WO2010061792A1 - 可変容量往復動圧縮機 - Google Patents

可変容量往復動圧縮機 Download PDF

Info

Publication number
WO2010061792A1
WO2010061792A1 PCT/JP2009/069713 JP2009069713W WO2010061792A1 WO 2010061792 A1 WO2010061792 A1 WO 2010061792A1 JP 2009069713 W JP2009069713 W JP 2009069713W WO 2010061792 A1 WO2010061792 A1 WO 2010061792A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
chamber
drive shaft
joint
valve
Prior art date
Application number
PCT/JP2009/069713
Other languages
English (en)
French (fr)
Inventor
本田宏
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to US13/131,206 priority Critical patent/US20110229348A1/en
Priority to JP2010540465A priority patent/JPWO2010061792A1/ja
Priority to EP09829040.6A priority patent/EP2354548B1/en
Publication of WO2010061792A1 publication Critical patent/WO2010061792A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1072Pivot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings

Definitions

  • the present invention relates to a variable capacity reciprocating compressor, and more particularly to a variable capacity reciprocating compressor with a suction throttle mechanism.
  • variable capacity reciprocating compressor is incorporated in a refrigeration cycle system of a vehicle air conditioning system, for example.
  • the refrigeration cycle system includes a circulation path through which the refrigerant circulates, and a compressor, a radiator, an expander, and an evaporator are sequentially inserted in the circulation path.
  • the compressor executes a series of processes including refrigerant suction, compression, and discharge steps.
  • the compressor is supplied with power from, for example, a pulley.
  • a suction chamber, a discharge chamber, and a cylinder bore are defined inside the housing of the variable capacity reciprocating compressor.
  • the suction chamber and the cylinder bore communicate with each other via a suction valve
  • the discharge chamber and the cylinder bore communicate with each other via a discharge valve.
  • the rotation of the drive shaft is converted into the reciprocating motion of the piston.
  • the stroke length of the piston is changed using, for example, the pressure in the crank chamber, and thereby the discharge capacity is adjusted.
  • the pressure of the crank chamber is changed by the opening / closing operation of a capacity control valve controlled from the outside, and thereby the discharge capacity is adjusted.
  • variable capacity swash plate compressors have an opening control valve to reduce pulsation at low flow rates.
  • an opening degree control valve is disposed in the cylinder head.
  • Patent Document 2 discloses a suction throttle valve.
  • This suction throttle valve also has a valve body for adjusting the opening of the suction passage, and is considered to be able to reduce vibration and noise caused by suction pulsation.
  • this suction throttle valve it is considered that the performance of the swash plate compressor is ensured over the entire flow rate range because the valve chamber is always in communication with the suction chamber and the crank chamber.
  • the present invention has been made based on the above-described circumstances, and the object thereof is to provide a highly versatile and small-sized variable capacity reciprocating motion having a suction throttle mechanism in which the opening degree is accurately changed according to the discharge capacity.
  • the purpose is to provide a compressor at a low cost.
  • the suction chamber, the discharge chamber, and the crank chamber are partitioned inside, and each of the suction chamber and the discharge chamber communicates with the outside.
  • a housing in which a suction port and a discharge port are formed, and a plurality of cylinder bores that are arranged in the housing and communicate with the suction chamber via a suction valve and communicate with the discharge chamber via a discharge valve are formed concentrically.
  • a cylinder block a power conversion mechanism that converts the rotation of a drive shaft extending in the crank chamber into a reciprocating motion of a piston disposed in the cylinder bore with variable stroke length, and suction from the suction port to the suction chamber
  • a variable suction throttle mechanism that is inserted in a passage and changes a ventilation resistance in accordance with a stroke length of the piston.
  • the power conversion mechanism is connected to an outer peripheral portion of a rotor fitted to the drive shaft via a hinge and penetrated by the drive shaft.
  • An annular cam member that can be tilted while moving in the axial direction of the drive shaft, and a conversion mechanism that is connected to the piston via a connecting mechanism and converts the tilt angle of the cam member into a reciprocating motion of the piston.
  • the joint is fitted to the drive shaft via a bearing, and is supported by the inner peripheral surface of the support hole formed in the cylinder block and connected to the space so as not to rotate and slide relative to the inner peripheral surface.
  • a variable capacity reciprocating compressor characterized by changing ventilation resistance is provided.
  • variable suction throttle mechanism includes a ventilation resistance increasing member that is provided integrally with the joint shaft and that reduces a flow passage cross-sectional area of the suction passage in the space by entering the space. ).
  • variable suction throttle mechanism changes the ventilation resistance in the space formed in the cylinder block by utilizing the sliding of the joint shaft. According to this variable suction throttle mechanism, since the ventilation resistance in the space formed in the cylinder block is changed, there is no need to increase the size of the cylinder head, and a small compressor is provided at a low cost.
  • variable suction throttle mechanism the ventilation resistance is changed by utilizing the sliding of the joint shaft, so that the opening degree is accurately changed according to the discharge capacity. Furthermore, this variable suction throttle mechanism does not require the use of a spring, and therefore the versatility of this compressor is high.
  • the ventilation resistance increasing member is provided integrally with the joint shaft, and the ventilation resistance increasing member enters the valve chamber, thereby reducing the flow passage cross-sectional area of the valve chamber. Accordingly, the airflow resistance can be changed reliably and accurately in accordance with the discharge capacity with a simple configuration.
  • FIG. 2 is a schematic exploded view of a rocking plate rotation prevention unit applied to the compressor of FIG. 1.
  • FIG. 3 is a diagram for explaining a mutual engagement state of a joint case, a ball, and a JS side protrusion in the swing plate rotation prevention unit of FIG. 2.
  • FIG. 4 is an enlarged view of a region IV in FIG. 1 when the discharge capacity of the compressor, that is, the inclination angle of the swing plate is maximum. It is a top view which shows the valve plate applied to the compressor of FIG. It is a top view which shows the cylinder block applied to the compressor of FIG. FIG.
  • FIG. 7 is an enlarged view of a region VII in FIG. 1 when the discharge capacity of the compressor, that is, the inclination angle of the swing plate is minimum. It is a perspective view which shows a drive shaft and a valve body with the cross section of the cylinder block which follows the line VIII-VIII of FIG. It is a perspective view which shows a drive shaft and a valve body with the cross section of the cylinder block in alignment with line IX-IX of FIG. It is the figure which showed the variable capacity type reciprocating compressor of 2nd Embodiment with the refrigerating cycle system of the vehicle air conditioning system.
  • FIG. 11 is an enlarged view of a region XI in FIG. 10 when the discharge capacity of the compressor, that is, the tilt angle of the swing plate is maximum.
  • FIG. 11 is an enlarged view of a region XI in FIG. 10 when the discharge capacity of the compressor, that is, the tilt angle of the swing plate is maximum.
  • FIG. 11 is an enlarged view of a region XII in FIG. 10 when the discharge capacity of the compressor, that is, the tilt angle of the swing plate is minimum. It is a top view which shows the valve plate applied to the compressor of FIG. It is a top view which shows the cylinder block applied to the compressor of FIG. It is a perspective view which shows a drive shaft and a valve body with the cross section of the cylinder block which follows the line XV-XV of FIG. It is a perspective view which shows a drive shaft and a valve body with the cross section of the cylinder block which follows the line XVI-XVI of FIG.
  • FIG. 1 shows a variable capacity oscillating plate compressor according to a first embodiment applied to a refrigeration cycle system.
  • the refrigeration cycle system 10 includes a circulation path 12 through which a refrigerant as a working fluid circulates.
  • a compressor, a radiator (condenser) 14, an expander (expansion valve) 16, and an evaporator 18 are sequentially inserted in the circulation path 12 in the flow direction of the refrigerant.
  • the refrigerant circulates. That is, the compressor performs a series of processes including a refrigerant suction process, a suction refrigerant compression process, and a compressed refrigerant discharge process.
  • the compressor includes a cylindrical cylinder block 20.
  • a peripheral wall 24 of the front housing 22 is airtightly joined to one end side of the cylinder block 20.
  • One end surface of the cylinder block 20, the peripheral wall 24 of the front housing 22, and the end wall 25 of the front housing 22 define a crank chamber 26.
  • a drive shaft 30 is disposed in the center of the crank chamber 26, and the drive shaft 30 passes through a substantially cylindrical bearing support portion 31 formed integrally with the outer surface of the end wall 25 of the front housing 22.
  • a pulley is connected to the outer end of the drive shaft 30 protruding from the bearing support portion 31.
  • the pulley is rotatably supported by the bearing support portion 31 via a bearing (not shown).
  • Engine power (not shown) is transmitted to the drive shaft 30 through the pulley.
