WO2010061732A1 - マグネシウム合金部材 - Google Patents

マグネシウム合金部材 Download PDF

Info

Publication number
WO2010061732A1
WO2010061732A1 PCT/JP2009/069241 JP2009069241W WO2010061732A1 WO 2010061732 A1 WO2010061732 A1 WO 2010061732A1 JP 2009069241 W JP2009069241 W JP 2009069241W WO 2010061732 A1 WO2010061732 A1 WO 2010061732A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
plate
reinforcing material
alloy member
joined
Prior art date
Application number
PCT/JP2009/069241
Other languages
English (en)
French (fr)
Inventor
正禎 沼野
龍一 井上
伸之 奥田
望 河部
宏治 森
信之 森
幸広 大石
貴彦 北村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2009801469930A priority Critical patent/CN102224005A/zh
Priority to AU2009320919A priority patent/AU2009320919A1/en
Priority to RU2011126112/05A priority patent/RU2011126112A/ru
Priority to EP09828980A priority patent/EP2364842A1/en
Priority to US13/131,179 priority patent/US20110229733A1/en
Publication of WO2010061732A1 publication Critical patent/WO2010061732A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/15Magnesium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12729Group IIA metal-base component

Definitions

  • the present invention relates to a magnesium alloy member.
  • the present invention relates to a magnesium alloy member that can reduce the amount of organic material used as much as possible.
  • a magnesium alloy that is lightweight and has high specific strength has been used as a constituent material for casings of mobile devices such as mobile phones and notebook personal computers and automobile parts.
  • a reinforcing material may be provided on the base material, or a pin used for partitioning or positioning may be provided on the base material.
  • a reinforcing material integral with the base material is formed by cutting (Patent Document 1), or when a reinforcing material or pin is provided on the base material, the reinforcing material or pin is used as the base material. It is conceivable to join them. Specific means for this joining includes attaching a reinforcing material or a pin to the base material with an organic adhesive sheet, or joining the objects to be joined together using bolts and nuts.
  • the production efficiency is low because many magnesium alloys are removed by cutting.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide a magnesium alloy member that can join objects to be joined with high productivity.
  • Another object of the present invention is to provide a magnesium alloy part that does not generate harmful gases or smoke during recycling.
  • the magnesium alloy member of the present invention is characterized in that a plurality of magnesium alloy pieces are bonded via an inorganic bonding layer.
  • the magnesium alloy pieces are bonded to each other through the inorganic bonding layer, waste of materials can be saved as compared with a case where a reinforcing material or the like is formed by cutting. Further, by using the inorganic bonding layer, no harmful soot is generated even when the magnesium alloy member is melted when recycled. Furthermore, compared with the case of using bolts and nuts for joining, the number of parts does not increase, and even if there are many joints, the joining operation can be performed relatively easily.
  • the inorganic bonding layer includes at least one of Al, Si, Cu, Fe, and Ni.
  • the inorganic bonding layer is preferably made of at least one of an oxide of Al and an oxide of Si.
  • the plate material and the reinforcing material can be joined via the joining layer having particularly high heat resistance.
  • the joining strength between the joined magnesium alloy pieces is 100 MPa or more.
  • the magnesium alloy pieces can be joined with high strength.
  • At least one of the magnesium alloy pieces to be joined may be a rolled plate.
  • the rolled plate contains 3.5% by mass or more of Al.
  • FIG. 1A is a perspective view of a magnesium alloy member according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of a magnesium alloy member according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the stay according to the embodiment of the present invention.
  • FIG. 3 is a perspective view of the magnesium alloy member according to the first embodiment.
  • the joining target in the magnesium alloy member of the present invention is composed of a plurality of magnesium alloy pieces. Each alloy piece is bonded via an inorganic bonding layer.
  • Each of the objects to be joined is made of a magnesium alloy.
  • Mg having various compositions containing additive elements (the balance: Mg and impurities) can be used.
  • Mg-Al, Mg-Zn, Mg-RE (rare earth element), Y-added alloy and the like can be mentioned.
  • Mg-Al alloys containing Al have high corrosion resistance.
  • Mg-Al alloys include, for example, ASTM standard AZ alloys (Mg-Al-Zn alloys, Zn: 0.2 to 1.5 mass%), AM alloys (Mg-Al-Mn alloys, Mn: 0.15 to 0.5) Mass%), AS alloys (Mg—Al—Si alloys, Si: 0.6 to 1.4 mass%), Mg—Al—RE (rare earth elements) alloys, and the like.
  • the amount of Al is preferably 1.0 to 11% by mass or less, more preferably 3.5% by mass or more, and in particular, Al is contained in an amount of 8.3 to 9.5% by mass and Zn is contained in an amount of 0.5 to 1.5% by mass, with the balance being Mg and impurities.
  • Al-based alloys are preferred.
  • the AZ91 alloy which is a representative example, is superior in mechanical properties such as corrosion resistance, strength, and plastic deformation resistance compared to other Mg-Al alloys such as the AZ31 alloy.
  • this AZ91 is excellent in corrosion resistance, when used for a member that is not exposed to the outside such as an inner surface of the housing or a member housed inside the housing, it may be acceptable not to paint or to form a corrosion-resistant coating. is there. These steps can be omitted if no coating or anticorrosion coating is formed. In addition, since organic solvent contained in the paint or the like is usually not present unless painting is performed, it is possible to suppress generation of harmful gas and smoke when recycling the magnesium alloy member. Examples of the anticorrosion film include a chemical conversion film and an anodic oxide film.
  • the magnesium alloy pieces to be joined are made of the same composition or the same type of magnesium alloy. If magnesium alloys of the same composition or the same system are joined, the linear expansion coefficients of both are almost the same, so even when heat treatment is performed on the alloy pieces or alloy members, there is a difference in the expansion / contraction amount of each alloy piece. There is almost no joining work, and it is possible to join firmly after joining.
  • the manufacturing process of the magnesium alloy piece to be joined is not particularly limited. Any of casting, rolling, extrusion, wire drawing and the like may be used.
  • the cast material is suitable for producing a complex-shaped alloy piece.
  • the rolled material is suitable for producing a flat plate having high strength and excellent surface smoothness.
  • Extrusion is suitable for producing long materials having various cross sections.
  • Drawing is suitable for producing a wire.
  • the alloy piece may be a rolled plate obtained by rolling a cast material, a rolled plate obtained by rolling an extruded material, an extruded material obtained by extruding a cast material, or a drawn material obtained by drawing a cast material.
  • an alloy piece is used as a cast plate, it is preferable to use a cast plate produced by a continuous casting method such as a twin roll method, particularly a casting method described in WO / 2006/003899.
  • a cast plate produced by a continuous casting method such as a twin roll method, particularly a casting method described in WO / 2006/003899.
  • a rolled plate it is preferable to use a rolled plate manufactured by, for example, a rolling method described in JP-A-2007-98470.
  • the shape of the magnesium alloy piece to be joined is not particularly limited. Various forms such as a flat plate material, a bent plate material, a cylindrical shape, a rod shape, and a block shape can be selected. If necessary, it may be a joining object with a more complicated shape by performing plastic working such as drawing or bending, cutting or grinding.
  • one alloy piece may be used as the bottom surface of the tray-like base material 1, and the other alloy piece may be used as an L-shaped reinforcing material 2 that reinforces the bottom surface. It is done.
  • the other alloy piece may be a cylindrical boss 3 or a rod-like pin 4.
  • a female screw may be formed on the inner surface of the cylindrical boss 3 so that the male screw can be screwed into the female screw.
