WO2010058734A1 - フェノール性水酸基含有芳香族ポリアミド樹脂およびその用途 - Google Patents

フェノール性水酸基含有芳香族ポリアミド樹脂およびその用途 Download PDF

Info

Publication number
WO2010058734A1
WO2010058734A1 PCT/JP2009/069294 JP2009069294W WO2010058734A1 WO 2010058734 A1 WO2010058734 A1 WO 2010058734A1 JP 2009069294 W JP2009069294 W JP 2009069294W WO 2010058734 A1 WO2010058734 A1 WO 2010058734A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxyl group
epoxy resin
phenolic hydroxyl
group
resin composition
Prior art date
Application number
PCT/JP2009/069294
Other languages
English (en)
French (fr)
Inventor
竜太朗 田中
誠 内田
繁 茂木
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2010539214A priority Critical patent/JPWO2010058734A1/ja
Publication of WO2010058734A1 publication Critical patent/WO2010058734A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Definitions

  • the present invention provides a cured product excellent in low shrinkage, heat resistance, adhesiveness, electrical insulation properties, and flame retardancy, and has a phenolic hydroxyl group-containing aromatic polyamide resin having sufficient flexibility when formed into a film.
  • the present invention relates to an epoxy resin composition comprising the resin and an epoxy resin as essential components, a material for a flexible printed wiring board using these, and a semiconductor insulating film.
  • Epoxy compositions containing them as a component generally have heat resistance, mechanical properties, and chemical resistance. It is used in a wide range of fields such as adhesives, paints, laminates, molding materials and casting materials.
  • a bisphenol A type epoxy resin can be given as an epoxy resin that has been most commonly used.
  • acid anhydrides and amine compounds are known as curing agents for epoxy resins, but novolak resins with excellent electrical reliability are often used in the field of electric and electronic parts in terms of heat resistance. .
  • Patent Document 1 Patent Document 2, Patent Document 3 and Patent Document 4, a phenolic hydroxyl group-containing polyamide resin and an epoxy resin composition containing them and an epoxy resin are excellent in heat resistance and flame retardancy, and flexible printing. It is described that it is useful as a wiring board material or a fiber reinforcing agent.
  • Patent Literature 1 Patent Literature 2
  • Patent Literature 3 Patent Literature 4
  • the composition containing the resin have a high linear expansion coefficient, and in combination with a general copper foil or polyimide film A large curl is generated due to the difference in shrinkage rate, which causes a problem in connection reliability in the mounting process.
  • An object of the present invention is to provide an epoxy resin composition containing a polyamide resin that is excellent and has sufficient flexibility and electrical reliability even when molded into a sheet.
  • the present invention provides (1) the following formula (2)
  • m and n are average values, satisfy the relationship of 0 ⁇ m / (m + n) ⁇ 0.8, and m + n is a positive number from 2 to 200.
  • Ar 3 is paraphenylenediamine.
  • the phenolic hydroxyl group-containing polyamide resin (A) according to (1) which is a divalent aromatic group derived from one or more compounds selected from the group consisting of: (3)
  • An epoxy resin composition comprising the phenolic hydroxyl group-containing polyamide resin (A) according to any one of (1) to (3) above and an epoxy resin (B), (5) A film obtained by processing the epoxy resin composition according to the above (4) into a sheet, (6) The adhesive sheet for flexible printed wiring boards which has the epoxy resin composition as described in said (4), (7) Article obtained by heat-curing the epoxy resin composition according to (4), the film according to (5) or the sheet according to (6), (8) Reinforcing plate for flexible printed wiring board having the epoxy resin composition according to (4) or a cured product layer thereof, (9) A coverlay for a flexible printed wiring board having the epoxy resin composition according to (4) or a cured product layer thereof, (10) The single-sided or double-sided metal characterized in that one side or both sides of the film or the cured product layer thereof according to (5) is in contact with one side of the metal foil layer or the resin side of the single-sided metal-clad resin laminate Tension resin laminate, (11) The film described in (5) above, the sheet described
  • the phenolic hydroxyl group-containing polyamide resin of the present invention is excellent in heat resistance and has a low linear expansion coefficient even when formed into a thin film.
  • the epoxy resin composition of the present invention containing the polyamide resin and the epoxy resin maintains the heat resistance and low linear expansion coefficient that are characteristic of the polyamide resin even in a film-like cured product processed into a sheet shape. Furthermore, since it has excellent adhesiveness, flame retardancy and electrical reliability, it can be widely used in the production of flexible printed wiring boards and semiconductor insulating materials, etc. Very useful in the field.
  • the phenolic hydroxyl group-containing aromatic polyamide resin (A) of the present invention is obtained by subjecting the following compound group (a) and compound group (b) to a condensation reaction.
  • Compound group (a) One or more compound compounds (b) selected from paraphenylenediamine, metaphenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 1,5-naphthalenediamine or 1,8-naphthalenediamine Hydroxyphthalic acid and optional phthalic acid
  • aromatic diamine of the compound group (a) (hereinafter also simply referred to as “aromatic diamine”) has extremely high crystallinity
  • aromatic dicarboxylic acid (hereinafter simply referred to as “aromatic dicarboxylic acid”) of the compound group (b).
  • aromatic dicarboxylic acid With the progress of the condensation reaction, the solvent solubility is drastically reduced, and in some cases, it may be precipitated as crystals during the condensation reaction, but the hydroxy group having a phenolic hydroxyl group among the aromatic dicarboxylic acids.
  • phthalic acid preferably hydroxyisophthalic acid in a certain amount or more
  • precipitation of aromatic diamine during the condensation reaction can be suppressed, and in addition, phenolic hydroxyl group having a high glass transition point and a low linear expansion coefficient.
  • a contained aromatic polyamide resin can be obtained.
  • the phenolic hydroxyl group-containing polyamide resin (A) of the present invention preferably has a linear expansion coefficient between 100 and 200 ° C. of 40 ppm or less.
  • the linear expansion coefficient in this temperature range exceeds 40 ppm, there is a possibility that large curl may be generated in various heat treatment processes such as solder reflow on a film or a flexible printed wiring board using a phenolic hydroxyl group-containing polyamide resin.
  • a general copper foil and polyimide film used for a flexible printed wiring board have a linear expansion coefficient of about 20 ppm between 100 to 200 ° C., and the closer to this value, the less the curl.
  • the phenolic hydroxyl group-containing polyamide resin (A) is more preferably one having a linear expansion coefficient between 100 and 200 ° C. close to 20 ppm.
  • the phenolic hydroxyl group-containing polyamide resin (A) of the present invention can be prepared by subjecting an aromatic diamine and an aromatic dicarboxylic acid to a condensation reaction by applying a method described in, for example, Japanese Patent No. 2969585.
  • the amount of the aromatic diamine used in the condensation reaction is usually 50 to 200 mol, preferably 80 to 125 mol, more preferably 90 to 110 mol, particularly preferably 95 to 105 mol, per 100 mol of the aromatic dicarboxylic acid. is there.
  • the molecular weight of the phenolic hydroxyl group-containing polyamide resin (A) obtained increases as the molar ratio of the aromatic diamine and aromatic dicarboxylic acid used in the condensation reaction approaches 1: 1.
  • the condensation reaction between the aromatic diamine and the aromatic dicarboxylic acid is performed using a phosphorus condensing agent in an organic solvent in the presence of a pyridine derivative.
  • a phosphorus condensing agent phosphite is preferable.
  • an inorganic salt such as lithium chloride or calcium chloride is added during the reaction, a phenolic hydroxyl group-containing polyamide resin (A) having a higher molecular weight can be obtained.
  • a phenolic hydroxyl group-containing aromatic can be produced without causing a reaction between the phenolic hydroxyl group and another reactive group such as a carboxyl group or an amino group without protecting the functional phenolic hydroxyl group.
  • Polyamide resin can be easily produced, and the condensation reaction can be performed at a low temperature of about 150 ° C. or lower.
  • the synthesis method of the phenolic hydroxyl group-containing polyamide resin (A) of the present invention will be described in more detail.
  • aromatic diamine used in the synthesis paraphenylene diamine, metaphenylene diamine, 4,4′-diaminodiphenyl ether or 4,4′-diaminodiphenylmethane is preferable, and the resulting phenolic hydroxyl group-containing aromatic polyamide resin (A)
  • Paraphenylenediamine, metaphenylenediamine or 4,4′-diaminodiphenylmethane having a lower linear expansion coefficient is more preferred, and paraphenylenediamine is particularly preferred.
  • the hydroxyphthalic acid may be one having 1 to 4 hydroxy groups substituted, such as 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, 2-hydroxyisophthalic acid. Examples thereof include acid, 3-hydroxyisophthalic acid and 2-hydroxyterephthalic acid.
  • 5-hydroxyisophthalate is obtained from the viewpoints of solvent solubility, purity of the obtained phenolic hydroxyl group-containing aromatic polyamide resin (A), electrical properties when used as an epoxy resin composition, adhesion to metal foil and polyimide, and the like. Acid is most preferred.
  • the aromatic dicarboxylic acids used in the synthesis as the optional phthalic acid, orthophthalic acid, metaphthalic acid (isophthalic acid) and paraphthalic acid (terephthalic acid) can be used. preferable.
  • the amount of hydroxyphthalic acid used to suppress precipitation of aromatic diamine is usually 20 mol% or more and 100 mol% or less, preferably 50 mol% or more and 100 mol% or less, more preferably 75 in the total aromatic dicarboxylic acid. It is mol% or more and 100 mol% or less.
  • the repeating units m and n in the formula (2) are 0 ⁇ m / (m + n) ⁇ 0.8, preferably 0 ⁇ m / (m + n).
  • a phenolic hydroxyl group-containing aromatic polyamide resin (A) satisfying the relationship of ⁇ 0.5 is obtained.
  • Japanese Patent No. 2969585 describes a phenolic hydroxyl group-containing polyamide resin in which the amount of dicarboxylic acid having a phenolic hydroxyl group is 5 mol% or more of the total carboxylic acid component. There is no description that the use of a specific amount of acid has the effect of suppressing the precipitation of aromatic diamine during the condensation reaction.
  • phosphite used as a condensing agent in the synthesis include triphenyl phosphite, diphenyl phosphite, tri-o-tolyl phosphite, di-o-tolyl phosphite, and tri-m-tolyl phosphite. And tri-p-tolyl phosphite, di-p-tolyl phosphite, di-p-chlorophenyl phosphite, tri-p-chlorophenyl phosphite and di-p-chlorophenyl phosphite. It is not limited.
  • pyridine derivatives used with phosphites include pyridine, 2-picoline, 3-picoline, 4-picoline and 2,4-lutidine.