  • a plurality of cylinder bores 32 for example, seven cylinder bores 32 are formed concentrically on the outer periphery of the cylinder block 20. Each cylinder bore 32 extends parallel to the drive shaft 30 and penetrates the cylinder block 20. These cylinder bores 32 are arranged at equal intervals in the circumferential direction of the cylinder block 20.
  • a piston 34 is slidably disposed in each cylinder bore 32, and the rotational movement of the drive shaft 30 is converted into a reciprocating movement of the piston 34 by a power conversion mechanism.
  • a connecting rod (connecting mechanism) 36 is connected to each piston 34 via a ball joint.
  • the connecting rod 36 protrudes into the crank chamber 26, and the end of the connecting rod 36 is connected to a substantially ring-shaped swing plate (conversion mechanism) 38 via a ball joint.
  • a substantially disk-shaped rotor 40 is coaxially fixed to the drive shaft 30 so as not to be relatively rotatable.
  • a thrust bearing 42 is disposed between the rotor 40 and the end wall 25 of the front housing 22, and a swash plate 46 as a cam member is connected to the rotor 40 via a hinge 44.
  • the swash plate 46 has a substantially ring shape and is penetrated by the drive shaft 30.
  • the swash plate 46 can be tilted with respect to the drive shaft 30 while moving in the axial direction of the drive shaft 30 by the hinge 44.
  • a boss portion 48 is integrally formed on the inner peripheral edge of the swing plate 38, and the boss portion 48 projects from the swing plate 38 toward the rotor 40 or the swash plate 46.
  • the boss portion 48 is surrounded by a swash plate 46, and a ball bearing as a radial bearing 50 is disposed between the boss portion 48 and the swash plate 46.
  • the inner ring of the ball bearing is fixed to the boss portion 48, and the outer ring is fixed to the swash plate 46.
  • An annular slide bearing is disposed as a thrust bearing 52 between the swing plate 38 and the swash plate 46. Therefore, the swash plate 46 and the swing plate 38 are coupled so as to be relatively rotatable, and the swing plate 38 can also tilt with respect to the drive shaft 30 while moving in the axial direction of the drive shaft 30.
  • the power conversion mechanism includes a swing plate rotation prevention unit for preventing the swing plate 38 from rotating along with the rotation of the drive shaft 30.
  • the swing plate rotation preventing unit connects the swing plate 38 and the cylinder block 20 to prevent the swing plate 38 from rotating.
  • the rocking plate rotation prevention unit has a substantially hollow cylindrical joint shaft 54, and the joint shaft 54 is fitted to the inner end side of the drive shaft 30 with a minute gap.
  • a cylindrical slide bearing 56 is disposed between the inner peripheral surface of the joint shaft 54 and the outer peripheral surface of the drive shaft 30.
  • the joint shaft 54 is slidable with respect to the drive shaft 30 through the sliding bearing 56.
  • the inner end of the drive shaft 30 is located inside a cylindrical shaft hole (support hole) 58 formed in the center of the cylinder block 20.
  • the shaft hole 58 opens into the crank chamber 26, and a plurality of grooves extending in the axial direction of the drive shaft 30 are formed on the inner peripheral surface of the shaft hole 58.
  • a plurality of keys 60 extending in the axial direction of the drive shaft 30 are formed on the outer peripheral surface of the central portion of the joint shaft 54 so as to be slidably engaged with these grooves.
  • the joint shaft 54 is spline-coupled to the inner peripheral surface of the shaft hole 58 so as to be slidable in the axial direction of the shaft hole 58. The spline coupling prevents the joint shaft 54 from rotating as the drive shaft 30 rotates.
  • the number of grooves and keys may be one each.
  • a JS side projecting portion or a JS side projecting portion projecting in the axial direction of the joint shaft 54 are integrally formed.
  • Each JS side protrusion 62 has a substantially fan shape when viewed in the axial direction of the joint shaft 54.
  • each JS side protrusion 62 is arranged at equal intervals in the circumferential direction of the JS side protrusions 62, and each JS side protrusion 62 has grooves (JS side ball grooves) 64 on both side surfaces along its radial direction.
  • the JS-side ball groove 64 is inclined with respect to the axial direction of the joint shaft 54 so as to approach the drive shaft 30 as the distance from the joint shaft 54 increases.
  • the swing plate rotation prevention unit has a joint case 66 as shown in FIG.
  • the joint case 66 is disposed coaxially with the joint shaft 54.
  • the joint case 66 has a ring portion 68, and the ring portion 68 is fixed to the inner side in the radial direction of the swing plate 38 so as to be integrally rotatable.
  • the ring portion 68 On the inner peripheral surface of the ring portion 68, three projecting portions (hereinafter referred to as joint case side projecting portions or JC side projecting portions) 70 projecting inward in the radial direction are integrally formed.
  • These JC side protrusions 70 have a substantially fan shape when viewed in the axial direction of the ring portion 68. These JC side protrusions 70 are arranged at equal intervals in the circumferential direction of each of them, and each JC side protrusion 70 has grooves (JC side ball grooves) 72 on both side surfaces along its own radial direction. .
  • the JC-side ball groove 72 is inclined with respect to the axial direction of the ring portion 68 so as to move away from the drive shaft 30 as the distance from the joint shaft 54 increases.
  • FIG. 3 shows the joint case 66, the JS side protrusion 62, and the ball 74 in an assembled state when viewed along the axial direction of the joint case 66 from the joint shaft 54 toward the joint case 66. Yes.
  • the joint shaft 54 is omitted, and the fracture surface of the JS side protrusion 62 is hatched.
  • the joint case 66 is disposed concentrically with the JS-side protrusion 62, and the JS-side protrusion 62 is positioned between the JC-side protrusions 70, respectively.
  • one ball 74 is arranged to be able to roll one by one.
  • the JC side protruding portion 72 has an end surface on the innermost side in the radial direction of the ring portion 68, and this end surface is constituted by a curved surface 76.
  • the curved surface 76 has an arc shape with a predetermined curvature as viewed in the longitudinal section of the JC side protruding portion 72.
  • the swing plate rotation preventing unit has a sleeve 80 fitted to the drive shaft 30 via a cylindrical slide bearing 78.
  • the sleeve 80 is also slidable in the axial direction of the drive shaft 30 together with the sliding bearing 78.
  • the sleeve 80 has a barrel-shaped outer shape, and when viewed in the longitudinal section of the sleeve 80, the outer peripheral surface of the sleeve 80 has an arc shape having substantially the same curvature as the curved surface 76 of the JC-side protruding portion 72.
  • the curved surface of the JC-side protruding portion 72 is in sliding contact with the outer peripheral surface of the sleeve 80, and thus the joint case 66 is supported by the sleeve 80 so as to be swingable.
  • the rotation of the joint case 66 accompanying the rotation of the drive shaft 30, that is, the rotation of the swing plate 38 is regulated by the joint shaft 54 via the balls 74.
  • the cylinder block 20 supports the inner end side of the drive shaft 30 via a joint shaft 54 and a sliding bearing 56 so as to be relatively rotatable.
  • the front housing 22 supports the outer end side of the drive shaft 30 via a radial bearing 82 so as to be relatively rotatable.
  • a shaft seal 84 is disposed in the bearing support portion 31 of the front housing 22.
  • a cylinder head 88 is joined to the other end side of the cylinder block 20 by a plurality of connecting bolts 90 via a gasket (not shown) and a valve plate 86. Accordingly, the outer edge portion of the cylinder block 20, the front housing 22, and the cylinder head 88 constitute a compressor housing.
  • a discharge port (not shown) is formed in the cylinder head 88. The discharge port communicates with the radiator 14 through the circulation path 12 and communicates with a discharge chamber 92 defined in the cylinder head 88.
  • the discharge chamber 92 can communicate with the cylinder bore 32 through a discharge hole 94 penetrating the valve plate 86, and the discharge hole 94 is opened and closed by a discharge valve (not shown). Further, the discharge chamber 92 can communicate with the crank chamber 26 through an external pipe 95, for example.
  • a capacity control valve 96 capable of opening and closing the pipe 95 is inserted in the middle of the pipe 95, and the capacity control valve 96 can be controlled from the outside.
  • an internal flow path extending from the cylinder head 88 to the crank chamber 26 through the valve plate 86 and the cylinder block 20 may be provided.
  • a capacity control valve 96 may be inserted in the internal flow path.
  • a suction chamber 97 is defined in the cylinder head 88.
  • the suction chamber 97 is partitioned in the center of the cylinder head 88 in the radial direction, and the discharge chamber 92 is partitioned around the suction chamber 97 when viewed in the radial direction of the cylinder head 88. That is, the discharge chamber 92 and the suction chamber 97 are separated from each other by the partition wall 98 that forms part of the cylinder head 88.
  • the suction chamber 97 can communicate with the cylinder bore 32 through a suction hole 99 penetrating the valve plate 86, and the suction hole 99 is opened and closed by a reed valve (not shown) as a suction valve.
  • a suction port 100 is formed integrally with the cylinder head 88.
  • the suction port 100 communicates with the evaporator 18 through the circulation path 12.
  • the suction port 100 communicates with a suction chamber 97 defined in the cylinder head 88 via a suction throttle mechanism (suction throttle valve) having a variable opening.
  • the suction throttle valve has a cylindrical valve chamber 101 formed in the center in the radial direction of the cylinder block 20, and the valve chamber 101 is coaxially connected to the valve plate 86 side of the shaft hole 58. Therefore, the valve casing of the suction throttle valve is constituted by the cylinder block 20.