  • the thickness of the plate material is not particularly limited, but is preferably 2.0 mm or less, particularly 1.5 mm or less, and more preferably 1 mm or less. In the above range, the thicker the thickness, the better the strength.
  • the plate thickness may be selected according to the use of the magnesium alloy member.
  • the length of the plate material is preferably not excessively longer than the length of the reinforcing material.
  • the ratio Lr / Lb between the lengths is preferably 0.8 or more.
  • the reinforcing material can have a reinforcing function that increases the rigidity of the plate material.
  • the joining surfaces of the plate material and the reinforcing material may be locally joined, but are preferably joined over the entire surface.
  • the plate material itself has a certain size, it is highly necessary to join the reinforcing material, and when the plate material is small, the need for reinforcement is low. Therefore, when the length of the plate material is 10 cm or more (50 times or more the thickness of the plate material), it is highly effective to join the reinforcing material.
  • the shape of the reinforcing material is not particularly limited as long as the plate material can be reinforced.
  • a flat reinforcing material may be surface-bonded to the plate material.
  • the reinforcing material 2 having a shape having a protruding piece projecting in a direction orthogonal to the plate material.
  • a T-shaped or I-shaped long material may be used.
  • a reinforcing material having a shape in which the height of the reinforcing material protruding from the surface of the plate material is twice or more the thickness of the plate material in a state where the reinforcing material is joined to the plate material is preferable.
  • the plate material around the protrusion is locally thinned.
  • the height of the reinforcing material can be freely selected, high reinforcing performance can be realized by joining the reinforcing material having a height that is twice or more the thickness of the plate material to the plate material. it can. Of course, the plate material around the reinforcing material does not become thin.
  • the strength of the reinforcing material Appropriate through holes may be formed as long as they can be retained. The weight of the reinforcing material can be reduced by forming the through hole. This through hole may be used as a screw hole.
  • the reinforcing material As the arrangement pattern of the reinforcing material to the plate material, it is preferable that long reinforcing materials are continuously joined along the longitudinal direction of the plate material. Even if a plurality of short reinforcing members are joined to the plate member at intervals, the reinforcing effect is low, but good reinforcing characteristics can be obtained by continuously joining the long member to the reinforcing member.
  • the magnesium alloy examples include a stay 10 shown in FIG.
  • This stay 10 has a structure in which two portions near both ends of the pipe-shaped bar 12 are held by the support member 14.
  • the bar 12 and the support member 14 are formed of a magnesium alloy and are joined to each other.
  • the support member 14 is configured by an arc piece 14A that fits the cylindrical surface of the bar 12, and an L-shaped piece 14B that continues to the arc piece 14A.
  • the inorganic bonding layer bonds the magnesium alloy pieces to each other. Since this inorganic bonding layer is substantially made of only an inorganic material, it does not contain an organic material. Therefore, no harmful smoke or the like is generated even if the magnesium alloy member is melted when recycled.
  • the inorganic bonding layer is made of a material different from at least one of the magnesium alloy pieces. That is, the inorganic bonding layer is not formed by deforming a part of at least one of the magnesium alloy pieces. Therefore, none of the magnesium alloy pieces are thinned near the joint.
  • the joint strength between the joined magnesium alloy pieces is preferably 100 MPa or more, particularly 150 MPa or more. That is, an inorganic bonding layer that can obtain such bonding strength is formed. This joint strength is obtained by cutting out the joint part, joining the gripping parts of the rod or plate material to the two surfaces behind the joint interface, such as stud welding, and then pulling the gripping parts together. What is necessary is just to obtain
  • Such an inorganic bonding layer is formed by, for example, a bonding method described later.
  • the magnesium alloy member of the present invention may be provided with an anticorrosion coating or painting. By providing at least one of these, it is possible to improve the corrosion resistance and improve the appearance of the alloy member.
  • the weight of the magnesium alloy member excluding these anticorrosion coating and coating is made of a magnesium alloy. With this configuration, an excessive increase in the bonding layer made of an inorganic material is avoided.
  • the average crystal grain size of the magnesium alloy constituting the magnesium alloy member of the present invention is preferably 40 ⁇ m or less. More preferably, it is 20 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the strength of the magnesium alloy piece, and hence the strength of the magnesium alloy member can be improved.
  • Inorganic adhesives include adhesives containing Al or Si. This adhesive becomes an inorganic bonding layer after the magnesium alloy pieces are bonded. More specifically, an adhesive containing at least one of Al oxide and Si oxide can be used. Such inorganic adhesives have high heat resistance as well as sufficient adhesive strength. Therefore, various heat treatments can be performed on the magnesium alloy member as described later.
  • the hot clad is bonded by heating and pressing alloy pieces to be bonded.
  • a metal thin film is formed on at least one joint surface of both alloy pieces to be joined. This metal thin film becomes an inorganic bonding layer after the magnesium alloy pieces are bonded.
  • the metal thin film is preferably made of a metal that is more excellent in plastic deformability than a magnesium alloy and hardly oxidizes. Specifically, at least one of Cu, Fe, and Ni can be mentioned.
  • the thickness of the metal thin film composed of one layer or a plurality of layers is preferably about 0.1 to 10 ⁇ m.
  • the thickness of the metal thin film is excessively increased and it is difficult to improve the bonding strength.
  • the means for forming the metal thin film include film formation by PVD or CVD in addition to plating, and plating is particularly preferable. Specific methods of plating include electroplating and electroless plating.
  • the heating temperature of the bonding target when performing hot cladding is preferably 80 ° C. or higher and 350 ° C. or lower. If it is less than the lower limit, it is difficult to join the magnesium alloy pieces together, and if it exceeds the upper limit, problems such as a decrease in strength accompanying coarsening of magnesium crystal grains may occur. Further, the pressure during the pressure contact is preferably about 20 to 80 MPa. If it is less than the lower limit, it is difficult to join the magnesium alloy pieces with sufficient strength, and even if the upper limit is exceeded, it is difficult to expect an improvement in the joining strength.
  • At least one of the magnesium alloy pieces may be subjected to plastic working before or after joining.
  • the type of this plastic working is not particularly limited. For example, drawing molding, overhang molding, bending molding and the like can be mentioned.
  • the alloy pieces are often in a relatively complicated shape at the time of joining, but at the time of plastic working, the alloy pieces have a relatively simple shape. Work is easy to perform, and there is a high degree of freedom in the types of plastic processing that can be selected.
  • the joined body of the alloy pieces at the time of plastic working often has a relatively complicated shape, but at the time of joining, the alloy piece has a relatively simple shape. Therefore, joining work is easy.
  • a rectangular blank plate is used when producing a tray-shaped molded body (base material 1) having a rectangular bottom surface and side surfaces erected from each side of the bottom surface.
  • the reinforcing material 2 may be bonded only to the portion that becomes the bottom surface of the tray after molding.
  • a molding tool such as a punch or a die may have a notch so as not to interfere with the reinforcing material 2.