  • the phosphite is generally used as a condensing agent in a mixture of a pyridine derivative and an organic solvent.
  • an organic solvent a phenolic hydroxyl group-containing polyamide resin which has a property of not dissolving substantially with the phosphite ester and dissolving the aromatic diamine and the aromatic dicarboxylic acid satisfactorily and which is a reaction product ( A good solvent for A) is desirable.
  • Examples of such an organic solvent include amide solvents such as N-methylpyrrolidone and N, N-dimethylacetamide, toluene, methyl ethyl ketone, or a mixed solvent of these with an amide solvent, among which N-methyl- 2-pyrrolidone is preferred.
  • the amount of the pyridine derivative used is usually 5 to 30% by weight in the mixture of the pyridine derivative and the organic solvent.
  • inorganic salts such as lithium chloride and calcium chloride in addition to the phosphite ester and pyridine derivative.
  • a phosphite and an inorganic salt are added to a mixed solvent composed of an organic solvent containing a pyridine derivative, and 5-hydroxyisophthalic acid and, optionally, isophthalic acid, and 50 to 50 mol per 100 mol of these dicarboxylic acid components. 200 moles of paraphenylenediamine is added and then heated and stirred under an inert atmosphere such as nitrogen.
  • the reaction liquid After completion of the reaction, a poor solvent such as water, methanol or hexane is added to the reaction liquid, or the reaction liquid is poured into the poor solvent to separate the produced polymer, followed by purification by a reprecipitation method to produce a by-product
  • a poor solvent such as water, methanol or hexane
  • the reaction liquid is poured into the poor solvent to separate the produced polymer, followed by purification by a reprecipitation method to produce a by-product
  • the phenolic hydroxyl group-containing aromatic polyamide resin (A) represented by the formula (2) can be obtained.
  • the addition amount of the phosphite which is a condensing agent, is usually equimolar or more with respect to the amino group, but more than 30 times the molar is not efficient. Further, when phosphorous acid triester is used, the by-product phosphorous acid diester also acts as a condensing agent, so that it may be about 80 mol%.
  • the amount of the pyridine derivative needs to be equimolar or more with respect to the amino group. However, in practice, the pyridine derivative is often used in a large excess in the role of a reaction solvent.
  • the amount of the mixture comprising the pyridine derivative and the organic solvent is preferably in a range where the concentration of the theoretically obtained phenolic hydroxyl group-containing aromatic polyamide resin is 5 to 30% by weight.
  • the reaction temperature is usually 60 to 180 ° C, preferably 80 to 120 ° C.
  • the reaction time is greatly influenced by the reaction temperature, but in any case, it is preferable to stir the reaction system until the maximum viscosity representing the maximum degree of polymerization is obtained, usually from several minutes to about 20 hours, preferably 5 to 12 It's time.
  • a polyamide resin (A) can be obtained.
  • the number average molecular weight of the phenolic hydroxyl group-containing aromatic polyamide resin (A) obtained as described above is usually about 3000 to 60000, preferably about 10,000 to 40000, and the weight average molecular weight is usually about 10,000 to 250,000, preferably 70000 to
  • the calculated value of the active hydrogen equivalent is usually 180 to 5000 g / eq. , Preferably 200 to 1000 g / eq. , More preferably 200 to 500 g / eq. And more preferably 200 to 400 g / eq. , Most preferably 220 to 350 g / eq. It is. In general, whether or not the polymer has a preferable average degree of polymerization is determined by referring to the molecular weight.
  • weight average molecular weight is less than 10,000, film formation and properties as an aromatic polyamide resin are insufficient, which is not preferable.
  • molecular weight is larger than 250,000, the degree of polymerization is so high that the solvent solubility is deteriorated and the moldability is deteriorated.
  • the number average molecular weight and the weight average molecular weight are numerical values converted to polystyrene by gel permeation chromatography (the same applies hereinafter).
  • the epoxy resin composition of the present invention is a composition containing a phenolic hydroxyl group-containing aromatic polyamide resin (A) and an epoxy resin (B).
  • the epoxy resin (B) used in the epoxy resin composition of the present invention is reacted with the phenolic hydroxyl group and the terminal carboxyl group or / and the terminal amino group in the phenolic hydroxyl group-containing aromatic polyamide resin (A). Added to purpose.
  • the crosslinking density of the polyamide resin of the present invention increases, and the heat resistance of the cured product of the epoxy resin composition of the present invention Adhesion to the substrate is improved.
  • the epoxy resin (B) that can be used is not particularly limited as long as it has two or more epoxy groups in one molecule.
  • it may be a benzene ring, biphenyl ring, naphthalene ring or the like. It has a preferable aromatic ring and has two or more epoxy groups in one molecule.
  • Specific examples include novolac type epoxy resins, xylylene skeleton-containing phenol novolac type epoxy resins, biphenyl skeleton-containing novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, tetramethylbiphenol type epoxy resins, and the like.
  • an epoxy resin having a biphenyl skeleton is particularly preferable.
  • the amount of the epoxy resin (B) used in the epoxy resin composition of the present invention is usually 0.05 to 1 with respect to 1 equivalent of active hydrogen of the phenolic hydroxyl group-containing aromatic polyamide resin (A) contained in the epoxy resin composition. 1.2 equivalents, preferably 0.05 to 0.5 equivalents, more preferably 0.05 to 0.3 equivalents.
  • the active hydrogen equivalent of the phenolic hydroxyl group-containing aromatic polyamide resin (A) can be calculated from the total of the phenolic hydroxyl group-containing aromatic dicarboxylic acid and excess diamine component or dicarboxylic acid component charged during the reaction.
  • the curing agent that can be blended include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, anhydrous Trimellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenolic hydroxyl group-containing resin, triphenylmethane Examples thereof include, but are not limited to, modified products thereof, imidazole, BF 3 -amine complexes, and guanidine derivatives.
  • a curing accelerator may be used in combination.
  • curing accelerators that can be used include 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5.
  • -Imidazoles such as hydroxymethylimidazole, tertiary amines such as 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) undecene-7, triphenylphosphine, etc.
  • metal compounds such as phosphines and tin octylate.
  • the curing accelerator is used in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin.
  • the epoxy resin composition of the present invention contains an inorganic filler.
  • the inorganic filler that can be used include silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, calcium phosphate, alumina, talc, and short glass fiber.
  • the inorganic filler is used in an amount of 0 to 90% by weight in the epoxy resin composition of the present invention.
  • various compounding agents such as silane coupling agents, mold release agents such as stearic acid, palmitic acid, zinc stearate, calcium stearate, and pigments can be added to the epoxy resin composition of the present invention.
  • the epoxy resin composition of the present invention may be used by dissolving in a solvent if necessary.
  • solvents that can be used include amide solvents such as ⁇ -butyrolactones, N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N, N-dimethylimidazolidinone and the like.
  • Sulfones such as tetramethylene sulfone
  • ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone And ketone solvents such as cyclohexanone and aromatic solvents such as toluene and xylene.
  • solvents are used in an amount such that the solid content concentration excluding the solvent in the resin composition is usually 10 to 70% by weight, preferably 30 to 70% by weight.
  • the epoxy resin composition of the present invention has a characteristic that the linear expansion coefficient between 100 to 200 ° C. is 50 ppm or less in the cured product.
  • the linear expansion coefficient exceeds 50 ppm, a large curl is generated by various processing steps such as solder reflow during the production of a film after forming a coating film or a flexible printed wiring board.
  • a general copper foil and polyimide film used for a flexible printed wiring board has a linear expansion coefficient of about 20 ppm between 100 to 200 ° C., and the closer to this value, the less curl.
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing the above components.
  • the epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
  • the epoxy resin composition and, optionally, a curing agent, and if necessary, a curing accelerator and an inorganic filler and a compounding agent are thoroughly mixed using an extruder, kneader, roll, etc. as necessary until uniform.
  • the epoxy resin composition is molded by a melt casting method, a transfer molding method, an injection molding method, a compression molding method or the like, and further heated at 80 to 200 ° C. for 2 to 10 hours to obtain the cured product of the present invention. be able to.
  • a film obtained by processing the epoxy resin composition of the present invention into a sheet and a cured product thereof are obtained by dissolving the epoxy resin composition of the present invention in a solvent.
  • the solvent used include amide solvents such as ⁇ -butyrolactone, N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N, N-dimethylimidazolidinone and the like.
  • Sulfones such as tetramethylene sulfone, ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone And ketone solvents such as cyclohexanone and aromatic solvents such as toluene and xylene.
  • the solid content concentration in the obtained varnish is usually 20 to 80% by weight, preferably 30 to 70% by weight.
  • the film of the present invention has a thickness after drying the above epoxy resin composition on a planar support by various coating methods such as a gravure coating method, screen printing, metal mask method, and spin coating method known per se. Can be obtained by coating and drying so as to have a predetermined thickness, for example, 5 to 500 ⁇ m. Which coating method is used is appropriately selected depending on the type, shape, size, and film thickness of the base material. .
  • the base material examples include various polymers such as polyamide, polyimide, polyamideimide, polyarylate, polyethylene terephthalate, polybutylene terephthalate, polyetheretherketone, polyetherimide, polyetherketone, polyketone, polyethylene, and polypropylene, and / or its It is a film made from a copolymer or a metal foil such as a copper foil, and a polyimide or a metal foil is preferred. By further heating this film, a sheet-like cured product can be obtained.
  • Preferred uses of the film of the present invention include a flexible printed wiring board adhesive sheet, a flexible printed wiring board reinforcing plate, a flexible printed wiring board cover lay, a resin layer of a single-sided or double-sided metal-clad resin laminate (hereinafter these are combined).