  • the drive shaft 30 extends to the vicinity of the end wall of the valve chamber 101.
  • the cylinder block 20 is formed with an inlet hole 102 and an outlet hole 103 that open to the end wall of the valve chamber 101.
  • the inlet hole 102 and the outlet hole 103 extend from the valve chamber 101 to the end face of the cylinder block 20 on the valve plate 86 side.
  • the inlet hole 102 and the outlet hole 103 communicate with an inlet side communication hole 104 and an outlet side communication hole 106 that penetrate the valve plate 86, respectively.
  • the outlet side communication hole 106 opens into the suction chamber 97 and communicates the valve chamber 101 and the suction chamber 97.
  • the inlet side communication hole 104 communicates with the suction port 100 through the inside of a substantially cylindrical introduction wall portion 108 formed integrally with the cylinder head 88.
  • the leading end of the introduction wall portion 108 is in airtight contact with the peripheral edge of the inlet side communication hole 104 in the valve plate 86 via a gasket (not shown).
  • FIG. 4 shows the valve chamber 101 and its vicinity when the discharge capacity of the compressor is maximum.
  • the valve body 109 is disposed in the valve chamber 101.
  • the valve body 109 has a cylindrical shape and is formed coaxially and integrally with the joint shaft 54.
  • the valve body 109 can reciprocate in the valve chamber 101 as the joint shuff 54 slides.
  • FIGS. 5 and 6 show the valve plate 86 and the end face of the cylinder block 20 on the valve plate 86 side, respectively.
  • the cross-sectional shapes of the inlet side communication hole 104, the outlet side communication hole 106, the inlet hole 102, and the outlet hole 103 are all long holes extending in an arc shape.
  • the openings of the inlet hole 102 and the outlet hole 103 in the valve chamber 101 are substantially located between the inner peripheral edge and the outer peripheral edge of the valve body 109 when viewed in the radial direction of the valve chamber 101.
  • the crank chamber 26 communicates with the suction chamber 97 through the shaft hole 58, the outlet hole 103, and the outlet side communication hole 106.
  • the minute gap in the spline connection between the joint shaft 54 and the shaft hole 58 and the minute gap between the valve body 109 and the shaft hole 58 function as a throttle in the communication path that connects the crank chamber 26 and the suction chamber 97.
  • the drive shaft 30 When power is transmitted from the engine to the drive shaft 30, the drive shaft 30 rotates. As the drive shaft 30 rotates, the rotor 40, the hinge 44, and the swash plate 46 also rotate, and the swing plate 38 supported by the swash plate 46 so as to be relatively rotatable swings. The swing of the swing plate 38 is converted into a reciprocating motion of the piston 34 via the ball joint and the connecting rod 36. While the swing plate 38 is swinging, rotation of the swing plate 38 accompanying rotation of the drive shaft 30 is prevented by the joint case 66, the ball 74, and the joint shaft 54.
  • the refrigerant discharge amount that is, the discharge capacity of the compressor is controlled by, for example, a suction pressure control method or a differential pressure control method.
  • the suction pressure control method the discharge capacity is controlled so that the pressure in the suction chamber 97 (suction pressure) approaches the target value.
  • the differential pressure control method the discharge capacity is controlled so that the difference between the pressure in the discharge chamber 92 (discharge pressure) and the suction pressure approaches the target value. In either case, the amount of current supplied to the solenoid of the capacity control valve 96 or the duty ratio of the current is adjusted as the operation amount.
  • the swing plate 38 When the discharge capacity of the compressor is maximum, the swing plate 38 is most inclined with respect to the plane orthogonal to the drive shaft 30 as shown in FIG. At this time, the radial center of the swing plate 38 is closest to the rotor 40. On the other hand, when the discharge capacity of the compressor is minimum, the swing plate 38 is substantially parallel to the plane orthogonal to the drive shaft 30. At this time, the center of the swing plate 38 in the radial direction is furthest away from the rotor 40. That is, when the discharge capacity of the compressor is minimum, the radial center of the swing plate 38 moves toward the cylinder block 20 as compared to when the discharge capacity is maximum.
  • FIG. 7 shows the valve chamber 101 and its vicinity when the discharge capacity of the compressor is minimum.
  • the valve body 109 integrated with the joint shaft 54 enters the valve chamber 101, and the tip of the valve body 109 has a minute gap. Is positioned near the end wall of the valve chamber 101.
  • FIG. 8 shows the tip position of the valve element 109 when the discharge capacity is maximum
  • FIG. 9 shows the tip position of the valve element 109 when the discharge capacity is minimum.
  • variable suction throttle mechanism the ventilation resistance is changed by utilizing the sliding movement of the joint shaft 54, so that the opening degree is accurately changed according to the discharge capacity.
  • the opening degree is maximized when the discharge capacity is maximum, and the opening degree is minimized when the discharge capacity is minimum.
  • this variable suction throttle mechanism does not require the use of a spring, and therefore the versatility of this compressor is high.
  • valve body 109 as a ventilation resistance increasing member is provided integrally with the joint shaft 54, and the ventilation resistance increasing member enters the valve chamber 101, whereby the flow path in the valve chamber 101 is provided. Reduce cross-sectional area. Accordingly, the airflow resistance can be changed reliably and accurately in accordance with the discharge capacity with a simple configuration.
  • the present invention is not limited to the first embodiment described above, and various modifications can be made.
  • FIG. 10 shows a variable capacity compressor according to the second embodiment.
  • symbol is attached
  • one inlet hole 110 is formed in the cylinder block 20, and the inlet hole 110 opens at the center of the end wall of the valve chamber 101.
  • the cross-sectional shape of the inlet hole 110 is, for example, a circular shape, and the diameter of the opening of the inlet hole 110 is equal to or smaller than the outer diameter of the valve body 109, for example, equal to the diameter of the inner peripheral edge of the valve body 109.
  • outlet holes 112 are formed in the cylinder block 20.
  • the outlet holes 112 are spaced from each other in the diametrical direction with the inlet hole 110 interposed therebetween.
  • the cross-sectional shape of the outlet hole 112 is a long hole extending in an arc shape, and the distance between the outlet holes 112 is equal to the diameter of the valve chamber 101 when viewed in the radial direction of the valve chamber 101.
  • 112 is open at the side wall of the valve chamber 101.
  • an inlet side communication hole 114 and an outlet side communication hole 116 are respectively formed in accordance with the shapes and positions of the inlet hole 110 and the outlet hole 112. Moreover, the inner end of the drive shaft 30 is separated from the end wall of the valve chamber 101 by a predetermined distance. Also in the compressor according to the second embodiment described above, the variable suction throttle mechanism changes the ventilation resistance in the valve chamber 101 formed in the cylinder block 20 by utilizing the sliding of the joint shaft 54.
  • variable suction throttle mechanism the ventilation resistance is changed by utilizing the sliding movement of the joint shaft 54, so that the opening degree is accurately changed according to the discharge capacity.
  • the opening degree is maximized when the discharge capacity is maximum, and the opening degree is minimized when the discharge capacity is minimum.
  • this variable suction throttle mechanism does not require the use of a spring, and therefore the versatility of this compressor is high.
  • the valve body 109 as a ventilation resistance increasing member is provided integrally with the joint shaft 54, and the ventilation resistance increasing member enters the valve chamber 101, whereby the flow path in the valve chamber 101 is provided. Reduce cross-sectional area. Accordingly, the airflow resistance can be changed reliably and accurately in accordance with the discharge capacity with a simple configuration.
  • the number of cylinder bores 32 is not limited to seven.
  • the number of the inlet holes 102 and 110 of the valve chamber 101 is not limited to one like the number of the outlet holes 103 and 112.
  • a path from the suction port 100 to the valve chamber 101 in the cylinder head 88 can be appropriately configured according to the number and positions of the inlet holes 102 and 110 and the outlet holes 103 and 112.
  • the pressure in the crank chamber 26 is controlled (inlet control) on the inlet side, but the present invention controls the pressure in the crank chamber 26 on the outlet side (outlet). It is also applicable to compressors that are controlled.
  • variable capacity reciprocating compressor is not limited to the swing plate type but can be applied to a swash plate type reciprocating compressor.
  • a shoe that is in sliding contact with the swash plate is converted to convert the inclination angle of the swash plate into a reciprocating motion of the piston 34.
  • the present invention can be applied to a swash plate type reciprocating compressor by using a connecting mechanism that replaces the connecting rod 36 with a bridge member that connects the shoe and the socket portion of the piston 34 in which the shoe is incorporated.
  • the variable capacity reciprocating compressor of the present invention can be applied to various systems other than the vehicle air conditioning system, and the working fluid is not limited to the refrigerant.

