WO2010060333A1 - 高容量铁电极材料 - Google Patents

高容量铁电极材料 Download PDF

Info

Publication number
WO2010060333A1
WO2010060333A1 PCT/CN2009/074708 CN2009074708W WO2010060333A1 WO 2010060333 A1 WO2010060333 A1 WO 2010060333A1 CN 2009074708 W CN2009074708 W CN 2009074708W WO 2010060333 A1 WO2010060333 A1 WO 2010060333A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
nickel
electrode
electrode material
high capacity
Prior art date
Application number
PCT/CN2009/074708
Other languages
English (en)
French (fr)
Inventor
陶明大
何秀能
潘唯
Original Assignee
成都和能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都和能科技有限公司 filed Critical 成都和能科技有限公司
Publication of WO2010060333A1 publication Critical patent/WO2010060333A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an iron electrode material, and more particularly to a high capacity iron electrode material for use in the manufacture of a high energy environmentally friendly iron-nickel battery.
  • the iron-nickel battery was invented by Edison in 1900. Between 1910 and 1960, iron-nickel batteries were widely used as traction power sources for traction locomotives. However, after 1960, research on iron-nickel batteries has been reduced, mainly because cadmium-nickel batteries have better performance than iron-nickel. With the continuous advancement of society, people's requirements for environmental protection are getting higher and higher. The cadmium-nickel batteries and lead-acid batteries that were heavily contaminated with heavy metals will be replaced by environmentally-friendly batteries. The iron-nickel battery just meets this. Claim.
  • the iron-nickel battery is a green secondary battery, which is a compound of iron or iron as a negative electrode active material, nickel oxyhydroxide as a positive electrode active material, and a sodium hydroxide (potassium) aqueous solution as an electrolyte.
  • the iron-nickel battery is divided into two types: a bag type battery and a plate type battery.
  • the characteristics of the pouch battery are that the life is long, but the specific energy is lower, while the plate type battery is just the opposite. The life is lower than that of the bag type, but the specific energy is higher.
  • iron-nickel batteries have obvious advantages: (1) There is no pollution to the environment.
  • the materials used in iron-nickel batteries do not contain toxic heavy metal elements such as mercury, lead and cadmium, and no toxic gases and water are produced during the production process.
  • the life of the plate type iron-nickel battery can exceed 900 times, the life of the bag type iron-nickel battery can reach 2000-4000 times, and the use time can reach 10-25 years.
  • the theory is higher than the energy.
  • the positive electrode of the iron-nickel battery is the same as the positive electrode of the cadmium-nickel battery and the nickel-hydrogen battery, but the theoretical capacity of the iron electrode is as high as 1280 mAh/g, which is 2.67 times the theoretical capacity of the cadmium electrode and 3.56 times the theoretical capacity of the metal hydride electrode.
  • the price is moderate. Of all the electrode materials, the price of iron is the cheapest. Compared with nickel-hydrogen batteries and lithium-ion batteries, iron-nickel batteries also have a very low price.
  • Patent CN153 2965A proposes a method for overcoming the disadvantages of the iron electrode by adding Al-Sn-Ga to the iron electrode.
  • the electrode has low self-discharge and high charging efficiency, but the discharge capacity is only 180 mAh/g, which cannot meet the needs of high-energy batteries, and the noble metal element of Ga is added to the electrode, and the cost of the electrode is also high. .
  • the object of the present invention is to solve the problem of low utilization rate of the active material of the iron electrode, and to provide a high-capacity iron electrode material having a capacity of more than 400 mAh/g without the addition of a precious metal and no heavy metal contamination.
  • the high capacity iron electrode material of the present invention is composed of an active material and an additive.
  • the active material is a compound of iron or iron, including Fe 3 0 4 , Fe(OH) 2 , Fe(OH) 3 , Fe 2 0 3 ,
  • One or more of reduced iron powder, carbonyl iron powder; additives include: 1) rare earth oxides having a content of 1 to 10%, and rare earth oxides including La 2 0 3 , Ce0 2 , Nd 2 0 3 , Pr 2 One or more of 0 3 , Y 2 0 3 , Gd 2 0 3 , Sm 2 0 3 , etc., 2) A nickel hydroxide or saturated nickel sulfate solution having a content of 1-3%. Since the iron compound directly purchased has a high impurity content and is inferior in activity, it is generally required to be prepared by itself.
  • a method for preparing the active material Fe 3 0 4 is exemplified: (1) A ferrous sulfate solution having a density of 1.24 - 1.26 g/cm 3 is prepared using purified water and technical grade ferrous sulfate. (2) A sodium hydroxide solution having a density of 1.13 - 1.15 g/cm 3 is prepared using purified water and industrial grade sodium hydroxide. (3) The ferrous sulfate solution is heated to 90-98 ° C, and the sodium hydroxide solution is sprayed into the ferrous sulfate solution, and the air is blown into the solution.
  • the iron electrode of the present invention has the advantage of a high capacity exceeding 400 mAh/g.
  • Figure 1 High-capacity iron electrode material and ordinary iron electrode material at 25 °CT0.2C (60mA/g) discharge curve.
  • the content of Fe 3 0 4 prepared according to the above formula is 88-92%, the content of cerium oxide is 3-5%, the content of saturated nickel sulfate solution is 1-3%, and the content of graphite powder is 2- 5%.
  • the method of preparing iron electrode is: (1) Weigh a quantity of Fe 3 0 4, Fe 3 0 4 according to the amount of discharge plus 3-5% yttria. (2) Add 1-3% sulfur to the dry powder
  • a saturated solution of nickel acid and 2-5% graphite powder (3) Add a certain amount of 5-10% PVA binder. After stirring evenly, apply the slurry to the anode current collector (the current collector is foamed nickel, foamed iron or nickel-plated punched steel strip). One). (4) After drying the electrode, press the electrode on a hydraulic press with a pressure of 24 MPa.
  • the iron electrode obtained above is used as the working electrode, the sintered nickel hydroxide electrode is used as the auxiliary electrode, and the capacity of the auxiliary electrode far exceeds the capacity of the iron electrode, so the auxiliary electrode can be used.
  • the electrolytic solution was a 6 mol/L KOH solution (containing 15 g/L of LiOH.H 2 0), and the separator was a polypropylene felt.
  • the electrochemical performance test equipment is a domestic DC-5 battery performance tester. The activation system is activated 6 times with 0.2C, and the ambient temperature is 25 °C ⁇ 5 °C.
  • the charging current is 100mA/g
  • charging for 6h the discharge current is 60mA/g
  • the discharge cut-off potential is 1.0V.
  • the discharge capacity at the sixth time is the capacity of the electrode.
  • the inventive iron electrode material is at 25