  • the epoxy resin composition of the present invention acts as an adhesive or a resin layer for the flexible printed wiring board constituting them.
  • the planar support often has a function as a release film.
  • the varnish obtained above is impregnated into a substrate such as glass fiber, carbon fiber, polyester fiber, aramid fiber, zylon fiber, alumina fiber, paper, etc. It can also be obtained.
  • the solvent is used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the epoxy resin composition of the present invention and the solvent.
  • the reaction liquid of the phenolic hydroxyl group containing aromatic polyamide resin (A) of this invention represented by these was obtained. After cooling the reaction solution to room temperature, 50 g of methanol and 200 g of water were added, and the precipitated resin was filtered off, further washed with 200 g of methanol, and then purified by refluxing with methanol. Subsequently, the mixture was cooled to room temperature and filtered, and the filtrate was dried to obtain a resin powder (this resin is referred to as A-1). The yield was 27.8 g, and the yield was 95.6%. The molecular weight of this resin powder was 37900 in number average molecular weight and 169000 in weight average molecular weight.
  • the active hydrogen equivalent capable of reacting with the epoxy group is calculated to be 246.6 g / eq. (The hydroxyl group equivalent was 256.4 g / eq.).
  • the reaction liquid of the phenolic hydroxyl group containing aromatic polyamide resin (A) of this invention represented by these was obtained. After cooling the reaction solution to room temperature, 50 g of methanol and 200 g of water were added, and the precipitated resin was filtered off, further washed with 200 g of methanol, and then purified by refluxing with methanol. Next, the mixture was cooled to room temperature and filtered, and the filtrate was dried to obtain a resin powder (this resin is referred to as A-2). The yield was 28.0 g, and the yield was 96.4%. The molecular weight of this resin powder was 39000 in number average molecular weight and 139400 in weight average molecular weight.
  • the active hydrogen equivalent that can react with the epoxy group is calculated to be 319.54 g / eq. (The hydroxyl group equivalent was 336.58 g / eq.).
  • the reaction liquid of the phenolic hydroxyl group containing aromatic polyamide resin (A) of this invention represented by these was obtained. After cooling the reaction solution to room temperature, 50 g of methanol and 200 g of water were added, and the precipitated resin was filtered off, further washed with 200 g of methanol, and then purified by refluxing with methanol. Next, the mixture was cooled to room temperature and filtered, and the filtrate was dried to obtain a resin powder (this resin is referred to as A-3). The yield was 25.2 g, and the yield was 86.6%. The molecular weight of this resin powder was 19300 in terms of number average molecular weight and 97200 in terms of weight average molecular weight.
  • the active hydrogen equivalent capable of reacting with the epoxy group is calculated to be 246.6 g / eq. (The hydroxyl group equivalent was 256.4 g / eq.).
  • the reaction liquid of the phenolic hydroxyl group containing aromatic polyamide resin (A) of this invention represented by these was obtained. After cooling the reaction solution to room temperature, 50 g of methanol and 200 g of water were added, and the precipitated resin was filtered off, further washed with 200 g of methanol, and then purified by refluxing with methanol. Next, the mixture was cooled to room temperature and filtered, and the filtrate was dried to obtain a resin powder (this resin is referred to as A-4). The yield was 27.6 g, and the yield was 91.8%. The molecular weight of this resin powder was 30300 in terms of number average molecular weight and 120800 in terms of weight average molecular weight.
  • the active hydrogen equivalent capable of reacting with the epoxy group is 335.0 g / eq. (The hydroxyl group equivalent was 348.4 g / eq.).
  • the reaction liquid of the phenolic hydroxyl group containing aromatic polyamide resin (A) of this invention represented by these was obtained. After cooling the reaction solution to room temperature, 50 g of methanol and 200 g of water were added, and the precipitated resin was filtered off, further washed with 200 g of methanol, and then purified by refluxing with methanol. Next, the mixture was cooled to room temperature and filtered, and the filtrate was dried to obtain a resin powder (this resin is referred to as A-5). The yield was 28.4 g, and the yield was 94.4%. The molecular weight of this resin powder was 40000 in terms of number average molecular weight and 164200 in terms of weight average molecular weight.
  • the active hydrogen equivalent that can react with the epoxy group is 336.8 g / eq. (The hydroxyl group equivalent was 350.3 g / eq.).
  • the reaction liquid of the phenolic hydroxyl group containing aromatic polyamide resin for comparison represented by these was obtained. After cooling the reaction solution to room temperature, 50 g of methanol and 200 g of water were added, and the precipitated resin was filtered off, further washed with 200 g of methanol, and then purified by refluxing with methanol. Subsequently, the mixture was cooled to room temperature and filtered, and the filtrate was dried to obtain a resin powder (this resin is referred to as R-2). The yield was 28.0 g, and the yield was 91.9%. The molecular weight of this resin powder was 19300 in terms of number average molecular weight and 69100 in terms of weight average molecular weight.
  • the active hydrogen equivalent capable of reacting with the epoxy group is 445.0 g / eq. (Hydroxyl equivalent was 462.8 g / eq.).
  • the reaction liquid of the phenolic hydroxyl group containing aromatic polyamide resin for comparison represented by these was obtained. After cooling the reaction solution to room temperature, 50 g of methanol and 200 g of water were added, and the precipitated resin was filtered off, further washed with 200 g of methanol, and then purified by refluxing with methanol. Next, after cooling to room temperature, filtration was performed, and the filtrate was dried to obtain a resin powder (this resin is referred to as R-3). The yield was 27.7 g, and the yield was 92.5%. The molecular weight of the resin powder was 44,000 in terms of number average molecular weight and 106,000 in terms of weight average molecular weight.
  • the active hydrogen equivalent that can react with the epoxy group is 5577 g / eq. (Hydroxyl equivalent was 16731 g / eq.).
  • Resin powders obtained in Synthesis Examples 1 to 5 and Comparative Synthesis Examples 2 and 3 (A-1, A-2, A-3, A-4, A-5, R-2, R-3) was diluted with N, N-dimethylacetamide to a solid content concentration of 20% by weight to obtain a phenolic hydroxyl group-containing aromatic polyamide resin solution.
  • This resin solution was applied onto a PET film so that the thickness after drying was 20 ⁇ m, then dried at 140 ° C. for 10 minutes to remove the PET film, and then fixed to a mold and added at 200 ° C. for 60 minutes. By drying, a film of the present invention and a comparative phenolic hydroxyl group-containing polyamide resin alone was obtained.
  • TMA apparatus manufactured by PerkinElmer
  • Examples 4, 5, and 6 Comparative Example 2 By applying the resin compositions of Examples 1, 2, 3 and Comparative Example 1 on a PET film so that the thickness after drying was 20 ⁇ m, and drying at 140 ° C. for 10 minutes, and then removing the PET film The films of the present invention and comparative epoxy resin compositions were obtained.
  • PCBT PCBT
  • Examples 10, 11, 12 Comparative Example 4 The films obtained in Examples 4, 5, 6 and Comparative Example 2 were cut into 20 cm squares and sandwiched between Teflon (registered trademark) plates and cured by heat treatment at 200 ° C. and 5 MPa for 60 minutes using a hot plate press. The present invention and comparative film cured products were obtained. Table 3 shows the flame retardancy of this cured product, the glass transition temperature (Tg) measured by TMA and the linear expansion coefficient (CTE) between 100 to 200 ° C., the glass transition temperature (Tg) measured by DMA and the elastic modulus at 30 ° C. It was shown to.
  • Tg glass transition temperature
  • CTE linear expansion coefficient
  • Examples 13, 14, and 15 Comparative Example 5 Using the roll coater on the resin compositions of Examples 1, 2, 3 and Comparative Example 1 on polyimide having a thickness of 25 ⁇ m (Upilex 25SGA, manufactured by Ube Industries, Ltd.), the thickness after drying becomes 20 ⁇ m. Then, the solvent was removed under drying conditions at 140 ° C. for 10 minutes to obtain an upilex film with an adhesive layer (the present invention and a coverlay for comparison).
  • Examples 16, 17, 18 Comparative Example 6 On the adhesive layer surface of the Upilex film with an adhesive layer obtained in Examples 13, 14, 15 and Comparative Example 5, a roughened surface of rolled copper foil (manufactured by Nikko Materials Co., Ltd., BHN foil) having a thickness of 18 ⁇ m. Were bonded together by thermocompression bonding at 230 ° C. and 5 MPa for 60 minutes using a hot plate press to obtain a single-sided copper-clad resin laminate for the present invention and comparison. The obtained single-sided copper-clad resin laminate was measured for peel strength between the copper foil and the resin layer by a method according to JIS C6481 using a Tensilon tester (manufactured by Toyo Baldwin Co., Ltd.). It was 11 N / cm.
  • Examples 19, 20, 21 Comparative Example 7 The epoxy resin compositions of Examples 1, 2, 3 and Comparative Example 1 were dried on a roughened surface of a rolled copper foil (manufactured by Nikko Materials Co., Ltd., BHN foil) having a thickness of 18 ⁇ m. It apply
  • the peel strength between the copper foil and the copper foil was measured by a method based on JIS C6481 using a Tensilon tester (manufactured by Toyo Baldwin Co., Ltd.). 14 N / cm.
  • Examples 22, 23, 24 Comparative Example 8 The films of Examples 4, 5, 6 and Comparative Example 2 were sandwiched with 25 ⁇ m-thick polyimide (Iupilex 25SGA, manufactured by Ube Industries, Ltd.) and heat-pressed at 230 ° C. and 5 MPa for 60 minutes to form an epoxy resin composition film And a polyimide laminate was obtained. Using the Tensilon tester (manufactured by Toyo Baldwin Co., Ltd.), the peel strength between the polyimide and the polyimide was measured using a Tensilon tester (manufactured by Toyo Baldwin Co., Ltd.). As a result, all were 8 to 9 N / cm. .
  • the phenolic hydroxyl aromatic polyamide resin of the present invention is solvent-soluble, and the epoxy resin composition containing it has a low coefficient of linear expansion without deteriorating various properties of the composition and its cured product. Gives a cured product with excellent properties. Therefore, the phenol resin of the present invention sufficiently satisfies adhesion to various base materials, heat resistance, and flame retardancy, and is useful for adhesive sheets, coverlays, reinforcing plates, resin laminates, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Polyamides (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明は、その硬化物において、線膨張係数が低く、電気特性に優れ、種々の基材への接着性、耐熱性、難燃性を十分に満足する樹脂及び該樹脂を含有する組成物を提供することを目的とする。  本発明にかかる樹脂は、下記式(2)で表されるフェノール性水酸基含有ポリアミド樹脂(A)である。 下記式(2)(式(2)中mおよびnは平均値で、0≦m/(m+n)≦0.8を示し、また、m+nは2~200の正数である。Arはパラフェニレンジアミン、メタフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、1,5-ナフタレンジアミン、1,8-ナフタレンジアミンより選ばれる1種以上化合物から誘導される2価の芳香族基を表し、qは平均置換基数であって1~4の整数である。)で表される。