  • This plastic working is preferably performed in a temperature range of 150 ° C. to 350 ° C. so as to improve the plastic deformability of the workpiece. If plastic working is performed at a temperature within this specified range, cracks and the like associated with plastic deformation are unlikely to occur in the work object.
  • the temperature range for plastic working is preferably 150 ° C to 300 ° C, and more preferably 250 ° C to 280 ° C. If it is such a temperature range, the strength fall of the process target during plastic working can be suppressed.
  • the magnesium alloy member of the present invention is preferably subjected to heat treatment.
  • the inorganic adhesive contains an organic solvent and water
  • the bonding layer can be substantially composed of only an inorganic material.
  • the corrosion resistance around the bonding layer can be improved by removing water.
  • the heat treatment temperature is preferably 80 ° C. or higher and 350 ° C. or lower at the joining portion between the magnesium alloy pieces. By setting the heat treatment temperature to 80 ° C. or higher, the organic solvent and water can be sufficiently removed in a short time. In addition, by setting the heat treatment temperature to 350 ° C.
  • the bonding layer is substantially composed only of an inorganic material can be confirmed, for example, by detecting the presence or absence of gas generated when the bonded body including the bonding layer is heated by gas chromatography or the like.
  • the molded body after the plastic processing may be subjected to a heat treatment for removing strain generated during the plastic processing.
  • ⁇ Magnesium alloy member> As shown in FIG. 3, the following samples were prepared by joining the reinforcing material 2 having a composition corresponding to AZ91 to the base material 1 of a press-formed plate having a composition corresponding to AZ91 or AZ31. The heat resistance, appearance, preparation time, and corrosion resistance were examined.
  • This sample is composed of a press-molded plate having both ends pressed at substantially right angles, a L-shaped reinforcing material 2 joined to the upper surface of the molded plate, and a cylindrical boss 3.
  • the reinforcing material 2 is joined along the width direction of the molded plate.
  • the rectangular plate before press molding of the molded plate was obtained as follows. First, a plurality of cast plates (thickness 4 mm) obtained by the twin roll continuous casting method were prepared. Rolling temperature: 150-250 ° C, plate temperature: 200-400 ° C, rolling rate of 10-50% per pass until each thickness is 0.5mm. Rolled. The obtained rolled plate was punched to prepare a blank plate (plate material) for press forming. The plate has a width of 150 mm, a length of 300 mm, and a thickness of 0.5 mm.
  • the boss 3 is made of a cast material having a composition equivalent to AZ91, and has a diameter of 5 mm ⁇ and a height of 5 mm.
  • inorganic adhesive agent An inorganic adhesive agent is apply
  • heat-resistant inorganic adhesive Three Bond 3732 manufactured by Three Bond Co. was used. This adhesive is mainly composed of aluminum oxide. After joining the reinforcing material and the boss to the molded plate, the joined body is subjected to heat treatment to remove the organic solvent (alcohol solvent) in the inorganic adhesive. This heat treatment was performed at 200 ° C. for 20 minutes.
  • Organic adhesive An organic adhesive is applied to the joint surface of the reinforcing material and the boss with the molded plate, and the joint surface is pressed against the molded plate.
  • the organic adhesive is 110 manufactured by Cemedine.
  • Hot cladding Cu plating and Ni strike plating are applied sequentially to the reinforcing material and boss by electroplating, and the plating forming surface of this reinforcing material and boss is pressed onto the molded plate at 60 MPa in an atmosphere of about 300 ° C. And join.
  • the total thickness of Cu plating and Ni strike plating is 4 ⁇ m.
  • Sample 1-1 A rectangular plate of AZ91 was cross-section [press-molded into a mold, and then a reinforcing material and a boss were joined to the press-molded plate using an inorganic adhesive.
  • Sample 1-2 A rectangular plate of AZ91 was cross-sectioned [press-molded into a mold, and then a reinforcing material and a boss were joined to the press-molded plate using an organic adhesive.
  • Sample 1-3 AZ91 rectangular plate was cross-sectioned [press-molded into a mold, and then the reinforcing material and boss were joined to the press-formed plate by spot welding.
  • Sample 1-4 A rectangular plate of AZ91 is cross-sectioned [after being press-molded into a mold, a reinforcing material and a boss are joined to the press-molded plate with hot clad.
  • Sample 1-5 A rectangular plate of AZ31 was cross-section [press-molded into a mold, and then a reinforcing material and a boss were joined to the press-molded plate using an inorganic adhesive.
  • Sample 1-6 A rectangular plate of AZ61 was cross-section [press-molded into a mold, and then a reinforcing material and a boss were joined to the press-molded plate using an inorganic adhesive.
  • Samples are finely pulverized, placed in a carbon crucible, and dissolved in an Ar atmosphere.
  • the composition before and after dissolution is analyzed by ICP (Inductively Coupled Plasma) emission analysis to examine the variation state of the composition. If there is a strange odor accompanying the generation of gas during the dissolution or if there is a change in composition, it is indicated as x.
  • ICP Inductively Coupled Plasma
  • Heat resistance Cut out a 2cm square from the sample so that the joint is included, and use it as a test piece. This test piece is kept in an environment of 150 ° C. for 100 hours, and the presence or absence of peeling at the joint portion is examined. If there is no peeling, ⁇ , if there is peeling, ⁇ .
  • Appearance Visually inspect the sample joints visually to check for weld humps. If there is no welding hump, it will be ⁇ , and if it will be ⁇ .
  • Production time The production time of 100 samples is measured, and the production time (seconds) of the sample per sample is calculated from that time. However, since the heat treatment time for removing the organic solvent in the inorganic adhesive is long, it is excluded from the sample production time.
  • Corrosion resistance A 2 cm square is cut out from the sample as a test piece so that the joint is included, and the test piece is subjected to a salt spray test for 24 hours to examine the corrosion state. If corrosion is not observed, ⁇ , and if corrosion is recognized, it is marked X.
  • Sample 1-1 using the inorganic adhesive showed good results in all of recyclability, heat resistance, appearance, production time, and corrosion resistance.
  • the characteristics of the inorganic adhesive after curing are linear expansion coefficient: 75 ⁇ 10 ⁇ 7 / ° C., Vickers hardness (0.2 kgf): 200 Hv.
  • Sample 1-4 using hot clad also had a manufacturing time slightly inferior to that of Sample 1-1, and all of recyclability, heat resistance, appearance, and corrosion resistance were good results.
  • Sample 1-2 using an organic adhesive was recyclable and heat resistant, and Sample 1-3 using spot welding failed in appearance.
  • the mass proportion of the magnesium alloy in the test piece is less than 99% for sample 1-2 (organic adhesive), 99 for sample 1-1 (inorganic adhesive), and sample 1-4 (hot clad). %, And sample 1-3 (spot welding) is 100%. Furthermore, the average crystal grain size of the magnesium alloy constituting the test piece is 20 ⁇ m or less.
  • a test piece including the joint between the molded plate and the reinforcing material was cut out from Samples 1-1 and 1-4 in Example 1, and a rod-like body serving as a grip portion was welded to the surfaces of the molded plate and the reinforcing plate. Then, it is peeled off by pulling the gripping part, and the load required for this peeling is measured. Then, this load is divided by the joint area between the molded plate and the reinforcing plate in the test piece to obtain the joint strength at the joint. The joint area between the molded plate and the reinforcing plate in the test piece is 12 mm 2 . As a result, it was confirmed that the bonding strength was sufficient with Sample 1-1 being 300 MPa and Sample 1-4 being 200 MPa.
  • the magnesium alloy member of the present invention can be suitably used for a housing of an electronic device, a chassis or a stay in an industrial machine or automobile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