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

说明书 高容量铁电极材料
高容量铁电极材料
[1] 技术领域
[2] 本发明涉及一种铁电极材料, 特别是涉及一种高容量铁电极材料, 该电极材料 用于制造高能量环保铁镍电池。
[3] 背景技术
[4] 铁镍电池是爱迪生在 1900年发明的。 在 1910至 1960年之间, 铁镍电池广泛用于 牵引机车作为动力电源。 但 1960年以后, 人们对铁镍电池的研究有所减少, 主要原因是镉镍电池具有比铁镍更好的性能。 随着社会的不断进步, 人们对环 境保护的要求也越来越高, 原来釆用的有重金属污染的镉镍电池及铅酸电池将 被环保型的电池取代, 铁镍电池正好满足了这一要求。
[5] 铁镍电池属于绿色环保二次电池, 该电池是以铁或铁的化合物作为负极活性物 质, 氢氧化亚镍为正极活性物质, 氢氧化钠 (钾) 水溶液为电解质。 按照电极 的制备工艺不同, 铁镍电池分为袋式电池和板式电池两种类型。 袋式电池的特 点是寿命很长, 但比能量较低, 而板式电池正好相反, 寿命相对袋式来说要低 一些, 但比能量较高。 与传统的铅酸电池和镉镍电池相比, 铁镍电池具有明显 的优点: (1) 对环境没有污染。 铁镍电池所用的材料均不含汞、 铅和镉等有毒 的重金属元素, 生产过程中也无有毒的气体和水产生。 (2) 寿命很长。 镉镍电 池的寿命为大于 500次, 铅酸电池的寿命为大于 250
次, 而板式铁镍电池的寿命可超过 900次, 袋式铁镍电池的寿命可达到 2000-4000 次, 使用吋间可达 10-25年。 (3) 理论比能量高。 铁镍电池的正极与镉镍电池和 氢镍电池的正极相同, 但铁电极的理论容量高达 1280mAh/g, 是镉电极理论容量 的 2.67倍, 是金属氢化物电极理论容量的 3.56倍。 (4) 价格适中。 在所有的电 极材料中, 铁的价格是最便宜的。 与氢镍电池和锂离子电池相比, 铁镍电池还 具有价格很低的特点。 与铅酸电池相比, 铁镍电池的价格虽然稍高, 但其超长 的寿命完全可以弥补高出的这部分价格。 但铁镍电池也还存在一些问题, 包括 : ( 1) 电池的自放电大。 (2) 大电流放电和低温放电性能较差。 (3) 电池的 充电效率较低。 (4) 铁电极的活性物质利用率低。 一般只有 10-20%。 这就极大 地限制了铁镍电池比能量的提高。 这些问题都是由于铁电极引起的。 专利 CN153 2965A提出了一种克服铁电极缺点的方法, 是在铁电极中加放入 Al-Sn-Ga 。 这种电极具有较低的自放电和较高的充电效率, 但放电容量只有 180 mAh/g , 不能满足高能量电池的需要, 且电极中加有 Ga这种贵金属元素, 电极的 成本也较高。
[6] 发明内容
[7] 本发明目的在于解决铁电极活性物质利用率低的问题, 提供一种高容量的的铁 电极材料, 这种电极材料容量超过 400mAh/g, 且不用添加贵金属, 也没有重金 属的污染。
[8] 本发明高容量铁电极材料由活性物质和添加剂组成。 活性物质的成分是铁或铁 的化合物, 包括 Fe304,Fe(OH)2,Fe(OH) 3,Fe203