Description

フェノール性水酸基含有芳香族ポリアミド樹脂およびその用途
 本発明は低収縮、耐熱性、接着性、電気絶縁特性、および難燃性に優れる硬化物を与え、かつフィルム状に形成した場合、十分なフレキシビリティーを有するフェノール性水酸基含有芳香族ポリアミド樹脂、該樹脂とエポキシ樹脂を必須成分とするエポキシ樹脂組成物、およびこれらを用いたフレキシブルプリント配線板用材料ならびに半導体絶縁膜に関する。
 ポリアミド樹脂は、エポキシ樹脂等の特性を改質する添加剤や硬化剤として開発されているものもあり、それを一成分として含むエポキシ組成物は、一般的に耐熱性、機械特性、耐薬品性などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料などの幅広い分野に利用されている。このようなエポキシ樹脂組成物の主成分として、従来、最も一般的に使用されてきたエポキシ樹脂としてはビスフェノールA型エポキシ樹脂が挙げられる。また、エポキシ樹脂の硬化剤としては酸無水物やアミン系化合物が知られているが、電気・電子部品分野では耐熱性などの面から電気信頼性に優れるノボラック系樹脂が使用されることが多い。特許文献1、特許文献2、特許文献3及び特許文献4には、フェノール性水酸基含有ポリアミド樹脂及び、それらとエポキシ樹脂を含むエポキシ樹脂組成物が耐熱性及び難燃性に優れ、また、フレキシブルプリント配線板用材料や繊維強化剤として有用である旨が記載されている。
 しかしながら、特許文献1、特許文献2、特許文献3及び特許文献4に開示されている樹脂及びそれを含有する組成物は、線膨張係数が高く、一般的な銅箔やポリイミドフィルムとの組み合わせでは、収縮率の違いから大きなカールが発生し、実装工程においての接続信頼性に問題が生じてしまう。
日本公開特許;特公平7-42359号公報 日本公開特許;特開2000-273168号公報 日本公開特許;特許第2909878号公報 WO2004/048436号国際公開パンフレット
 本発明は、その硬化物が低い線膨張係数を有することによりフィルム状の基材に塗布、硬化した際にカールが発生せず、且つ、その硬化物は耐熱性、接着性および難燃性に優れ、シート状に成形しても十分なフレキシビリティーおよび電気信頼性を有する、ポリアミド樹脂を含有するエポキシ樹脂組成物を提供することを目的とする。
 本発明者らは前記課題を解決するため鋭意研究した結果、本発明を完成させるに到った。
 すなわち本発明は
(1)下記式(2)
Figure JPOXMLDOC01-appb-C000002
(式(2)中、mおよびnは平均値であり、0≦m/(m+n)≦0.8の関係を満たし、かつm+nは2~200の正数である。Arはパラフェニレンジアミン、メタフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、1,5-ナフタレンジアミン及び1,8-ナフタレンジアミンからなる群より選ばれる1種以上の化合物から誘導される2価の芳香族基を表し、qは平均置換基数であって1~4の整数である。)で表されるフェノール性水酸基含有ポリアミド樹脂(A)、
(2)式(2)中のmおよびnが0≦m/(m+n)≦0.5の関係を満たし、かつ、Arがパラフェニレンジアミン、メタフェニレンジアミン及び4,4’-ジアミノジフェニルメタンからなる群より選ばれる1種以上の化合物から誘導される2価の芳香族基である上記(1)に記載のフェノール性水酸基含有ポリアミド樹脂(A)、
(3)ガラス転移温度が300℃以上でかつ、100~200℃間の線膨張係数が40ppm以下である上記(1)または(2)に記載のフェノール性水酸基含有ポリアミド樹脂(A)、
(4)上記(1)~(3)のいずれか一項に記載のフェノール性水酸基含有ポリアミド樹脂(A)と、エポキシ樹脂(B)を含有するエポキシ樹脂組成物、
(5)上記(4)に記載のエポキシ樹脂組成物をシート状に加工したフィルム、
(6)上記(4)に記載のエポキシ樹脂組成物を有するフレキシブルプリント配線板用接着シート、
(7)上記(4)に記載のエポキシ樹脂組成物、上記(5)に記載のフィルムまたは上記(6)に記載のシートを加熱硬化して得られる物品、
(8)上記(4)に記載のエポキシ樹脂組成物またはその硬化物層を有するフレキシブルプリント配線板用補強板、
(9)上記(4)に記載のエポキシ樹脂組成物またはその硬化物層を有するフレキシブルプリント配線板用カバーレイ、
(10)上記(5)に記載のフィルムまたはその硬化物層の片面または両面が、金属箔層の片面または片面金属張樹脂積層板の樹脂面に接していることを特徴とする片面または両面金属張樹脂積層板、
(11)上記(5)に記載のフィルム、上記(6)に記載のシート、上記(8)に記載の補強板、上記(9)に記載のカバーレイ及び上記(10)に記載の積層板からなる群から選ばれる1種以上を使用したフレキシブルプリント配線板、
(12)上記(4)に記載のエポキシ樹脂組成物またはその硬化物層を有する半導体絶縁膜、
(13)(A)パラフェニレンジアミン、メタフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、1,5-ナフタレンジアミン及び1,8-ナフタレンジアミンからなる群より選ばれる1種以上の化合物と、
(B)ヒドロキシフタル酸及び任意成分としてのフタル酸(但し、両者のうち20モル%以上100モル%以下がヒドロキシフタル酸である)と、を縮合反応させる上記(1)記載のフェノール性水酸基含有ポリアミド樹脂(A)の製造方法、
(14)(A)パラフェニレンジアミン、メタフェニレンジアミン及び4,4’-ジアミノジフェニルメタンからなる群より選ばれる1種以上の化合物と、
(B)ヒドロキシフタル酸及び任意成分としてのフタル酸(但し、両者のうち50モル%以上100モル%以下がヒドロキシフタル酸である)と、を縮合反応させる上記(2)記載のフェノール性水酸基含有ポリアミド樹脂(A)の製造方法、
に関する。
 本発明のフェノール性水酸基含有ポリアミド樹脂は、耐熱性に優れ、且つ、薄膜状に成形した場合でも低い線膨張係数を有する。また、該ポリアミド樹脂及びエポキシ樹脂を含有する本発明のエポキシ樹脂組成物は、シート状に加工したフィルム状の硬化物においても、前記ポリアミド樹脂の特徴である耐熱性及び低い線膨張係数を維持したまま、更に、接着性、難燃性及び電気信頼性にも優れているため、フレキシブル印刷配線基板の製造や半導体絶縁材料等に広く用いることが可能であり、電気基板、絶縁膜等、電気材料分野で極めて有用である。
 本発明のフェノール性水酸基含有芳香族ポリアミド樹脂(A)は、下記化合物群(a)と化合物群(b)を縮合反応させて得られる。
化合物群(a)
パラフェニレンジアミン、メタフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、1,5-ナフタレンジアミンまたは1,8-ナフタレンジアミンより選ばれる1種以上の化合物
化合物群(b)
ヒドロキシフタル酸及び任意成分としてのフタル酸
 化合物群(a)の芳香族ジアミン(以下、単に「芳香族ジアミン」ともいう)は結晶性が極めて高いため、化合物群(b)の芳香族ジカルボン酸(以下、単に「芳香族ジカルボン酸」ともいう)との縮合反応の進行に伴って溶剤溶解性が極端に低下し、場合によっては縮合反応中に結晶として析出してしまう場合があるが、芳香族ジカルボン酸のうちフェノール性水酸基を有するヒドロキシフタル酸、好ましくはヒドロキシイソフタル酸を一定量以上使用することにより、縮合反応中の芳香族ジアミンの析出を抑制することが出来るのに加え、ガラス転移点が高く、線膨張係数の低いフェノール性水酸基含有芳香族ポリアミド樹脂を得ることができる。
 本発明のフェノール性水酸基含有ポリアミド樹脂(A)は、100~200℃間の線膨張係数が40ppm以下であるものが好ましい。この温度範囲における線膨張係数が40ppmを超えると、フェノール性水酸基含有ポリアミド樹脂を用いたフィルムやフレキシブルプリント配線板に、ハンダリフロー等の各種熱処理工程により大きなカールが発生してしまう恐れがある。フレキシブルプリント配線版に使用される一般的な銅箔及びポリイミドフィルムは、100~200℃間の線膨張係数が20ppm程度であり、この値に近いほどカールは少なくなる。従って、フェノール性水酸基含有ポリアミド樹脂(A)としては、100~200℃間の線膨張係数が20ppmに近いものがより好ましい。
 本発明のフェノール性水酸基含有ポリアミド樹脂(A)は、例えば特許2969585号公報等に記載されている方法等を応用して芳香族ジアミンと芳香族ジカルボン酸とを縮合反応させることにより調製できる。
 縮合反応に用いる芳香族ジアミンの使用量は、芳香族ジカルボン酸100モルに対して通常50~200モル、好ましくは80~125モル、より好ましくは90~110モル、特に好ましくは95~105モルである。縮合反応に用いる芳香族ジアミンと芳香族ジカルボン酸とのモル比率が1:1に近くなるほど得られるフェノール性水酸基含有ポリアミド樹脂(A)の分子量は大きくなる。
 芳香族ジアミンと芳香族ジカルボン酸との縮合反応は、ピリジン誘導体の存在下、有機溶剤中で燐系縮合剤を用いて行われる。燐系縮合剤としては、亜燐酸エステルが好ましい。また、該反応の際に塩化リチウムや塩化カルシウム等の無機塩を添加すると、より分子量の大きなフェノール性水酸基含有ポリアミド樹脂(A)を得ることが出来る。この製造方法によれば、官能基であるフェノール性水酸基を保護しなくても、フェノール性水酸基と他の反応基、例えばカルボキシル基やアミノ基との反応を起こすことなしにフェノール性水酸基含有芳香族ポリアミド樹脂を容易に製造することが可能であり、しかも、約150℃以下という低温で縮合反応を行うことができる。
 以下、本発明のフェノール性水酸基含有ポリアミド樹脂(A)の合成方法についてより詳しく説明する。合成に使用する芳香族ジアミンとしては、パラフェニレンジアミン、メタフェニレンジアミン、4,4’-ジアミノジフェニルエーテルまたは4,4’-ジアミノジフェニルメタンが好ましく、得られるフェノール性水酸基含有芳香族ポリアミド樹脂(A)の線膨張係数がより低いパラフェニレンジアミン、メタフェニレンジアミンまたは4,4’-ジアミノジフェニルメタンがより好ましく、パラフェニレンジアミンが特に好ましい。
 合成に使用する芳香族ジカルボン酸のうち、ヒドロキシフタル酸としては、ヒドロキシ基が1~4個置換されているものであれば良く、5-ヒドロキシイソフタル酸、4-ヒドロキシイソフタル酸、2-ヒドロキシイソフタル酸、3-ヒドロキシイソフタル酸および2-ヒドロキシテレフタル酸等を挙げることができる。中でも、得られるフェノール性水酸基含有芳香族ポリアミド樹脂(A)の溶剤溶解性、純度、およびエポキシ樹脂組成物としたときの電気特性、金属箔およびポリイミドへの接着性等の面から5-ヒドロキシイソフタル酸が最も好ましい。また、合成に使用する芳香族ジカルボン酸のうち、任意成分であるフタル酸としては、オルソフタル酸、メタフタル酸(イソフタル酸)及びパラフタル酸(テレフタル酸)のいずれも使用可能であるが、メタフタル酸が好ましい。
 芳香族ジカルボン酸成分に占めるヒドロキシフタル酸の含有量が低下すると、合成時に芳香族ジアミンの結晶が析出する場合がある。芳香族ジアミンの析出を抑制するためのヒドロキシフタル酸の使用量は、全芳香族ジカルボン酸中、通常20モル%以上100モル%以下、好ましくは50モル%以上100モル%以下、より好ましくは75モル%以上100モル%以下である。ヒドロキシフタル酸の使用量を上記とすることで、前記式(2)における繰り返し単位m、nが0≦m/(m+n)≦0.8、好ましくは0≦m/(m+n)≦0.5の関係を満たすフェノール性水酸基含有芳香族ポリアミド樹脂(A)が得られる。
 なお、特許2969585号公報には、フェノール性水酸基を有するジカルボン酸の使用量が全カルボン酸成分中5モル%以上であるフェノール性水酸基含有ポリアミド樹脂が記載されているが、フェノール性水酸基を有するジカルボン酸を特定量用いることにより、縮合反応中の芳香族ジアミンの析出を抑制する効果があることは何ら記載されていない。
 合成の際に縮合剤として用いられる亜燐酸エステルの具体例としては、亜燐酸トリフェニル、亜燐酸ジフェニル、亜燐酸トリ-o-トリル、亜燐酸ジ-o-トリル、亜燐酸トリ-m-トリル、亜燐酸トリ-p-トリル、亜燐酸ジ-p-トリル、亜燐酸ジ-p-クロロフェニル、亜燐酸トリ-p-クロロフェニルおよび亜燐酸ジ-p-クロロフェニル等を挙げることが出来るが、これらに限定されるものではない。
 また、亜燐酸エステルと共に使用するピリジン誘導体としては、ピリジン、2-ピコリン、3-ピコリン、4-ピコリンおよび2,4-ルチジンなどを例示することが出来る。
 上記亜燐酸エステルは、ピリジン誘導体と有機溶媒との混合物中で縮合剤として用いられるのが一般的である。該有機溶媒としては亜燐酸エステルと実質的に反応せず、上記芳香族ジアミンと上記芳香族ジカルボン酸とを良好に溶解させる性質を有し、かつ反応生成物であるフェノール性水酸基含有ポリアミド樹脂(A)に対する良溶媒であることが望ましい。この様な有機溶媒としては、N-メチルピロリドンやN,N-ジメチルアセトアミドなどのアミド系溶媒の他、トルエン、メチルエチルケトン、またはこれらとアミド系溶媒との混合溶媒が挙げられ、中でもN-メチル-2-ピロリドンが好ましい。ピリジン誘導体の使用量は、ピリジン誘導体と有機溶媒との混合物中、通常5~30重量%である。