Abstract

 可変容量往復動圧縮機の前記動力変換機構は、駆動軸(30)に軸受(56)を介して嵌合されるとともに、シリンダブロック(20)に形成された支持孔(58)の内周面によって当該内周面に対し相対回転不能且つ滑動可能に支持されたジョイントシャフト(54)と、変換機構(38)と一体に傾動可能に設けられたジョイントケース(66)と、ジョイントシャフト(54)に一体に設けられたJS側突出部(62)とジョイントケース(66)に一体に設けられたJC側突出部との間に転動可能に挟持された複数のボール(74)とを含む。圧縮機の可変吸入絞り機構は、ジョイントシャフト(54)の滑動を利用して、支持孔(58)に連なる弁室(101)における通気抵抗を変化させる。

Description

可変容量往復動圧縮機
 本発明は可変容量往復動圧縮機に係わり、より詳しくは、吸入絞り機構付きの可変容量往復動圧縮機に関する。
 可変容量往復動圧縮機は、例えば車両用空調システムの冷凍サイクルシステムに組み込まれる。具体的には、冷凍サイクルシステムは、冷媒が循環する循環路を備え、循環路には、圧縮機、放熱器、膨張器及び蒸発器が順次介挿される。圧縮機は、冷媒の吸入、圧縮及び吐出工程からなる一連のプロセスを実行し、そのために圧縮機には、例えばプーリを介してエンジンから動力が供給される。
 可変容量往復動圧縮機のハウジングの内部には吸入室、吐出室及びシリンダボアが区画され、吸入室とシリンダボアとは吸入弁を介して連通し、吐出室とシリンダボアとは吐出弁を介して連通する。
 可変容量往復動圧縮機では、駆動軸の回転がピストンの往復運動に変換される。このとき、ピストンのストローク長は、例えばクランク室の圧力を利用して変化させられ、これにより吐出容量が調整される。この場合、例えば、外部から制御される容量制御弁の開閉作動によって、クランク室の圧力が変化させられ、もって吐出容量が調整される。
 なお、ストローク長が変化するときには、カム部材としての斜板の駆動軸に対する傾斜角度が変化する。斜板の回転は、揺動板式の圧縮機の場合、揺動板を介して、ピストンの往復運動に変換される。また、斜板式の圧縮機の場合、斜板に摺接するシューを介して、ピストンの往復運動に変換される。
 外部制御の方式としては、冷凍サイクルシステムの低圧、則ち圧縮機の吸入室の圧力(吸入圧力)を目標値に維持する吸入圧力制御方式と、冷凍サイクルシステムにおける高圧、則ち圧縮機の吐出室の圧力(吐出圧力)と吸入圧力との差圧を目標値に維持する差圧制御方式とがある。
 可変容量の斜板式圧縮機には、低流量のときに脈動を低減すべく、開度制御弁を有するものがある。例えば特許文献1が開示する斜板式圧縮機にあっては、シリンダヘッド内に開度制御弁が配置されている。
 同様に、特許文献2も吸入絞り弁を開示している。この吸入絞り弁も、吸入通路の開度を調整するための弁体を有し、吸入脈動に起因する振動及び異音の低減を図ることができるものと考えられている。更に、この吸入絞り弁では、弁室が吸入室及びクランク室と常時連通していることにより、全流量範囲に渡って、斜板式圧縮機の性能が確保されるものと考えられている。
特開2000-136776号公報 特開2008-115762号公報
 特許文献1に記載された開度制御弁及び特許文献2に記載された吸入絞り弁を採用した場合、シリンダヘッドが大型になり、圧縮機自体の大型化や材料コストの増加を招いてしまう。また、これらの弁にあっては、開度の調整のためにスプリングを用いていることから、冷媒の種類その他の冷凍サイクルシステムの設計に応じて、適当なばね定数を有するスプリングを選択しなければならず、汎用性が低い。
 本発明は上述の事情に基づいてなされたもので、その目的とするところは、吐出容量に応じて開度が的確に変化する吸入絞り機構を備えた、汎用性が高く小型の可変容量往復動圧縮機を安価にて提供することにある。
 上記の目的を達成するべく、本発明の一態様によれば、吸入室、吐出室、及び、クランク室が内部に区画され、且つ、前記吸入室及び前記吐出室の各々と外部とを連通する吸入ポート及び吐出ポートが形成されたハウジングと、前記ハウジング内に配置され、前記吸入室に吸入弁を介して連通し且つ前記吐出室に吐出弁を介して連通する複数のシリンダボアが同心上に形成されたシリンダブロックと、前記クランク室内を延びる駆動軸の回転を前記シリンダボア内に配置されたピストンの往復運動にストローク長可変にて変換する動力変換機構と、前記吸入ポートから前記吸入室に至る吸入通路に介挿され、前記ピストンのストローク長に対応して通気抵抗が変化する可変吸入絞り機構とを備え、前記吸入通路は、前記シリンダブロックの径方向中央部に形成された空間を含み、前記動力変換機構は、前記駆動軸に嵌合されたロータの外周部にヒンジを介して連結されるとともに前記駆動軸によって貫通され、前記駆動軸に対して当該駆動軸の軸線方向に移動しながら傾動可能な環形状のカム部材と、前記ピストンと連接機構を介して連結され、前記カム部材の傾斜角度を前記ピストンの往復運動に変換する変換機構と、前記駆動軸に軸受を介して嵌合されるとともに、前記シリンダブロックに形成されて前記空間に繋がる支持孔の内周面によって当該内周面に対し相対回転不能且つ滑動可能に支持されたジョイントシャフトと、前記変換機構と一体に傾動可能に設けられたジョイントケースと、前記ジョイントシャフトに一体に設けられたJS側突出部と前記ジョイントケースに一体に設けられたJC側突出部との間に転動可能に挟持された複数のボールとを含み、前記可変吸入絞り機構は、前記ジョイントシャフトの滑動を利用して弁室としての前記空間における通気抵抗を変化させることを特徴とする可変容量往復動圧縮機が提供される(請求項1)。
 好ましくは、前記可変吸入絞り機構は、前記ジョイントシャフトに一体に設けられ、前記空間に進入することにより前記空間における前記吸入通路の流路断面積を縮小する通気抵抗増大部材を有する(請求項2)。
 本発明の請求項1の可変容量往復動圧縮機では、可変吸入絞り機構が、ジョイントシャフトの滑動を利用して、シリンダブロックに形成された空間における通気抵抗を変化させる。この可変吸入絞り機構によれば、シリンダブロックに形成された空間での通気抵抗を変化させるので、シリンダヘッドを大型にする必要がなく、小型の圧縮機が安価にて提供される。
 また、この可変吸入絞り機構によれば、ジョイントシャフトの滑動を利用して通気抵抗を変化させるので、吐出容量に応じて的確に開度が変化する。
 更に、この可変吸入絞り機構ではスプリングを用いる必要が無く、このため、この圧縮機の汎用性は高い。
 請求項2の可変容量往復動圧縮機では、ジョイントシャフトと一体に通気抵抗増大部材を設け、通気抵抗増大部材が弁室内に進入することにより、弁室の流路断面積を減少させる。これにより、簡単な構成にて、吐出容量に対応して通気抵抗を確実且つ的確に変化させられる。