还原铁粉, 羰基铁粉中的一种或几种; 添加剂包括: 1) 含量为 1- 10%的稀土氧 化物, 稀土氧化物包括 La203、 Ce02、 Nd203、 Pr203、 Y203、 Gd203、 Sm203等中 的一种或几种, 2) 含量为 1-3%的氢氧化亚镍或饱和硫酸镍溶液。 由于直接购买 的铁化合物杂质含量较高, 活性很差, 因此一般需要自行制备。 举例说明活性 物质 Fe304的制备方法: (1) 用净化水和工业级硫酸亚铁配制密度为 1.24- 1.26g/c m3的硫酸亚铁溶液。 (2) 用净化水和工业级氢氧化钠配制密度为 1.13- 1.15g/cm3 的氢氧化钠溶液。 (3) 将硫酸亚铁溶液加热至 90-98°C, 将氢氧化钠溶液以喷淋 的方式加入到硫酸亚铁溶液中, 同吋在溶液中鼓入空气。 (4) 待氢氧化钠溶液 加完后, 加入硫酸亚铁含量 1-5%的乙炔黑, 再鼓入空气半小吋。 (5) 用化纤帆 布过滤所得的浆料, 并用净化水洗涤沉淀至不含硫酸根。 (6) 将沉淀烘干后, 放到 780-880°C的条件下还原。 (7) 将还原后的物质粉碎至过 20目筛, 得到所需 要的铁电极活性物质。
[9] 与普通的铁电极相比, 本发明铁电极的优点是容量高, 超过 400 mAh/g。
[10] 附图说明
[11] 图 1 : 高容量铁电极材料与普通铁电极材料在 25 °CT0.2C (60mA/g) 放电曲线。
[12] 具体实施方式
[13] 实施例: 本发明高容量铁电极材料的化学组成为:
[14] 按上述方制得的 Fe304含量为 88-92% , 氧化钇的含量为 3-5%., 饱和硫酸镍溶液 的含量为 1-3%, 石墨粉的含量为 2-5%。
[15] 铁电极的制备方法是: (1) 称取一定量的 Fe304, 按 Fe304的量加放 3-5%的氧 化钇。 (2) 在干粉中加入 1-3%的硫
酸镍饱和溶液及 2-5%的石墨粉。 (3) 再加入一定量的浓度为 5-10%PVA粘结剂 , 搅拌均匀后, 将浆料涂在负极集流体上 (集流体是泡沫镍、 泡沫铁或镀镍冲 孔钢带中的一种) 。 (4) 将电极烘干后, 在液压机上用 24MPa的压力将电极压 成型。
[16] 铁电极的充放电试验: 将上述制得到的铁电极作为工作电极, 烧结式氢氧化亚 镍电极为辅助电极, 且辅助电极的容量远远超过铁电极的容量, 因此可将辅助 电极作为参比电极, 电解液为 6mol/LKOH溶液 (其中含有 15g /L的 LiOH.H2 0) , 隔膜为聚丙烯毡。 电化学性能测试设备为国产 DC-5型电池性能测试仪。 活 化制度是先用 0.2C活化 6次, 环境温度为 25 °C±5 °C
。 0.2C活化吋, 充电电流均为 100mA/g, 充电 6h, 放电电流均为 60mA/g, 放电 截止电位均为 1.0V。 第 6次的放电容量即为电极的容量。
[17] 从图 1可以看出, 本发明铁电极材料在 25
°。下0.2。放电容量超过 400mAh/g, 普通铁电极材料放电容量为 187 mAh/g。