 また、重合度の大きいフェノール性水酸基含有ポリアミド樹脂(A)を得るためには、上記亜燐酸エステルとピリジン誘導体との他に、塩化リチウム、塩化カルシウムなどの無機塩類を添加することが好ましい。
 以下、本発明のフェノール性水酸基含有ポリアミド樹脂(A)の製造方法の、最も好ましい例を具体的に説明する。まず、ピリジン誘導体を含む有機溶媒からなる混合溶媒中に亜燐酸エステル及び無機塩類を添加し、これに5-ヒドロキシイソフタル酸および場合によってはイソフタル酸と、これらジカルボン酸成分100モルに対して50~200モルのパラフェニレンジアミンを添加し、次いで窒素などの不活性雰囲気下で加熱撹拌する。反応終了後、水、メタノールあるいはヘキサンなどの貧溶媒を反応液に添加して、または貧溶媒中に反応液を投じて生成重合体を分離した後、再沈殿法によって精製を行って副生成物や無機塩類などを除去することにより、前記式(2)で表されるフェノール性水酸基含有芳香族ポリアミド樹脂(A)を得ることが出来る。
 上記製造方法において縮合剤である亜燐酸エステルの添加量は、通常、アミノ基に対して等モル以上であるが、30倍モル以上は効率的ではない。また、亜燐酸トリエステルを用いた場合、副生する亜燐酸ジエステルも縮合剤として作用するため、通常の80モル%程度でもよい。ピリジン誘導体の量はアミノ基に対して等モル以上であることが必要であるが、実際には反応溶媒としての役割を兼ねて大過剰に使用されることが多い。上記ピリジン誘導体と有機溶媒とからなる混合物の使用量は、理論上得られるフェノール性水酸基含有芳香族ポリアミド樹脂の濃度が、5~30重量%となるような範囲が好ましい。反応温度は、通常60~180℃、好ましくは80~120℃である。反応時間は反応温度により大きく影響されるが、いかなる場合にも最高の重合度を表す最高粘度が得られるまで反応系を撹拌することが好ましく、通常数分間から20時間程度、好ましくは5~12時間である。
 上記好ましい反応条件下で、5-ヒドロキシイソフタル酸および場合によってはイソフタル酸とパラフェニレンジアミンとを等モル使用すると、繰り返し単位が2~200程度という最も好ましい平均重合度を有するフェノール性水酸基含有芳香族ポリアミド樹脂(A)を得ることができる。
 上記のようにして得られるフェノール性水酸基含有芳香族ポリアミド樹脂(A)の数平均分子量は通常3000~60000程度、好ましくは10000~40000程度、重量平均分子量は通常10000~250000程度、好ましくは70000~200000程度であり、活性水素当量の計算値は通常180~5000g/eq.、好ましくは200~1000g/eq.、より好ましくは200~500g/eq.、更に好ましくは200~400g/eq.、最も好ましくは220~350g/eq.である。一般に好ましい平均重合度を有するか否かは、分子量を参照することにより判断する。重量平均分子量が10000より小さいと、成膜性や芳香族ポリアミド樹脂としての性質出現が不十分であるため、好ましくない。逆に分子量が250000より大きいと、重合度が高すぎ溶剤溶解性が悪くなり、かつ成形加工性が悪くなるといった問題が発生する。なお、数平均分子量及び重量平均分子量はゲルパーミエーションクロマトグラフィーによるポリスチレン換算した数値である(以下同様)。
 フェノール性水酸基含有芳香族ポリアミド樹脂(A)の重合度を調節する簡便な方法としては、芳香族ジアミンまたは芳香族ジカルボン酸のどちらか一方を過剰に使用する方法を挙げることができる。
 次に本発明のエポキシ樹脂組成物について説明する。
 本発明のエポキシ樹脂組成物は、フェノール性水酸基含有芳香族ポリアミド樹脂(A)とエポキシ樹脂(B)を含有する組成物である。本発明のエポキシ樹脂組成物に用いられるエポキシ樹脂(B)は、フェノール性水酸基含有芳香族ポリアミド樹脂(A)中のフェノール性水酸基、及び、末端カルボキシル基又は/及び末端アミノ基と反応させることを目的に加えられる。フェノール性水酸基含有芳香族ポリアミド樹脂(A)とエポキシ樹脂(B)とが反応することにより、本発明のポリアミド樹脂の架橋密度が増加し、本発明のエポキシ樹脂組成物の硬化物の耐熱性や基材への密着性が向上する。用い得るエポキシ樹脂(B)としては、一分子中にエポキシ基を2個以上有するものであれば特に限定されないが、機械強度や難燃性等の面からベンゼン環、ビフェニル環、ナフタレン環のような芳香族環を有し、1分子中にエポキシ基を2個以上有するものが好ましい。具体的にはノボラック型エポキシ樹脂、キシリレン骨格含有フェノールノボラック型エポキシ樹脂、ビフェニル骨格含有ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂等が挙げられるが、フェノール性水酸基含有ポリアミド樹脂(A)との相溶性の点からビフェニル骨格を有するエポキシ樹脂が特に好ましい。
 本発明のエポキシ樹脂組成物におけるエポキシ樹脂(B)の使用量は、エポキシ樹脂組成物の含有するフェノール性水酸基含有芳香族ポリアミド樹脂(A)の活性水素1当量に対して、通常0.05~1.2当量、好ましくは0.05~0.5当量、より好ましくは0.05~0.3当量である。フェノール性水酸基含有芳香族ポリアミド樹脂(A)の活性水素当量は反応時に仕込んだフェノール性水酸基含有芳香族ジカルボン酸並びに過剰分のジアミン成分又はジカルボン酸成分の合計から算出することが出来る。
 本発明のエポキシ樹脂組成物には、硬化剤を配合しても良い。配合し得る硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノール性水酸基含有樹脂、トリフェニルメタンおよびこれらの変性物、イミダゾール、BF-アミン錯体、グアニジン誘導体などが挙げられるがこれらに限定されるものではない。これら硬化剤を配合する場合、エポキシ樹脂組成物中のフェノール性水酸基含有芳香族ポリアミド樹脂(A)が全硬化剤中に占める割合としては通常20重量%以上、好ましくは30重量%以上である。
 また上記硬化剤を用いる際に硬化促進剤を併用しても差し支えない。用いうる硬化促進剤の具体例としては2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤はエポキシ樹脂100重量部に対して0.1~5.0重量部が必要に応じ用いられる。
 本発明のエポキシ樹脂組成物は必要により無機充填材を含有する。用いうる無機充填材の具体例としてはシリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、燐酸カルシウム、アルミナ、タルク、ガラス短繊維等が挙げられる。無機充填材は本発明のエポキシ樹脂組成物中において0~90重量%を占める量が用いられる。更に本発明のエポキシ樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤を添加することができる。
 本発明のエポキシ樹脂組成物は、必要により溶剤に溶解して用いてもよい。用い得る溶剤としては、例えばγ-ブチロラクトン類、N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられる。これら溶剤は、樹脂組成物中の溶剤を除く固形分濃度が通常10~70重量%、好ましくは30~70重量%となる量が必要により用いられる。
 本発明のエポキシ樹脂組成物は、その硬化物において100~200℃間の線膨張係数が50ppm以下である特徴を有する。線膨張係数が50ppmを超えると、塗膜形成後のフィルムやフレキシブルプリント配線板作製時において、ハンダリフロー等の各種処理工程により大きなカールが発生してしまう。フレキシブルプリント配線版に使用される、一般的な銅箔及びポリイミドフィルムは、100~200℃間の線膨張係数が20ppm程度であり、この値に近いほどカールは少なくなる。
 本発明のエポキシ樹脂組成物は、上記各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば、エポキシ樹脂組成物と場合によっては硬化剤、並びに必要により硬化促進剤および無機充填材、配合剤とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合し、そのエポキシ樹脂組成物を溶融注型法あるいはトランスファー成型法やインジェクション成型法、圧縮成型法などによって成型し、更に80~200℃で2~10時間に加熱することにより本発明の硬化物を得ることができる。
 本発明のエポキシ樹脂組成物をシート状に加工したフィルムおよびその硬化物は、本発明のエポキシ樹脂組成物を溶剤に溶解したものより得られる。用いられる溶剤としては、例えばγ-ブチロラクトン類、N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられる。得られたワニス中の固形分濃度は通常20~80重量%、好ましくは30~70重量%である。
 前記本発明のフィルムは、上記のエポキシ樹脂組成物をそれ自体公知のグラビアコート法、スクリーン印刷、メタルマスク法、スピンコート法などの各種塗工方法により平面状支持体上に乾燥後の厚さが所定の厚さ、例えば5~500μmになるように塗布後乾燥して得られるが、どの塗工法を用いるかは基材の種類、形状、大きさ、塗膜の膜厚により適宜選択される。基材としては、例えばポリアミド、ポリイミド、ポリアミドイミド、ポリアリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルケトン、ポリケトン、ポリエチレン、ポリプロピレン等の各種高分子および/またはその共重合体から作られるフィルム、或いは銅箔等の金属箔であり、ポリイミド又は金属箔が好ましい。このフィルムを更に加熱することによりシート状の硬化物を得ることが出来る。本発明のフィルムの好ましい用途としてはフレキシブルプリント配線板用接着シート、フレキシブルプリント配線板用補強板、フレキシブルプリント配線板用カバーレイ、片面または両面金属張樹脂積層板の樹脂層(以下、これらをあわせてフレキシブルプリント配線板用材料という)が挙げられ、本発明のエポキシ樹脂組成物はこれらを構成するフレキシブルプリント配線板用の接着剤または樹脂層として作用する。こういった用途には平面状支持体が剥離フィルムとしての機能を有する場合が多い。
 また上記で得たワニスを、ガラス繊維、カーボン繊維、ポリエステル繊維、アラミド繊維、ザイロン繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して硬化物を得ることもできる。この際の溶剤は、本発明のエポキシ樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。
 次に本発明を更に実施例、比較例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
合成実施例1
 温度計、冷却管及び撹拌器を取り付けたフラスコ中を窒素ガスでパージし、その中に5-ヒドロキシイソフタル酸20.66g(0.11モル)、パラフェニレンジアミン12.51g(0.12モル)、塩化リチウム0.96g、N-メチル-2-ピロリドン120.98g及びピリジン26.80gを仕込んで撹拌溶解させた後、亜燐酸トリフェニル58.09gを加えて95℃で8時間反応させて、下記式(4)
Figure JPOXMLDOC01-appb-C000003
で表される本発明のフェノール性水酸基含有芳香族ポリアミド樹脂(A)の反応液を得た。この反応液を室温まで冷却した後、メタノール50g及び水200gを投入して析出した樹脂を濾別し、更にメタノール200gで洗浄した後、メタノールで還流して精製した。次いで室温まで冷却した後に濾過し、濾過物を乾燥させて樹脂粉末を得た(この樹脂をA-1とする)。得量は27.8gで収率95.6%であった。この樹脂粉末の分子量は、数平均分子量で37900、重量平均分子量で169000であった。エポキシ基と反応しうる活性水素当量は、計算値で246.6g/eq.であった(水酸基当量は256.4g/eq.)。
合成実施例2
 温度計、冷却管及び撹拌器を取り付けたフラスコ中を窒素ガスでパージし、その中に5-ヒドロキシイソフタル酸15.71g(0.09モル)、イソフタル酸4.78g(0.03モル)、パラフェニレンジアミン12.69g(0.12モル)、塩化リチウム0.955g、N-メチル-2-ピロリドン129.80g及びピリジン27.18gを仕込んで撹拌溶解させた後、亜燐酸トリフェニル58.90gを加えて90℃で8時間反応させて、下記式(5)
Figure JPOXMLDOC01-appb-C000004
で表される本発明のフェノール性水酸基含有芳香族ポリアミド樹脂(A)の反応液を得た。この反応液を室温まで冷却した後、メタノール50g及び水200gを投入して析出した樹脂を濾別し、更にメタノール200gで洗浄した後、メタノールで還流して精製した。次いで室温まで冷却した後に濾過し、濾過物を乾燥させて樹脂粉末を得た(この樹脂をA-2とする)。得量は28.0gで収率96.4%であった。この樹脂粉末の分子量は、数平均分子量で39000、重量平均分子量で139400であった。エポキシ基と反応しうる活性水素当量は、計算値で319.54g/eq.であった(水酸基当量は336.58g/eq.)。