複数のマグネシウム合金片(基材1と補強材2、ボス3、ピン4)が、無機接合層を介して接合されている。無機接合層の具体例としては、無機系接着剤や、ホットクラッドを行う際にマグネシウム合金片に形成される金属薄膜が挙げられる。無機接合層を介してマグネシウム合金片同士を接合しているため、切削により補強材などを形成する場合に比べて、材料の無駄を省くことができる。無機接合層を用いることで、マグネシウム合金部材をリサイクルする際に溶解しても、有害な煤煙が発生したりしないマグネシウム合金部材を提供する。

Description

マグネシウム合金部材
 本発明は、マグネシウム合金部材に関するものである。特に、有機系材料の使用量を可及的に低減できるマグネシウム合金部材に関するものである。
 携帯電話やノート型パーソナルコンピュータといった携帯機器類の筐体や自動車部品などの構成材料に、軽量で比強度が高いマグネシウム合金が利用されてきている。マグネシウム合金部材では、基材に補強材を設けたり、基材に仕切りや位置決めに利用されるピンを設けることがある。
 マグネシウム合金の基材に補強材を設ける場合、切削により基材と一体の補強材を形成したり(特許文献1)、基材に補強材やピンを設ける場合、これら補強材やピンを基材に接合することが考えられる。この接合の具体的な手段としては、有機系接着シートにより補強材やピンを基材に貼り付けたり、ボルトとナットを利用して接合対象同士を接合することが挙げられる。
 しかし、切削による補強材の形成では、切削により除去されるマグネシウム合金が多いため生産効率が低くなる。また、切削屑の発生や飛散は、環境や安全の面からも避けたいところである。
 一方、有機系接着シートを用いた接合では、マグネシウム合金部材をリサイクルする際、同部材を溶解すると、有害なガスや煤煙が発生するなど環境上の問題がある。
 また、ボルトとナットによる接合は、部品点数が多くなる上、接合個所が多いと、接合作業も煩雑になる。
 本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、接合対象同士を生産性よく接合することができるマグネシウム合金部材を提供することにある。
 本発明の他の目的は、リサイクル時に有害なガスや煤煙などが発生しないマグネシウム合金部を提供することにある。
 本発明のマグネシウム合金部材は、複数のマグネシウム合金片が、無機接合層を介して接合されていることを特徴とする。
 この構成によれば、無機接合層を介してマグネシウム合金片同士を接合しているため、切削により補強材などを形成する場合に比べて、材料の無駄を省くことができる。また、無機接合層を用いることで、マグネシウム合金部材をリサイクルする際に溶解しても、有害な煤煙が発生したりしない。さらに、ボルトとナットを用いて接合を行う場合に比べて、部品点数が多くなることもなく、かつ接合個所が多くても比較的接合作業が簡易に行える。
 本発明のマグネシウム合金部材において、前記無機接合層は、Al,Si,Cu,Fe,及びNiの少なくとも1種を含むことが好ましい。
 この構成によれば、Al,Si,Cu,Fe,及びNiの少なくとも1種を含む接合層を形成することで、接合強度と耐熱性に優れた接合を行うことができる。
 特に、前記無機接合層は、Alの酸化物及びSiの酸化物の少なくとも1種からなることが好適である。
 この構成によれば、特に高い耐熱性を有する接合層を介して板材と補強材とを接合することができる。
 本発明のマグネシウム合金部材において、接合されたマグネシウム合金片間の接合強度が100MPa以上であることが望ましい。
 この構成によれば、高い強度でマグネシウム合金片同士を接合することができる。
 本発明のマグネシウム合金部材において、接合されるマグネシウム合金片の少なくとも一つを、圧延板とすることが挙げられる。
 この構成によれば、接合対象の少なくとも一方を圧延板とすることで、鋳造材に比べて高強度で表面平滑性に優れるマグネシウム合金部材を得ることができる。
 本発明のマグネシウム合金部材において、前記圧延板が、Alを3.5質量%以上含むことが好ましい。
 この構成によれば、十分な強度と高い耐食性を有するマグネシウム合金部材とすることができる。
 本発明のマグネシウム合金部材によれば、リサイクルする際に有害なガスや煤煙が発生することがない。
図1Aは、本発明実施形態に係るマグネシウム合金部材の斜視図である。 図1Bは、本発明実施形態に係るマグネシウム合金部材の断面図である。 図2は、本発明実施形態に係るステーを示す斜視図である。 図3は、実施例1に係るマグネシウム合金部材の斜視図である。
 以下、本発明の実施の形態を説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
 <マグネシウム合金部材>
 本発明のマグネシウム合金部材における接合対象は、複数のマグネシウム合金片からなる。各合金片は、無機接合層を介して接合される。
  《接合対象》
 接合対象の各々は、いずれもマグネシウム合金からなるものとする。このマグネシウム合金は、Mgに添加元素を含有した種々の組成のもの(残部:Mg及び不純物)が利用できる。例えば、Mg-Al系、Mg-Zn系、Mg-RE(希土類元素)系、Y添加合金などが挙げられる。特に、Alを含有するMg-Al系合金は、耐食性が高い。Mg-Al系合金は、例えば、ASTM規格におけるAZ系合金(Mg-Al-Zn系合金、Zn:0.2~1.5質量%)、AM系合金(Mg-Al-Mn系合金、Mn:0.15~0.5質量%)、AS系合金(Mg-Al-Si系合金、Si:0.6~1.4質量%)、Mg-Al-RE(希土類元素)系合金などが挙げられる。Al量は、1.0~11質量%以下、さらには、3.5質量%以上が好ましく、特に、Alを8.3~9.5質量%、Znを0.5~1.5質量%含有し、残部がMg及び不純物からなるMg-Al系合金が好ましい。その代表例であるAZ91合金は、AZ31合金といった他のMg-Al系合金と比較して、耐食性や強度、耐塑性変形性といった機械的特性に優れる。
 このAZ91は、耐食性に優れるため、筐体の内面や筐体内部に収納される部材など、外部に露出されない箇所の部材に利用する場合、塗装をしない或いは防食被膜を形成しないことも許容できることがある。塗装や防食被膜を形成しなければ、これらの形成工程を省略できる。また、塗装などをしなければ、通常、塗料などに含まれる有機溶媒も存在しないため、マグネシウム合金部材をリサイクルする際に有害なガスや煤煙が発生することも抑制できる。防食被膜には、化成被膜や陽極酸化膜が挙げられる。
 接合対象となるマグネシウム合金片同士は、同一組成又は同一系のマグネシウム合金からなることが好ましい。同一組成又は同一系のマグネシウム合金同士の接合であれば、両者の線膨張係数がほぼ同一であるため、合金片または合金部材に熱処理を施す場合でも、各合金片の膨張・収縮量に差が殆どなく、接合作業が行いやすい上、接合後も強固に接合される。
 また、接合対象となるマグネシウム合金片の製造工程は、特に限定されない。鋳造、圧延、押出、伸線などいずれであってもよい。鋳造材は、複雑形状の合金片を作製するのに好適である。圧延材は、高強度で表面平滑性に優れた平板を作製するのに好適である。押出しは、種々の断面の長尺材を作製するのに好適である。伸線は、ワイヤの作製に好適である。もちろん、この合金片は、鋳造材を圧延した圧延板、押出材を圧延した圧延板、鋳造材を押出した押出材、または、鋳造材を伸線した伸線材でもよい。合金片を鋳造板とする場合、その鋳造板は、双ロール法といった連続鋳造法、特に、WO/2006/003899に記載の鋳造方法で製造した鋳造板を利用することが好ましい。合金片を圧延板とする場合、その圧延板は、例えば特開2007-98470号公報に記載の圧延方法で製造した圧延板を利用することが好ましい。
 接合対象となるマグネシウム合金片の形状は、特に限定されない。平板材、曲げ板材、円筒状、棒状、ブロック状など種々の形態が選択できる。必要に応じて、絞り加工や曲げ加工などの塑性加工や、切削又は研削加工を行うことで、より複雑な形状の接合対象としても良い。
 例えば、図1Aおよび図1Bに示すように、一方の合金片をトレイ状の基材1の底面とし、他方の合金片を、前記底面を補強するL型の補強材2としたりすることが挙げられる。その他、他方の合金片として、円筒状のボス3としたり、棒状のピン4とすることも挙げられる。特に、筒状のボス3の内面に雌ねじを形成して、その雌ねじに雄ねじを螺合できるようにしてもよい。
 一方の合金片が平板状であれば、他方の合金片を安定して強固に接合しやすい。一方の合金片を板材とした場合、板材の厚さは、特に限定されないが、2.0mm以下、特に1.5mm以下、更には、1mm以下が好ましい。上記範囲において厚いほど強度に優れ、薄いほど薄型・軽量な筐体に適する。マグネシウム合金部材の用途に応じて板厚を選択するとよい。