第1実施形態の可変容量揺動板式圧縮機を車両用空調システムの冷凍サイクルシステムとともに示した図である。 図1の圧縮機に適用された揺動板回転阻止ユニットの概略的な分解図である。 図2の揺動板回転阻止ユニットにおける、ジョイントケース、ボール及びJS側突出部の相互の係合状態を説明するための図である。 圧縮機の吐出容量、則ち揺動板の傾角が最大であるときにおける、図1の領域IVの拡大図である。 図1の圧縮機に適用されたバルブプレートを示す平面図である。 図1の圧縮機に適用されたシリンダブロックを示す平面図である。 圧縮機の吐出容量、則ち揺動板の傾角が最小であるときにおける、図1の領域VIIの拡大図である。 図4の線VIII-VIIIに沿うシリンダブロックの断面とともに、駆動軸及び弁体を示す斜視図である。 図7の線IX-IXに沿うシリンダブロックの断面とともに、駆動軸及び弁体を示す斜視図である。 第2実施形態の可変容量型の往復動圧縮機を車両用空調システムの冷凍サイクルシステムとともに示した図である。 圧縮機の吐出容量、則ち揺動板の傾角が最大であるときにおける、図10の領域XIの拡大図である。 圧縮機の吐出容量、則ち揺動板の傾角が最小であるときにおける、図10の領域XIIの拡大図である。 図10の圧縮機に適用されたバルブプレートを示す平面図である。 図10の圧縮機に適用されたシリンダブロックを示す平面図である。 図11の線XV-XVに沿うシリンダブロックの断面とともに、駆動軸及び弁体を示す斜視図である。 図12の線XVI-XVIに沿うシリンダブロックの断面とともに、駆動軸及び弁体を示す斜視図である。
 図1は、冷凍サイクルシステムに適用された、第1実施形態に係る可変容量型の揺動板式圧縮機を示す。
 冷凍サイクルシステム10は、作動流体としての冷媒が循環する循環路12を備える。循環路12には、冷媒の流動方向でみて、圧縮機、放熱器(凝縮器)14、膨張器(膨張弁)16及び蒸発器18が順次介挿され、圧縮機が作動すると、循環路12を冷媒が循環する。すなわち、圧縮機は、冷媒の吸入工程、吸入した冷媒の圧縮工程及び圧縮した冷媒の吐出工程からなる一連のプロセスを行う。
 圧縮機は、円柱形状のシリンダブロック20を備える。シリンダブロック20の一端側には、フロントハウジング22の周壁24が気密に接合されている。シリンダブロック20の一端面、フロントハウジング22の周壁24及びフロントハウジング22の端壁25は、クランク室26を区画している。
 クランク室26内にはその中央に駆動軸30が配置され、駆動軸30は、フロントハウジング22の端壁25の外面に一体に形成された略円筒形状の軸受支持部31を貫通している。軸受支持部31から突出した駆動軸30の外端には、図示しないけれども、例えばプーリが連結される。プーリは、図示しない軸受を介し、軸受支持部31によって回転自在に支持される。当該プーリを介して、図示しないエンジンの動力が駆動軸30に伝達される。
 シリンダブロック20の外周部には、複数のシリンダボア32、例えば7個のシリンダボア32が同心上に形成されている。各シリンダボア32は、駆動軸30と平行に延び、シリンダブロック20を貫通している。これらシリンダボア32はシリンダブロック20の周方向に等間隔を存して配置されている。
 各シリンダボア32内には、ピストン34が摺動自在に配置され、駆動軸30の回転運動は、動力変換機構によって、ピストン34の往復運動に変換される。
 具体的には、各ピストン34には連接棒(連接機構)36が球継手を介して連結されている。連接棒36はクランク室26内に突出し、連接棒36の端部は、球継手を介して略環形状の揺動板(変換機構)38に連結されている。
 ピストン34を往復運動させるべく、換言すれば、揺動板38を揺動させるべく、駆動軸30には、略円盤形状のロータ40が相対回転不能に同軸的に固定されている。ロータ40とフロントハウジング22の端壁25との間にはスラストベアリング42が配置され、ロータ40には、ヒンジ44を介して、カム部材としての斜板46が連結されている。
 斜板46は略環形状をなし、駆動軸30によって貫通されている。斜板46は、ヒンジ44によって、駆動軸30の軸線方向に移動しながら、駆動軸30に対して傾動可能である。
 揺動板38の内周縁には、ボス部48が一体に形成され、ボス部48は、揺動板38からロータ40若しくは斜板46に向けて突出している。ボス部48は、斜板46によって囲まれ、ボス部48と斜板46との間には、ラジアルベアリング50としての、ボールベアリングが配置されている。
 ボールベアリングの内輪はボス部48に固定され、その外輪は斜板46に固定されている。また、揺動板38と斜板46との間には、スラストベアリング52として、環形状の滑り軸受けが配置されている。従って、斜板46と揺動板38とは、相対回転可能に連結され、揺動板38もまた、駆動軸30の軸線方向に移動しながら、駆動軸30に対して傾動可能である。
 そして、この圧縮機は揺動板式であることから、動力変換機構は、駆動軸30の回転に伴う揺動板38の回転を防止するための揺動板回転阻止ユニットを含む。揺動板回転阻止ユニットは、揺動板38とシリンダブロック20との間を連結することにより、揺動板38の回転を阻止する。
 より詳しくは、揺動板回転阻止ユニットは略中空円筒形状のジョイントシャフト54を有し、ジョイントシャフト54は、駆動軸30の内端側に、微小な隙間をもって嵌合されている。ジョイントシャフト54の内周面と駆動軸30の外周面との間には、円筒形状の滑り軸受56が配置されている。ジョイントシャフト54は、滑り軸受56を介したことにより、駆動軸30に対してスライド可能である。
 ここで、駆動軸30の内端は、シリンダブロック20の中央に形成された円筒形状のシャフト孔(支持孔)58の内部に位置している。シャフト孔58はクランク室26に開口し、シャフト孔58の内周面には、駆動軸30の軸線方向に延びる複数の溝が形成されている。
 そして、図2に分解して示したように、これらの溝とスライド可能に噛み合うように、ジョイントシャフト54の中央部の外周面に、駆動軸30の軸線方向にそれぞれ延びる複数のキー60が形成されている。つまり、ジョイントシャフト54は、シャフト孔58の内周面に対し、シャフト孔58の軸線方向にスライド可能にスプライン結合されている。そして、このスプライン結合によって、駆動軸30の回転に伴うジョイントシャフト54の回転は阻止される。
 なお、駆動軸30の回転に伴うジョイントシャフト54の回転を阻止でき、且つ、ジョイントシャフト54が駆動軸30に沿って滑動可能であれば、溝及びキーの数はそれぞれ1つであってもよい。
 クランク室26側のジョイントシャフト54の一端には、ジョイントシャフト54の軸線方向に突出する例えば3つの突出部(以下、JS側突出部又はJS側突出部という)62が一体に形成されている。各JS側突出部62は、ジョイントシャフト54の軸線方向でみて、略扇形状を有する。
 これらJS側突出部62は、自身の周方向にて等間隔に配置され、各JS側突出部62は、自身の径方向に沿う両側面に、溝(JS側ボール溝)64を有する。JS側ボール溝64は、ジョイントシャフト54から離れるほど駆動軸30に近付くように、ジョイントシャフト54の軸線方向に対して傾斜している。
 また、揺動板回転阻止ユニットは、図2に示したように、ジョイントケース66を有する。ジョイントケース66はジョイントシャフト54と同軸に配置される。ジョイントケース66はリング部68を有し、リング部68は、揺動板38の径方向内側に一体に回転可能に固定される。リング部68の内周面には、それぞれ径方向内側に向けて突出する3つの突出部(以下、ジョイントケース側突出部又はJC側突出部という)70が一体に形成されている。