合成実施例3
 温度計、冷却管及び撹拌器を取り付けたフラスコ中を窒素ガスでパージし、その中に5-ヒドロキシイソフタル酸20.66g(0.11モル)、メタフェニレンジアミン12.51g(0.12モル)、塩化リチウム0.96g、N-メチル-2-ピロリドン100.98g及びピリジン26.80gを仕込んで撹拌溶解させた後、亜燐酸トリフェニル58.09gを加えて95℃で8時間反応させて、下記式(6)
Figure JPOXMLDOC01-appb-C000005
で表される本発明のフェノール性水酸基含有芳香族ポリアミド樹脂(A)の反応液を得た。この反応液を室温まで冷却した後、メタノール50g及び水200gを投入して析出した樹脂を濾別し、更にメタノール200gで洗浄した後、メタノールで還流して精製した。次いで室温まで冷却した後に濾過し、濾過物を乾燥させて樹脂粉末を得た(この樹脂をA-3とする)。得量は25.2gで収率86.6%であった。この樹脂粉末の分子量は、数平均分子量で19300、重量平均分子量で97200であった。エポキシ基と反応しうる活性水素当量は、計算値で246.6g/eq.であった(水酸基当量は256.4g/eq.)。
合成実施例4
 温度計、冷却管及び撹拌器を取り付けたフラスコ中を窒素ガスでパージし、その中に5-ヒドロキシイソフタル酸15.72g(0.09モル)、4,4’-ジアミノジフェニルメタン17.45g(0.09モル)、塩化リチウム0.96g、N-メチル-2-ピロリドン101.28g及びピリジン20.39gを仕込んで撹拌溶解させた後、亜燐酸トリフェニル44.20gを加えて95℃で8時間反応させて、下記式(7)
Figure JPOXMLDOC01-appb-C000006
で表される本発明のフェノール性水酸基含有芳香族ポリアミド樹脂(A)の反応液を得た。この反応液を室温まで冷却した後、メタノール50g及び水200gを投入して析出した樹脂を濾別し、更にメタノール200gで洗浄した後、メタノールで還流して精製した。次いで室温まで冷却した後に濾過し、濾過物を乾燥させて樹脂粉末を得た(この樹脂をA-4とする)。得量は27.6gで収率91.8%であった。この樹脂粉末の分子量は、数平均分子量で30300、重量平均分子量で120800であった。エポキシ基と反応しうる活性水素当量は、計算値で335.0g/eq.であった(水酸基当量は348.4g/eq.)。
合成実施例5
 温度計、冷却管及び撹拌器を取り付けたフラスコ中を窒素ガスでパージし、その中に5-ヒドロキシイソフタル酸15.64g(0.09モル)、4,4’-ジアミノジフェニルエーテル17.54g(0.09モル)、塩化リチウム0.96g、N-メチル-2-ピロリドン101.62g及びピリジン20.29gを仕込んで撹拌溶解させた後、亜燐酸トリフェニル43.97gを加えて95℃で8時間反応させて、下記式(8)
Figure JPOXMLDOC01-appb-C000007
で表される本発明のフェノール性水酸基含有芳香族ポリアミド樹脂(A)の反応液を得た。この反応液を室温まで冷却した後、メタノール50g及び水200gを投入して析出した樹脂を濾別し、更にメタノール200gで洗浄した後、メタノールで還流して精製した。次いで室温まで冷却した後に濾過し、濾過物を乾燥させて樹脂粉末を得た(この樹脂をA-5とする)。得量は28.4gで収率94.4%であった。この樹脂粉末の分子量は、数平均分子量で40000、重量平均分子量で164200であった。エポキシ基と反応しうる活性水素当量は、計算値で336.8g/eq.であった(水酸基当量は350.3g/eq.)。
比較合成例1
 温度計、冷却管及び撹拌器を取り付けたフラスコ中を窒素ガスでパージし、その中に5-ヒドロキシイソフタル酸0.44g(0.002モル)、イソフタル酸19.52g(0.12モル)、パラフェニレンジアミン13.22g(0.12モル)、塩化リチウム0.96g、N-メチル-2-ピロリドン76.16g及びピリジン28.32gを仕込んで撹拌溶解させた後、亜燐酸トリフェニル61.38gを加えて90℃で反応させて、下記式(9)
Figure JPOXMLDOC01-appb-C000008
で表される比較用のフェノール性水酸基含有芳香族ポリアミド樹脂の反応液を得ようとしたところ、反応物が析出し、溶剤に溶解しないことが確認された。
比較合成例2
 温度計、冷却管及び撹拌器を取り付けたフラスコ中を窒素ガスでパージし、その中に5-ヒドロキシイソフタル酸12.00g(0.07モル)、3,3’,5,5’-テトラエチル-4,4’-ジアミノジフェニルメタン20.86g(0.07モル)、塩化リチウム2.88g、N-メチル-2-ピロリドン114.98g及びピリジン15.56gを仕込んで撹拌溶解させた後、亜燐酸トリフェニル33.73gを加えて95℃で8時間反応させて、下記式(10)
Figure JPOXMLDOC01-appb-C000009
で表される比較用のフェノール性水酸基含有芳香族ポリアミド樹脂の反応液を得た。この反応液を室温まで冷却した後、メタノール50g及び水200gを投入して析出した樹脂を濾別し、更にメタノール200gで洗浄した後、メタノールで還流して精製した。次いで室温まで冷却した後に濾過し、濾過物を乾燥させて樹脂粉末を得た(この樹脂をR-2とする)。得量は28.0gで収率91.9%であった。この樹脂粉末の分子量は、数平均分子量で19300、重量平均分子量で69100であった。エポキシ基と反応しうる活性水素当量は、計算値で445.0g/eq.であった(水酸基当量は462.8g/eq.)。
比較合成例3
 温度計、冷却管及び撹拌器を取り付けたフラスコ中を窒素ガスでパージし、その中にイソフタル酸14.57g(0.09モル)、5-ヒドロキシイソフタル酸0.33g(0.002モル)、3,4’-ジアミノジフェニルエーテル18.28g(0.09モル)、塩化リチウム0.96g、N-メチル-2-ピロリドン98.90g及びピリジン21.15gを仕込んで撹拌溶解させた後、亜燐酸トリフェニル45.83gを加えて95℃で8時間反応させて、下記式(11)
Figure JPOXMLDOC01-appb-C000010
で表される比較用のフェノール性水酸基含有芳香族ポリアミド樹脂の反応液を得た。この反応液を室温まで冷却した後、メタノール50g及び水200gを投入して析出した樹脂を濾別し、更にメタノール200gで洗浄した後、メタノールで還流して精製した。次いで室温まで冷却した後に濾過し、濾過物を乾燥させて樹脂粉末を得た(この樹脂をR-3とする)。得量は27.7gで収率92.5%であった。この樹脂粉末の分子量は、数平均分子量で44000、重量平均分子量で106000であった。エポキシ基と反応しうる活性水素当量は、計算値で5577g/eq.であった(水酸基当量は16731g/eq.)。
試験例
 合成実施例1~5及び比較合成例2、3で得られた樹脂粉末(A-1、A-2、A-3、A-4、A-5、R-2、R-3)を、N,N-ジメチルアセトアミドで固形分濃度が20重量%になるように希釈し、フェノール性水酸基含有芳香族ポリアミド樹脂溶液とした。この樹脂溶液をPETフィルム上に乾燥後の厚さが20μmになるように塗布した後、140℃で10分間乾燥してPETフィルムを除去した後、型枠に固定して200℃で60分間追加乾燥することにより、本発明及び比較用のフェノール性水酸基含有ポリアミド樹脂単独のフィルムを得た。
 得られたフィルムについて、TMA装置(パーキンエルマー製)を用いて50℃から400℃まで5℃/分で昇温した際の、ガラス転移温度(Tg)及び100~200℃間の線膨張係数(CTE)の測定結果を表1に示した。
Figure JPOXMLDOC01-appb-T000011
実施例1、2、3 比較例1
 合成実施例1で得られたフェノール性水酸基含有芳香族ポリアミド樹脂(A-1)、比較合成例3で得られたフェノール性水酸基含有芳香族ポリアミド樹脂(R-3)、エポキシ樹脂、硬化剤、硬化促進剤及び溶剤(DMAC;ジメチルアミノシンナムアルデヒド)を表2に示す割合(重量部)で混合し、本発明及び比較用のエポキシ樹脂組成物を得た。
Figure JPOXMLDOC01-appb-T000012
*1:エポキシ樹脂、日本化薬株式会社製、ビフェニル骨格エポキシ樹脂、エポキシ当量280g/eq.
*2:硬化剤、日本化薬株式会社製、ビフェニル骨格フェノール性水酸基含有樹脂、活性水素当量205g/eq.
*3:硬化促進剤、四国化成株式会社製、2-フェニル-4,5-ジヒドロキシメチルイミダゾール
実施例4、5、6 比較例2
 実施例1、2、3、比較例1の樹脂組成物を、PETフィルム上に乾燥後の厚さが20μmになるように塗布し、140℃で10分間乾燥した後にPETフィルムを除去することにより、本発明及び比較用のエポキシ樹脂組成物のフィルムを得た。
実施例7、8、9 比較例3
 ポリイミド銅張積層板ユピセルD(商品名、宇部興産株式会社製)を用いて形成したIPC-SM-840に規定されている櫛型電極(導体/線間=50μm/50μm)を評価用回路とし、これに実施例4、5、6及び比較例2で作成した本発明及び比較用のフィルムを貼り合わせ、200℃、5MPaで60分間加熱圧着し、電気信頼性試験用サンプル(本発明及び比較用の積層板)とした。イオンマイグレーション加速試験機を用いて121℃、100%RHの環境下で電極間に50Vの直流電圧を印加しながら、1000時間を上限として絶縁抵抗値の連続測定(PCBT)を行った。絶縁抵抗値が10の5乗オーム以下となった時間を測定した結果、いずれも1000時間以上であった。
実施例10、11、12 比較例4
 実施例4、5、6及び比較例2で得られたフィルムを20cm角に切り出してテフロン(登録商標)板ではさみ、熱板プレス機を用い200℃、5MPaで60分間加熱処理して硬化させ、本発明及び比較用のフィルム硬化物を得た。この硬化物の難燃性、TMA測定によるガラス転移温度(Tg)及び100~200℃間での線膨張係数(CTE)、DMA測定によるガラス転移温度(Tg)及び30℃における弾性率を表3に示した。
Figure JPOXMLDOC01-appb-T000013
実施例13、14、15 比較例5
 実施例1、2、3及び比較例1の樹脂組成物を、厚さ25μmのポリイミド(ユーピレックス25SGA、宇部興産株式会社製)上にロールコーターを用いて、乾燥後の厚さが20μmになるように塗布した後、140℃、10分間の乾燥条件で溶剤を除去し、接着層付きユーピレックスフィルム(本発明及び比較用のカバーレイ)を得た。
実施例16、17、18 比較例6
 実施例13、14、15及び比較例5で得られた接着層付きユーピレックスフィルムの接着層面に、厚さ18μmの圧延銅箔(日鉱マテリアルズ株式会社製、BHN箔)の粗化処理面を貼り合わせ、熱板プレス機を用い230℃、5MPaで60分間加熱圧着して本発明及び比較用の片面銅張樹脂積層板を得た。得られた片面銅張樹脂積層板について、テンシロン試験機(株式会社東洋ボールドウィン製)を用いて、JIS C6481に準拠した方法で銅箔と樹脂層との剥離強度を測定した結果、いずれも8~11N/cmであった。
実施例19、20、21 比較例7
 実施例1、2、3及び比較例1のエポキシ樹脂組成物を、厚さ18μmの圧延銅箔(日鉱マテリアルズ株式会社製、BHN箔)の粗化処理面上に、乾燥後の厚さが20μmになるようにロールコーターを用いて塗布し、140℃、10分間の乾燥条件で溶剤を除去した。その後、接着層付き圧延銅箔2枚を20cm角に切り出し、それらの接着層面同士を接触させ、熱板プレス機を用いて230℃、5MPaで60分間加熱圧着して本発明及び比較用の両面銅張樹脂積層板を得た。得られた両面銅張樹脂積層板について、テンシロン試験機(株式会社東洋ボールドウィン製)を用いて、JIS C6481に準拠した方法で銅箔と銅箔との剥離強度を測定した結果、いずれも10~14N/cmであった。
実施例22、23、24 比較例8
 実施例4、5、6及び比較例2のフィルムを、厚さ25μmのポリイミド(ユーピレックス25SGA、宇部興産株式会社製)ではさみ、230℃、5MPaで60分間加熱圧着してエポキシ樹脂組成物のフィルムとポリイミドとの積層体を得た。得られた積層体について、テンシロン試験機(株式会社東洋ボールドウィン製)を用いて、JIS C6481に準拠した方法でポリイミドとポリイミドとの剥離強度を測定した結果、いずれも8~9N/cmであった。
 このように本発明のフェノール性水酸基芳香族ポリアミド樹脂は溶剤可溶性であり、これを含有するエポキシ樹脂組成物は、組成物やその硬化物の諸特性を低下させることなく線膨張係数が低く、電気特性に優れる硬化物を与える。したがって、本発明のフェノール樹脂は種々の基材への接着性、耐熱性、難燃性を十分に満足するものであり、接着シート、カバーレイ、補強板、樹脂積層板等に有用である。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2008年11月19日付けで出願された日本特許出願(特願2008-295022)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (14)