 一方の合金片が板材、他方の合金片が板材の補強材の場合、板材の長さは、補強材の長さに対して過剰に長くないことが好ましい。特に、補強材の長手方向の長さをLr、板材の補強材に沿った方向の長さをLbとしたとき、両者の長さの比Lr/Lbが0.8以上とすることが望ましい。広大な板材のごく一部に補強材を接合しても、殆ど補強機能を果たせないため、補強材で板材を補強するには、板材に対してある程度広範囲に亘って補強材が接合されている必要がある。そのため、上記比Lr/Lbを0.8以上とすることで、補強材に板材の剛性を高める補強機能を十分に持たせることができる。もちろん、板材と補強材の接合面同士は、局部的な接合でもよいが、全面に亘って接合されていることが好ましい。
 また、板材自体がある程度大きい寸法である場合に補強材を接合する必要性が高く、板材が小さければ補強する必要性が低い。そのため、板材の長さが10cm以上(板材の厚みの50倍以上)の場合に、補強材を接合することの有効性が高い。
 この補強材の形状は、板材を補強することができればよく、特に限定されない。理論上、平板状の補強材を板材に面接合しても良いが、実用上、板材と直交する方向に突出する突片を有する形状の補強材2を用いることが好ましい。代表的には、図1Bに示す断面がL型の長尺材の他、T型やI型の長尺材が挙げられる。特に、補強材を板材に接合した状態で、板材の表面から突出する補強材の高さが、板材の厚さの2倍以上となる部分を有する形状の補強材が好ましい。一般に、板材を鍛造するなどしただけでは、板材の厚さの2倍以上となる突片を板材に形成することは事実上不可能である。また、高さの低い突片を鍛造で成形したとしても、突片周囲の板材が局所的に薄くなる。しかし、本発明では、補強材の高さが自由に選択できるため、板材の厚さの2倍以上となる高さを有する補強材を板材に接合することで、高い補強性能を実現することができる。もちろん、補強材周辺の板材が薄くなることもない。
 これら平板状の補強材、又は断面がT型、L型やI型の補強材のいずれの場合も、板材との接合片及び突片の少なくとも一方には、必要に応じて、補強材の強度を保持できる限度で適宜な貫通孔を形成してもよい。この貫通孔の形成により補強材の軽量化を図ることができる。この貫通孔は、ねじ孔として利用しても良い。
 補強材の板材に対する配列パターンとしては、長尺の補強材を板材の長手方向に沿って連続的に接合することが好ましい。複数の短い補強材を、間隔を空けて板材に接合しても、補強効果は低いが、長尺材を連続的に補強材に接合することで、良好な補強特性が得られる。
 その他、マグネシウム合金の具体例としては、図2に示すステー10が挙げられる。このステー10は、パイプ状のバー12における両端部寄りの2箇所を支持部材14で保持する構成である。このバー12と支持部材14とがマグネシウム合金で形成され、互いに接合されている。ここでの支持部材14は、バー12の円筒面に適合する円弧片14Aと、この円弧片14Aに連続するL型片14Bとからなる構成としている。このように、接合面が湾曲面であっても、何ら問題なくマグネシウム合金片同士を接合できる。
 《無機接合層》
 無機接合層は、上記のマグネシウム合金片同士を接合する。この無機接合層は、実質的に無機系材料のみからなるため、有機系材料が含有されない。そのため、マグネシウム合金部材をリサイクルする際に溶融しても、有害な煤煙などが発生することがない。この無機接合層は、マグネシウム合金片の少なくとも一方と異種の材質からなる。つまり、無機接合層は、少なくとも一方のマグネシウム合金片の一部を変形させて形成しているのではない。そのため、いずれのマグネシウム合金片も接合個所近傍で薄くなったりすることがない。
 接合されたマグネシウム合金片間の接合強度は、100MPa以上、特に150MPa以上とすることが好ましい。つまり、このような接合強度が得られるような無機接合層を形成する。この接合強度は、接合部分を切り出し、接合界面の裏にあたる2面に、スタッド溶接など、接合界面以上の強度を有する接合方法で、棒もしくは板材の把持部を接合し、それら把持部同士を引っ張り試験することにより求めればよい。このような無機接合層は、例えば、後に述べる接合方法により形成される。
 《その他》
 本発明のマグネシウム合金部材は、防食被膜や塗装を備えていても良い。これらの少なくとも一方を備えることで、耐食性を向上すると共に、合金部材の外観を良好にすることができる。
 特に、これら防食被膜および塗装を除くマグネシウム合金部材の重量の99%以上がマグネシウム合金からなることが好適である。この構成とすることで、無機系材料からなる接合層の過剰な増大を回避する。
 また、本発明マグネシウム合金部材を構成するマグネシウム合金の平均結晶粒径は、40μm以下とすることが好ましい。より好ましくは、20μm以下、さらに好ましくは、10μm以下である。このような微細な平均結晶粒径のマグネシウム合金を用いることで、マグネシウム合金片の強度、ひいてはマグネシウム合金部材の強度を向上することができる。
 <マグネシウム合金片の接合方法>
 以上のようなマグネシウム合金片の接合は、無機系接着剤を用いる接着、又はホットクラッドを用いる接合を利用することが好適である。
  《無機系接着剤》
 無機系接着剤には、AlやSiを含有する接着剤が挙げられる。この接着剤がマグネシウム合金片の接合後に無機接合層になる。より具体的には、Alの酸化物及びSiの酸化物の少なくとも1種を含有する接着剤が挙げられる。このような無機系接着剤は、十分な接着力を有することはもちろん、高い耐熱性を備えている。そのため、マグネシウム合金部材に、後述するように、種々の熱処理を施すことができる。
  《ホットクラッド》
 ホットクラッドは、接合対象の合金片同士を加熱して押圧することで接合する。通常、接合対象となる両合金片の少なくとも一方の接合面に金属薄膜を形成しておく。この金属薄膜がマグネシウム合金片の接合後に無機接合層になる。金属薄膜は、マグネシウム合金よりも塑性変形性に優れ、酸化しにくい金属からなることが好ましい。具体的には、Cu,Fe,及びNiの少なくとも1種が挙げられる。一層あるいは複数の層からなる金属薄膜の厚みは、0.1~10μm程度が好ましい。下限値未満では、十分な接合強度を得ることが難しく、上限値を超えても過剰に金属薄膜の厚みが増大するばかりで、接合強度を向上することが難しい。この金属薄膜の形成手段としては、めっきの他、PVDまたはCVDによる成膜が挙げられ、中でもめっきが好適である。めっきの具体的な方法は、電気めっき、無電解めっきなどが挙げられる。
 ホットクラッドを行う際の接合対象の加熱温度は、80℃以上350℃以下が好ましい。下限値未満では、マグネシウム合金片同士を接合することが難しく、上限値を超えるとマグネシウムの結晶粒の粗大化に伴う強度低下などの問題が生じる場合がある。また、圧接時の圧力は、20~80MPa程度が好ましい。下限値未満では、十分な強度にマグネシウム合金片同士を接合することが難しく、上限値を超えても接合強度の向上が期待し難い。
  《前処理》
 マグネシウム合金片同士の接合を行う前に、両接合対象に脱脂処理を施すことが好ましい。この脱脂処理により、接合対象同士を強固に接合することができる。
 <塑性加工>
 マグネシウム合金片の少なくとも一方には、接合前または接合後に塑性加工を行っても良い。この塑性加工の種類は、特に限定されない。例えば、絞り成形、張り出し成形、曲げ成形などが挙げられる。
 この塑性加工を合金片同士の接合前に行う場合、接合時に合金片は、比較的複雑な形状の場合が多いが、塑性加工時は、合金片が比較的単純な形状であるため、塑性加工作業が行いやすく、選択できる塑性加工の種類の自由度も高い。一方、塑性加工を合金片同士の接合後に行う場合、塑性加工時に合金片同士の接合体は、比較的複雑な形状の場合が多いが、接合時は、合金片が比較的単純な形状であるため、接合作業が行いやすい。
 合金片同士の接合後に塑性加工を行う場合、一方の合金片のうち、他方の合金片が存在しない領域に対して塑性変形が生じるように行うことが好適である。例えば、図1Aおよび図1Bに示すように、矩形の底面と、底面の各辺から立設される側面を備えるトレイ状の成形体(基材1)を作製する場合、矩形のブランク板を用い、そのブランク板のうち、成形後にトレイの底面となる箇所にのみ補強材2を接合しておけばよい。その成形の際、例えば、パンチやダイなどの成形工具は、補強材2に干渉しないように切欠を有する構成とすればよい。
 この塑性加工は、加工対象の塑性変形性を高められるように150℃~350℃の温度域で行うことが好ましい。この規定範囲の温度にて塑性加工を行えば、加工対象に塑性変形に伴うクラックなどが生じ難い。特に、塑性加工の温度域としては、150℃~300℃、さらには、250℃~280℃が好ましい。このような温度域であれば、塑性加工中の加工対象の強度低下を抑制することができる。
