1 (ja)
TW (1) TW201042405A (ja)
WO (1) WO2010061914A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281046A (zh) * 2010-06-12 2011-12-14 中兴通讯股份有限公司 调度乘法器的方法和抵消脉冲生成器
US9813273B2 (en) 2014-10-22 2017-11-07 Fujitsu Limited Peak suppression device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118447A (ja) * 2011-12-01 2013-06-13 Fujitsu Ltd ピーク抑圧装置、無線通信装置及びピーク抑圧方法
JP6020599B2 (ja) * 2013-01-21 2016-11-02 日本電気株式会社 ピーク抑圧装置及びピーク抑圧方法
US8948303B1 (en) * 2013-11-18 2015-02-03 Microelectronics Technology Inc. Communication device and method of crest factor reduction using amplitude compression
US9806929B2 (en) 2014-12-12 2017-10-31 Intel IP Corporation Communication device with power amplifier crest factor reduction
WO2016195085A1 (ja) * 2015-06-03 2016-12-08 国立大学法人京都大学 通信方法及び通信機
CN110268684B (zh) * 2017-01-20 2022-12-30 瑞典爱立信有限公司 用于减小par的方法及装置
CN112698081B (zh) * 2020-12-10 2023-06-23 北京大华无线电仪器有限责任公司 一种用于交流正弦负载的电流峰值因数计算控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124824A (ja) * 2001-10-16 2003-04-25 Hitachi Ltd ピークファクタ低減装置
JP2004135087A (ja) * 2002-10-10 2004-04-30 Sumitomo Electric Ind Ltd ピーク電力抑圧方法及び装置
WO2007043151A1 (ja) * 2005-10-06 2007-04-19 Matsushita Electric Industrial Co., Ltd. マルチキャリア送信装置
JP2007194889A (ja) * 2006-01-19 2007-08-02 Hitachi Kokusai Electric Inc 送信機
JP2008199490A (ja) * 2007-02-15 2008-08-28 Hitachi Kokusai Electric Inc 送信機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606333B2 (en) * 2002-07-16 2009-10-20 Ihp Gmbh Method and device for frame detection and synchronizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124824A (ja) * 2001-10-16 2003-04-25 Hitachi Ltd ピークファクタ低減装置
JP2004135087A (ja) * 2002-10-10 2004-04-30 Sumitomo Electric Ind Ltd ピーク電力抑圧方法及び装置
WO2007043151A1 (ja) * 2005-10-06 2007-04-19 Matsushita Electric Industrial Co., Ltd. マルチキャリア送信装置
JP2007194889A (ja) * 2006-01-19 2007-08-02 Hitachi Kokusai Electric Inc 送信機
JP2008199490A (ja) * 2007-02-15 2008-08-28 Hitachi Kokusai Electric Inc 送信機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281046A (zh) * 2010-06-12 2011-12-14 中兴通讯股份有限公司 调度乘法器的方法和抵消脉冲生成器
CN102281046B (zh) * 2010-06-12 2015-06-10 中兴通讯股份有限公司 调度乘法器的方法和抵消脉冲生成器
US9813273B2 (en) 2014-10-22 2017-11-07 Fujitsu Limited Peak suppression device

Also Published As

Publication number Publication date
TW201042405A (en) 2010-12-01
JPWO2010061914A1 (ja) 2012-04-26
US20110249768A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
WO2010061914A1 (ja) ピーク抑圧装置およびピーク抑圧方法
JP4823013B2 (ja) ピークファクタ低減装置およびベースバンド信号処理装置
JP4558741B2 (ja) 送信機
US8548092B2 (en) Method and apparatus for reducing peak to average power ratio using peak windowing
JP5146890B2 (ja) 電力制限回路
JP5433327B2 (ja) ピークファクタ低減装置および基地局
JP4619827B2 (ja) 歪補償装置
JP4625434B2 (ja) 送信機
JP2014533017A (ja) デジタル・プリディストーション(dpd)および他の非線形アプリケーションのためのユーザ定義の非線形関数を含む命令セットを有するプロセッサ
US8660820B2 (en) Distortion cancellation using adaptive linearization
US9450544B2 (en) Pre-distortion method, associated apparatus and non-transitory machine readable medium
US8948303B1 (en) Communication device and method of crest factor reduction using amplitude compression
JP4847838B2 (ja) 送信機
JP4836866B2 (ja) 通信装置
US9438177B2 (en) Pre-distortion method and associated apparatus and non-transitory machine readable medium
JP5138508B2 (ja) ピークリミッタ回路
JP2003124824A (ja) ピークファクタ低減装置
JP6015386B2 (ja) 歪補償装置及び歪補償方法
JP5233784B2 (ja) マルチキャリア送信信号のピークファクタ低減装置及び方法
JP5175751B2 (ja) ピークファクタ低減装置および基地局
US11777543B2 (en) Distortion compensation apparatus and distortion compensation method
JP2013042232A (ja) ピーク抑圧装置
US20150341060A1 (en) Distortion compensation device and distortion compensation method
KR19990031423A (ko) 디지탈 통신시스템의 전력증폭기 선형화장치 및 방법
WO2012090547A1 (ja) 歪み補償回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010540522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13130948

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09829159

Country of ref document: EP

Kind code of ref document: A1