  1.  下記式(2)
    Figure JPOXMLDOC01-appb-C000001
    (式(2)中、mおよびnは平均値であり、0≦m/(m+n)≦0.8の関係を満たし、かつm+nは2~200の正数である。Arはパラフェニレンジアミン、メタフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、1,5-ナフタレンジアミン及び1,8-ナフタレンジアミンからなる群より選ばれる1種以上の化合物から誘導される2価の芳香族基を表し、qは平均置換基数であって1~4の整数である。)で表されるフェノール性水酸基含有ポリアミド樹脂(A)。
  2.  式(2)中のmおよびnが0≦m/(m+n)≦0.5の関係を満たし、かつ、Arがパラフェニレンジアミン、メタフェニレンジアミン及び4,4’-ジアミノジフェニルメタンからなる群より選ばれる1種以上の化合物から誘導される2価の芳香族基である請求項1に記載のフェノール性水酸基含有ポリアミド樹脂(A)。
  3.  ガラス転移温度が300℃以上でかつ、100~200℃間の線膨張係数が40ppm以下である請求項1または2に記載のフェノール性水酸基含有ポリアミド樹脂(A)。
  4.  請求項1~3のいずれか一項に記載のフェノール性水酸基含有ポリアミド樹脂(A)と、エポキシ樹脂(B)を含有するエポキシ樹脂組成物。
  5.  請求項4に記載のエポキシ樹脂組成物をシート状に加工したフィルム。
  6.  請求項4に記載のエポキシ樹脂組成物を有するフレキシブルプリント配線板用接着シート。
  7.  請求項4に記載のエポキシ樹脂組成物、請求項5に記載のフィルムまたは請求項6に記載のシートを加熱硬化して得られる物品。
  8.  請求項4に記載のエポキシ樹脂組成物またはその硬化物層を有するフレキシブルプリント配線板用補強板。
  9.  請求項4に記載のエポキシ樹脂組成物またはその硬化物層を有するフレキシブルプリント配線板用カバーレイ。
  10.  請求項5に記載のフィルムまたはその硬化物層の片面または両面が、金属箔層の片面または片面金属張樹脂積層板の樹脂面に接していることを特徴とする片面または両面金属張樹脂積層板。
  11.  請求項5に記載のフィルム、請求項6に記載のシート、請求項8に記載の補強板、請求項9に記載のカバーレイ及び請求項10に記載の積層板からなる群から選ばれる1種以上を使用したフレキシブルプリント配線板。
  12.  請求項4に記載のエポキシ樹脂組成物またはその硬化物層を有する半導体絶縁膜。
  13.  (A)パラフェニレンジアミン、メタフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、1,5-ナフタレンジアミン及び1,8-ナフタレンジアミンからなる群より選ばれる1種以上の化合物と、
    (B)ヒドロキシフタル酸及び任意成分としてのフタル酸(但し、両者のうち20モル%以上100モル%以下がヒドロキシフタル酸である)と、を縮合反応させる請求項1記載のフェノール性水酸基含有ポリアミド樹脂(A)の製造方法。
  14.  (A)パラフェニレンジアミン、メタフェニレンジアミン及び4,4’-ジアミノジフェニルメタンからなる群より選ばれる1種以上の化合物と、
    (B)ヒドロキシフタル酸及び任意成分としてのフタル酸(但し、両者のうち50モル%以上100モル%以下がヒドロキシフタル酸である)と、を縮合反応させる請求項2記載のフェノール性水酸基含有ポリアミド樹脂(A)の製造方法。
PCT/JP2009/069294 2008-11-19 2009-11-12 フェノール性水酸基含有芳香族ポリアミド樹脂およびその用途 WO2010058734A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010539214A JPWO2010058734A1 (ja) 2008-11-19 2009-11-12 フェノール性水酸基含有芳香族ポリアミド樹脂およびその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008295022 2008-11-19
JP2008-295022 2008-11-19