 <熱処理>
 本発明のマグネシウム合金部材には、熱処理を施すことが好ましい。通常、無機系接着剤には、有機溶剤や水が含まれているため、この有機溶剤や水を除去するための熱処理を行うことが好ましい。有機溶剤を除去することで、接合層を実質的に無機系材料のみで構成とすることができる。また、水を除去することで、接合層周辺の耐食性を向上できる。この熱処理温度は、マグネシウム合金片同士の接合箇所を80℃以上350℃以下とすることが好ましい。熱処理温度を80℃以上とすることで、短時間に有機溶剤や水を十分に除去することができる。また、熱処理温度を350℃以下とすることで、マグネシウム合金の軟化に伴う変形を防止し、マグネシウム合金の結晶粒径の粗大化に伴う強度低下を抑制する。さらに、上記熱処理温度に保持する熱処理時間は、長ければ十分に有機溶剤の除去が行えるが、過剰に処理時間が長いと合金部材の生産性が低下するため、30分以下、特に5分以下程度が好ましい。接合層が実質的に無機系材料のみで構成されていることは、例えば、接合層を含む接合体を加熱した際に発生するガスの有無をガスクロマトグラフィーなどで検出すれば確認できる。
 一方、マグネシウム合金片同士の接合をホットクラッドで行う場合、元々有機溶剤などは用いていないので、有機溶剤などを除去するための熱処理を省略することができる。
 その他、前記塑性加工後の成形体に、塑性加工時に生じた歪を除去するための熱処理を施してもよい。
 <マグネシウム合金部材>
 図3に示すように、AZ91相当又はAZ31相当の組成からなるプレス成形板の基材1にAZ91相当の組成からなる補強材2を接合して下記のサンプルを作製し、その各々についてリサイクル性、耐熱性、外観、作製時間、及び耐食性を調べた。
 このサンプルは、両端部がほぼ直角にプレス成形された[型のプレス成形板と、この成形板の上面に接合された断面がL型の補強材2並びに円筒状のボス3とからなる。ここでは、成形板の幅方向に沿って補強材2を接合している。成形板のプレス成形前の矩形板は、次のようにして得た。まず、双ロール連続鋳造法により得られた鋳造板(厚さ4mm)を複数用意した。得られた各鋳造板に、ロール温度:150~250℃、板温度:200~400℃、1パスあたりの圧下率を10~50%の圧延条件で、厚さが0.5mmになるまで複数回圧延を施した。得られた圧延板に抜打ち加工を行い、プレス成形用のブランク板(板材)を用意した。この板材のサイズは、幅150mm、長さ300mm、厚さ0.5mmである。
 また、補強材2は、AZ91相当材の圧延板から厚さ0.6mm、幅10mm、長さ150mmの矩形板を打ち抜き、この矩形板をL型にプレス成形して、成形板との接合片の幅が8mm、成形板に補強材を接合した際に成形板表面から直交方向に突出する突片の高さが2mmとなるように構成した。成形板、補強材2のいずれも、プレス成形時の加工対象の温度は、280℃である。補強材2の長手方向の長さをLr、基材1の補強材2に沿った方向の長さをLbとしたとき、Lr=150mm、Lb=150mm 、両者の長さの比Lr/Lbは、1.0である。成形板・補強材2のいずれにも、防食処理も塗装も行っていない。一方、ボス3は、AZ91相当の組成からなる鋳造材で構成され、直径5mmφ、高さ5mmである。
 <接合方法>
 上述した成形板に補強材とボスとを接合する。接合方法は、以下の4種類の方法で行った。
 (1)無機系接着剤
 補強材及びボスにおける成形板との接合面に無機系接着剤を塗布し、この接合面を成形板に圧接する。無機系接着剤には、スリーボンド社製の耐熱性無機接着剤スリーボンド3732を用いた。この接着剤は、酸化アルミニウムを主成分としている。成形板に補強材とボスを接合した後、その接合体に熱処理を施し、無機系接着剤中の有機溶媒(アルコール系溶剤)を除去する。この熱処理は、200℃で20分とした。
 (2)有機系接着剤
 補強材及びボスにおける成形板との接合面に有機系接着剤を塗布して、この接合面を成形板に圧接する。有機系接着剤は、セメダイン社製110である。
 (3)スポット溶接
 補強材及びボスにおける接合面を成形板の所定位置に配置し、スポット溶接を行う。ここでは、補強材の接合面に3箇所、ボスの接合面に1箇所のスポット溶接をした。
 (4)ホットクラッド
 補強材及びボスに対し、電気めっきによりCuめっき及びNiストライクめっきを順次施し、この補強材及びボスのめっき形成面を成形板に約300℃の雰囲気下にて60MPaで圧接して接合する。Cuめっき及びNiストライクめっきの合計厚さは、4μmである。
 <サンプル>
 サンプル1-1:AZ91の矩形板を断面[型にプレス成形した後、無機系接着剤を用いて補強材及びボスをプレス成形板に接合する。
 サンプル1-2:AZ91の矩形板を断面[型にプレス成形した後、有機系接着剤を用いて補強材及びボスをプレス成形板に接合する。
 サンプル1-3:AZ91の矩形板を断面[型にプレス成形した後、スポット溶接にて補強材及びボスをプレス成形板に接合する。
 サンプル1-4:AZ91の矩形板を断面[型にプレス成形した後、ホットクラッドにて補強材及びボスをプレス成形板に接合する。
 サンプル1-5:AZ31の矩形板を断面[型にプレス成形した後、無機系接着剤を用いて補強材及びボスをプレス成形板に接合する。
 サンプル1-6:AZ61の矩形板を断面[型にプレス成形した後、無機系接着剤を用いて補強材及びボスをプレス成形板に接合する。
 <評価方法>
 上記のサンプルについて、以下の評価を行う。その結果を表1に示す。
 リサイクル性:サンプルを細かく粉砕し、カーボンの坩堝に入れて、Ar雰囲気中にて溶解する。溶解の前後の組成をICP(Inductively Coupled Plasma)発光分析により分析し、組成の変動状態を調べる。溶解中にガスの発生に伴う異臭があったり、組成の変動があったら×、これらがなければ○とする。
 耐熱性:接合個所が含まれるように、サンプルから2cm角を切り出し、試験片とする。この試験片を150℃の環境下に100時間保持し、接合箇所の剥離の有無を調べる。剥離がなければ○、剥離があれば×とする。
 外観:サンプルの接合箇所を目視にて外観検査し、溶接こぶの有無などを調べる。溶接こぶがなければ○、あれば×とする。
 作製時間:100個のサンプルの生産時間を計測し、その時間からサンプル1個当たりのサンプルの作製時間(秒)を算出する。但し、無機系接着剤中の有機溶媒を除去する熱処理時間は、長いため、サンプルの生産時間から除外する。
 耐食性:接合個所が含まれるように、サンプルから2cm角を試験片として切り出し、この試験片に24時間塩水噴霧試験を行って、腐食状況を調べる。腐食が認められなければ○、腐食が認められれば×とする。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、無機系接着剤を用いたサンプル1-1は、リサイクル性、耐熱性、外観、作製時間、耐食性のいずれも良好な結果であった。無機系接着剤の硬化後の特性は、線膨張係数:75×10-7/℃、ビッカース硬度(0.2kgf):200Hvである。また、ホットクラッドを用いたサンプル1-4も、作製時間が若干サンプル1-1に比べて劣る程度であり、リサイクル性、耐熱性、外観、耐食性のいずれも良好な結果であった。一方、有機系接着剤を用いたサンプル1-2は、リサイクル性と耐熱性で、スポット溶接を用いたサンプル1-3は、外観で不合格となった。ここで、試験片に占めるマグネシウム合金の質量割合は、サンプル1-2(有機系接着剤)が99%未満、サンプル1-1(無機系接着剤)、サンプル1-4(ホットクラッド)が99%以上であり、サンプル1-3(スポット溶接)は、100%である。さらに、試験片を構成するマグネシウム合金の平均結晶粒径は、20μm以下である。
 次に、実施例1のサンプル1-1、1-4から成形板と補強材の接合個所を含む試験片を切り出し、この成形板と補強板の表面に把持部となる棒状体を溶接して、把持部を引っ張ることで剥離させ、この剥離に要する荷重を測定する。そして、この荷重を試験片における成形板と補強板との接合面積で除して接合個所の接合強度とする。試験片における成形板と補強板との接合面積は、12mm2である。その結果、接合強度は、サンプル1-1が300MPa、サンプル1-4が200MPaであり、十分な強度であることが確認された。
 なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、本発明は、上述した構成に限定されるものではない。
 本発明のマグネシウム合金部材は、電子機器の筐体や、産業機械・自動車などにおけるシャーシやステーなどに好適に利用できる。
 1 基材
 2 補強材
 3 ボス
 4 ピン
 10 ステー
 12 バー
 14 支持部材
 14A 円弧片 14B L型片
特開2002-018626号公報