 これらJC側突出部70は、リング部68の軸線方向でみて、略扇形状を有する。そして、これらJC側突出部70は、自身の周方向にて等間隔に配置され、各JC側突出部70は、自身の径方向に沿う両側面に、溝(JC側ボール溝)72を有する。JC側ボール溝72は、ジョイントシャフト54から離れるほど駆動軸30から遠ざかるように、リング部68の軸線方向に対して傾斜している。
 図3は、ジョイントシャフト54からジョイントケース66に向けてジョイントケース66の軸線方向に沿ってみたときの、相互に組み立てられた状態にあるジョイントケース66、JS側突出部62及びボール74を示している。なお、図3中、ジョイントシャフト54を省略し、JS側突出部62の破断面にはハッチングを施した。
 ジョイントケース66は、JS側突出部62と同心上に配置され、JC側突出部70同士の間に、JS側突出部62がそれぞれ位置付けられる。そして、隙間を存して対向するJS側ボール溝64とJC側ボール溝72との間には、ボール74が1つずつ転動可能に配置されている。
 再び図2を参照すると、JC側突出部72は、リング部68の径方向でみて最も内側に端面を有し、この端面は曲面76により構成されている。この曲面76は、JC側突出部72の縦断面でみて、所定の曲率の円弧形状をなす。
 また、揺動板回転阻止ユニットは、円筒形状の滑り軸受78を介して駆動軸30に嵌合されるスリーブ80を有する。スリーブ80もまた、滑り軸受78とともに、駆動軸30の軸線方向にスライド可能である。スリーブ80は樽形状の外形を有し、スリーブ80の縦断面でみたとき、スリーブ80の外周面は、JC側突出部72の曲面76と略同じ曲率の円弧形状をなす。
 スリーブ80の外周面には、JC側突出部72の曲面が摺接し、従って、ジョイントケース66は、スリーブ80によって揺動可能に支持されている。そして、駆動軸30の回転に伴うジョイントケース66の回転、則ち、揺動板38の回転は、ボール74を介して、ジョイントシャフト54によって規制されている。
 再び図1を参照すると、シリンダブロック20は、ジョイントシャフト54及び滑り軸受56を介して、駆動軸30の内端側を相対回転可能に支持している。また、フロントハウジング22は、ラジアルベアリング82を介して、駆動軸30の外端側を相対回転可能に支持している。なお、フロントハウジング22の軸受支持部31内には、シャフトシール84が配置されている。
 シリンダブロック20の他端側には、ガスケット(図示せず)及びバルブプレート86を介して、シリンダヘッド88が複数個の連結ボルト90によって接合されている。従って、シリンダブロック20の外縁部、フロントハウジング22及びシリンダヘッド88は、圧縮機のハウジングを構成している。
 シリンダヘッド88には吐出ポート(図示せず)が形成されている。吐出ポートは、循環路12を通じて放熱器14に連通するとともに、シリンダヘッド88内に区画された吐出室92に連通している。
 吐出室92は、バルブプレート86を貫通する吐出孔94を通じて、シリンダボア32に連通可能であり、吐出孔94は吐出弁(図示せず)によって開閉される。また、吐出室92は、例えば外部の配管95を通じてクランク室26と連通可能である。配管95の途中には、当該配管95を開閉可能な容量制御弁96が介挿され、容量制御弁96は、外部から制御可能である。
 なお、配管95に代えて、シリンダヘッド88からバルブプレート86及びシリンダブロック20を経てクランク室26まで延びる内部流路を設けてもよい。そして、この内部流路に容量制御弁96を介挿してもよい。
 また、シリンダヘッド88内には、吸入室97が区画されている。吸入室97は、シリンダヘッド88の径方向中央に区画され、吐出室92は、シリンダヘッド88の径方向でみて、吸入室97の周囲に区画されている。つまり、吐出室92と吸入室97とは、シリンダヘッド88の一部をなす区画壁98によって相互に分けられている。吸入室97は、バルブプレート86を貫通する吸入孔99を通じてシリンダボア32に連通可能であり、吸入孔99は、吸入弁としてのリード弁(図示せず)によって開閉される。
 シリンダヘッド88には吸入ポート100が一体に形成されている。吸入ポート100は、循環路12を通じて蒸発器18に連通している。また、吸入ポート100は、開度が可変の吸入絞り機構(吸入絞り弁)を経て、シリンダヘッド88内に区画された吸入室97に連通する。
 吸入絞り弁はシリンダブロック20の径方向中央に形成された円筒形状の弁室101を有し、弁室101は、シャフト孔58のバルブプレート86側に同軸に繋がっている。従って、吸入絞り弁の弁ケーシングは、シリンダブロック20によって構成されている。なお、駆動軸30は、弁室101の端壁近傍まで延びている。
 シリンダブロック20には、弁室101の端壁に開口する入口孔102及び出口孔103が形成されている。入口孔102及び出口孔103は、弁室101から、バルブプレート86側のシリンダブロック20の端面までそれぞれ延びている。入口孔102及び出口孔103は、バルブプレート86を貫通する入口側連通孔104及び出口側連通孔106とそれぞれ連通している。出口側連通孔106は、吸入室97に開口し、弁室101と吸入室97とを連通している。
 入口側連通孔104は、シリンダヘッド88に一体に形成された略円筒形状の導入壁部108の内部を通じて、吸入ポート100と連通している。導入壁部108の先端は、ガスケット(図示せず)を介して、バルブプレート86における入口側連通孔104の周縁に対して気密に当接している。
 ここで、図4は、圧縮機の吐出容量が最大のときの、弁室101及びその近傍を示している。図4に示したように、弁室101には弁体109が配置されている。弁体109は、円筒形状を有し、ジョイントシャフト54と同軸且つ一体に形成されている。弁体109は、ジョイントシャフ54の滑動に伴い弁室101内を往復動可能である。
 図5及び図6は、バルブプレート86及びバルブプレート86側のシリンダブロック20の端面をそれぞれ示している。図5及び図6に示したように、入口側連通孔104、出口側連通孔106、入口孔102及び出口孔103の横断面形状は、いずれも円弧状に延びる長孔形状である。そして、弁室101における入口孔102及び出口孔103の開口は、弁室101の径方向でみて、弁体109の内周縁と外周縁との間にそれぞれ略位置している。
 なお、クランク室26は、シャフト孔58、出口孔103、及び、出口側連通孔106を通じて、吸入室97と連通している。そして、ジョイントシャフト54とシャフト孔58とのスプライン結合における微小隙間、及び、弁体109とシャフト孔58との微小隙間は、クランク室26と吸入室97とを連通する連通路において、絞りとして機能する。
 以下、上述した圧縮機の動作について説明する。
 エンジンから動力が駆動軸30に伝達されると、駆動軸30が回転する。駆動軸30の回転に伴い、ロータ40、ヒンジ44及び斜板46も回転し、斜板46に相対回転可能に支持された揺動板38が揺動する。揺動板38の揺動は、玉継手及び連接棒36を介してピストン34の往復運動に変換される。
 なお、揺動板38が揺動している間、駆動軸30の回転に伴う揺動板38の回転は、ジョイントケース66、ボール74、及び、ジョイントシャフト54によって防止される。