Claims

权利要求书
[1] 一种高容量铁电极材料, 其特征在于:
该铁电极材料由活性物质和添加剂组成。 活性物质的成分是铁或铁的化合 物。 添加剂包括: 1) 含量为 1-10%的稀土氧化物, 稀土氧化物包括 La203、 Ce02、 Nd203、 Pr203、 Y203、 Gd203、 Sm203
等中的一种或几种; 2) 含量为 1-3%的氢氧化亚镍或饱和硫酸镍溶液。
[2] 根据权利要求 1所述的高容量铁电极材料, 其特征在于: 活性物质可以是 Fe
304,Fe(OH)2,Fe(OH)3,Fe203,还原铁粉, 羰基铁粉中的一种或几种。
[3] 根据权利要求 1所述的高容量铁电极材料, 其特征在于: 其所用的电解液为
6mol/L的 KOH水溶液, 其中加有 15g /L的 LiOH.H20。
PCT/CN2009/074708 2008-11-03 2009-10-30 高容量铁电极材料 WO2010060333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810046446.2 2008-11-03
CN2008100464462A CN101645505B (zh) 2008-11-03 2008-11-03 高容量铁电极材料

Publications (1)

Publication Number Publication Date
WO2010060333A1 true WO2010060333A1 (zh) 2010-06-03

Family

ID=41657278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074708 WO2010060333A1 (zh) 2008-11-03 2009-10-30 高容量铁电极材料

Country Status (2)

Country Link
CN (1) CN101645505B (zh)
WO (1) WO2010060333A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374261B2 (en) 2011-06-15 2019-08-06 University Of Southern California High efficiency iron electrode and additives for use in rechargeable iron-based batteries
US11552290B2 (en) 2018-07-27 2023-01-10 Form Energy, Inc. Negative electrodes for electrochemical cells
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5796344B2 (ja) * 2011-05-13 2015-10-21 セイコーエプソン株式会社 センサー装置
CN102623758B (zh) * 2012-04-17 2014-07-09 河南创力新能源科技有限公司 负极为发泡镍或铁式铁电极的铁镍蓄电池及其制备方法
CN102623712A (zh) * 2012-04-17 2012-08-01 河南创力新能源科技有限公司 发泡式铁电极及其制备方法
CN102623757B (zh) * 2012-04-17 2014-07-09 河南创力新能源科技有限公司 负极为钢带式铁电极的铁镍蓄电池及其制备方法
CN102623759B (zh) * 2012-04-17 2014-11-05 河南创力新能源科技有限公司 负极为发泡式铁电极的铁镍蓄电池及其制备方法
CN102623713B (zh) * 2012-04-17 2015-08-12 河南创力新能源科技股份有限公司 钢带式铁电极及其制备方法
CN102623710B (zh) * 2012-04-17 2014-07-23 河南创力新能源科技有限公司 发泡式铁电极及其制备方法
CN102891292A (zh) * 2012-09-24 2013-01-23 上海锦众信息科技有限公司 一种锂硫电池正极复合材料的制备方法
CN103219494A (zh) * 2013-03-31 2013-07-24 马军昌 一种石墨-四氧化三铁复合负极材料的制备方法
WO2015042573A1 (en) * 2013-09-23 2015-03-26 University Of Southern California A high efficiency nickel-iron battery
CN103579614B (zh) * 2013-11-14 2015-06-17 哈尔滨工程大学 原位合成的Fe-Fe3O4复合的锂离子电池负极材料的制备方法
CN107068991A (zh) * 2017-01-12 2017-08-18 四川大学 高库伦效率低温倍率型铁负极材料及其制备方法与制备的铁电极
CN110931269B (zh) * 2019-12-09 2021-12-17 河南创力新能源科技股份有限公司 一种电容型铁镍电池铁电极
CN112635715B (zh) * 2020-12-18 2022-09-09 湖北亿纬动力有限公司 一种锂离子电池正极浆料、其匀浆方法及用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021911A (en) * 1976-01-07 1977-05-10 Viktor Evmenievich Kononenko Method for producing an iron electrode for an alkaline accumulator
US4123568A (en) * 1976-06-01 1978-10-31 Viktor Evmenievich Kononenko Method of manufacturing an iron electrode for alkaline accumulators
US4250236A (en) * 1978-08-31 1981-02-10 Firma Deutsche Automobilgesellschaft Mbh Additive for activating iron electrodes in alkaline batteries
CN1268779A (zh) * 2000-05-12 2000-10-04 南开大学 一种电池的正极与制造方法及用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143745A (ja) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd ニッケル水素蓄電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021911A (en) * 1976-01-07 1977-05-10 Viktor Evmenievich Kononenko Method for producing an iron electrode for an alkaline accumulator
US4123568A (en) * 1976-06-01 1978-10-31 Viktor Evmenievich Kononenko Method of manufacturing an iron electrode for alkaline accumulators
US4250236A (en) * 1978-08-31 1981-02-10 Firma Deutsche Automobilgesellschaft Mbh Additive for activating iron electrodes in alkaline batteries
CN1268779A (zh) * 2000-05-12 2000-10-04 南开大学 一种电池的正极与制造方法及用途