Claims (6)

  1.  複数のマグネシウム合金片が、無機接合層を介して接合されていることを特徴とするマグネシウム合金部材。
  2.  前記無機接合層は、Al,Si,Cu,Fe,及びNiの少なくとも1種を含むことを特徴とする請求項1に記載のマグネシウム合金部材。
  3.  前記無機接合層は、Alの酸化物及びSiの酸化物の少なくとも1種からなることを特徴とする請求項2に記載のマグネシウム合金部材。
  4.  接合されたマグネシウム合金片間の接合強度が100MPa以上であることを特徴とする請求項1~3のいずれか1項に記載のマグネシウム合金部材。
  5.  接合されるマグネシウム合金片の少なくとも一つが、圧延板であることを特徴とする請求項1~4のいずれか1項に記載のマグネシウム合金部材。
  6.  前記圧延板が、Alを3.5質量%以上含むことを特徴とする請求項5に記載のマグネシウム合金部材。
PCT/JP2009/069241 2008-11-25 2009-11-12 マグネシウム合金部材 WO2010061732A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801469930A CN102224005A (zh) 2008-11-25 2009-11-12 镁合金接合部件
AU2009320919A AU2009320919A1 (en) 2008-11-25 2009-11-12 Magnesium alloy joined part
RU2011126112/05A RU2011126112A (ru) 2008-11-25 2009-11-12 Сборная деталь из магниевого сплава
EP09828980A EP2364842A1 (en) 2008-11-25 2009-11-12 Magnesium alloy member
US13/131,179 US20110229733A1 (en) 2008-11-25 2009-11-12 Magnesium alloy joined part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-299755 2008-11-25
JP2008299755A JP5392465B2 (ja) 2008-11-25 2008-11-25 マグネシウム合金部材

Publications (1)

Publication Number Publication Date
WO2010061732A1 true WO2010061732A1 (ja) 2010-06-03

Family

ID=42225611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069241 WO2010061732A1 (ja) 2008-11-25 2009-11-12 マグネシウム合金部材

Country Status (9)