 ピストン34の往復運動により、吸入室97からシリンダボア32への冷媒の吸入工程、シリンダボア32内での冷媒の圧縮工程及びシリンダボア32から吐出室92への冷媒の吐出工程が実行される。すなわち、ピストン34の往復運動により、蒸発器18で気化した冷媒が循環路12及び吸入ポート100を通じて圧縮機に吸入され、圧縮機の吐出ポートから吐出された冷媒が循環路12を通じて放熱器14に供給される。
 冷媒の吐出量、即ち圧縮機の吐出容量は、例えば、吸入圧力制御方式又は差圧制御方式によって制御される。吸入圧力制御方式では、吸入室97の圧力(吸入圧力)が目標値に近付くように、吐出容量が制御される。差圧制御方式では、吐出室92の圧力(吐出圧力)と吸入圧力との差が目標値に近付くように、吐出容量が制御される。いずれの方式の場合も、操作量として、容量制御弁96のソレノイドに供給される電流の量、又は、当該電流のデューティ比が調整される。
 圧縮機の吐出容量が最大であるとき、揺動板38は、図1に示したように、駆動軸30と直交する面に対して最も傾斜している。そしてこのとき、揺動板38の径方向中心は、ロータ40に最も近付く。
 これに対し、圧縮機の吐出容量が最小であるとき、揺動板38は、駆動軸30と直交する面に対して略平行になる。そしてこのとき、揺動板38の径方向中心は、ロータ40から最も遠ざかる。即ち、圧縮機の吐出容量が最小であるとき、当該吐出容量が最大であるときに比べて、揺動板38の径方向中心が、シリンダブロック20側に移動する。
 そして、この圧縮機では、駆動軸30の軸線方向でみて、揺動板38の径方向中心位置と、ジョイントケース66の径方向中心位置とが連動し、更に、スリーブ80及びジョイントシャフト54の位置も連動する。
 ここで図7は、圧縮機の吐出容量が最小であるときの、弁室101及びその近傍を示している。図7に示したように、ジョイントシャフト54が揺動板38と連動することにより、ジョイントシャフト54と一体の弁体109が弁室101内に進入し、弁体109の先端は、微小な隙間を残して弁室101の端壁近傍に位置付けられる。
 図8は、吐出容量が最大であるときの弁体109の先端位置を示し、図9は、吐出容量が最小であるときの弁体109の先端位置を示している。
 かくして上述した圧縮機では、可変吸入絞り機構が、ジョイントシャフト54の滑動を利用して、シリンダブロック20に形成された弁室101における通気抵抗を変化させる。この可変吸入絞り機構によれば、シリンダヘッド88ではなく、シリンダブロック20に形成された弁室101での通気抵抗を変化させるので、シリンダヘッド88を大型にする必要がなく、小型の圧縮機が安価にて提供される。
 また、この可変吸入絞り機構によれば、ジョイントシャフト54の滑動を利用して通気抵抗を変化させるので、吐出容量に応じて的確に開度が変化する。則ち、最大吐出容量のときには開度が最大になり、吐出容量が最小のときには開度が最小になる。この結果、吐出容量が小さいときに、脈動及びこれに基づく振動が的確に防止される。
 更に、この可変吸入絞り機構ではスプリングを用いる必要が無く、このため、この圧縮機の汎用性は高い。
 その上、上述した圧縮機では、ジョイントシャフト54と一体に、通気抵抗増大部材としての弁体109を設け、通気抵抗増大部材が弁室101内に進入することにより、弁室101での流路断面積を減少させる。これにより、簡単な構成にて、吐出容量に対応して通気抵抗を確実且つ的確に変化させられる。
 本発明は上記した第1実施形態に限定されることはなく、種々変更が可能である。
 図10は、第2実施形態に係る可変容量圧縮機を示している。なお、第1実施形態に係る可変容量圧縮機と同一の構成については、同一の符号を付して説明を省略する。
 第2実施形態に係る圧縮機では、図11乃至図16を参照すると、シリンダブロック20には1つの入口孔110が形成され、入口孔110は、弁室101の端壁の中央にて開口している。入口孔110の横断面形状は例えば円形状であり、入口孔110の開口の直径は、弁体109の外径以下であり、例えば弁体109の内周縁の直径に等しい。
 また、シリンダブロック20には、1つ以上の、例えば2つの出口孔112が形成されている。これら出口孔112は、入口孔110を挟んで直径方向に相互に離間している。そして、出口孔112の横断面形状は、円弧形状に延びる長孔形状であり、弁室101の径方向でみて、出口孔112同士の距離は、弁室101の直径に等しい、すなわち、出口孔112は、弁室101の側壁にて開口している。
 バルブプレート86には、入口孔110及び出口孔112の形状及び位置に合致して、入口側連通孔114及び出口側連通孔116がそれぞれ形成されている。
 その上、駆動軸30の内端は、弁室101の端壁から所定距離だけ離間している。
 上述した第2実施形態に係る圧縮機でも、可変吸入絞り機構が、ジョイントシャフト54の滑動を利用して、シリンダブロック20に形成された弁室101における通気抵抗を変化させる。
 また、この可変吸入絞り機構によれば、ジョイントシャフト54の滑動を利用して通気抵抗を変化させるので、吐出容量に応じて的確に開度が変化する。則ち、最大吐出容量のときには開度が最大になり、吐出容量が最小のときには開度が最小になる。この結果、吐出容量が小さいときに、脈動及びこれに基づく振動が的確に防止される。
 更に、この可変吸入絞り機構ではスプリングを用いる必要が無く、このため、この圧縮機の汎用性は高い。
 その上、上述した圧縮機では、ジョイントシャフト54と一体に、通気抵抗増大部材としての弁体109を設け、通気抵抗増大部材が弁室101内に進入することにより、弁室101での流路断面積を減少させる。これにより、簡単な構成にて、吐出容量に対応して通気抵抗を確実且つ的確に変化させられる。
 上述した第1及び第2実施形態に係る圧縮機において、シリンダボア32の数は7個に限られない。
 上述した第1及び第2実施形態に係る圧縮機において、弁室101の入口孔102,110の数は、出口孔103,112の数と同様に、1つに限定されることはない。そして、入口孔102,110及び出口孔103,112の数や位置に応じて、シリンダヘッド88内での吸入ポート100から弁室101までの経路を適当に構成することができる。
 上述した第1及び第2実施形態に係る圧縮機では、クランク室26の圧力が入口側で制御(入口制御)されていたが、本発明は、クランク室26の圧力を出口側で制御(出口制御)する圧縮機にも適用可能である。
 また、本発明の可変容量型の往復動圧縮機は、揺動板式のものに限らず、斜板式の往復動圧縮機にも適用可能である。具体的には、図示は省略するが、斜板式圧縮機の場合には、揺動板38に代わって、斜板に摺接するシューを斜板の傾斜角度をピストン34の往復動に変換する変換機構とし、シューとシューが組み込まれるピストン34のソケット部とを連結するブリッジ部材を連接棒36に代わる連結機構とすることにより、本発明を斜板式の往復動圧縮機に適用することができる。
 最後に、本発明の可変容量型の往復動圧縮機は、車両用空調システム以外の種々のシステムに適用可能であるのは勿論であり、作動流体も冷媒に限定されない。
 20  シリンダブロック
 26  クランク室
 30  駆動軸
 32  シリンダボア
 34  ピストン
 54  ジョイントシャフト
 58  シャフト孔(支持孔)
 66  ジョイントケース
 74  ボール
101  弁室