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374261B2 (en) 2011-06-15 2019-08-06 University Of Southern California High efficiency iron electrode and additives for use in rechargeable iron-based batteries
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries
US11552290B2 (en) 2018-07-27 2023-01-10 Form Energy, Inc. Negative electrodes for electrochemical cells

Also Published As

Publication number Publication date
CN101645505A (zh) 2010-02-10
CN101645505B (zh) 2011-06-22

Similar Documents

Publication Publication Date Title
WO2010060333A1 (zh) 高容量铁电极材料
WO2010069209A1 (zh) 低自放电铁电极材料
Chakkaravarthy et al. The nickel/iron battery
CN1328818C (zh) 混合型水系锂离子电池
CN101955175B (zh) 一种磷酸亚铁锂的工业制备方法
CN106058168A (zh) 一种预锂化锂离子二次电池正极材料
EP3319152A1 (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
CN103682316A (zh) 长寿命、高容量锂离子电池三元正极材料的制备方法
CN103094628B (zh) 一种高性能的水溶液锂离子电池
CN101221853A (zh) 一种半固态或全固态水系超级电容器
CN107658442B (zh) 氢镍二次电池负极板及其制备方法和使用该负极板的氢镍二次电池
CN105161703A (zh) 用于钠离子电池的五元层状氧化物正极材料及其制备方法
CN112510198B (zh) 一种正极活性材料、水溶液钠离子电池和电子装置
CN104795555A (zh) 一种水溶液钠离子电池及其正极材料、制备方法和用途
WO2022198843A1 (zh) 一种锂离子电池三元正极材料及其制备方法
CN107910528B (zh) 一种钛酸锂复合材料及其制备方法、负极片及锂离子电池
CN110993971B (zh) 一种NiS2/ZnIn2S4复合材料及其制备方法和应用
CN101901936A (zh) 一种新型铁锂电池制备方法
CN111082028A (zh) 一种容量高的负极材料、制备方法及锂离子电池
CN104103836B (zh) 一种钠和锰共掺杂改性硅酸铁锂正极材料及其制备方法
CN102623710A (zh) 发泡式铁电极及其制备方法
CN204067512U (zh) 一种胶体电解液铁镍蓄电池
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
Shangguan et al. Sodium tungstate as electrolyte additive to improve high-temperature performance of nickel–metal hydride batteries
CN102522564A (zh) 制备钠掺杂锂离子电池正极材料磷酸钒锂的流变相方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A, DATED 01-12-2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09828593

Country of ref document: EP

Kind code of ref document: A1