Country Link
US (1) US20110229733A1 (ja)
EP (1) EP2364842A1 (ja)
JP (1) JP5392465B2 (ja)
KR (1) KR20110091856A (ja)
CN (1) CN102224005A (ja)
AU (1) AU2009320919A1 (ja)
RU (1) RU2011126112A (ja)
TW (1) TW201026966A (ja)
WO (1) WO2010061732A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2373139A4 (en) * 2008-12-26 2018-01-17 Sumitomo Electric Industries, Ltd. Magnesium alloy member and method for producing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209452A (ja) * 2009-03-12 2010-09-24 Sumitomo Electric Ind Ltd マグネシウム合金部材
RU2548435C2 (ru) * 2013-07-18 2015-04-20 Открытое акционерное общество "Национальный институт авиационных технологий" (ОАО НИАТ) Соединение листовых деталей из металлокомпозитных материалов и способ его изготовления
DE102014202357A1 (de) * 2014-02-10 2015-08-13 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Verbundbauteils und Verbundbauteil
CN105889242A (zh) * 2015-01-26 2016-08-24 上海景奕电子科技有限公司 一种手机防尘网贴合治具
CN117549616A (zh) * 2019-04-02 2024-02-13 住友电气工业株式会社 复合部件和散热部件
CN114026968B (zh) 2019-12-26 2022-08-30 Ngk电子器件株式会社 布线基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584370A (en) * 1978-12-22 1980-06-25 Tokushu Muki Zairyo Kenkyusho Coating composition
JPS6037281A (ja) * 1983-02-12 1985-02-26 アルカン インターナシヨナル リミテイド 金属同志を接合する方法
JPH01136736A (ja) * 1987-10-14 1989-05-30 Akzo Nv 金属シート及び連続ガラスフィラメントで強化された合成材料のラミネート
JP2001226657A (ja) * 2000-02-15 2001-08-21 Dokai Chemical Industries Co Ltd 鱗片状シリカ粒子を含有する接着剤及び接着構造体の製造方法
JP2002018626A (ja) 2000-07-05 2002-01-22 Tenma Mag-Tec Kk マグネシウム合金の成形品
WO2006003899A1 (ja) 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. マグネシウム合金材の製造方法
JP2007098470A (ja) 2005-03-28 2007-04-19 Sumitomo Electric Ind Ltd マグネシウム合金板の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844634B2 (ja) * 1981-06-17 1983-10-04 品川白煉瓦株式会社 耐熱性組成物
JPS61119373A (ja) * 1984-11-16 1986-06-06 Nec Corp マグネシウム合金の接合方法
JP2002188616A (ja) * 2000-12-19 2002-07-05 Honda Motor Co Ltd マグネシウム合金部材のボルト締結構造
JP4734578B2 (ja) * 2005-05-30 2011-07-27 国立大学法人大阪大学 マグネシウム合金板材の加工方法およびマグネシウム合金板材
US7704366B2 (en) * 2005-08-17 2010-04-27 Trevor Pearson Pretreatment of magnesium substrates for electroplating
JP3904157B1 (ja) * 2005-11-25 2007-04-11 株式会社新潟ティーエルオー マグネシウムろう付用ろう材
JP4873404B2 (ja) * 2006-03-10 2012-02-08 国立大学法人大阪大学 金属材の加工方法および構造物
JPWO2007114159A1 (ja) * 2006-03-29 2009-08-13 日本ゼオン株式会社 多層フィルムおよびこれを用いた積層体並びに積層体の製造方法
NO20063703L (no) * 2006-08-18 2008-02-19 Magontec Gmbh Magnesium stopeprosess og legeringssammensetning
TW200920877A (en) * 2007-11-05 2009-05-16 Magtech Technology Co Ltd Method for soldering magnesium alloy workpieces

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584370A (en) * 1978-12-22 1980-06-25 Tokushu Muki Zairyo Kenkyusho Coating composition
JPS6037281A (ja) * 1983-02-12 1985-02-26 アルカン インターナシヨナル リミテイド 金属同志を接合する方法
JPH01136736A (ja) * 1987-10-14 1989-05-30 Akzo Nv 金属シート及び連続ガラスフィラメントで強化された合成材料のラミネート
JP2001226657A (ja) * 2000-02-15 2001-08-21 Dokai Chemical Industries Co Ltd 鱗片状シリカ粒子を含有する接着剤及び接着構造体の製造方法
JP2002018626A (ja) 2000-07-05 2002-01-22 Tenma Mag-Tec Kk マグネシウム合金の成形品
WO2006003899A1 (ja) 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. マグネシウム合金材の製造方法
JP2007098470A (ja) 2005-03-28 2007-04-19 Sumitomo Electric Ind Ltd マグネシウム合金板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2373139A4 (en) * 2008-12-26 2018-01-17 Sumitomo Electric Industries, Ltd. Magnesium alloy member and method for producing same

Also Published As

Publication number Publication date
JP5392465B2 (ja) 2014-01-22
RU2011126112A (ru) 2013-01-10
EP2364842A1 (en) 2011-09-14
JP2010125624A (ja) 2010-06-10
KR20110091856A (ko) 2011-08-16
CN102224005A (zh) 2011-10-19
US20110229733A1 (en) 2011-09-22
AU2009320919A1 (en) 2010-06-03
TW201026966A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
JP5392465B2 (ja) マグネシウム合金部材
JP6451327B2 (ja) ホットスタンプ用重ね合わせブランクと、重ね合わせホットスタンプ成形体の製造方法、および重ね合わせホットスタンプ成形体
WO2013014512A8 (fr) Pièce d'acier soudée mise en forme à chaud à très haute résistance mécanique et procédé de fabrication
WO2010073852A1 (ja) マグネシウム合金部材とその製造方法
WO2010142579A1 (en) STRUCTURAL AUTOMOTIVE PART MADE FROM AN Al-Zn-Mg-Cu ALLOY PRODUCT AND METHOD OF ITS MANUFACTURE
JP5692152B2 (ja) 熱間プレス用Al系めっき鋼板とその熱間プレス方法及び高強度自動車部品
JP2008200687A (ja) 鋼材とアルミニウム材との異材接合方法
WO2010119070A3 (en) Weldable metal article
KR101362328B1 (ko) 합금화에 의해 강도와 계면신뢰성이 향상된 구리/알루미늄 클래드재 및 그 제조방법
JP4117127B2 (ja) アルミニウム被覆マグネシウム合金材及びその製造方法
JP2008155218A (ja) 銅めっき鋼板の半抜き加工方法
WO2021192595A1 (ja) 金属材料の接合方法
KR20080092236A (ko) 마그네슘합금 부재의 체결구조
KR101474533B1 (ko) 상온 접합력이 향상된 알루미늄-마그네슘 클래드 판재의 제조방법 및 이에 따라 제조된 알루미늄-마그네슘 클래드 판재
JP2005021899A (ja) 金属クラッド板およびその製造方法
RU151517U1 (ru) Крупногабаритный толстостенный биметаллический лист
JP2007283342A (ja) 突合せ溶接金属板
JP2004002932A (ja) 抵抗溶接性に優れたアルミニウムめっき鋼板とこれを用いた加工部品
KR102390842B1 (ko) 압연 접합체 및 그 제조 방법
WO2022215425A1 (ja) プレス成形品の製造方法
US20230145522A1 (en) Method for producing a joining connection between metal sheets
KR20140102469A (ko) Cu 및 Al의 확산 및 반응 제어를 통하여 신뢰성이 향상된 Cu/Al 하이브리드 합금소재 및 그 제조방법
KR101551966B1 (ko) 마그네슘 샌드위치 패널 및 이의 제조방법
JP5053172B2 (ja) ボイド発生を抑制する鋼板の製造方法
CN114787549A (zh) 存储或者分配压缩气体的组件的制造方法和存储或者分配压缩气体的组件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146993.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828980

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20117010995

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3815/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009320919

Country of ref document: AU

Ref document number: 13131179

Country of ref document: US

Ref document number: 2009828980

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009320919

Country of ref document: AU

Date of ref document: 20091112

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011126112

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0921039

Country of ref document: BR

Free format text: APRESENTE DOCUMENTOS COMPROBATORIOS QUE EXPLIQUEM A DIVERGENCIA NO NOME DO INVENTOR NOBUYUKI MORI QUE CONSTA NA PUBLICACAO INTERNACIONAL WO 2010/061732 DE 03/06/2010 E O CONSTANTE DA PETICAO INICIAL NO 020110050845 DE 17/05/2011.

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0921039

Country of ref document: BR

Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL POR NAO ATENDER AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO NA FASE NACIONAL E POR NAO CUMPRIMENTO DA EXIGENCIA FORMULADA NA RPI NO 2368.