Claims (2)

  1.  吸入室、吐出室、及び、クランク室が内部に区画され、且つ、前記吸入室及び前記吐出室の各々と外部とを連通する吸入ポート及び吐出ポートが形成されたハウジングと、
     前記ハウジング内に配置され、前記吸入室に吸入弁を介して連通し且つ前記吐出室に吐出弁を介して連通する複数のシリンダボアが同心上に形成されたシリンダブロックと、
     前記クランク室内を延びる駆動軸の回転を前記シリンダボア内に配置されたピストンの往復運動にストローク長可変にて変換する動力変換機構と、
     前記吸入ポートから前記吸入室に至る吸入通路に介挿され、前記ピストンのストローク長に対応して通気抵抗が変化する可変吸入絞り機構とを備え、
     前記吸入通路は、前記シリンダブロックの径方向中央部に形成された空間を含み、
     前記動力変換機構は、
     前記駆動軸に嵌合されたロータの外周部にヒンジを介して連結されるとともに前記駆動軸によって貫通され、前記駆動軸に対して当該駆動軸の軸線方向に移動しながら傾動可能な環形状のカム部材と、
     前記ピストンと連接機構を介して連結され、前記カム部材の傾斜角度を前記ピストンの往復運動に変換する変換機構と、
     前記駆動軸に軸受を介して嵌合されるとともに、前記シリンダブロックに形成されて前記空間に繋がる支持孔の内周面によって当該内周面に対し相対回転不能且つ滑動可能に支持されたジョイントシャフトと、
     前記変換機構と一体に傾動可能に設けられたジョイントケースと、
     前記ジョイントシャフトに一体に設けられたJS側突出部と前記ジョイントケースに一体に設けられたJC側突出部との間に転動可能に挟持された複数のボールとを含み、
     前記可変吸入絞り機構は、前記ジョイントシャフトの滑動を利用して弁室としての前記空間における通気抵抗を変化させる
    ことを特徴とする可変容量往復動圧縮機。
  2.  前記可変吸入絞り機構は、前記ジョイントシャフトに一体に設けられ、前記空間に進入することにより前記空間における前記吸入通路の流路断面積を縮小する通気抵抗増大部材を有することを特徴とする請求項1に記載の可変容量往復動圧縮機。
PCT/JP2009/069713 2008-11-25 2009-11-20 可変容量往復動圧縮機 WO2010061792A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/131,206 US20110229348A1 (en) 2008-11-25 2009-11-20 Variable Displacement Type Reciprocating Compressor
JP2010540465A JPWO2010061792A1 (ja) 2008-11-25 2009-11-20 可変容量往復動圧縮機
EP09829040.6A EP2354548B1 (en) 2008-11-25 2009-11-20 Variable displacement type reciprocating compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-299351 2008-11-25
JP2008299351 2008-11-25

Publications (1)

Publication Number Publication Date
WO2010061792A1 true WO2010061792A1 (ja) 2010-06-03

Family

ID=42225668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069713 WO2010061792A1 (ja) 2008-11-25 2009-11-20 可変容量往復動圧縮機

Country Status (4)

Country Link
US (1) US20110229348A1 (ja)
EP (1) EP2354548B1 (ja)
JP (1) JPWO2010061792A1 (ja)
WO (1) WO2010061792A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4861900B2 (ja) * 2007-02-09 2012-01-25 サンデン株式会社 可変容量圧縮機の容量制御システム
CN103452807B (zh) * 2013-09-13 2016-05-18 无锡市苏立成汽车空调压缩机有限公司 一种变排量空调压缩机机芯支承结构
US8939178B1 (en) 2014-04-22 2015-01-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Variable-aperture reciprocating reed valve
US9816377B2 (en) * 2014-09-24 2017-11-14 Eaton Corporation Hydraulic axial-piston device with features to enhance efficiency and power density
CN104686082B (zh) * 2015-03-13 2016-08-24 益阳福祥农业装备有限公司 作物联合收割机往复式割台动刀杆驱动方法及驱动装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159026A (ja) * 1994-05-12 1996-06-18 Toyota Autom Loom Works Ltd 可変容量圧縮機
JP2000136776A (ja) 1998-08-24 2000-05-16 Sanden Corp 圧縮機
JP2008115762A (ja) 2006-11-03 2008-05-22 Toyota Industries Corp 圧縮機の吸入絞り弁
JP2008138637A (ja) * 2006-12-05 2008-06-19 Sanden Corp 揺動板式可変容量圧縮機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037863A (ja) * 1996-07-22 1998-02-13 Toyota Autom Loom Works Ltd 可変容量型圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159026A (ja) * 1994-05-12 1996-06-18 Toyota Autom Loom Works Ltd 可変容量圧縮機
JP2000136776A (ja) 1998-08-24 2000-05-16 Sanden Corp 圧縮機
JP2008115762A (ja) 2006-11-03 2008-05-22 Toyota Industries Corp 圧縮機の吸入絞り弁
JP2008138637A (ja) * 2006-12-05 2008-06-19 Sanden Corp 揺動板式可変容量圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2354548A4

Also Published As

Publication number Publication date
JPWO2010061792A1 (ja) 2012-04-26
US20110229348A1 (en) 2011-09-22
EP2354548A1 (en) 2011-08-10
EP2354548A4 (en) 2012-06-13
EP2354548B1 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP2555026B2 (ja) 容量可変型圧縮機
KR960009853B1 (ko) 가변용적 기구를 지니는 사판식(斜版式)압축기
JP2014092105A (ja) 容量可変型斜板式圧縮機
WO2010061792A1 (ja) 可変容量往復動圧縮機
CN104514697A (zh) 斜盘式变排量压缩机
JP3280696B2 (ja) 可変容量圧縮機
US7083396B2 (en) Balanced variable displacement fluid apparatus
JP5949626B2 (ja) 容量可変型斜板式圧縮機
EP0366349B1 (en) Slant plate type compressor
JP2016164394A (ja) 容量可変型斜板式圧縮機
JP3744861B2 (ja) 圧縮機
JP5391376B2 (ja) 可変容量往復動圧縮機
EP1394409A2 (en) Compressor
JP5130187B2 (ja) 往復動圧縮機
US20160252084A1 (en) Variable displacement swash plate type compressor
KR20130131450A (ko) 사판식 압축기
US20060222513A1 (en) Swash plate type variable displacement compressor
JP2009138629A (ja) 可変容量コンプレッサ
JP6107528B2 (ja) 容量可変型斜板式圧縮機
KR20100031409A (ko) 사판식 압축기
KR100715261B1 (ko) 가변 용량형 사판식 압축기
KR100943703B1 (ko) 로터리 밸브를 구비한 왕복동 압축기
JPH0447427Y2 (ja)
US9903353B2 (en) Variable displacement swash plate compressor
JP4116334B2 (ja) 圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010540465

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009829040

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13131206

Country of ref document: US