Publications (1)

Publication Number Publication Date
WO2010058734A1 true WO2010058734A1 (ja) 2010-05-27

Family

ID=42198174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069294 WO2010058734A1 (ja) 2008-11-19 2009-11-12 フェノール性水酸基含有芳香族ポリアミド樹脂およびその用途

Country Status (3)

Country Link
JP (1) JPWO2010058734A1 (ja)
TW (1) TW201026748A (ja)
WO (1) WO2010058734A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061640A (ja) * 2012-09-21 2014-04-10 Nippon Kayaku Co Ltd ガラスと硬化性樹脂層および透明樹脂層を有する積層体
JP2014111693A (ja) * 2012-12-05 2014-06-19 Chubu Electric Power Co Inc 耐低温性樹脂組成物及びそれを用いた超電導線材
US9480154B2 (en) 2005-07-21 2016-10-25 Nippon Kayaku Kabushiki Kaisha Polyamide resin, epoxy resin compositions, and cured articles thereof
JP2017149933A (ja) * 2016-02-24 2017-08-31 東洋紡株式会社 フェノール性水酸基含有ポリアミド樹脂、およびその組成物
KR101783420B1 (ko) 2016-05-12 2017-10-11 한국화학연구원 박막 트랜지스터 절연막용 조성물, 이를 포함하는 절연막 및 유기박막 트랜지스터
CN109337066A (zh) * 2018-09-28 2019-02-15 浙江大学 一种具有反应活性、易溶解的刚性链聚合物及其制备方法和组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422923A (en) * 1987-07-17 1989-01-25 Idemitsu Kosan Co Production of polyamide
JPH04186319A (ja) * 1990-11-21 1992-07-03 Hitachi Chem Co Ltd 液晶表示素子
WO2004048436A1 (ja) * 2002-11-28 2004-06-10 Nippon Kayaku Kabushiki Kaisha 難燃性エポキシ樹脂組成物及びその硬化物
JP2005029710A (ja) * 2003-07-08 2005-02-03 Nippon Kayaku Co Ltd 接着剤組成物
JP2005097428A (ja) * 2003-09-25 2005-04-14 Mitsubishi Gas Chem Co Inc 硬化性樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422923A (en) * 1987-07-17 1989-01-25 Idemitsu Kosan Co Production of polyamide
JPH04186319A (ja) * 1990-11-21 1992-07-03 Hitachi Chem Co Ltd 液晶表示素子
WO2004048436A1 (ja) * 2002-11-28 2004-06-10 Nippon Kayaku Kabushiki Kaisha 難燃性エポキシ樹脂組成物及びその硬化物
JP2005029710A (ja) * 2003-07-08 2005-02-03 Nippon Kayaku Co Ltd 接着剤組成物
JP2005097428A (ja) * 2003-09-25 2005-04-14 Mitsubishi Gas Chem Co Inc 硬化性樹脂組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9480154B2 (en) 2005-07-21 2016-10-25 Nippon Kayaku Kabushiki Kaisha Polyamide resin, epoxy resin compositions, and cured articles thereof
JP2014061640A (ja) * 2012-09-21 2014-04-10 Nippon Kayaku Co Ltd ガラスと硬化性樹脂層および透明樹脂層を有する積層体
JP2014111693A (ja) * 2012-12-05 2014-06-19 Chubu Electric Power Co Inc 耐低温性樹脂組成物及びそれを用いた超電導線材
JP2017149933A (ja) * 2016-02-24 2017-08-31 東洋紡株式会社 フェノール性水酸基含有ポリアミド樹脂、およびその組成物
KR101783420B1 (ko) 2016-05-12 2017-10-11 한국화학연구원 박막 트랜지스터 절연막용 조성물, 이를 포함하는 절연막 및 유기박막 트랜지스터
CN109337066A (zh) * 2018-09-28 2019-02-15 浙江大学 一种具有反应活性、易溶解的刚性链聚合物及其制备方法和组合物

Also Published As

Publication number Publication date
JPWO2010058734A1 (ja) 2012-04-19
TW201026748A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
JP4996473B2 (ja) ゴム変性ポリアミド樹脂、エポキシ樹脂組成物、およびその硬化物
JP5311823B2 (ja) ポリアミド樹脂、エポキシ樹脂組成物およびその硬化物
US7608336B2 (en) Flame-retardant epoxy resin composition and cured product obtained therefrom
JP4884298B2 (ja) 樹脂層付き銅箔
JP4616771B2 (ja) 難燃性エポキシ樹脂組成物及びその硬化物
JP2007204598A (ja) 樹脂組成物およびその硬化物
WO2010058734A1 (ja) フェノール性水酸基含有芳香族ポリアミド樹脂およびその用途
JPWO2008072630A1 (ja) ポリアミド樹脂、並びにそれを用いるエポキシ樹脂組成物及びその用途
JP4919659B2 (ja) ポリアミド樹脂組成物、エポキシ樹脂組成物およびその用途
JP4947976B2 (ja) フレキシブルプリント配線板用基板及びその製造方法
JP2001123132A (ja) エポキシ樹脂組成物接着シート
JP2004189815A (ja) エポキシ樹脂組成物及びそれを用いたフレキシブル印刷配線板材料
JP4565821B2 (ja) 接着剤組成物
JP4553648B2 (ja) エポキシ樹脂組成物及びその硬化物
WO2017030083A1 (ja) エポキシ樹脂組成物およびその接着フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010539214

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827515

Country of ref document: EP

Kind code of ref document: A1